

• Table of
Contents

• Index
• Reviews
• Examples

• Reader
Reviews

• Errata

JavaScript: The Definitive Guide, 4th Edition

By David Flanagan

Publisher: O'Reilly
Pub Date: November 2001

ISBN: 0-596-00048-0
Pages: 936

Slots: 1

This fourth edition of the definitive reference to JavaScript, a scripting
language that can be embedded directly in web pages, covers the latest
version of the language, JavaScript 1.5, as supported by Netscape 6 and
Internet Explorer 6. The book also provides complete coverage of the W3C
DOM standard (Level 1 and Level 2), while retaining material on the legacy
Level 0 DOM for backward compatibility.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

• Table of
Contents

• Index
• Reviews
• Examples

• Reader
Reviews

• Errata

JavaScript: The Definitive Guide, 4th Edition

By David Flanagan

Publisher: O'Reilly
Pub Date: November 2001

ISBN: 0-596-00048-0
Pages: 936

Slots: 1

 Dedication

 Copyright

 Preface

 What's New in the Fourth Edition

 Conventions Used in This Book

 Errata

 Finding the Examples Online

 Comments and Questions

 Acknowledgments

 Chapter 1. Introduction to JavaScript

 Section 1.1. JavaScript Myths

 Section 1.2. Versions of JavaScript

 Section 1.3. Client-Side JavaScript

 Section 1.4. JavaScript in Other Contexts

 Section 1.5. Client-Side JavaScript: Executable Content in Web Pages

 Section 1.6. Client-Side JavaScript Features

 Section 1.7. JavaScript Security

 Section 1.8. Example: Computing Loan Payments with JavaScript

 Section 1.9. Using the Rest of This Book

 Section 1.10. Exploring JavaScript

 Part I: Core JavaScript

 Chapter 2. Lexical Structure

 Section 2.1. Character Set

 Section 2.2. Case Sensitivity

 Section 2.3. Whitespace and Line Breaks

 Section 2.4. Optional Semicolons

 Section 2.5. Comments

 Section 2.6. Literals

 Section 2.7. Identifiers

 Section 2.8. Reserved Words

 Chapter 3. Data Types and Values

 Section 3.1. Numbers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.2. Strings

 Section 3.3. Boolean Values

 Section 3.4. Functions

 Section 3.5. Objects

 Section 3.6. Arrays

 Section 3.7. null

 Section 3.8. undefined

 Section 3.9. The Date Object

 Section 3.10. Regular Expressions

 Section 3.11. Error Objects

 Section 3.12. Primitive Data Type Wrapper Objects

 Chapter 4. Variables

 Section 4.1. Variable Typing

 Section 4.2. Variable Declaration

 Section 4.3. Variable Scope

 Section 4.4. Primitive Types and Reference Types

 Section 4.5. Garbage Collection

 Section 4.6. Variables as Properties

 Section 4.7. Variable Scope Revisited

 Chapter 5. Expressions and Operators

 Section 5.1. Expressions

 Section 5.2. Operator Overview

 Section 5.3. Arithmetic Operators

 Section 5.4. Equality Operators

 Section 5.5. Relational Operators

 Section 5.6. String Operators

 Section 5.7. Logical Operators

 Section 5.8. Bitwise Operators

 Section 5.9. Assignment Operators

 Section 5.10. Miscellaneous Operators

 Chapter 6. Statements

 Section 6.1. Expression Statements

 Section 6.2. Compound Statements

 Section 6.3. if

 Section 6.4. else if

 Section 6.5. switch

 Section 6.6. while

 Section 6.7. do/while

 Section 6.8. for

 Section 6.9. for/in

 Section 6.10. Labels

 Section 6.11. break

 Section 6.12. continue

 Section 6.13. var

 Section 6.14. function

 Section 6.15. return

 Section 6.16. throw

 Section 6.17. try/catch/finally

 Section 6.18. with

 Section 6.19. The Empty Statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 6.19. The Empty Statement

 Section 6.20. Summary of JavaScript Statements

 Chapter 7. Functions

 Section 7.1. Defining and Invoking Functions

 Section 7.2. Functions as Data

 Section 7.3. Function Scope: The Call Object

 Section 7.4. Function Arguments: The Arguments Object

 Section 7.5. Function Properties and Methods

 Chapter 8. Objects

 Section 8.1. Objects and Properties

 Section 8.2. Constructors

 Section 8.3. Methods

 Section 8.4. Prototypes and Inheritance

 Section 8.5. Object-Oriented JavaScript

 Section 8.6. Objects as Associative Arrays

 Section 8.7. Object Properties and Methods

 Chapter 9. Arrays

 Section 9.1. Arrays and Array Elements

 Section 9.2. Array Methods

 Chapter 10. Pattern Matching with Regular Expressions

 Section 10.1. Defining Regular Expressions

 Section 10.2. String Methods for Pattern Matching

 Section 10.3. The RegExp Object

 Chapter 11. Further Topics in JavaScript

 Section 11.1. Data Type Conversion

 Section 11.2. By Value Versus by Reference

 Section 11.3. Garbage Collection

 Section 11.4. Lexical Scoping and Nested Functions

 Section 11.5. The Function() Constructor and Function Literals

 Section 11.6. Netscape's JavaScript 1.2 Incompatibilities

 Part II: Client-Side JavaScript

 Chapter 12. JavaScript in Web Browsers

 Section 12.1. The Web Browser Environment

 Section 12.2. Embedding JavaScript in HTML

 Section 12.3. Execution of JavaScript Programs

 Chapter 13. Windows and Frames

 Section 13.1. Window Overview

 Section 13.2. Simple Dialog Boxes

 Section 13.3. The Status Line

 Section 13.4. Timeouts and Intervals

 Section 13.5. Error Handling

 Section 13.6. The Navigator Object

 Section 13.7. The Screen Object

 Section 13.8. Window Control Methods

 Section 13.9. The Location Object

 Section 13.10. The History Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 13.11. Multiple Windows and Frames

 Chapter 14. The Document Object

 Section 14.1. Document Overview

 Section 14.2. Dynamically Generated Documents

 Section 14.3. Document Color Properties

 Section 14.4. Document Information Properties

 Section 14.5. Forms

 Section 14.6. Images

 Section 14.7. Links

 Section 14.8. Anchors

 Section 14.9. Applets

 Section 14.10. Embedded Data

 Chapter 15. Forms and Form Elements

 Section 15.1. The Form Object

 Section 15.2. Defining Form Elements

 Section 15.3. Scripting Form Elements

 Section 15.4. Form Verification Example

 Chapter 16. Scripting Cookies

 Section 16.1. An Overview of Cookies

 Section 16.2. Storing Cookies

 Section 16.3. Reading Cookies

 Section 16.4. Cookie Example

 Chapter 17. The Document Object Model

 Section 17.1. An Overview of the DOM

 Section 17.2. Using the Core DOM API

 Section 17.3. DOM Compatibility with Internet Explorer 4

 Section 17.4. DOM Compatibility with Netscape 4

 Section 17.5. Convenience Methods: The Traversal and Range APIs

 Chapter 18. Cascading Style Sheets and Dynamic HTML

 Section 18.1. Styles and Style Sheets with CSS

 Section 18.2. Element Positioning with CSS

 Section 18.3. Scripting Styles

 Section 18.4. DHTML in Fourth-Generation Browsers

 Section 18.5. Other DOM APIs for Styles and Style Sheets

 Chapter 19. Events and Event Handling

 Section 19.1. Basic Event Handling

 Section 19.2. Advanced Event Handling with DOM Level 2

 Section 19.3. The Internet Explorer Event Model

 Section 19.4. The Netscape 4 Event Model

 Chapter 20. Compatibility Techniques

 Section 20.1. Platform and Browser Compatibility

 Section 20.2. Language Version Compatibility

 Section 20.3. Compatibility with Non-JavaScript Browsers

 Chapter 21. JavaScript Security

 Section 21.1. JavaScript and Security

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 21.2. Restricted Features

 Section 21.3. The Same-Origin Policy

 Section 21.4. Security Zones and Signed Scripts

 Chapter 22. Using Java with JavaScript

 Section 22.1. Scripting Java Applets

 Section 22.2. Using JavaScript from Java

 Section 22.3. Using Java Classes Directly

 Section 22.4. LiveConnect Data Types

 Section 22.5. LiveConnect Data Conversion

 Section 22.6. JavaScript Conversion of JavaObjects

 Section 22.7. Java-to-JavaScript Data Conversion

 Part III: Core JavaScript Reference

 Chapter 23. Core JavaScript Reference

 Sample Entry

 arguments[]

 Arguments

 Arguments.callee

 Arguments.length

 Array

 Array.concat()

 Array.join()

 Array.length

 Array.pop()

 Array.push()

 Array.reverse()

 Array.shift()

 Array.slice()

 Array.sort()

 Array.splice()

 Array.toLocaleString()

 Array.toString()

 Array.unshift()

 Boolean

 Boolean.toString()

 Boolean.valueOf()

 Date

 Date.getDate()

 Date.getDay()

 Date.getFullYear()

 Date.getHours()

 Date.getMilliseconds()

 Date.getMinutes()

 Date.getMonth()

 Date.getSeconds()

 Date.getTime()

 Date.getTimezoneOffset()

 Date.getUTCDate()

 Date.getUTCDay()

 Date.getUTCFullYear()

 Date.getUTCHours()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Date.getUTCHours()

 Date.getUTCMilliseconds()

 Date.getUTCMinutes()

 Date.getUTCMonth()

 Date.getUTCSeconds()

 Date.getYear()

 Date.parse()

 Date.setDate()

 Date.setFullYear()

 Date.setHours()

 Date.setMilliseconds()

 Date.setMinutes()

 Date.setMonth()

 Date.setSeconds()

 Date.setTime()

 Date.setUTCDate()

 Date.setUTCFullYear()

 Date.setUTCHours()

 Date.setUTCMilliseconds()

 Date.setUTCMinutes()

 Date.setUTCMonth()

 Date.setUTCSeconds()

 Date.setYear()

 Date.toDateString()

 Date.toGMTString()

 Date.toLocaleDateString()

 Date.toLocaleString()

 Date.toLocaleTimeString()

 Date.toString()

 Date.toTimeString()

 Date.toUTCString()

 Date.UTC()

 Date.valueOf()

 decodeURI()

 decodeURIComponent()

 encodeURI()

 encodeURIComponent()

 Error

 Error.message

 Error.name

 Error.toString()

 escape()

 eval()

 EvalError

 Function

 Function.apply()

 Function.arguments[]

 Function.call()

 Function.caller

 Function.length

 Function.prototype

 Function.toString()

 Global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Infinity

 isFinite()

 isNaN()

 Math

 Math.abs()

 Math.acos()

 Math.asin()

 Math.atan()

 Math.atan2()

 Math.ceil()

 Math.cos()

 Math.E

 Math.exp()

 Math.floor()

 Math.LN10

 Math.LN2

 Math.log()

 Math.LOG10E

 Math.LOG2E

 Math.max()

 Math.min()

 Math.PI

 Math.pow()

 Math.random()

 Math.round()

 Math.sin()

 Math.sqrt()

 Math.SQRT1_2

 Math.SQRT2

 Math.tan()

 NaN

 Number

 Number.MAX_VALUE

 Number.MIN_VALUE

 Number.NaN

 Number.NEGATIVE_INFINITY

 Number.POSITIVE_INFINITY

 Number.toExponential()

 Number.toFixed()

 Number.toLocaleString()

 Number.toPrecision()

 Number.toString()

 Number.valueOf()

 Object

 Object.constructor

 Object.hasOwnProperty()

 Object.isPrototypeOf()

 Object.propertyIsEnumerable()

 Object.toLocaleString()

 Object.toString()

 Object.valueOf()

 parseFloat()

 parseInt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 parseInt()

 RangeError

 ReferenceError

 RegExp

 RegExp.exec()

 RegExp.global

 RegExp.ignoreCase

 RegExp.lastIndex

 RegExp.source

 RegExp.test()

 RegExp.toString()

 String

 String.charAt()

 String.charCodeAt()

 String.concat()

 String.fromCharCode()

 String.indexOf()

 String.lastIndexOf()

 String.length

 String.localeCompare()

 String.match()

 String.replace()

 String.search()

 String.slice()

 String.split()

 String.substr()

 String.substring()

 String.toLocaleLowerCase()

 String.toLocaleUpperCase()

 String.toLowerCase()

 String.toString()

 String.toUpperCase()

 String.valueOf()

 SyntaxError

 TypeError

 undefined

 unescape()

 URIError

 Part IV: Client-Side JavaScript Reference

 Chapter 24. Client-Side JavaScript Reference

 Sample Entry

 Anchor

 Applet

 Area

 Button

 Button.onclick

 Checkbox

 Checkbox.onclick

 Document

 Document.all[]

 Document.captureEvents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Document.clear()

 Document.close()

 Document.cookie

 Document.domain

 Document.elementFromPoint()

 Document.getSelection()

 Document.handleEvent()

 Document.lastModified

 Document.links[]

 Document.open()

 Document.releaseEvents()

 Document.routeEvent()

 Document.URL

 Document.write()

 Document.writeln()

 Element

 Event

 FileUpload

 FileUpload.onchange

 Form

 Form.elements[]

 Form.onreset

 Form.onsubmit

 Form.reset()

 Form.submit()

 Form.target

 Frame

 getClass()

 Hidden

 History

 History.back()

 History.forward()

 History.go()

 HTMLElement

 HTMLElement.contains()

 HTMLElement.getAttribute()

 HTMLElement.handleEvent()

 HTMLElement.insertAdjacentHTML()

 HTMLElement.insertAdjacentText()

 HTMLElement.onclick

 HTMLElement.ondblclick

 HTMLElement.onhelp

 HTMLElement.onkeydown

 HTMLElement.onkeypress

 HTMLElement.onkeyup

 HTMLElement.onmousedown

 HTMLElement.onmousemove

 HTMLElement.onmouseout

 HTMLElement.onmouseover

 HTMLElement.onmouseup

 HTMLElement.removeAttribute()

 HTMLElement.scrollIntoView()

 HTMLElement.setAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTMLElement.setAttribute()

 Image

 Image.onabort

 Image.onerror

 Image.onload

 Input

 Input.blur()

 Input.click()

 Input.focus()

 Input.name

 Input.onblur

 Input.onchange

 Input.onclick

 Input.onfocus

 Input.select()

 Input.type

 Input.value

 JavaArray

 JavaClass

 JavaObject

 JavaPackage

 JSObject

 JSObject.call()

 JSObject.eval()

 JSObject.getMember()

 JSObject.getSlot()

 JSObject.getWindow()

 JSObject.removeMember()

 JSObject.setMember()

 JSObject.setSlot()

 JSObject.toString()

 Layer

 Layer.captureEvents()

 Layer.handleEvent()

 Layer.load()

 Layer.moveAbove()

 Layer.moveBelow()

 Layer.moveBy()

 Layer.moveTo()

 Layer.moveToAbsolute()

 Layer.offset()

 Layer.releaseEvents()

 Layer.resizeBy()

 Layer.resizeTo()

 Layer.routeEvent()

 Link

 Link.onclick

 Link.onmouseout

 Link.onmouseover

 Link.target

 Location

 Location.reload()

 Location.replace()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 MimeType

 Navigator

 Navigator.javaEnabled()

 Navigator.plugins.refresh()

 Option

 Password

 Plugin

 Radio

 Radio.onclick

 Reset

 Reset.onclick

 Screen

 Select

 Select.onchange

 Select.options[]

 Style

 Submit

 Submit.onclick

 Text

 Text.onchange

 Textarea

 Textarea.onchange

 URL

 Window

 Window.alert()

 Window.back()

 Window.blur()

 Window.captureEvents()

 Window.clearInterval()

 Window.clearTimeout()

 Window.close()

 Window.confirm()

 Window.defaultStatus

 Window.focus()

 Window.forward()

 Window.handleEvent()

 Window.home()

 Window.moveBy()

 Window.moveTo()

 Window.name

 Window.navigate()

 Window.onblur

 Window.onerror

 Window.onfocus

 Window.onload

 Window.onmove

 Window.onresize

 Window.onunload

 Window.open()

 Window.print()

 Window.prompt()

 Window.releaseEvents()

 Window.resizeBy()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Window.resizeBy()

 Window.resizeTo()

 Window.routeEvent()

 Window.scroll()

 Window.scrollBy()

 Window.scrollTo()

 Window.setInterval()

 Window.setTimeout()

 Window.status

 Window.stop()

 Part V: W3C DOM Reference

 Chapter 25. W3C DOM Reference

 Sample Entry

 AbstractView

 AbstractView.getComputedStyle()

 Attr

 CDATASection

 CharacterData

 CharacterData.appendData()

 CharacterData.deleteData()

 CharacterData.insertData()

 CharacterData.replaceData()

 CharacterData.substringData()

 Comment

 Counter

 CSS2Properties

 CSSCharsetRule

 CSSFontFaceRule

 CSSImportRule

 CSSMediaRule

 CSSMediaRule.deleteRule()

 CSSMediaRule.insertRule()

 CSSPageRule

 CSSPrimitiveValue

 CSSPrimitiveValue.getCounterValue()

 CSSPrimitiveValue.getFloatValue()

 CSSPrimitiveValue.getRectValue()

 CSSPrimitiveValue.getRGBColorValue()

 CSSPrimitiveValue.getStringValue()

 CSSPrimitiveValue.setFloatValue()

 CSSPrimitiveValue.setStringValue()

 CSSRule

 CSSRuleList

 CSSRuleList.item()

 CSSStyleDeclaration

 CSSStyleDeclaration.getPropertyCSSValue()

 CSSStyleDeclaration.getPropertyPriority()

 CSSStyleDeclaration.getPropertyValue()

 CSSStyleDeclaration.item()

 CSSStyleDeclaration.removeProperty()

 CSSStyleDeclaration.setProperty()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 CSSStyleRule

 CSSStyleSheet

 CSSStyleSheet.deleteRule()

 CSSStyleSheet.insertRule()

 CSSUnknownRule

 CSSValue

 CSSValueList

 CSSValueList.item()

 Document

 Document.createAttribute()

 Document.createAttributeNS()

 Document.createCDATASection()

 Document.createComment()

 Document.createDocumentFragment()

 Document.createElement()

 Document.createElementNS()

 Document.createEntityReference()

 Document.createEvent()

 Document.createNodeIterator()

 Document.createProcessingInstruction()

 Document.createRange()

 Document.createTextNode()

 Document.createTreeWalker()

 Document.getElementById()

 Document.getElementsByTagName()

 Document.getElementsByTagNameNS()

 Document.getOverrideStyle()

 Document.importNode()

 DocumentCSS

 DocumentEvent

 DocumentFragment

 DocumentRange

 DocumentStyle

 DocumentTraversal

 DocumentType

 DocumentView

 DOMException

 DOMImplementation

 DOMImplementation.createCSSStyleSheet()

 DOMImplementation.createDocument()

 DOMImplementation.createDocumentType()

 DOMImplementation.createHTMLDocument()

 DOMImplementation.hasFeature()

 DOMImplementationCSS

 Element

 Element.getAttribute()

 Element.getAttributeNode()

 Element.getAttributeNodeNS()

 Element.getAttributeNS()

 Element.getElementsByTagName()

 Element.getElementsByTagNameNS()

 Element.hasAttribute()

 Element.hasAttributeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Element.hasAttributeNS()

 Element.removeAttribute()

 Element.removeAttributeNode()

 Element.removeAttributeNS()

 Element.setAttribute()

 Element.setAttributeNode()

 Element.setAttributeNodeNS()

 Element.setAttributeNS()

 ElementCSSInlineStyle

 Entity

 EntityReference

 Event

 Event.initEvent()

 Event.preventDefault()

 Event.stopPropagation()

 EventException

 EventListener

 EventTarget

 EventTarget.addEventListener()

 EventTarget.dispatchEvent()

 EventTarget.removeEventListener()

 HTMLAnchorElement

 HTMLAnchorElement.blur()

 HTMLAnchorElement.focus()

 HTMLBodyElement

 HTMLCollection

 HTMLCollection.item()

 HTMLCollection.namedItem()

 HTMLDocument

 HTMLDocument.close()

 HTMLDocument.getElementById()

 HTMLDocument.getElementsByName()

 HTMLDocument.open()

 HTMLDocument.write()

 HTMLDocument.writeln()

 HTMLDOMImplementation

 HTMLElement

 HTMLFormElement

 HTMLFormElement.reset()

 HTMLFormElement.submit()

 HTMLInputElement

 HTMLInputElement.blur()

 HTMLInputElement.click()

 HTMLInputElement.focus()

 HTMLInputElement.select()

 HTMLOptionElement

 HTMLSelectElement

 HTMLSelectElement.add()

 HTMLSelectElement.blur()

 HTMLSelectElement.focus()

 HTMLSelectElement.remove()

 HTMLTableCaptionElement

 HTMLTableCellElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTMLTableColElement

 HTMLTableElement

 HTMLTableElement.createCaption()

 HTMLTableElement.createTFoot()

 HTMLTableElement.createTHead()

 HTMLTableElement.deleteCaption()

 HTMLTableElement.deleteRow()

 HTMLTableElement.deleteTFoot()

 HTMLTableElement.deleteTHead()

 HTMLTableElement.insertRow()

 HTMLTableRowElement

 HTMLTableRowElement.deleteCell()

 HTMLTableRowElement.insertCell()

 HTMLTableSectionElement

 HTMLTableSectionElement.deleteRow()

 HTMLTableSectionElement.insertRow()

 HTMLTextAreaElement

 HTMLTextAreaElement.blur()

 HTMLTextAreaElement.focus()

 HTMLTextAreaElement.select()

 LinkStyle

 MediaList

 MediaList.appendMedium()

 MediaList.deleteMedium()

 MediaList.item()

 MouseEvent

 MouseEvent.initMouseEvent()

 MutationEvent

 MutationEvent.initMutationEvent()

 NamedNodeMap

 NamedNodeMap.getNamedItem()

 NamedNodeMap.getNamedItemNS()

 NamedNodeMap.item()

 NamedNodeMap.removeNamedItem()

 NamedNodeMap.removeNamedItemNS()

 NamedNodeMap.setNamedItem()

 NamedNodeMap.setNamedItemNS()

 Node

 Node.appendChild()

 Node.cloneNode()

 Node.hasAttributes()

 Node.hasChildNodes()

 Node.insertBefore()

 Node.isSupported()

 Node.normalize()

 Node.removeChild()

 Node.replaceChild()

 NodeFilter

 NodeIterator

 NodeIterator.detach()

 NodeIterator.nextNode()

 NodeIterator.previousNode()

 NodeList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 NodeList

 NodeList.item()

 Notation

 ProcessingInstruction

 Range

 Range.cloneContents()

 Range.cloneRange()

 Range.collapse()

 Range.compareBoundaryPoints()

 Range.deleteContents()

 Range.detach()

 Range.extractContents()

 Range.insertNode()

 Range.selectNode()

 Range.selectNodeContents()

 Range.setEnd()

 Range.setEndAfter()

 Range.setEndBefore()

 Range.setStart()

 Range.setStartAfter()

 Range.setStartBefore()

 Range.surroundContents()

 Range.toString()

 RangeException

 Rect

 RGBColor

 StyleSheet

 StyleSheetList

 StyleSheetList.item()

 Text

 Text.splitText()

 TreeWalker

 TreeWalker.firstChild()

 TreeWalker.lastChild()

 TreeWalker.nextNode()

 TreeWalker.nextSibling()

 TreeWalker.parentNode()

 TreeWalker.previousNode()

 TreeWalker.previousSibling()

 UIEvent

 UIEvent.initUIEvent()

 ViewCSS

 Part VI: Class, Property, Method, and Event Handler Index

 Chapter 26. Class, Property, Method, and Event Handler Index

 Section 26.1. A

 Section 26.2. B

 Section 26.3. C

 Section 26.4. D

 Section 26.5. E

 Section 26.6. F

 Section 26.7. G

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 26.8. H

 Section 26.9. I

 Section 26.10. J

 Section 26.11. K

 Section 26.12. L

 Section 26.13. M

 Section 26.14. N

 Section 26.15. O

 Section 26.16. P

 Section 26.17. Q

 Section 26.18. R

 Section 26.19. S

 Section 26.20. T

 Section 26.21. U

 Section 26.22. V

 Section 26.23. W

 Section 26.24. X

 Section 26.25. Y

 Section 26.26. Z

 Colophon

 Index

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Dedication

This book is dedicated to all who teach peace and resist violence.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (http://safari.oreilly.com). For more
information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly & Associates, Inc., and the association between the image of a Javan rhinoceros and
the topic of JavaScript is a trademark of O'Reilly & Associates, Inc. Java®, all Java-based
trademarks and logos, and JavaScript® are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly & Associates, Inc. is
independent of Sun Microsystems.

Netscape, Navigator, and the Netscape Communications Corporate Logos are trademarks and
tradenames of Netscape Communications Corporation. Internet Explorer and the Internet
Explorer Logo are trademarks and tradenames of Microsoft Corporation. All other product names
and logos are trademarks of their respective owners.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preface
There have been many changes in the world of web programming with JavaScript since the
third edition of this book was published, including:

Second and third editions of the ECMA-262 standard have been published, updating the
core JavaScript language. Conformant versions of Netscape's JavaScript interpreter and
Microsoft's JScript interpreter have been released.

The source code for Netscape's JavaScript interpreters (one written in C and one written in
Java) has been released as open source and is available to anyone who wants to
embed a scripting language in his application.

The World Wide Web Consortium (W3C) has published two versions (or levels) of a
Document Object Model (DOM) standard. Recent browsers support this standard (to
varying degrees) and allow client-side JavaScript to interact with document content to
produce sophisticated Dynamic HTML (DHTML) effects. Support for other W3C standards,
such as HTML 4, CSS1, and CSS2, has also become widespread.

The Mozilla organization, using source code originally contributed by Netscape, has
produced a good fifth-generation browser. At the time of this writing, the Mozilla browser is
not yet at the 1.0 release level, but the browser is mature enough that Netscape has based
its 6.0 and 6.1 browsers upon the Mozilla code base.

 Microsoft's Internet Explorer has become the overwhelmingly dominant browser on
desktop systems. However, the Netscape/Mozilla browser remains relevant to web
developers, especially because of its superior support for web standards. In addition, minor
browsers such as Opera (http://www.opera.com) and Konquerer (http://www.konqueror.org)
should be seen as equally relevant.

Web browsers (and JavaScript interpreters) are no longer confined to the desktop but have
migrated to PDAs and even cell phones.

In summary, the core JavaScript language has matured. It has been standardized and is used in
a wider variety of environments than it was previously. The collapse of Netscape's market share
has allowed the universe of desktop web browsers to expand, and JavaScript-enabled web
browsers have also become available on non-desktop platforms. There has been a distinct, if not
complete, move toward web standards. The (partial) implementation of the DOM standard in
recent browsers gives web developers a long-awaited vendor-independent API to which they can
code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

What's New in the Fourth Edition

This edition of JavaScript: The Definitive Guide has been thoroughly updated in light of the
changes I just described. Major new features include complete coverage of JavaScript 1.5 and
the third edition of the ECMA-262 standard on which it is based, and complete coverage of the
Level 2 DOM standard.

Throughout the book, the focus has shifted from documenting particular JavaScript and browser
implementations (JavaScript 1.2, Netscape 4, Internet Explorer 5, etc.) to documenting the
standards upon which those implementations are (or ought to be) based. Because of the
proliferation of implementations, it is no longer practical for any one book to attempt to document -
- or for any one developer to attempt to understand -- every feature, proprietary extension, quirk,
and bug of every implementation. Focusing on the specifications instead of the implementations
makes this book easier to use and, if you take the same approach, will make your JavaScript
code more portable and maintainable. You'll particularly notice the increased emphasis on
standards in the new material on core JavaScript and the DOM.

Another major change in this edition is that the reference section has been split into three distinct
parts. First, the core JavaScript material has been separated from the client-side JavaScript
material (Part IV) and placed in a section of its own (Part III). This division is for the convenience
of JavaScript programmers who are working with the language in an environment other than a
web browser and who are not interested in client-side JavaScript.

Second, the new material documenting the W3C DOM has been placed in a section of its own
(Part V), separate from the existing client-side JavaScript material. The DOM standard defines an
API that is quite distinct from the "legacy" API of traditional client-side JavaScript. Depending on
the browser platforms they are targeting, developers typically use one API or the other and
usually do not need to switch back and forth. Keeping these two APIs distinct also preserves the
organization of the existing client-side reference material, which is convenient for readers of the
third edition who upgrade to this edition.

In order to accommodate all the new material without making the book much, much larger, I've
gotten rid of reference pages for the trivial properties of objects. These properties are already
described once on the reference page for the object, and putting another description in a
reference page of its own was redundant and wasteful. Properties that require substantial
description, as well as all methods, still have reference pages of their own. Furthermore, the
design wizards at O'Reilly have created a new interior design for the book that remains easy and
pleasant to read but takes up less space.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Conventions Used in This Book

I use the following formatting conventions in this book:

Bold

Is occasionally used to refer to particular keys on a computer keyboard or to portions of a
user interface, such as the Back button or the Options menu.

Italic

Is used for emphasis and to signify the first use of a term. Italic is also used for email
addresses, web sites, FTP sites, file and directory names, and newsgroups. Finally, italic is
used in this book for the names of Java classes, to help keep Java class names distinct
from JavaScript names.

Constant width

Is used in all JavaScript code and HTML text listings, and generally for anything that you
would type literally when programming.

Constant width italic

Is used for the names of function arguments, and generally as a placeholder to indicate an
item that should be replaced with an actual value in your program.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Errata

Please help us at O'Reilly & Associates, Inc. improve future editions and future printings of this
book by reporting any errors, inaccuracies, bugs, misleading or confusing statements, and plain
old typos that you find anywhere in this book. O'Reilly maintains a web site for this book that
includes a listing of all known errors. You can find the errata list by following a link from the book's
catalog page:

http://www.oreilly.com/catalog/jscript4/

The errata page includes a link to a form that allows you to report any bugs you find. You can also
report bugs or ask questions about this book by sending email to:

bookquestions@oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finding the Examples Online

The examples printed in this book are available for download from the book's web site. Follow the
Examples link from the book's catalog page:

http://www.oreilly.com/catalog/jscript4/

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To comment or ask technical questions about this and other O'Reilly books, you can also send
email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network,
see the O'Reilly web site at:

http://www.oreilly.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Acknowledgments

Brendan Eich of the Mozilla organization is the originator and chief innovator of JavaScript. I, and
many JavaScript developers, owe Brendan a tremendous debt of gratitude for developing
JavaScript and for taking the time out of his crazy schedule to answer our questions and even
solicit our input. Besides patiently answering my many questions, Brendan also read and provided
very helpful comments on the first and third editions of this book.

This book has been blessed with top-notch technical reviewers, whose comments have gone a
long way toward making it a stronger, more accurate book. Waldemar Horwat at Netscape
reviewed the new material on JavaScript 1.5 in this fourth edition. The new material on the W3C
DOM was reviewed by Philippe Le Hegaret of the W3C; by Peter-Paul Koch, Head of Client-Side
Programming at the Dutch Internet consultancy and creation company Netlinq Framfab
(http://www.netlinqframfab.nl); by Dylan Schiemann of SitePen (http://www.sitepen.com); and by
independent web developer Jeff Yates. Two of these reviewers maintain useful web sites about
web design with the DOM. Peter-Paul's site is at http://www.xs4all.nl/~ppk/js/. Jeff's site is
http://www.pbwizard.com. Although he was not a reviewer, Joseph Kesselman of IBM Research
was very helpful in answering my questions about the W3C DOM.

The third edition of the book was reviewed by Brendan Eich, Waldemar Horwat, and Vidur
Apparao at Netscape; Herman Venter at Microsoft; and two independent JavaScript developers,
Jay Hodges and Angelo Sirigos. Dan Shafer of CNET's Builder.Com did some preliminary work
on the third edition. Although his material was not used in this edition, his ideas and general
outline were quite helpful. Norris Boyd and Scott Furman at Netscape also provided useful
information for this edition, and Vidur Apparao of Netscape and Scott Issacs of Microsoft each
took the time to talk to me about the forthcoming Document Object Model standard. Finally, Dr.
Tankred Hirschmann provided challenging insights into the intricacies of JavaScript 1.2.

The second edition benefited greatly from the help and comments of Nick Thompson and Richard
Yaker of Netscape; Dr. Shon Katzenberger, Larry Sullivan, and Dave C. Mitchell at Microsoft; and
Lynn Rollins of R&B Communications. The first edition was reviewed by Neil Berkman of Bay
Networks, and by Andrew Schulman and Terry Allen of O'Reilly & Associates.

This book also gains strength from the diversity of editors it has had. Paula Ferguson is the editor
of this edition and of the third edition. She's given the book a thorough and much-needed going
over, making it easier to read and easier to understand. Frank Willison edited the second edition,
and Andrew Schulman edited the first.

Finally, my thanks, as always and for so many reasons, to Christie.

—David Flanagan, September 2001

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 1. Introduction to JavaScript
JavaScript is a lightweight, interpreted programming language with object-oriented capabilities.
The general-purpose core of the language has been embedded in Netscape, Internet Explorer,
and other web browsers and embellished for web programming with the addition of objects that
represent the web browser window and its contents. This client-side version of JavaScript allows
executable content to be included in web pages -- it means that a web page need no longer be
static HTML, but can include programs that interact with the user, control the browser, and
dynamically create HTML content.

Syntactically, the core JavaScript language resembles C, C++, and Java, with programming
constructs such as the if statement, the while loop, and the && operator. The similarity ends
with this syntactic resemblance, however. JavaScript is an untyped language, which means that
variables do not need to have a type specified. Objects in JavaScript are more like Perl's
associative arrays than they are like structures in C or objects in C++ or Java. The object-oriented
inheritance mechanism of JavaScript is like those of the little-known languages Self and
NewtonScript; it is quite different from inheritance in C++ and Java. Like Perl, JavaScript is an
interpreted language, and it draws inspiration from Perl in a number of places, such as its regular
expression and array-handling features.

This chapter provides a quick overview of JavaScript; it explains what JavaScript can and cannot
do and exposes some myths about the language. It distinguishes the core JavaScript language
from embedded and extended versions of the language, such as the client-side JavaScript that is
embedded in web browsers and the server-side JavaScript that is embedded in Netscape's web
servers. (This book documents core and client-side JavaScript.) This chapter also demonstrates
real-world web programming with some client-side JavaScript examples.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.1 JavaScript Myths

JavaScript is the subject of a fair bit of misinformation and confusion. Before proceeding any
further with our exploration of JavaScript, it is important that we debunk some common and
persistent myths about the language.

1.1.1 JavaScript Is Not Java

One of the most common misconceptions about JavaScript is that it is a simplified version of
Java, the programming language from Sun Microsystems. Other than an incomplete syntactic
resemblance and the fact that both Java and JavaScript can provide executable content in web
browsers, the two languages are entirely unrelated. The similarity of names is purely a marketing
ploy (the language was originally called LiveScript; its name was changed to JavaScript at the last
minute).

JavaScript and Java do, however, make a good team. The two languages have different sets of
capabilities. JavaScript can control browser behavior and content but cannot draw graphics or
perform networking. Java has no control over the browser as a whole but can do graphics,
networking, and multithreading. Client-side JavaScript can interact with and control Java applets
embedded in a web page, and, in this sense, JavaScript really can script Java (see Chapter 22 for
details).

1.1.2 JavaScript Is Not Simple

JavaScript is touted as a scripting language instead of a programming language, the implication
being that scripting languages are simpler, that they are programming languages for non-
programmers. Indeed, JavaScript appears at first glance to be a fairly simple language, perhaps
of the same complexity as BASIC. JavaScript does have a number of features designed to make
it more forgiving and easier to use for new and unsophisticated programmers. Non-programmers
can use JavaScript for limited, cookbook-style programming tasks.

Beneath its thin veneer of simplicity, however, JavaScript is a full-featured programming
language, as complex as any and more complex than some. Programmers who attempt to use
JavaScript for nontrivial tasks often find the process frustrating if they do not have a solid
understanding of the language. This book documents JavaScript comprehensively, so you can
develop a sophisticated understanding of the language.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.2 Versions of JavaScript

JavaScript has evolved over the years, and Netscape has released several versions of the
language. Microsoft has released similar versions of the JavaScript language under the name
"JScript." And ECMA (http://www.ecma.ch) has published three versions of the ECMA-262
standard that standardize the JavaScript language under the awkward name "ECMAScript."

Table 1-1 lists these various versions and explains their key features and how they are related to
one another. In this book, I often use the name "JavaScript" to refer to any implementation of the
language, including Microsoft's JScript. When I'm specifically referring to ECMAScript, I often use
the terms "ECMA-262" or "ECMA."

Table 1-1. Versions of JavaScript
Version Description

JavaScript
1.0

The original version of the language. It was buggy and is now essentially obsolete.
Implemented by Netscape 2.

JavaScript
1.1

Introduced a true Array object; most serious bugs resolved. Implemented by
Netscape 3.

JavaScript
1.2

Introduced the switch statement, regular expressions, and a number of other
features. Almost compliant with ECMA v1, but has some incompatibilities.
Implemented by Netscape 4.

JavaScript
1.3

Fixed incompatibilities of JavaScript 1.2. Compliant with ECMA v1. Implemented by
Netscape 4.5.

JavaScript
1.4 Implemented only in Netscape server products.

JavaScript
1.5

Introduced exception handling. Compliant with ECMA v3. Implemented by Mozilla
and Netscape 6.

JScript
1.0 Roughly equivalent to JavaScript 1.0. Implemented by early releases of IE 3.

JScript
2.0 Roughly equivalent to JavaScript 1.1. Implemented by later releases of IE 3.

JScript
3.0 Roughly equivalent to JavaScript 1.3. Compliant with ECMA v1. Implemented by IE 4.

JScript
4.0 Not implemented by any web browser.

JScript
5.0

Supported exception handling. Partially compliant with ECMA v3. Implemented by IE
5.

JScript
5.5

Roughly equivalent to JavaScript 1.5. Fully compliant with ECMA v3. Implemented by
IE 5.5 and IE 6. (IE 6 actually implements JScript 5.6, but 5.6 is not different from 5.5
in any way that is relevant to client-side JavaScript programmers.)

ECMA v1

The first standard version of the language. Standardized the basic features of
JavaScript 1.1 and added a few new features. Did not standardize the switch
statement or regular expression support. Conformant implementations are JavaScript
1.3 and JScript 3.0.

ECMA v2 A maintenance release of the standard that included clarifications but defined no new
features.

ECMA v3 Standardized the switch statement, regular expressions, and exception handling.
Conformant implementations are JavaScript 1.5 and JScript 5.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.3 Client-Side JavaScript

When a JavaScript interpreter is embedded in a web browser, the result is client-side JavaScript.
This is by far the most common variant of JavaScript; when most people refer to JavaScript, they
usually mean client-side JavaScript. This book documents client-side JavaScript, along with the
core JavaScript language that client-side JavaScript incorporates.

We'll discuss client-side JavaScript and its capabilities in much more detail later in this chapter. In
brief, though, client-side JavaScript combines the scripting ability of a JavaScript interpreter with
the document object model (DOM) defined by a web browser. These two distinct technologies
combine in a synergistic way, so the result is greater than the sum of its parts: client-side
JavaScript enables executable content to be distributed over the Web and is at the heart of a new
generation of Dynamic HTML (DHTML) documents.

Just as the ECMA-262 specification defined a standard version of the core JavaScript language,
the World Wide Web Consortium (W3C) has published a DOM specification (or recommendation)
that standardizes the features a browser must support in its DOM. We'll learn much more about
this standard in Chapter 17, Chapter 18, and Chapter 19. Although the W3C DOM standard is not
yet as well supported as it could be, it is supported well enough that web developers can start
writing JavaScript code that relies on it.

Table 1-2 shows the core language version and DOM capabilities supported by various browser
versions from Netscape and Microsoft. Note that the versions of Internet Explorer listed in the
table refer to the Windows version of that browser. The capabilities of Macintosh versions of IE
often vary (sometimes significantly) from the same-numbered versions for Windows. Also, bear in
mind that IE allows the JScript interpreter to be upgraded independently of the browser itself, so it
is possible to encounter an installation of IE that supports a version of the language greater than
that shown here.

Table 1-2. Client-side JavaScript features by browser
Browser Language DOM capabilities

Netscape 2 JavaScript
1.0 Form manipulation

Netscape 3 JavaScript
1.1 Image rollovers

Netscape 4 JavaScript
1.2 DHTML with Layers

Netscape 4.5 JavaScript
1.3 DHTML with Layers

Netscape 6 /
Mozilla

JavaScript
1.5

Substantial support for W3C DOM standard; support for Layers
discontinued

IE 3 JScript
1.0/2.0 Form manipulation

IE 4 JScript 3.0 Image rollovers; DHTML with document.all[]
IE 5 JScript 5.0 DHTML with document.all[]
IE 5.5 JScript 5.5 Partial support for W3C DOM standard

IE 6 JScript 5.5 Partial support for W3C DOM standard; lacks support for W3C
DOM event model

The differences and incompatibilities between Netscape's and Microsoft's client-side versions of
JavaScript are much greater than the differences between their respective implementations of the
core language. However, both browsers do agree upon a large subset of client-side JavaScript
features. For lack of better names, versions of client-side JavaScript are sometimes referred to by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

features. For lack of better names, versions of client-side JavaScript are sometimes referred to by
the version of the core language on which they are based. Thus, in client-side contexts the term
"JavaScript 1.2" refers to the version of client-side JavaScript supported by Netscape 4 and
Internet Explorer 4. When I use core-language version numbers to refer to client-side versions of
JavaScript, I am referring to the compatible subset of features supported by both Netscape and
Internet Explorer. When I discuss client-side features specific to one browser or the other, I refer
to the browser by name and version number.

Note that Netscape and Internet Explorer are not the only browsers that support client-side
JavaScript. For example, Opera (http://www.opera.com) supports client-side JavaScript as well.
However, since Netscape and Internet Explorer have the vast majority of market share, they are
the only browsers discussed explicitly in this book. Client-side JavaScript implementations in other
browsers should conform fairly closely to the implementations in these two browsers.

Similarly, JavaScript is not the only programming language that can be embedded within a web
browser. For example, Internet Explorer supports a language known as VBScript, a variant of
Microsoft's Visual Basic language that provides many of the same features as JavaScript but can
be used only with Microsoft browsers. Also, the HTML 4.0 specification uses the Tcl programming
language as an example of an embedded scripting language in its discussion of the HTML
<script> tag. While there are no mainstream browsers that support Tcl for this purpose, there is
no reason that a browser could not easily support this language.

Previous editions of this book have covered Netscape browsers more thoroughly than Microsoft
browsers. The reason for this bias was that Netscape was the inventor of JavaScript and (for a
time, at least) held the dominant position in the web-browser market. This bias toward Netscape
has declined in each subsequent edition of the book, and the current edition is heavily focused on
standards, such as ECMAScript and the W3C DOM, rather than on particular browsers.
Nevertheless, readers may find that some of the original bias toward Netscape comes through in
the material that remains from older editions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.4 JavaScript in Other Contexts

JavaScript is a general-purpose programming language; its use is not restricted to web browsers.
JavaScript was designed to be embedded within, and provide scripting capabilities for, any
application. From the earliest days, in fact, Netscape's web servers included a JavaScript
interpreter, so that server-side scripts could be written in JavaScript. Similarly, Microsoft uses its
JScript interpreter in its IIS web server and in its Windows Scripting Host product, in addition to
using it in Internet Explorer.

Both Netscape and Microsoft have made their JavaScript interpreters available to companies and
programmers who want to embed them in their applications. Netscape's interpreter was released
as open source and is now available through the Mozilla organization (see
http://www.mozilla.org/js/). Mozilla actually provides two different versions of the JavaScript 1.5
interpreter. One is written in C and is called "SpiderMonkey." The other is written in Java and, in a
flattering reference to this book, is called "Rhino."

We can expect to see more and more applications that use JavaScript as an embedded scripting
language.[1] If you are writing scripts for such an application, you'll find the first half of this book,
documenting the core language, to be useful. The web-browser specific chapters, however, will
probably not be applicable to your scripts.

[1] ActionScript, the scripting language available in Macromedia's Flash 5, is modeled after the ECMAScript standard,
but it is not actually JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.5 Client-Side JavaScript: Executable Content in Web Pages

When a web browser is augmented with a JavaScript interpreter, it allows executable content to
be distributed over the Internet in the form of JavaScript scripts. Example 1-1 shows a simple
JavaScript program, or script, embedded in a web page.

Example 1-1. A simple JavaScript program

<html>

<body>

<head><title>Factorials</title></head>

<script language="JavaScript">

document.write("<h2>Table of Factorials</h2>");

for(i = 1, fact = 1; i < 10; i++, fact *= i) {

 document.write(i + "! = " + fact);

 document.write("
");

}

</script>

</body>

</html>

When loaded into a JavaScript-enabled browser, this script produces the output shown in Figure
1-1.

Figure 1-1. A web page generated with JavaScript

As you can see in this example, the <script> and </script> tags are used to embed
JavaScript code within an HTML file. We'll learn more about the <script> tag in Chapter 12.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The main feature of JavaScript demonstrated by this example is the use of the
document.write() method.[2] This method is used to dynamically output HTML text that is
parsed and displayed by the web browser; we'll encounter it many more times in this book.

[2] "Method" is the object-oriented term for function or procedure; you'll see it used throughout this book.

Besides allowing control over the content of web pages, JavaScript allows control over the
browser and over the content of the HTML forms that appear in the browser. We'll learn about
these capabilities of JavaScript in more detail later in this chapter and in much more detail later in
this book.

JavaScript can control not only the content of HTML documents, but also the behavior of those
documents. That is, a JavaScript program might respond in some way when you enter a value in
an input field or click on an image in a document. JavaScript does this by defining event handlers
for the document -- pieces of JavaScript code that are executed when a particular event occurs,
such as when the user clicks on a button. Example 1-2 shows the definition of a simple HTML
form that includes an event handler that is executed in response to a button click.

Example 1-2. An HTML form with a JavaScript event handler defined

<form>

<input type="button"

 value="Click here"

 onclick="alert('You clicked the button');">

</form>

Figure 1-2 illustrates the result of clicking the button.

Figure 1-2. The JavaScript response to an event

The onclick attribute shown in Example 1-2 was originally a Netscape extension added to
HTML specifically for client-side JavaScript. Now, however, this and other event handler attributes
have been standardized in HTML Version 4.0. All JavaScript event handlers are defined with
HTML attributes like this one. The value of the onclick attribute is a string of JavaScript code to
be executed when the user clicks the button. In this case, the onclick event handler calls the
alert() function. As you can see in Figure 1-2, alert() pops up a dialog box to display the
specified message.

Example 1-1 and Example 1-2 highlight only the simplest features of client-side JavaScript. The
real power of JavaScript on the client side is that scripts have access to a hierarchy of objects that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

real power of JavaScript on the client side is that scripts have access to a hierarchy of objects that
are based on the content of the web page. For example, client-side JavaScript programs can
access and manipulate each of the images that appear in a document and can communicate and
interact with Java applets and other objects embedded within an HTML document. Once you
have mastered the core JavaScript language, the key to using JavaScript effectively in web pages
is learning to use the features of the DOM exposed by the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6 Client-Side JavaScript Features

Another possible use of JavaScript is for writing programs to perform arbitrary computations. You
can write simple scripts, for example, that compute Fibonacci numbers, or search for primes. In
the context of the Web and web browsers, however, a more interesting application of the
language might be a program that computed the sales tax on an online order, based on
information supplied by the user in an HTML form. As mentioned earlier, the real power of
JavaScript lies in the browser and document-based objects that the language supports. To give
you an idea of JavaScript's potential, the following sections list and explain the important
capabilities of client-side JavaScript and the objects it supports.

1.6.1 Control Document Appearance and Content

The JavaScript Document object, through its write() method, which we have already seen,
allows you to write arbitrary HTML into a document as the document is being parsed by the
browser. For example, you can include the current date and time in a document or display
different content on different platforms.

You can also use the Document object to generate documents entirely from scratch. Properties of
the Document object allow you to specify colors for the document background, the text, and the
hypertext links within it. This amounts to the ability to generate dynamic and conditional HTML
documents, a technique that works particularly well in multiframe documents. Indeed, in some
cases dynamic generation of frame content allows a JavaScript program to replace a traditional
server-side script entirely.

Internet Explorer 4 and Netscape 4 support proprietary techniques for producing Dynamic HTML
effects that allow document content to be dynamically generated, moved, and altered. IE 4 also
supports a complete DOM that gives JavaScript access to every single HTML element within a
document. And IE 5.5 and Netscape 6 support the W3C DOM standard (or at least key portions of
it), which defines a standard, portable way to access all of the elements and text within an HTML
document and to position them and modify their appearance by manipulating their Cascading
Style Sheets (CSS) style attributes. In these browsers, client-side JavaScript has complete power
over document content, which opens an unlimited world of scripting possibilities.

1.6.2 Control the Browser

Several JavaScript objects allow control over the behavior of the browser. The Window object
supports methods to pop up dialog boxes to display simple messages to the user and get simple
input from the user. This object also defines a method to create and open (and close) entirely new
browser windows, which can have any specified size and any combination of user controls. This
allows you, for example, to open up multiple windows to give the user multiple views of your web
site. New browser windows are also useful for temporary display of generated HTML, and, when
created without the menu bar and other user controls, these windows can serve as dialog boxes
for more complex messages or user input.

JavaScript does not define methods that allow you to create and manipulate frames directly within
a browser window. However, the ability to generate HTML dynamically allows you to
programmatically write the HTML tags that create any desired frame layout.

JavaScript also allows control over which web pages are displayed in the browser. The Location
object allows you to download and display the contents of any URL in any window or frame of the
browser. The History object allows you to move forward and back within the user's browsing
history, simulating the action of the browser's Forward and Back buttons.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Yet another method of the Window object allows JavaScript to display arbitrary messages to the
user in the status line of any browser window.

1.6.3 Interact with HTML Forms

Another important aspect of client-side JavaScript is its ability to interact with HTML forms. This
capability is provided by the Form object and the form element objects it can contain: Button,
Checkbox, Hidden, Password, Radio, Reset, Select, Submit, Text, and Textarea objects. These
element objects allow you to read and write the values of the input elements in the forms in a
document. For example, an online catalog might use an HTML form to allow the user to enter his
order and could use JavaScript to read the input from that form in order to compute the cost of the
order, the sales tax, and the shipping charge. JavaScript programs like this are, in fact, very
common on the Web. We'll see a program shortly that uses an HTML form and JavaScript to
allow the user to compute monthly payments on a home mortgage or other loan. JavaScript has
an obvious advantage over server-based scripts for applications like these: JavaScript code is
executed on the client, so the form's contents don't have to be sent to the server in order for
relatively simple computations to be performed.

Another common use of client-side JavaScript with forms is for validating form data before it is
submitted. If client-side JavaScript is able to perform all necessary error checking of a user's
input, no round trip to the server is required to detect and inform the user of trivial input errors.
Client-side JavaScript can also perform preprocessing of input data, which can reduce the
amount of data that must be transmitted to the server. In some cases, client-side JavaScript can
eliminate the need for scripts on the server altogether! (On the other hand, JavaScript and server-
side scripting do work well together. For example, a server-side program can dynamically create
JavaScript code on the fly, just as it dynamically creates HTML.)

1.6.4 Interact with the User

An important feature of JavaScript is the ability to define event handlers -- arbitrary pieces of code
to be executed when a particular event occurs. Usually, these events are initiated by the user,
when, for example, she moves the mouse over a hypertext link, enters a value in a form, or clicks
the Submit button in a form. This event-handling capability is a crucial one, because
programming with graphical interfaces, such as HTML forms, inherently requires an event-driven
model. JavaScript can trigger any kind of action in response to user events. Typical examples
might be to display a special message in the status line when the user positions the mouse over a
hypertext link or to pop up a confirmation dialog box when the user submits an important form.

1.6.5 Read and Write Client State with Cookies

A cookie is a small amount of state data stored permanently or temporarily by the client. Cookies
may be transmitted along with a web page by the server to the client, which stores them locally.
When the client later requests the same or a related web page, it passes the relevant cookies
back to the server, which can use their values to alter the content it sends back to the client.
Cookies allow a web page or web site to remember things about the client -- for example, that the
user has previously visited the site, has already registered and obtained a password, or has
expressed a preference about the color and layout of web pages. Cookies help you provide the
state information that is missing from the stateless HTTP protocol of the Web.

When cookies were invented, they were intended for use exclusively by server-side scripts;
although stored on the client, they could be read or written only by the server. JavaScript changed
this, because JavaScript programs can read and write cookie values and can dynamically
generate document content based on the value of cookies.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.6.6 Still More Features

In addition to the features I have already discussed, JavaScript has many other capabilities,
including the following:

JavaScript can change the image displayed by an tag to produce image rollover and
animation effects.

JavaScript can interact with Java applets and other embedded objects that appear in the
browser. JavaScript code can read and write the properties of these applets and objects
and can also invoke any methods they define. This feature truly allows JavaScript to script
Java.

As mentioned at the start of this section, JavaScript can perform arbitrary computation.
JavaScript has a floating-point data type, arithmetic operators that work with it, and a full
complement of standard floating-point mathematical functions.

 The JavaScript Date object simplifies the process of computing and working with dates
and times.

 The Document object supports a property that specifies the last-modified date for the
current document. You can use it to automatically display a timestamp on any document.

JavaScript has a window.setTimeout() method that allows a block of arbitrary
JavaScript code to be executed some number of milliseconds in the future. This is useful
for building delays or repetitive actions into a JavaScript program. In JavaScript 1.2,
setTimeout() is augmented by another useful method called setInterval().

 The Navigator object (named after the Netscape web browser, of course) has variables
that specify the name and version of the browser that is running, as well as variables that
identify the platform on which it is running. These variables allow scripts to customize their
behavior based on browser or platform, so that they can take advantage of extra
capabilities supported by some versions or work around bugs that exist on some platforms.

In client-side JavaScript 1.2, the Screen object provides information about the size and
color-depth of the monitor on which the web browser is being displayed.

As of JavaScript 1.1, the scroll() method of the Window object allows JavaScript
programs to scroll windows in the X and Y dimensions. In JavaScript 1.2, this method is
augmented by a host of others that allow browser windows to be moved and resized.

1.6.7 What JavaScript Can't Do

Client-side JavaScript has an impressive list of capabilities. Note, however, that they are confined
to browser- and document-related tasks. Since client-side JavaScript is used in a limited context,
it does not have features that would be required for standalone languages:

JavaScript does not have any graphics capabilities, except for the powerful ability to
dynamically generate HTML (including images, tables, frames, forms, fonts, etc.) for the
browser to display.

For security reasons, client-side JavaScript does not allow the reading or writing of files.
Obviously, you wouldn't want to allow an untrusted program from any random web site to
run on your computer and rearrange your files!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaScript does not support networking of any kind, except that it can cause the browser to
download arbitrary URLs and it can send the contents of HTML forms across the network to
server-side scripts and email addresses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.7 JavaScript Security

Any time that programs (such as JavaScript scripts, Visual Basic programs, or Microsoft Word
macros) are included within shared documents, particularly documents that are transmitted over
the Internet or by email, there is a potential for viruses or other malicious programs. The
designers of JavaScript were aware of these security issues and took care not to give JavaScript
programs the power to perform damaging acts. As described previously, for example, client-side
JavaScript programs cannot read local files or perform networking operations.

Because of the complexity of the web-browser environment, however, a number of security
problems did arise in early browser versions. In Netscape 2, for example, it was possible to write
JavaScript code that could automatically steal the email address of any visitor to a page
containing the code and then automatically send email in the visitor's name, without the visitor's
knowledge or approval. This, and a number of other security holes, has been fixed. Although
there is no guarantee that other security holes will not be found, most knowledgeable users are
comfortable letting modern browsers run the JavaScript code found in web pages. Chapter 21
contains a complete discussion of security in client-side JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.8 Example: Computing Loan Payments with JavaScript

Example 1-3 is a listing of a complete, nontrivial JavaScript program. The program computes the
monthly payment on a home mortgage or other loan, given the amount of the loan, the interest rate,
and the repayment period. As you can see, the program consists of an HTML form made interactive
with JavaScript code. Figure 1-3 shows what the HTML form looks like when displayed in a web
browser. But the figure can only capture a static snapshot of the program. The addition of JavaScript
code makes it dynamic: whenever the user changes the amount of the loan, the interest rate, or the
number of payments, the JavaScript code recomputes the monthly payment, the total of all payments,
and the total interest paid over the lifetime of the loan.

Figure 1-3. A JavaScript loan payment calculator

The first half of the example is an HTML form, nicely formatted using an HTML table. Note that several
of the form elements define onchange or onclick event handlers. The web browser triggers these
event handlers when the user changes the input or clicks on the Compute button displayed in the
form. Note that in each case, the value of the event handler attribute is a string of JavaScript code:
calculate(). When the event handler is triggered, it executes this code, which causes it to call the
function calculate().

The calculate() function is defined in the second half of the example, inside <script> tags. The
function reads the user's input from the form, does the math required to compute the loan payments,
and displays the results of these calculations using the bottom three form elements.

Example 1-3 is simple, but it is worth taking the time to look at it carefully. You shouldn't expect to
understand all the JavaScript code at this point, but studying this example should give you a good idea
of what JavaScript programs look like, how event handlers work, and how JavaScript code can be
integrated with HTML forms. Note that comments (in English) are included within HTML between <!--
and --> markers and within JavaScript code in lines that begin with the characters //.

Example 1-3. Computing loan payments with JavaScript

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<head><title>JavaScript Loan Calculator</title></head>

<body bgcolor="white">

<!--

 This is an HTML form that allows the user to enter data and allows

 JavaScript to display the results it computes back to the user. The

 form elements are embedded in a table to improve their appearance.

 The form itself is given the name "loandata", and the fields within

 the form are given names such as "interest" and "years". These

 field names are used in the JavaScript code that follows the form.

 Note that some of the form elements define "onchange" or "onclick"

 event handlers. These specify strings of JavaScript code to be

 executed when the user enters data or clicks on a button.

-->

<form name="loandata">

 <table>

 <tr><td colspan="3">Enter Loan Information:</td></tr>

 <tr>

 <td>1)</td>

 <td>Amount of the loan (any currency):</td>

 <td><input type="text" name="principal" size="12"

 onchange="calculate();"></td>

 </tr>

 <tr>

 <td>2)</td>

 <td>Annual percentage rate of interest:</td>

 <td><input type="text" name="interest" size="12"

 onchange="calculate();"></td>

 </tr>

 <tr>

 <td>3)</td>

 <td>Repayment period in years:</td>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <td><input type="text" name="years" size="12"

 onchange="calculate();"></td>

 </tr>

 <tr><td colspan="3">

 <input type="button" value="Compute" onclick="calculate();">

 </td></tr>

 <tr><td colspan="3">

 Payment Information:

 </td></tr>

 <tr>

 <td>4)</td>

 <td>Your monthly payment will be:</td>

 <td><input type="text" name="payment" size="12"></td>

 </tr>

 <tr>

 <td>5)</td>

 <td>Your total payment will be:</td>

 <td><input type="text" name="total" size="12"></td>

 </tr>

 <tr>

 <td>6)</td>

 <td>Your total interest payments will be:</td>

 <td><input type="text" name="totalinterest" size="12"></td>

 </tr>

 </table>

</form>

<!--

 This is the JavaScript program that makes the example work. Note that

 this script defines the calculate() function called by the event

 handlers in the form. The function refers to values in the form

 fields using the names defined in the HTML code above.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 fields using the names defined in the HTML code above.

-->

<script language="JavaScript">

function calculate() {

 // Get the user's input from the form. Assume it is all valid.

 // Convert interest from a percentage to a decimal, and convert from

 // an annual rate to a monthly rate. Convert payment period in years

 // to the number of monthly payments.

 var principal = document.loandata.principal.value;

 var interest = document.loandata.interest.value / 100 / 12;

 var payments = document.loandata.years.value * 12;

 // Now compute the monthly payment figure, using esoteric math.

 var x = Math.pow(1 + interest, payments);

 var monthly = (principal*x*interest)/(x-1);

 // Check that the result is a finite number. If so, display the results.

 if (!isNaN(monthly) &&

 (monthly != Number.POSITIVE_INFINITY) &&

 (monthly != Number.NEGATIVE_INFINITY)) {

 document.loandata.payment.value = round(monthly);

 document.loandata.total.value = round(monthly * payments);

 document.loandata.totalinterest.value =

 round((monthly * payments) - principal);

 }

 // Otherwise, the user's input was probably invalid, so don't

 // display anything.

 else {

 document.loandata.payment.value = "";

 document.loandata.total.value = "";

 document.loandata.totalinterest.value = "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 document.loandata.totalinterest.value = "";

 }

}

// This simple method rounds a number to two decimal places.

function round(x) {

 return Math.round(x*100)/100;

}

</script>

</body>

</html>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.9 Using the Rest of This Book

The rest of this book is in five parts. Part I, which immediately follows this chapter, documents the
core JavaScript language. Chapter 2 through Chapter 6 begin this section with some bland but
necessary reading -- these chapters cover the basic information you need to understand when
learning a new programming language:

Chapter 2 explains the basic structure of the language.

Chapter 3 documents the data types supported by JavaScript.

Chapter 4 covers variables, variable scope, and related topics.

Chapter 5 explains expressions in JavaScript and documents each of the operators
supported by JavaScript. Because JavaScript syntax is modeled on Java, which is, in turn,
modeled on C and C++, experienced C, C++, or Java programmers can skim much of this
chapter.

Chapter 6 describes the syntax and usage of each of the JavaScript statements. Again,
experienced C, C++, and Java programmers can skim some, but not all, of this chapter.

The next five chapters of this first section become more interesting. They still cover the core of the
JavaScript language, but they document parts of the language that will not already be familiar to
you even if you already know C or Java. These chapters must be studied carefully if you want to
really understand JavaScript:

Chapter 7 documents how functions are defined, invoked, and manipulated in JavaScript.

Chapter 8 explains objects, the most important JavaScript data type. This chapter
discusses object-oriented programming in JavaScript and explains how you can define your
own classes of objects in JavaScript.

Chapter 9 describes the creation and use of arrays in JavaScript.

Chapter 10 explains how to use regular expressions in JavaScript to perform pattern-
matching and search-and-replace operations.

Chapter 11 covers advanced topics that have not been covered elsewhere. You can skip
this chapter the first time through the book, but the material it contains is important to
understand if you want to become a JavaScript expert.

Part II explains client-side JavaScript. The chapters in this part document the web-browser
objects that are at the heart of client-side JavaScript and provide detailed examples of their use.
Any interesting JavaScript program running in a web browser will rely heavily on features specific
to the client side.

Here's what you'll find in Part III:

Chapter 12 explains the integration of JavaScript with web browsers. It discusses the web
browser as a programming environment and explains the various ways in which JavaScript
is integrated into web pages for execution on the client side.

Chapter 13 documents the most central and important object of client-side JavaScript, the
Window object, as well as several important window-related objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14 explains the Document object and related objects that expose the contents of
an HTML document to JavaScript code.

Chapter 15 documents the Form object, which represents HTML forms. It also documents
the various form element objects that appear within HTML forms and shows examples of
JavaScript programming using forms.

Chapter 16 illustrates the use of cookies to save state in web programming.

Chapter 17 explains the core pieces of the W3C DOM standard and shows how a
JavaScript script can access any element of an HTML document.

Chapter 18 explains the portions of the W3C DOM standard that allow a JavaScript
program to manipulate the style, appearance, and position of the elements within an HTML
document. This chapter shows how you can create many DHTML effects with CSS
properties.

Chapter 19 covers JavaScript events and event handlers, which are central to all
JavaScript programs that interact with the user. This chapter covers the traditional event
model, the W3C DOM standard event model, and the Internet Explorer proprietary event
model.

Chapter 20 explores the important issue of compatibility in JavaScript programming and
discusses techniques you can use to write JavaScript programs that run correctly (or fail
gracefully) on a wide variety of web browsers.

Chapter 21 enumerates the security restrictions built into client-side JavaScript and
explains the rationale for them.

Chapter 22 explains how you can use JavaScript to communicate with and control Java
applets. It also covers how you can do the reverse -- invoke JavaScript code from Java
applets.

Part III, Part IV, and Part V are reference sections that document the objects defined by the core
JavaScript language, the objects defined in traditional client-side JavaScript programming, and
the objects defined by the new W3C DOM standard, respectively.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1.10 Exploring JavaScript

The way to really learn a new programming language is to write programs with it. As you read
through this book, I encourage you to try out JavaScript features as you learn about them. There are
a number of techniques that make it easy to experiment with JavaScript.

The most obvious way to explore JavaScript is to write simple scripts. One of the nice things about
client-side JavaScript is that anyone with a web browser and a simple text editor has a complete
development environment; there is no need to buy or download special-purpose software in order to
begin writing JavaScript scripts. We saw an example that computed factorials at the beginning of
this chapter. Suppose you wanted to modify it as follows to display Fibonacci numbers instead:

<script>

document.write("<h2>Table of Fibonacci Numbers</h2>");

for (i=0, j=1, k=0, fib =0; i<50; i++, fib=j+k, j=k, k=fib){

 document.write("Fibonacci (" + i + ") = " + fib);

 document.write("
");

}

</script>

This code may be convoluted (and don't worry if you don't yet understand it), but the point is that
when you want to experiment with short programs like this, you can simply type them up and try
them out in your web browser using a local file: URL. Note that the code uses the
document.write() method to display its HTML output, so that you can see the results of its
computations. This is an important technique for experimenting with JavaScript. As an alternative,
you can also use the alert() method to display plain-text output in a dialog box:

alert("Fibonacci (" + i + ") = " + fib);

Note also that for simple JavaScript experiments like this, you can usually omit the <html>,
<head>, and <body> tags in your HTML file.

For even simpler experiments with JavaScript, you can sometimes use the javascript: URL
pseudoprotocol to evaluate a JavaScript expression and return the result. A JavaScript URL
consists of the javascript: protocol specifier followed by arbitrary JavaScript code (with
statements separated from one another by semicolons). When the browser loads such a URL, it
executes the JavaScript code. The value of the last expression in such a URL is converted to a
string, and this string is displayed by the web browser as its new document. For example, you might
type the following JavaScript URLs into the Location field of your web browser to test your
understanding of some of JavaScript's operators and statements:

javascript:5%2

javascript:x = 3; (x < 5)? "x is less": "x is greater"

javascript:d = new Date(); typeof d;

javascript:for(i=0,j=1,k=0,fib=1; i<10; i++,fib=j+k,k=j,j=fib) alert(fib);

javascript:s=""; for(i in document) s+=i+":"+document[i]+"\n"; alert(s);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javascript:s=""; for(i in document) s+=i+":"+document[i]+"\n"; alert(s);

While exploring JavaScript, you'll probably write code that doesn't work as you expect it to and want
to debug it. The basic debugging technique for JavaScript is like that in many other languages:
insert statements into your code to print out the values of relevant variables so that you can try to
figure out what is actually happening. As we've seen, you can sometimes use the
document.write() method to do this. This method doesn't work from within event handlers,
however, and has some other shortcomings as well, so it's often easier to use the alert()
function to display debugging messages in a separate dialog box.

The for/in loop (described in Chapter 6) is also useful for debugging. You can use it, along with
the alert() method, to write a function that displays a list of the names and values of all
properties of an object, for example. This kind of function can be handy when exploring the
language or trying to debug code.

Good luck with JavaScript, and have fun exploring!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part I: Core JavaScript
This part of the book, Chapter 2 through Chapter 11, documents the core JavaScript
language as it is used in web browsers, web servers, and other embedded
JavaScript implementations. This part is meant to be a JavaScript language
reference. After you read through it once to learn the language, you may find yourself
referring back to it to refresh your memory about some of the trickier points of
JavaScript.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 2. Lexical Structure
The lexical structure of a programming language is the set of elementary rules that specifies how
you write programs in that language. It is the lowest-level syntax of a language; it specifies such
things as what variable names look like, what characters are used for comments, and how one
program statement is separated from the next. This short chapter documents the lexical structure
of JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.1 Character Set

JavaScript programs are written using the Unicode character set. Unlike the 7-bit ASCII encoding,
which is useful only for English, and the 8-bit ISO Latin-1 encoding, which is useful only for
English and major Western European languages, the 16-bit Unicode encoding can represent
virtually every written language in common use on the planet. This is an important feature for
internationalization and is particularly important for programmers who do not speak English.

American and other English-speaking programmers typically write programs using a text editor
that supports only the ASCII or Latin-1 character encodings, and thus they don't have easy
access to the full Unicode character set. This is not a problem, however, because both the ASCII
and Latin-1 encodings are subsets of Unicode, so any JavaScript program written using those
character sets is perfectly valid. Programmers who are used to thinking of characters as 8-bit
quantities may be disconcerted to know that JavaScript represents each character using 2 bytes,
but this fact is actually transparent to the programmer and can simply be ignored.

Although the ECMAScript v3 standard allows Unicode characters anywhere in a JavaScript
program, Versions 1 and 2 of the standard allow Unicode characters only in comments and
quoted string literals -- all other parts of an ECMAScript v1 program are restricted to the ASCII
character set. Versions of JavaScript that predate ECMAScript standardization typically do not
support Unicode at all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.2 Case Sensitivity

JavaScript is a case-sensitive language. This means that language keywords, variables, function
names, and any other identifiers must always be typed with a consistent capitalization of letters.
The while keyword, for example, must be typed "while", not "While" or "WHILE". Similarly,
online, Online, OnLine, and ONLINE are four distinct variable names.

Note, however, that HTML is not case-sensitive. Because of its close association with client-side
JavaScript, this difference can be confusing. Many JavaScript objects and properties have the
same names as the HTML tags and attributes they represent. While these tags and attribute
names can be typed in any case in HTML, in JavaScript they typically must be all lowercase. For
example, the HTML onclick event handler attribute is commonly specified as onClick in
HTML, but it must be referred to as onclick in JavaScript code.

While core JavaScript is entirely and exclusively case-sensitive, exceptions to this rule are
allowed in client-side JavaScript. In Internet Explorer 3, for example, all client-side objects and
properties were case-insensitive. This caused problematic incompatibilities with Netscape,
however, so in Internet Explorer 4 and later, client-side objects and properties are case-sensitive.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.3 Whitespace and Line Breaks

JavaScript ignores spaces, tabs, and newlines that appear between tokens in programs, except
those that are part of string or regular expression literals. A token is a keyword, variable name,
number, function name, or some other entity in which you would obviously not want to insert a
space or a line break. If you place a space, tab, or newline within a token, you break it up into two
tokens -- thus, 123 is a single numeric token, but 12 3 is two separate tokens (and constitutes a
syntax error, incidentally).

Because you can use spaces, tabs, and newlines freely in your programs (except in strings,
regular expressions, and tokens), you are free to format and indent your programs in a neat and
consistent way that makes the code easy to read and understand. Note, however, that there is
one minor restriction on the placement of line breaks; it is described in the following section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.4 Optional Semicolons

Simple statements in JavaScript are generally followed by semicolons (;), just as they are in C,
C++, and Java. The semicolon serves to separate statements from each other. In JavaScript,
however, you may omit the semicolon if each of your statements is placed on a separate line. For
example, the following code could be written without semicolons:

a = 3;

b = 4;

But when formatted as follows, the first semicolon is required:

a = 3; b = 4;

Omitting semicolons is not a good programming practice; you should get in the habit of using
them.

Although JavaScript theoretically allows line breaks between any two tokens, the fact that
JavaScript automatically inserts semicolons for you causes some exceptions to this rule. Loosely,
if you break a line of code in such a way that the line before the break appears to be a complete
statement, JavaScript may think you omitted the semicolon and insert one for you, altering your
meaning. Some places you should look out for this are with the return, break, and continue
statements (which are described in Chapter 6). For example, consider the following:

return

true;

JavaScript assumes you meant:

return;

true;

However, you probably meant:

return true;

This is something to watch out for -- this code does not cause a syntax error and will fail in a
nonobvious way. A similar problem occurs if you write:

break

outerloop;

JavaScript inserts a semicolon after the break keyword, causing a syntax error when it tries to
interpret the next line. For similar reasons, the ++ and -- postfix operators (see Chapter 5) must
always appear on the same line as the expressions to which they are applied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.5 Comments

JavaScript, like Java, supports both C++ and C-style comments. Any text between a // and the
end of a line is treated as a comment and is ignored by JavaScript. Any text between the
characters /* and */ is also treated as a comment. These C-style comments may span multiple
lines but may not be nested. The following lines of code are all legal JavaScript comments:

// This is a single-line comment.

/* This is also a comment */ // and here is another comment.

/*

 * This is yet another comment.

 * It has multiple lines.

 */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.6 Literals

A literal is a data value that appears directly in a program. The following are all literals:

12 // The number twelve

1.2 // The number one point two

"hello world" // A string of text

'Hi' // Another string

true // A boolean value

false // The other boolean value

/javascript/gi // A "regular expression" literal (for pattern matching)

null // Absence of an object

In ECMAScript v3, expressions that serve as array and object literals are also supported. For
example:

{ x:1, y:2 } // An object initializer

[1,2,3,4,5] // An array initializer

Note that these array and object literals have been supported since JavaScript 1.2 but were not
standardized until ECMAScript v3.

Literals are an important part of any programming language, as it is impossible to write a program
without them. The various JavaScript literals are described in detail in Chapter 3.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.7 Identifiers

An identifier is simply a name. In JavaScript, identifiers are used to name variables and functions
and to provide labels for certain loops in JavaScript code. The rules for legal identifier names are
the same in JavaScript as they are in Java and many other languages. The first character must
be a letter, an underscore (_), or a dollar sign ($).[1] Subsequent characters may be any letter or
digit or an underscore or dollar sign. (Numbers are not allowed as the first character so that
JavaScript can easily distinguish identifiers from numbers.) These are all legal identifiers:

[1] Note that dollar signs are not legal in identifiers prior to JavaScript 1.1. They are intended for use only by code-
generation tools, so you should avoid using dollar signs in identifiers in the code you write yourself.

i

my_variable_name

v13

_dummy

$str

In ECMAScript v3, identifiers can contain letters and digits from the complete Unicode character
set. Prior to this version of the standard, JavaScript identifiers are restricted to the ASCII
character set. ECMAScript v3 also allows Unicode escape sequences to appear in identifiers. A
Unicode escape is the characters \u followed by 4 hexadecimal digits that specify a 16-bit
character encoding. For example, the identifier could also be written as \u03c0. Although this
is an awkward syntax, it makes it possible to translate JavaScript programs that contain Unicode
characters into a form that allows them to be manipulated with text editors and other tools that do
not support the full Unicode character set.

Finally, identifiers cannot be the same as any of the keywords used for other purposes in
JavaScript. The next section lists the special names that are reserved in JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2.8 Reserved Words

There are a number of reserved words in JavaScript. These are words that you cannot use as
identifiers (variable names, function names, and loop labels) in your JavaScript programs. Table
2-1 lists the keywords standardized by ECMAScript v3. These words have special meaning to
JavaScript -- they are part of the language syntax itself.

Table 2-1. Reserved JavaScript keywords
break do if switch typeof
case else in this var
catch false instanceof throw void
continue finally new true while
default for null try with
delete function return

Table 2-2 lists other reserved keywords. These words are not currently used in JavaScript, but
they are reserved by ECMAScript v3 as possible future extensions to the language.

Table 2-2. Words reserved for ECMA extensions
abstract double goto native static
boolean enum implements package super
byte export import private synchronized
char extends int protected throws
class final interface public transient
const float long short volatile
debugger

In addition to some of the formally reserved words just listed, current drafts of the ECMAScript v4
standard are contemplating the use of the keywords as, is, namespace, and use. Current
JavaScript interpreters will not prevent you from using these four words as identifiers, but you
should avoid them anyway.

You should also avoid using as identifiers the names of global variables and functions that are
predefined by JavaScript. If you create variables or functions with these names, either you will get
an error (if the property is read-only) or you will redefine the existing variable or function --
something you should not do unless you know exactly what you're doing. Table 2-3 lists global
variables and functions defined by the ECMAScript v3 standard. Specific implementations may
define other global properties, and each specific JavaScript embedding (client-side, server-side,
etc.) will have its own extensive list of global properties.[2]

[2] See the Window object in the client-side reference section of this book for a list of the additional global variables
and functions defined by client-side JavaScript.

Table 2-3. Other identifiers to avoid
arguments encodeURI Infinity Object String
Array Error isFinite parseFloat SyntaxError
Boolean escape isNaN parseInt TypeError
Date eval Math RangeError undefined
decodeURI EvalError NaN ReferenceError unescape
decodeURIComponent Function Number RegExp URIError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 3. Data Types and Values
Computer programs work by manipulating values , such as the number 3.14 or the text "Hello
World". The types of values that can be represented and manipulated in a programming language
are known as data types, and one of the most fundamental characteristics of a programming
language is the set of data types it supports. JavaScript allows you to work with three primitive
data types: numbers, strings of text (known as "strings"), and boolean truth values (known as
"booleans"). JavaScript also defines two trivial data types, null and undefined, each of which
defines only a single value.

In addition to these primitive data types, JavaScript supports a composite data type known as
object. An object (that is, a member of the data type object) represents a collection of values
(either primitive values, like numbers and strings, or composite values, like other objects). Objects
in JavaScript have a dual nature: an object can represent an unordered collection of named
values or an ordered collection of numbered values. In the latter case, the object is called an
array . Although objects and arrays are fundamentally the same data type in JavaScript, they
behave quite differently and will usually be considered distinct types throughout this book.

JavaScript defines another special kind of object, known as a function . A function is an object
that has executable code associated with it. A function may be invoked to perform some kind of
operation. Like arrays, functions behave differently from other kinds of objects, and JavaScript
defines special language syntax for working with them. Thus, we'll treat the function data type
independently of the object and array types.

In addition to functions and arrays, core JavaScript defines a few other specialized kinds of
objects. These objects do not represent new data types, just new classes of objects. The Date
class defines objects that represent dates, the RegExp class defines objects that represent
regular expressions (a powerful pattern-matching tool described in Chapter 10), and the Error
class defines objects that represent syntax and runtime errors that can occur in a JavaScript
program.

The remainder of this chapter documents each of the primitive data types in detail. It also
introduces the object, array, and function data types, which are fully documented in Chapter 7,
Chapter 8, and Chapter 9. Finally, it provides an overview of the Date, RegExp, and Error
classes, which are documented in full detail in the core reference section of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1 Numbers

Numbers are the most basic data type; they require very little explanation. JavaScript differs from
programming languages such as C and Java in that it does not make a distinction between
integer values and floating-point values. All numbers in JavaScript are represented as floating-
point values. JavaScript represents numbers using the 64-bit floating-point format defined by the
IEEE 754 standard,[1] which means it can represent numbers as large as ±1.7976931348623157
x 10308 and as small as ±5 x 10 -324.

[1] This format should be familiar to Java programmers as the format of the double type. It is also the double format
used in almost all modern implementations of C and C++.

When a number appears directly in a JavaScript program, we call it a numeric literal. JavaScript
supports numeric literals in several formats, as described in the following sections. Note that any
numeric literal can be preceded by a minus sign (-) to make the number negative. Technically,
however, - is the unary negation operator (see Chapter 5), not part of the numeric literal syntax.

3.1.1 Integer Literals

In a JavaScript program, a base-10 integer is written as a sequence of digits. For example:

0

3

10000000

The JavaScript number format allows you to exactly represent all integers between -
9007199254740992 (-253) and 9007199254740992 (253), inclusive. If you use integer values
larger than this, you may lose precision in the trailing digits. Note, however, that certain integer
operations in JavaScript (in particular the bitwise operators described in Chapter 5) are performed
on 32-bit integers, which range from -2147483648 (-231) to 2147483647 (231 -1).

3.1.2 Hexadecimal and Octal Literals

In addition to base-10 integer literals, JavaScript recognizes hexadecimal (base-16) values. A
hexadecimal literal begins with "0x" or "0X", followed by a string of hexadecimal digits. A
hexadecimal digit is one of the digits 0 through 9 or the letters a (or A) through f (or F), which are
used to represent values 10 through 15. Examples of hexadecimal integer literals are:

0xff // 15*16 + 15 = 255 (base 10)

0xCAFE911

Although the ECMAScript standard does not support them, some implementations of JavaScript
allow you to specify integer literals in octal (base-8) format. An octal literal begins with the digit 0
and is followed by a sequence of digits, each between 0 and 7. For example:

0377 // 3*64 + 7*8 + 7 = 255 (base 10)

Since some implementations support octal literals and some do not, you should never write an
integer literal with a leading zero -- you cannot know whether an implementation will interpret it as
an octal or decimal value.

3.1.3 Floating-Point Literals

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Floating-point literals can have a decimal point; they use the traditional syntax for real numbers. A
real value is represented as the integral part of the number, followed by a decimal point and the
fractional part of the number.

Floating-point literals may also be represented using exponential notation: a real number followed
by the letter e (or E), followed by an optional plus or minus sign, followed by an integer exponent.
This notation represents the real number multiplied by 10 to the power of the exponent.

More succinctly, the syntax is:

[digits][.digits][(E|e)[(+|-)]digits]

For example:

3.14

2345.789

.333333333333333333

6.02e23 // 6.02 x 1023

1.4738223E-32 // 1.4738223 x 10-32

Note that there are infinitely many real numbers, but only a finite number of them
(18437736874454810627, to be exact) can be represented exactly by the JavaScript floating-
point format. This means that when you're working with real numbers in JavaScript, the
representation of the number will often be an approximation of the actual number. The
approximation is usually good enough, however, and this is rarely a practical problem.

3.1.4 Working with Numbers

JavaScript programs work with numbers using the arithmetic operators that the language
provides. These include + for addition, - for subtraction, * for multiplication, and / for division.
Full details on these and other arithmetic operators can be found in Chapter 5.

In addition to these basic arithmetic operations, JavaScript supports more complex mathematical
operations through a large number of mathematical functions that are a core part of the language.
For convenience, these functions are all stored as properties of a single Math object, so we
always use the literal name Math to access them. For example, here's how to compute the sine of
the numeric value x:

sine_of_x = Math.sin(x);

And to compute the square root of a numeric expression:

hypot = Math.sqrt(x*x + y*y);

See the Math object and subsequent listings in the core reference section of this book for full
details on all the mathematical functions supported by JavaScript.

There is also one interesting method that you can use with numbers. The toString() method
converts an integer to a string, using the radix, or base, specified by its argument (the base must
be between 2 and 36). For example, to convert a number to binary, use toString() like this:

var x = 33;

var y = x.toString(2); // y is "100001"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var y = x.toString(2); // y is "100001"

To invoke the toString() method on a number literal, you can use parentheses to prevent the
. from being interpreted as a decimal point:

var y = (257).toString(0x10); // y is "101"

3.1.5 Special Numeric Values

JavaScript uses several special numeric values. When a floating-point value becomes larger than
the largest representable finite number, the result is a special infinity value, which JavaScript
prints as Infinity. Similarly, when a negative value becomes lower than the last representable
negative number, the result is negative infinity, printed as -Infinity.

Another special JavaScript numeric value is returned when a mathematical operation (such as
division of zero by zero) yields an undefined result or an error. In this case, the result is the
special not-a-number value, printed as NaN. The not-a-number value behaves unusually: it does
not compare equal to any number, including itself! For this reason, a special function, isNaN(),
is required to test for this value. A related function, isFinite() , tests whether a number is not
NaN and is not positive or negative infinity.

Table 3-1 lists several constants that JavaScript defines to represent these special numeric
values.

Table 3-1. Special numeric constants
Constant Meaning

Infinity Special value to represent infinity
NaN Special not-a-number value
Number.MAX_VALUE Largest representable number
Number.MIN_VALUE Smallest (closest to zero) representable number
Number.NaN Special not-a-number value
Number.POSITIVE_INFINITY Special value to represent infinity
Number.NEGATIVE_INFINITY Special value to represent negative infinity

The Infinity and NaN constants are defined by the ECMAScript v1 standard and are not
implemented prior to JavaScript 1.3. The various Number constants, however, have been
implemented since JavaScript 1.1.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2 Strings

A string is a sequence of Unicode letters, digits, punctuation characters, and so on -- it is the
JavaScript data type for representing text. As you'll see shortly, you can include string literals in
your programs by enclosing them in matching pairs of single or double quotation marks. Note that
JavaScript does not have a character data type such as char, like C, C++, and Java do. To
represent a single character, you simply use a string that has a length of 1.

3.2.1 String Literals

A string is a sequence of zero or more Unicode characters enclosed within single or double
quotes (' or "). Double-quote characters may be contained within strings delimited by single-
quote characters, and single-quote characters may be contained within strings delimited by
double quotes. String literals must be written on a single line; they may not be broken across two
lines. If you need to include a newline character in a string literal, use the character sequence \n ,
which is documented in the next section. Examples of string literals are:

"" // The empty string: it has zero characters

'testing'

"3.14"

'name="myform"'

"Wouldn't you prefer O'Reilly's book?"

"This string\nhas two lines"

"pi is the ratio of a circle's circumference to its diameter"

As illustrated in the last example string shown, the ECMAScript v1 standard allows Unicode
characters within string literals. Implementations prior to JavaScript 1.3, however, typically
support only ASCII or Latin-1 characters in strings. As we'll see in the next section, you can also
include Unicode characters in your string literals using special "escape sequences." This is useful
if your text editor does not provide complete Unicode support.

Note that when you use single quotes to delimit your strings, you must be careful with English
contractions and possessives like can't and O'Reilly's. Since the apostrophe is the same as the
single-quote character, you must use the backslash character (\) to escape any apostrophes that
appear in single-quoted strings (this is explained in the next section).

In client-side JavaScript programming, JavaScript code often contains strings of HTML code, and
HTML code often contains strings of JavaScript code. Like JavaScript, HTML uses either single or
double quotes to delimit its strings. Thus, when combining JavaScript and HTML, it is a good idea
to use one style of quotes for JavaScript and the other style for HTML. In the following example,
the string "Thank you" is single-quoted within a JavaScript expression, which is double-quoted
within an HTML event handler attribute:

Click Me

3.2.2 Escape Sequences in String Literals

The backslash character (\) has a special purpose in JavaScript strings. Combined with the
character that follows it, it represents a character that is not otherwise representable within the
string. For example, \n is an escape sequence that represents a newline character.[2]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

string. For example, \n is an escape sequence that represents a newline character.[2]

[2] C, C++, and Java programmers will already be familiar with this and other JavaScript escape sequences.

Another example, mentioned in the previous section, is the \' escape, which represents the
single quote (or apostrophe) character. This escape sequence is useful when you need to include
an apostrophe in a string literal that is contained within single quotes. You can see why we call
these escape sequences -- here, the backslash allows us to escape from the usual interpretation
of the single-quote character. Instead of using it to mark the end of the string, we use it as an
apostrophe:

'You\'re right, it can\'t be a quote'

Table 3-2 lists the JavaScript escape sequences and the characters they represent. Two of the
escape sequences are generic ones that can be used to represent any character by specifying its
Latin-1 or Unicode character code as a hexadecimal number. For example, the sequence \xA9
represents the copyright symbol, which has the Latin-1 encoding given by the hexadecimal
number A9. Similarly, the \u escape represents an arbitrary Unicode character specified by four
hexadecimal digits. \u03c0 represents the character , for example. Note that Unicode escapes
are required by the ECMAScript v1 standard but are not typically supported in implementations
prior to JavaScript 1.3. Some implementations of JavaScript also allow a Latin-1 character to be
specified by three octal digits following a backslash, but this escape sequence is not supported in
the ECMAScript v3 standard and should no longer be used.

Table 3-2. JavaScript escape sequences
Sequence Character represented
\0 The NUL character (\u0000).
\b Backspace (\u0008).
\t Horizontal tab (\u0009).
\n Newline (\u000A).
\v Vertical tab (\u000B).
\f Form feed (\u000C).
\r Carriage return (\u000D).
\" Double quote (\u0022).
\' Apostrophe or single quote (\u0027).
\\ Backslash (\u005C).
\xXX The Latin-1 character specified by the two hexadecimal digits XX.
\uXXXX The Unicode character specified by the four hexadecimal digits XXXX.

\XXX The Latin-1 character specified by the octal digits XXX, between 1 and 377. Not
supported by ECMAScript v3; do not use this escape sequence.

Finally, note that the backslash escape cannot be used before a line break to continue a string (or
other JavaScript) token across two lines or to include a literal line break in a string. If the \
character precedes any character other than those shown in Table 3-2, the backslash is simply
ignored (although future versions of the language may, of course, define new escape sequences).
For example, \# is the same thing as #.

3.2.3 Working with Strings

One of the built-in features of JavaScript is the ability to concatenate strings. If you use the +
operator with numbers, it adds them. But if you use this operator on strings, it joins them by
appending the second to the first. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

msg = "Hello, " + "world"; // Produces the string "Hello, world"

greeting = "Welcome to my home page," + " " + name;

To determine the length of a string -- the number of characters it contains -- use the length
property of the string. If the variable s contains a string, you access its length like this:

s.length

You can use a number of methods to operate on strings. For example, to get the last character of
a string s:

last_char = s.charAt(s.length - 1)

To extract the second, third, and fourth characters from a string s:

sub = s.substring(1,4);

To find the position of the first letter a in a string s:

i = s.indexOf('a');

There are quite a few other methods that you can use to manipulate strings. You'll find full
documentation of these methods in the core reference section of this book, under the String
object and subsequent listings.

As you can tell from the previous examples, JavaScript strings (and JavaScript arrays, as we'll
see later) are indexed starting with zero. That is, the first character in a string is character 0. C,
C++, and Java programmers should be perfectly comfortable with this convention, but
programmers used to languages with 1-based strings and arrays may find that it takes some
getting used to.

In some implementations of JavaScript, individual characters can be read from strings (but not
written into strings) using array notation, so the earlier call to charAt() could also be written
like this:

last_char = s[s.length - 1];

Note, however, that this syntax is not part of the ECMAScript v3 standard, is not portable, and
should be avoided.

When we discuss the object data type, you'll see that object properties and methods are used in
the same way that string properties and methods are used in the previous examples. This does
not mean that strings are a type of object. In fact, strings are a distinct JavaScript data type. They
use object syntax for accessing properties and methods, but they are not themselves objects.
We'll see just why this is at the end of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.3 Boolean Values

The number and string data types have a large or infinite number of possible values. The boolean
data type, on the other hand, has only two. The two legal boolean values are represented by the
literals true and false. A boolean value represents a truth value -- it says whether something is
true or not.

Boolean values are generally the result of comparisons you make in your JavaScript programs.
For example:

a == 4

This code tests to see if the value of the variable a is equal to the number 4. If it is, the result of
this comparison is the boolean value true. If a is not equal to 4, the result of the comparison is
false.

Boolean values are typically used in JavaScript control structures. For example, the if/else
statement in JavaScript performs one action if a boolean value is true and another action if the
value is false. You usually combine a comparison that creates a boolean value directly with a
statement that uses it. The result looks like this:

if (a == 4)

 b = b + 1;

else

 a = a + 1;

This code checks if a equals 4. If so, it adds 1 to b; otherwise, it adds 1 to a.

Instead of thinking of the two possible boolean values as true and false, it is sometimes
convenient to think of them as on (true) and off (false) or yes (true) and no (false).
Sometimes it is even useful to consider them equivalent to 1 (true) and 0 (false). (In fact,
JavaScript does just this and converts true and false to 1 and 0 when necessary.)[3]

[3] C programmers should note that JavaScript has a distinct boolean data type, unlike C, which simply uses integer
values to simulate boolean values. Java programmers should note that although JavaScript has a boolean type, it is
not nearly as pure as the Java boolean data type -- JavaScript boolean values are easily converted to and from other
data types, and so in practice, the use of boolean values in JavaScript is much more like their use in C than in Java.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4 Functions

A function is a piece of executable code that is defined by a JavaScript program or predefined by the
JavaScript implementation. Although a function is defined only once, a JavaScript program can execute or
invoke it any number of times. A function may be passed arguments, or parameters, specifying the value or
values upon which it is to perform its computation, and it may also return a value that represents the results
of that computation. JavaScript implementations provide many predefined functions, such as the
Math.sin() function that computes the sine of an angle.

JavaScript programs may also define their own functions with code that looks like this:

function square(x) // The function is named square. It expects one argument, x.

{ // The body of the function begins here.

 return x*x; // The function squares its argument and returns that value.

} // The function ends here.

Once a function is defined, you can invoke it by following the function's name with an optional comma-
separated list of arguments within parentheses. The following lines are function invocations:

y = Math.sin(x);

y = square(x);

d = compute_distance(x1, y1, z1, x2, y2, z2);

move();

An important feature of JavaScript is that functions are values that can be manipulated by JavaScript code.
In many languages, including Java, functions are only a syntactic feature of the language -- they can be
defined and invoked, but they are not data types. The fact that functions are true values in JavaScript gives
a lot of flexibility to the language. It means that functions can be stored in variables, arrays, and objects, and
it means that functions can be passed as arguments to other functions. This can quite often be useful. We'll
learn more about defining and invoking functions, and also about using them as data values, in Chapter 7

Since functions are values just like numbers and strings, they can be assigned to object properties just like
other values can. When a function is assigned to a property of an object (the object data type and object
properties are described in Section 3.5), it is often referred to as a method of that object. Methods are an
important part of object-oriented programming. We'll see more about them in Chapter 8.

3.4.1 Function Literals

In the preceding section, we saw the definition of a function square(). The syntax shown there is used
define most functions in most JavaScript programs. However, ECMAScript v3 provides a syntax
(implemented in JavaScript 1.2 and later) for defining function literals. A function literal is defined with the
function keyword, followed by an optional function name, followed by a parenthesized list of function
arguments and the body of the function within curly braces. In other words, a function literal looks just like a
function definition, except that it does not have to have a name. The big difference is that function literals
can appear within other JavaScript expressions. Thus, instead of defining the function square() with a
function definition:

function square(x) { return x*x; }

We can define it with a function literal:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var square = function(x) { return x*x; }

Functions defined in this way are sometimes called lambda functions in homage to the LISP programming
language, which was one of the first to allow unnamed functions to be embedded as literal data values
within a program. Although it is not immediately obvious why one might choose to use function literals in
program, we'll see later that in advanced scripts they can be quite convenient and useful.

There is one other way to define a function: you can pass the argument list and the body of the function as
strings to the Function() constructor. For example:

var square = new Function("x", "return x*x;");

Defining a function in this way is not often useful. It is usually awkward to express the function body as a
string, and in many JavaScript implementations, functions defined in this way will be less efficient than
functions defined in either of the other two ways.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.5 Objects

An object is a collection of named values. These named values are usually referred to as
properties of the object. (Sometimes they are called fields of the object, but this usage can be
confusing.) To refer to a property of an object, you refer to the object, followed by a period and the
name of the property. For example, if an object named image has properties named width and
height, we can refer to those properties like this:

image.width

image.height

Properties of objects are, in many ways, just like JavaScript variables; they can contain any type
of data, including arrays, functions, and other objects. Thus, you might see JavaScript code like
this:

document.myform.button

This code refers to the button property of an object that is itself stored in the myform property of
an object named document.

As mentioned earlier, when a function value is stored in a property of an object, that function is
often called a method, and the property name becomes the method name. To invoke a method of
an object, use the . syntax to extract the function value from the object, and then use the ()
syntax to invoke that function. For example, to invoke the write() method of the Document
object, you can use code like this:

document.write("this is a test");

Objects in JavaScript have the ability to serve as associative arrays -- that is, they can associate
arbitrary data values with arbitrary strings. When an object is used in this way, a different syntax is
generally required to access the object's properties: a string containing the name of the desired
property is enclosed within square brackets. Using this syntax, we could access the properties of
the image object mentioned previously with code like this:

image["width"]

image["height"]

Associative arrays are a powerful data type; they are useful for a number of programming
techniques. We'll learn more about objects in their traditional and associative array usages in
Chapter 8.

3.5.1 Creating Objects

As we'll see in Chapter 8, objects are created by invoking special constructor functions. For
example, the following lines all create new objects:

var o = new Object();

var now = new Date();

var pattern = new RegExp("\\sjava\\s", "i");

Once you have created an object of your own, you can use and set its properties however you
desire:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var point = new Object();

point.x = 2.3;

point.y = -1.2;

3.5.2 Object Literals

ECMAScript v3 defines (and JavaScript 1.2 implements) an object literal syntax that allows you to
create an object and specify its properties. An object literal (also called an object initializer)
consists of a comma-separated list of colon-separated property/value pairs, all enclosed within
curly braces. Thus, the object point in the previous code could also be created and initialized
with this line:

var point = { x:2.3, y:-1.2 };

Object literals can also be nested. For example:

var rectangle = { upperLeft: { x: 2, y: 2 },

 lowerRight: { x: 4, y: 4}

 };

Finally, the property values used in object literals need not be constant -- they can be arbitrary
JavaScript expressions:

var square = { upperLeft: { x:point.x, y:point.y },

 lowerRight: { x:(point.x + side), y:(point.y+side) }};

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.6 Arrays

An array is a collection of data values, just as an object is. While each data value contained in an
object has a name, each data value in an array has a number, or index. In JavaScript, you
retrieve a value from an array by enclosing an index within square brackets after the array name.
For example, if an array is named a, and i is a non-negative integer, a[i] is an element of the
array. Array indexes begin with zero. Thus, a[2] refers to the third element of the array a.

Arrays may contain any type of JavaScript data, including references to other arrays or to objects
or functions. For example:

document.images[1].width

This code refers to the width property of an object stored in the second element of an array
stored in the images property of the document object.

Note that the arrays described here differ from the associative arrays described in Section 3.5.
The regular arrays we are discussing here are indexed by non-negative integers. Associative
arrays are indexed by strings. Also note that JavaScript does not support multidimensional arrays,
except as arrays of arrays. Finally, because JavaScript is an untyped language, the elements of
an array do not all need to be of the same type, as they do in typed languages like Java. We'll
learn more about arrays in Chapter 9.

3.6.1 Creating Arrays

Arrays can be created with the Array() constructor function. Once created, any number of
indexed elements can easily be assigned to the array:

var a = new Array();

a[0] = 1.2;

a[1] = "JavaScript";

a[2] = true;

a[3] = { x:1, y:3 };

Arrays can also be initialized by passing array elements to the Array() constructor. Thus, the
previous array-creation and -initialization code could also be written:

var a = new Array(1.2, "JavaScript", true, { x:1, y:3 });

If you pass only a single number to the Array() constructor, it specifies the length of the array.
Thus:

var a = new Array(10);

creates a new array with 10 undefined elements.

3.6.2 Array Literals

ECMAScript v3 defines (and JavaScript 1.2 implements) a literal syntax for creating and
initializing arrays. An array literal (or array initializer) is a comma-separated list of values
contained within square brackets. The values within the brackets are assigned sequentially to
array indexes starting with zero.[4] For example, in JavaScript 1.2 the array creation and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

array indexes starting with zero.[4] For example, in JavaScript 1.2 the array creation and
initialization code in the previous section could also be written as:

[4] Netscape's JavaScript 1.2 implementation has a bug: when an array literal is specified with a number as its single
element, that number specifies the length of the array rather than the value of the first element. While this behavior
mirrors that of the Array() constructor, it is clearly inappropriate in this context.

var a = [1.2, "JavaScript", true, { x:1, y:3 }];

Like object literals, array literals can be nested:

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

Also, as with object literals, the elements in array literals can be arbitrary expressions and need
not be restricted to constants:

var base = 1024;

var table = [base, base+1, base+2, base+3];

Undefined elements can be included in an array literal by simply omitting a value between
commas. For example, the following array contains five elements, including three undefined
elements:

var sparseArray = [1,,,,5];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.7 null

The JavaScript keyword null is a special value that indicates no value. null is usually
considered to be a special value of object type -- a value that represents no object. null is a
unique value, distinct from all other values. When a variable holds the value null, you know that
it does not contain a valid object, array, number, string, or boolean value.[5]

[5] C and C++ programmers should note that null in JavaScript is not the same as 0, as it is in those languages. In
certain circumstances null is converted to 0, but the two are not equivalent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.8 undefined

Another special value used occasionally by JavaScript is the undefined value returned when
you use either a variable that has been declared but never had a value assigned to it, or an object
property that does not exist. Note that this special undefined value is not the same as null.

Although null and the undefined value are distinct, the == equality operator considers them to
be equal to one another. Consider the following:

my.prop == null

This comparison is true either if the my.prop property does not exist or if it does exist but
contains the value null. Since both null and the undefined value indicate an absence of
value, this equality is often what we want. However, if you truly must distinguish between a null
value and an undefined value, use the === identity operator or the typeof operator (see
Chapter 5 for details).

Unlike null, undefined is not a reserved word in JavaScript. The ECMAScript v3 standard
specifies that there is always a global variable named undefined whose initial value is the
undefined value. Thus, in a conforming implementation, you can treat undefined as a
keyword, as long as you don't assign a value to the variable.

If you are not sure that your implementation has the undefined variable, you can simply declare
your own:

var undefined;

By declaring but not initializing the variable, you assure that it has the undefined value. The
void operator (see Chapter 5) provides another way to obtain the undefined value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.9 The Date Object

The previous sections have described all of the fundamental data types supported by JavaScript. Date and
time values are not one of these fundamental types, but JavaScript does provide a class of object that
represents dates and times and can be used to manipulate this type of data. A Date object in JavaScript is
created with the new operator and the Date() constructor (the new operator will be introduced in Chapter 5
and we'll learn more about object creation in Chapter 8):

var now = new Date(); // Create an object holding the current date and time.

// Create a Date object representing Christmas.

// Note that months are zero-based, so December is month 11!

var xmas = new Date(2000, 11, 25);

Methods of the Date object allow you to get and set the various date and time values and to convert the Date
to a string, using either local time or GMT time. For example:

xmas.setFullYear(xmas.getFullYear() + 1); // Change the date to next Christmas.

var weekday = xmas.getDay(); // Christmas falls on a Tuesday in 2001.

document.write("Today is: " + now.toLocaleString()); // Current date/time.

The Date object also defines functions (not methods; they are not invoked through a Date object) to convert a
date specified in string or numeric form to an internal millisecond representation that is useful for some kinds of
date arithmetic.

You can find full documentation on the Date object and its methods in the core reference section of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.10 Regular Expressions

Regular expressions provide a rich and powerful syntax for describing textual patterns; they are
used for pattern matching and for implementing search and replace operations. JavaScript has
adopted the Perl programming language syntax for expressing regular expressions. Regular
expression support was first added to the language in JavaScript 1.2 and was standardized and
extended by ECMAScript v3.

Regular expressions are represented in JavaScript by the RegExp object and may be created
using the RegExp() constructor. Like the Date object, the RegExp object is not one of the
fundamental data types of JavaScript; it is simply a specialized kind of object provided by all
conforming JavaScript implementations.

Unlike the Date object, however, RegExp objects have a literal syntax and can be encoded
directly into JavaScript 1.2 programs. Text between a pair of slashes constitutes a regular
expression literal. The second slash in the pair can also be followed by one or more letters, which
modify the meaning of the pattern. For example:

/^HTML/

/[1-9][0-9]*/

/\bjavascript\b/i

The regular expression grammar is complex and is documented in detail in Chapter 10. At this
point, you need only know what a regular expression literal looks like in JavaScript code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.11 Error Objects

ECMAScript v3 defines a number of classes that represent errors. The JavaScript interpreter
"throws" an object of one of these types when a runtime error occurs. (See the throw and try
statements in Chapter 6 for a discussion of throwing and catching errors.) Each error object has a
message property that contains an implementation-specific error message. The types of
predefined error objects are Error, EvalError, RangeError, ReferenceError, SyntaxError,
TypeError, and URIError. You can find out more about these classes in the core reference section
of this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.12 Primitive Data Type Wrapper Objects

When we discussed strings earlier in this chapter, I pointed out a strange feature of that data type:
to operate on strings, you use object notation. For example, a typical operation involving strings
might look like the following:

var s = "These are the times that try people's souls.";

var last_word = s.substring(s.lastIndexOf(" ")+1, s.length);

If you didn't know better, it would appear that s was an object and that you were invoking methods
and reading property values of that object.

What's going on? Are strings objects, or are they primitive data types? The typeof operator (see
Chapter 5) assures us that strings have the data type "string", which is distinct from the data type
"object". Why, then, are strings manipulated using object notation?

The truth is that a corresponding object class is defined for each of the three key primitive data
types. That is, besides supporting the number, string, and boolean data types, JavaScript also
supports Number, String, and Boolean classes. These classes are wrappers around the primitive
data types. A wrapper contains the same primitive data value, but it also defines properties and
methods that can be used to manipulate that data.

JavaScript can flexibly convert values from one type to another. When we use a string in an
object context -- i.e., when we try to access a property or method of the string -- JavaScript
internally creates a String wrapper object for the string value. This String object is used in place of
the primitive string value; the object has properties and methods defined, so the use of the
primitive value in an object context succeeds. The same is true, of course, for the other primitive
types and their corresponding wrapper objects; we just don't use the other types in an object
context nearly as often as we use strings in that context.

Note that the String object created when we use a string in an object context is a transient one --
it is used to allow us to access a property or method and then is no longer needed, so it is
reclaimed by the system. Suppose s is a string and we determine the length of the string with a
line like this:

var len = s.length;

In this case, s remains a string; the original string value itself is not changed. A new transient
String object is created, which allows us to access the length property, and then the transient
object is discarded, with no change to the original value s. If you think this scheme sounds
elegant and bizarrely complex at the same time, you are right. Typically, however, JavaScript
implementations perform this internal conversion very efficiently, and it is not something you
should worry about.

If we want to use a String object explicitly in our program, we have to create a nontransient one
that is not automatically discarded by the system. String objects are created just like other objects,
with the new operator. For example:

var s = "hello world"; // A primitive string value

var S = new String("Hello World"); // A String object

Once we've created a String object S, what can we do with it? Nothing that we cannot do with the
corresponding primitive string value. If we use the typeof operator, it tells us that S is indeed an
object, and not a string value, but except for that case, we'll find that we can't normally distinguish
between a primitive string and the String object.[6] As we've already seen, strings are

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

between a primitive string and the String object.[6] As we've already seen, strings are
automatically converted to String objects whenever necessary. It turns out that the reverse is also
true. Whenever we use a String object where a primitive string value is expected, JavaScript
automatically converts the String to a string. So if we use our String object with the + operator, a
transient primitive string value is created so that the string concatenation operation can be
performed:

[6] Note, however, that the eval() method treats string values and String objects differently, and it will not behave as
you expect it to if you inadvertently pass it a String object instead of a primitive string value.

msg = S + '!';

Bear in mind that everything we've discussed in this section about string values and String objects
applies also to number and boolean values and their corresponding Number and Boolean objects.
You can learn more about these classes from their respective entries in the core reference
section of this book. In Chapter 11, we'll see more about this primitive type/object duality and
about automatic data conversion in JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 4. Variables
A variable is a name associated with a value; we say that the variable stores or contains the
value. Variables allow you to store and manipulate data in your programs. For example, the
following line of JavaScript assigns the value 2 to a variable named i:

i = 2;

And the following line adds 3 to i and assigns the result to a new variable, sum:

var sum = i + 3;

These two lines of code demonstrate just about everything you need to know about variables.
However, to fully understand how variables work in JavaScript, you need to master a few more
concepts. Unfortunately, these concepts require more than a couple of lines of code to explain!
The rest of this chapter explains the typing, declaration, scope, contents, and resolution of
variables. It also explores garbage collection and the variable/property duality.[1]

[1] These are tricky concepts, and a complete understanding of this chapter requires an understanding of concepts
introduced in later chapters of the book. If you are relatively new to programming, you may want to read only the first
two sections of this chapter and then move on to Chapter 5, Chapter 6, and Chapter 7 before returning to finish up the
remainder of this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1 Variable Typing

An important difference between JavaScript and languages such as Java and C is that JavaScript
is untyped. This means, in part, that a JavaScript variable can hold a value of any data type,
unlike a Java or C variable, which can hold only the one particular type of data for which it is
declared. For example, it is perfectly legal in JavaScript to assign a number to a variable and then
later assign a string to that variable:

i = 10;

i = "ten";

In C, C++, Java, or any other strongly typed language, code like this is illegal.

A feature related to JavaScript's lack of typing is that the language conveniently and automatically
converts values from one type to another, as necessary. If you attempt to append a number to a
string, for example, JavaScript automatically converts the number to the corresponding string so
that it can be appended. We'll see more about data type conversion in Chapter 11.

JavaScript is obviously a simpler language for being untyped. The advantage of strongly typed
languages such as C++ and Java is that they enforce rigorous programming practices, which
makes it easier to write, maintain, and reuse long, complex programs. Since many JavaScript
programs are shorter scripts, this rigor is not necessary and we benefit from the simpler syntax.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.2 Variable Declaration

Before you use a variable in a JavaScript program, you must declare it.[2] Variables are declared
with the var keyword, like this:

[2] If you don't declare a variable explicitly, JavaScript will declare it implicitly for you.

var i;

var sum;

You can also declare multiple variables with the same var keyword:

var i, sum;

And you can combine variable declaration with variable initialization:

var message = "hello";

var i = 0, j = 0, k = 0;

If you don't specify an initial value for a variable with the var statement, the variable is declared,
but its initial value is undefined until your code stores a value into it.

Note that the var statement can also appear as part of the for and for/in loops (introduced in
Chapter 6), allowing you to succinctly declare the loop variable as part of the loop syntax itself.
For example:

for(var i = 0; i < 10; i++) document.write(i, "
");

for(var i = 0, j=10; i < 10; i++,j--) document.write(i*j, "
");

for(var i in o) document.write(i, "
");

Variables declared with var are permanent: attempting to delete them with the delete operator
causes an error. (The delete operator is introduced in Chapter 5.)

4.2.1 Repeated and Omitted Declarations

It is legal and harmless to declare a variable more than once with the var statement. If the
repeated declaration has an initializer, it acts as if it were simply an assignment statement.

If you attempt to read the value of an undeclared variable, JavaScript will generate an error. If you
assign a value to a variable that you have not declared with var, JavaScript will implicitly declare
that variable for you. Note, however, that implicitly declared variables are always created as
global variables, even if they are used within the body of a function. To prevent the creation of a
global variable (or the use of an existing global variable) when you meant to create a local
variable for use within a single function, you must always use the var statement within function
bodies. It's best to use var for all variables, whether global or local. (The distinction between local
and global variables is explored in more detail in the next section.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.3 Variable Scope

The scope of a variable is the region of your program in which it is defined. A global variable has global scope -
- it is defined everywhere in your JavaScript code. On the other hand, variables declared within a function are
defined only within the body of the function. They are local variables and have local scope. Function
parameters also count as local variables and are defined only within the body of the function.

Within the body of a function, a local variable takes precedence over a global variable with the same name. If
you declare a local variable or function parameter with the same name as a global variable, you effectively hide
the global variable. For example, the following code prints the word "local":

var scope = "global"; // Declare a global variable

function checkscope() {

 var scope = "local"; // Declare a local variable with the same name

 document.write(scope); // Use the local variable, not the global one

}

checkscope(); // Prints "local"

Although you can get away with not using the var statement when you write code in the global scope, you
must always use var to declare local variables. Consider what happens if you don't:

scope = "global"; // Declare a global variable, even without var

function checkscope() {

 scope = "local"; // Oops! We just changed the global variable

 document.write(scope); // Uses the global variable

 myscope = "local"; // This implicitly declares a new global variable

 document.write(myscope); // Uses the new global variable

}

checkscope(); // Prints "locallocal"

document.write(scope); // This prints "local"

document.write(myscope); // This prints "local"

In general, functions do not know what variables are defined in the global scope or what they are being used
for. Thus, if a function uses a global variable instead of a local one, it runs the risk of changing a value upon
which some other part of the program relies. Fortunately, avoiding this problem is simple: declare all variables
with var.

In JavaScript 1.2 (and ECMAScript v3), function definitions can be nested. Each function has its own local
scope, so it is possible to have several nested layers of local scope. For example:

var scope = "global scope"; // A global variable

function checkscope() {

 var scope = "local scope"; // A local variable

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var scope = "local scope"; // A local variable

 function nested() {

 var scope = "nested scope"; // A nested scope of local variables

 document.write(scope); // Prints "nested scope"

 }

 nested();

}

checkscope();

4.3.1 No Block Scope

Note that unlike C, C++, and Java, JavaScript does not have block-level scope. All variables declared in
function, no matter where they are declared, are defined throughout the function. In the following code,
variables i, j, and k all have the same scope: all three are defined throughout the body of the function. This
would not be the case if the code were written in C, C++, or Java:

function test(o) {

 var i = 0; // i is defined throughout function

 if (typeof o == "object") {

 var j = 0; // j is defined everywhere, not just block

 for(var k = 0; k < 10; k++) { // k is defined everywhere, not just loop

 document.write(k);

 }

 document.write(k); // k is still defined: prints 10

 }

 document.write(j); // j is defined, but may not be initialized

}

The rule that all variables declared in a function are defined throughout the function can cause surprising
results. The following code illustrates this:

var scope = "global";

function f() {

 alert(scope); // Displays "undefined", not "global"

 var scope = "local"; // Variable initialized here, but defined everywhere

 alert(scope); // Displays "local"

}

f();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

f();

You might think that the first call to alert() would display "global", since the var statement declaring the
local variable has not yet been executed. Because of the scope rules, however, this is not what happens. The
local variable is defined throughout the body of the function, which means the global variable by the same
name is hidden throughout the function. Although the local variable is defined throughout, it is not actually
initialized until the var statement is executed. Thus, the function f in the previous example is equivalent to the
following:

function f() {

 var scope; // Local variable is declared at the start of the function

 alert(scope); // It exists here, but still has "undefined" value

 scope = "local"; // Now we initialize it and give it a value

 alert(scope); // And here it has a value

}

This example illustrates why it is good programming practice to place all of your variable declarations together
at the start of any function.

4.3.2 Undefined Versus Unassigned

The examples in the previous section demonstrate a subtle point in JavaScript programming: there
different kinds of undefined variables. The first kind of undefined variable is one that has never been declared.
An attempt to read the value of such an undeclared variable causes a runtime error. Undeclared variables
undefined because they simply do not exist. As described earlier, assigning a value to an undeclared variable
does not cause an error; instead, it implicitly declares the variable in the global scope.

The second kind of undefined variable is one that has been declared but has never had a value assigned to it.
If you read the value of one of these variables, you obtain its default value, undefined. This type of undefined
variable might more usefully be called unassigned, to distinguish it from the more serious kind of undefined
variable that has not even been declared and does not exist.

The following code fragment illustrates some of the differences between truly undefined and merely
unassigned variables:

var x; // Declare an unassigned variable. Its value is undefined.

alert(u); // Using an undeclared variable causes an error.

u = 3; // Assigning a value to an undeclared variable creates the variable.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.4 Primitive Types and Reference Types

The next topic we need to consider is the content of variables. We often say that variables have or contain
values. But just what is it that they contain? To answer this seemingly simple question, we must look again
at the data types supported by JavaScript. The types can be divided into two groups: primitive types and
reference types. Numbers, boolean values, and the null and undefined types are primitive. Objects,
arrays, and functions are reference types.

A primitive type has a fixed size in memory. For example, a number occupies eight bytes of memory, and a
boolean value can be represented with only one bit. The number type is the largest of the primitive types. If
each JavaScript variable reserves eight bytes of memory, the variable can directly hold any primitive
value.[3]

[3] This is an oversimplification and is not intended as a description of an actual JavaScript implementation.

Reference types are another matter, however. Objects, for example, can be of any length -- they do not
have a fixed size. The same is true of arrays: an array can have any number of elements. Similarly,
function can contain any amount of JavaScript code. Since these types do not have a fixed size, their
values cannot be stored directly in the eight bytes of memory associated with each variable. Instead, the
variable stores a reference to the value. Typically, this reference is some form of pointer or memory
address. It is not the data value itself, but it tells the variable where to look to find the value.

The distinction between primitive and reference types is an important one, as they behave differently.
Consider the following code that uses numbers (a primitive type):

var a = 3.14; // Declare and initialize a variable

var b = a; // Copy the variable's value to a new variable

a = 4; // Modify the value of the original variable

alert(b) // Displays 3.14; the copy has not changed

There is nothing surprising about this code. Now consider what happens if we change the code slightly so
that it uses arrays (a reference type) instead of numbers:

var a = [1,2,3]; // Initialize a variable to refer to an array

var b = a; // Copy that reference into a new variable

a[0] = 99; // Modify the array using the original reference

alert(b); // Display the changed array [99,2,3] using the new reference

If this result does not seem surprising to you, you're already well familiar with the distinction between
primitive and reference types. If it does seem surprising, take a closer look at the second line. Note that it
is the reference to the array value, not the array itself, that is being assigned in this statement. After that
second line of code, we still have only one array object; we just happen to have two references to it.

If the primitive versus reference type distinction is new to you, just try to keep the variable contents in mind.
Variables hold the actual values of primitive types, but they hold only references to the values of reference
types. The differing behavior of primitive and reference types is explored in more detail in Section 11.2

You may have noticed that I did not specify whether strings are primitive or reference types in JavaScript.
Strings are an unusual case. They have variable size, so obviously they cannot be stored directly in fixed-
size variables. For efficiency, we would expect JavaScript to copy references to strings, not the actual
contents of strings. On the other hand, strings behave like a primitive type in many ways. The question of
whether strings are a primitive or reference type is actually moot, because strings are immutable: there is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

whether strings are a primitive or reference type is actually moot, because strings are immutable: there is
no way to change the contents of a string value. This means that we cannot construct an example like the
previous one that demonstrates that arrays are copied by reference. In the end, it doesn't matter much
whether you think of strings as an immutable reference type that behaves like a primitive type or as a
primitive type implemented with the internal efficiency of a reference type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.5 Garbage Collection

Reference types do not have a fixed size; indeed, some of them can become quite large. As
we've already discussed, variables do not directly hold reference values. The value is stored at
some other location, and the variables merely hold a reference to that location. Now we need to
focus briefly on the actual storage of the value.

Since strings, objects, and arrays do not have a fixed size, storage for them must be allocated
dynamically, when the size is known. Every time a JavaScript program creates a string, array, or
object, the interpreter must allocate memory to store that entity. Whenever memory is dynamically
allocated like this, it must eventually be freed up for reuse, or the JavaScript interpreter will use up
all the available memory on the system and crash.

In languages like C and C++, memory must be freed manually. It is the programmer's
responsibility to keep track of all the objects that are created and to destroy them (freeing their
memory) when they are no longer needed. This can be an onerous task and is often the source of
bugs.

Instead of requiring manual deallocation, JavaScript relies on a technique called garbage
collection. The JavaScript interpreter is able to detect when an object will never again be used by
the program. When it determines that an object is unreachable (i.e., there is no longer any way to
refer to it using the variables in the program), it knows that the object is no longer needed and its
memory can be reclaimed. Consider the following lines of code, for example:

var s = "hello"; // Allocate memory for a string

var u = s.toUpperCase(); // Create a new string

s = u; // Overwrite reference to original string

After this code runs, the original string "hello" is no longer reachable -- there are no references to
it in any variables in the program. The system detects this fact and frees up its storage space for
reuse.

Garbage collection is automatic and is invisible to the programmer. You can create all the
garbage objects you want, and the system will clean up after you! You need to know only enough
about garbage collection to trust that it works; you don't have to wonder about where all the old
objects go. For those who aren't satisfied, however, Section 11.3, contains further details on the
JavaScript garbage-collection process.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.6 Variables as Properties

You may have noticed by now that there are a lot of similarities in JavaScript between variables
and the properties of objects. They are both assigned the same way, they are used the same way
in JavaScript expressions, and so on. Is there really any fundamental difference between the
variable i and the property i of an object o? The answer is no. Variables in JavaScript are
fundamentally the same as object properties.

4.6.1 The Global Object

When the JavaScript interpreter starts up, one of the first things it does, before executing any
JavaScript code, is create a global object. The properties of this object are the global variables of
JavaScript programs. When you declare a global JavaScript variable, what you are actually doing
is defining a property of the global object.

The JavaScript interpreter initializes the global object with a number of properties that refer to
predefined values and functions. For example, the Infinity, parseInt, and Math properties
refer to the number infinity, the predefined parseInt() function, and the predefined Math
object. You can read about these global values in the core reference section of this book.

In top-level code (i.e., JavaScript code that is not part of a function), you can use the JavaScript
keyword this to refer to the global object. Within functions, this has a different use, which is
described in Chapter 7.

In client-side JavaScript, the Window object serves as the global object for all JavaScript code
contained in the browser window it represents. This global Window object has a self-referential
window property that can be used instead of this to refer to the global object. The Window
object defines the core global properties, such as parseInt and Math, and also global client-
side properties, such as navigator and screen.

4.6.2 Local Variables: The Call Object

If global variables are properties of the special global object, then what are local variables? They
too are properties of an object. This object is known as the call object. The call object has a
shorter life span than the global object, but it serves the same purpose. While the body of a
function is executing, the function arguments and local variables are stored as properties of this
call object. The use of an entirely separate object for local variables is what allows JavaScript to
keep local variables from overwriting the value of global variables with the same name.

4.6.3 JavaScript Execution Contexts

Each time the JavaScript interpreter begins to execute a function, it creates a new execution
context for that function. An execution context is, obviously, the context in which any piece of
JavaScript code executes. An important part of the context is the object in which variables are
defined. Thus, JavaScript code that is not part of any function runs in an execution context that
uses the global object for variable definitions. And every JavaScript function runs in its own
unique execution context with its own call object in which local variables are defined.

An interesting point to note is that JavaScript implementations may allow multiple global execution
contexts, each with a different global object. (Although, in this case, each global object is not
entirely global.)[4] The obvious example is client-side JavaScript, in which each separate browser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

entirely global.)[4] The obvious example is client-side JavaScript, in which each separate browser
window, or each frame within a window, defines a separate global execution context. Client-side
JavaScript code in each frame or window runs in its own execution context and has its own global
object. However, these separate client-side global objects have properties that link them to one
another. Thus, JavaScript code in one frame might refer to another frame with the expression
parent.frames[1], and the global variable x in the first frame might be referenced by the
expression parent.frames[0].x in the second frame.

[4] This is merely an aside; if it does not interest you, feel free to move on to the next section.

You don't need to fully understand how separate window and frame execution contexts are linked
together in client-side JavaScript right now. We'll cover that topic in detail when we discuss the
integration of JavaScript with web browsers in Chapter 12. What you should understand now is
that JavaScript is flexible enough that a single JavaScript interpreter can run scripts in different
global execution contexts and that those contexts need not be entirely separate -- they can refer
back and forth to each other.

This last point requires additional consideration. When JavaScript code in one execution context
can read and write property values and execute functions that are defined in another execution
context, we've reached a level of complexity that requires consideration of security issues. Take
client-side JavaScript as an example. Suppose browser window A is running a script or contains
information from your local intranet, and window B is running a script from some random site out
on the Internet. In general, we do not want to allow the code in window B to be able to access the
properties of window A. If we allow it to do this, it might be able to read sensitive company
information and steal it, for example. Thus, in order to safely run JavaScript code, there must be a
security mechanism that prevents access from one execution context to another when such
access should not be permitted. We'll return to this topic in Chapter 21.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.7 Variable Scope Revisited

When we first discussed the notion of variable scope, I based the definition solely on the lexical
structure of JavaScript code: global variables have global scope and variables declared in
functions have local scope. If one function definition is nested within another, variables declared
within that nested function have a nested local scope. Now that we know that global variables are
properties of a global object and that local variables are properties of a special call object, we can
return to the notion of variable scope and reconceptualize it. This new description of scope offers
a useful way to think about variables in many contexts; it provides a powerful new understanding
of how JavaScript works.

Every JavaScript execution context has a scope chain associated with it. This scope chain is a list
or chain of objects. When JavaScript code needs to look up the value of a variable x (a process
called variable name resolution), it starts by looking at the first object in the chain. If that object
has a property named x, the value of that property is used. If the first object does not have a
property named x, JavaScript continues the search with the next object in the chain. If the second
object does not have a property named x, the search moves on to the next object, and so on.

In top-level JavaScript code (i.e., code not contained within any function definitions), the scope
chain consists of a single object, the global object. All variables are looked up in this object. If a
variable does not exist, the variable value is undefined. In a (non-nested) function, however, the
scope chain consists of two objects. The first is the function's call object, and the second is the
global object. When the function refers to a variable, the call object (the local scope) is checked
first, and the global object (the global scope) is checked second. A nested function would have
three or more objects in its scope chain. Figure 4-1 illustrates the process of looking up a variable
name in the scope chain of a function.

Figure 4-1. The scope chain and variable resolution

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 5. Expressions and Operators
This chapter explains how expressions and operators work in JavaScript. If you are familiar with
C, C++, or Java, you'll notice that the expressions and operators in JavaScript are very similar,
and you'll be able to skim this chapter quickly. If you are not a C, C++, or Java programmer, this
chapter tells you everything you need to know about expressions and operators in JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.1 Expressions

An expression is a phrase of JavaScript that a JavaScript interpreter can evaluate to produce a
value. The simplest expressions are literals or variable names, like these:

1.7 // A numeric literal

"JavaScript is fun!" // A string literal

true // A boolean literal

null // The literal null value

/java/ // A regular expression literal

{ x:2, y:2 } // An object literal

[2,3,5,7,11,13,17,19] // An array literal

function(x){return x*x;} // A function literal

i // The variable i

sum // The variable sum

The value of a literal expression is simply the literal value itself. The value of a variable
expression is the value that the variable contains or refers to.

These expressions are not particularly interesting. More complex (and interesting) expressions
can be created by combining simple expressions. For example, we saw that 1.7 is an expression
and i is an expression. The following is also an expression:

i + 1.7

The value of this expression is determined by adding the values of the two simpler expressions.
The + in this example is an operator that is used to combine two expressions into a more complex
expression. Another operator is -, which is used to combine expressions by subtraction. For
example:

(i + 1.7) - sum

This expression uses the - operator to subtract the value of the sum variable from the value of
our previous expression, i + 1.7. JavaScript supports a number of other operators besides +
and -, as you'll see in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.2 Operator Overview

If you are a C, C++, or Java programmer, most of the JavaScript operators should already be
familiar to you. Table 5-1 summarizes the operators; you can refer to this table for reference. Note
that most operators are represented by punctuation characters such as + and =. Some, however,
are represented by keywords such as delete and instanceof. Keyword operators are regular
operators, just like those expressed with punctuation; they are simply expressed using a more
readable and less succinct syntax.

In this table, the column labeled "P" gives the operator precedence and the column labeled "A"
gives the operator associativity, which can be L (left-to-right) or R (right-to-left). If you do not
already understand precedence and associativity, the subsections that follow the table explain
these concepts. The operators themselves are documented following that discussion.

Table 5-1. JavaScript operators

P A Operator Operand
type(s) Operation performed

15 L . object,
identifier Property access

 L [] array, integer Array index

 L () function,
arguments Function call

 R new constructor call Create new object

14 R ++ lvalue Pre- or post-increment
(unary)

 R -- lvalue Pre- or post-decrement
(unary)

 R - number Unary minus (negation)
 R + number Unary plus (no-op)

 R ~ integer Bitwise complement
(unary)

 R ! boolean Logical complement
(unary)

 R delete lvalue Undefine a property
(unary)

 R typeof any Return data type (unary)

 R void any Return undefined value
(unary)

13 L *, /, % numbers Multiplication, division,
remainder

12 L +, - numbers Addition, subtraction
 L + strings String concatenation
11 L << integers Left shift

 L >> integers Right shift with sign-
extension

 L >>> integers Right shift with zero
extension

10 L <, <= numbers or
strings

Less than, less than or
equal

 L >, >= numbers or
strings

Greater than, greater than
or equal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 L instanceof object,
constructor Check object type

 L in string, object Check whether property
exists

9 L == any Test for equality
 L != any Test for inequality
 L === any Test for identity
 L !== any Test for non-identity
8 L & integers Bitwise AND
7 L ^ integers Bitwise XOR
6 L | integers Bitwise OR
5 L && booleans Logical AND
4 L || booleans Logical OR

3 R ?: boolean, any,
any

Conditional operator (3
operands)

2 R = lvalue, any Assignment

 R *=, /=, %=, +=, -=, <<=, >>=, >>>=,
&=, ^=, |= lvalue, any Assignment with operation

1 L , any Multiple evaluation

5.2.1 Number of Operands

Operators can be categorized based on the number of operands they expect. Most JavaScript
operators, like the + operator we saw earlier, are binary operators that combine two expressions
into a single, more complex expression. That is, they operate on two operands. JavaScript also
supports a number of unary operators, which convert a single expression into a single, more
complex expression. The - operator in the expression -3 is a unary operator that performs the
operation of negation on the operand 3. Finally, JavaScript supports one ternary operator, the
conditional operator ?:, which combines the value of three expressions into a single expression.

5.2.2 Type of Operands

When constructing JavaScript expressions, you must pay attention to the data types that are
being passed to operators and to the data types that are returned. Different operators expect their
operands' expressions to evaluate to values of a certain data type. For example, it is not possible
to multiply strings, so the expression "a" * "b" is not legal in JavaScript. Note, however, that
JavaScript tries to convert expressions to the appropriate type whenever possible, so the
expression "3" * "5" is legal. Its value is the number 15, not the string "15". We'll consider
JavaScript type conversions in detail in Section 11.1.

Furthermore, some operators behave differently depending on the type of the operands. Most
notably, the + operator adds numeric operands but concatenates string operands. Also, if passed
one string and one number, it converts the number to a string and concatenates the two resulting
strings. For example, "1" + 0 yields the string "10".

Notice that the assignment operators, as well as a few other operators, expect their lefthand
expressions to be lvalues. lvalue is a historical term that means "an expression that can legally
appear on the lefthand side of an assignment expression." In JavaScript, variables, properties of
objects, and elements of arrays are lvalues. The ECMAScript specification allows built-in
functions to return lvalues but does not define any built-in functions that behave that way.

Finally, note that operators do not always return the same type as their operands. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

comparison operators (less than, equal to, greater than, etc.) take operands of various types, but
when comparison expressions are evaluated, they always return a boolean result that indicates
whether the comparison is true or not. For example, the expression a < 3 returns true if the
value of variable a is in fact less than 3. As we'll see, the boolean values returned by comparison
operators are used in if statements, while loops, and for loops -- JavaScript statements that
control the execution of a program based on the results of evaluating expressions that contain
comparison operators.

5.2.3 Operator Precedence

In Table 5-1, the column labeled "P" specifies the precedence of each operator. Operator
precedence controls the order in which operations are performed. Operators with higher numbers
in the "P" column are performed before those with lower numbers.

Consider the following expression:

w = x + y*z;

The multiplication operator * has a higher precedence than the addition operator +, so the
multiplication is performed before the addition. Furthermore, the assignment operator = has the
lowest precedence, so the assignment is performed after all the operations on the righthand side
are completed.

Operator precedence can be overridden with the explicit use of parentheses. To force the addition
in the previous example to be performed first, we would write:

w = (x + y)*z;

In practice, if you are at all unsure about the precedence of your operators, the simplest thing is to
use parentheses to make the evaluation order explicit. The only rules that are important to know
are these: multiplication and division are performed before addition and subtraction, and
assignment has very low precedence and is almost always performed last.

5.2.4 Operator Associativity

In Table 5-1, the column labeled "A" specifies the associativity of the operator. A value of L
specifies left-to-right associativity, and a value of R specifies right-to-left associativity. The
associativity of an operator specifies the order in which operations of the same precedence are
performed. Left-to-right associativity means that operations are performed from left to right. For
example, the addition operator has left-to-right associativity, so:

w = x + y + z;

is the same as:

w = ((x + y) + z);

On the other hand, the following (almost nonsensical) expressions:

x = ~-~y;

w = x = y = z;

q = a?b:c?d:e?f:g;

are equivalent to:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x = ~(-(~y));

w = (x = (y = z));

q = a?b:(c?d:(e?f:g));

because the unary, assignment, and ternary conditional operators have right-to-left associativity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.3 Arithmetic Operators

Having explained operator precedence, associativity, and other background material, we can start
to discuss the operators themselves. This section details the arithmetic operators:

Addition (+)

The + operator adds numeric operands or concatenates string operands. If one operand is
a string, the other is converted to a string and the two strings are then concatenated.
Object operands are converted to numbers or strings that can be added or concatenated.
The conversion is performed by the valueOf() method and/or the toString()
method of the object.

Subtraction (-)

When - is used as a binary operator, it subtracts its second operand from its first operand.
If used with non-numeric operands, it attempts to convert them to numbers.

Multiplication (*)

The * operator multiplies its two operands. If used with non-numeric operands, it attempts
to convert them to numbers.

Division (/)

The / operator divides its first operand by its second. If used with non-numeric operands, it
attempts to convert them to numbers. If you are used to programming languages that
distinguish between integer and floating-point numbers, you might expect to get an integer
result when you divide one integer by another. In JavaScript, however, all numbers are
floating-point, so all divisions have floating-point results: 5/2 evaluates to 2.5, not 2.
Division by zero yields positive or negative infinity, while 0/0 evaluates to NaN.

Modulo (%)

The % operator computes the first operand modulo the second operand. That is, it returns
the remainder when the first operand is divided by the second operand an integral number
of times. If used with non-numeric operands, the modulo operator attempts to convert them
to numbers. The sign of the result is the same as the sign of the first operand. For example,
5 % 2 evaluates to 1.

While the modulo operator is typically used with integer operands, it also works for floating-
point values. For example, -4.3 % 2.1 evaluates to -0.1.

Unary minus (-)

When - is used as a unary operator, before a single operand, it performs unary negation.
In other words, it converts a positive value to an equivalently negative value, and vice
versa. If the operand is not a number, this operator attempts to convert it to one.

Unary plus (+)

For symmetry with the unary minus operator, JavaScript also has a unary plus operator.
This operator allows you to explicitly specify the sign of numeric literals, if you feel that this
will make your code clearer:

var profit = +1000000;

In code like this, the + operator does nothing; it simply evaluates to the value of its

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In code like this, the + operator does nothing; it simply evaluates to the value of its
argument. Note, however, that for non-numeric arguments, the + operator has the effect of
converting the argument to a number. It returns NaN if the argument cannot be converted.

Increment (++)

The ++ operator increments (i.e., adds 1 to) its single operand, which must be a variable,
an element of an array, or a property of an object. If the value of this variable, element, or
property is not a number, the operator first attempts to convert it to one. The precise
behavior of this operator depends on its position relative to the operand. When used before
the operand, where it is known as the pre-increment operator, it increments the operand
and evaluates to the incremented value of that operand. When used after the operand,
where it is known as the post-increment operator, it increments its operand but evaluates to
the unincremented value of that operand. If the value to be incremented is not a number, it
is converted to one by this process.

For example, the following code sets both i and j to 2:

i = 1;

j = ++i;

But these lines set i to 2 and j to 1:

i = 1;

j = i++;

This operator, in both of its forms, is most commonly used to increment a counter that
controls a loop. Note that, because of JavaScript's automatic semicolon insertion, you may
not insert a line break between the post-increment or post-decrement operator and the
operand that precedes it. If you do so, JavaScript will treat the operand as a complete
statement by itself and will insert a semicolon before it.

Decrement (--)

The -- operator decrements (i.e., subtracts 1 from) its single numeric operand, which must
be a variable, an element of an array, or a property of an object. If the value of this variable,
element, or property is not a number, the operator first attempts to convert it to one. Like
the ++ operator, the precise behavior of -- depends on its position relative to the operand.
When used before the operand, it decrements and returns the decremented value. When
used after the operand, it decrements the operand but returns the undecremented value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.4 Equality Operators

This section describes the JavaScript equality and inequality operators. These are operators that
compare two values to determine whether they are the same or different and return a boolean
value (true or false) depending on the result of the comparison. As we'll see in Chapter 6, they
are most commonly used in things like if statements and for loops, to control the flow of
program execution.

5.4.1 Equality (==) and Identity (===)

The == and === operators check whether two values are the same, using two different definitions
of sameness. Both operators accept operands of any type, and both return true if their operands
are the same and false if they are different. The === operator is known as the identity operator,
and it checks whether its two operands are "identical" using a strict definition of sameness. The
== operator is known as the equality operator; it checks whether its two operands are "equal"
using a more relaxed definition of sameness that allows type conversions.

The identity operator is standardized by ECMAScript v3 and implemented in JavaScript 1.3 and
later. With the introduction of the identity operator, JavaScript supports =, ==, and === operators.
Be sure you understand the differences between the assignment, equality, and identity operators,
and be careful to use the right one when coding! Although it is tempting to call all three operators
"equals," it may help to reduce confusion if you read "gets or is assigned" for =, "is equal to" for
==, and "is identical to" for ===.

In JavaScript, numbers, strings, and boolean values are compared by value. In this case, two
separate values are involved, and the == and === operators check that these two values are
identical. This means that two variables are equal or identical only if they contain the same value.
For example, two strings are equal only if they each contain exactly the same characters.

On the other hand, objects, arrays, and functions are compared by reference. This means that
two variables are equal only if they refer to the same object. Two separate arrays are never equal
or identical, even if they contain equal or identical elements. Two variables that contain
references to objects, arrays, or functions are equal only if they refer to the same object, array, or
function. If you want to test that two distinct objects contain the same properties or that two
distinct arrays contain the same elements, you'll have to check the properties or elements
individually for equality or identity. (And, if any of the properties or elements are themselves
objects or arrays, you'll have to decide how deep you want the comparison to go.)

The following rules are used to determine whether two values are identical according to the ===
operator:

If the two values have different types, they are not identical.

If both values are numbers and have the same value, they are identical, unless either or
both values are NaN, in which case they are not identical. The NaN value is never identical
to any other value, including itself! To check whether a value is NaN, use the global isNaN(
) function.

If both values are strings and contain exactly the same characters in the same positions,
they are identical. If the strings differ in length or content, they are not identical. Note that in
some cases, the Unicode standard allows more than one way to encode the same string.
For efficiency, however, JavaScript string comparison compares strictly on a character-by-
character basis, and it assumes that all strings have been converted to a "normalized form"
before they are compared. See the "String.localeCompare()" reference page in the core
reference section of this book for another way to compare strings.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If both values are the boolean value true or both are the boolean value false, they are
identical.

If both values refer to the same object, array, or function, they are identical. If they refer to
different objects (or arrays or functions) they are not identical, even if both objects have
identical properties or both arrays have identical elements.

If both values are null or both values are undefined, they are identical.

The following rules are used to determine whether two values are equal according to the ==
operator:

If the two values have the same type, test them for identity. If the values are identical, they
are equal; if they are not identical, they are not equal.

If the two values do not have the same type, they may still be equal. Use the following rules
and type conversions to check for equality:

If one value is null and the other is undefined, they are equal.

If one value is a number and the other is a string, convert the string to a number and
try the comparison again, using the converted value.

If either value is true, convert it to 1 and try the comparison again. If either value is
false, convert it to 0 and try the comparison again.

If one value is an object and the other is a number or string, convert the object to a
primitive and try the comparison again. An object is converted to a primitive value by
either its toString() method or its valueOf() method. The built-in classes of
core JavaScript attempt valueOf() conversion before toString() conversion,
except for the Date class, which performs toString() conversion. Objects that
are not part of core JavaScript may convert themselves to primitive values in an
implementation-defined way.

Any other combinations of values are not equal.

As an example of testing for equality, consider the comparison:

"1" == true

This expression evaluates to true, indicating that these very different-looking values are in fact
equal. The boolean value true is first converted to the number 1, and the comparison is done
again. Next, the string "1" is converted to the number 1. Since both numbers are now the same,
the comparison returns true.

When the equality operator in JavaScript 1.1 attempted to convert a string to a number and failed,
it displayed an error message noting that the string could not be converted, instead of converting
the string to NaN and returning false as the result of the comparison. This bug has been fixed in
JavaScript 1.2.

5.4.1.1 Equality and inequality in Netscape

The == operator always behaves as described previously, and the != operator always behaves
as described in the next section, with one exception. In client-side JavaScript in Netscape 4 and
later, when embedded in a <script> tag that explicitly specifies JavaScript 1.2 as its language

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

later, when embedded in a <script> tag that explicitly specifies JavaScript 1.2 as its language
attribute, the equality operator behaves like the identity operator, and the inequality operator
behaves like the non-identity operator. To avoid this incompatibility, never use the
language="JavaScript1.2" attribute to embed your client-side JavaScript code. See Section
11.6, for a complete list of similar JavaScript 1.2 incompatibilities.

5.4.2 Inequality (!=) and Non-Identity (!==)

The != and !== operators test for the exact opposite of the == and === operators. The !=
inequality operator returns false if two values are equal to each other and returns true
otherwise. The !== non-identity operator returns false if two values are identical to each other
and returns true otherwise. Note that this operator is standardized by ECMAScript v3 and
implemented in JavaScript 1.3 and later.

As we'll see, the ! operator computes the Boolean NOT operation. This makes it easy to
remember that != stands for "not equal to" and !== stands for "not identical to." See the previous
section for details on how equality and identity are defined for different data types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.5 Relational Operators

This section describes the JavaScript relational operators. These are operators that test for a relationship
(such as "less-than" or "property-of") between two values and return true or false depending on whether
that relationship exists. As we'll see in Chapter 6, they are most commonly used in things like if statements
and while loops, to control the flow of program execution.

5.5.1 Comparison Operators

The most commonly used types of relational operators are the comparison operators, which are used to
determine the relative order of two values. The comparison operators are:

Less than (<)

The < operator evaluates to true if its first operand is less than its second operand; otherwise it
evaluates to false.

Greater than (>)

The > operator evaluates to true if its first operand is greater than its second operand; otherwise it
evaluates to false.

Less than or equal (<=)

The <= operator evaluates to true if its first operand is less than or equal to its second operand;
otherwise it evaluates to false.

Greater than or equal (>=)

The >= operator evaluates to true if its first operand is greater than or equal to its second operand;
otherwise it evaluates to false.

The operands of these comparison operators may be of any type. Comparison can be performed only on
numbers and strings, however, so operands that are not numbers or strings are converted. Comparison
conversion occur as follows:

If both operands are numbers, or if both convert to numbers, they are compared numerically.

If both operands are strings or convert to strings, they are compared as strings.

If one operand is or converts to a string and one is or converts to a number, the operator attempts to
convert the string to a number and perform a numerical comparison. If the string does not represent a
number, it converts to NaN, and the comparison is false. (In JavaScript 1.1, the string-to-number
conversion causes an error instead of yielding NaN.)

If an object can be converted to either a number or a string, JavaScript performs the numerical
conversion. This means, for example, that Date objects are compared numerically, and it is
meaningful to compare two dates to see whether one is earlier than the other.

If the operands of the comparison operators cannot both be successfully converted to numbers or to
strings, these operators always return false.

If either operand is or converts to NaN, the comparison operator always yields false.

Keep in mind that string comparison is done on a strict character-by-character basis, using the numerical

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Keep in mind that string comparison is done on a strict character-by-character basis, using the numerical
value of each character from the Unicode encoding. Although in some cases the Unicode standard allows
equivalent strings to be encoded using different sequences of characters, the JavaScript comparison
operators do not detect these encoding differences; they assume that all strings are expressed in
normalized form. Note in particular that string comparison is case-sensitive, and in the Unicode encoding (at
least for the ASCII subset), all capital letters are "less than" all lowercase letters. This rule can cause
confusing results if you do not expect it. For example, according to the < operator, the string "Zoo" is less
than the string "aardvark".

For a more robust string comparison algorithm, see the String.localeCompare() method, which also
takes locale-specific definitions of "alphabetical order" into account. For case-insensitive comparisons, you
must first convert the strings to all lowercase or all uppercase using String.toLowerCase() or
String.toUpperCase().

The <= (less-than-or-equal) and >= (greater-than-or-equal) operators do not rely on the equality or identity
operators for determining whether two values are "equal." Instead, the less-than-or-equal operator is simply
defined as "not greater than," and the greater-than-or-equal operator is defined as "not less than." The one
exception is when either operand is (or converts to) NaN, in which case all four comparison operators return
false.

5.5.2 The in Operator

The in operator expects a lefthand operand that is or can be converted to a string. It expects a righthand
operand that is an object (or array). It evaluates to true if the lefthand value is the name of a property of the
righthand object. For example:

var point = { x:1, y:1 }; // Define an object

var has_x_coord = "x" in point; // Evaluates to true

var has_y_coord = "y" in point; // Evaluates to true

var has_z_coord = "z" in point; // Evaluates to false; not a 3-D point

var ts = "toString" in point; // Inherited property; evaluates to true

5.5.3 The instanceof Operator

The instanceof operator expects a lefthand operand that is an object and a righthand operand that is the
name of a class of objects. The operator evaluates to true if the lefthand object is an instance of the
righthand class and evaluates to false otherwise. We'll see in Chapter 8 that, in JavaScript, classes of
objects are defined by the constructor function that is used to initialize them. Thus, the righthand operand of
instanceof should be the name of a constructor function. Note that all objects are instances of Object
For example:

var d = new Date(); // Create a new object with the Date() constructor

d instanceof Date; // Evaluates to true; d was created with Date()

d instanceof Object; // Evaluates to true; all objects are instances of Object

d instanceof Number; // Evaluates to false; d is not a Number object

var a = [1, 2, 3]; // Create an array with array literal syntax

a instanceof Array; // Evaluates to true; a is an array

a instanceof Object; // Evaluates to true; all arrays are objects

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a instanceof Object; // Evaluates to true; all arrays are objects

a instanceof RegExp; // Evaluates to false; arrays are not regular expressions

If the lefthand operand of instanceof is not an object, or if the righthand operand is an object that is not a
constructor function, instanceof returns false. On the other hand, it returns a runtime error if the righthand
operand is not an object at all.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.6 String Operators

As we've discussed in the previous sections, there are several operators that have special effects
when their operands are strings.

The + operator concatenates two string operands. That is, it creates a new string that consists of the
first string followed by the second. For example, the following expression evaluates to the string "hello
there":

"hello" + " " + "there"

And the following lines produce the string "22":

a = "2"; b = "2";

c = a + b;

The < , <=, >, and >= operators compare two strings to determine what order they fall in. The
comparison uses alphabetical order. As noted above, however, this alphabetical order is based on the
Unicode character encoding used by JavaScript. In this encoding, all capital letters in the Latin
alphabet come before (are less than) all lowercase letters, which can cause unexpected results.

The == and != operators work on strings, but, as we've seen, these operators work for all data types,
and they do not have any special behavior when used with strings.

The + operator is a special one -- it gives priority to string operands over numeric operands. As noted
earlier, if either operand to + is a string (or an object), the other operand is converted to a string (or
both operands are converted to strings) and concatenated, rather than added. On the other hand, the
comparison operators perform string comparison only if both operands are strings. If only one operand
is a string, JavaScript attempts to convert it to a number. The following lines illustrate:

1 + 2 // Addition. Result is 3.

"1" + "2" // Concatenation. Result is "12".

"1" + 2 // Concatenation; 2 is converted to "2". Result is "12".

11 < 3 // Numeric comparison. Result is false.

"11" < "3" // String comparison. Result is true.

"11" < 3 // Numeric comparison; "11" converted to 11. Result is false.

"one" < 3 // Numeric comparison; "one" converted to NaN. Result is false.

 // In JavaScript 1.1, this causes an error instead of NaN.

Finally, it is important to note that when the + operator is used with strings and numbers, it may not be
associative. That is, the result may depend on the order in which operations are performed. This can
be seen with examples like these:

s = 1 + 2 + " blind mice"; // Yields "3 blind mice"

t = "blind mice: " + 1 + 2; // Yields "blind mice: 12"

The reason for this surprising difference in behavior is that the + operator works from left to right,
unless parentheses change this order. Thus, the last two examples are equivalent to these:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s = (1 + 2) + "blind mice"; // 1st + yields number; 2nd yields string

t = ("blind mice: " + 1) + 2; // Both operations yield strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.7 Logical Operators

The logical operators are typically used to perform Boolean algebra. They are often used in
conjunction with comparison operators to express complex comparisons that involve more than
one variable and are frequently used with the if, while, and for statements.

5.7.1 Logical AND (&&)

When used with boolean operands, the && operator performs the Boolean AND operation on the
two values: it returns true if and only if both its first operand and its second operand are true. If
one or both of these operands is false, it returns false.

The actual behavior of this operator is somewhat more complicated. It starts by evaluating its first
operand, the expression on its left. If the value of this expression can be converted to false (for
example, if the left operand evaluates to null, 0, "", or undefined), the operator returns the
value of the lefthand expression. Otherwise, it evaluates its second operand, the expression on its
right, and returns the value of that expression.[1]

[1] In JavaScript 1.0 and JavaScript 1.1, if the lefthand expression evaluates to false, the && operator returns false,
rather than returning the unconverted value of the lefthand expression.

Note that, depending on the value of the lefthand expression, this operator may or may not
evaluate the righthand expression. You may occasionally see code that purposely exploits this
feature of the && operator. For example, the following two lines of JavaScript code have
equivalent effects:

if (a == b) stop();

(a == b) && stop();

While some programmers (particularly Perl programmers) find this a natural and useful
programming idiom, I recommend against using it. The fact that the righthand side is not
guaranteed to be evaluated is a frequent source of bugs. Consider the following code, for
example:

if ((a == null) && (b++ > 10)) stop();

This statement probably does not do what the programmer intended, since the increment operator
on the righthand side is not evaluated whenever the comparison on the lefthand side is false.
To avoid this problem, do not use expressions with side effects (assignments, increments,
decrements, and function calls) on the righthand side of && unless you are quite sure you know
exactly what you are doing.

Despite the fairly confusing way that this operator actually works, it is easiest, and perfectly safe,
to think of it as merely a Boolean algebra operator. Although it does not actually return a boolean
value, the value it returns can always be converted to a boolean value.

5.7.2 Logical OR (||)

When used with boolean operands, the || operator performs the Boolean OR operation on the
two values: it returns true if either the first operand or the second operand is true, or if both are
true. If both operands are false, it returns false.

Although the || operator is most often used simply as a Boolean OR operator, it, like the &&

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Although the || operator is most often used simply as a Boolean OR operator, it, like the &&
operator, has more complex behavior. It starts by evaluating its first operand, the expression on
its left. If the value of this expression can be converted to true, it returns the value of the lefthand
expression. Otherwise, it evaluates its second operand, the expression on its right, and returns
the value of that expression.[2]

[2] In JavaScript 1.0 and JavaScript 1.1, if the lefthand expression could be converted to true, the operator returns
true rather than returning the unconverted value of the lefthand expression.

As with the && operator, you should avoid righthand operands that include side effects, unless
you purposely want to make use of the fact that the righthand expression may not be evaluated.

Even when the || operator is used with operands that are not boolean values, it can still be
considered a Boolean OR operator, since its return value, whatever the type, can be converted to
a boolean value.

5.7.3 Logical NOT (!)

The ! operator is a unary operator; it is placed before a single operand. Its purpose is to invert the
boolean value of its operand. For example, if the variable a has the value true (or is a value that
converts to true), !a has the value false. And if the expression p && q evaluates to false (or
to a value that converts to false), !(p && q) evaluates to true. Note that you can convert any
value x to a boolean value by applying this operator twice: !!x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.8 Bitwise Operators

Despite the fact that all numbers in JavaScript are floating-point, the bitwise operators require
numeric operands that have integer values. They operate on these integer operands using a 32-
bit integer representation instead of the equivalent floating-point representation. Four of these
operators perform Boolean algebra on the individual bits of the operands, behaving as if each bit
in each operand were a boolean value and performing similar operations to those performed by
the logical operators we saw earlier. The other three bitwise operators are used to shift bits left
and right.

In JavaScript 1.0 and JavaScript 1.1, the bitwise operators return NaN if used with operands that
are not integers or that are too large to fit in a 32-bit integer representation. JavaScript 1.2 and
ECMAScript, however, simply coerce the operands to 32-bit integers by dropping any fractional
part of the operand or any bits beyond the 32nd. The shift operators require a righthand operand
between 0 and 31. After converting this operand to a 32-bit integer as described earlier, they drop
any bits beyond the 5th, which yields a number in the appropriate range.

If you are not familiar with binary numbers and the binary representation of decimal integers, you
can skip the operators described in this section. The purpose of these operators is not described
here; they are needed for low-level manipulation of binary numbers and are not commonly used in
JavaScript programming. The bitwise operators are:

Bitwise AND (&)

The & operator performs a Boolean AND operation on each bit of its integer arguments. A
bit is set in the result only if the corresponding bit is set in both operands. For example,
0x1234 & 0x00FF evaluates to 0x0034.

Bitwise OR (|)

The | operator performs a Boolean OR operation on each bit of its integer arguments. A bit
is set in the result if the corresponding bit is set in one or both of the operands. For
example, 9 | 10 evaluates to 11.

Bitwise XOR (^)

The ^ operator performs a Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one is true or operand two is true, but
not both. A bit is set in this operation's result if a corresponding bit is set in one (but not
both) of the two operands. For example, 9 ^ 10 evaluates to 3.

Bitwise NOT (~)

The ~ operator is a unary operator that appears before its single integer argument. It
operates by reversing all bits in the operand. Because of the way signed integers are
represented in JavaScript, applying the ~ operator to a value is equivalent to changing its
sign and subtracting 1. For example ~0x0f evaluates to 0xfffffff0, or -16.

Shift left (<<)

The << operator moves all bits in its first operand to the left by the number of places
specified in the second operand, which should be an integer between 0 and 31. For
example, in the operation a << 1, the first bit (the ones bit) of a becomes the second bit
(the twos bit), the second bit of a becomes the third, etc. A zero is used for the new first bit,
and the value of the 32nd bit is lost. Shifting a value left by one position is equivalent to
multiplying by 2, shifting two positions is equivalent to multiplying by 4, etc. For example, 7
<< 1 evaluates to 14.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<< 1 evaluates to 14.

Shift right with sign (>>)

The >> operator moves all bits in its first operand to the right by the number of places
specified in the second operand (an integer between and 31). Bits that are shifted off the
right are lost. The bits filled in on the left depend on the sign bit of the original operand, in
order to preserve the sign of the result. If the first operand is positive, the result has zeros
placed in the high bits; if the first operand is negative, the result has ones placed in the high
bits. Shifting a value right one place is equivalent to dividing by 2 (discarding the
remainder), shifting right two places is equivalent to integer division by 4, and so on. For
example, 7 >> 1 evaluates to 3 and -7 >> 1 evaluates to -4.

Shift right with zero fill (>>>)

The >>> operator is just like the >> operator, except that the bits shifted in on the left are
always zero, regardless of the sign of the first operand. For example, -1 >> 4 evaluates
to -1, but -1 >>> 4 evaluates to 268435455 (0x0fffffff).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.9 Assignment Operators

As we saw in the discussion of variables in Chapter 4, = is used in JavaScript to assign a value to
a variable. For example:

i = 0

While you might not normally think of such a line of JavaScript as an expression that can be
evaluated, it is in fact an expression and, technically speaking, = is an operator.

The = operator expects its lefthand operand to be either a variable, the element of an array, or a
property of an object. It expects its righthand operand to be an arbitrary value of any type. The
value of an assignment expression is the value of the righthand operand. As a side effect, the =
operator assigns the value on the right to the variable, element, or property on the left, so that
future uses of the variable, element, or property refer to the value.

Because = is defined as an operator, you can include it in more complex expressions. For
example, you can assign and test a value in the same expression with code like this:

(a = b) == 0

If you do this, be sure you are clear on the difference between the = and == operators!

The assignment operator has right-to-left associativity, which means that when multiple
assignment operators appear in an expression, they are evaluated from right to left. Thus, you
can write code like this to assign a single value to multiple variables:

i = j = k = 0;

Remember that each assignment expression has a value that is the value of the righthand side.
So in the above code, the value of the first assignment (the rightmost one) becomes the righthand
side for the second assignment (the middle one), and this value becomes the righthand side for
the last (leftmost) assignment.

5.9.1 Assignment with Operation

Besides the normal = assignment operator, JavaScript supports a number of other assignment
operators that provide shortcuts by combining assignment with some other operation. For
example, the += operator performs addition and assignment. The following expression:

total += sales_tax

is equivalent to this one:

total = total + sales_tax

As you might expect, the += operator works for numbers or strings. For numeric operands, it
performs addition and assignment; for string operands, it performs concatenation and
assignment.

Similar operators include -= , *=, &=, and so on. Table 5-2 lists them all. In most cases, the
expression:

a

op= b

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

op= b

where op is an operator, is equivalent to the expression:

a = a

op b

These expressions differ only if a contains side effects such as a function call or an increment
operator.

Table 5-2. Assignment operators
Operator Example Equivalent

+= a += b a = a + b
-= a -= b a = a - b
*= a *= b a = a * b
/= a /= b a = a / b
%= a %= b a = a % b
<<= a <<= b a = a << b
>>= a >>= b a = a >> b
>>>= a >>>= b a = a >>> b
&= a &= b a = a & b
|= a |= b a = a | b
^= a ^= b a = a ^ b

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5.10 Miscellaneous Operators

JavaScript supports a number of other miscellaneous operators, described in the following sections.

5.10.1 The Conditional Operator (?:)

The conditional operator is the only ternary operator (three operands) in JavaScript and is sometimes
actually called the ternary operator. This operator is sometimes written ?:, although it does not appear
quite that way in code. Because this operator has three operands, the first goes before the ?, the second
goes between the ? and the :, and the third goes after the :. It is used like this:

x > 0 ? x*y : -x*y

The first operand of the conditional operator must be (or be convertable to) a boolean value -- usually this
is the result of a comparison expression. The second and third operands may have any value. The value
returned by the conditional operator depends on the boolean value of the first operand. If that operand is
true, the value of the conditional expression is the value of the second operand. If the first operand is
false, the value of the conditional expression is the value of the third operand.

While you can achieve similar results using the if statement, the ?: operator often provides a handy
shortcut. Here is a typical usage, which checks to be sure that a variable is defined, uses it if so, and
provides a default value if not:

greeting = "hello " + (username != null ? username : "there");

This is equivalent to, but more compact than, the following if statement:

greeting = "hello ";

if (username != null)

 greeting += username;

else

 greeting += "there";

5.10.2 The typeof Operator

typeof is a unary operator that is placed before its single operand, which can be of any type. Its value is a
string indicating the data type of the operand.

The typeof operator evaluates to "number", "string", or "boolean" if its operand is a number, string, or
boolean value. It evaluates to "object" for objects, arrays, and (surprisingly) null. It evaluates to "function"
for function operands and to "undefined" if the operand is undefined.

typeof evaluates to "object" when its operand is a Number, String, or Boolean wrapper object. It also
evaluates to "object" for Date and RegExp objects. typeof evaluates to an implementation-dependent
value for objects that are not part of core JavaScript but are provided by the context in which JavaScript is
embedded. In client-side JavaScript, however, typeof typically evaluates to "object" for all client-side
objects, just as it does for all core objects.

You might use the typeof operator in expressions like these:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You might use the typeof operator in expressions like these:

typeof i

(typeof value == "string") ? "'" + value + "'" : value

Note that you can place parentheses around the operand to typeof, which makes typeof look like the
name of a function rather than an operator keyword:

typeof(i)

Because typeof evaluates to "object" for all object and array types, it is useful only to distinguish objects
from other, primitive types. In order to distinguish one object type from another, you must use other
techniques, such as the instanceof operator or the constructor property (see the
"Object.constructor" entry in the core reference section).

The typeof operator is defined by the ECMAScript v1 specification and is implemented in JavaScript 1.1
and later.

5.10.3 The Object Creation Operator (new)

The new operator creates a new object and invokes a constructor function to initialize it. new is a unary
operator that appears before a constructor invocation. It has the following syntax:

new constructor(arguments)

constructor must be an expression that evaluates to a constructor function, and it should be followed by
zero or more comma-separated arguments enclosed in parentheses. As a special case, for the new
operator only, JavaScript simplifies the grammar by allowing the parentheses to be omitted if there are no
arguments in the function call. Here are some examples using the new operator:

o = new Object; // Optional parentheses omitted here

d = new Date(); // Returns a Date object representing the current time

c = new Rectangle(3.0, 4.0, 1.5, 2.75); // Create an object of class Rectangle

obj[i] = new constructors[i]();

The new operator first creates a new object with no properties defined; next, it invokes the specified
constructor function, passing the specified arguments and also passing the newly created object as the
value of the this keyword. The constructor function can then use the this keyword to initialize the new
object in any way desired. We'll learn more about the new operator, the this keyword, and constructor
functions in Chapter 8.

The new operator can also be used to create arrays, using the new Array() syntax. We'll see more
about creating and working with objects and arrays in Chapter 8 and Chapter 9.

5.10.4 The delete Operator

delete is a unary operator that attempts to delete the object property, array element, or variable specified
as its operand.[3] It returns true if the deletion was successful, and false if the operand could not be
deleted. Not all variables and properties can be deleted: some built-in core and client-side properties are
immune from deletion, and user-defined variables declared with the var statement cannot be deleted. If
delete is invoked on a nonexistent property, it returns true. (Surprisingly, the ECMAScript standard
specifies that delete also evaluates to true if the operand is not a property, array element, or variable.)
Here are some examples of the use of this operator:

[3] If you are a C++ programmer, note that the delete operator in JavaScript is nothing like the delete operator in C++. In

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[3] If you are a C++ programmer, note that the delete operator in JavaScript is nothing like the delete operator in C++. In
JavaScript, memory deallocation is handled automatically by garbage collection, and you never have to worry about explicitly
freeing up memory. Thus, there is no need for a C++-style delete to delete entire objects.

var o = {x:1, y:2}; // Define a variable; initialize it to an object

delete o.x; // Delete one of the object properties; returns true

typeof o.x; // Property does not exist; returns "undefined"

delete o.x; // Delete a nonexistent property; returns true

delete o; // Can't delete a declared variable; returns false

delete 1; // Can't delete an integer; returns true

x = 1; // Implicitly declare a variable without var keyword

delete x; // Can delete this kind of variable; returns true

x; // Runtime error: x is not defined

Note that a deleted property, variable, or array element is not merely set to the undefined value. When a
property is deleted, the property ceases to exist. See the related discussion in Section 4.3.2.

delete is standardized by the ECMAScript v1 specification and implemented in JavaScript 1.2 and later.
Note that the delete operator exists in JavaScript 1.0 and 1.1 but does not actually perform deletion in
those versions of the language. Instead, it merely sets the specified property, variable, or array element to
null.

It is important to understand that delete affects only properties, not objects referred to by those
properties. Consider the following code:

var my = new Object(); // Create an object named "my"

my.hire = new Date(); // my.hire refers to a Date object

my.fire = my.hire; // my.fire refers to the same object

delete my.hire; // hire property is deleted; returns true

document.write(my.fire); // But my.fire still refers to the Date object

5.10.5 The void Operator

void is a unary operator that appears before its single operand, which may be of any type. The purpose of
this operator is an unusual one: it discards its operand value and returns undefined. The most common
use for this operator is in a client-side javascript: URL, where it allows you to evaluate an expression
for its side effects without the browser displaying the value of the evaluated expression.

For example, you might use the void operator in an HTML tag as follows:

Open New Window

Another use for void is to purposely generate the undefined value. void is specified by ECMAScript v1
and implemented in JavaScript 1.1. The global undefined property, however, is specified by ECMAScript
v3 and implemented in JavaScript 1.5. Thus, for backward compatibility, you may find it useful to use an
expression like void 0 instead of relying on the undefined property.

5.10.6 The Comma Operator (,)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The comma operator is a simple one. It evaluates its left argument, evaluates its right argument, and then
returns the value of its right argument. Thus, the following line:

i=0, j=1, k=2;

evaluates to 2, and is basically equivalent to:

i = 0;

j = 1;

k = 2;

This strange operator is useful only in a few limited circumstances, primarily when you need to evaluate
several independent expressions with side effects in a situation where only a single expression is allowed.
In practice, the comma operator is really used only in conjunction with the for loop statement, which
see in Chapter 6.

5.10.7 Array and Object Access Operators

As noted briefly in Chapter 3, you can access elements of an array using square brackets ([]), and you
can access elements of an object using a dot (.). Both [] and . are treated as operators in JavaScript.

The . operator expects an object as its left operand and an identifier (a property name) as its right
operand. The right operand should not be a string or a variable that contains a string; it should be the literal
name of the property or method, without quotes of any kind. Here are some examples:

document.lastModified

navigator.appName

frames[0].length

document.write("hello world")

If the specified property does not exist in the object, JavaScript does not issue an error, but instead simply
returns undefined as the value of the expression.

Most operators allow arbitrary expressions for either operand, as long as the type of the operand is
suitable. The . operator is an exception: the righthand operand must be an identifier. Nothing else is
allowed.

The [] operator allows access to array elements. It also allows access to object properties without the
restrictions that the . operator places on the righthand operand. If the first operand (which goes before the
left bracket) refers to an array, the second operand (which goes between the brackets) should be an
expression that evaluates to an integer. For example:

frames[1]

document.forms[i + j]

document.forms[i].elements[j++]

If the first operand to the [] operator is a reference to an object, the second operand should be an
expression that evaluates to a string that names a property of the object. Note that in this case, the second
operand is a string, not an identifier. It should be a constant in quotes or a variable or expression that
refers to a string. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document["lastModified"]

frames[0]['length']

data["val" + i]

The [] operator is typically used to access the elements of an array. It is less convenient than the .
operator for accessing properties of an object because of the need to quote the name of the property.
When an object is used as an associative array, however, and the property names are dynamically
generated, the . operator cannot be used; only the [] operator will do. This is commonly the case when
you use the for/in loop, which is introduced in Chapter 6. For example, the following JavaScript code
uses a for/in loop and the [] operator to print out the names and values of all of the properties in an
object o:

for (f in o) {

 document.write('o.' + f + ' = ' + o[f]);

 document.write('
');

}

5.10.8 The Function Call Operator

The () operator is used to invoke functions in JavaScript. This is an unusual operator in that it does not
have a fixed number of operands. The first operand is always the name of a function or an expression that
refers to a function. It is followed by the left parenthesis and any number of additional operands, which may
be arbitrary expressions, each separated from the next with a comma. The right parenthesis follows
final operand. The () operator evaluates each of its operands and then invokes the function specified by
the first operand, with the values of the remaining operands passed as arguments. For example:

document.close()

Math.sin(x)

alert("Welcome " + name)

Date.UTC(2000, 11, 31, 23, 59, 59)

funcs[i].f(funcs[i].args[0], funcs[i].args[1])

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 6. Statements
As we saw in the last chapter, expressions are JavaScript phrases that can be evaluated to yield
a value. Operators within an expression may have side effects, but in general, expressions don't
do anything. To make something happen, you use a JavaScript statement, which is akin to a
complete sentence or command. This chapter describes the various statements in JavaScript and
explains their syntax. A JavaScript program is simply a collection of statements, so once you are
familiar with the statements of JavaScript, you can begin writing JavaScript programs.

Before we examine JavaScript statements, recall from Section 2.4, that statements in JavaScript
are separated from each other with semicolons. If you place each statement on a separate line,
however, JavaScript allows you to leave out the semicolons. Nevertheless, it is a good idea to get
in the habit of using semicolons everywhere.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.1 Expression Statements

The simplest kinds of statements in JavaScript are expressions that have side effects. We've
seen this sort of statement in Chapter 5. Assignment statements are one major category of
expression statements. For example:

s = "Hello " + name;

i *= 3;

The increment and decrement operators, ++ and --, are related to assignment statements.
These have the side effect of changing a variable value, just as if an assignment had been
performed:

counter++;

The delete operator has the important side effect of deleting an object property. Thus, it is
almost always used as a statement, rather than as part of a larger expression:

delete o.x;

Function calls are another major category of expression statements. For example:

alert("Welcome, " + name);

window.close();

These client-side function calls are expressions, but they also affect the web browser, so they are
statements, too. If a function does not have any side effects, there is no sense in calling it, unless
it is part of an assignment statement. For example, you wouldn't just compute a cosine and
discard the result:

Math.cos(x);

Instead, you'd compute the value and assign it to a variable for future use:

cx = Math.cos(x);

Again, please note that each line of code in each of these examples is terminated with a
semicolon.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.2 Compound Statements

In Chapter 5, we saw that the comma operator can be used to combine a number of expressions
into a single expression. JavaScript also has a way to combine a number of statements into a
single statement, or statement block. This is done simply by enclosing any number of statements
within curly braces. Thus, the following lines act as a single statement and can be used anywhere
that JavaScript expects a single statement:

{

 x = Math.PI;

 cx = Math.cos(x);

 alert("cos(" + x + ") = " + cx);

}

Note that although this statement block acts as a single statement, it does not end with a
semicolon. The primitive statements within the block end in semicolons, but the block itself does
not.

Although combining expressions with the comma operator is an infrequently used technique,
combining statements into larger statement blocks is extremely common. As we'll see in the
following sections, a number of JavaScript statements themselves contain statements (just as
expressions can contain other expressions); these statements are compound statements. Formal
JavaScript syntax specifies that each of these compound statements contains a single
substatement. Using statement blocks, you can place any number of statements within this single
allowed substatement.

To execute a compound statement, the JavaScript interpreter simply executes the statements that
comprise it one after another, in the order in which they are written. Normally, the JavaScript
interpreter executes all of the statements. In some circumstances, however, a compound
statement may terminate abruptly. This termination occurs if the compound statement contains a
break , continue, return, or throw statement, if it causes an error, or if it calls a function that
causes an uncaught error or throws an uncaught exception. We'll learn more about these abrupt
terminations in later sections.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.3 if

The if statement is the fundamental control statement that allows JavaScript to make decisions,
or, more precisely, to execute statements conditionally. This statement has two forms. The first is:

if (expression)

 statement

In this form, expression is evaluated. If the resulting value is true or can be converted to
true, statement is executed. If expression is false or converts to false, statement is
not executed. For example:

if (username == null) // If username is null or undefined,

 username = "John Doe"; // define it

Or similarly:

// If username is null, undefined, 0, "", or NaN, it converts to false,

// and this statement will assign a new value to it.

if (!username) username = "John Doe";

Although they look extraneous, the parentheses around the expression are a required part of the
syntax for the if statement.

As mentioned in the previous section, we can always replace a single statement with a statement
block. So the if statement might also look like this:

if ((address == null) || (address == "")) {

 address = "undefined";

 alert("Please specify a mailing address.");

}

The indentation used in these examples is not mandatory. Extra spaces and tabs are ignored in
JavaScript, and since we used semicolons after all the primitive statements, these examples
could have been written all on one line. Using line breaks and indentation as shown here,
however, makes the code easier to read and understand.

The second form of the if statement introduces an else clause that is executed when
expression is false. Its syntax is:

if (expression)

 statement1

else

 statement2

In this form of the statement, expression is evaluated, and if it is true, statement1 is
executed; otherwise, statement2 is executed. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

executed; otherwise, statement2 is executed. For example:

if (username != null)

 alert("Hello " + username + "\nWelcome to my home page.");

else {

 username = prompt("Welcome!\n What is your name?");

 alert("Hello " + username);

}

When you have nested if statements with else clauses, some caution is required to ensure that
the else clause goes with the appropriate if statement. Consider the following lines:

i = j = 1;

k = 2;

if (i == j)

 if (j == k)

 document.write("i equals k");

else

 document.write("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syntax of the
outer if statement. Unfortunately, it is not clear (except from the hint given by the indentation)
which if the else goes with. And in this example, the indenting hint is wrong, because a
JavaScript interpreter actually interprets the previous example as:

if (i == j) {

 if (j == k)

 document.write("i equals k");

else

 document.write("i doesn't equal j"); // OOPS!

}

The rule in JavaScript (as in most programming languages) is that an else clause is part of the
nearest if statement. To make this example less ambiguous and easier to read, understand,
maintain, and debug, you should use curly braces:

if (i == j) {

 if (j == k) {

 document.write("i equals k");

 }

}

else { // What a difference the location of a curly brace makes!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

else { // What a difference the location of a curly brace makes!

 document.write("i doesn't equal j");

}

Although it is not the style used in this book, many programmers make a habit of enclosing the
bodies of if and else statements (as well as other compound statements, such as while loops)
within curly braces, even when the body consists of only a single statement. Doing so consistently
can prevent the sort of problem just shown.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.4 else if

We've seen that the if/else statement is useful for testing a condition and executing one of two
pieces of code, depending on the outcome. But what about when we need to execute one of
many pieces of code? One way to do this is with an else if statement. else if is not really a
JavaScript statement, but simply a frequently used programming idiom that results when repeated
if/else statements are used:

if (n == 1) {

 // Execute code block #1

}

else if (n == 2) {

 // Execute code block #2

}

else if (n == 3) {

 // Execute code block #3

}

else {

 // If all else fails, execute block #4

}

There is nothing special about this code. It is just a series of if statements, where each if is part
of the else clause of the previous statement. Using the else if idiom is preferable to, and more
legible than, writing these statements out in their syntactically equivalent fully nested form:

if (n == 1) {

 // Execute code block #1

}

else {

 if (n == 2) {

 // Execute code block #2

 }

 else {

 if (n == 3) {

 // Execute code block #3

 }

 else {

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else {

 // If all else fails, execute block #4

 }

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.5 switch

An if statement causes a branch in the flow of a program's execution. You can use multiple if
statements, as in the previous section, to perform a multiway branch. However, this is not always the best
solution, especially when all of the branches depend on the value of a single variable. In this case, it is
wasteful to repeatedly check the value of the same variable in multiple if statements.

The switch statement (implemented in JavaScript 1.2 and standardized by ECMAScript v3) handles
exactly this situation, and it does so more efficiently than repeated if statements. The JavaScript
switch statement is quite similar to the switch statement in Java or C. The switch keyword is
followed by an expression and a block of code, much like the if statement:

switch(expression) {

 statements

}

However, the full syntax of a switch statement is more complex than this. Various locations in the block
of code are labeled with the case keyword followed by a value and a colon. When a switch executes, it
computes the value of expression and then looks for a case label that matches that value. If it finds
one, it starts executing the block of code at the first statement following the case label. If it does not find
a case label with a matching value, it starts execution at the first statement following a special-case
default: label. Or, if there is no default: label, it skips the block of code altogether.

switch is a confusing statement to explain; its operation becomes much clearer with an example. The
following switch statement is equivalent to the repeated if/else statements shown in the previous
section:

switch(n) {

 case 1: // Start here if n == 1

 // Execute code block #1.

 break; // Stop here

 case 2: // Start here if n == 2

 // Execute code block #2.

 break; // Stop here

 case 3: // Start here if n == 3

 // Execute code block #3.

 break; // Stop here

 default: // If all else fails...

 // Execute code block #4.

 break; // stop here

}

Note the break keyword used at the end of each case in the code above. The break statement,
described later in this chapter, causes execution to jump to the end of a switch statement or loop. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

described later in this chapter, causes execution to jump to the end of a switch statement or loop. The
case clauses in a switch statement specify only the starting point of the desired code; they do not
specify any ending point. In the absence of break statements, a switch statement begins executing
block of code at the case label that matches the value of its expression and continues executing
statements until it reaches the end of the block. On rare occasions, it is useful to write code like this that
falls through from one case label to the next, but 99% of the time you should be careful to end every
case within a switch with a break statement. (When using switch inside a function, however, you
may use a return statement instead of a break statement. Both serve to terminate the switch
statement and prevent execution from falling through to the next case.)

Here is a more realistic example of the switch statement; it converts a value to a string in a way that
depends on the type of the value:

function convert(x) {

 switch(typeof x) {

 case 'number': // Convert the number to a hexadecimal integer

 return x.toString(16);

 case 'string': // Return the string enclosed in quotes

 return '"' + x + '"';

 case 'boolean': // Convert to TRUE or FALSE, in uppercase

 return x.toString().toUpperCase();

 default: // Convert any other type in the usual way

 return x.toString()

 }

}

Note that in the two previous examples, the case keywords are followed by number and string literals.
This is how the switch statement is most often used in practice, but note that the ECMAScript v3
standard allows each case to be followed by an arbitrary expression.[1] For example:

[1] This makes the JavaScript switch statement much different from the switch statement of C, C++, and Java. In those
languages, the case expressions must be compile-time constants, they must evaluate to integers or other integral types, and
they must all evaluate to the same type.

case 60*60*24:

case Math.PI:

case n+1:

case a[0]:

The switch statement first evaluates the expression that follows the switch keyword, then evaluates
the case expressions, in the order in which they appear, until it finds a value that matches.[2] The
matching case is determined using the === identity operator, not the == equality operator, so the
expressions must match without any type conversion.

[2] This means that the JavaScript switch statement is not nearly as efficient as the switch statement in C, C++, and Java.
Since the case expressions in those languages are compile-time constants, they never need to be evaluated at runtime as they
are in JavaScript. Furthermore, since the case expressions are integral values in C, C++, and Java, the switch statement can
often be implemented using a highly efficient "jump table."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that it is not good programming practice to use case expressions that contain side effects such as
function calls or assignments, because not all of the case expressions are evaluated each time the
switch statement is executed. When side effects occur only sometimes, it can be difficult to understand
and predict the correct behavior of your program. The safest course is simply to limit your case
expressions to constant expressions.

As explained earlier, if none of the case expressions match the switch expression, the switch
statement begins executing its body at the statement labeled default:. If there is no default: label,
the switch statement skips its body altogether. Note that in the earlier examples, the default: label
appears at the end of the switch body, following all the case labels. This is a logical and common place
for it, but it can actually appear anywhere within the body of the statement.

The switch statement is implemented in JavaScript 1.2, but it does not fully conform to the ECMAScript
specification. In JavaScript 1.2, case expressions must be literals or compile-time constants that do not
involve any variables or method calls. Furthermore, although ECMAScript allows the switch and case
expressions to be of any type, JavaScript 1.2 and JavaScript 1.3 require that the expressions evaluate to
primitive numbers, strings, or boolean values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.6 while

Just as the if statement is the basic control statement that allows JavaScript to make decisions,
the while statement is the basic statement that allows JavaScript to perform repetitive actions. It
has the following syntax:

while (expression)

 statement

The while statement works by first evaluating expression. If it is false, JavaScript moves on
to the next statement in the program. If it is true, the statement that forms the body of the loop
is executed and expression is evaluated again. Again, if the value of expression is false,
JavaScript moves on to the next statement in the program; otherwise, it executes statement
again. This cycle continues until expression evaluates to false, at which point the while
statement ends and JavaScript moves on. Note that you can create an infinite loop with the
syntax while(true).

Usually, you do not want JavaScript to perform exactly the same operation over and over again.
In almost every loop, one or more variables change with each iteration of the loop. Since the
variables change, the actions performed by executing statement may differ each time through
the loop. Furthermore, if the changing variable or variables are involved in expression, the
value of the expression may be different each time through the loop. This is important --
otherwise, an expression that starts off true would never change and the loop would never end!
Here is an example while loop:

var count = 0;

while (count < 10) {

 document.write(count + "
");

 count++;

}

As you can see, the variable count starts off at 0 in this example and is incremented each time
the body of the loop runs. Once the loop has executed 10 times, the expression becomes false
(i.e., the variable count is no longer less than 10), the while statement finishes, and JavaScript
can move on to the next statement in the program. Most loops have a counter variable like
count. The variable names i, j, and k are commonly used as a loop counters, though you
should use more descriptive names if it makes your code easier to understand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.7 do/while

The do/while loop is much like a while loop, except that the loop expression is tested at the
bottom of the loop rather than at the top. This means that the body of the loop is always executed
at least once. The syntax is:

do

 statement

while (expression);

The do/while statement is implemented in JavaScript 1.2 and later and standardized by
ECMAScript v3.

The do/while loop is less commonly used than its while cousin. This is because, in practice, it
is somewhat uncommon to encounter a situation in which you are always sure that you want a
loop to execute at least once. For example:

function printArray(a) {

 if (a.length == 0)

 document.write("Empty Array");

 else {

 var i = 0;

 do {

 document.write(a[i] + "
");

 } while (++i < a.length);

 }

}

There are a couple of differences between the do/while loop and the ordinary while loop.
First, the do loop requires both the do keyword (to mark the beginning of the loop) and the while
keyword (to mark the end and introduce the loop condition). Also, unlike the while loop, the do
loop is terminated with a semicolon. This is because the do loop ends with the loop condition,
rather than simply with a curly brace that marks the end of the loop body.

In JavaScript 1.2, there is a bug in the behavior of the continue statement (see Section 6.12)
when it is used inside a do/while loop. For this reason, you should avoid the use of continue
within do/while statements in JavaScript 1.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.8 for

The for statement provides a looping construct that is often more convenient than the while
statement. The for statement takes advantage of a pattern common to most loops (including the
earlier while loop example). Most loops have a counter variable of some kind. This variable is
initialized before the loop starts and is tested as part of the expression evaluated before each
iteration of the loop. Finally, the counter variable is incremented or otherwise updated at the end
of the loop body, just before expression is evaluated again.

The initialization, the test, and the update are the three crucial manipulations of a loop variable;
the for statement makes these three steps an explicit part of the loop syntax. This makes it
especially easy to understand what a for loop is doing and prevents mistakes such as forgetting
to initialize or increment the loop variable. The syntax of the for statement is:

for(initialize ; test ; increment)

 statement

The simplest way to explain what this for loop does is to show the equivalent while loop:[3]

[3] As we will see when we consider the continue statement, this while loop is not an exact equivalent to the for
loop.

initialize;

while(test) {

 statement

 increment;

}

In other words, the initialize expression is evaluated once, before the loop begins. To be
useful, this is an expression with side effects (usually an assignment). JavaScript also allows
initialize to be a var variable declaration statement, so that you can declare and initialize a
loop counter at the same time. The test expression is evaluated before each iteration and
controls whether the body of the loop is executed. If the test expression is true, the
statement that is the body of the loop is executed. Finally, the increment expression is
evaluated. Again, this must be an expression with side effects in order to be useful. Generally,
either it is an assignment expression or it uses the ++ or -- operators.

The example while loop of the previous section can be rewritten as the following for loop,
which counts from 0 to 9:

for(var count = 0 ; count < 10 ; count++)

 document.write(count + "
");

Notice that this syntax places all the important information about the loop variable on a single line,
which makes it clear how the loop executes. Also note that placing the increment expression in
the for statement itself simplifies the body of the loop to a single statement; we don't even need
to use curly braces to produce a statement block.

Loops can become a lot more complex than these simple examples, of course, and sometimes
multiple variables change with each iteration of the loop. This situation is the only place that the
comma operator is commonly used in JavaScript -- it provides a way to combine multiple
initialization and increment expressions into a single expression suitable for use in a for loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

initialization and increment expressions into a single expression suitable for use in a for loop.
For example:

for(i = 0, j = 10 ; i < 10 ; i++, j--)

 sum += i * j;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.9 for/in

The for keyword is used in two ways in JavaScript. We've just seen how it is used in the for loop. It
is also used in the for/in statement. This statement is a somewhat different kind of loop with the
following syntax:

for (variable in object)

 statement

variable should be either the name of a variable, a var statement declaring a variable, an element
of an array, or a property of an object (i.e., it should be something suitable as the leftthand side of an
assignment expression). object is the name of an object or an expression that evaluates to an object.
As usual, statement is the statement or statement block that forms the body of the loop.

You can loop through the elements of an array by simply incrementing an index variable each time
through a while or for loop. The for/in statement provides a way to loop through the properties of
an object. The body of the for/in loop is executed once for each property of object. Before the
body of the loop is executed, the name of one of the object's properties is assigned to variable, as a
string. Within the body of the loop, you can use this variable to look up the value of the object's
property with the [] operator. For example, the following for/in loop prints the name and value of
each property of an object:

for (var prop in my_object) {

 document.write("name: " + prop + "; value: " + my_object[prop], "
");

}

Note that the variable in the for/in loop may be an arbitrary expression, as long as it evaluates to
something suitable for the lefthand side of an assignment. This expression is evaluated each time
through the loop, which means that it may evaluate differently each time. For example, you could use
code like the following to copy the names of all object properties into an array:

var o = {x:1, y:2, z:3};

var a = new Array();

var i = 0;

for(a[i++] in o) /* empty loop body */;

JavaScript arrays are simply a specialized kind of object. Therefore, the for/in loop enumerates
array indexes as well as object properties. For example, following the previous code block with this line
enumerates the array "properties" 0, 1, and 2:

for(i in a) alert(i);

The for/in loop does not specify the order in which the properties of an object are assigned to the
variable. There is no way to tell what the order will be in advance, and the behavior may differ between
implementations or versions of JavaScript. If the body of a for/in loop deletes a property that has
yet been enumerated, that property will not be enumerated. If the body of the loop defines new
properties, whether or not those properties will be enumerated by the loop is implementation-
dependent.

The for/in loop does not actually loop through all possible properties of all objects. In the same way
that some object properties are flagged to be read-only or permanent (nondeletable), certain properties
are flagged to be nonenumerable. These properties are not enumerated by the for/in loop. While all

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

are flagged to be nonenumerable. These properties are not enumerated by the for/in loop. While all
user-defined properties are enumerated, many built-in properties, including all built-in methods, are not
enumerated. As we'll see in Chapter 8, objects can inherit properties from other objects. Inherited
properties that are user-defined are also enumerated by the for/in loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.10 Labels

The case and default: labels used in conjunction with the switch statement are a special
case of a more general label statement. In JavaScript 1.2, any statement may be labeled by
preceding it with an identifier name and a colon:

identifier: statement

The identifier can be any legal JavaScript identifier that is not a reserved word. Label names
are distinct from variable and function names, so you do not need to worry about name collisions
if you give a label the same name as a variable or function. Here is an example of a labeled
while statement:

parser:

 while(token != null) {

 // Code omitted here

}

By labeling a statement, you give it a name that you can use to refer to it elsewhere in your
program. You can label any statement, although the only statements that are commonly labeled
are loops: while, do/while, for, and for/in. By giving a loop a name, you can use break
and continue to exit the loop or to exit a single iteration of the loop.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.11 break

The break statement causes the innermost enclosing loop or a switch statement to exit
immediately. Its syntax is simple:

break;

Because it causes a loop or switch to exit, this form of the break statement is legal only if it
appears within one of these statements.

ECMAScript v3 and JavaScript 1.2 allow the break keyword to be followed by the name of a
label:

break labelname;

Note that labelname is simply an identifier; it is not followed by a colon, as it would be when
defining a labeled statement.

When break is used with a label, it jumps to the end of, or terminates, the named statement,
which may be any enclosing statement. The named statement need not be a loop or switch; a
break statement used with a label need not even be contained within a loop or switch. The only
restriction on the label of the break statement is that it name an enclosing statement. The label
can name an if statement, for example, or even a block of statements grouped within curly
braces, for the sole purpose of naming the block with a label.

As discussed in Chapter 2, a newline is not allowed between the break keyword and the
labelname. This is an oddity of JavaScript syntax caused by its automatic insertion of omitted
semicolons. If you break a line of code between the break keyword and the following label,
JavaScript assumes you meant to use the simple, unlabeled form of the statement and adds a
semicolon for you.

We've already seen examples of the break statement within a switch statement. In loops, it is
typically used to exit prematurely when, for whatever reason, there is no longer any need to
complete the loop. When a loop has complex termination conditions, it is often easier to
implement some of these conditions with break statements, rather than trying to express them all
in a single loop expression.

The following code searches the elements of an array for a particular value. The loop terminates
naturally when it reaches the end of the array; it terminates with a break statement if it finds what
it is looking for in the array:

for(i = 0; i < a.length; i++) {

 if (a[i] == target)

 break;

}

You need the labeled form of the break statement only when you are using nested loops or
switch statements and need to break out of a statement that is not the innermost one.

The following example shows labeled for loops and labeled break statements. See if you can
figure out what its output will be:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

outerloop:

 for(var i = 0; i < 10; i++) {

 innerloop:

 for(var j = 0; j < 10; j++) {

 if (j > 3) break; // Quit the innermost loop

 if (i == 2) break innerloop; // Do the same thing

 if (i == 4) break outerloop; // Quit the outer loop

 document.write("i = " + i + " j = " + j + "
");

 }

 }

 document.write("FINAL i = " + i + " j = " + j + "
");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.12 continue

The continue statement is similar to the break statement. Instead of exiting a loop, however,
continue restarts a loop in a new iteration. The continue statement's syntax is just as simple
as the break statement's:

continue;

In ECMAScript v3 and JavaScript 1.2, the continue statement can also be used with a label:

continue labelname;

The continue statement, in both its labeled and unlabeled forms, can be used only within the
body of a while, do/while, for, or for/in loop. Using it anywhere else causes a syntax error.

When the continue statement is executed, the current iteration of the enclosing loop is
terminated and the next iteration begins. This means different things for different types of loops:

In a while loop, the specified expression at the beginning of the loop is tested again,
and if it's true, the loop body is executed starting from the top.

In a do/while loop, execution skips to the bottom of the loop, where the loop condition is
tested again before restarting the loop at the top. Note, however, that JavaScript 1.2
contains a bug that causes the continue statement to jump directly to the top of a
do/while loop without testing the loop condition. Therefore, if you plan to use a
continue statement in a loop, you should avoid the do/while loop. This is not a serious
problem, however, because you can always replace a do/while loop with an equivalent
while loop.

In a for loop, the increment expression is evaluated and the test expression is tested
again to determine if another iteration should be done.

In a for/in loop, the loop starts over with the next property name being assigned to the
specified variable.

Note the difference in behavior of the continue statement in the while and for loops -- a
while loop returns directly to its condition, but a for loop first evaluates its increment
expression and then returns to its condition. Previously, in the discussion of the for loop, I
explained the behavior of the for loop in terms of an equivalent while loop. Because the
continue statement behaves differently for these two loops, it is not possible to perfectly
simulate a for loop with a while loop.

The following example shows an unlabeled continue statement being used to exit the current
iteration of a loop when an error occurs:

for(i = 0; i < data.length; i++) {

 if (data[i] == null)

 continue; // Can't proceed with undefined data

 total += data[i];

}

Like the break statement, the continue statement can be used in its labeled form within nested
loops, when the loop to be restarted is not the immediately enclosing loop. Also, like the break

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

loops, when the loop to be restarted is not the immediately enclosing loop. Also, like the break
statement, line breaks are not allowed between the continue statement and its labelname.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.13 var

The var statement allows you to explicitly declare a variable or variables. The syntax of this
statement is:

var name_1 [= value_1] [,..., name_n [= value_n]]

The var keyword is followed by a comma-separated list of variables to declare; each variable in
the list may optionally have an initializer expression that specifies its initial value. For example:

var i;

var j = 0;

var p, q;

var greeting = "hello" + name;

var x = 2.34, y = Math.cos(0.75), r, theta;

The var statement defines each named variable by creating a property with that name either in
the call object of the enclosing function or, if the declaration does not appear within a function
body, in the global object. The property or properties created by a var statement cannot be
deleted with the delete operator. Note that enclosing a var statement in a with statement (see
Section 6.18) does not change its behavior.

If no initial value is specified for a variable with the var statement, the variable is defined but its
initial value is undefined.

Note that the var statement can also appear as part of the for and for/in loops. For example:

for(var i = 0; i < 10; i++) document.write(i, "
");

for(var i = 0, j=10; i < 10; i++,j--) document.write(i*j, "
");

for(var i in o) document.write(i, "
");

Chapter 4 contains much more information on JavaScript variables and variable declarations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.14 function

The function statement defines a JavaScript function. It has the following syntax:

function funcname([arg1 [,arg2 [..., argn]]]) {

 statements

}

funcname is the name of the function being defined. This must be an identifier, not a string or an
expression. The function name is followed by a comma-separated list of argument names in
parentheses. These identifiers can be used within the body of the function to refer to the argument
values passed when the function is invoked.

The body of the function is composed of any number of JavaScript statements, contained within curly
braces. These statements are not executed when the function is defined. Instead, they are compiled and
associated with the new function object for execution when the function is invoked with the () function
call operator. Note that the curly braces are a required part of the function statement. Unlike
statement blocks used with while loops and other statements, a function body requires curly braces,
even if the body consists of only a single statement.

A function definition creates a new function object and stores that object in a newly created property
named funcname. Here are some example function definitions:

function welcome() { alert("Welcome to my home page!"); }

function print(msg) {

 document.write(msg, "
");

}

function hypotenuse(x, y) {

 return Math.sqrt(x*x + y*y); // return is documented below

}

function factorial(n) { // A recursive function

 if (n <= 1) return 1;

 return n * factorial(n - 1);

}

Function definitions usually appear in top-level JavaScript code. They may also be nested within other
function definitions, but only at the "top level" of those functions; that is, function definitions may not
appear within if statements, while loops, or any other statements.

Technically speaking, the function statement is not a statement. Statements cause dynamic behavior

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Technically speaking, the function statement is not a statement. Statements cause dynamic behavior
in a JavaScript program, while function definitions describe the static structure of a program. Statements
are executed at runtime, but functions are defined when JavaScript code is parsed, or compiled, before
it is actually run. When the JavaScript parser encounters a function definition, it parses and stores
(without executing) the statements that comprise the body of the function. Then it defines a property
the call object if the function definition is nested in another function; otherwise, in the global object) with
the same name as the function to hold the function.

The fact that function definitions occur at parse time rather than at runtime causes some surprising
effects. Consider the following code:

alert(f(4)); // Displays 16. f() can be called before it is defined.

var f = 0; // This statement overwrites the property f.

function f(x) { // This "statement" defines the function f before either

 return x*x; // of the lines above are executed.

}

alert(f); // Displays 0. f() has been overwritten by the variable f.

These unusual results occur because function definition occurs at a different time than variable
definition. Fortunately, these situations do not arise very often.

We'll learn more about functions in Chapter 7.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.15 return

As you'll recall, invoking a function with the () operator is an expression. All expressions have
values; the return statement is used to specify the value returned by a function. This value is
the value of the function invocation expression. The syntax of the return statement is:

return expression;

A return statement may appear only within the body of a function. It is a syntax error for it to
appear anywhere else. When the return statement is executed, expression is evaluated and
returned as the value of the function. Execution of the function stops when the return statement
is executed, even if there are other statements remaining in the function body. The return
statement can be used to return a value like this:

function square(x) { return x*x; }

The return statement may also be used without an expression to simply terminate execution
of the function without returning a value. For example:

function display_object(obj) {

 // First make sure our argument is valid

 // Skip the rest of the function if it is not

 if (obj == null) return;

 // Rest of function goes here...

}

If a function executes a return statement with no expression, or if it returns because it
reaches the end of the function body, the value of the function call expression is undefined.

Because of JavaScript's automatic semicolon insertion, you may not include a line break between
the return keyword and the expression that follows it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.16 throw

An exception is a signal that indicates that some sort of exceptional condition or error has
occurred. To throw an exception is to signal such an error or exceptional condition. To catch an
exception is to handle it -- to take whatever actions are necessary or appropriate to recover from
the exception. In JavaScript, exceptions are thrown whenever a runtime error occurs and
whenever the program explicitly throws one using the throw statement. Exceptions are caught
with the try/catch/finally statement, which is described in the next section.[4]

[4] The JavaScript throw and try/catch/finally statements are similar to but not exactly the same as the
corresponding statements in C++ and Java.

The throw statement has the following syntax:

throw expression;

expression may evaluate to a value of any type. Commonly, however, it is an Error object or an
instance of one of the subclasses of Error. It can also be useful to throw a string that contains an
error message, or a numeric value that represents some sort of error code. Here is some
example code that uses the throw statement to throw an exception:

function factorial(x) {

 // If the input argument is invalid, thrown an exception!

 if (x < 0) throw new Error("x must not be negative");

 // Otherwise, compute a value and return normally

 for(var f = 1; x > 1; f *= x, x--) /* empty */ ;

 return f;

}

When an exception is thrown, the JavaScript interpreter immediately stops normal program
execution and jumps to the nearest exception handler. Exception handlers are written using the
catch clause of the try/catch/finally statement, which is described in the next section. If
the block of code in which the exception was thrown does not have an associated catch clause,
the interpreter checks the next highest enclosing block of code to see if it has an exception
handler associated with it. This continues until a handler is found. If an exception is thrown in a
function that does not contain a try/catch/finally statement to handle it, the exception
propagates up to the code that invoked the function. In this way, exceptions propagate up through
the lexical structure of JavaScript methods and up the call stack. If no exception handler is ever
found, the exception is treated as an error and is reported to the user.

The throw statement is standardized by ECMAScript v3 and implemented in JavaScript 1.4. The
Error class and its subclasses are also part of ECMAScript v3, but they are not implemented until
JavaScript 1.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.17 try/catch/finally

The try/catch/finally statement is JavaScript's exception-handling mechanism. The try clause of
this statement simply defines the block of code whose exceptions are to be handled. The try block is
followed by a catch clause, which is a block of statements that are invoked when an exception occurs
anywhere within the try block. The catch clause is followed by a finally block containing cleanup
code that is guaranteed to be executed, regardless of what happens in the try block. Both the catch
finally blocks are optional, but a try block must be accompanied by at least one of these blocks. The
try, catch, and finally blocks all begin and end with curly braces. These are a required part of the
syntax and cannot be omitted, even if the clause contains only a single statement. Like the throw
statement, the try/catch/finally statement is standardized by ECMAScript v3 and implemented in
JavaScript 1.4.

The following code illustrates the syntax and purpose of the try/catch/finally statement. In
particular, note that the catch keyword is followed by an identifier in parentheses. This identifier is like
function argument. It names a local variable that exists only within the body of the catch block. JavaScript
assigns whatever exception object or value was thrown to this variable:

try {

 // Normally, this code runs from the top of the block to the bottom

 // without problems. But it can sometimes throw an exception,

 // either directly, with a throw statement, or indirectly, by calling

 // a method that throws an exception.

}

catch (e) {

 // The statements in this block are executed if, and only if, the try

 // block throws an exception. These statements can use the local variable

 // e to refer to the Error object or other value that was thrown.

 // This block may handle the exception somehow, or it may ignore the

 // exception by doing nothing, or it may rethrow the exception with throw.

}

finally {

 // This block contains statements that are always executed, regardless of

 // what happens in the try block. They are executed whether the try

 // block terminates:

 // 1) normally, after reaching the bottom of the block

 // 2) because of a break, continue, or return statement

 // 3) with an exception that is handled by a catch clause above

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // 3) with an exception that is handled by a catch clause above

 // 4) with an uncaught exception that is still propagating

}

Here is a more realistic example of the try/catch statement. It uses the factorial() method defined
in the previous section and the client-side JavaScript methods prompt() and alert() for input and
output:

try {

 // Ask the user to enter a number

 var n = prompt("Please enter a positive integer", "");

 // Compute the factorial of the number, assuming that the user's

 // input is valid

 var f = factorial(n);

 // Display the result

 alert(n + "! = " + f);

}

catch (ex) { // If the user's input was not valid, we end up here

 // Tell the user what the error is

 alert(ex);

}

This example is a try/catch statement with no finally clause. Although finally is not used as often
as catch, it can often be useful. However, its behavior requires additional explanation. The finally
clause is guaranteed to be executed if any portion of the try block is executed, regardless of how the
code in the try block completes. It is generally used to clean up after the code in the try clause.

In the normal case, control reaches the end of the try block and then proceeds to the finally block,
which performs any necessary cleanup. If control leaves the try block because of a return, continue
or break statement, the finally block is executed before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to handle the exception,
control transfers first to the catch block and then to the finally block. If there is no local catch block to
handle the exception, control transfers first to the finally block and then propagates up to the nearest
containing catch clause that can handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw statement, or
calling a method that throws an exception, the pending control transfer is abandoned and this new transfer
is processed. For example, if a finally clause throws an exception, that exception replaces any
exception that was in the process of being thrown. If a finally clause issues a return statement, the
method returns normally, even if an exception has been thrown and has not yet been handled.

try and finally can be used together without a catch clause. In this case, the finally block is simply
cleanup code that is guaranteed to be executed, regardless of any break, continue, or return
statements within the try clause. For example, the following code uses a try/finally statement to
ensure that a loop counter variable is incremented at the end of each iteration, even when an iteration
terminates abruptly because of a continue statement:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var i = 0, total = 0;

while(i < a.length) {

 try {

 if ((typeof a[i] != "number") || isNaN(a[i])) // If it is not a number,

 continue; // go on to the next iteration of the loop.

 total += a[i]; // Otherwise, add the number to the total.

 }

 finally {

 i++; // Always increment i, even if we used continue above.

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.18 with

In Chapter 4, we discussed variable scope and the scope chain -- a list of objects that are
searched in order, to perform variable name resolution. The with statement is used to
temporarily modify the scope chain. It has the following syntax:

with (object)

 statement

This statement effectively adds object to the front of the scope chain, executes statement,
and then restores the scope chain to its original state.

In practice, you can use the with statement to save yourself a lot of typing. In client-side
JavaScript, for example, it is common to work with deeply nested object hierarchies. For instance,
you may have to type expressions like this one to access elements of an HTML form:

frames[1].document.forms[0].address.value

If you need to access this form a number of times, you can use the with statement to add the
form to the scope chain:

with(frames[1].document.forms[0]) {

 // Access form elements directly here. For example:

 name.value = "";

 address.value = "";

 email.value = "";

}

This reduces the amount of typing you have to do -- you no longer need to prefix each form
property name with frames[1].document.forms[0]. That object is temporarily part of the
scope chain and is automatically searched when JavaScript needs to resolve an identifier like
address.

Despite its occasional convenience, the use of the with statement is frowned upon. JavaScript
code that uses with is difficult to optimize and may therefore run more slowly than the equivalent
code written without the with statement. Furthermore, function definitions and variable
initializations within the body of a with statement can have surprising and counterintuitive
behavior.[5] For these reasons, it is recommended that you avoid the with statement.

[5] This behavior, and the reasons behind it, are too complicated to explain here.

Note that there are other, perfectly legitimate ways to save yourself typing. For instance, we could
rewrite the previous example as follows:

var form = frames[1].document.forms[0];

form.name.value = "";

form.address.value = "";

form.email.value = "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.19 The Empty Statement

One final legal statement in JavaScript is the empty statement. It looks like this:

;

Executing the empty statement obviously has no effect and performs no action. You might think
there would be little reason to ever use such a statement, but the empty statement is occasionally
useful when you want to create a loop that has an empty body. For example:

// Initialize an array a

for(i=0; i < a.length; a[i++] = 0) ;

Note that the accidental inclusion of a semicolon after the right parenthesis of a for loop, while
loop, or if statement can cause frustrating bugs that are difficult to detect. For example, the
following code probably does not do what the author intended:

if ((a == 0) || (b == 0)); // Oops! This line does nothing...

 o = null; // and this line is always executed.

When you intentionally use the empty statement, it is a good idea to comment your code in a way
that makes it clear that you are doing it on purpose. For example:

for(i=0; i < a.length; a[i++] = 0) /* Empty */ ;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6.20 Summary of JavaScript Statements

This chapter introduced each of the statements of the JavaScript language. Table 6-1
summarizes these statements, listing the syntax and purpose of each.

Table 6-1. JavaScript statement syntax
Statement Syntax Purpose

break
break;

break labelname;

Exit from the innermost loop or
switch statement or from the
statement named by label.

case case expression: Label a statement within a
switch statement.

continue
continue;

continue labelname;
Restart the innermost loop or the
loop named by label.

default default: Label the default statement
within a switch statement.

do/while

do

 statement

while (expression);

An alternative to the while loop.

empty ; Do nothing.

for
for (initialize ; test ; increment)

 statement
An easy-to-use loop.

for/in
for (variable in object)

 statement
Loop through the properties of
an object.

function

function funcname([arg1[..., argn]]) {

 statements

}

Declare a function.

if/else

if (expression)

 statement1

[else statement2]

Conditionally execute code.

label identifier: statement Give statement the name
identifier.

return return [expression];
Return from a function or return
the value of expression from a
function.

switch

switch (expression) {

 statements

}

Multiway branch to statements
labeled with case or default:
.

throw throw expression; Throw an exception.
try {

 statements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

try

 statements

}

catch (identifier) {

 statements

}

finally {

 statements

}

Catch an exception.

var
var name_1 [= value_1]

[..., name_n [= value_n]];
Declare and initialize variables.

while
while (expression)

 statement
A basic loop construct.

with
with (object)

 statement
Extend the scope chain.
(Deprecated.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 7. Functions
Functions are an important and complex part of the JavaScript language. This chapter examines
functions from several points of view. First, we discuss functions from the syntactic standpoint,
explaining how they are defined and invoked. Second, we cover functions as a data type, with
examples of the useful programming techniques that are made possible by treating functions as
data. Finally, we consider the topic of variable scope within the body of a function and examine
some of the useful function-related properties that are available to an executing function. This
includes a discussion of how to write JavaScript functions that accept an arbitrary number of
arguments.

This chapter focuses on defining and invoking user-defined JavaScript functions. It is also
important to remember that JavaScript supports quite a few built-in functions, such as eval(),
parseInt(), and the sort() method of the Array class. Client-side JavaScript defines
others, such as document.write() and alert(). Built-in functions in JavaScript can be
used in exactly the same ways as user-defined functions. You can find more information about the
built-in functions mentioned here in the core and client-side reference sections of this book.

Functions and objects are intertwined in JavaScript. For this reason, I'll defer discussion of some
features of functions until Chapter 8.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.1 Defining and Invoking Functions

As we saw in Chapter 6, the most common way to define a function is with the function statement.
This statement consists of the function keyword, followed by:

The name of the function

An optional comma-separated list of parameter names in parentheses

The JavaScript statements that comprise the body of the function, contained within curly braces

Example 7-1 shows the definitions of several functions. Although these functions are short and simple,
they all contain each of the elements I just listed. Note that functions may be defined to expect varying
numbers of arguments and that they may or may not contain a return statement. The return
statement was introduced in Chapter 6; it causes the function to stop executing and to return the value
of its expression (if any) to the caller. If a function does not contain a return statement, it simply
executes each statement in the function body and returns the undefined value to the caller.

Example 7-1. Defining JavaScript functions

// A shortcut function, sometimes useful instead of document.write()

// This function has no return statement, so it returns no value

function print(msg)

{

 document.write(msg, "
");

}

// A function that computes and returns the distance between two points

function distance(x1, y1, x2, y2)

{

 var dx = x2 - x1;

 var dy = y2 - y1;

 return Math.sqrt(dx*dx + dy*dy);

}

// A recursive function (one that calls itself) that computes factorials

// Recall that x! is the product of x and all positive integers less than it

function factorial(x)

{

 if (x <= 1)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return 1;

 return x * factorial(x-1);

}

Once a function has been defined, it may be invoked with the () operator, introduced in Chapter 5
Recall that the parentheses appear after the name of the function and that an optional comma-
separated list of argument values (or expressions) appears within the parentheses. The functions
defined in Example 7-1 could be invoked with code like the following:

print("Hello, " + name);

print("Welcome to my home page!");

total_dist = distance(0,0,2,1) + distance(2,1,3,5);

print("The probability of that is: " + factorial(39)/factorial(52));

When you invoke a function, each of the expressions you specify between the parentheses is evaluated
and the resulting value is used as an argument of the function. These values are assigned to the
parameters named when the function was defined, and the function operates on its parameters by
referring to them by name. Note that these parameter variables are defined only while the function is
being executed; they do not persist once the function returns.

Since JavaScript is an untyped language, you are not expected to specify a data type for function
parameters, and JavaScript does not check whether you have passed the type of data that the function
expects. If the data type of an argument is important, you can test it yourself with the typeof operator.
JavaScript does not check whether you have passed the correct number of arguments, either. If you
pass more arguments than the function expects, the extra values are simply ignored. If you pass fewer
than expected, some of the parameters are given the undefined value -- which, in many
circumstances, causes your function to behave incorrectly. Later in this chapter, we'll see a technique
you can use to test whether the correct number of arguments have been passed to a function.

Note that the print() function does not contain a return statement, so it always returns the
undefined value and cannot meaningfully be used as part of a larger expression. The distance(
and factorial() functions, on the other hand, can be invoked as parts of larger expressions, as
was shown in the previous examples.

7.1.1 Nested Functions

ECMAScript v1 and implementations prior to JavaScript 1.2 allow functions to be defined only in top-
level global code. JavaScript 1.2 and ECMAScript v3, however, allow function definitions to be nested
within other functions. For example:

function hypotenuse(a, b) {

 function square(x) { return x*x; }

 return Math.sqrt(square(a) + square(b));

}

Note that ECMAScript v3 does not allow function definitions to appear anywhere; they are still restricted
to top-level global code and top-level function code. This means that function definitions may not appear
within loops or conditionals, for example.[1] These restrictions on function definitions apply only to
function declarations with the function statement. As we'll discuss later in this chapter, function literals
(another feature introduced in JavaScript 1.2 and standardized by ECMAScript v3) may appear within
any JavaScript expression, which means that they can appear within if and other statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any JavaScript expression, which means that they can appear within if and other statements.

[1] Different implementations of JavaScript may be more relaxed about function definitions than the standard requires. For
example, Netscape's implementation of JavaScript 1.5 allows "conditional function definitions" that appear within if
statements.

7.1.2 The Function() Constructor

The function statement is not the only way to define a new function. ECMAScript v1 and JavaScript
1.1 allow you to define a function dynamically with the Function() constructor and the new operator.
(We saw the new operator in Chapter 5, and we'll learn more about constructors in Chapter 8.) Here is
an example of creating a function in this way:

var f = new Function("x", "y", "return x*y;");

This line of code creates a new function that is more or less equivalent to a function defined with the
familiar syntax:

function f(x, y) { return x*y; }

The Function() constructor expects any number of string arguments. The last argument is the body
of the function -- it can contain arbitrary JavaScript statements, separated from each other by
semicolons. All other arguments to the constructor are strings that specify the names of the parameters
to the function being defined. If you are defining a function that takes no arguments, you simply pass a
single string -- the function body -- to the constructor.

Notice that the Function() constructor is not passed any argument that specifies a name for the
function it creates. The unnamed functions created with the Function() constructor are sometimes
called anonymous functions.

You might well wonder what the point of the Function() constructor is. Why not simply define all
functions with the function statement? One reason is that Function() allows us to dynamically
build and compile functions; it does not restrict us to the precompiled function bodies of the function
statement. The flip side of this benefit is that the Function() constructor has to compile a function
each time it is called. Therefore, you probably do not want to call this constructor within the body of a
loop or within a frequently used function.

Another reason to use the Function() constructor is that it is sometimes convenient, and even
elegant, to be able to define a function as part of a JavaScript expression, rather than as a statement.
We'll see examples of this usage later in this chapter. In JavaScript 1.2, when you want to define a
function in an expression rather than a statement, a function literal is an even more elegant choice than
the Function() constructor. We'll consider function literals next.

7.1.3 Function Literals

ECMAScript v3 defines and JavaScript 1.2 implements function literals, which are a third way to create
functions. As discussed in Chapter 3, a function literal is an expression that defines an unnamed
function. The syntax for a function literal is much like that of the function statement, except that it is
used as an expression rather than as a statement and no function name is required. The following three
lines of code define three more or less identical functions using the function statement, the
Function() constructor, and a function literal:

function f(x) { return x*x; } // function statement

var f = new Function("x", "return x*x;"); // Function() constructor

var f = function(x) { return x*x; }; // function literal

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var f = function(x) { return x*x; }; // function literal

Although function literals create unnamed functions, the syntax allows a function name to be optionally
specified, which is useful when writing recursive functions that call themselves. For example:

var f = function fact(x) { if (x <= 1) return 1; else return x*fact(x-1); };

This line of code defines an unnamed function and stores a reference to it in the variable f. It does not
actually create a function named fact(), but it does allow the body of the function to refer to itself
using that name. Note, however, that this type of named function literal is not properly implemented
before JavaScript 1.5.

Keep in mind that the function statement is available in all versions of JavaScript, the Function(
constructor is available only in JavaScript 1.1 and later, and function literals are available only in
JavaScript 1.2 and later. Recall that we said the three functions defined earlier are "more or less"
equivalent -- there are some differences between these three techniques for function definition, which
we'll consider in Section 11.5.

Function literals are useful in much the same way as functions created with the Function()
constructor. Because they are created by JavaScript expressions rather than statements, they can be
used in more flexible ways and are particularly suited for functions that are used only once and need not
be named. For example, the function specified by a function literal expression can be stored into a
variable, passed to another function, or even invoked directly:

a[0] = function(x) { return x*x; }; // Define a function and store it

a.sort(function(a,b){return a-b;}); // Define a function; pass it to another

var tensquared = (function(x) {return x*x;})(10); // Define and invoke

Like the Function() constructor, function literals create unnamed functions and do not automatically
store those functions into properties. Function literals have an important advantage over the
Function() constructor, however. The body of a function created by Function() must be
specified in a string, and it can be awkward to express long, complex function bodies in this way. The
body of a function literal, however, uses standard JavaScript syntax. Also, a function literal is parsed
and compiled only once, while the JavaScript code passed as a string to the Function() constructor
must be parsed and compiled each time the constructor is invoked.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.2 Functions as Data

The most important features of functions are that they can be defined and invoked, as shown in the
previous section. Function definition and invocation are syntactic features of JavaScript and of most other
programming languages. In JavaScript, however, functions are not only syntax but also data, which
means that they can be assigned to variables, stored in the properties of objects or the elements of
arrays, passed as arguments to functions, and so on.[2]

[2] This may not seem like a particularly interesting point to you unless you are familiar with languages like Java, in which
functions are part of a program but cannot be manipulated by the program.

To understand how functions can be JavaScript data as well as JavaScript syntax, consider this function
definition:

function square(x) { return x*x; }

This definition creates a new function object and assigns it to the variable square. The name of a
function is really immaterial -- it is simply the name of a variable that holds the function. The function can
be assigned to another variable and still work the same way:

var a = square(4); // a contains the number 16

var b = square; // Now b refers to the same function that square does

var c = b(5); // c contains the number 25

Functions can also be assigned to object properties rather than global variables. When we do this, we call
them methods:

var o = new Object;

o.square = new Function("x", "return x*x"); // Note Function() constructor

y = o.square(16); // y equals 256

Functions don't even require names at all, as when we assign them to array elements:

var a = new Array(3);

a[0] = function(x) { return x*x; } // Note function literal

a[1] = 20;

a[2] = a[0](a[1]); // a[2] contains 400

The function invocation syntax in this last example looks strange, but it is still a legal use of the JavaScript
() operator!

Example 7-2 is a detailed example of the things that can be done when functions are used as data. It
demonstrates how functions can be passed as arguments to other functions and also how they can be
stored in associative arrays (which were introduced in Chapter 3 and are explained in detail in Chapter 8
This example may be a little tricky, but the comments explain what is going on; it is worth studying
carefully.

Example 7-2. Using functions as data

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// We define some simple functions here

function add(x,y) { return x + y; }

function subtract(x,y) { return x - y; }

function multiply(x,y) { return x * y; }

function divide(x,y) { return x / y; }

// Here's a function that takes one of the above functions

// as an argument and invokes it on two operands

function operate(operator, operand1, operand2)

{

 return operator(operand1, operand2);

}

// We could invoke this function like this to compute the value (2+3) + (4*5):

var i = operate(add, operate(add, 2, 3), operate(multiply, 4, 5));

// For the sake of example, we implement the functions again, this time

// using function literals. We store the functions in an associative array.

var operators = new Object();

operators["add"] = function(x,y) { return x+y; };

operators["subtract"] = function(x,y) { return x-y; };

operators["multiply"] = function(x,y) { return x*y; };

operators["divide"] = function(x,y) { return x/y; };

operators["pow"] = Math.pow; // Works for predefined functions too

// This function takes the name of an operator, looks up that operator

// in the array, and then invokes it on the supplied operands. Note

// the syntax used to invoke the operator function.

function operate2(op_name, operand1, operand2)

{

 if (operators[op_name] == null) return "unknown operator";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (operators[op_name] == null) return "unknown operator";

 else return operators[op_name](operand1, operand2);

}

// We could invoke this function as follows to compute

// the value ("hello" + " " + "world"):

var j = operate2("add", "hello", operate2("add", " ", "world"))

// Using the predefined Math.pow() function:

var k = operate2("pow", 10, 2)

If the preceding example does not convince you of the utility of being able to pass functions as arguments
to other functions and otherwise treat functions as data values, consider the Array.sort() function.
This function sorts the elements of an array. Because there are many possible orders to sort by
(numerical order, alphabetical order, date order, ascending, descending, and so on), the sort()
function optionally takes another function as an argument to tell it how to perform the sort. This function
has a simple job -- it takes two elements of the array, compares them, and then returns a value that
specifies which element comes first. This function argument makes the Array.sort() method
perfectly general and infinitely flexible -- it can sort any type of data into any conceivable order!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.3 Function Scope: The Call Object

As described in Chapter 4, the body of a JavaScript function executes in a local scope that differs
from the global scope. This new scope is created by adding the call object to the front of the
scope chain. Since the call object is part of the scope chain, any properties of this object are
accessible as variables within the body of the function. Local variables declared with the var
statement are created as properties of this object; the parameters of the function are also made
available as properties of the object.

In addition to local variables and parameters, the call object defines one special property named
arguments. This property refers to another special object known as the Arguments object, which
is discussed in the next section. Because the arguments property is a property of the call object,
it has exactly the same status as local variables and function parameters. For this reason, the
identifier arguments should be considered a reserved word and should not be used as a
variable or parameter name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.4 Function Arguments: The Arguments Object

Within the body of a function, the identifier arguments always has special meaning. arguments
is a special property of the call object that refers to an object known as the Arguments object. The
Arguments object is like an array that allows the argument values passed to the function to be
retrieved by number, but it is not actually an Array object. The Arguments object also defines an
additional callee property, described later.

Although a JavaScript function is defined with a fixed number of named arguments, it can be
passed any number of arguments when it is invoked. The arguments[] array allows full access
to these argument values, even when some are unnamed. Suppose you define a function f that
expects to be passed one argument, x. If you invoke this function with two arguments, the first
argument is accessible within the function by the parameter name x or as arguments[0]. The
second argument is accessible only as arguments[1]. Furthermore, like all arrays, arguments
has a length property that specifies the number of elements it contains. Thus, within the body of
our function f, invoked with two arguments, arguments.length has the value 2.

The arguments[] array is useful in a number of ways. The following example shows how you
can use it to check that a function is invoked with the correct number of arguments, since
JavaScript doesn't do this for you:

function f(x, y, z)

{

 // First, check that the right number of arguments were passed

 if (arguments.length != 3) {

 throw new Error("function f called with " + arguments.length +

 "arguments, but it expects 3 arguments.");

 }

 // Now do the actual function...

}

The arguments[] array also opens up an important possibility for JavaScript functions: they can
be written so that they work with any number of arguments. Here's an example that shows how
you can write a simple max() function that accepts any number of arguments and returns the
value of the largest argument it is passed (see also the built-in function Math.max(), which in
ECMAScript v3 also accepts any number of arguments):

function max()

{

 var m = Number.NEGATIVE_INFINITY;

 // Loop through all the arguments, looking for, and

 // remembering, the biggest

 for(var i = 0; i < arguments.length; i++)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (arguments[i] > m) m = arguments[i];

 // Return the biggest

 return m;

}

var largest = max(1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6);

You can also use the arguments[] array to write functions that expect a fixed number of named
arguments followed by an arbitrary number of unnamed arguments.

Throughout this section we've been referring to the "arguments array." Keep in mind, however,
that arguments is not really an array; it is an Arguments object. Each Arguments object defines
numbered array elements and a length property, but it is not technically an array -- it is better to
think of it as an object that happens to have some numbered properties. The ECMAScript
specification does not require the Arguments object to implement any of the special behavior that
arrays do. Although you can assign a value to the arguments.length property, for example,
ECMAScript does not require you to do so to actually alter the number of array elements defined
in the object. (See Chapter 9 for an explanation of the special behavior of the length property of
true Array objects.)

The Arguments object has one very unusual feature. When a function has named arguments, the
array elements of the Arguments object are synonyms for the local variables that hold the function
arguments. The arguments[] array and the argument named arguments are two different
ways of referring to the same variable. Changing the value of an argument with an argument
name changes the value that is retrieved through the arguments[] array. Changing the value of
an argument through the arguments[] array changes the value that is retrieved by the
argument name. For example:

function f(x) {

 alert(x); // Displays the initial value of the argument

 arguments[0] = null; // Changing the array element also changes x

 alert(x); // Now displays "null"

}

7.4.1 The callee Property

In addition to its array elements, the Arguments object defines a callee property that refers to
the function that is currently being executed. This is useful, for example, to allow unnamed
functions to invoke themselves recursively. For instance, here is an unnamed function literal that
computes factorials:

function(x) {

 if (x <= 1) return 1;

 return x * arguments.callee(x-1);

}

The callee property is defined by ECMAScript v1 and implemented in JavaScript 1.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7.5 Function Properties and Methods

We've seen that functions can be used as data values in JavaScript programs and that they can be
created with the Function() constructor. These are sure signs that functions are actually
represented by a type of JavaScript object, the Function object. Since functions are objects, they
have properties and methods, just like the String and Date objects, for example. Now that we've
discussed the call and Arguments objects that are used in the context of function invocation, let's turn
to the Function object itself.

7.5.1 The length Property

As we've seen, within the body of a function, the length property of the arguments array specifies
the number of arguments that were passed to the function. The length property of a function itself,
however, has a different meaning. This read-only property returns the number of arguments that the
function expects to be passed -- that is, the number of parameters it declares in its parameter list.
Recall that a function can be invoked with any number of arguments, which it can retrieve through the
arguments array, regardless of the number of parameters it declares. The length property of the
Function object specifies exactly how many declared parameters a function has. Note that unlike
arguments.length, this length property is available both inside and outside of the function body.

The following code defines a function named check() that is passed the arguments array from
another function. It compares the arguments.length property to the Function.length property
(which it accesses as arguments.callee.length) to see if the function was passed the number
of arguments it expected. If not, it throws an exception. The check() function is followed by a test
function f() that demonstrates how check() can be used:

function check(args) {

 var actual = args.length; // The actual number of arguments

 var expected = args.callee.length; // The expected number of arguments

 if (actual != expected) { // Throw an exception if they don't match

 throw new Error("Wrong number of arguments: expected: " +

 expected + "; actually passed " + actual);

 }

}

function f(x, y, z) {

 // Check that the actual # of args matches the expected # of args

 // Throw an exception if they don't match

 check(arguments);

 // Now do the rest of the function normally

 return x + y + z;

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

The length property of the Function object is standardized by ECMAScript v1 and implemented in
JavaScript 1.1 and later.[3]

[3] In Netscape 4.0, a bug prevents this property from working correctly unless the language attribute of the <script> tag
is explicitly set to "JavaScript1.2".

7.5.2 The prototype Property

Every function has a prototype property that refers to a predefined prototype object. This prototype
object comes into play when the function is used as a constructor with the new operator; it plays an
important role in the process of defining new object types. We'll explore this property in detail in
Chapter 8.

7.5.3 Defining Your Own Function Properties

When a function needs to use a variable whose value persists across invocations, it is often
convenient to use a property of the Function object, instead of cluttering up the namespace by
defining a global variable. For example, suppose we want to write a function that returns a unique
identifier whenever it is invoked. The function must never return the same value twice. In order to
manage this, the function needs to keep track of the values it has already returned, and this
information must persist across function invocations. We could store this information in a global
variable, but that is unnecessary because the information is used only by the function itself. It is better
to store the information in a property of the Function object. Here is an example that returns a unique
integer whenever it is called:

// Create and initialize the "static" variable.

// Function declarations are processed before code is executed, so

// we really can do this assignment before the function declaration.

uniqueInteger.counter = 0;

// Here's the function. It returns a different value each time

// it is called and uses a "static" property of itself to keep track

// of the last value it returned.

function uniqueInteger() {

 // Increment and return our "static" variable

 return uniqueInteger.counter++;

}

7.5.4 The apply() and call() Methods

ECMAScript v3 defines two methods that are defined for all functions, call() and apply().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ECMAScript v3 defines two methods that are defined for all functions, call() and apply().
These methods allow you to invoke a function as if it were a method of some other object. (Note that
we have not discussed methods yet; you may find this section more understandable once you have
read Chapter 8.) The first argument to both call() and apply() is the object on which the
function is to be invoked; this argument becomes the value of the this keyword within the body of
the function. Any remaining arguments to call() are the values that are passed to the function
that is invoked. For example, to pass two numbers to the function f() and invoke it as if it were a
method of the object o, you could use code like this:

f.call(o, 1, 2);

This is similar to the following lines of code:

o.m = f;

o.m(1,2);

delete o.m;

The apply() method is like the call() method, except that the arguments to be passed to the
function are specified as an array:

f.apply(o, [1,2]);

For example, to find the largest number in an array of numbers, you could use the apply() method
to pass the elements of the array to the Math.max() function:[4]

[4] This example assumes we are using the ECMAScript v3 Math.max() function, which accepts an arbitrary number of
arguments; the ECMAScript v1 version of the function accepts only two arguments.

var biggest = Math.max.apply(null, array_of_numbers);

The apply() method is implemented in JavaScript 1.2, but the call() method is not
implemented until JavaScript 1.5.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 8. Objects
Chapter 3 explained that objects are one of the fundamental data types in JavaScript. They are
also one of the most important. This chapter describes JavaScript objects in detail. Basic usage of
objects, described in the next section, is straightforward, but as we'll see in later sections, objects
have more complex uses and behaviors.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.1 Objects and Properties

Objects are composite data types: they aggregate multiple values into a single unit and allow us to store
and retrieve those values by name. Another way to explain this is to say that an object is an unordered
collection of properties, each of which has a name and a value. The named values held by an object
may be primitive values like numbers and strings, or they may themselves be objects.

8.1.1 Creating Objects

Objects are created with the new operator. This operator must be followed by the name of a constructor
function that serves to initialize the object. For example, we can create an empty object (an object with
no properties) like this:

var o = new Object();

JavaScript supports other built-in constructor functions that initialize newly created objects in other, less
trivial, ways. For example, the Date() constructor initializes an object that represents a date and time:

var now = new Date(); // The current date and time

var new_years_eve = new Date(2000, 11, 31); // Represents December 31, 2000

Later in this chapter, we'll see that it is possible to define custom constructor methods to initialize newly
created objects in any way you desire.

Object literals provide another way to create and initialize new objects. As we saw in Chapter 3, an
object literal allows us to embed an object description literally in JavaScript code in much the same way
that we embed textual data into JavaScript code as quoted strings. An object literal consists of a
comma-separated list of property specifications enclosed within curly braces. Each property
specification in an object literal consists of the property name followed by a colon and the property
value. For example:

var circle = { x:0, y:0, radius:2 }

var homer = {

 name: "Homer Simpson",

 age: 34,

 married: true,

 occupation: "plant operator",

 email: "homer@simpsons.com"

};

The object literal syntax is defined by the ECMAScript v3 specification and implemented in JavaScript
1.2 and later.

8.1.2 Setting and Querying Properties

You normally use the . operator to access the value of an object's properties. The value on the left of
the . should be a reference to an object (usually just the name of the variable that contains the object
reference). The value on the right of the . should be the name of the property. This must be an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

reference). The value on the right of the . should be the name of the property. This must be an
identifier, not a string or an expression. For example, you would refer to the property p in object o with
o.p or to the property radius in the object circle with circle.radius. Object properties work like
variables: you can store values in them and read values from them. For example:

// Create an object. Store a reference to it in a variable.

var book = new Object();

// Set a property in the object.

book.title = "JavaScript: The Definitive Guide"

// Set some more properties. Note the nested objects.

book.chapter1 = new Object();

book.chapter1.title = "Introduction to JavaScript";

book.chapter1.pages = 19;

book.chapter2 = { title: "Lexical Structure", pages: 6 };

// Read some property values from the object.

alert("Outline: " + book.title + "\n\t" +

 "Chapter 1 " + book.chapter1.title + "\n\t" +

 "Chapter 2 " + book.chapter2.title);

An important point to notice about this example is that you can create a new property of an object simply
by assigning a value to it. Although we declare variables with the var keyword, there is no need (and no
way) to do so with object properties. Furthermore, once you have created an object property by
assigning a value to it, you can change the value of the property at any time simply by assigning a new
value:

book.title = "JavaScript: The Rhino Book"

8.1.3 Enumerating Properties

The for/in loop discussed in Chapter 6 provides a way to loop through, or enumerate, the properties
of an object. This can be useful when debugging scripts or when working with objects that may have
arbitrary properties whose names you do not know in advance. The following code shows a function you
can use to list the property names of an object:

function DisplayPropertyNames(obj) {

 var names = "";

 for(var name in obj) names += name + "\n";

 alert(names);

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Note that the for/in loop does not enumerate properties in any specific order, and although it
enumerates all user-defined properties, it does not enumerate certain predefined properties or methods.

8.1.4 Undefined Properties

If you attempt to read the value of a property that does not exist (in other words, a property that has
never had a value assigned to it), you end up retrieving the undefined value (introduced in Chapter 3

You can use the delete operator to delete a property of an object:

delete book.chapter2;

Note that deleting a property does not merely set the property to undefined; it actually removes the
property from the object. The for/in loop demonstrates this difference: it enumerates properties that
have been set to the undefined value, but it does not enumerate deleted properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.2 Constructors

We saw previously that you can create and initialize a new object in JavaScript by using the new
operator in conjunction with a predefined constructor function such as Object(), Date(), or
Function(). These predefined constructors and the built-in object types they create are useful
in many instances. However, in object-oriented programming, it is also common to work with
custom object types defined by your program. For example, if you are writing a program that
manipulates rectangles, you might want to represent rectangles with a special type, or class, of
object. Each object of this Rectangle class would have a width property and a height property,
since those are the essential defining characteristics of rectangles.

To create objects with properties such as width and height already defined, we need to write a
constructor to create and initialize these properties in a new object. A constructor is a JavaScript
function with two special features:

It is invoked through the new operator.

 It is passed a reference to a newly created, empty object as the value of the this
keyword, and it is responsible for performing appropriate initialization for that new object.

Example 8-1 shows how the constructor function for a Rectangle object might be defined and
invoked.

Example 8-1. A Rectangle object constructor function

// Define the constructor.

// Note how it initializes the object referred to by "this".

function Rectangle(w, h)

{

 this.width = w;

 this.height = h;

}

// Invoke the constructor to create two Rectangle objects.

// We pass the width and height to the constructor,

// so it can initialize each new object appropriately.

var rect1 = new Rectangle(2, 4);

var rect2 = new Rectangle(8.5, 11);

Notice how the constructor uses its arguments to initialize properties of the object referred to by
the this keyword. Keep in mind that a constructor function simply initializes the specified object;
it does not have to return that object.

We have defined a class of objects simply by defining an appropriate constructor function -- all
objects created with the Rectangle() constructor are now guaranteed to have initialized

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

objects created with the Rectangle() constructor are now guaranteed to have initialized
width and height properties. This means that we can write programs that rely on this fact and
treat all Rectangle objects uniformly. Because every constructor defines a class of objects, it is
stylistically important to give a constructor function a name that indicates the class of objects it
creates. Creating a rectangle with new Rectangle(1,2) is a lot more intuitive than with new
init_rect(1,2), for example.

Constructor functions typically do not have return values. They initialize the object passed as the
value of this and return nothing. However, a constructor is allowed to return an object value,
and, if it does so, that returned object becomes the value of the new expression. In this case, the
object that was the value of this is simply discarded.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.3 Methods

A method is nothing more than a JavaScript function that is invoked through an object. Recall that
functions are data values and that there is nothing special about the names with which they are
defined -- a function can be assigned to any variable, or even to any property of an object. If we have a
function f and an object o, we can define a method named m with the following line:

o.m = f;

Having defined the method m() of the object o, we invoke it like this:

o.m();

Or, if m() expects two arguments, we might invoke it like this:

o.m(x, x+2);

Methods have one very important property: the object through which a method is invoked becomes the
value of the this keyword within the body of the method. For example, when we invoke o.m(), the
body of the method can refer to the object o with the this keyword.

The discussion of the this keyword should begin to clarify why we use methods at all. Any function
that is used as a method is effectively passed an extra argument -- the object through which it is
invoked. Typically, a method performs some sort of operation on that object, so the method invocation
syntax is a particularly elegant way to express the fact that a function is operating on an object.
Compare the following two lines of code:

rect.setSize(width, height);

setRectSize(rect, width, height);

These two lines may perform exactly the same operation on the object rect, but the method
invocation syntax in the first line more clearly indicates the idea that it is the object rect that is the
primary focus, or target, of the operation. (If the first line does not seem a more natural syntax to you,
you are probably new to object-oriented programming. With a little experience, you will learn to love it!)

While it is useful to think of functions and methods differently, there is not actually as much difference
between them as there initially appears to be. Recall that functions are values stored in variables and
that variables are nothing more than properties of a global object. Thus, when you invoke a function,
you are actually invoking a method of the global object. Within such a function, the this keyword
refers to the global object. Thus, there is no technical difference between functions and methods. The
real difference lies in design and intent: methods are written to operate somehow on the this object,
while functions usually stand alone and do not use the this object.

The typical usage of methods is more clearly illustrated through an example. Example 8-2 returns to
the Rectangle objects of Example 8-1 and shows how a method that operates on Rectangle objects
can be defined and invoked.

Example 8-2. Defining and invoking a method

// This function uses the this keyword, so it doesn't make sense to

// invoke it by itself; it needs instead to be made a method of some

// object that has "width" and "height" properties defined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// object that has "width" and "height" properties defined.

function compute_area()

{

 return this.width * this.height;

}

// Create a new Rectangle object, using the constructor defined earlier.

var page = new Rectangle(8.5, 11);

// Define a method by assigning the function to a property of the object.

page.area = compute_area;

// Invoke the new method like this:

var a = page.area(); // a = 8.5*11 = 93.5

One shortcoming is evident in Example 8-2: before you can invoke the area() method for the rect
object, you must assign that method to a property of the object. While we can invoke the area()
method on the particular object named page, we can't invoke it on any other Rectangle objects without
first assigning the method to them. This quickly becomes tedious. Example 8-3 defines some
additional Rectangle methods and shows how they can automatically be assigned to all Rectangle
objects with a constructor function.

Example 8-3. Defining methods in a constructor

// First, define some functions that will be used as methods.

function Rectangle_area() { return this.width * this.height; }

function Rectangle_perimeter() { return 2*this.width + 2*this.height; }

function Rectangle_set_size(w,h) { this.width = w; this.height = h; }

function Rectangle_enlarge() { this.width *= 2; this.height *= 2; }

function Rectangle_shrink() { this.width /= 2; this.height /= 2; }

// Then define a constructor method for our Rectangle objects.

// The constructor initializes properties and also assigns methods.

function Rectangle(w, h)

{

 // Initialize object properties.

 this.width = w;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.width = w;

 this.height = h;

 // Define methods for the object.

 this.area = Rectangle_area;

 this.perimeter = Rectangle_perimeter;

 this.set_size = Rectangle_set_size;

 this.enlarge = Rectangle_enlarge;

 this.shrink = Rectangle_shrink;

}

// Now, when we create a rectangle, we can immediately invoke methods on it:

var r = new Rectangle(2,2);

var a = r.area();

r.enlarge();

var p = r.perimeter();

The technique shown in Example 8-3 also has a shortcoming. In this example, the Rectangle()
constructor sets seven properties of each and every Rectangle object it initializes, even though five of
those properties have constant values that are the same for every rectangle. Each property takes up
memory space; by adding methods to our Rectangle class, we've more than tripled the memory
requirements of each Rectangle object. Fortunately, JavaScript has a solution to this problem: it allows
an object to inherit properties from a prototype object. The next section describes this technique in
detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.4 Prototypes and Inheritance

We've seen how inefficient it can be to use a constructor to assign methods to the objects it
initializes. When we do this, each and every object created by the constructor has identical copies of
the same method properties. There is a much more efficient way to specify methods, constants, and
other properties that are shared by all objects in a class.

JavaScript objects "inherit" properties from a prototype object.[1] Every object has a prototype; all of
the properties of the prototype object appear to be properties of any objects for which it is a
prototype. That is, each object inherits properties from its prototype.

[1] Prototypes were introduced in JavaScript 1.1; they are not supported in the now obsolete JavaScript 1.0.

The prototype of an object is defined by the constructor function that was used to create and
initialize the object. All functions in JavaScript have a prototype property that refers to an object.
This prototype object is initially empty, but any properties you define in it will be inherited by all
objects created by the constructor.

A constructor defines a class of objects and initializes properties, such as width and height, that
are the state variables for the class. The prototype object is associated with the constructor, so each
member of the class inherits exactly the same set of properties from the prototype. This means that
the prototype object is an ideal place for methods and other constant properties.

Note that inheritance occurs automatically, as part of the process of looking up a property value.
Properties are not copied from the prototype object into new objects; they merely appear as if they
were properties of those objects. This has two important implications. First, the use of prototype
objects can dramatically decrease the amount of memory required by each object, since the object
can inherit many of its properties. The second implication is that an object inherits properties even if
they are added to its prototype after the object is created.

Each class has one prototype object, with one set of properties. But there are potentially many
instances of a class, each of which inherits those prototype properties. Because one prototype
property can be inherited by many objects, JavaScript must enforce a fundamental asymmetry
between reading and writing property values. When you read property p of an object o, JavaScript
first checks to see if o has a property named p. If it does not, it next checks to see if the prototype
object of o has a property named p. This is what makes prototype-based inheritance work.

When you write the value of a property, on the other hand, JavaScript does not use the prototype
object. To see why, consider what would happen if it did: suppose you try to set the value of the
property o.p when the object o does not have a property named p. Further suppose that JavaScript
goes ahead and looks up the property p in the prototype object of o and allows you to set the
property of the prototype. Now you have changed the value of p for a whole class of objects -- not at
all what you intended.

Therefore, property inheritance occurs only when you read property values, not when you write
them. If you set the property p in an object o that inherits that property from its prototype, what
happens is that you create a new property p directly in o. Now that o has its own property named p,
it no longer inherits the value of p from its prototype. When you read the value of p, JavaScript first
looks at the properties of o. Since it finds p defined in o, it doesn't need to search the prototype
object and never finds the value of p defined there. We sometimes say that the property p in o
"shadows" or "hides" the property p in the prototype object. Prototype inheritance can be a
confusing topic. Figure 8-1 illustrates the concepts we've discussed here.

Figure 8-1. Objects and prototypes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because prototype properties are shared by all objects of a class, it generally makes sense to use
them only to define properties that are the same for all objects within the class. This makes
prototypes ideal for defining methods. Other properties with constant values (such as mathematical
constants) are also suitable for definition with prototype properties. If your class defines a property
with a very commonly used default value, you might define this property and its default value in a
prototype object. Then, the few objects that want to deviate from the default value can create their
own private, unshared copies of the property and define their own nondefault values.

Let's move from an abstract discussion of prototype inheritance to a concrete example. Suppose we
define a Circle() constructor function to create objects that represent circles. The prototype
object for this class is Circle.prototype,[2] so we can define a constant available to all Circle
objects like this:

[2] The prototype object of a constructor is created automatically by JavaScript. In most versions of JavaScript, every
function is automatically given an empty prototype object, just in case it is used as a constructor. In JavaScript 1.1,
however, the prototype object is not created until the function is used as a constructor for the first time. This means that if
you require compatibility with JavaScript 1.1, you should create at least one object of a class before you use the prototype
object to assign methods and constants to objects of that class. So, if we have defined a Circle() constructor but
have not yet used it to create any Circle objects, we'd define the constant property pi like this:

//First create and discard a dummy object; forces prototype object creation. new Circle (
); //Now we can set properties in the prototype. Circle.prototype.pi = 3.14159'

Circle.prototype.pi = 3.14159;

Example 8-4 shows our Circle example fully fleshed out. The code defines a Circle class by first
defining a Circle() constructor to initialize each individual object and then setting properties of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

defining a Circle() constructor to initialize each individual object and then setting properties of
Circle.prototype to define methods and constants shared by all instances of the class.

Example 8-4. Defining a Circle class with a prototype object

// Define a constructor method for our class.

// Use it to initialize properties that will be different for

// each individual Circle object.

function Circle(x, y, r)

{

 this.x = x; // The X-coordinate of the center of the circle

 this.y = y; // The Y-coordinate of the center of the circle

 this.r = r; // The radius of the circle

}

// Create and discard an initial Circle object.

// This forces the prototype object to be created in JavaScript 1.1.

new Circle(0,0,0);

// Define a constant: a property that will be shared by

// all circle objects. Actually, we could just use Math.PI,

// but we do it this way for the sake of instruction.

Circle.prototype.pi = 3.14159;

// Define a method to compute the circumference of the circle.

// First declare a function, then assign it to a prototype property.

// Note the use of the constant defined above.

function Circle_circumference() { return 2 * this.pi * this.r; }

Circle.prototype.circumference = Circle_circumference;

// Define another method. This time we use a function literal to define

// the function and assign it to a prototype property all in one step.

Circle.prototype.area = function() { return this.pi * this.r * this.r; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Circle.prototype.area = function() { return this.pi * this.r * this.r; }

// The Circle class is defined.

// Now we can create an instance and invoke its methods.

var c = new Circle(0.0, 0.0, 1.0);

var a = c.area();

var p = c.circumference();

8.4.1 Prototypes and Built-in Classes

It is not only user-defined classes that have prototype objects. Built-in classes, such as String and
Date, have prototype objects too, and you can assign values to them.[3] For example, the following
code defines a new method that is available for all String objects:

[3] In JavaScript 1.1 and later.

// Returns true if the last character is c

String.prototype.endsWith = function(c) {

 return (c == this.charAt(this.length-1))

}

Having defined the new endsWith() method in the String prototype object, we can use it like this:

var message = "hello world";

message.endsWith('h') // Returns false

message.endsWith('d') // Returns true

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.5 Object-Oriented JavaScript

Although JavaScript supports a data type we call an object, it does not have a formal notion of a class. This
makes it quite different from classic object-oriented languages such as C++ and Java. The common
conception about object-oriented programming languages is that they are strongly typed and support class-
based inheritance. By these criteria, it is easy to dismiss JavaScript as not being a true object-oriented
language. On the other hand, we've seen that JavaScript makes heavy use of objects and that it has its own
type of prototype-based inheritance. JavaScript is a true object-oriented language. It draws inspiration from a
number of other (relatively obscure) object-oriented languages that use prototype-based inheritance instead
of class-based inheritance.

Although JavaScript is not a class-based object-oriented language, it does a good job of simulating the
features of class-based languages such as Java and C++. I've been using the term class informally
throughout this chapter. This section more formally explores the parallels between JavaScript and true class-
based inheritance languages such as Java and C++.[4]

[4] You should read this section even if you are not familiar with those languages and that style of object-oriented programming.

Let's start by defining some basic terminology. An object, as we've already seen, is a data structure that
contains various pieces of named data and may also contain various methods to operate on those pieces of
data. An object groups related values and methods into a single convenient package, which generally makes
programming easier by increasing the modularity and reusability of code. Objects in JavaScript may have any
number of properties, and properties may be dynamically added to an object. This is not the case in strictly
typed languages such as Java and C++. In those languages, each object has a predefined set of properties,
where each property is of a predefined type. When we are using JavaScript objects to simulate object-
oriented programming techniques, we generally define in advance the set of properties for each object and
the type of data that each property holds.

[5] They are usually called "fields" in Java and C++, but we'll refer to them as properties here, since that is the JavaScript terminology.

In Java and C++, a class defines the structure of an object. The class specifies exactly what fields an object
contains and what types of data each holds. It also defines the methods that operate on an object. JavaScript
does not have a formal notion of a class, but, as we've seen, it approximates classes with its constructors and
their prototype objects.

In both JavaScript and class-based object-oriented languages, there may be multiple objects of the same
class. We often say that an object is an instance of its class. Thus, there may be many instances of any class.
Sometimes we use the term instantiate to describe the process of creating an object (i.e., an instance of a
class).

In Java, it is a common programming convention to name classes with an initial capital letter and to name
objects with lowercase letters. This convention helps keep classes and objects distinct from each other in
code; it is a useful convention to follow in JavaScript programming as well. In previous sections, for example,
we've defined the Circle and Rectangle classes and have created instances of those classes named
rect.

The members of a Java class may be of four basic types: instance properties, instance methods, class
properties, and class methods. In the following sections, we'll explore the differences between these types
and show how they are simulated in JavaScript.

8.5.1 Instance Properties

Every object has its own separate copies of its instance properties. In other words, if there are 10 objects of a
given class, there are 10 copies of each instance property. In our Circle class, for example, every Circle
object has a property r that specifies the radius of the circle. In this case, r is an instance property. Since

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object has a property r that specifies the radius of the circle. In this case, r is an instance property. Since
each object has its own copy of the instance properties, these properties are accessed through individual
objects. If c is an object that is an instance of the Circle class, for example, we refer to its radius as:

c.r

By default, any object property in JavaScript is an instance property. To truly simulate object-oriented
programming, however, we will say that instance properties in JavaScript are those properties that are
created and/or initialized in an object by the constructor function.

8.5.2 Instance Methods

An instance method is much like an instance property, except that it is a method rather than a data value. (In
Java, functions and methods are not data, as they are in JavaScript, so this distinction is more clear.)
Instance methods are invoked on a particular object, or instance. The area() method of our Circle class is
an instance method. It is invoked on a Circle object c like this:

a = c.area();

Instance methods use the this keyword to refer to the object or instance on which they are operating. An
instance method can be invoked for any instance of a class, but this does not mean that each object contains
its own private copy of the method, as it does with instance properties. Instead, each instance method is
shared by all instances of a class. In JavaScript, we define an instance method for a class by setting a
property in the constructor's prototype object to a function value. This way, all objects created by that
constructor share an inherited reference to the function and can invoke it using the method invocation syntax
shown earlier.

8.5.3 Class Properties

A class property in Java is a property that is associated with a class itself, rather than with each instance of a
class. No matter how many instances of the class are created, there is only one copy of each class property.
Just as instance properties are accessed through an instance of a class, class properties are accessed
through the class itself. Number.MAX_VALUE is an example of a class property in JavaScript: the
MAX_VALUE property is accessed through the Number class. Because there is only one copy of each
property, class properties are essentially global. What is nice about them, however, is that they are
associated with a class and they have a logical niche, a position in the JavaScript namespace, where they are
not likely to be overwritten by other properties with the same name. As is probably clear, we simulate a class
property in JavaScript simply by defining a property of the constructor function itself. For example, to create a
class property Circle.PI to store the mathematical constant pi, we can do the following:

Circle.PI = 3.14;

Circle is a constructor function, but because JavaScript functions are objects, we can create properties of a
function just as we can create properties of any other object.

8.5.4 Class Methods

Finally, we come to class methods. A class method is a method associated with a class rather than with an
instance of a class; they are invoked through the class itself, not through a particular instance of the class.
The Date.parse() method (which you can look up in the core reference section of this book) is a class
method. You always invoke it through the Date constructor object, rather than through a particular instance of
the Date class.

Because class methods are not invoked through a particular object, they cannot meaningfully use the
keyword -- this refers to the object for which an instance method is invoked. Like class properties, class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

keyword -- this refers to the object for which an instance method is invoked. Like class properties, class
methods are global. Because they do not operate on a particular object, class methods are generally more
easily thought of as functions that happen to be invoked through a class. Again, associating these functions
with a class gives them a convenient niche in the JavaScript namespace and prevents namespace collisions.
To define a class method in JavaScript, we simply make the appropriate function a property of the
constructor.

8.5.5 Example: The Circle Class

Example 8-5 is a reimplementation of our Circle class that contains examples of each of these four basic
types of members.

Example 8-5. Defining instance and class properties and methods

function Circle(radius) { // The constructor defines the class itself.

 // r is an instance property, defined and initialized in the constructor.

 this.r = radius;

}

// Circle.PI is a class property--it is a property of the constructor function.

Circle.PI = 3.14159;

// Here is a function that computes a circle's area.

function Circle_area() { return Circle.PI * this.r * this.r; }

// Here we make the function into an instance method by assigning it

// to the prototype object of the constructor.

// Note: with JavaScript 1.2, we can use a function literal to

// define the function without naming it Circle_area.

Circle.prototype.area = Circle_area;

// Here's another function. It takes two Circle objects as arguments and

// returns the one that is larger (i.e., has the larger radius).

function Circle_max(a,b) {

 if (a.r > b.r) return a;

 else return b;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else return b;

}

// Since this function compares two Circle objects, it doesn't make sense as

// an instance method operating on a single Circle object. But we don't want

// it to be a standalone function either, so we make it into a class method

// by assigning it to the constructor function:

Circle.max = Circle_max;

// Here is some code that uses each of these fields:

var c = new Circle(1.0); // Create an instance of the Circle class

c.r = 2.2; // Set the r instance property

var a = c.area(); // Invoke the area() instance method

var x = Math.exp(Circle.PI); // Use the PI class property in our own computation

var d = new Circle(1.2); // Create another Circle instance

var bigger = Circle.max(c,d); // Use the max() class method

8.5.6 Example: Complex Numbers

Example 8-6 is another example, somewhat more formal than the last, of defining a class of objects in
JavaScript. The code and the comments are worth careful study. Note that this example uses the function
literal syntax of JavaScript 1.2. Because it requires this version of the language (or later), it does not
with the JavaScript 1.1 compatibility technique of invoking the constructor once before assigning to its
prototype object.

Example 8-6. A complex number class

/*

 * Complex.js:

 * This file defines a Complex class to represent complex numbers.

 * Recall that a complex number is the sum of a real number and an

 * imaginary number and that the imaginary number i is the

 * square root of -1.

 */

/*

 * The first step in defining a class is defining the constructor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * The first step in defining a class is defining the constructor

 * function of the class. This constructor should initialize any

 * instance properties of the object. These are the essential

 * "state variables" that make each instance of the class different.

 */

function Complex(real, imaginary) {

 this.x = real; // The real part of the number

 this.y = imaginary; // The imaginary part of the number

}

/*

 * The second step in defining a class is defining its instance

 * methods (and possibly other properties) in the prototype object

 * of the constructor. Any properties defined in this object will

 * be inherited by all instances of the class. Note that instance

 * methods operate implicitly on the this keyword. For many methods,

 * no other arguments are needed.

 */

// Return the magnitude of a complex number. This is defined

// as its distance from the origin (0,0) of the complex plane.

Complex.prototype.magnitude = function() {

 return Math.sqrt(this.x*this.x + this.y*this.y);

};

// Return a complex number that is the negative of this one.

Complex.prototype.negative = function() {

 return new Complex(-this.x, -this.y);

};

// Convert a Complex object to a string in a useful way.

// This is invoked when a Complex object is used as a string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// This is invoked when a Complex object is used as a string.

Complex.prototype.toString = function() {

 return "{" + this.x + "," + this.y + "}";

};

// Return the real portion of a complex number. This function

// is invoked when a Complex object is treated as a primitive value.

Complex.prototype.valueOf = function() { return this.x; }

/*

 * The third step in defining a class is to define class methods,

 * constants, and any needed class properties as properties of the

 * constructor function itself (instead of as properties of the

 * prototype object of the constructor). Note that class methods

 * do not use the this keyword: they operate only on their arguments.

 */

// Add two complex numbers and return the result.

Complex.add = function (a, b) {

 return new Complex(a.x + b.x, a.y + b.y);

};

// Subtract one complex number from another.

Complex.subtract = function (a, b) {

 return new Complex(a.x - b.x, a.y - b.y);

};

// Multiply two complex numbers and return the product.

Complex.multiply = function(a, b) {

 return new Complex(a.x * b.x - a.y * b.y,

 a.x * b.y + a.y * b.x);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 a.x * b.y + a.y * b.x);

};

// Here are some useful predefined complex numbers.

// They are defined as class properties, where they can be used as

// "constants." (Note, though, that they are not actually read-only.)

Complex.zero = new Complex(0,0);

Complex.one = new Complex(1,0);

Complex.i = new Complex(0,1);

8.5.7 Superclasses and Subclasses

In Java, C++, and other class-based object-oriented languages, there is an explicit concept of the class
hierarchy. Every class can have a superclass from which it inherits properties and methods. Any class can be
extended, or subclassed, so that the resulting subclass inherits its behavior. As we've seen, JavaScript
supports prototype inheritance instead of class-based inheritance. Still, JavaScript analogies to the class
hierarchy can be drawn. In JavaScript, the Object class is the most generic, and all other classes are
specialized versions, or subclasses, of it. Another way to say this is that Object is the superclass of all the
built-in classes. All classes inherit a few basic methods (described later in this chapter) from Object.

We've learned that objects inherit properties from the prototype object of their constructor. How do they also
inherit properties from the Object class? Remember that the prototype object is itself an object; it is created
with the Object() constructor. This means the prototype object itself inherits properties from
Object.prototype! So, an object of class Complex inherits properties from the Complex.prototype
object, which itself inherits properties from Object.prototype. Thus, the Complex object inherits
properties of both objects. When you look up a property in a Complex object, the object itself is searched first.
If the property is not found, the Complex.prototype object is searched next. Finally, if the property is not
found in that object, the Object.prototype object is searched.

Note that because the Complex prototype object is searched before the Object prototype object, properties of
Complex.prototype hide any properties with the same name in Object.prototype. For example, in the
class definition shown in Example 8-6, we defined a toString() method in the Complex.prototype
object. Object.prototype also defines a method with this name, but Complex objects never see it
because the definition of toString() in Complex.prototype is found first.

The classes we've shown in this chapter are all direct subclasses of Object. This is typical of JavaScript
programming; there is not usually any need to produce a more complex class hierarchy. When necessary,
however, it is possible to subclass any other class. For example, suppose we want to produce a subclass of
Complex in order to add some more methods. To do this, we simply have to make sure that the prototype
object of the new class is itself an instance of Complex, so that it inherits all the properties of
Complex.prototype:

// This is the constructor for the subclass.

function MoreComplex(real, imaginary) {

 this.x = real;

 this.y = imaginary;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.y = imaginary;

}

// We force its prototype to be a Complex object. This means that

// instances of our new class inherit from MoreComplex.prototype,

// which inherits from Complex.prototype, which inherits from

// Object.prototype.

MoreComplex.prototype = new Complex(0,0);

// Now add a new method or other new features to this subclass.

MoreComplex.prototype.swap = function() {

 var tmp = this.x;

 this.x = this.y;

 this.y = tmp;

}

There is one subtle shortcoming to the subclassing technique shown here. Since we explicitly set
MoreComplex.prototype to an object of our own creation, we overwrite the prototype object provided by
JavaScript and discard the constructor property we are given. This constructor property, described
later in this chapter, is supposed to refer to the constructor function that created the object. A MoreComplex
object, however, inherits the constructor property of its superclass, rather than having one of its own. One
solution is to set this property explicitly:

MoreComplex.prototype.constructor = MoreComplex;

Note, however, that in JavaScript 1.1, the constructor property is read-only and cannot be set in this way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.6 Objects as Associative Arrays

We've seen the . operator used to access the properties of an object. It is also possible to use
the [] operator, which is more commonly used with arrays, to access these properties. Thus, the
following two JavaScript expressions have the same value:

object.property

object["property"]

The important difference to note between these two syntaxes is that in the first, the property name
is an identifier, and in the second, the property name is a string. We'll see why this is so important
shortly.

In C, C++, Java, and similar strongly typed languages, an object can have only a fixed number of
properties, and the names of these properties must be defined in advance. Since JavaScript is a
loosely typed language, this rule does not apply -- a program can create any number of properties
in any object. When you use the . operator to access a property of an object, however, the name
of the property is expressed as an identifier. Identifiers must be typed literally into your JavaScript
program -- they are not a data type, so they cannot be manipulated by the program.

On the other hand, when you access a property of an object with the [] array notation, the name
of the property is expressed as a string. Strings are JavaScript data types, so they can be
manipulated and created while a program is running. So, for example, you could write the
following code in JavaScript:

var addr = "";

for(i = 0; i < 4; i++) {

 addr += customer["address" + i] + '\n';

}

This code reads and concatenates the address0, address1, address2, and address3
properties of the customer object.

This brief example demonstrates the flexibility of using array notation to access properties of an
object with string expressions. We could have written this example using the . notation, but there
are cases where only the array notation will do. Suppose, for example, that you are writing a
program that uses network resources to compute the current value of the user's stock market
investments. The program allows the user to type in the name of each stock she owns, as well as
the number of shares of each stock. You might use an object named portfolio to hold this
information. The object has one property for each stock. The name of the property is the name of
the stock and the property value is the number of shares of that stock. So, for example, if a user
holds 50 shares of stock in IBM, the portfolio.ibm property has the value 50.

Part of this program needs to have a loop that prompts the user to enter the name of a stock she
owns and then asks her to enter the number of shares she owns of that stock. Inside the loop,
you'd have code something like this:

var stock_name = get_stock_name_from_user();

var shares = get_number_of_shares();

portfolio[stock_name] = shares;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

portfolio[stock_name] = shares;

Since the user enters stock names at runtime, there is no way that you can know the property
names ahead of time. Since you can't know the property names when you write the program,
there is no way you can use the . operator to access the properties of the portfolio object.
You can use the [] operator, however, because it uses a string value (which is dynamic and can
change at runtime), rather than an identifier (which is static and must be hardcoded in the
program), to name the property.

When an object is used this fashion, it is often called an associative array -- a data structure that
allows you to dynamically associate arbitrary values with arbitrary strings. JavaScript objects are
actually implemented internally as associative arrays. The . notation for accessing properties
makes them seem like the static objects of C++ and Java, and they work perfectly well in that
capacity. But they also have the powerful ability to associate values with arbitrary strings. In this
respect, JavaScript objects are much more like Perl arrays than C++ or Java objects.

Chapter 6 introduced the for/in loop. The real power of this JavaScript statement becomes
clear when we consider its use with associative arrays. To return to the stock portfolio example,
we might use the following code after the user has entered her portfolio and we are computing its
current total value:

var value = 0;

for (stock in portfolio) {

 // For each stock in the portfolio, get the per share value

 // and multiply it by the number of shares.

 value += get_share_value(stock) * portfolio[stock];

}

We cannot write this code without the for/in loop because the names of the stocks aren't
known in advance. This is the only way to extract those property names from the associative array
(or JavaScript object) named portfolio.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

8.7 Object Properties and Methods

As we discussed earlier, all objects in JavaScript inherit from the Object class. While more specialized classes,
such as the built-in String class or a user-defined Complex class, define properties and methods of their
objects, whatever their class, also support the properties and methods defined by the Object class. Because of
their universality, these properties and methods are of particular interest.

8.7.1 The constructor Property

Starting with JavaScript 1.1, every object has a constructor property that refers to the constructor function
used to initialize the object. For example, if I create an object o with the Complex() constructor, the property
o.constructor refers to Complex:

var o = new Complex(1,2);

o.constructor == Complex; // Evaluates to true

Each Complex object (or object of whatever type) does not have its own unique constructor property, of
course; instead, this property is inherited from the prototype object. As discussed earlier in this chapter,
JavaScript creates a prototype object for each constructor function you define and assigns that object to the
prototype property of the constructor. What I did not reveal earlier, however, is that the prototype object is not
initially empty. When created, it includes a constructor property that refers to the constructor function. That
is, for any function f, f.prototype.constructor is always equal to f (unless we set it to something else).

Since the constructor function defines the class of an object, the constructor property can be a powerful tool
for determining the type of any given object. For example, you might use code like the following to determine the
type of an unknown object:

if ((typeof o == "object") && (o.constructor == Date))

 // Then do something with the Date object...

The existence of the constructor property is not always guaranteed, however. The author of a class might
replace the prototype object of a constructor with an entirely new object, for example, and the new object might
not have a valid constructor property.

8.7.2 The toString() Method

The toString() method takes no arguments; it returns a string that somehow represents the type
value of the object on which it is invoked. JavaScript invokes this method of an object whenever it needs to
convert the object to a string. This occurs, for example, when you use the + operator to concatenate a string with
an object or when you pass an object to a method such as alert() or document.write().

The default toString() method is not very informative. For example, the following lines of code simply cause
the browser to display the string "[object Object]":[6]

[6] In client-side JavaScript in Netscape, if the language attribute of the <script> tag is explicitly set to "JavaScript1.2", the toString(
) method behaves differently: it displays the names and values of all the fields of the object, using object literal notation. This violates the
ECMAScript specification.

c = new Circle(1, 0, 0);

document.write(c);

Because this default method does not display much useful information, many classes define their own versions
of toString(). For example, when an array is converted to a string, we obtain a list of the array elements,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of toString(). For example, when an array is converted to a string, we obtain a list of the array elements,
themselves each converted to a string, and when a function is converted to a string, we obtain the source code
for the function.

The idea behind toString() is that each class of objects has its own particular string representation, so it
should define an appropriate toString() method to convert objects to that string form. Thus, when you
define a class, you should define a custom toString() method for it so that instances of the class can be
converted to meaningful strings. The string should contain information about the object being converted, as this
is useful for debugging purposes. If the string conversion is chosen carefully, it can also be useful in programs
themselves.

The following code shows a toString() method we might define for the Circle class of Example 8-5

Circle.prototype.toString = function () {

 return "[Circle of radius " + this.r + ", centered at ("

 + this.x + ", " + this.y + ").]";

}

With this toString() method defined, a typical Circle object might be converted to the string "[Circle of
1, centered at (0,0).]".

If you look back at Example 8-6, you'll see that it defines a toString() method for our Complex class of
complex numbers.

One interesting feature of the default toString() method defined by the Object class is that it reveals some
internal type information about built-in objects. This default toString() method always returns a string of the
form:

[object class]

class is the internal type of the object and usually corresponds to the name of the constructor function for the
object. For example, Array objects have a class of "Array", Function objects have a class of "Function", and
Date objects have a class of "Date". The built-in Math object has a class of "Math", and all Error
(including instances of the various Error subclasses) have a class of "Error". Client-side JavaScript objects and
any other objects defined by the JavaScript implementation have an implementation-defined class
"Window", "Document", or "Form"). User-defined objects, such as the Circle and Complex classes defined
earlier in this chapter, always have a class of "Object".

Note that this class value provides useful information that is not supplied by the typeof operator (which
returns either "Object" or "Function" for all objects). The class value provides information like that provided by
the constructor property described earlier, but the class value provides it in the form of a string, instead of
in the form of a constructor function. The only way to obtain this class value, however, is through the
toString() method defined by Object. Because classes often define their own versions of this method, we
cannot simply invoke the toString() method of an object:

o.toString() // May invoke a customized toString() method for the object

Instead, we have to refer explicitly to the default toString() function as the
Object.prototype.toString object and use the apply() method of the function to invoke it on
desired object:

Object.prototype.toString.apply(o); // Always invokes the default toString()

We can use this technique to define a function that provides enhanced "type of" functionality:

// An enhanced "type of" function. Returns a string that describes the

// type of x. Note that it returns "Object" for any user-defined object types.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// type of x. Note that it returns "Object" for any user-defined object types.

function Typeof(x) {

 // Start with the typeof operator

 var t = typeof x;

 // If the result is not vague, return it

 if (t != "object") return t;

 // Otherwise, x is an object. Get its class value to try to

 // find out what kind of object it is.

 var c = Object.prototype.toString.apply(x); // Returns "[object class]"

 c = c.substring(8, c.length-1); // Strip off "[object" and "]"

 return c;

}

8.7.3 The toLocaleString() Method

In ECMAScript v3 and JavaScript 1.5, the Object class defines a toLocaleString() method in addition to
its toString() method. The purpose of this method is to return a localized string representation of the object.
The default toLocaleString() method defined by Object doesn't do any localization itself; it always return
exactly the same thing as toString(). Subclasses, however, may define their own versions of
toLocaleString(). In ECMAScript v3, the Array, Date, and Number classes do define toLocaleString(
) methods that return localized values.

8.7.4 The valueOf() Method

The valueOf() method is much like the toString() method, but it is called when JavaScript needs to
convert an object to some primitive type other than a string -- typically, a number. Where possible, the function
should return a primitive value that somehow represents the value of the object referred to by the this

By definition, objects are not primitive values, so most objects do not have a primitive equivalent. Thus, the
default valueOf() method defined by the Object class performs no conversion and simply returns the object
on which it is invoked. Classes such as Number and Boolean have obvious primitive equivalents, so they
override the valueOf() method to return appropriate primitive values. This is why Number and Boolean
objects can behave so much like their equivalent primitive values.

Occasionally, you may define a class that has some reasonable primitive equivalent. In this case, you may want
to define a custom valueOf() method for the class. If you refer back to Example 8-6, you'll see that we
defined a valueOf() method for the Complex class. This method simply returned the real part of the complex
number. Thus, when a Complex object is used in a numeric context, it behaves as if it were a real number
without its imaginary component. For example, consider the following code:

var a = new Complex(5,4);

var b = new Complex(2,1);

var c = Complex.subtract(a,b); // c is the complex number {3,3}

var d = a - b; // d is the number 3

One note of caution about defining a valueOf() method: the valueOf() method can, in some

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

One note of caution about defining a valueOf() method: the valueOf() method can, in some
circumstances, take priority over the toString() method when converting an object to a string. Thus, when
you define a valueOf() method for a class, you may need to be more explicit about calling the toString(
) method when you want to force an object of that class to be converted to a string. To continue with the
Complex example:

alert("c = " + c); // Uses valueOf(); displays "c = 3"

alert("c = " + c.toString()); // Displays "c = {3,3}"

8.7.5 The hasOwnProperty() Method

The hasOwnProperty() method returns true if the object locally defines a noninherited property with the
name specified by the single string argument. Otherwise, it returns false. For example:

var o = new Object();

o.hasOwnProperty("undef"); // false: the property is not defined

o.hasOwnProperty("toString"); // false: toString is an inherited property

Math.hasOwnProperty("cos"); // true: the Math object has a cos property

8.7.6 The propertyIsEnumerable() Method

The propertyIsEnumerable() method returns true if the object defines a property with the name
specified by the single string argument to the method and if that property would be enumerated by a
loop. Otherwise, it returns false. For example:

var o = { x:1 };

o.propertyIsEnumerable("x"); // true: property exists and is enumerable

o.propertyIsEnumerable("y"); // false: property doesn't exist

o.propertyIsEnumerable("valueOf"); // false: property isn't enumerable

Note that the ECMAScript specification states that propertyIsEnumerable() considers only properties
defined directly by the object, not inherited properties. This unfortunate restriction makes the function less
useful, because a return value of false may mean either that the property is not enumerable or that it is
enumerable but is an inherited property.

8.7.7 The isPrototypeOf() Method

The isPrototypeOf() method returns true if the object is the prototype object of the argument. Otherwise,
it returns false. Using this method is similar to using the constructor property of an object. For

var o = new Object();

Object.prototype.isPrototypeOf(o); // true: o.constructor == Object

Object.isPrototypeOf(o); // false

o.isPrototypeOf(Object.prototype); // false

Function.prototype.isPrototypeOf(Object); // true: Object.constructor == Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 9. Arrays
Chapter 8 documented the JavaScript object type -- a composite data type that holds named
values. This chapter documents arrays -- a composite data type that holds numbered values.
Note that the arrays we'll discuss in this chapter are different from the associative arrays
described in the previous chapter. Associative arrays associate values with strings. The arrays
described in this chapter are just regular numeric arrays; they associate values with non-negative
integers.

Throughout this book, we often treat objects and arrays as distinct data types. This is a useful and
reasonable simplification; you can treat objects and arrays as separate types for most of your
JavaScript programming. To fully understand the behavior of objects and arrays, however, you
have to know the truth: an array is nothing more than an object with a thin layer of extra
functionality. We see this when we use the typeof operator: applied to an array value, it returns
the string "object". Note that the extra functionality of arrays was introduced in JavaScript 1.1.
Arrays are not supported in JavaScript 1.0.

This chapter documents basic array syntax, array programming techniques, and methods that
operate on arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1 Arrays and Array Elements

An array is a data type that contains or stores numbered values. Each numbered value is called an
element of the array, and the number assigned to an element is called its index. Because JavaScript is
an untyped language, an element of an array may be of any type, and different elements of the same
array may be of different types. Array elements may even contain other arrays, which allows you to
create data structures that are arrays of arrays.

9.1.1 Creating Arrays

In JavaScript 1.1 and later, arrays are created with the Array() constructor and the new operator.
You can invoke the Array() constructor in three distinct ways.

The first way is to call it with no arguments:

var a = new Array();

This method creates an empty array with no elements.

The second method of invoking the Array() constructor allows you to explicitly specify values for
the first n elements of an array:

var a = new Array(5, 4, 3, 2, 1, "testing, testing");

In this form, the constructor takes a list of arguments. Each argument specifies an element value and
may be of any type. Elements are assigned to the array starting with element 0. The length property
of the array is set to the number of arguments passed to the constructor.

The third way to invoke the Array() constructor is to call it with a single numeric argument, which
specifies a length:

var a = new Array(10);

This technique creates an array with the specified number of elements (each of which has the
undefined value) and sets the array's length property to the value specified.[1]

[1] In client-side JavaScript in Netscape, if the language attribute of the <script> tag is explicitly set to "JavaScript1.2", this
third form of the Array() constructor behaves like the second form: it creates an array of length one and initializes that
array element to the constructor argument. This does not conform to the ECMAScript standard.

Finally, array literals provide another way to create arrays. An array literal allows us to embed an array
value directly into a JavaScript program in the same way that we define a string literal by placing the
string text between quotation marks. To create an array literal, simply place a comma-separated list of
values between square brackets. For example:

var primes = [2, 3, 5, 7, 11];

var a = ['a', true, 4.78];

Array literals can contain object literals or other array literals:

var b = [[1,{x:1, y:2}], [2, {x:3, y:4}]];

Chapter 3 provides complete details on array literals.

9.1.2 Reading and Writing Array Elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You access an element of an array using the [] operator. A reference to the array should appear to
the left of the brackets. An arbitrary expression that has a non-negative integer value should be inside
the brackets. You can use this syntax to both read and write the value of an element of an array. Thus,
the following are all legal JavaScript statements:

value = a[0];

a[1] = 3.14;

i = 2;

a[i] = 3;

a[i + 1] = "hello";

a[a[i]] = a[0];

In some languages, the first element of an array is at index 1. In JavaScript (as in C, C++, and Java),
however, the first element of an array is at index 0.

As we saw in Chapter 8, the [] operator can also be used to access named object properties:

my['salary'] *= 2;

This is a clue that tells us that objects and arrays are fundamentally the same thing.

Note that array indexes must be integers greater than or equal to 0 and less than 232 -1. If you use a
number that is too large, a negative number, or a floating-point number (or a boolean, an object, or
other value), JavaScript converts it to a string and uses the resulting string as the name of an object
property, not as an array index. Thus, the following line creates a new property named "-1.23"; it does
not define a new array element:

a[-1.23] = true;

9.1.3 Adding New Elements to an Array

In languages such as C and Java, an array has a fixed number of elements that must be specified
when you create the array. This is not the case in JavaScript -- an array can have any number of
elements, and you can change the number of elements at any time.

To add a new element to an array, simply assign a value to it:

a[10] = 10;

Arrays in JavaScript may be sparse. This means that array indexes need not fall into a contiguous
range of numbers; a JavaScript implementation may allocate memory only for those array elements
that are actually stored in the array. Thus, when you execute the following lines of code, the JavaScript
interpreter will typically allocate memory only for array indexes 0 and 10,000, not for the 9,999 indexes
between:

a[0] = 1;

a[10000] = "this is element 10,000";

Note that array elements can also be added to objects:

var c = new Circle(1,2,3);

c[0] = "this is an array element of an object!"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

c[0] = "this is an array element of an object!"

This example merely defines a new object property named "0", however. Adding array elements to an
object does not make it an array. Arrays created with the Array() constructor or an array literal have
some special features, explained below, that objects do not share.

9.1.4 Array Length

All arrays, whether created with the Array() constructor or defined with an array literal, have a
special length property that specifies how many elements the array contains. More precisely, since
arrays can have undefined elements, the length property is always one larger than the largest
element number in the array. Unlike regular object properties, the length property of an array is
automatically updated to maintain this invariant when new elements are added to the array. The
following code illustrates:

var a = new Array(); // a.length == 0 (no elements defined)

a = new Array(10); // a.length == 10 (empty elements 0-9 defined)

a = new Array(1,2,3); // a.length == 3 (elements 0-2 defined)

a = [4, 5]; // a.length == 2 (elements 0 and 1 defined)

a[5] = -1; // a.length == 6 (elements 0, 1, and 5 defined)

a[49] = 0; // a.length == 50 (elements 0, 1, 5, and 49 defined)

Remember that array indexes must be less than 232 -1, which means that the largest possible value
for the length property is 232 -1.

Probably the most common use of the length property of an array is to allow us to loop through the
elements of an array:

var fruits = ["mango", "banana", "cherry", "pear"];

for(var i = 0; i < fruits.length; i++)

 alert(fruits[i]);

This example assumes, of course, that elements of the array are contiguous and begin at element 0. If
this were not the case, we would want to test that each array element was defined before using it:

for(var i = 0; i < fruits.length; i++)

 if (fruits[i] != undefined) alert(fruits[i]);

The length property of an array is a read/write value. If you set length to a value smaller than its
current value, the array is truncated to the new length; any elements that no longer fit are discarded
and their values are lost. If you make length larger than its current value, new, undefined elements
are added at the end of the array to increase it to the newly specified size.

Truncating an array by setting its length property is the only way that you can actually shorten an
array. If you use the delete operator to delete an array element, that element becomes undefined,
but the length property does not change.

Note that although objects can be assigned array elements, they do not have a length property. The
length property, with its special behavior, is the most important feature of arrays. The other features
that make arrays different from objects are the various methods defined by the Array class, which are
described in Section 9.2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.1.5 Multidimensional Arrays

JavaScript does not support true multidimensional arrays, but it does allow you to approximate them
quite nicely with arrays of arrays. To access a data element in an array of arrays, simply use the []
operator twice. For example, suppose the variable matrix is an array of arrays of numbers. Every
element matrix[x] is an array of numbers. To access a particular number within this array, you
would write matrix[x][y].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

9.2 Array Methods

In addition to the [] operator, arrays can be manipulated through various methods provided by
the Array class. The following sections introduce these methods. Many of the methods were
inspired in part by the Perl programming language; Perl programmers may find them comfortingly
familiar. As usual, this is an overview only; complete details can be found in the core reference
section of this book.

9.2.1 join()

The Array.join() method converts all the elements of an array to strings and concatenates
them. You can specify an optional string that is used to separate the elements in the resulting
string. If no separator string is specified, a comma is used. For example, the following lines of
code produce the string "1,2,3":

var a = [1, 2, 3]; // Create a new array with these three elements

var s = a.join(); // s == "1,2,3"

The following invocation specifies the optional separator to produce a slightly different result:

s = a.join(", "); // s == "1, 2, 3"

Notice the space after the comma. The Array.join() method is the inverse of the
String.split() method, which creates an array by breaking up a string into pieces.

9.2.2 reverse()

The Array.reverse() method reverses the order of the elements of an array and returns the
reversed array. It does this in place -- in other words, it doesn't create a new array with the
elements rearranged, but instead rearranges them in the already existing array. For example, the
following code, which uses the reverse() and join() methods, produces the string "3,2,1":

var a = new Array(1,2,3); // a[0] = 1, a[1] = 2, a[2] = 3

a.reverse(); // now a[0] = 3, a[1] = 2, a[2] = 1

var s = a.join(); // s == "3,2,1"

9.2.3 sort()

Array.sort() sorts the elements of an array in place and returns the sorted array. When
sort() is called with no arguments, it sorts the array elements in alphabetical order
(temporarily converting them to strings to perform the comparison, if necessary):

var a = new Array("banana", "cherry", "apple");

a.sort();

var s = a.join(", "); // s == "apple, banana, cherry"

If an array contains undefined elements, they are sorted to the end of the array.

To sort an array into some order other than alphabetical, you must pass a comparison function as
an argument to sort(). This function decides which of its two arguments should appear first in

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

an argument to sort(). This function decides which of its two arguments should appear first in
the sorted array. If the first argument should appear before the second, the comparison function
should return a number less than zero. If the first argument should appear after the second in the
sorted array, the function should return a number greater than zero. And if the two values are
equivalent (i.e., if their order is irrelevant), the comparison function should return 0. So, for
example, to sort array elements into numerical rather than alphabetical order, you might do this:

var a = [33, 4, 1111, 222];

a.sort(); // Alphabetical order: 1111, 222, 33, 4

a.sort(function(a,b) { // Numerical order: 4, 33, 222, 1111

 return a-b; // Returns < 0, 0, or > 0, depending on order

 });

Note the convenient use of a function literal in this code. Since the comparison function is used
only once, there is no need to give it a name.

As another example of sorting array items, you might perform a case-insensitive alphabetical sort
on an array of strings by passing a comparison function that converts both of its arguments to
lowercase (with the toLowerCase() method) before comparing them. You can probably think
of other comparison functions that sort numbers into various esoteric orders: reverse numerical
order, odd numbers before even numbers, etc. The possibilities become more interesting, of
course, when the array elements you are comparing are objects, rather than simple types like
numbers or strings.

9.2.4 concat()

The Array.concat() method creates and returns a new array that contains the elements of
the original array on which concat() was invoked, followed by each of the arguments to
concat(). If any of these arguments is itself an array, it is flattened and its elements are added
to the returned array. Note, however, that concat() does not recursively flatten arrays of
arrays. Here are some examples:

var a = [1,2,3];

a.concat(4, 5) // Returns [1,2,3,4,5]

a.concat([4,5]); // Returns [1,2,3,4,5]

a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]

a.concat(4, [5,[6,7]]) // Returns [1,2,3,4,5,[6,7]]

9.2.5 slice()

The Array.slice() method returns a slice, or subarray, of the specified array. Its two
arguments specify the start and end of the slice to be returned. The returned array contains the
element specified by the first argument and all subsequent elements up to, but not including, the
element specified by the second argument. If only one argument is specified, the returned array
contains all elements from the start position to the end of the array. If either argument is negative,
it specifies an array element relative to the last element in the array. An argument of -1, for
example, specifies the last element in the array, and an argument of -3 specifies the third from
last element of the array. Here are some examples:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var a = [1,2,3,4,5];

a.slice(0,3); // Returns [1,2,3]

a.slice(3); // Returns [4,5]

a.slice(1,-1); // Returns [2,3,4]

a.slice(-3,-2); // Returns [3]

9.2.6 splice()

The Array.splice() method is a general-purpose method for inserting or removing elements
from an array. splice() modifies the array in place; it does not return a new array, as slice(
) and concat() do. Note that splice() and slice() have very similar names but
perform substantially different operations.

splice() can delete elements from an array, insert new elements into an array, or perform
both operations at the same time. Array elements that appear after the insertion or deletion are
moved as necessary so that they remain contiguous with the rest of the array. The first argument
to splice() specifies the array position at which the insertion and/or deletion is to begin. The
second argument specifies the number of elements that should be deleted from (spliced out of)
the array. If this second argument is omitted, all array elements from the start element to the end
of the array are removed. splice() returns an array of the deleted elements, or an empty array
if no elements were deleted. For example:

var a = [1,2,3,4,5,6,7,8];

a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]

a.splice(1,2); // Returns [2,3]; a is [1,4]

a.splice(1,1); // Returns [4]; a is [1]

The first two arguments to splice() specify which array elements are to be deleted. These
arguments may be followed by any number of additional arguments that specify elements to be
inserted into the array, starting at the position specified by the first argument. For example:

var a = [1,2,3,4,5];

a.splice(2,0,'a','b'); // Returns []; a is [1,2,'a','b',3,4,5]

a.splice(2,2,[1,2],3); // Returns ['a','b']; a is [1,2,[1,2],3,3,4,5]

Note that, unlike concat(), splice() does not flatten array arguments that it inserts. That is,
if it is passed an array to insert, it inserts the array itself, not the elements of that array.

9.2.7 push() and pop()

The push() and pop() methods allow us to work with arrays as if they were stacks. The
push() method appends one or more new elements to the end of an array and returns the new
length of the array.[2] The pop() method does the reverse: it deletes the last element of an
array, decrements the array length, and returns the value that it removed. Note that both of these
methods modify the array in place rather than producing a modified copy of the array. The
combination of push() and pop() allows us to use a JavaScript array to implement a first in,
last out stack. For example:

[2] In Netscape, when the language attribute of the <script> tag is explicitly set to "JavaScript1.2", push()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[2] In Netscape, when the language attribute of the <script> tag is explicitly set to "JavaScript1.2", push()
returns the last value it appends to the array, rather than the new length of the array.

var stack = []; // stack: []

stack.push(1,2); // stack: [1,2] Returns 2

stack.pop(); // stack: [1] Returns 2

stack.push(3); // stack: [1,3] Returns 2

stack.pop(); // stack: [1] Returns 3

stack.push([4,5]); // stack: [1,[4,5]] Returns 2

stack.pop() // stack: [1] Returns [4,5]

stack.pop(); // stack: [] Returns 1

9.2.8 unshift() and shift()

The unshift() and shift() methods behave much like push() and pop(), except that
they insert and remove elements from the beginning of an array, rather than from the end.
unshift() adds an element or elements to the beginning of the array, shifts the existing array
elements up to higher indexes to make room, and returns the new length of the array. shift()
removes and returns the first element of the array, shifting all subsequent elements down one
place to occupy the newly vacant space at the start of the array. For example:

var a = []; // a:[]

a.unshift(1); // a:[1] Returns: 1

a.unshift(22); // a:[22,1] Returns: 2

a.shift(); // a:[1] Returns: 22

a.unshift(3,[4,5]); // a:[3,[4,5],1] Returns: 3

a.shift(); // a:[[4,5],1] Returns: 3

a.shift(); // a:[1] Returns: [4,5]

a.shift(); // a:[] Returns: 1

Note the possibly surprising behavior of unshift() when it's invoked with multiple arguments.
Instead of being inserted into the array one at a time, arguments are inserted all at once (as with
the splice() method). This means that they appear in the resulting array in the same order in
which they appeared in the argument list. Had the elements been inserted one at a time, their
order would have been reversed.

9.2.9 toString() and toLocaleString()

An array, like any JavaScript object, has a toString() method. For an array, this method
converts each of its elements to a string (calling the toString() methods of its elements, if
necessary) and outputs a comma-separated list of those strings. Note that the output does not
include square brackets or any other sort of delimiter around the array value. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[1,2,3].toString() // Yields '1,2,3'

["a", "b", "c"].toString() // Yields 'a,b,c'

[1, [2,'c']].toString() // Yields '1,2,c'

Note that toString() returns the same string the join() method does when it is invoked
with no arguments.[3]

[3] In Netscape, when the language attribute of the <script> tag is set to "JavaScript1.2", toString() behaves
in a more complex way. In this case, it converts arrays to strings that include square brackets, and includes quotation
marks around array elements that are strings, so that the resulting strings are valid array literal expressions.

toLocaleString() is the localized version of toString(). It converts each array element
to a string by calling the toLocaleString() method of the element, and then it concatenates
the resulting strings using a locale-specific (and implementation-defined) separator string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 10. Pattern Matching with Regular Expressions
A regular expression is an object that describes a pattern of characters. The JavaScript RegExp
class represents regular expressions, and both String and RegExp define methods that use
regular expressions to perform powerful pattern-matching and search-and-replace functions on
text.[1]

[1] The term "regular expression" is an obscure one that dates back many years. The syntax used to describe a textual
pattern is indeed a type of expression. However, as we'll see, that syntax is far from regular! A regular expression is
sometimes called a "regexp" or even an "RE."

JavaScript regular expressions were standardized in ECMAScript v3. JavaScript 1.2 implements
a subset of the regular expression features required by ECMAScript v3, and JavaScript 1.5
implements the full standard. JavaScript regular expressions are strongly based on the regular
expression facilities of the Perl programming language. Roughly speaking, we can say that
JavaScript 1.2 implements Perl 4 regular expressions, and JavaScript 1.5 implements a large
subset of Perl 5 regular expressions.

This chapter begins by defining the syntax that regular expressions use to describe textual
patterns. Then it moves on to describe the String and RegExp methods that use regular
expressions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.1 Defining Regular Expressions

In JavaScript, regular expressions are represented by RegExp objects. RegExp objects may be
created with the RegExp() constructor, of course, but they are more often created using a special
literal syntax. Just as string literals are specified as characters within quotation marks, regular
expression literals are specified as characters within a pair of slash (/) characters. Thus, your
JavaScript code may contain lines like this:

var pattern = /s$/;

This line creates a new RegExp object and assigns it to the variable pattern. This particular
RegExp object matches any string that ends with the letter "s". (We'll talk about the grammar for
defining patterns shortly.) This regular expression could have equivalently been defined with the
RegExp() constructor like this:

var pattern = new RegExp("s$");

Creating a RegExp object, either literally or with the RegExp() constructor, is the easy part. The
more difficult task is describing the desired pattern of characters using regular expression syntax.
JavaScript adopts a fairly complete subset of the regular expression syntax used by Perl, so if you
are an experienced Perl programmer, you already know how to describe patterns in JavaScript.

Regular expression pattern specifications consist of a series of characters. Most characters,
including all alphanumeric characters, simply describe characters to be matched literally. Thus, the
regular expression /java/ matches any string that contains the substring "java". Other characters
in regular expressions are not matched literally, but have special significance. For example, the
regular expression /s$/ contains two characters. The first, "s", matches itself literally. The second,
"$", is a special metacharacter that matches the end of a string. Thus, this regular expression
matches any string that contains the letter "s" as its last character.

The following sections describe the various characters and metacharacters used in JavaScript
regular expressions. Note, however, that a complete tutorial on regular expression grammar is
beyond the scope of this book. For complete details of the syntax, consult a book on Perl, such as
Programming Perl, by Larry Wall, Tom Christiansen, and Jon Orwant (O'Reilly). Mastering Regular
Expressions, by Jeffrey E.F. Friedl (O'Reilly), is another excellent source of information on regular
expressions.

10.1.1 Literal Characters

As we've seen, all alphabetic characters and digits match themselves literally in regular
expressions. JavaScript regular expression syntax also supports certain nonalphabetic characters
through escape sequences that begin with a backslash (\). For example, the sequence \n matches
a literal newline character in a string. Table 10-1 lists these characters.

Table 10-1. Regular expression literal characters
Character Matches

Alphanumeric
character Itself

\0 The NUL character (\u0000)
\t Tab (\u0009)
\n Newline (\u000A)
\v Vertical tab (\u000B)
\f Form feed (\u000C)
\r Carriage return (\u000D)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Carriage return (\u000D)

\xnn The Latin character specified by the hexadecimal number nn; for example, \x0A
is the same as \n

\uxxxx The Unicode character specified by the hexadecimal number xxxx; for example,
\u0009 is the same as \t

\cX The control character ^X; for example, \cJ is equivalent to the newline
character \n

A number of punctuation characters have special meanings in regular expressions. They are:

^ $. * + ? = ! : | \ / () [] { }

We'll learn the meanings of these characters in the sections that follow. Some of these characters
have special meaning only within certain contexts of a regular expression and are treated literally in
other contexts. As a general rule, however, if you want to include any of these punctuation
characters literally in a regular expression, you must precede them with a \. Other punctuation
characters, such as quotation marks and @, do not have special meaning and simply match
themselves literally in a regular expression.

If you can't remember exactly which punctuation characters need to be escaped with a backslash,
you may safely place a backslash before any punctuation character. On the other hand, note that
many letters and numbers have special meaning when preceded by a backslash, so any letters or
numbers that you want to match literally should not be escaped with a backslash. To include a
backslash character literally in a regular expression, you must escape it with a backslash, of course.
For example, the following regular expression matches any string that includes a backslash: /\\/.

10.1.2 Character Classes

Individual literal characters can be combined into character classes by placing them within square
brackets. A character class matches any one character that is contained within it. Thus, the regular
expression /[abc]/ matches any one of the letters a, b, or c. Negated character classes can also
be defined -- these match any character except those contained within the brackets. A negated
character class is specified by placing a caret (^) as the first character inside the left bracket. The
regexp /[^abc]/ matches any one character other than a, b, or c. Character classes can use a
hyphen to indicate a range of characters. To match any one lowercase character from the Latin
alphabet, use /[a-z]/, and to match any letter or digit from the Latin alphabet, use /[a-zA-Z0-
9]/.

Because certain character classes are commonly used, the JavaScript regular expression syntax
includes special characters and escape sequences to represent these common classes. For
example, \s matches the space character, the tab character, and any other Unicode whitespace
character, and \S matches any character that is not Unicode whitespace. Table 10-2 lists these
characters and summarizes character class syntax. (Note that several of these character class
escape sequences match only ASCII characters and have not been extended to work with Unicode
characters. You can explicitly define your own Unicode character classes; for example, /[\u0400-
04FF]/ matches any one Cyrillic character.)

Table 10-2. Regular expression character classes
Character Matches
[...] Any one character between the brackets.
[^...] Any one character not between the brackets.
. Any character except newline or another Unicode line terminator.
\w Any ASCII word character. Equivalent to [a-zA-Z0-9_].
\W Any character that is not an ASCII word character. Equivalent to [^a-zA-Z0-9_].
\s Any Unicode whitespace character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\S Any character that is not Unicode whitespace. Note that \w and \S are not the same
thing.

\d Any ASCII digit. Equivalent to [0-9].
\D Any character other than an ASCII digit. Equivalent to [^0-9].
[\b] A literal backspace (special case).

Note that the special character class escapes can be used within square brackets. \s matches any
whitespace character and \d matches any digit, so /[\s\d]/ matches any one whitespace
character or digit. Note that there is one special case. As we'll see later, the \b escape has a
special meaning. When used within a character class, however, it represents the backspace
character. Thus, to represent a backspace character literally in a regular expression, use the
character class with one element: /[\b]/.

10.1.3 Repetition

With the regular expression syntax we have learned so far, we can describe a two-digit number as
/\d\d/ and a four-digit number as /\d\d\d\d/. But we don't have any way to describe, for
example, a number that can have any number of digits or a string of three letters followed by an
optional digit. These more complex patterns use regular expression syntax that specifies how many
times an element of a regular expression may be repeated.

The characters that specify repetition always follow the pattern to which they are being applied.
Because certain types of repetition are quite commonly used, there are special characters to
represent these cases. For example, + matches one or more occurrences of the previous pattern.
Table 10-3 summarizes the repetition syntax. The following lines show some examples:

/\d{2,4}/ // Match between two and four digits

/\w{3}\d?/ // Match exactly three word characters and an optional digit

/\s+java\s+/ // Match "java" with one or more spaces before and after

/[^"]*/ // Match zero or more non-quote characters

Table 10-3. Regular expression repetition characters
Character Meaning
{n,m} Match the previous item at least n times but no more than m times.
{n,} Match the previous item n or more times.
{n} Match exactly n occurrences of the previous item.

? Match zero or one occurrences of the previous item. That is, the previous item is
optional. Equivalent to {0,1}.

+ Match one or more occurrences of the previous item. Equivalent to {1,}.
* Match zero or more occurrences of the previous item. Equivalent to {0,}.

Be careful when using the * and ? repetition characters. Since these characters may match zero
instances of whatever precedes them, they are allowed to match nothing. For example, the regular
expression /a*/ actually matches the string "bbbb", because the string contains zero occurrences
of the letter a!

10.1.3.1 Non-greedy repetition

The repetition characters listed in Table 10-3 match as many times as possible while still allowing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The repetition characters listed in Table 10-3 match as many times as possible while still allowing
any following parts of the regular expression to match. We say that the repetition is "greedy." It is
also possible (in JavaScript 1.5 and later -- this is one of the Perl 5 features not implemented in
JavaScript 1.2) to specify that repetition should be done in a non-greedy way. Simply follow the
repetition character or characters with a question mark: ??, +?, *?, or even {1,5}?. For example,
the regular expression /a+/ matches one or more occurrences of the letter a. When applied to the
string "aaa", it matches all three letters. But /a+?/ matches one or more occurrences of the letter a,
matching as few characters as necessary. When applied to the same string, this pattern matches
only the first letter a.

Using non-greedy repetition may not always produce the results you expect. Consider the pattern
/a*b/, which matches zero or more letters a followed by the letter b. When applied to the string
"aaab", it matches the entire string. Now let's use the non-greedy version: /a*?b/. This should
match the letter b preceded by the fewest number of a's possible. When applied to the same string
"aaab", you might expect it to match only the last letter b. In fact, however, this pattern matches the
entire string as well, just like the greedy version of the pattern. This is because regular expression
pattern matching is done by finding the first position in the string at which a match is possible. The
non-greedy version of our pattern does match at the first character of the string, so this match is
returned; matches at subsequent characters are never even considered.

10.1.4 Alternation, Grouping, and References

The regular expression grammar includes special characters for specifying alternatives, grouping
subexpressions, and referring to previous subexpressions. The | character separates alternatives.
For example, /ab|cd|ef/ matches the string "ab" or the string "cd" or the string "ef". And
/\d{3}|[a-z]{4}/ matches either three digits or four lowercase letters.

Note that alternatives are considered left to right until a match is found. If the left alternative
matches, the right alternative is ignored, even if it would have produced a "better" match. Thus,
when the pattern /a|ab/ is applied to the string "ab", it matches only the first letter.

Parentheses have several purposes in regular expressions. One purpose is to group separate items
into a single subexpression, so that the items can be treated as a single unit by |, *, +, ?, and so
on. For example, /java(script)?/ matches "java" followed by the optional "script". And
/(ab|cd)+|ef)/ matches either the string "ef" or one or more repetitions of either of the strings
"ab" or "cd".

Another purpose of parentheses in regular expressions is to define subpatterns within the complete
pattern. When a regular expression is successfully matched against a target string, it is possible to
extract the portions of the target string that matched any particular parenthesized subpattern. (We'll
see how these matching substrings are obtained later in the chapter.) For example, suppose we are
looking for one or more lowercase letters followed by one or more digits. We might use the pattern
/[a-z]+\d+/. But suppose we only really care about the digits at the end of each match. If we put
that part of the pattern in parentheses (/[a-z]+(\d+)/), we can extract the digits from any
matches we find, as explained later.

A related use of parenthesized subexpressions is to allow us to refer back to a subexpression later
in the same regular expression. This is done by following a \ character by a digit or digits. The digits
refer to the position of the parenthesized subexpression within the regular expression. For example,
\1 refers back to the first subexpression and \3 refers to the third. Note that, because
subexpressions can be nested within others, it is the position of the left parenthesis that is counted.
In the following regular expression, for example, the nested subexpression ([Ss]cript) is
referred to as \2:

/([Jj]ava([Ss]cript)?)\sis\s(fun\w*)/

A reference to a previous subexpression of a regular expression does not refer to the pattern for

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A reference to a previous subexpression of a regular expression does not refer to the pattern for
that subexpression, but rather to the text that matched the pattern. Thus, references can be used to
enforce a constraint that separate portions of a string contain exactly the same characters. For
example, the following regular expression matches zero or more characters within single or double
quotes. However, it does not require the opening and closing quotes to match (i.e., both single
quotes or both double quotes):

/['"][^'"]*['"]/

To require the quotes to match, we can use a reference:

/(['"])[^'"]*\1/

The \1 matches whatever the first parenthesized subexpression matched. In this example, it
enforces the constraint that the closing quote match the opening quote. This regular expression
does not allow single quotes within double-quoted strings or vice versa. It is not legal to use a
reference within a character class, so we cannot write:

/(['"])[^\1]*\1/

Later in this chapter, we'll see that this kind of reference to a parenthesized sub-expression is a
powerful feature of regular expression search-and-replace operations.

In JavaScript 1.5 (but not JavaScript 1.2), it is possible to group items in a regular expression
without creating a numbered reference to those items. Instead of simply grouping the items within (
and), begin the group with (?: and end it with). Consider the following pattern, for example:

/([Jj]ava(?:[Ss]cript)?)\sis\s(fun\w*)/

Here, the subexpression (?:[Ss]cript) is used simply for grouping, so the ? repetition character
can be applied to the group. These modified parentheses do not produce a reference, so in this
regular expression, \2 refers to the text matched by (fun\w*).

Table 10-4 summarizes the regular expression alternation, grouping, and referencing operators.

Table 10-4. Regular expression alternation, grouping, and reference characters
Character Meaning

| Alternation. Match either the subexpressions to the left or the subexpression to the
right.

(...) Grouping. Group items into a single unit that can be used with *, +, ?, |, and so on.
Also remember the characters that match this group for use with later references.

(?:...) Grouping only. Group items into a single unit, but do not remember the characters that
match this group.

\n
Match the same characters that were matched when group number n was first matched.
Groups are subexpressions within (possibly nested) parentheses. Group numbers are
assigned by counting left parentheses from left to right. Groups formed with (?: are not
numbered.

10.1.5 Specifying Match Position

We've seen that many elements of a regular expression match a single character in a string. For
example, \s matches a single character of whitespace. Other regular expression elements match
the positions between characters, instead of actual characters. \b , for example, matches a word
boundary -- the boundary between a \w (ASCII word character) and a \W (non-word character), or
the boundary between an ASCII word character and the beginning or end of a string.[2] Elements like
\b do not specify any characters to be used in a matched string; what they do specify, however, is
legal positions at which a match can occur. Sometimes these elements are called regular
expression anchors, because they anchor the pattern to a specific position in the search string. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

expression anchors, because they anchor the pattern to a specific position in the search string. The
most commonly used anchor elements are ^, which ties the pattern to the beginning of the string,
and $, which anchors the pattern to the end of the string.

[2] Except within a character class (square brackets), where \b matches the backspace character.

For example, to match the word "JavaScript" on a line by itself, we could use the regular expression
/^JavaScript$/. If we wanted to search for "Java" used as a word by itself (not as a prefix, as it
is in "JavaScript"), we might try the pattern /\sJava\s/, which requires a space before and after
the word. But there are two problems with this solution. First, it does not match "Java" if that word
appears at the beginning or the end of a string, but only if it appears with space on either side.
Second, when this pattern does find a match, the matched string it returns has leading and trailing
spaces, which is not quite what we want. So instead of matching actual space characters with \s,
we instead match (or anchor to) word boundaries with \b. The resulting expression is /\bJava\b/
The element \B anchors the match to a location that is not a word boundary. Thus, the pattern
/\B[Ss]cript/ matches "JavaScript" and "postscript", but not "script" or "Scripting".

In JavaScript 1.5 (but not JavaScript 1.2), you can also use arbitrary regular expressions as anchor
conditions. If you include an expression within (?= and) characters, it is a look-ahead assertion,
and it specifies that the following characters must match, without actually matching them. For
example, to match the name of a common programming language, but only if it is followed by a
colon, you could use /[Jj]ava([Ss]cript)?(?=\:)/. This pattern matches the word
"JavaScript" in "JavaScript: The Definitive Guide", but it does not match "Java" in "Java in a
Nutshell" because it is not followed by a colon.

If you instead introduce an assertion with (?! , it is a negative look-ahead assertion, which specifies
that the following characters must not match. For example, /Java(?!Script)([A-Z]\w*)/
matches "Java" followed by a capital letter and any number of additional ASCII word characters, as
long as "Java" is not followed by "Script". It matches "JavaBeans" but not "Javanese", and it
matches "JavaScrip" but not "JavaScript" or "JavaScripter".

Table 10-5 summarizes regular expression anchors.

Table 10-5. Regular expression anchor characters
Character Meaning
^ Match the beginning of the string and, in multiline searches, the beginning of a line.
$ Match the end of the string and, in multiline searches, the end of a line.

\b
Match a word boundary. That is, match the position between a \w character and a \W
character or between a \w character and the beginning or end of a string. (Note,
however, that [\b] matches backspace.)

\B Match a position that is not a word boundary.

(?=p) A positive look-ahead assertion. Require that the following characters match the pattern
p, but do not include those characters in the match.

(?!p) A negative look-ahead assertion. Require that the following characters do not match the
pattern p.

10.1.6 Flags

There is one final element of regular expression grammar. Regular expression flags specify high-
level pattern-matching rules. Unlike the rest of regular expression syntax, flags are specified outside
of the / characters; instead of appearing within the slashes, they appear following the second slash.
JavaScript 1.2 supports two flags. The i flag specifies that pattern matching should be case-
insensitive. The g flag specifies that pattern matching should be global -- that is, all matches within
the searched string should be found. Both flags may be combined to perform a global case-
insensitive match.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, to do a case-insensitive search for the first occurrence of the word "java" (or "Java",
"JAVA", etc.), we could use the case-insensitive regular expression /\bjava\b/i. And to find all
occurrences of the word in a string, we would add the g flag: /\bjava\b/gi.

JavaScript 1.5 supports an additional flag: m. The m flag performs pattern matching in multiline
mode. In this mode, if the string to be searched contains newlines, the ^ and $ anchors match the
beginning and end of a line in addition to matching the beginning and end of a string. For example,
the pattern /Java$/im matches "java" as well as "Java\nis fun".

Table 10-6 summarizes these regular expression flags. Note that we'll see more about the g flag
later in this chapter, when we consider the String and RegExp methods used to actually perform
matches.

Table 10-6. Regular expression flags
Character Meaning
i Perform case-insensitive matching.

g Perform a global match. That is, find all matches rather than stopping after the first
match.

m Multiline mode. ^ matches beginning of line or beginning of string, and $ matches end
of line or end of string.

10.1.7 Perl RegExp Features Not Supported in JavaScript

We've said that ECMAScript v3 specifies a relatively complete subset of the regular expression
facilities from Perl 5. Advanced Perl features that are not supported by ECMAScript include the
following:

The s (single-line mode) and x (extended syntax) flags

The \a, \e, \l, \u, \L, \U, \E, \Q, \A, \Z, \z, and \G escape sequences

The (?<= positive look-behind anchor and the (?<! negative look-behind anchor

The (?# comment and the other extended (? syntaxes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.2 String Methods for Pattern Matching

Until now, we've been discussing the grammar used to create regular expressions, but we haven't
examined how those regular expressions can actually be used in JavaScript code. In this section, we
discuss methods of the String object that use regular expressions to perform pattern matching and
search-and-replace operations. In the sections that follow this one, we'll continue the discussion of
pattern matching with JavaScript regular expressions by discussing the RegExp object and its methods
and properties. Note that the discussion that follows is merely an overview of the various methods and
properties related to regular expressions. As usual, complete details can be found in the core reference
section of this book.

Strings support four methods that make use of regular expressions. The simplest is search(). This
method takes a regular expression argument and returns either the character position of the start of
first matching substring, or -1 if there is no match. For example, the following call returns 4:

"JavaScript".search(/script/i);

If the argument to search() is not a regular expression, it is first converted to one by passing it to the
RegExp constructor. search() does not support global searches -- it ignores the g flag of its regular
expression argument.

The replace() method performs a search-and-replace operation. It takes a regular expression as its
first argument and a replacement string as its second argument. It searches the string on which it is
called for matches with the specified pattern. If the regular expression has the g flag set, the replace(
) method replaces all matches in the string with the replacement string; otherwise, it replaces only the
first match it finds. If the first argument to replace() is a string rather than a regular expression, the
method searches for that string literally rather than converting it to a regular expression with the RegExp(
) constructor, as search() does. As an example, we could use replace() as follows to provide
uniform capitalization of the word "JavaScript" throughout a string of text:

// No matter how it is capitalized, replace it with the correct capitalization

text.replace(/javascript/gi, "JavaScript");

replace() is more powerful than this, however. Recall that parenthesized subexpressions of a regular
expression are numbered from left to right and that the regular expression remembers the text that each
subexpression matches. If a $ followed by a digit appears in the replacement string, replace()
replaces those two characters with the text that matched the specified subexpression. This is a very
useful feature. We can use it, for example, to replace straight quotes in a string with curly quotes,
simulated with ASCII characters:

// A quote is a quotation mark, followed by any number of

// non-quotation-mark characters (which we remember), followed

// by another quotation mark.

var quote = /"([^"]*)"/g;

// Replace the straight quotation marks with "curly quotes,"

// and leave the contents of the quote (stored in $1) unchanged.

text.replace(quote, "``$1''");

The replace() method has other important features as well, which are described in the
"String.replace()" reference page in the core reference section. Most notably, the second argument to
replace() can be a function that dynamically computes the replacement string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replace() can be a function that dynamically computes the replacement string.

The match() method is the most general of the String regular expression methods. It takes a regular
expression as its only argument (or converts its argument to a regular expression by passing it to the
RegExp() constructor) and returns an array that contains the results of the match. If the regular
expression has the g flag set, the method returns an array of all matches that appear in the string. For
example:

"1 plus 2 equals 3".match(/\d+/g) // returns ["1", "2", "3"]

If the regular expression does not have the g flag set, match() does not do a global search; it simply
searches for the first match. However, match() returns an array even when it does not perform a
global search. In this case, the first element of the array is the matching string, and any remaining
elements are the parenthesized subexpressions of the regular expression. Thus, if match() returns an
array a, a[0] contains the complete match, a[1] contains the substring that matched the first
parenthesized expression, and so on. To draw a parallel with the replace() method, a[n] holds the
contents of $n.

For example, consider parsing a URL with the following code:

var url = /(\w+):\/\/([\w.]+)\/(\S*)/;

var text = "Visit my home page at http://www.isp.com/~david";

var result = text.match(url);

if (result != null) {

 var fullurl = result[0]; // Contains "http://www.isp.com/~david"

 var protocol = result[1]; // Contains "http"

 var host = result[2]; // Contains "www.isp.com"

 var path = result[3]; // Contains "~david"

}

Finally, there is one more feature of the match() method that you should know about. The array it
returns has a length property, as all arrays do. When match() is invoked on a nonglobal regular
expression, however, the returned array also has two other properties: the index property, which
contains the character position within the string at which the match begins; and the input property,
which is a copy of the target string. So in the previous code, the value of the result.index property
would be 21, since the matched URL begins at character position 21 in the text. The result.input
property would hold the same string as the text variable. For a regular expression r that does not have
the g flag set, calling s.match(r) returns the same value as r.exec(s). We'll discuss the
RegExp.exec() method a little later in this chapter.

The last of the regular expression methods of the String object is split(). This method breaks the
string on which it is called into an array of substrings, using the argument as a separator. For example:

"123,456,789".split(","); // Returns ["123","456","789"]

The split() method can also take a regular expression as its argument. This ability makes the
method more powerful. For example, we can now specify a separator character that allows an arbitrary
amount of whitespace on either side:

"1,2, 3 , 4 ,5".split(/\s*,\s*/); // Returns ["1","2","3","4","5"]

The split() method has other features as well. See the "String.split()" entry in the core reference
section for complete details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

10.3 The RegExp Object

As mentioned at the beginning of this chapter, regular expressions are represented as RegExp
objects. In addition to the RegExp() constructor, RegExp objects support three methods and a
number of properties. An unusual feature of the RegExp class is that it defines both class (or static)
properties and instance properties. That is, it defines global properties that belong to the RegExp()
constructor as well as other properties that belong to individual RegExp objects. RegExp pattern-
matching methods and properties are described in the next two sections.

The RegExp() constructor takes one or two string arguments and creates a new RegExp object. The
first argument to this constructor is a string that contains the body of the regular expression -- the text
that would appear within slashes in a regular expression literal. Note that both string literals and
regular expressions use the \ character for escape sequences, so when you pass a regular
expression to RegExp() as a string literal, you must replace each \ character with \\. The second
argument to RegExp() is optional. If supplied, it indicates the regular expression flags. It should be
g, i, m, or a combination of those letters. For example:

// Find all five digit numbers in a string. Note the double \\ in this case.

var zipcode = new RegExp("\\d{5}", "g");

The RegExp() constructor is useful when a regular expression is being dynamically created and thus
cannot be represented with the regular expression literal syntax. For example, to search for a string
entered by the user, a regular expression must be created at runtime with RegExp().

10.3.1 RegExp Methods for Pattern Matching

RegExp objects define two methods that perform pattern-matching operations; they behave similarly to
the String methods described earlier. The main RegExp pattern-matching method is exec(). It is
similar to the String match() method described above, except that it is a RegExp method that takes
a string, rather than a String method that takes a RegExp. The exec() method executes a regular
expression on the specified string. That is, it searches the string for a match. If it finds none, it returns
null. If it does find one, however, it returns an array just like the array returned by the match()
method for nonglobal searches. Element 0 of the array contains the string that matched the regular
expression, and any subsequent array elements contain the substrings that matched any
parenthesized subexpressions. Furthermore, the index property contains the character position at
which the match occurred, and the input property refers to the string that was searched.

Unlike the match() method, exec() returns the same kind of array whether or not the regular
expression has the global g flag. Recall that match() returns an array of matches when passed a
global regular expression. exec(), by contrast, always returns a single match and provides complete
information about that match. When exec() is called for a regular expression that has the g flag, it
sets the lastIndex property of the regular expression object to the character position immediately
following the matched substring. When exec() is invoked a second time for the same regular
expression, it begins its search at the character position indicated by the lastIndex property. If
exec() does not find a match, it resets lastIndex to 0. (You can also set lastIndex to 0 at any
time, which you should do whenever you quit a search before you find the last match in one string and
begin searching another string with the same RegExp object.) This special behavior allows us to call
exec() repeatedly in order to loop through all the regular expression matches in a string. For
example:

var pattern = /Java/g;

var text = "JavaScript is more fun than Java!";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var text = "JavaScript is more fun than Java!";

var result;

while((result = pattern.exec(text)) != null) {

 alert("Matched `" + result[0] + "'" +

 " at position " + result.index +

 "; next search begins at " + pattern.lastIndex);

}

The other RegExp method is test(). test() is a much simpler method than exec(). It takes a
string and returns true if the string matches the regular expression:

var pattern = /java/i;

pattern.test("JavaScript"); // Returns true

Calling test() is equivalent to calling exec() and returning true if the return value of exec()
not null. Because of this equivalence, the test() method behaves the same way as the exec()
method when invoked for a global regular expression: it begins searching the specified string at the
position specified by lastIndex, and if it finds a match, it sets lastIndex to the position of the
character immediately following the match. Thus, we can loop through a string using the test()
method just as we can with the exec() method.

The String methods search() , replace(), and match() do not use the lastIndex property
as exec() and test() do. In fact, the String methods simply reset lastIndex() to 0. If you use
exec() or test() on a pattern that has the g flag set and you are searching multiple strings, you
must either find all the matches in each string, so that lastIndex is automatically reset to zero (this
happens when the last search fails), or you must explicitly set the lastIndex property to 0 yourself. If
you forget to do this, you may start searching a new string at some arbitrary position within the string
rather than from the beginning. Finally, remember that this special lastIndex behavior occurs only
for regular expressions with the g flag. exec() and test() ignore the lastIndex property of
RegExp objects that do not have the g flag.

10.3.2 RegExp Instance Properties

Each RegExp object has five properties. The source property is a read-only string that contains the
text of the regular expression. The global property is a read-only boolean value that specifies
whether the regular expression has the g flag. The ignoreCase property is a read-only boolean value
that specifies whether the regular expression has the i flag. The multiline property is a read-only
boolean value that specifies whether the regular expression has the m flag. The final property is
lastIndex, a read-write integer. For patterns with the g flag, this property stores the position in the
string at which the next search is to begin. It is used by the exec() and test() methods, as
described in the previous section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 11. Further Topics in JavaScript
This chapter covers miscellaneous JavaScript topics that would have bogged down previous
chapters had they been covered earlier. Now that you have read through the preceding chapters
and are experienced with the core JavaScript language, you are prepared to tackle the more
advanced and detailed concepts presented here. You may prefer, however, to move on to other
chapters and learn about the specifics of client-side JavaScript before returning to this chapter.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.1 Data Type Conversion

We've seen that JavaScript is an untyped language (or, perhaps more accurately, a loosely typed or dynamically
typed language). This means, for example, that we don't have to specify the data type of a variable when we
declare it. Being untyped gives JavaScript the flexibility and simplicity that are desirable for a scripting
(although those features come at the expense of rigor, which is important for the longer, more complex
programs often written in stricter languages such as C and Java). An important feature of JavaScript's flexible
treatment of data types is the automatic type conversions it performs. For example, if you pass a number to
document.write() method, JavaScript automatically converts that value into its equivalent string
representation. Similarly, if you test a string value in the condition of an if statement, JavaScript automatically
converts that string to a boolean value -- to false if the string is empty and to true otherwise.

The basic rule is that when a value of one type is used in a context that requires a value of some other type,
JavaScript automatically attempts to convert the value as needed. So, for example, if a number is used in a
boolean context, it is converted to a boolean. If an object is used in a string context, it is converted to a string. If
a string is used in a numeric context, JavaScript attempts to convert it to a number. Table 11-1 summarizes
each of these conversions -- it shows the conversion that is performed when a particular type of value is used in
a particular context. The sections that follow the table provide more detail about type conversions in JavaScript.

Table 11-1. Automatic data type conversions
Value Context in which value is used

 String Number Boolean
Undefined value "undefined" NaN false Error
null "null" 0 false Error
Nonempty string As is Numeric value of string or NaN true String object
Empty string As is 0 false String object
0 "0" As is false Number object
NaN "NaN" As is false Number object
Infinity "Infinity" As is true Number object
Negative infinity "-Infinity" As is true Number object
Any other number String value of number As is true Number object
true "true" 1 As is Boolean object
false "false" 0 As is Boolean object
Object toString() valueOf() or toString() or NaN true As is

11.1.1 Object-to-Primitive Conversion

Table 11-1 specifies how JavaScript objects are converted to primitive values. Several details of this conversion
require additional discussion, however. First, note that whenever a non-null object is used in a boolean
context, it converts to true. This is true for all objects (including all arrays and functions), even wrapper objects
that represent primitive values that convert to false. For example, all of the following objects convert to
when used in a boolean context:[1]

[1] Note, though, that in JavaScript 1.1 and 1.2 these objects all convert to false, which is ECMAScript compliant.

new Boolean(false) // Internal value is false, but object converts to true

new Number(0)

new String("")

new Array()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

new Array()

Table 11-1 shows that objects are converted to numbers by first calling the valueOf() method of the object.
Most objects inherit the default valueOf() method of Object, which simply returns the object itself. Since the
default valueOf() method does not return a primitive value, JavaScript next tries to convert the object to a
number by calling its toString() method and converting the resulting string to a number.

This leads to interesting results for arrays. Recall that the toString() method of arrays converts the array
elements to strings, then returns the result of concatenating these strings, with commas in between. Therefore,
an array with no elements converts to the empty string, which (as you can see in the table) converts to the
number zero! Also, if an array has a single element that is a number n, the array converts to a string
representation of n, which is then converted back to n itself. If an array contains more than one element, or if its
one element is not a number, the array converts to NaN.[2]

[2] Note, however, that in JavaScript 1.1 and 1.2, when an array is used in a numeric context it is converted to its length.

Table 11-1 specifies how an object is converted when used in a string context and how it is converted when
used in a numeric context. However, there are a couple of places in JavaScript where the context is ambiguous!
The + operator and the comparison operators (<, <=, >, and >=) operate on both numbers and strings, so
an object is used with one of these operators, it is not clear whether it should be converted to a number or a
string. In most cases, JavaScript first attempts to convert the object by calling its valueOf() method. If this
method returns a primitive value (usually a number), that value is used. Often, however, valueOf()
returns the unconverted object; in this case, JavaScript then tries to convert the object to a string by calling its
toString() method.

There is only one exception to this conversion rule: when a Date object is used with the + operator, conversion
is performed with the toString() method. This exception exists because Date has both toString()
valueOf() methods. When a Date is used with +, you almost always want to perform a string concatenation.
But when using a Date with the comparison operators, you almost always want to perform a numeric comparison
to determine which of two times is earlier than the other.

Most objects either don't have valueOf() methods or don't have valueOf() methods that return useful
results. When you use an object with the + operator, you usually get string concatenation rather than addition.
When you use an object with a comparison operator, you usually get string comparison rather than numeric
comparison.

An object that defines a custom valueOf() method may behave differently. If you define a valueOf()
method that returns a number, you can use arithmetic and other operators with your object, but adding your
object to a string may not behave as you expect: the toString() method is no longer called, and a string
representation of the number returned by valueOf() is concatenated to the string.

Finally, remember that valueOf() is not called toNumber(): strictly speaking, its job is to convert an object
to a reasonable primitive value, so some objects may have valueOf() methods that return strings.

11.1.2 Explicit Type Conversions

Table 11-1 listed the automatic data type conversions that JavaScript performs. It is also possible to explicitly
convert values from one type to another. JavaScript does not define a cast operator as C, C++, and Java do, but
it does provide similar facilities for converting data values.

As of JavaScript 1.1 (and the ECMA-262 standard), Number() , Boolean(), String(), and Object()
may be called as functions as well as being invoked as constructors. When invoked in this way, these functions
attempt to convert their arguments to the appropriate type. For example, you could convert any value
string with String(x) and convert any value y to an object with Object(y).

There are a few other tricks that can be useful for performing explicit conversions. To convert a value to a string,
concatenate it with the empty string:

var x_as_string = x + "";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var x_as_string = x + "";

To force a value to a number, subtract zero from it:

var x_as_number = x - 0;

And to force a value to boolean, use the ! operator twice:

var x_as_boolean = !!x;

Because of JavaScript's tendency to automatically convert data to whatever type is required, explicit conversions
are usually unnecessary. They are occasionally helpful, however, and can also be used to make your code
clearer and more precise.

11.1.3 Converting Numbers to Strings

The number-to-string conversion is probably the one most often performed in JavaScript. Although it usually
happens automatically, there are a couple of useful ways to explicitly perform this conversion. We saw two of
them above:

var string_value = String(number); // Use the String() constructor as a function

var string_value = number + ""; // Concatenate with the empty string

Another technique for converting numbers to strings is with the toString() method:

string_value = number.toString();

The toString() method of the Number object (primitive numbers are converted to Number objects so that
this method can be called) takes an optional argument that specifies a radix, or base, for the conversion. If you
do not specify the argument, the conversion is done in base 10. But you can also convert numbers in other
bases (between 2 and 36).[3] For example:

[3] Note that the ECMAScript specification supports the radix argument to the toString() method, but it allows the method to return an
implementation-defined string for any radix other than 10. Thus, conforming implementations may simply ignore the argument and
return a base-10 result. In practice, implementations from Netscape and Microsoft do honor the requested radix.

var n = 17;

binary_string = n.toString(2); // Evaluates to "10001"

octal_string = "0" + n.toString(8); // Evaluates to "021"

hex_string = "0x" + n.toString(16); // Evaluates to "0x11"

A shortcoming of JavaScript prior to JavaScript 1.5 is that there is no built-in way to convert a number to a string
and specify the number of decimal places to be included, or to specify whether exponential notation should be
used. This can make it difficult to display numbers that have traditional formats, such as numbers that represent
monetary values.

ECMAScript v3 and JavaScript 1.5 solve this problem by adding three new number-to-string methods to the
Number class. toFixed() converts a number to a string and displays a specified number of digits after the
decimal point. It does not use exponential notation. toExponential() converts a number to a string
exponential notation, with one digit before the decimal point and a specified number of digits after the decimal
point. toPrecision() displays a number using the specified number of significant digits. It uses exponential
notation if the number of significant digits is not large enough to display the entire integer portion of the number.
Note that all three of these methods round the trailing digits of the resulting string as appropriate. Consider the
following examples:

var n = 123456.789;

n.toFixed(0); // "123457"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

n.toFixed(0); // "123457"

n.toFixed(2); // "123456.79"

n.toExponential(1); // "1.2e+5"

n.toExponential(3); // "1.235e+5"

n.toPrecision(4); // "1.235e+5"

n.toPrecision(7); // "123456.8"

11.1.4 Converting Strings to Numbers

We've seen that strings that represent numbers are automatically converted to actual numbers when used in a
numeric context. As shown earlier, we can make this conversion explicit:

var number = Number(string_value);

var number = string_value - 0;

The trouble with this sort of string-to-number conversion is that it is overly strict. It works only with base-10
numbers, and although it does allow leading and trailing spaces, it does not allow any non-space characters to
appear in the string following the number.

To allow more flexible conversions, you can use parseInt() and parseFloat(). These functions convert
and return any number at the beginning of a string, ignoring any trailing non-numbers. parseInt()
only integers, while parseFloat() parses both integers and floating-point numbers. If a string begins with
"0x" or "0X", parseInt() interprets it as a hexadecimal number.[4] For example:

[4] The ECMAScript specification says that if a string begins with "0" (but not "0x" or "0X"), parseInt() may parse it as an octal number
or as a decimal number. Because the behavior is unspecified, you should never use parseInt() to parse numbers with leading zeros,
unless you explicitly specify the radix to be used!

parseInt("3 blind mice"); // Returns 3

parseFloat("3.14 meters"); // Returns 3.14

parseInt("12.34"); // Returns 12

parseInt("0xFF"); // Returns 255

parseInt() can even take a second argument specifying the radix (base) of the number to be parsed.
values are between 2 and 36. For example:

parseInt("11", 2); // Returns 3 (1*2 + 1)

parseInt("ff", 16); // Returns 255 (15*16 + 15)

parseInt("zz", 36); // Returns 1295 (35*36 + 35)

parseInt("077", 8); // Returns 63 (7*8 + 7)

parseInt("077", 10); // Returns 77 (7*10 + 7)

If parseInt() or parseFloat() cannot convert the specified string to a number, it returns NaN

parseInt("eleven"); // Returns NaN

parseFloat("$72.47"); // Returns NaN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.2 By Value Versus by Reference

In JavaScript, as in all programming languages, there are three important ways that you can manipulate a
data value. First, you can copy it; for example, by assigning it to a new variable. Second, you can pass it as
an argument to a function or method. Third, you can compare it with another value to see if the two values
are equal. To understand any programming language, you must understand how these three operations
are performed in that language.

There are two fundamentally distinct ways to manipulate data values. These techniques are called "by
value" and "by reference." When a value is manipulated by value, it is the value of the datum that matters.
In an assignment, a copy of the actual value is made and that copy is stored in a variable, object property,
or array element; the copy and the original are two totally independent values that are stored separately.
When a datum is passed by value to a function, a copy of the datum is passed to the function; if the
function modifies the value, the change affects only the function's copy of the datum -- it does not affect the
original datum. Finally, when a datum is compared by value to another datum, the two distinct pieces
data must represent exactly the same value (which usually means that a byte-by-byte comparison finds
them to be equal).

The other way of manipulating a value is by reference. With this technique, there is only one actual copy of
the value; references to that value are manipulated.[5] If a value is manipulated by reference, variables do
not hold that value directly; they hold only references to it. It is these references that are copied, passed,
and compared. So, in an assignment made by reference, it is the reference to the value that is assigned,
not a copy of the value and not the value itself. After the assignment, the new variable refers to the same
value that the original variable refers to. Both references are equally valid and both can be used to
manipulate the value -- if the value is changed through one reference, that change also appears through
the original reference. The situation is similar when a value is passed to a function by reference. A
reference to the value is passed to the function, and the function can use that reference to modify the value
itself; any such modifications are visible outside the function. Finally, when a value is compared to another
by reference, the two references are compared to see if they refer to the same unique copy of a value;
references to two distinct values that happen to be equivalent (i.e., consist of the same bytes) are not
treated as equal.

[5] C programmers and anyone else familiar with the concept of pointers should understand the idea of a reference in this context.
Note, however, that JavaScript does not support pointers.

These are two very different ways of manipulating values, and they have important implications that you
should understand. Table 11-2 summarizes these implications. This discussion of manipulating data by
value and by reference has been a general one, but the distinctions apply to all programming languages.
The sections that follow explain how these distinctions apply specifically to JavaScript; they discuss which
data types are manipulated by value and which are manipulated by reference.

Table 11-2. By value versus by reference
 By value By reference

Copy
The value is actually copied; there
are two distinct, independent
copies.

Only a reference to the value is copied. If the value is
modified through the new reference, that change is also
visible through the original reference.

Pass
A distinct copy of the value is
passed to the function; changes to it
have no effect outside the function.

A reference to the value is passed to the function. If the
function modifies the value through the passed reference,
the modification is visible outside the function.

Compare
Two distinct values are compared
(often byte by byte) to see if they
are the same value.

Two references are compared to see if they refer to the
same value. Two references to distinct values are not
equal, even if the two values consist of the same bytes.

11.2.1 Primitive Types and Reference Types

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The basic rule in JavaScript is this: primitive types are manipulated by value, and reference types, as the
name suggests, are manipulated by reference. Numbers and booleans are primitive types in JavaScript --
primitive because they consist of nothing more than a small, fixed number of bytes that are easily
manipulated at the low (primitive) levels of the JavaScript interpreter. Objects, on the other hand, are
reference types. Arrays and functions, which are specialized types of objects, are therefore also reference
types. These data types can contain arbitrary numbers of properties or elements, so they cannot be
manipulated as easily as fixed-size primitive values can. Since object and array values can become quite
large, it doesn't make sense to manipulate these types by value, as this could involve the inefficient
copying and comparing of large amounts of memory.

What about strings? A string can have an arbitrary length, so it would seem that strings should be
reference types. In fact, though, they are usually considered to be primitive types in JavaScript simply
because they are not objects. Strings don't actually fit into the primitive versus reference type dichotomy.
We'll have more to say about strings and their behavior a little later.

The best way to explore the differences between data manipulation by value and by reference is through
example. Study the following examples carefully, paying attention to the comments. Example 11-1 copies,
passes, and compares numbers. Since numbers are primitive types, this example illustrates data
manipulation by value.

Example 11-1. Copying, passing, and comparing by value

// First we illustrate copying by value

var n = 1; // Variable n holds the value 1

var m = n; // Copy by value: variable m holds a distinct value 1

// Here's a function we'll use to illustrate passing by value

// As we'll see, the function doesn't work the way we'd like it to

function add_to_total(total, x)

{

 total = total + x; // This line changes only the internal copy of total

}

// Now call the function, passing the numbers contained in n and m by value.

// The value of n is copied, and that copied value is named total within the

// function. The function adds a copy of m to that copy of n. But adding

// something to a copy of n doesn't affect the original value of n outside

// of the function. So calling this function doesn't accomplish anything.

add_to_total(n, m);

// Now, we'll look at comparison by value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Now, we'll look at comparison by value.

// In the following line of code, the literal 1 is clearly a distinct numeric

// value encoded in the program. We compare it to the value held in variable

// n. In comparison by value, the bytes of the two numbers are checked to

// see if they are the same.

if (n == 1) m = 2; // n contains the same value as the literal 1; m is now 2

Now, consider Example 11-2. This example copies, passes, and compares an object. Since objects are
reference types, these manipulations are performed by reference. This example uses Date objects, which
you can read more about in the core reference section of this book.

Example 11-2. Copying, passing, and comparing by reference

// Here we create an object representing the date of Christmas, 2001

// The variable xmas contains a reference to the object, not the object itself

var xmas = new Date(2001, 11, 25);

// When we copy by reference, we get a new reference to the original object

var solstice = xmas; // Both variables now refer to the same object value

// Here we change the object through our new reference to it

solstice.setDate(21);

// The change is visible through the original reference, as well

xmas.getDate(); // Returns 21, not the original value of 25

// The same is true when objects and arrays are passed to functions.

// The following function adds a value to each element of an array.

// A reference to the array is passed to the function, not a copy of the array.

// Therefore, the function can change the contents of the array through

// the reference, and those changes will be visible when the function returns.

function add_to_totals(totals, x)

{

 totals[0] = totals[0] + x;

 totals[1] = totals[1] + x;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 totals[1] = totals[1] + x;

 totals[2] = totals[2] + x;

}

// Finally, we'll examine comparison by reference.

// When we compare the two variables defined above, we find they are

// equal, because they refer to the same object, even though we were trying

// to make them refer to different dates:

(xmas == solstice) // Evaluates to true

// The two variables defined next refer to two distinct objects, both

// of which represent exactly the same date.

var xmas = new Date(2001, 11, 25);

var solstice_plus_4 = new Date(2001, 11, 25);

// But, by the rules of "compare by reference," distinct objects are not equal!

(xmas != solstice_plus_4) // Evaluates to true

Before we leave the topic of manipulating objects and arrays by reference, we need to clear up a point of
nomenclature. The phrase "pass by reference" can have several meanings. To some readers, the phrase
refers to a function invocation technique that allows a function to assign new values to its arguments and to
have those modified values visible outside the function. This is not the way the term is used in this book.
Here, we mean simply that a reference to an object or array -- not the object itself -- is passed to a function.
A function can use the reference to modify properties of the object or elements of the array. But if the
function overwrites the reference with a reference to a new object or array, that modification is not visible
outside of the function. Readers familiar with the other meaning of this term may prefer to say that objects
and arrays are passed by value, but the value that is passed is actually a reference rather than the object
itself. Example 11-3 illustrates this issue.

Example 11-3. References themselves are passed by value

// This is another version of the add_to_totals() function. It doesn't

// work, though, because instead of changing the array itself, it tries to

// change the reference to the array.

function add_to_totals2(totals, x)

{

 newtotals = new Array(3);

 newtotals[0] = totals[0] + x;

 newtotals[1] = totals[1] + x;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 newtotals[1] = totals[1] + x;

 newtotals[2] = totals[2] + x;

 totals = newtotals; // This line has no effect outside of the function

}

11.2.2 Copying and Passing Strings

As mentioned earlier, JavaScript strings don't fit neatly into the primitive type versus reference type
dichotomy. Since strings are not objects, it is natural to assume that they are primitive. If they are primitive
types, then by the rules given above, they should be manipulated by value. But since strings can be
arbitrarily long, it would seem inefficient to copy, pass, and compare them byte by byte. Therefore, it would
also be natural to assume that strings are implemented as reference types.

Instead of making assumptions about strings, suppose we write some JavaScript code to experiment with
string manipulation. If strings are copied and passed by reference, we should be able to modify the
contents of a string through the reference stored in another variable or passed to a function.

When we set out to write the code to perform this experiment, however, we run into a major stumbling
block: there is no way to modify the contents of a string. The charAt() method returns the character at a
given position in a string, but there is no corresponding setCharAt() method. This is not an oversight.
JavaScript strings are intentionally immutable -- that is, there is no JavaScript syntax, method, or property
that allows you to change the characters in a string.

Since strings are immutable, our original question is moot: there is no way to tell if strings are passed by
value or by reference. We can assume that, for efficiency, JavaScript is implemented so that strings are
passed by reference, but in actuality it doesn't matter, since it has no practical bearing on the code we
write.

11.2.3 Comparing Strings

Despite the fact that we cannot determine whether strings are copied and passed by value or by reference,
we can write JavaScript code to determine whether they are compared by value or by reference. Example
11-4 shows the code we might use to make this determination.

Example 11-4. Are strings compared by value or by reference?

// Determining whether strings are compared by value or reference is easy.

// We compare two clearly distinct strings that happen to contain the same

// characters. If they are compared by value they will be equal, but if they

// are compared by reference, they will not be equal:

var s1 = "hello";

var s2 = "hell" + "o";

if (s1 == s2) document.write("Strings compared by value");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (s1 == s2) document.write("Strings compared by value");

This experiment demonstrates that strings are compared by value. This may be surprising to some
programmers. In C, C++, and Java, strings are reference types and are compared by reference. If you
want to compare the actual contents of two strings, you must use a special method or function. JavaScript,
however, is a higher-level language and recognizes that when you compare strings, you most often want to
compare them by value. Thus, despite the fact that, for efficiency, JavaScript strings are (presumably)
copied and passed by reference, they are compared by value.

11.2.4 By Value Versus by Reference: Summary

Table 11-3 summarizes the way that the various JavaScript types are manipulated.

Table 11-3. Data type manipulation in JavaScript
Type Copied by Passed by Compared by

Number Value Value Value
Boolean Value Value Value
String Immutable Immutable Value
Object Reference Reference Reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.3 Garbage Collection

As explained in Chapter 4, JavaScript uses garbage collection to reclaim the memory occupied by
strings, objects, arrays, and functions that are no longer in use. This frees you, the programmer,
from having to explicitly deallocate memory yourself and is an important part of what makes
JavaScript programming easier than, say, C programming.

A key feature of garbage collection is that the garbage collector must be able to determine when it
is safe to reclaim memory. Obviously, it must never reclaim values that are still in use and should
collect only values that are no longer reachable; that is, values that cannot be referred to through
any of the variables, object properties, or array elements in the program. If you are the curious
type, you may be wondering just how a garbage collector distinguishes between garbage to be
collected and values that are still being used or that could potentially be used. The following
sections explain some of the gory details.

11.3.1 Mark-and-Sweep Garbage Collection

The computer science literature on garbage collection is large and technical; the actual operation
of the garbage collector is really an implementation-specific detail that may vary in different
implementations of the language. Still, almost all serious garbage collectors use some variation
on a basic garbage-collection algorithm known as "mark and sweep."

A mark-and-sweep garbage collector periodically traverses the list of all variables in the
JavaScript environment and marks any values referred to by these variables. If any referenced
values are objects or arrays, it recursively marks the object properties and array elements. By
recursively traversing this tree or graph of values, the garbage collector is able to find (and mark)
every single value that is still reachable. It follows, then, that any unmarked values are
unreachable and are therefore garbage.

Once a mark-and-sweep garbage collector has finished marking all reachable values, it begins its
sweep phase. During this phase, it looks through the list of all values in the environment and
deallocates any that are not marked. Classic mark-and-sweep garbage collectors do a complete
mark and a complete sweep all at once, which causes a noticeable slowdown in the system
during garbage collection. More sophisticated variations on the algorithm make the process
relatively efficient and perform collection in the background, without disrupting system
performance.

The details of garbage collection are implementation-specific, and you should not need to know
anything about the garbage collector to write JavaScript programs. All modern JavaScript
implementations use some kind of mark-and-sweep garbage collection. However, JavaScript 1.1,
as implemented in Netscape 3, used a somewhat simpler garbage-collection scheme that has
some shortcomings. If you are writing JavaScript code to be compatible with Netscape 3, the
following section explains the shortcomings of the garbage collector in that browser. Netscape 2
used an even simpler garbage-collection technique with serious flaws. Since that browser is now
entirely obsolete, the details are not described here.

11.3.2 Garbage Collection by Reference Counting

In JavaScript 1.1, as implemented in Netscape 3, garbage collection is performed by reference
counting. This means that every object (whether a user object created by JavaScript code or a
built-in HTML object created by the browser) keeps track of the number of references to it. Recall
that objects are assigned by reference in JavaScript, rather than having their complete values
copied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When an object is created and a reference to it is stored in a variable, the object's reference count
is one. When the reference to the object is copied and stored in another variable, the reference
count is incremented to two. When one of the two variables that holds these references is
overwritten with some new value, the object's reference count is decremented back to one. If the
reference count reaches zero, there are no more references to the object. Since there are no
references to copy, there can never again be a reference to the object in the program. Therefore,
JavaScript knows that it is safe to destroy the object and garbage collect the memory associated
with it.

Unfortunately, there are shortcomings to using reference counting as a garbage-collection
scheme. In fact, some people don't even consider reference counting to be true garbage
collection and reserve that term for better algorithms, such as mark-and-sweep garbage
collection. Reference counting is a simple form of garbage collection that is easy to implement
and works fine in many situations. There is an important situation, however, in which reference
counting cannot correctly detect and collect all garbage, and you need to be aware of it.

The basic flaw with reference counting has to do with cyclical references. If object A contains a
reference to object B and object B contains a reference to object A, a cycle of references exists. A
cycle would also exist, for example, if A referred to B, B referred to C, and C referred back to A. In
cycles such as these, there is always a reference from within the cycle to every element in the
cycle. Thus, even if none of the elements of the cycle has any remaining outside references, their
reference counts will never drop below one and they can never be garbage collected. The entire
cycle may be garbage if there is no way to refer to any of these objects from a program, but
because they all refer to each other, a reference-counting garbage collector cannot detect and
free this unused memory.

This problem with cycles is the price that must be paid for a simple garbage-collection scheme.
The only way to prevent this problem is by manual intervention. If you create a cycle of objects,
you must recognize this fact and take steps to ensure that the objects are garbage collected when
they are no longer needed. To allow a cycle of objects to be garbage collected, you must break
the cycle. You can do this by picking one of the objects in the cycle and setting the property of it
that refers to the next object to null. For example, suppose that A, B, and C are objects that
each have a next property, and the value of this property is set so that these objects refer to
each other and form a cycle. When these objects are no longer in use, you can break the cycle by
setting A.next to null. This means that object B no longer has a reference from A, so its
reference count can drop to zero and it can be garbage collected. Once it has been garbage
collected, it will no longer refer to C, so C's reference count can drop to zero and it can be
garbage collected. Once C is garbage collected, A can finally be garbage collected.

Note, of course, that none of this can happen if A, B, and C are stored in global variables in a
window that is still open, because those variables A, B, and C still refer to the objects. If these
were local variables in a function and you broke their cycle before the function returned, they
could be garbage collected. But if they are stored in global variables, they remain referenced until
the window that contains them closes. In this case, if you want to force them to be garbage
collected, you must break the cycle and set all the variables to null:

A.next = null; // Break the cycle

A = B = C = null; // Remove the last remaining external references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.4 Lexical Scoping and Nested Functions

Functions in JavaScript are lexically rather than dynamically scoped. This means that they run in
the scope in which they are defined, not the scope from which they are executed. Prior to
JavaScript 1.2, functions could be defined only in the global scope, and lexical scoping was not
much of an issue: all functions were executed in the same global scope (with the call object of the
function chained to that global scope).

In JavaScript 1.2 and later, however, functions can be defined anywhere, and tricky issues of
scope arise. For example, consider a function g defined within a function f. g is always executed
in the scope of f. Its scope chain includes three objects: its own call object, the call object of f(
), and the global object. Nested functions are perfectly understandable when they are invoked in
the same lexical scope in which they are defined. For example, the following code does not do
anything particularly surprising:

var x = "global";

function f() {

 var x = "local";

 function g() { alert(x); }

 g();

}

f(); // Calling this function displays "local"

In JavaScript, however, functions are data just like any other value, so they can be returned from
functions, assigned to object properties, stored in arrays, and so on. This does not cause anything
particularly surprising either, except when nested functions are involved. Consider the following
code, which includes a function that returns a nested function. Each time it is called, it returns a
function. The JavaScript code of the returned function is always the same, but the scope in which
it is created differs slightly on each invocation, because the values of the arguments to the outer
function differ on each invocation. If we save the returned functions in an array and then invoke
each one, we'll see that each returns a different value. Since each function consists of identical
JavaScript code and each is invoked from exactly the same scope, the only factor that could be
causing the differing return values is the scope in which the functions were defined:

// This function returns a function each time it is called

// The scope in which the function is defined differs for each call

function makefunc(x) {

 return function() { return x; }

}

// Call makefunc() several times, and save the results in an array:

var a = [makefunc(0), makefunc(1), makefunc(2)];

// Now call these functions and display their values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Now call these functions and display their values.

// Although the body of each function is the same, the scope is

// different, and each call returns a different value:

alert(a[0]()); // Displays 0

alert(a[1]()); // Displays 1

alert(a[2]()); // Displays 2

The results of this code may be surprising. Still, they are the results expected from a strict
application of the lexical scoping rule: a function is executed in the scope in which it was defined.
That scope includes the state of local variables and arguments. Even though local variables and
function arguments are transient, their state is frozen and becomes part of the lexical scope of
any functions defined while they are in effect. In order to make lexical scoping work with nested
functions, a JavaScript implementation must use a closure, which can be thought of as a
combination of a function definition and the scope chain that was in effect when the function was
defined.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.5 The Function() Constructor and Function Literals

As we saw in Chapter 7, there are two ways to define functions other than the basic function
statement. As of JavaScript 1.1, functions can be defined using the Function() constructor, and
in JavaScript 1.2 and later, they can be defined with function literals. You should be aware of some
important differences between these two techniques.

First, the Function() constructor allows JavaScript code to be dynamically created and compiled
at runtime. Function literals, however, are a static part of program structure, just as function
statements are.

Second, as a corollary of the first difference, the Function() constructor parses the function
body and creates a new function object each time it is called. If the call to the constructor appears
within a loop or within a frequently called function, this process can be inefficient. On the other hand,
a function literal or nested function that appears within a loop or function is not recompiled each time
it is encountered. Nor is a different function object created each time a function literal is
encountered. (Although, as noted earlier, a new closure may be required to capture differences in
the lexical scope in which the function is defined.)

The third difference between the Function() constructor and function literals is that functions
created with the Function() constructor do not use lexical scoping; instead, they are always
compiled as if they were top-level functions, as the following code demonstrates:

var y = "global";

function constructFunction() {

 var y = "local";

 return new Function("return y"); // Does not capture the local scope!

}

// This line displays "global", because the function returned by the

// Function() constructor does not use the local scope. Had a function

// literal been used instead, this line would have displayed "local".

alert(constructFunction()()); // Displays "global"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

11.6 Netscape's JavaScript 1.2 Incompatibilities

Netscape's implementation of JavaScript 1.2 was released (as part of the Netscape 4.0 browser)
while the ECMAScript v1 specification was still being finalized. The engineers at Netscape made
some guesses about what would be in the specification, and based on those guesses, they made
some changes to the way JavaScript behaved. Because these changes were not compatible with
previous versions of JavaScript, the changes were implemented only when JavaScript 1.2 was
explicitly requested. (In web browsers, this is done by setting the language attribute of the HTML
<script> tag to "JavaScript1.2".) This was an excellent way to introduce new behavior without
breaking old scripts. Unfortunately, when work on ECMAScript v1 was completed, the new
behavior that Netscape engineers had guessed at was not part of the standard. What this means
is that Netscape's implementation of JavaScript 1.2 has special-case behavior that is not
compatible with JavaScript 1.1 and does not conform to the ECMAScript specification.

For compatibility with scripts that rely on the nonconforming behavior of JavaScript 1.2, all future
implementations of JavaScript from Netscape have retained this special behavior when Version
1.2 is explicitly requested. Note, however, that if you request a version greater than 1.2 (with a
language attribute of "JavaScript1.3", for example) you will get ECMAScript-compliant behavior.
Because this special behavior is present only in JavaScript implementations from Netscape, you
should not rely on it in your scripts, and the best practice is to never explicitly specify Version 1.2.
Nevertheless, for those cases when you must use JavaScript 1.2, the special behaviors of that
version are listed here:

The equality and inequality operators behave like the identity and non-identity operators.
That is, == works like === and != works like !==.

The default Object.toString() method displays the values of all properties defined by
the object, returning a string formatted using object literal syntax.

The Array.toString() method separates array elements with a comma and a space,
instead of just a comma, and returns the list of elements within square brackets. In
addition, string elements of the array are quoted, so that the result is a string in legal array
literal syntax.

When a single numeric argument n is passed to the Array() constructor, it returns an
array with n as its single element, rather than an array of length n.

When an array object is used in a numeric context, it evaluates to its length. When used in
a boolean context, it evaluates to false if its length is 0 and otherwise evaluates to true.

The Array.push() method returns the last value pushed rather than the new array
length.

When the Array.splice() method splices out a single element x, it returns x itself,
rather than an array containing x as its only element. When splice() does not remove
any elements from the array, it returns nothing instead of returning an empty array.

When String.substring() is called with a starting position greater than its ending
position, it returns the empty string rather than correctly swapping the arguments and
returning the substring between them.

The String.split() method displays special behavior inherited from Perl: if the
specified separator character is a single space, it discards any leading and trailing
whitespace in the string before splitting the remainder of the string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part II: Client-Side JavaScript
This part of the book, Chapter 12 through Chapter 22, documents JavaScript as it is
implemented in web browsers. These chapters introduce a host of new JavaScript
objects that represent the web browser and the contents of HTML documents. Many
examples show typical uses of these client-side objects. You will find it helpful to
study these examples carefully.

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Chapter 20

Chapter 21

Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 12. JavaScript in Web Browsers
The first part of this book described the core JavaScript language. Now we move on to JavaScript
as used within web browsers, commonly called client-side JavaScript.[1] Most of the examples
we've seen so far, while legal JavaScript code, had no particular context; they were JavaScript
fragments that ran in no specified environment. This chapter provides that context. It begins with
a conceptual introduction to the web browser programming environment and basic client-side
JavaScript concepts. Next, it discusses how we actually embed JavaScript code within HTML
documents so it can run in a web browser. Finally, the chapter goes into detail about how
JavaScript programs are executed in a web browser.

[1] The term "client-side JavaScript" is left over from the days when JavaScript was used in only two places: web
browsers (clients) and web servers. As JavaScript is adopted as a scripting language in more and more environments,
the term client-side makes less and less sense because it doesn't specify the client side of what. Nevertheless, we'll
continue to use the term in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.1 The Web Browser Environment

To understand client-side JavaScript, you must understand the conceptual framework of the
programming environment provided by a web browser. The following sections introduce three
important features of that programming environment:

The Window object that serves as the global object and global execution context for client-
side JavaScript code

The client-side object hierarchy and the document object model that forms a part of it

The event-driven programming model

12.1.1 The Window as Global Execution Context

The primary task of a web browser is to display HTML documents in a window. In client-side
JavaScript, the Document object represents an HTML document, and the Window object
represents the window (or frame) that displays the document. While the Document and Window
objects are both important to client-side JavaScript, the Window object is more important, for one
substantial reason: the Window object is the global object in client-side programming.

Recall from Chapter 4 that in every implementation of JavaScript there is always a global object at
the head of the scope chain; the properties of this global object are global variables. In client-side
JavaScript, the Window object is the global object. The Window object defines a number of
properties and methods that allow us to manipulate the web browser window. It also defines
properties that refer to other important objects, such as the document property for the Document
object. Finally, the Window object has two self-referential properties, window and self. You can
use either of these global variables to refer directly to the Window object.

Since the Window object is the global object in client-side JavaScript, all global variables are
defined as properties of the window. For example, the following two lines of code perform
essentially the same function:

var answer = 42; // Declare and initialize a global variable

window.answer = 42; // Create a new property of the Window object

The Window object represents a web browser window or a frame within a window. To client-side
JavaScript, top-level windows and frames are essentially equivalent. It is common to write
JavaScript applications that use multiple frames, and it is possible, if less common, to write
applications that use multiple windows. Each window or frame involved in an application has a
unique Window object and defines a unique execution context for client-side JavaScript code. In
other words, a global variable declared by JavaScript code in one frame is not a global variable
within a second frame. However, the second frame can access a global variable of the first frame;
we'll see how when we consider these issues in more detail in Chapter 13.

12.1.2 The Client-Side Object Hierarchy and the Document Object Model

We've seen that the Window object is the key object in client-side JavaScript. All other client-side
objects are connected to this object. For example, every Window object contains a document
property that refers to the Document object associated with the window and a location property
that refers to the Location object associated with the window. A Window object also contains a
frames[] array that refers to the Window objects that represent the frames of the original
window. Thus, document represents the Document object of the current window, and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window. Thus, document represents the Document object of the current window, and
frames[1].document refers to the Document object of the second child frame of the current
window.

An object referenced through the current window or through some other Window object may itself
refer to other objects. For example, every Document object has a forms[] array containing Form
objects that represent any HTML forms appearing in the document. To refer to one of these
forms, you might write:

window.document.forms[0]

To continue with the same example, each Form object has an elements[] array containing
objects that represent the various HTML form elements (input fields, buttons, etc.) that appear
within the form. In extreme cases, you can write code that refers to an object at the end of a
whole chain of objects, ending up with expressions as complex as this one:

parent.frames[0].document.forms[0].elements[3].options[2].text

We've seen that the Window object is the global object at the head of the scope chain and that all
client-side objects in JavaScript are accessible as properties of other objects. This means that
there is a hierarchy of JavaScript objects, with the Window object at its root. Figure 12-1 shows
this hierarchy. Study this figure carefully; understanding the hierarchy and the objects it contains
is crucial to successful client-side JavaScript programming. Most of the remaining chapters of this
book are devoted to fleshing out the details of the objects shown in this figure.

Figure 12-1. The client-side object hierarchy and Level 0 DOM

Note that Figure 12-1 shows just the object properties that refer to other objects. Most of the
objects shown in the diagram have quite a few more properties than those shown.

Many of the objects pictured in Figure 12-1 descend from the Document object. This subtree of
the larger client-side object hierarchy is known as the document object model (DOM), which is
interesting because it has been the focus of a standardization effort. Figure 12-1 illustrates the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

interesting because it has been the focus of a standardization effort. Figure 12-1 illustrates the
Document objects that have become de facto standards because they are consistently
implemented by all major browsers. Collectively, they are known as the Level 0 DOM, because
they form a base level of document functionality that JavaScript programmers can rely on in all
browsers. These basic Document objects are the subject of Chapter 14 and Chapter 15. A more
advanced document object model that has been standardized by the W3C is the subject of
Chapter 17 and Chapter 18.

12.1.3 The Event-Driven Programming Model

In the old days, computer programs often ran in batch mode -- they read in a batch of data, did
some computation on that data, and then wrote out the results. Later, with time-sharing and text-
based terminals, limited kinds of interactivity became possible -- the program could ask the user
for input, and the user could type in data. The computer could then process the data and display
the results on screen.

Nowadays, with graphical displays and pointing devices like mice, the situation is different.
Programs are generally event driven; they respond to asynchronous user input in the form of
mouse-clicks and keystrokes in a way that depends on the position of the mouse pointer. A web
browser is just such a graphical environment. An HTML document contains an embedded
graphical user interface (GUI), so client-side JavaScript uses the event-driven programming
model.

It is perfectly possible to write a static JavaScript program that does not accept user input and
does exactly the same thing every time. Sometimes this sort of program is useful. More often,
however, we want to write dynamic programs that interact with the user. To do this, we must be
able to respond to user input.

In client-side JavaScript, the web browser notifies programs of user input by generating events.
There are various types of events, such as keystroke events, mouse motion events, and so on.
When an event occurs, the web browser attempts to invoke an appropriate event handler function
to respond to the event. Thus, to write dynamic, interactive client-side JavaScript programs, we
must define appropriate event handlers and register them with the system, so that the browser
can invoke them at appropriate times.

If you are not already accustomed to the event-driven programming model, it can take a little
getting used to. In the old model, you wrote a single, monolithic block of code that followed some
well-defined flow of control and ran to completion from beginning to end. Event-driven
programming stands this model on its head. In event-driven programming, you write a number of
independent (but mutually interacting) event handlers. You do not invoke these handlers directly,
but allow the system to invoke them at the appropriate times. Since they are triggered by the
user's input, the handlers will be invoked at unpredictable, asynchronous times. Much of the time,
your program is not running at all but merely sitting waiting for the system to invoke one of its
event handlers.

The next section explains how JavaScript code is embedded within HTML files. It shows how we
can define both static blocks of code that run synchronously from start to finish and event
handlers that are invoked asynchronously by the system. We'll also discuss events and event
handling in much greater detail in Chapter 19.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.2 Embedding JavaScript in HTML

Client-side JavaScript code is embedded within HTML documents in a number of ways:

Between a pair of <script> and </script> tags

From an external file specified by the src attribute of a <script> tag

In an event handler, specified as the value of an HTML attribute such as onclick or
onmouseover

As the body of a URL that uses the special javascript: protocol

The following sections document each of these JavaScript embedding techniques in more detail.
Together, they explain all the ways to include JavaScript in web pages -- that is, they explain the allowed
structure of JavaScript programs on the client side.

12.2.1 The <script> Tag

Client-side JavaScript scripts are part of an HTML file and are coded within <script> and </script>
tags. You may place any number of JavaScript statements between these tags; they are executed in
order of appearance, as part of the document loading process. <script> tags may appear in either the
<head> or <body> of an HTML document.

A single HTML document may contain any number of nonoverlapping pairs of <script> and
</script> tags. These multiple, separate scripts are executed in the order in which they appear within
the document. While separate scripts within a single file are executed at different times during the loading
and parsing of the HTML file, they constitute part of the same JavaScript program: functions and
variables defined in one script are available to all scripts that follow in the same file. For example, you can
have the following script somewhere in an HTML page:

<script>var x = 1;</script>

Later on in the same HTML page, you can refer to x, even though it's in a different script block. The
context that matters is the HTML page, not the script block:

<script>document.write(x);</script>

The document.write() method is an important and commonly used one. When used as shown
it inserts its output into the document at the location of the script. When the script finishes executing, the
HTML parser resumes parsing the document and starts by parsing any text produced with
document.write().

Example 12-1 shows a sample HTML file that includes a simple JavaScript program. Note the difference
between this example and many of the code fragments shown earlier in this book: this one is integrated
with an HTML file and has a clear context in which it runs. Note also the use of a language attribute in
the <script> tag. This is explained in the next section.

Example 12-1. A simple JavaScript program in an HTML file

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>

<head>

<title>Today's Date</title>

 <script language="JavaScript">

 // Define a function for later use

 function print_todays_date() {

 var d = new Date(); // Get today's date and time

 document.write(d.toLocaleString()); // Insert it into the document

 }

 </script>

</head>

<body>

The date and time are:

<script language="JavaScript">

 // Now call the function we defined above

 print_todays_date();

</script>

</body>

</html>

12.2.1.1 The language and type attributes

Although JavaScript is by far the most commonly used client-side scripting language, it is not the only
one. In order to tell a web browser what language a script is written in, the <script> tag has an optional
language attribute. Browsers that understand the specified scripting language run the script; browsers
that do not know the language ignore it.

If you are writing JavaScript code, use the language attribute as follows:

<script language="JavaScript">

 // JavaScript code goes here

</script>

If, for example, you are writing a script in Microsoft's Visual Basic Scripting Edition language,[2] you would
use the attribute like this:

[2] Also known as VBScript. The only browser that supports VBScript is Internet Explorer, so scripts written in this language are
not portable. VBScript interfaces with HTML objects in the same way that JavaScript does, but the core language itself has a
different syntax than JavaScript. VBScript is not documented in this book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<script language="VBScript">

 ' VBScript code goes here (' is a comment character like // in JavaScript)

</script>

JavaScript is the default scripting language for the Web, and if you omit the language attribute, both
Netscape and Internet Explorer will assume that your scripts are written in JavaScript.

The HTML 4 specification standardizes the <script> tag, but it deprecates the language attribute
because there is no standard set of names for scripting languages. Instead, the specification prefers the
use of a type attribute that specifies the scripting language as a MIME type. Thus, in theory, the
preferred way to embed a JavaScript script is with a tag that looks like this:

<script type="text/javascript">

In practice, the language attribute is still better supported than this new type attribute.

The HTML 4 specification also defines a standard (and useful) way to specify the default scripting
language for an entire HTML file. If you plan to use JavaScript as the only scripting language in a file,
simply include the following line in the <head> of the document:

<meta http-equiv="Content-Script-Type" content="text/javascript">

If you do this, you can safely use JavaScript scripts without specifying the language or type attributes.

Since JavaScript is the default scripting language, those of us who program with it never really need to
use the language attribute to specify the language in which a script is written. However, there is an
important secondary purpose for this attribute: it can also be used to specify what version of JavaScript is
required to interpret a script. When you specify the language="JavaScript" attribute for a script, any
JavaScript-enabled browser will run the script. Suppose, however, that you have written a script that uses
the exception-handling features of JavaScript 1.5. To avoid syntax errors in browsers that do not support
this version of the language, you could embed your script with this tag:

<script language="JavaScript1.5">

If you do this, only browsers that support JavaScript 1.5 (and its exception-handling features) will run the
script; any others will ignore it.

The use of the string "JavaScript1.2" in the language attribute deserves special mention. When
Netscape 4 was being prepared for release, it appeared that the emerging ECMA-262 standard would
require some incompatible changes to certain features of the language. To prevent these incompatible
changes from breaking existing scripts, the designers of JavaScript at Netscape took the sensible
precaution of implementing the changes only when "JavaScript1.2" was explicitly specified in the
language attribute. Unfortunately, the ECMA standard was not finalized before Netscape 4 was
released, and after the release, the proposed incompatible changes to the language were removed from
the standard. Thus, specifying language="JavaScript1.2" makes Netscape 4 behave in ways that
are not compatible with previous browsers or with the ECMA specification. (See Section 11.6, for
complete details on these incompatibilities.) For this reason, you may want to avoid specifying
"JavaScript1.2" as a value for the language attribute.

12.2.1.2 The </script> tag

You may at some point find yourself writing a script that uses the document.write() method to
output a script into some other browser window or frame. If you do this, you'll need to write out a
</script> tag to terminate the script you are writing. You must be careful, though -- the HTML parser

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</script> tag to terminate the script you are writing. You must be careful, though -- the HTML parser
makes no attempt to understand your JavaScript code, and if it sees the string "</script>" in your code,
even if it appears within quotes, it assumes that it has found the closing tag of the currently running script.
To avoid this problem, simply break up the tag into pieces and write it out using an expression like "</"
+ "script>":

<script>

f1.document.write("<script>");

f1.document.write("document.write('<h2>This is the quoted script</h2>')");

f1.document.write("</" + "script>");

</script>

Alternatively, you can escape the / in </script> with a backslash:

f1.document.write("<\/script>");

12.2.1.3 The defer attribute

The HTML 4 standard defines an attribute of the <script> tag that is not yet in common use but is
nonetheless important. As I mentioned briefly earlier, a script may call the document.write() method
to dynamically add content to a document. Because of this, when the HTML parser encounters a script, it
must stop parsing the document and wait for the script to execute.

If you write a script that does not produce any document output -- for example, a script that defines a
function but never calls document.write() -- you may use the defer attribute in the <script>
as a hint to the browser that it is safe for it to continue parsing the HTML document and defer execution
of the script until it encounters a script that cannot be deferred. Doing this may result in improved
performance in browsers that take advantage of the defer attribute. Note that defer does not have a
value; it simply must be present in the tag:

<script defer>

 // Any JavaScript code that does not call document.write()

</script>

12.2.2 Including JavaScript Files

As of JavaScript 1.1, the <script> tag supports a src attribute. The value of this attribute specifies the
URL of a file containing JavaScript code. It is used like this:

<script src="../../javascript/util.js"></script>

A JavaScript file typically has a .js extension and contains pure JavaScript, without <script> tags or any
other HTML.

A <script> tag with the src attribute specified behaves exactly as if the contents of the specified
JavaScript file appeared directly between the <script> and </script> tags. Any code that does
appear between these tags is ignored by browsers that support the src attribute (although it is still
executed by browsers such as Netscape 2 that do not recognize the attribute). Note that the closing
</script> tag is required even when the src attribute is specified and there is no JavaScript between
the <script> and </script> tags.

There are a number of advantages to using the src tag:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are a number of advantages to using the src tag:

It simplifies your HTML files by allowing you to remove large blocks of JavaScript code from them.

When you have a function or other JavaScript code used by several different HTML files, you can
keep it in a single file and read it into each HTML file that needs it. This reduces disk usage and
makes code maintenance much easier.

When JavaScript functions are used by more than one page, placing them in a separate JavaScript
file allows them to be cached by the browser, making them load more quickly. When JavaScript
code is shared by multiple pages, the time savings of caching more than outweigh the small delay
required for the browser to open a separate network connection to download the JavaScript file the
first time it is requested.

Because the src attribute takes an arbitrary URL as its value, a JavaScript program or web page
from one web server can employ code (such as subroutine libraries) exported by other web
servers.

12.2.3 Event Handlers

JavaScript code in a script is executed once, when the HTML file that contains it is read into the web
browser. A program that uses only this sort of static script cannot dynamically respond to the user. More
dynamic programs define event handlers that are automatically invoked by the web browser when certain
events occur -- for example, when the user clicks on a button within a form. Because events in client-side
JavaScript originate from HTML objects (such as buttons), event handlers are defined as attributes of
those objects. For example, to define an event handler that is invoked when the user clicks on a
checkbox in a form, you specify the handler code as an attribute of the HTML tag that defines the
checkbox:

<input type="checkbox" name="opts" value="ignore-case"

 onclick="ignore-case = this.checked;"

>

What's of interest to us here is the onclick attribute.[3] The string value of the onclick attribute may
contain one or more JavaScript statements. If there is more than one statement, the statements must be
separated from each other with semicolons. When the specified event -- in this case, a click -- occurs on
the checkbox, the JavaScript code within the string is executed.

[3] All HTML event handler attribute names begin with "on".

While you can include any number of JavaScript statements within an event handler definition, a common
technique when more than one or two simple statements are required is to define the body of an event
handler as a function between <script> and </script> tags. Then you can simply invoke this function
from the event handler. This keeps most of your actual JavaScript code within scripts and reduces the
need to mingle JavaScript and HTML.

We'll cover events and event handlers in much more detail in Chapter 19, but you'll see them used in a
variety of examples before then. Chapter 19 includes a comprehensive list of event handlers, but these
are the most common:

onclick

This handler is supported by all button-like form elements, as well as <a> and <area> tags. It is
triggered when the user clicks on the element. If an onclick handler returns false, the browser
does not perform any default action associated with the button or link; for example, it doesn't follow
a hyperlink (for an <a> tag) or submit a form (for a Submit button).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onmousedown , onmouseup

These two event handlers are a lot like onclick, but they are triggered separately when the user
presses and releases a mouse button. Document elements that support onclick also support
these handlers. In IE 4 and Netscape 6, these handlers are actually supported by just about all
document elements.

onmouseover , onmouseout

These two event handlers are triggered when the mouse pointer moves over or out of a document
element, respectively. They are used most frequently with <a> tags. If the onmouseover handler
of an <a> tag returns true, it prevents the browser from displaying the URL of the link in the
line.

onchange

This event handler is supported by the <input> , <select>, and <textarea> elements. It is
triggered when the user changes the value displayed by the element and then tabs or otherwise
moves focus out of the element.

onsubmit , onreset

These event handlers are supported by the <form> tag and are triggered when the form is about
to be submitted or reset. They can return false to cancel the submission or reset. The onsubmit
handler is commonly used to perform client-side form validation.

For a realistic example of the use of event handlers, take another look at the interactive loan-payment
script in Example 1-3. The HTML form in this example contains a number of event handler attributes. The
body of these handlers is simple: they simply call the calculate() function defined elsewhere within a
<script>.

12.2.4 JavaScript in URLs

Another way that JavaScript code can be included on the client side is in a URL following the
javascript: pseudoprotocol specifier. This special protocol type specifies that the body of the URL is
arbitrary JavaScript code to be run by the JavaScript interpreter. If the JavaScript code in a
javascript: URL contains multiple statements, the statements must be separated from one another by
semicolons. Such a URL might look like this:

javascript:var now = new Date(); "<h1>The time is:</h1>" + now;

When the browser loads one of these JavaScript URLs, it executes the JavaScript code contained in the
URL and uses the string value of the last JavaScript statement as the contents of the new document to
display. This string value may contain HTML tags and is formatted and displayed just like any other
document loaded into the browser.

JavaScript URLs may also contain JavaScript statements that perform actions but return no value. For
example:

javascript:alert("Hello World!")

When this sort of URL is loaded, the browser executes the JavaScript code, but because there is no
value to display as the new document, it does not modify the currently displayed document.

Often, we want to use a javascript: URL to execute some JavaScript code without altering the
currently displayed document. To do this, you must be sure that the last statement in the URL has no
return value. One way to ensure this is to use the void operator to explicitly specify an undefined return
value. Simply use the statement void 0; at the end of your javascript: URL. For example, here is a
URL that opens a new, blank browser window without altering the contents of the current window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

javascript:window.open("about:blank"); void 0;

Without the void operator in this URL, the return value of the Window.open() method call would be
converted to a string and displayed, and the current document would be overwritten by a document that
appears something like this:

[object Window]

You can use a javascript: URL anywhere you'd use a regular URL. One important way to use this
syntax is to type it directly into the Location field of your browser, where you can test arbitrary JavaScript
code without having to open your editor and create an HTML file containing the code.

javascript: URLs can be used in bookmarks, where they form useful mini-JavaScript programs, or
"bookmarklets," that can be easily launched from a menu or toolbar of bookmarks.

javascript: URLs can also be used as the href value of a hyperlink. When the user clicks on such a
link, the specified JavaScript code is executed. Or, if you specify a javascript: URL as the value of
the action attribute of a <form> tag, the JavaScript code in the URL is executed when the user submits
the form. In these contexts, the javascript: URL is essentially a substitute for an event handler.

There are a few circumstances where a javascript: URL can be used with objects that do not support
event handlers. For example, the <area> tag does not support an onclick event handler on Windows
platforms in Netscape 3 (though it does in Netscape 4). So, if you want to execute JavaScript code when
the user clicks on a client-side image map in Netscape 3, you must use a javascript: URL.

12.2.5 JavaScript in Nonstandard Contexts

Both Netscape and Microsoft have implemented proprietary extensions in their browsers, and you may
occasionally see JavaScript code in a context other than those described here. For example, Internet
Explorer allows you to define event handlers in a <script> tag that uses special for and event
attributes. Netscape 4 allows you to use JavaScript as an alternative syntax for defining CSS style sheets
within a <style> tag. Netscape 4 also extends the HTML entity syntax and allows JavaScript to appear
within entities (but only within the values of HTML attributes). This can result in HTML that looks like this:

<table border="&{getBorderWidth()};">

Finally, Netscape 4 also supports a form of conditional comment based on this JavaScript entity syntax.
Note that Netscape 6 and the Mozilla browser on which it is based no longer support these nonstandard
uses of JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

12.3 Execution of JavaScript Programs

The previous section discussed the mechanics of integrating JavaScript code into an HTML file. Now we
move on to discuss exactly how that integrated JavaScript code is executed by the JavaScript interpreter. The
following sections explain how different forms of JavaScript code are executed. While some of this material is
fairly obvious, there are a number of important details that are not so obvious.

12.3.1 Scripts

JavaScript statements that appear between <script> and </script> tags are executed in order of
appearance; when more than one script appears in a file, the scripts are executed in the order in which they
appear. If a script calls document.write(), any text passed to that method is inserted into the document
immediately after the closing </script> tag and is parsed by the HTML parser when the script finishes
running. The same rules apply to scripts included from separate files with the src attribute.

The detail that is not so obvious, but is nevertheless important to remember, is that execution of scripts
occurs as part of the web browser's HTML parsing process. Thus, if a script appears in the <head> section
an HTML document, none of the <body> section of the document has been defined yet. This means that the
JavaScript objects that represent the contents of the document body, such as Form and Link, have not been
created yet and cannot be manipulated by that code.

Your scripts should not attempt to manipulate objects that have not yet been created. For example, you can't
write a script that manipulates the contents of an HTML form if the script appears before the form in the HTML
file. Some other, similar rules apply on a case-by-case basis. For example, there are properties of the
Document object that may be set only from a script in the <head> section of an HTML document, before
browser has begun to parse the document content in the <body> section. Any special rules of this sort are
documented in the reference page for the affected object or property in the client-side reference.

Since scripts are executed while the HTML document that contains them is being parsed and displayed, they
should not take too long to run. Because scripts can create dynamic document content with
document.write(), the HTML parser must stop parsing the document whenever the JavaScript
interpreter is running a script. An HTML document cannot be fully displayed until all the scripts it contains
have finished executing. If a script performs some computationally intensive task that takes a long time to run,
the user may become frustrated waiting for the document to be displayed. Thus, if you need to perform a lot
of computation with JavaScript, you should define a function to do the computation and invoke that function
from an event handler when the user requests it, rather than doing the computation when the document is
first loaded.

As I noted earlier, scripts that use the src attribute to read in external JavaScript files are executed just like
scripts that include their code directly in the file. What this means is that the HTML parser and the JavaScript
interpreter must both stop and wait for the external JavaScript file to be downloaded. (Unlike embedded
images, scripts cannot be downloaded in the background while the HTML parser continues to run.)
Downloading an external file of JavaScript code, even over a relatively fast modem connection, can cause
noticeable delays in the loading and execution of a web page. Of course, once the JavaScript code is cached
locally, this problem effectively disappears.

12.3.2 Functions

Remember that defining a function is not the same as executing it. It is perfectly safe to define a function that
manipulates objects that have not yet been created. Just take care that the function is not executed or
invoked until the necessary variables, objects, and so on all exist. I said earlier that you can't write a script to
manipulate an HTML form if the script appears before the form in the HTML file. You can, however, write a
script that defines a function to manipulate the form, regardless of the relative locations of the script and form.
In fact, this is a common practice. Many JavaScript programs start off with a script in the <head> of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In fact, this is a common practice. Many JavaScript programs start off with a script in the <head> of the
document that does nothing more than define functions that are used in the <body> of the HTML file.

It is also common to write JavaScript programs that use scripts simply to define functions that are later
invoked through event handlers. As we'll see in the next section, you must take care in this case to ensure
two things: that all functions are defined before any event handler attempts to invoke them, and that event
handlers and the functions they invoke do not attempt to use objects that have not yet been defined.

12.3.3 Event Handlers

Defining an event handler as the value of an onclick or another HTML attribute is much like defining a
JavaScript function: the code is not immediately executed. Event-handler execution is asynchronous. Since
events generally occur when the user interacts with HTML objects, there is no way to predict when an event
handler will be invoked.

Event handlers share an important restriction with scripts: they should not take a long time to execute. As
we've seen, scripts should run quickly because the HTML parser cannot continue parsing until the script
finishes executing. Event handlers, on the other hand, should not take long to run because the user cannot
interact with your program until the program has finished handling the event. If an event handler performs
some time-consuming operation, it may appear to the user that the program has hung, frozen, or crashed.

If for some reason you must perform a long operation in an event handler, be sure that the user has explicitly
requested that operation, and then notify him that there will be a wait. As we'll see in Chapter 13, you can
notify the user by posting an alert() dialog box or displaying text in the browser's status line. Also, if your
program requires a lot of background processing, you can schedule a function to be called repeatedly during
idle time with the setTimeout() method.

It is important to understand that event handlers may be invoked before a web page is fully loaded and
parsed. This is easier to understand if you imagine a slow network connection -- even a half-loaded document
may display hypertext links and form elements that the user can interact with, thereby causing event handlers
to be invoked before the second half of the document is loaded.

The fact that event handlers can be invoked before a document is fully loaded has two important implications.
First, if your event handler invokes a function, you must be sure that the function is already defined before the
handler calls it. One way to guarantee this is to define all your functions in the <head> section of an HTML
document. This section of a document is always completely parsed (and any functions in it defined) before the
<body> section of the document is parsed. Since all objects that define event handlers must themselves be
defined in the <body> section, functions in the <head> section are guaranteed to be defined before any
event handlers are invoked.

The second implication is that you must be sure that your event handler does not attempt to manipulate
HTML objects that have not yet been parsed and created. An event handler can always safely manipulate its
own object, of course, and also any objects that are defined before it in the HTML file. One strategy is simply
to define your web page's user interface in such a way that event handlers refer only to previously defined
objects. For example, if you define a form that uses event handlers only on the Submit and Reset buttons,
you just need to place these buttons at the bottom of the form (which is where good user-interface style says
they should go anyway).

In more complex programs, you may not be able to ensure that event handlers manipulate only objects
defined before them, so you need to take extra care with these programs. If an event handler manipulates
only objects defined within the same form, it is pretty unlikely that you'll ever have problems. When you
manipulate objects in other forms or other frames, however, this starts to be a real concern. One technique is
to test for the existence of the object you want to manipulate before you manipulate it. You can do this simply
by comparing it (and any parent objects) to null. For example:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<script>

function set_name_other_frame(name)

{

 if (parent.frames[1] == null) return; // Other frame not yet defined

 if (!parent.frames[1].document) return; // Document not yet loaded in it

 if (!parent.frames[1].document.myform) return; // Form not yet defined

 if (!parent.frames[1].document.myform.name) return; // Field not yet defined

 parent.frames[1].document.myform.name.value = name;

}

</script>

<input type="text" name="lastname"

 onchange="set_name_other_frame(this.value)";

>

In JavaScript 1.5 and later, you can omit the existence tests in the previous code if you instead use the
try/catch statement to catch the exception that will be thrown if the function is invoked before the
document is fully loaded.

Another technique that an event handler can use to ensure that all required objects are defined involves the
onload event handler. This event handler is defined in the <body> or <frameset> tag of an HTML file and
is invoked when the document or frameset is fully loaded. If you set a flag within the onload event handler,
other event handlers can test this flag to see if they can safely run, with the knowledge that the document is
fully loaded and all objects it contains are defined. For example:

<body onload="window.fullyLoaded = true;">

 <form>

 <input type="button" value="Do It!"

 onclick="if (window.fullyLoaded) doit();">

 </form>

</body>

12.3.3.1 onload and onunload event handlers

The onload event handler and its partner onunload are worth a special mention in the context of the
execution order of JavaScript programs. Both of these event handlers are defined in the <body> or
<frameset> tag of an HTML file. (No HTML file can legally contain both of these tags.) The onload
is executed when the document or frameset is fully loaded, which means that all images have been
downloaded and displayed, all subframes have loaded, any Java applets have started running, and so on. Be
aware that when you are working with multiple frames, there is no guarantee of the order in which the
onload event handler is invoked for the various frames, except that the handler for the parent frame is

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onload event handler is invoked for the various frames, except that the handler for the parent frame is
invoked after the handlers of all its child frames.

The onunload handler is executed just before the page is unloaded, which occurs when the browser is about
to move on to a new page. You can use it to undo the effects of your onload handler or other scripts in your
web page. For example, if your web page opens up a secondary browser window, the onunload handler
provides an opportunity to close that window when the user moves on to some other web page. The
onunload handler should not run any kind of time-consuming operation, nor should it pop up a dialog box. It
exists simply to perform a quick cleanup operation; running it should not slow down or impede the user's
transition to a new page.

12.3.4 JavaScript URLs

JavaScript code in a javascript: URL is not executed when the document containing the URL is loaded. It
is not interpreted until the browser tries to load the document to which the URL refers. This may be when a
user types in a JavaScript URL or, more likely, when a user follows a link, clicks on a client-side image map,
or submits a form. javascript: URLs are often used as an alternative to event handlers, and as with event
handlers, the code in those URLs can be executed before a document is fully loaded. Thus, you must take
the same precautions with javascript: URLs that you take with event handlers to ensure that they do not
attempt to reference objects (or functions) that are not yet defined.

12.3.5 Window and Variable Lifetime

A final topic in our investigation of how client-side JavaScript programs run is the issue of variable lifetime.
We've seen that the Window object is the global object for client-side JavaScript and that all global variables
are properties of the Window object. What happens to Window objects and the variables they contain when
the web browser moves from one web page to another?

Whenever a new document is loaded into a window or a frame, the Window object for that window or frame is
restored to its default state: any properties and functions defined by a script in the previous document are
deleted, and any of the standard system properties that may have been altered or overwritten are restored.
Every document begins with a "clean slate." Your scripts can rely on this -- they will not inherit a corrupted
environment from the previous document. Any variables and functions your scripts define persist only until the
document is replaced with a new one.

The clean slate we're discussing here is the Window object that represents the window or frame into which
the document is loaded. As we've discussed, this Window object is the global object for JavaScript code in
that window or frame. However, if you're working with multiple frames or multiple windows, a script in one
window may refer to the Window objects that represent other windows or frames. So in addition to
considering the persistence of variables and functions defined in Window objects, we must also consider the
persistence of the Window object itself.

A Window object that represents a top-level browser window exists as long as that window exists. A reference
to the Window object remains valid regardless of how many web pages the window loads and unloads. The
Window object is valid as long as the top-level window is open.[4]

[4] A Window object may not actually be destroyed when its window is closed. If there are still references to the Window object from
other windows, the object is not garbage collected. However, a reference to a window that has been closed is of very little practical use.

A Window object that represents a frame remains valid as long as that frame remains within the frame or
window that contains it. For example, if frame A contains a script that has a reference to the Window object
for frame B, and a new document is loaded into frame B, frame A's reference to the Window object remains
valid. Any variables or functions defined in frame B's Window object will be deleted when the new document
is loaded, but the Window object itself remains valid (until the containing frame or window loads a new
document and overwrites both frame A and frame B).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This means that Window objects, whether they represent top-level windows or frames, are quite persistent.
The lifetime of a Window object may be longer than that of the web pages it contains and displays and longer
than the lifetime of the scripts contained in the web pages it displays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 13. Windows and Frames
Chapter 12 described the Window object and the central role it plays in client-side JavaScript.
We've seen that the Window object serves as the global object for client-side JavaScript
programs, and, as illustrated in Figure 12-1, it is also the root of the client-side object hierarchy.

Besides these special roles, the Window object is an important object in its own right. Every web
browser window and every frame within every window is represented by a Window object. The
Window object defines quite a few properties and methods that are important in client-side
JavaScript programming. This chapter explores those properties and methods and demonstrates
some important techniques for programming with windows and frames. Note that because the
Window object is so central to client-side programming, this chapter is quite long. Don't feel you
have to master all this material at once -- you may find it easier to study this chapter in several
shorter chunks!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.1 Window Overview

We begin this chapter with an overview of some of the most commonly used properties and
methods of the Window object. Later sections of the chapter explain this material in more detail.
As usual, the client-side reference section contains complete coverage of Window object
properties and methods.

The most important properties of the Window object are the following:

closed

A boolean value that is true only if the window has been closed.

defaultStatus, status

The text that appears in the status line of the browser.

document

A reference to the Document object that represents the HTML document displayed in the
window. The Document object is covered in detail in Chapter 14.

frames[]

An array of Window objects that represent the frames (if any) within the window.

history

A reference to the History object that represents the user's browsing history for the window.

location

A reference to the Location object that represents the URL of the document displayed in
the window. Setting this property causes the browser to load a new document.

name

The name of the window. Can be used with the target attribute of the HTML <a> tag, for
example.

opener

A reference to the Window object that opened this one, or null if this window was opened
by the user.

parent

If the current window is a frame, a reference to the frame of the window that contains it.

self

A self-referential property; a reference to the current Window object. A synonym for
window.

top

If the current window is a frame, a reference to the Window object of the top-level window
that contains the frame. Note that top is different from parent for frames nested within
other frames.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window

A self-referential property; a reference to the current Window object. A synonym for self.

The Window object also supports a number of important methods:

alert() , confirm(), prompt()

Display simple dialog boxes to the user and, for confirm() and prompt(), get the
user's response.

close()

Close the window.

focus() , blur()

Request or relinquish keyboard focus for the window. The focus() method also ensures
that the window is visible by bringing it to the front of the stacking order.

moveBy() , moveTo()

Move the window.

open()

Open a new top-level window to display a specified URL with a specified set of features.

print()

Print the window or frame -- same as if the user had selected the Print button from the
window's toolbar (Netscape 4 and later and IE 5 and later only).

resizeBy() , resizeTo()

Resize the window.

scrollBy() , scrollTo()

Scroll the document displayed within the window.

setInterval() , clearInterval()

Schedule or cancel a function to be repeatedly invoked with a specified delay between
invocations.

setTimeout() , clearTimeout()

Schedule or cancel a function to be invoked once after a specified number of milliseconds.

As you can see from these lists, the Window object provides quite a bit of functionality. The
remainder of this chapter explores much of that functionality in more detail.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.2 Simple Dialog Boxes

Three commonly used Window methods are alert() , confirm(), and prompt(). These
methods pop up simple dialog boxes. alert() displays a message to the user, confirm() asks
the user to click an Ok or Cancel button to confirm or cancel an operation, and prompt() asks the
user to enter a string. Sample dialog boxes produced by these three methods are shown in Figure
13-1.

Figure 13-1. alert(), confirm(), and prompt() dialog boxes

Note that the text displayed by these dialog boxes is plain text, not HTML-formatted text. You can
format these dialog boxes only with spaces, newlines, and various punctuation characters. Adjusting
the layout generally requires trial and error. Bear in mind, though, that the dialog boxes look different
on different platforms and in different browsers, so you can't always count on your formatting to look
right on all possible browsers.

Some browsers (such as Netscape 3 and 4) display the word "JavaScript" in the titlebar or upper-left
corner of all dialog boxes produced by alert(), confirm(), and prompt(). Although
designers find this annoying, it should be considered a feature instead of a bug: it is there to make
the origin of the dialog box clear to users and to prevent you from writing Trojan-horse code that
spoofs system dialog boxes and tricks users into entering their passwords or doing other things that
they shouldn't do.

The confirm() and prompt() methods block -- that is, those methods do not return until the
user dismisses the dialog boxes they display. This means that when you pop up one of these boxes,
your code stops running and the currently loading document, if any, stops loading until the user
responds with the requested input. There is no alternative to blocking for these methods -- their return
value is the user's input, so they must wait for the user before they can return. In most browsers, the
alert() method also blocks and waits for the user to dismiss the dialog box. In some browsers,
however (notably Netscape 3 and 4 on Unix platforms), alert() does not block. In practice, this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

however (notably Netscape 3 and 4 on Unix platforms), alert() does not block. In practice, this
minor incompatibility rarely causes problems.

Example 13-1 shows some typical uses of these methods.

Example 13-1. Using the alert(), confirm(), and prompt() methods

// Here's a function that uses the alert() method to tell the user

// that form submission will take some time and that the user should

// be patient. It would be suitable for use in the onsubmit event handler

// of an HTML form.

// Note that all formatting is done with spaces, newlines, and underscores.

function warn_on_submit()

{

 alert("\n___ _\n\n" +

 " Your query is being submitted...\n" +

 "___ _\n\n" +

 "Please be aware that complex queries such as yours\n" +

 " can require a minute or more of search time.\n\n" +

 " Please be patient.");

}

// Here is a use of the confirm() method to ask if the user really

// wants to visit a web page that takes a long time to download. Note that

// the return value of the method indicates the user response. Based

// on this response, we reroute the browser to an appropriate page.

var msg = "\nYou are about to experience the most\n\n" +

 " -=| AWESOME |=-\n\n" +

 "web page you have ever visited!!!!!!\n\n" +

 "This page takes an average of 15 minutes to\n" +

 "download over a 56K modem connection.\n\n" +

 "Are you ready for a *good* time, Dude????";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "Are you ready for a *good* time, Dude????";

if (confirm(msg))

 location.replace("awesome_page.html");

else

 location.replace("lame_page.html");

// Here's some very simple code that uses the prompt() method to get

// a user's name and then uses that name in dynamically generated HTML.

n = prompt("What is your name?", "");

document.write("<hr><h1>Welcome to my home page, " + n + "</h1><hr>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.3 The Status Line

Web browsers typically display a status line at the bottom of every window (except for those explicitly
created without one), where the browser can display messages to the user. When the user moves the
mouse over a hypertext link, for example, the browser usually displays the URL to which the link
points. And when the user moves the mouse over a browser control button, the browser may display
a simple context help message that explains the purpose of the button. You can also make use of this
status line in your own programs. Its contents are controlled by two properties of the Window object:
status and defaultStatus.

Although web browsers usually display the URL of a hypertext link when the user passes the mouse
pointer over the link, you may have encountered some links that don't behave this way -- links that
display some text other than the link's URL. This effect is achieved with the status property of the
Window object and the onmouseover event handler of hypertext links:

<!-- Here's how you set the status line in a hyperlink.

 -- Note that the event handler *must* return true for this to work. -->

Lost? Dazed and confused? Visit the

 Site Map

<!-- You can do the same thing for client-side image maps -->

<map name="map1">

 <area coords="0,0,50,20" href="info.html"

 onmouseover="status='Visit our Information Center'; return true;">

 <area coords="0,20,50,40" href="order.html"

 onmouseover="status='Place an order'; return true;">

 <area coords="0,40,50,60" href="help.html"

 onmouseover="status='Get help fast!'; return true;">

</map>

The onmouseover event handler in this example must return true. This tells the browser that it
should not perform its own default action for the event -- that is, it should not display the URL of the
link in the status line. If you forget to return true, the browser overwrites whatever message the
handler displays in the status line with its own URL. Don't worry if you do not fully understand the
event handler in this example. We'll explain events in Chapter 19.

When the user moves the mouse pointer over a hyperlink, the browser displays the URL for the link,
then erases the URL when the mouse moves off the hyperlink. The same is true when you use an
onmouseover event handler to set the Window status property -- your custom message is
displayed while the mouse is over the hyperlink and is erased when the mouse moves off the link.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The status property is intended for exactly the sort of transient message we saw in the previous
example. Sometimes, though, you want to display a message that is not so transient in the status line
-- for example, you might display a welcome message to users visiting your web page or a simple line
of help text for novice visitors. To do this, you set the defaultStatus property of the Window
object; this property specifies the default text displayed in the status line. That text is temporarily
replaced with URLs, context help messages, or other transient text when the mouse pointer is over
hyperlinks or browser control buttons, but once the mouse moves off those areas, the default text is
restored.

You might use the defaultStatus property like this to provide a friendly and helpful message to
real beginners:

<script>

defaultStatus = "Welcome! Click on underlined blue text to navigate.";

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.4 Timeouts and Intervals

The setTimeout() method of the Window object schedules a piece of JavaScript code to be run
specified time in the future. The clearTimeout() method can be used to cancel the execution of that code.
setTimeout() is commonly used to perform animations or other kinds of repetitive actions. If a function runs
and then uses setTimeout() to schedule itself to be called again, we get a process that repeats without any
user intervention. JavaScript 1.2 has added the setInterval() and clearInterval() methods, which
are like setTimeout() and clearTimeout(), except that they automatically reschedule the code to run
repeatedly; there is no need for the code to reschedule itself.

The setTimeout() method is commonly used in conjunction with the status or defaultStatus
to animate some kind of message in the status bar of the browser. In general, animations involving the status bar
are gaudy, and you should shun them! There are, however, a few status-bar animation techniques that can be
useful and in good taste. Example 13-2 shows such a tasteful status-bar animation. It displays the current
the status bar and updates that time once a minute. Because the update occurs only once a minute, this
animation does not produce a constant flickering distraction at the bottom of the browser window, like so many
others do.

Note the use of the onload event handler of the <body> tag to perform the first call to the
display_time_in_status_line() method. This event handler is invoked once when the HTML document
is fully loaded into the browser. After this first call, the method uses setTimeout() to schedule itself to be
called every 60 seconds so that it can update the displayed time.

Example 13-2. A digital clock in the status line

<html>

<head>

<script>

// This function displays the time in the status line

// Invoke it once to activate the clock; it will call itself from then on

function display_time_in_status_line()

{

 var d = new Date(); // Get the current time

 var h = d.getHours(); // Extract hours: 0 to 23

 var m = d.getMinutes(); // Extract minutes: 0 to 59

 var ampm = (h >= 12)?"PM":"AM"; // Is it a.m. or p.m.?

 if (h > 12) h -= 12; // Convert 24-hour format to 12-hour

 if (h == 0) h = 12; // Convert 0 o'clock to midnight

 if (m < 10) m = "0" + m; // Convert 0 minutes to 00 minutes, etc.

 var t = h + ':' + m + ' ' + ampm; // Put it all together

 defaultStatus = t; // Display it in the status line

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 defaultStatus = t; // Display it in the status line

 // Arrange to do it all again in one minute

 setTimeout("display_time_in_status_line()", 60000); // 60000 ms is one

}

</script>

</head>

<!-- Don't bother starting the clock till everything is loaded. The

 -- status line will be busy with other messages during loading, anyway. -->

<body onload="display_time_in_status_line();">

<!-- The HTML document contents go here -->

</body>

</html>

In JavaScript 1.2, Example 13-2 could be written using setInterval() instead of setTimeout()
case, the setTimeout() call would be removed from the display_time_in_status_line()
and we'd remove the onload event handler. Instead, after defining display_time_in_status_line(
script would call setInterval() to schedule an invocation of the function that automatically repeats
every 60,000 milliseconds.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.5 Error Handling

The onerror property of a Window object is special. If you assign a function to this property, the
function will be invoked whenever a JavaScript error occurs in that window: the function you
assign becomes an error handler for the window.

Three arguments are passed to an error handler. The first is a message describing the error that
occurred. This may be something like "missing operator in expression", "self is read-only", or
"myname is not defined". The second argument is a string that contains the URL of the document
containing the JavaScript code that caused the error. The third argument is the line number within
the document where the error occurred. An error handler can use these arguments for any
purpose it desires. A typical error handler might display the error message to the user, log it
somewhere, or force the error to be ignored.

In addition to those three arguments, the return value of the onerror handler is significant.
Browsers typically display an error message in a dialog box or in the status line when an error
occurs. If the onerror handler returns true, it tells the system that the handler has handled the
error and that no further action is necessary -- in other words, the system should not display its
own error message. For example, if you do not want your users to be pestered by error
messages, no matter how buggy the code you write is, you could use a line of code like this at the
start of all your JavaScript programs:

self.onerror = function() { return true; }

Of course, doing this will make it very difficult for users to give you feedback when your programs
fail silently without producing error messages.

We'll see a sample use of an onerror handler in Example 14-1. That example uses the
onerror handler to display the error details to the user and allow the user to submit a bug report
containing those details.

Note that the onerror error handler is buggy in Netscape 6. Although the function you specify is
triggered when an error occurs, the three arguments that are passed are incorrect and unusable.
Netscape 6 and other browsers that support JavaScript 1.5 have an alternative means of catching
and handling errors, however: they can use the try/catch statement. (See Chapter 6 for
details.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.6 The Navigator Object

The Window.navigator property refers to a Navigator object that contains information about
the web browser as a whole, such as the version and a list of the data formats it can display. The
Navigator object is named after Netscape Navigator, but it is also supported by Internet Explorer.
IE also supports clientInformation as a vendor-neutral synonym for navigator.
Unfortunately, Netscape and Mozilla do not support this property.

The Navigator object has five main properties that provide version information about the browser
that is running:

appName

The simple name of the web browser.

appVersion

The version number and/or other version information for the browser. Note that this should
be considered an "internal" version number, since it does not always correspond to the
version number displayed to the user. For example, Netscape 6 reports a version number
of 5.0, since there never was a Netscape 5 release. Also, IE Versions 4 through 6 all report
a version number of 4.0, to indicate compatibility with the baseline functionality of fourth-
generation browsers.

userAgent

The string that the browser sends in its USER-AGENT HTTP header. This property typically
contains all the information in both appName and appVersion.

appCodeName

The code name of the browser. Netscape uses the code name "Mozilla" as the value of this
property. For compatibility, IE does the same thing.

platform

The hardware platform on which the browser is running. This property was added in
JavaScript 1.2.

The following lines of JavaScript code display each of these Navigator object properties in a
dialog box:

var browser = "BROWSER INFORMATION:\n";

for(var propname in navigator) {

 browser += propname + ": " + navigator[propname] + "\n"

}

alert(browser);

Figure 13-2 shows the dialog box displayed when the code is run on IE 6.

Figure 13-2. Navigator object properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

As you can see from Figure 13-2, the properties of the Navigator object have values that are
sometimes more complex than we are interested in. We are often interested in only the first digit
of the appVersion property, for example. When using the Navigator object to test browser
information, we often use methods such as parseInt() and String.indexOf() to extract
only the information we want. Example 13-3 shows some code that does this: it processes the
properties of the Navigator object and stores them in an object named browser. These
properties, in their processed form, are easier to use than the raw navigator properties. The
general term for code like this is a "client sniffer," and you can find more complex and general-
purpose sniffer code on the Internet.[1] For many purposes, however, something as simple as that
shown in Example 13-3 works just fine.

[1] See, for example, http://www.mozilla.org/docs/web-developer/sniffer/browser_type.html.

Example 13-3. Determining browser vendor and version

/*

 * File: browser.js

 * Include with: <script SRC="browser.js"></script>

 *

 * A simple "sniffer" that determines browser version and vendor.

 * It creates an object named "browser" that is easier to use than

 * the "navigator" object.

 */

// Create the browser object

var browser = new Object();

// Figure out the browser's major version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Figure out the browser's major version

browser.version = parseInt(navigator.appVersion);

// Now figure out if the browser is from one of the two

// major browser vendors. Start by assuming it is not.

browser.isNetscape = false;

browser.isMicrosoft = false;

if (navigator.appName.indexOf("Netscape") != -1)

 browser.isNetscape = true;

else if (navigator.appName.indexOf("Microsoft") != -1)

 browser.isMicrosoft = true;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.7 The Screen Object

In JavaScript 1.2, the screen property of a Window object refers to a Screen object that provides
information about the size of the user's display and the number of colors available on it. The
width and height properties specify the size of the display in pixels. The availWidth and
availHeight properties specify the display size that is actually available; they exclude the
space required by features such as the Windows taskbar. You can use these properties to help
you decide what size images to include in a document, for example, or what size windows to
create in a program that creates multiple browser windows.

The colorDepth property specifies the base-2 logarithm of the number of colors that can be
displayed. Often, this value is the same as the number of bits per pixel used by the display. For
example, an 8-bit display can display 256 colors, and if all of these colors were available for use
by the browser, the screen.colorDepth property would be 8. In some circumstances,
however, the browser may restrict itself to a subset of the available colors, and you might find a
screen.colorDepth value that is lower than the bits-per-pixel value of the screen. If you have
several versions of an image that were defined using different numbers of colors, you can test this
colorDepth property to decide which version to include in a document.

Example 13-4, later in this chapter, shows how the Screen object can be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.8 Window Control Methods

The Window object defines several methods that allow high-level control of the window itself. The
following sections explore how these methods allow us to open and close windows, control
window position and size, request and relinquish keyboard focus, and scroll the contents of a
window. We conclude with an example that demonstrates several of these features.

13.8.1 Opening Windows

You can open a new web browser window with the open() method of the Window object. This
method takes four optional arguments and returns a Window object that represents the newly
opened window. The first argument to open() is the URL of the document to display in the new
window. If this argument is omitted (or is null or the empty string), the window will be empty.

The second argument to open() is the name of the window. As we'll discuss later in the
chapter, this name can be useful as the value of the target attribute of a <form> or <a> tag. If
you specify the name of a window that already exists, open() simply returns a reference to that
existing window, rather than opening a new one.

The third optional argument to open() is a list of features that specify the window size and GUI
decorations. If you omit this argument, the new window is given a default size and has a full set of
standard features: a menu bar, status line, toolbar, and so on. On the other hand, if you specify
this argument, you can explicitly specify the size of the window and the set of features it includes.
For example, to open a small, resizeable browser window with a status bar but no menu bar,
toolbar, or location bar, you could use the following line of JavaScript:

var w = window.open("smallwin.html", "smallwin",

 "width=400,height=350,status=yes,resizable=yes");

Note that when you specify this third argument, any features you do not explicitly specify are
omitted. See Window.open() in the client-side reference section for the full set of available
features and their names.

The fourth argument to open() is useful only when the second argument names an already
existing window. This fourth argument is a boolean value that specifies whether the URL specified
as the first argument should replace the current entry in the window's browsing history (true) or
create a new entry in the window's browsing history (false), which is the default behavior.

The return value of the open() method is the Window object that represents the newly created
window. You can use this Window object in your JavaScript code to refer to the new window, just
as you use the implicit Window object window to refer to the window within which your code is
running. But what about the reverse situation? What if JavaScript code in the new window wants
to refer back to the window that opened it? In JavaScript 1.1 and later, the opener property of a
window refers to the window from which it was opened. If the window was created by the user
instead of by JavaScript code, the opener property is null.

An important point about the open() method is that it is almost always invoked as
window.open(), even though window refers to the global object and should therefore be
entirely optional. window is explicitly specified because the Document object also has an open(
) method, so specifying window.open() helps to make it very clear what we are trying to do.
This is not just a helpful habit; it is required in some circumstances, because, as we'll learn in
Chapter 19, event handlers execute in the scope of the object that defines them. When the event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19, event handlers execute in the scope of the object that defines them. When the event
handler of an HTML button executes, for example, the scope chain includes the Button object, the
Form object that contains the button, the Document object that contains the form, and, finally, the
Window object that contains the document. Thus, if such an event handler refers merely to the
open() method, this identifier ends up being resolved in the Document object, and the event
handler opens a new document rather than opening a new window!

We'll see the open() method in use in Example 13-4.

13.8.2 Closing Windows

Just as the open() method opens a new window, the close() method closes one. If we've
created a Window object w, we can close it with:

w.close();

JavaScript code running within that window itself could close it with:

window.close();

Again, note the explicit use of the window identifier to disambiguate the close() method of the
Window object from the close() method of the Document object.

Most browsers allow you to automatically close only those windows that your own JavaScript code
has created. If you attempt to close any other window, the user is presented with a dialog box that
asks him to confirm (or cancel) that request to close the window. This precaution prevents
inconsiderate scripters from writing code to close a user's main browsing window.

In JavaScript 1.1 and later, a Window object continues to exist after the window it represents has
been closed. You should not attempt to use any of its properties or methods, however, except to
test the closed property. This property is true if the window has been closed. Remember that
the user can close any window at any time, so to avoid errors, it is a good idea to check
periodically that the window you are trying to use is still open. We'll see this done in Example 13-
4.

13.8.3 Window Geometry

In JavaScript 1.2, moveTo() moves the upper-left corner of the window to the specified
coordinates. Similarly, moveBy() moves the window a specified number of pixels left or right
and up or down. resizeTo() and resizeBy() resize the window by an absolute or relative
amount; they are also new in JavaScript 1.2. Note that in order to prevent security attacks that
rely on code running in small or offscreen windows that the user does not notice, browsers may
restrict your ability to move windows offscreen or to make them too small.

13.8.4 Keyboard Focus and Visibility

The focus() and blur() methods also provide high-level control over a window. Calling
focus() requests that the system give keyboard focus to the window, and blur()
relinquishes keyboard focus. In addition, the focus() method ensures that the window is visible
by moving it to the top of the stacking order. When you use the Window.open() method to
open a new window, the browser automatically creates that window on top. But if the second
argument specifies the name of a window that already exists, the open() method does not
automatically make that window visible. Thus, it is common practice to follow calls to open()
with a call to focus().

focus() and blur() are defined in JavaScript 1.1 and later.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

focus() and blur() are defined in JavaScript 1.1 and later.

13.8.5 Scrolling

The Window object also contains methods that scroll the document within the window or frame.
scrollBy() scrolls the document displayed in the window by a specified number of pixels left
or right and up or down. scrollTo() scrolls the document to an absolute position. It moves the
document so that the specified document coordinates are displayed in the upper-left corner of the
document area within the window. These two methods are defined in JavaScript 1.2. In
JavaScript 1.1, the scroll() method performs the same function as the JavaScript 1.2
scrollTo() method. scrollTo() is the preferred method, but the scroll() method
remains for backward compatibility.

In JavaScript 1.2, the elements of the anchors[] array of the Document object are Anchor
objects. Each Anchor object has x and y properties that specify the location of the anchor within
the document. Thus, you can use these values in conjunction with the scrollTo() method to
scroll to known locations within the document. Alternatively, in IE 4 and later and Netscape 6 and
later, document elements all define a focus() method. Invoking this method on an element
causes the document to scroll as needed to ensure that the element is visible.

13.8.6 Window Methods Example

Example 13-4 demonstrates the Window open() , close(), and moveTo() methods and
several other window-programming techniques that we've discussed. It creates a new window
and then uses setInterval() to repeatedly call a function that moves it around the screen. It
determines the size of the screen with the Screen object and then uses this information to make
the window bounce when it reaches any edge of the screen.

Example 13-4. Moving a window

<script>

// Here are the initial values for our animation

var x = 0, y = 0, w=200, h=200; // Window position and size

var dx = 5, dy = 5; // Window velocity

var interval = 100; // Milliseconds between updates

// Create the window that we're going to move around

// The javascript: URL is simply a way to display a short document

// The final argument specifies the window size

var win = window.open('javascript:"<h1>BOUNCE!</h1>"', "",

 "width=" + w + ",height=" + h);

// Set the initial position of the window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Set the initial position of the window

win.moveTo(x,y);

// Use setInterval() to call the bounce() method every interval

// milliseconds. Store the return value so that we can stop the

// animation by passing it to clearInterval().

var intervalID = window.setInterval("bounce()", interval);

// This function moves the window by (dx, dy) every interval ms

// It bounces whenever the window reaches the edge of the screen

function bounce() {

 // If the user closed the window, stop the animation

 if (win.closed) {

 clearInterval(intervalID);

 return;

 }

 // Bounce if we have reached the right or left edge

 if ((x+dx > (screen.availWidth - w)) || (x+dx < 0)) dx = -dx;

 // Bounce if we have reached the bottom or top edge

 if ((y+dy > (screen.availHeight - h)) || (y+dy < 0)) dy = -dy;

 // Update the current position of the window

 x += dx;

 y += dy;

 // Finally, move the window to the new position

 win.moveTo(x,y);

}

</script>

<!-- Clicking this button stops the animation! -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- Clicking this button stops the animation! -->

<form>

<input type="button" value="Stop"

 onclick="clearInterval(intervalID); win.close();">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.9 The Location Object

The location property of a window is a reference to a Location object -- a representation of the URL of
the document currently being displayed in that window. The href property of the Location object is a
string that contains the complete text of the URL. Other properties of this object, such as protocol
host, pathname, and search, specify the various individual parts of the URL.

The search property of the Location object is an interesting one. It contains any portion of a URL
following (and including) a question mark. This is often some sort of query string. In general, the question-
mark syntax in a URL is a technique for embedding arguments in the URL. While these arguments are
usually intended for CGI scripts run on a server, there is no reason why they cannot also be used in
JavaScript-enabled pages. Example 13-5 shows the definition of a general-purpose getArgs()
function that you can use to extract arguments from the search property of a URL. It also shows how this
getArgs() method could have been used to set initial values of the bouncing window animation
parameters in Example 13-4.

Example 13-5. Extracting arguments from a URL

/*

 * This function parses comma-separated name=value argument pairs from

 * the query string of the URL. It stores the name=value pairs in

 * properties of an object and returns that object.

 */

function getArgs() {

 var args = new Object();

 var query = location.search.substring(1); // Get query string

 var pairs = query.split(","); // Break at comma

 for(var i = 0; i < pairs.length; i++) {

 var pos = pairs[i].indexOf('='); // Look for "name=value"

 if (pos == -1) continue; // If not found, skip

 var argname = pairs[i].substring(0,pos); // Extract the name

 var value = pairs[i].substring(pos+1); // Extract the value

 args[argname] = unescape(value); // Store as a property

 // In JavaScript 1.5, use decodeURIComponent() instead of escape()

 }

 return args; // Return the object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return args; // Return the object

}

/*

 * We could have used getArgs() in the previous bouncing window example

 * to parse optional animation parameters from the URL

 */

var args = getArgs(); // Get arguments

if (args.x) x = parseInt(args.x); // If arguments are defined...

if (args.y) y = parseInt(args.y); // override default values

if (args.w) w = parseInt(args.w);

if (args.h) h = parseInt(args.h);

if (args.dx) dx = parseInt(args.dx);

if (args.dy) dy = parseInt(args.dy);

if (args.interval) interval = parseInt(args.interval);

In addition to its properties, the Location object can be used as if it were itself a primitive string value. If
you read the value of a Location object, you get the same string as you would if you read the href
property of the object (because the Location object has a suitable toString() method). What is
more interesting, though, is that you can assign a new URL string to the location property of a window.
Assigning a URL to the Location object this way has an important side effect: it causes the browser to
load and display the contents of the URL you assign. For example, you might assign a URL to the
location property like this:

// If the user is using an old browser that can't display DHTML content,

// redirect to a page that contains only static HTML

if (parseInt(navigator.appVersion) < 4)

 location = "staticpage.html";

As you can imagine, making the browser load specified web pages into windows is a very important
programming technique. While you might expect there to be a method you can call to make the browser
display a new web page, assigning a URL to the location property of a window is the supported
technique for accomplishing this end. Example 13-6, later in this chapter, includes an example of setting
the location property.

Although the Location object does not have a method that serves the same function as assigning a URL
directly to the location property of a window, this object does support two methods (added in
JavaScript 1.1). The reload() method reloads the currently displayed page from the web server. The
replace() method loads and displays a URL that you specify. But invoking this method for a given
URL is different than assigning that URL to the location property of a window. When you call
replace(), the specified URL replaces the current one in the browser's history list, rather than creating
a new entry in that history list. Therefore, if you use replace() to overwrite one document with a new
one, the Back button does not take the user back to the original document, as it does if you load the new
document by assigning a URL to the location property. For web sites that use frames and display a lot
of temporary pages (perhaps generated by a CGI script), using replace() is often useful. Since

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of temporary pages (perhaps generated by a CGI script), using replace() is often useful. Since
temporary pages are not stored in the history list, the Back button is more useful to the user.

Finally, don't confuse the location property of the Window object, which refers to a Location object,
with the location property of the Document object, which is simply a read-only string with none of
special features of the Location object. document.location is a synonym for document.URL, which in
JavaScript 1.1 is the preferred name for this property (because it avoids the potential confusion). In most
cases, document.location is the same as location.href. When there is a server redirect,
however, document.location contains the URL as loaded, and location.href contains the URL
originally requested.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.10 The History Object

The history property of the Window object refers to a History object for the window. The History object
was originally designed to model the browsing history of a window as an array of recently visited URLs.
This turned out to be a poor design choice, however; for important security and privacy reasons, it is
almost never appropriate to give a script access to the list of web sites that the user has previously
visited. Thus, the array elements of the History object are never actually accessible to scripts (except
when the user has granted permission to a signed script in Netscape 4 and later). The length property
of the History object is accessible, but it does not provide any useful information.

Although its array elements are inaccessible, the History object supports three methods (which can be
used by normal, unsigned scripts in all browser versions). The back() and forward() methods
move backward or forward in a window's (or frame's) browsing history, replacing the currently displayed
document with a previously viewed one. This is similar to what happens when the user clicks on the
Back and Forward browser buttons. The third method, go(), takes an integer argument and can skip
forward or backward in the history list by multiple pages. Unfortunately, go() suffers from bugs in
Netscape 2 and 3 and has incompatible behavior in Internet Explorer 3; it is best avoided prior to fourth-
generation browsers.

Example 13-6 shows how you might use the back() and forward() methods of the History and
Location objects to add a navigation bar to a framed web site. Figure 13-3 shows what a navigation bar
looks like. Note that the example uses JavaScript with multiple frames, which is something we will
discuss shortly. It also contains a simple HTML form and uses JavaScript to read and write values from
the form. This behavior is covered in detail in Chapter 15.

Figure 13-3. A navigation bar

Example 13-6. A navigation bar using the History and Location objects

<!-- This file implements a navigation bar, designed to go in a frame at

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- This file implements a navigation bar, designed to go in a frame at

 the bottom of a window. Include it in a frameset like the following:

 <frameset rows="*,75">

 <frame src="about:blank">

 <frame src="navigation.html">

 </frameset>

-->

<script>

// The function is invoked by the Back button in our navigation bar

function go_back()

{

 // First, clear the URL entry field in our form

 document.navbar.url.value = "";

 // Then use the History object of the main frame to go back

 parent.frames[0].history.back();

 // Wait a second, and then update the URL entry field in the form

 // from the location.href property of the main frame. The wait seems

 // to be necessary to allow the location.href property to get in sync.

 setTimeout("document.navbar.url.value = parent.frames[0].location.href;",

 1000);

}

// This function is invoked by the Forward button in the navigation bar;

// it works just like the previous one

function go_forward()

{

 document.navbar.url.value = "";

 parent.frames[0].history.forward();

 setTimeout("document.navbar.url.value = parent.frames[0].location.href;",

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 setTimeout("document.navbar.url.value = parent.frames[0].location.href;",

 1000);

}

// This function is invoked by the Go button in the navigation bar and also

// when the form is submitted (when the user hits the Return key)

function go_to()

{

 // Just set the location property of the main frame to the URL

 // the user typed in

 parent.frames[0].location = document.navbar.url.value;

}

</script>

<!-- Here's the form, with event handlers that invoke the functions above -->

<form name="navbar" onsubmit="go_to(); return false;">

 <input type="button" value="Back" onclick="go_back();">

 <input type="button" value="Forward" onclick="go_forward();">

 URL:

 <input type="text" name="url" size="50">

 <input type="button" value="Go" onclick="go_to();">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

13.11 Multiple Windows and Frames

Most of the client-side JavaScript examples we've seen so far have involved only a single window or
frame. In the real world, JavaScript applications often involve multiple windows or frames. Recall
that frames within a window are represented by Window objects; JavaScript makes little distinction
between windows and frames. In the most interesting applications, there is JavaScript code that
runs independently in each of several windows. The next section explains how the JavaScript code
in each window can interact and cooperate with each of the other windows and with the scripts
running in each of those windows.

13.11.1 Relationships Between Frames

We've already seen that the open() method of the Window object returns a new Window object
representing the newly created window. We've also seen that this new window has an opener
property that refers back to the original window. In this way, the two windows can refer to each
other, and each can read properties and invoke methods of the other. The same thing is possible
with frames. Any frame in a window can refer to any other frame through the use of the frames,
parent, and top properties of the Window object.

Every window has a frames property. This property refers to an array of Window objects, each of
which represents a frame contained within the window. (If a window does not have any frames, the
frames[] array is empty and frames.length is zero.) Thus, a window (or frame) can refer to its
first subframe as frames[0], its second subframe as frames[1], and so on. Similarly, JavaScript
code running in a window can refer to the third subframe of its second frame like this:

frames[1].frames[2]

Every window also has a parent property, which refers to the Window object in which it is
contained. Thus, the first frame within a window might refer to its sibling frame (the second frame
within the window) like this:

parent.frames[1]

If a window is a top-level window and not a frame, parent simply refers to the window itself:

parent == self; // For any top-level window

If a frame is contained within another frame that is contained within a top-level window, that frame
can refer to the top-level window as parent.parent. The top property is a general-case shortcut,
however: no matter how deeply a frame is nested, its top property refers to the top-level containing
window. If a Window object represents a top-level window, top simply refers to that window itself.
For frames that are direct children of a top-level window, the top property is the same as the
parent property.

Frames are typically created with <frameset> and <frame> tags. In HTML 4, however, as
implemented in IE 4 and later and Netscape 6 and later, the <iframe> tag can also be used to
create an "inline frame" within a document. As far as JavaScript is concerned, frames created with
<iframe> are the same as frames created with <frameset> and <frame>. Everything discussed
here applies to both kinds of frames.

Figure 13-4 illustrates these relationships between frames and shows how code running in any one
frame can refer to any other frame through the use of the frames, parent, and top properties.
The figure shows a browser window that contains two frames, one on top of the other. The second
frame (the larger one on the bottom) itself contains three subframes, side by side.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 13-4. Relationships between frames

With this understanding of the relationships between frames, you may want to revisit Example 13-6,
paying particular attention this time to the way the code (which is written to run in a second frame)
refers to the history and location properties of the first frame.

13.11.2 Window and Frame Names

The second, optional argument to the open() method discussed earlier is a name for the newly
created window. When you create a frame with the HTML <frame> tag, you can specify a name
with the name attribute. An important reason to specify names for windows and frames is that those
names can be used as the value of the target attribute of the <a>, <map> , and <form> tags.
This value tells the browser where you want to display the results of activating a link, clicking on an
image map, or submitting a form.

For example, if you have two windows, one named table_of_contents and the other mainwin,
you might have HTML like the following in the table_of_contents window:

 Chapter 1, Introduction

The browser loads the specified URL when the user clicks on this hyperlink, but instead of
displaying the URL in the same window as the link, it displays it in the window named mainwin. If
there is no window with the name mainwin, clicking the link creates a new window with that name
and loads the specified URL into it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The target and name attributes are part of HTML and operate without the intervention of
JavaScript, but there are also JavaScript-related reasons to give names to your frames. We've seen
that every Window object has a frames[] array that contains references to each of its frames. This
array contains all the frames in a window (or frame), whether or not they have names. If a frame is
given a name, however, a reference to that frame is also stored in a new property of the parent
Window object. The name of that new property is the same as the name of the frame. Therefore,
you might create a frame with HTML like this:

<frame name="table_of_contents" src="toc.html">

Now you can refer to that frame from another, sibling frame with:

parent.table_of_contents

This makes your code easier to read and understand than using (and relying on) a hardcoded array
index, as you'd have to do with an unnamed frame:

parent.frames[1]

The name property of any Window object contains the name of that window. In JavaScript 1.0, this
property is read-only. In JavaScript 1.1 and later, however, you can set this property, thereby
changing the name of a window or a frame. One common reason to do this is to set the name of the
initial browser window. When a browser starts up, the initial window has no name, so it cannot be
used with the target attribute. If you set the name property of the window, however, you can then
use that name in target attributes.

13.11.3 JavaScript in Interacting Windows

Recall what we learned in Chapter 12: the Window object serves as the global object for client-side
JavaScript code, and the window serves as the execution context for all JavaScript code it contains.
This holds true for frames as well: every frame is an independent JavaScript execution context.
Because every Window object is its own global object, each window defines its own namespace and
its own set of global variables. When viewed from the perspective of multiple frames or windows,
global variables do not seem all that global, after all!

Although each window and frame defines an independent JavaScript execution context, this does
not mean that JavaScript code running in one window is isolated from code running in other
windows. Code running in one frame has a different Window object at the top of its scope chain than
code running in another frame. However, the code from both frames is executed by the same
JavaScript interpreter, in the same JavaScript environment. As we've seen, one frame can refer to
any other frame using the frames, parent, and top properties. So, although JavaScript code in
different frames is executed with different scope chains, the code in one frame can still refer to and
use the variables and functions defined by code in another frame.

For example, suppose code in frame A defines a variable i:

var i = 3;

That variable is nothing more than a property of the global object -- a property of the Window object.
Code in frame A could refer to the variable explicitly as such a property with either of these two
expressions:

window.i

self.i

Now suppose that frame A has a sibling frame B that wants to set the value of the variable i defined
by the code in frame A. If frame B just sets a variable i, it merely succeeds in creating a new

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

by the code in frame A. If frame B just sets a variable i, it merely succeeds in creating a new
property of its own Window object. So instead, it must explicitly refer to the property i in its sibling
frame with code like this:

parent.frames[0].i = 4;

Recall that the function keyword that defines functions declares a variable just like the var
keyword does. If JavaScript code in frame A declares a function f, that function is defined only
within frame A. Code in frame A can invoke f like this:

f();

Code in frame B, however, must refer to f as a property of the Window object of frame A:

parent.frames[0].f();

If the code in frame B needs to use this function frequently, it might assign the function to a variable
of frame B so that it can more conveniently refer to the function:

var f = parent.frames[0].f;

Now code in frame B can invoke the function as f(), just as code in frame A does.

When you share functions between frames or windows like this, it is very important to keep the rules
of lexical scoping in mind. A function is executed in the scope in which it was defined, not in the
scope from which it is invoked. Thus, to continue with the previous example, if the function f refers
to global variables, these variables are looked up as properties of frame A, even when the function
is invoked from frame B.

If you don't pay careful attention to this, you can end up with programs that behave in unexpected
and confusing ways. For example, suppose you define the following function in the <head> section
of a multiframe document, with the idea that it will help with debugging:

function debug(msg) {

 alert("Debugging message from frame: " + name + "\n" + msg);

}

The JavaScript code in each of your frames can refer to this function as top.debug(). Whenever
this function is invoked, however, it looks up the variable name in the context of the top-level window
in which the function is defined, rather than the context of the frame from which it is invoked. Thus,
the debugging messages always carry the name of the top-level window, rather than the name of
the frame that sent the message, as was intended.

Remember that constructors are also functions, so when you define a class of objects with a
constructor function and an associated prototype object, that class is defined only for a single
window. Recall the Complex class we defined in Chapter 8, and consider the following multiframed
HTML document:

<head>

<script src="Complex.js"></script>

</head>

<frameset rows="50%,50%">

 <frame name="frame1" src="frame1.html">

 <frame name="frame2" src="frame2.html">

</frameset>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</frameset>

JavaScript code in the files frame1.html and frame2.html cannot create a Complex object with an
expression like this:

var c = new Complex(1,2); // Won't work from either frame

Instead, code in these files must explicitly refer to the constructor function:

var c = new top.Complex(3,4);

Alternatively, code in either frame can define its own variable to refer more conveniently to the
constructor function:

var Complex = top.Complex;

var c = new Complex(1,2);

Unlike user-defined constructors, predefined constructors are automatically predefined in all
windows. Note, however, that each window has an independent copy of the constructor and an
independent copy of the constructor's prototype object. For example, each window has its own copy
of the String() constructor and the String.prototype object. So, if you write a new method
for manipulating JavaScript strings and then make it a method of the String class by assigning it to
the String.prototype object in the current window, all strings in that window can use the new
method. However, the new method is not accessible to strings defined in other windows. Note that it
does not matter which window holds a reference to the string; only the window in which the string
was actually created matters.

13.11.4 Example: Colored Frames

Example 13-7, a frame set that defines a grid of nine frames, demonstrates some of the techniques
we've discussed in this chapter. The <head> section of the frame set includes a <script> that
defines a JavaScript function named setcolor(). The onload event handler of the
<frameset> tag invokes setcolor() once for each of the nine frames.

setcolor() is passed a Window object as its argument. It generates a random color and uses it
with the Document.write() method to create a new document that is empty except for a
background color. Finally, setcolor() uses the setTimeout() method to schedule itself to be
called again in one second. This call to setTimeout() is the most interesting part of the
example. Notice especially how it uses the parent and name properties of Window objects.

Example 13-7. A frame color animation

<head>

<title>Colored Frames</title>

<script>

function setcolor(w) {

 // Generate a random color

 var r = Math.floor((Math.random() * 256)).toString(16);

 var g = Math.floor((Math.random() * 256)).toString(16);

 var b = Math.floor((Math.random() * 256)).toString(16);

 var colorString = "#" + r + g + b;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var colorString = "#" + r + g + b;

 // Set the frame background to the random color

 w.document.write("<body bgcolor='" + colorString + "'></body>");

 w.document.close();

 // Schedule another call to this method in one second.

 // Since we call the setTimeout() method of the frame, the string

 // will be executed in that context, so we must prefix properties

 // of the top-level window with "parent.".

 w.setTimeout('parent.setcolor(parent.' + w.name + ')', 1000);

 // We could also have done the same thing more simply like this:

 // setTimeout('setcolor(' + w.name + ')', 1000);

}

</script>

</head>

<frameset rows="33%,33%,34%" cols="33%,33%,34%"

 onload="for(var i = 0; i < 9; i++) setcolor(frames[i]);">

<frame name="f1" src="javascript:''"><frame name="f2" src="javascript:''">

<frame name="f3" src="javascript:''"><frame name="f4" src="javascript:''">

<frame name="f5" src="javascript:''"><frame name="f6" src="javascript:''">

<frame name="f7" src="javascript:''"><frame name="f8" src="javascript:''">

<frame name="f9" src="javascript:''">

</frameset>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 14. The Document Object
Every Window object has a document property. This property refers to a Document object that
represents the HTML document displayed in the window. The Document object is probably the
most commonly used object in client-side JavaScript. We've already seen several examples in
this book that use the write() method of the Document object to insert dynamic content into a
document while it is being parsed. In addition to the frequently used write() method, the
Document object defines properties that provide information about the document as a whole: its
URL, its last-modified date, the URL of the document that linked to it, the colors in which it is
displayed, and so on.

Client-side JavaScript exists to turn static HTML documents into interactive programs -- it is the
Document object that gives JavaScript interactive access to the content of otherwise static
documents. In addition to the properties that provide information about a document as a whole,
the Document object has a number of very important properties that provide information about
document content. The forms[] array, for instance, contains Form objects that represent all the
HTML forms in the document. And the images[] and applets[] arrays contain objects that
represent the images and applets in the document. These arrays and the objects they contain
open up a world of possibilities for client-side JavaScript programs, and the bulk of this chapter is
devoted to documenting them.

This chapter covers the core features of the Document object that are implemented by virtually
every JavaScript-enabled browser. Newer browsers, such as IE 4 and later and Netscape 6 and
later, implement a full document object model, or DOM, that gives JavaScript complete access to
and control over all document content. These advanced DOM features are covered in Chapter 17.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.1 Document Overview

To illustrate the scope and importance of the Document object, this chapter begins with a quick
summary of the methods and properties of the object. The following sections also explain other
important material that is important to understand before reading the rest of the chapter.

14.1.1 Document Methods

The Document object defines four key methods. One is the write() method, which we've already
seen several times, and the other three are related:

close()

Close or end a document that was begun with open().

open()

Begin a new document, erasing any existing document content.

write()

Append text to the currently open document.

writeln()

Output text into the currently open document, and append a newline character.

14.1.2 Document Properties

The Document object defines the following properties:

alinkColor , linkColor, vlinkColor

These properties describe the colors of hyperlinks. linkColor is the normal color of an
unvisited link. vlinkColor is the normal color of a visited link. alinkColor is the color of a
link while it is activated (i.e., while the user is clicking on it). These properties correspond to
the alink , link, and vlink attributes of the <body> tag.

anchors[]

An array of Anchor objects that represent the anchors in the document.

applets[]

An array of Applet objects that represent the Java applets in the document.

bgColor, fgColor

The background and foreground (i.e., text) colors of the document. These properties
correspond to the bgcolor and text attributes of the <body> tag.

cookie

A special property that allows JavaScript programs to read and write HTTP cookies. See
Chapter 16 for details.

domain

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

domain

A property that allows mutually trusted web servers within the same Internet domain to
collaboratively relax certain security restrictions on interactions between their web pages. See
Chapter 21.

forms[]

An array of Form objects that represent the <form> elements in the document.

images[]

An array of Image objects that represent the elements in the document.

lastModified

A string that contains the modification date of the document.

links[]

An array of Link objects that represent the hypertext links in the document.

location

A deprecated synonym for the URL property.

referrer

The URL of the document containing the link that brought the browser to the current
document, if any.

title

The text between the <title> and </title> tags for this document.

URL

A string specifying the URL from which the document was loaded. The value of this property
is the same as the location.href property of the Window object, except when a server
redirect has occurred.

14.1.3 The Document Object and Standards

The Document object and the set of elements (such as forms, images, and links) that it exposes to
JavaScript programs form a document object model. Historically, different browser vendors have
implemented different DOMs, which has made it difficult for JavaScript programmers to portably use
the advanced features of the vendor-specific DOMs. Fortunately, the World Wide Web Consortium
(or W3C; see http://www.w3.org) has standardized a DOM and issued two versions of this standard,
known as Level 1 and Level 2. Recent browsers, such as Netscape 6 and later and IE 5 and later,
implement some or most of these standards. See Chapter 17 for all the details.

The DOM described in this chapter predates the W3C standards. By virtue of its nearly universal
implementation, however, it is a de facto standard and is often referred to as the Level 0 DOM. You
can use the techniques described in this chapter in any JavaScript-enabled web browser, with the
exception of very old ones such as Netscape 2. Furthermore, the Document object methods and
properties listed previously have been formalized as part of the Level 1 DOM, so they are
guaranteed to remain supported by future browsers.

One important thing to understand about the W3C DOM standard is that it is a document object
model for both XML and HTML documents. In this standard, the Document object provides generic
functionality of use for both types of documents. HTML-specific functionality is provided by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument subclass. All the Document properties and methods described in this chapter are
HTML-specific, and you can find more details about them under the "Document" entry in the client-
side reference section of this book. You'll also find related information in the DOM reference section,
under "Document" and "HTMLDocument."

14.1.4 Naming Document Objects

Before we begin our discussion of the Document object and the various objects it exposes, there is
one general principle that you'll find it helpful to keep in mind. As you'll see, every <form> element
in an HTML document creates a numbered element in the forms[] array of the Document object.
Similarly, every element creates an element in the images[] array. The same applies for
<a> and <applet> tags, which define elements in the links[] and applets[] arrays.

In addition to these arrays, however, a Form, Image, or Applet object may be referred to by name if
its corresponding HTML tag is given a name attribute. When this attribute is present, its value is
used to expose the corresponding object as a property of the Document object. So, for example,
suppose an HTML document contains the following form:

<form name="f1">

<input type="button" value="Push Me">

</form>

Assuming that the <form> is the first one in the document, your JavaScript code can refer to the
resulting Form object with either of the following two expressions:

document.forms[0] // Refer to the form by position within the document

document.f1 // Refer to the form by name

In fact, setting the name attribute of a <form> also makes the Form object accessible as a named
property of the forms[] array, so you could also refer to the form with either of these two
expressions:

document.forms.f1 // Use property syntax

document.forms["f1"] // Use array syntax

The same applies for images and applets: using the name attribute in your HTML allows you to refer
to these objects by name in your JavaScript code.

As you might imagine, it is convenient to give names to frequently used Document objects so that
you can refer to them more easily in your scripts. We'll see this technique used a number of times in
this and later chapters.

14.1.5 Document Objects and Event Handlers

To be interactive, an HTML document and the elements within it must respond to user events. We
discussed events and event handlers briefly in Chapter 12, and we've seen several examples that
use simple event handlers. We'll see many more examples of event handlers in this chapter,
because they are key to working with Document objects.

Unfortunately, we must defer a complete discussion of events and event handlers until Chapter 19.
For now, remember that event handlers are defined by attributes of HTML elements, such as
onclick and onmouseover. The values of these attributes should be strings of JavaScript code.
This code is executed whenever the specified event occurs on the HTML element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In addition, there is one other way to define event handlers that we'll occasionally see used in this
and later chapters. We'll see in this chapter that Document objects such as Form and Image objects
have JavaScript properties that match the HTML attributes of the <form> and tags. For
example, the HTML tag has src and width attributes, and the JavaScript Image object has
corresponding src and width properties. The same is true for event handlers. The HTML <a> tag
supports an onclick event handler, for example, and the JavaScript Link object that represents a
hyperlink has a corresponding onclick property. As another example, consider the onsubmit
attribute of the <form> element. In JavaScript, the Form object has a corresponding onsubmit
property. Remember that HTML is not case-sensitive, and attributes can be written in uppercase,
lowercase, or mixed-case. In JavaScript, all event handler properties must be written in lowercase.

In HTML, event handlers are defined by assigning a string of JavaScript code to an event handler
attribute. In JavaScript, however, they are defined by assigning a function to an event handler
property. Consider the following <form> and its onsubmit event handler:

<form name="myform" onsubmit="return validateform();">...</form>

In JavaScript, instead of using a string of JavaScript code that invokes a function and returns its
result, we could simply assign the function directly to the event handler property like this:

document.myform.onsubmit = validateform;

Note that there are no parentheses after the function name. That is because we don't want to invoke
the function here; we just want to assign a reference to it. As another example, consider the
following <a> tag and its onmouseover event handler:

Help

If we happen to know that this <a> tag is the first one in the document, we can refer to the
corresponding Link object as document.links[0] and set the event handler this way instead:

document.links[0].onmouseover = function() { status = 'Get Help Now!'; }

See Chapter 19 for a complete discussion of assigning event handlers in this way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.2 Dynamically Generated Documents

One of the most important features of the Document object (and perhaps of client-side JavaScript in
general) is the write() method, which allows you to dynamically generate web-page content from your
JavaScript programs. This method can be used in two ways. The first and simplest way to use it is within a
script, to output dynamically generated HTML into the document that is currently being parsed. This was
discussed in Chapter 12. Consider the following code, which uses write() to add the current date and
the document's last-modified date to an otherwise static HTML document:

<script>

var today = new Date();

document.write("<p>Document accessed on: " + today.toString());

document.write("
Document modified on: " + document.lastModified);

</script>

Using the write() method in this way is an extremely common JavaScript programming technique, and
you'll see it in many scripts.

Be aware, however, that you can use the write() method to output HTML to the current document only
while that document is being parsed. That is, you can call document.write() from within <script>
tags only because these scripts are executed as part of the document parsing process. In particular, if you
call document.write() from within an event handler and that handler is invoked once the document
already been parsed, you will end up overwriting the entire document (including its event handlers), instead
of appending text to it. The reason for this will become clear as we examine the second way to use the
write() method.

In addition to adding dynamic content to the current document as it is being parsed, write() can be used
in conjunction with the open() and close() Document methods to create entirely new documents
within a window or frame. Although you cannot usefully write to the current document from an event handler,
there is no reason why you can't write to a document in another window or frame; doing so can be a useful
technique with multiwindow or multiframe web sites. For example, JavaScript code in one frame of a
multiframe site might display a message in another frame with code like this:

<script>

// Start a new document, erasing any content that was already in frames[0]

parent.frames[0].document.open();

// Add some content to the document

parent.frames[0].document.write("<hr>Hello from your sibling frame!<hr>");

// And close the document when we're done

parent.frames[0].document.close();

</script>

To create a new document, we first call the open() method of the Document object, then call write(
any number of times to output the contents of the document, and finally call the close() method of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

any number of times to output the contents of the document, and finally call the close() method of
Document object to indicate that we have finished. This last step is important; if you forget to close the
document, the browser does not stop the document loading animation it displays. Also, the browser may
buffer the HTML you have written; it is not required to display the buffered output until you explicitly end the
document by calling close().

In contrast to the close() call, which is required, the open() call is optional. If you call the write()
method on a document that has already been closed, JavaScript implicitly opens a new HTML document,
if you had called the open() method. This explains what happens when you call document.write(
from an event handler within the same document -- JavaScript opens a new document. In the process,
however, the current document (and its contents, including scripts and event handlers) is discarded. This is
never what you want to do, and it can even cause some early browsers (such as Netscape 2) to crash. As a
general rule of thumb, a document should never call write() on itself from within an event handler.

A couple of final notes about the write() method. First, many people do not realize that the write(
method can take more than one argument. When you pass multiple arguments, they are output one after
another, just as if they had been concatenated. So instead of writing:

document.write("Hello, " + username + " Welcome to my home page!");

you might equivalently write:

var greeting = "Hello, ";

var welcome = " Welcome to my home page!";

document.write(greeting, username, welcome);

The second point to note about the write() method is that the Document object also supports a
writeln() method, which is identical to the write() method in every way except that it appends a
newline after outputting its arguments. Since HTML ignores line breaks, this newline character usually
doesn't make a difference, but as we'll see in a bit, the writeln() method can be convenient when
working with non-HTML documents.

Example 14-1 shows how you might create a complex dialog box with the Window open() method and the
methods of the Document object. This example registers an onerror event handler function for the
window; the function is invoked when a JavaScript error occurs. The error handler function creates a new
window and uses the Document object methods to create an HTML form within the window. The form allows
the user to see details about the error that occurred and email a bug report to the author of the JavaScript
code.

Figure 14-1 shows a sample window. Recall from the discussion of the onerror error handler in Chapter 13
that Netscape 6 does not pass the correct arguments to the error handler function. For this reason, the
output on Netscape 6 does not match what is illustrated here.

Figure 14-1. Using a browser window as a dialog box

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 14-1. Dynamically creating a dialog window

<script>

// A variable we use to ensure that each error window we create is unique

var error_count = 0;

// Set this variable to your email address

var email = "myname@mydomain.com";

// Define the error handler. It generates an HTML form so the user

// can report the error to the author.

function report_error(msg, url, line)

{

 var w = window.open("", // URL (none specified)

 "error"+error_count++, // Name (force it to be unique)

 "resizable,status,width=625,height=400"); // Features

 // Get the Document object of the new window

 var d = w.document;

 // Output an HTML document, including a form, into the new window

 // Note that we omit the optional call to document.open()

 d.write('<div align="center">');

 d.write('');

 d.write('OOPS.... A JavaScript Error Has Occurred!');

 d.write('
<hr size="4" width="80%">');

 d.write('<form action="mailto:' + email + '" method=post');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 d.write('<form action="mailto:' + email + '" method=post');

 d.write(' enctype="text/plain">');

 d.write('');

 d.write('<i>Click the "Report Error" button to send a bug report.</i>
');

 d.write('<input type="submit" value="Report Error"> ');

 d.write('<input type="button" value="Dismiss" onclick="self.close();">');

 d.write('</div><div align="right">');

 d.write('
Your name <i>(optional)</i>: ');

 d.write('<input size="42" name="name" value="">');

 d.write('
Error Message: ');

 d.write('<input size="42" name="message" value="' + msg + '">');

 d.write('
Document: <input size="42" name="url" value="' + url + '">');

 d.write('
Line Number: <input size="42" name="line" value="'+line +'">');

 d.write('
Browser Version: ');

 d.write('<input size="42" name="version" value="'+navigator.userAgent+'">');

 d.write('</div>');

 d.write('</form>');

 // Remember to close the document when we're done

 d.close();

 // Return true from this error handler, so that JavaScript does not

 // display its own error dialog box

 return true;

}

// Before the event handler can take effect, we have to register it

// for a particular window

self.onerror = report_error;

</script>

<script>

// The following line of code purposely causes an error as a test

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// The following line of code purposely causes an error as a test

alert(no_such_variable);

</script>

14.2.1 Non-HTML Documents

When you call the Document open() method with no arguments, it opens a new HTML document.
Remember, though, that web browsers can display a number of other data formats besides HTML text.
When you want to dynamically create and display a document using some other data format, you call
open() method with a single argument, which is the MIME type you desire.[1]

[1] This argument to the open() method has not been standardized by the W3C DOM. It works in IE 4 and later, and in Netscape 3
and 4. Surprisingly, it does not work in Netscape 6: only HTML documents are supported by that browser.

The MIME type for HTML is text/html. The most common format besides HTML is plain text, with a MIME
type of text/plain. If you want to use the write() method to output text that uses newlines, spaces,
and Tab characters for formatting, you should open the document by passing the string "text/plain" to the
open() method. Example 14-2 shows one way you might do this. It implements a debug() function that
you can use to output plain-text debugging messages from your scripts into a separate window that appears
when needed. Figure 14-2 shows what the resulting window looks like.

Figure 14-2. A window for plain-text debugging output

Example 14-2. Creating a plain-text document

<script>

var _console = null;

function debug(msg)

{

 // Open a window the first time we are called, or after an existing

 // console window has been closed

 if ((_console == null) || (_console.closed)) {

 _console = window.open("","console","width=600,height=300,resizable");

 // Open a document in the window to display plain text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 _console.document.open("text/plain");

}

 _console.focus(); // Make the window visible

 _console.document.writeln(msg); // Output the message to it

 // Note that we purposely do not call close(). Leaving the

 // document open allows us to append to it later.

}

</script>

<!-- Here's an example of using this script -->

<script>var n = 0;</script>

<form>

<input type="button" value="Push Me"

 onclick="debug('You have pushed me:\t' + ++n + ' times.');">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.3 Document Color Properties

The bgColor , fgColor, linkColor, alinkColor, and vlinkColor properties of the
Document object specify foreground, background, and link colors for the document. They are
read/write properties, but they can be set only before the <body> tag is parsed. You can set them
dynamically with JavaScript code in the <head> section of a document, or you can set them
statically as attributes of the <body> tag, but you cannot set them elsewhere. The exception to
this rule is the bgColor property. In many browsers, you can set this property at any time; doing
so causes the background color of the browser window to change.[2] Other than bgColor, the
color properties of the Document object merely expose attributes of the <body> tag and are
basically uninteresting.

[2] There is a bug in Netscape 3 on Unix platforms such that changing the background color can make the contents of
the page disappear (usually until the window is scrolled or otherwise redrawn). In Netscape 6, you can set the
bgColor only once; any additional settings are ignored.

Each of these color properties has a string value. To set a color, you can use one of the
predefined HTML color names, or you can specify the color as red, green, and blue color values,
expressed as a string of six hexadecimal digits in the form #RRGGBB. You may recall that
Example 13-7 set the bgcolor attribute of the <body> tag to a color string expressed in this
fashion.

In the W3C DOM standard, the color properties of the Document object are deprecated in favor of
properties of the Element object that represents the <body> tag. Furthermore, the HTML 4
standard deprecates the color attributes of the <body> tag in favor of CSS style sheets. What this
means is that you probably should not write scripts that rely heavily on these doubly deprecated
color properties!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.4 Document Information Properties

Several properties of the Document object provide information about the document as a whole. For
example, the following code shows how you can use the lastModified, title, and URL properties to
include an automatic timestamp within a document. This feature allows users to judge how up-to-date
(or out-of-date) a document is, and it can also be useful information when a document is printed.

<hr>

Document: <i><script>document.write(document.title);</script></i>

URL: <i><script>document.write(document.URL);</script></i>

Last Update: <i><script>document.write(document.lastModified);</script></i>

referrer is another interesting property: it contains the URL of the document from which the user
linked to the current document. One possible use is to save this value in a hidden field of a form on your
web page. When the user submits the form (for whatever reason your page contains the form in the first
place), you can save the referrer data on the server so you can analyze the links that refer to your page
and track the percentage of hits that come through various links. Another use of this property is a trick to
prevent unauthorized links to your page from working correctly. For example, suppose you want to allow
other sites to link only to the top-level page on your site. You can use the referrer property in
conjunction with the location property of the Window object to redirect any links from outside the site
to the top-level home page:

<script>

// If linked from somewhere offsite, go to home page first

if (document.referrer == "" || document.referrer.indexOf("mysite.com") == -1)

 window.location = "http://home.mysite.com";

</script>

Don't consider this trick to be any kind of serious security measure, of course. One obvious flaw is that it
doesn't work for browsers that don't support JavaScript or for users who have disabled JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.5 Forms

The forms[] array of the Document object contains Form objects that represent any <form>
elements in the document. Because HTML forms contain push buttons, text input fields, and the
other input elements that usually comprise the GUI of a web application, the Form object is very
important in client-side JavaScript. The Form object has an elements[] property that contains
objects that represent the HTML input elements contained within the form. These Element objects
allow JavaScript programs to set default values in the form and to read the user's input from the
form. They are also important sites for the event handlers that add interactivity to a program.

Because forms and their elements are such a large and important part of client-side JavaScript
programming, they deserve a chapter of their own. We will return to the forms[] array and the
Form object in Chapter 15.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.6 Images

The images[] property of the Document object is an array of Image elements, each representing one of the inline
images, created with an tag, that is contained in the document. The images[] array and the Image object
were added in JavaScript 1.1. While web browsers have always been able to display images with the
the addition of the Image object was a major step forward -- it allowed programs to dynamically manipulate those
images.

14.6.1 Image Replacement with the src Property

The main feature of the Image object is that its src property is read/write. You can read this property to obtain the
URL from which an image was loaded, and, more importantly, you can set the src property to make the browser
load and display a new image in the same space. For this to work, the new image must have the same width and
height as the original one.

In practice, the most common use for image replacement is to implement image rollovers, in which an image
changes when the mouse pointer moves over it. When you make images clickable by placing them
hyperlinks, rollover effects are a powerful way to invite the user to click on the image. Here is a simple HTML
fragment that displays an image within an <a> tag and uses JavaScript code in the onmouseover and
onmouseout event handlers to create a rollover effect:

<a href="help.html"

 onmouseover="document.helpimage.src='images/help_rollover.gif';"

 onmouseout="document.helpimage.src='images/help.gif';">

Note that in this code fragment we gave the tag a name attribute, to make it easy to refer to the
corresponding Image object in the event handlers of the <a> tag. We used the border attribute to prevent the
browser from displaying a blue hyperlink border around the image. The event handlers of the <a> tag do all the
work: they change the image that is displayed simply by setting the src property of the image to the URLs of the
desired images.

The ability to dynamically replace one image in a static HTML document with another image opens the door to any
number of special effects, from animation to digital clocks that update themselves in real time. With a bit of thought,
you can probably imagine many more potential uses for this technique.

14.6.2 Offscreen Images and Caching

To make image-replacement techniques viable, the animations or other special effects need to be responsive. This
means that we need some way to ensure that the necessary images are "pre-fetched" into the browser's cache. To
force an image to be cached, we first create an offscreen image using the Image() constructor. Next, we load an
image into it by setting its src property to the desired URL (exactly as we would do for an onscreen image). Later,
when the same URL is used for an onscreen image, we know it can be quickly loaded from the browser's cache,
rather than slowly loaded over the network. Note that we never actually do anything with the offscreen
create. In particular, we do not assign the offscreen Image object into the images[] array of the document.

The image-rollover code fragment shown in the previous section did not pre-fetch the rollover image it used, so the
user will probably notice a delay in the rollover effect the first time she moves the mouse over the image. To fix this
problem, we could modify the code as follows.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<script>

// Create an offscreen image and pre-fetch the rollover image.

// Note that we don't bother saving a reference to the offscreen image,

// since there is nothing we can do with it later.

(new Image(80,20)).src = "images/help_rollover.gif";

</script>

<a href="help.html"

 onmouseover="document.helpimage.src='images/help_rollover.gif';"

 onmouseout="document.helpimage.src='images/help.gif';">

Example 14-3 shows code that performs a simple animation using image replacement and uses offscreen images
to pre-fetch the frames of the animation. Note that in this example we retain the offscreen image objects we create,
because they are a convenient way to hold the URLs of the images that make up the animation. To perform the
animation, we assign the src property of one of the offscreen images to the src property of the onscreen image
that is the subject of the animation.

Example 14-3. An animation using image replacement

<!-- The image that will be animated. Give it a name for convenience. -->

<script>

// Create a bunch of offscreen images, and pre-fetch the "frames"

// of the animation into them so that they're cached when we need them

var aniframes = new Array(10);

for(var i = 0; i < 10; i++) {

 aniframes[i] = new Image(); // Create an offscreen image

 aniframes[i].src = "images/" + i + ".gif"; // Tell it what URL to load

}

var frame = 0; // The frame counter: keeps track of current frame

var timeout_id = null; // Allows us to stop the animation with clearTimeout()

// This function performs the animation. Call it once to start.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// This function performs the animation. Call it once to start.

// Note that we refer to the onscreen image using its name attribute.

function animate() {

 document.animation.src = aniframes[frame].src; // Display the current frame

 frame = (frame + 1)%10; // Update the frame counter

 timeout_id = setTimeout("animate()", 250); // Display the next frame later

}

</script>

<form> <!-- This form contains buttons to control the animation -->

 <input type="button" value="Start"

 onclick="if (timeout_id == null) animate();">

 <input type="button" value="Stop"

 onclick="if (timeout_id) clearTimeout(timeout_id); timeout_id=null;">

</form>

14.6.3 Image Event Handlers

In Example 14-3, our animation does not begin until the user clicks the Start button, which allows plenty of time for
our images to be loaded into the cache. But what about the more common case in which we want to
begin an animation as soon as all the necessary images are loaded? It turns out that images, whether created
onscreen with an tag or offscreen with the Image() constructor, have an onload event handler
invoked when the image is fully loaded.

The following code fragment shows how we could modify Example 14-3 to use this event handler to count the
number of images that have loaded and automatically start the animation when all the images have loaded. Since
offscreen images are not part of the HTML document, the event handler cannot be assigned as an HTML
Instead, we simply assign a function to the onload property of each Image object we create. When each image is
loaded, the browser calls the function.

var aniframes = new Array(10); // Hold the offscreen animation frames.

var num_loaded_images = 0; // How many have been loaded so far?

// This function is used as an event handler. It counts how many images

// have been loaded and, when all have been loaded, it starts the animation.

function countImages() {

 if (++num_loaded_images == aniframes.length) animate();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (++num_loaded_images == aniframes.length) animate();

}

// Create the offscreen images and assign the image URLs.

// Also assign an event handler to each image so we can track how many images

// have been loaded. Note that we assign the handler before the URL, because

// otherwise the image might finish loading (e.g., if it is already cached)

// before we assign the handler, and then the handler would never be triggered.

for(var i = 0; i < 10; i++) {

 aniframes[i] = new Image(); // Create an offscreen image

 aniframes[i].onload = countImages; // Assign the event handler

 aniframes[i].src = "images/" + i + ".gif"; // Tell it what URL to load

}

In addition to the onload event handler, the Image object supports two others. The onerror event
invoked when an error occurs during image loading, such as when the specified URL refers to corrupt image data.
The onabort handler is invoked if the user cancels the image load (for example, by clicking the Stop
browser) before it has finished. For any image, one (and only one) of these handlers is called.

In addition to these handlers, each Image object also has a complete property. This property is false
image is loading; it is changed to true once the image has loaded or once the browser has stopped trying to load
it. In other words, the complete property becomes true after one of the three possible event handlers is invoked.

14.6.4 Other Image Properties

The Image object has a few other properties as well. Most of them are simply mirror attributes of the
that created the image. The width , height, border, hspace, and vspace properties are integers that specify
the size of the image, the width of its border, and the size of its horizontal and vertical margins. These
are set by the attributes of the tag that share their names. In Netscape 3 and 4, the properties
only, but in IE 4 and later and Netscape 6 and later, you can also assign values to these properties to dynamically
change the size, border, or margins of the image.

The lowsrc property of the Image object mirrors the lowsrc attribute of the tag. It specifies the URL of an
optional image to display when the page is viewed on a low-resolution device. The lowsrc property is a read/write
string, like src, but unlike the src property, setting lowsrc does not cause the browser to load and display the
newly specified, low-resolution image. If you want to perform an animation or some other special effect that works
with low-resolution images as well as high-resolution ones, always remember to update the lowsrc
before you set the src property. If the browser is running on a low-resolution device when you set the
loads the new lowsrc image instead.

14.6.5 Image-Replacement Example

Because image replacement is such a versatile technique, we'll end our discussion of the Image object with an
extended example. Example 14-4 defines a ToggleButton class that uses image replacement to simulate a
graphical checkbox. Because this class uses images that we provide, we can use bolder graphics than those plain
old graphics used by the standard HTML Checkbox object. Figure 14-3 shows how these toggle-button graphics
could appear on a web page. This is a complex, real-world example and is worth studying carefully.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 14-3. ToggleButtons implemented with image replacement

Example 14-4. Implementing a ToggleButton with image replacement

<script language="JavaScript1.1">

// This is the constructor function for our new ToggleButton class.

// Calling it creates a ToggleButton object and outputs the required

// <a> and tags into the specified document at the current location.

// Therefore, don't call it for the current document from an event handler.

// Arguments:

// document: The Document object in which the buttons are to be created.

// checked: A boolean that says whether the button is initially checked.

// label: An optional string that specifies text to appear after the button.

// onclick: An optional function to be called when the toggle button is

// clicked. It is passed a boolean indicating the new state of

// the button. You can also pass a string, which is converted

// to a function that is passed a boolean argument named "state".

function ToggleButton(document, checked, label, onclick)

{

 // The first time we are called (and only the first time), we have

 // to do some special stuff. First, now that the prototype object

 // is created, we can set up our methods.

 // Second, we need to load the images we'll be using.

 // Doing this gets the images in the cache for when we need them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Doing this gets the images in the cache for when we need them.

 if (!ToggleButton.prototype.over) {

 // Initialize the prototype object to create our methods

 ToggleButton.prototype.over = _ToggleButton_over;

 ToggleButton.prototype.out = _ToggleButton_out;

 ToggleButton.prototype.click = _ToggleButton_click;

 // Now create an array of Image objects and assign URLs to them.

 // The URLs of the images are configurable and are stored in an

 // array property of the constructor function itself. They are

 // initialized below. Because of a bug in Netscape, we have

 // to maintain references to these images, so we store the array

 // in a property of the constructor rather than using a local variable.

 ToggleButton.images = new Array(4);

 for(var i = 0; i < 4; i++) {

 ToggleButton.images[i] = new Image(ToggleButton.width,

 ToggleButton.height);

 ToggleButton.images[i].src = ToggleButton.imagenames[i];

 }

 }

 // Save some of the arguments we were passed

 this.document = document;

 this.checked = checked;

 // Remember that the mouse is not currently on top of us

 this.highlighted = false;

 // Save the onclick argument to be called when the button is clicked.

 // If it is not already a function, attempt to convert it

 // to a function that is passed a single argument, named "state".

 this.onclick = onclick;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.onclick = onclick;

 if (typeof this.onclick == "string")

 this.onclick = new Function("state", this.onclick);

 // Figure out what entry in the document.images[] array the images

 // for this checkbox will be stored in

 var index = document.images.length;

 // Now output the HTML code for this checkbox. Use <a> and tags.

 // The event handlers we output here are confusing but crucial to the

 // operation of this class. The "_tb" property is defined below, as

 // are the over(), out(), and click() methods.

 document.write(' <a href="about:blank" ' +

 'onmouseover="document.images[' + index + ']._tb.over();return true;" '+

 'onmouseout="document.images[' + index + ']._tb.out()" '+

 'onclick="document.images[' + index + ']._tb.click(); return false;">');

 document.write('<img src="' + ToggleButton.imagenames[this.checked+0] +'"'+

 ' width=' + ToggleButton.width +

 ' height=' + ToggleButton.height +

 ' border="0" hspace="0" vspace="0" align="absmiddle">');

 if (label) document.write(label);

 document.write('</br>');

 // Now that we've output the tag, save a reference to the

 // Image object that it created in the ToggleButton object

 this.image = document.images[index];

 // Also make a link in the other direction, from the Image object

 // to this ToggleButton object. Do this by defining a "_tb" property

 // in the Image object.

 this.image._tb = this;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.image._tb = this;

}

// This becomes the over() method

function _ToggleButton_over()

{

 // Change the image, and remember that we're highlighted

 this.image.src = ToggleButton.imagenames[this.checked + 2];

 this.highlighted = true;

}

// This becomes the out() method

function _ToggleButton_out()

{

 // Change the image, and remember that we're not highlighted

 this.image.src = ToggleButton.imagenames[this.checked + 0];

 this.highlighted = false;

}

// This becomes the click() method

function _ToggleButton_click()

{

 // Toggle the state of the button, change the image, and call the

 // onclick method, if it was specified for this ToggleButton

 this.checked = !this.checked;

 this.image.src = ToggleButton.imagenames[this.checked+this.highlighted*2];

 if (this.onclick) this.onclick(this.checked);

}

// Initialize static class properties that describe the checkbox images. These

// are just defaults. Programs can override them by assigning new values.

// But they should be overridden *before* any ToggleButtons are created.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// But they should be overridden *before* any ToggleButtons are created.

ToggleButton.imagenames = new Array(4); // Create an array

ToggleButton.imagenames[0] = "images/button0.gif"; // The unchecked box

ToggleButton.imagenames[1] = "images/button1.gif"; // The box with a checkmark

ToggleButton.imagenames[2] = "images/button2.gif"; // Unchecked but highlighted

ToggleButton.imagenames[3] = "images/button3.gif"; // Checked and highlighted

ToggleButton.width = ToggleButton.height = 25; // Size of all images

</script>

<!-- Here's how we might use the ToggleButton class -->

Optional extras:

<script language="JavaScript1.1">

// Create ToggleButton objects and output the HTML that implements them

// One button has no click handler, one has a function, and one has a string

var tb1 = new ToggleButton(document, true, "56K Modem");

var tb2 = new ToggleButton(document, false, "Laser Printer",

 function(clicked) {alert("printer: " + clicked);});

var tb3 = new ToggleButton(document, false, "Tape Backup Unit",

 "alert('Tape backup: ' + state)");

</script>

<!-- Here's how we can use the ToggleButton objects from event handlers -->

<form>

<input type="button" value="Report Button States"

 onclick="alert(tb1.checked + '\n' + tb2.checked + '\n' + tb3.checked)">

<input type="button" value="Reset Buttons"

 onclick="if (tb1.checked) tb1.click();

 if (tb2.checked) tb2.click();

 if (tb3.checked) tb3.click();">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.7 Links

The links[] array of the Document object contains Link objects that represent each of the hypertext
document. Recall that HTML hypertext links are coded with the href attribute of the <a> tag. In JavaScript 1.1
and later, the <area> tag in a client-side image map also creates a Link object in the Document links[]
array.

The Link object represents the URL of the hypertext link and contains all the properties that the Location object
(introduced in Chapter 13) does. For example, the href property of a Link object contains the complete text of
the URL to which it is linked, while the hostname property contains only the hostname portion of that URL.
See the client-side reference section for a complete list of these URL-related properties.

Example 14-5 shows a function that generates a list of all the links in a document. Note the use of the
Document write() and close() methods to dynamically generate a document, as discussed earlier in
this chapter.

Example 14-5. Listing the links in a document

/*

 * FILE: listlinks.js

 * List all links in the specified document in a new window

 */

function listlinks(d) {

 var newwin = window.open("", "linklist",

 "menubar,scrollbars,resizable,width=600,height=300");

 for (var i = 0; i < d.links.length; i++) {

 newwin.document.write('')

 newwin.document.write(d.links[i].href);

 newwin.document.writeln("
");

 }

 newwin.document.close();

}

14.7.1 Links, Web Crawlers, and JavaScript Security

One obvious use of the Link object and the links[] array is to write a web-crawler program. This program
runs in one browser window or frame and reads web pages into another window or frame (by setting the
location property of the Window object). For each page it reads in, it looks through the links[] array and
recursively follows them. If carefully written (so it doesn't get caught in infinite recursion or start going in
circles), such a program can be used, for example, to generate a list of all web pages that are accessible from
a given starting page. This list can be quite useful in web-site maintenance.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Don't expect to crawl the entire Internet using these techniques, however. For security reasons, JavaScript
does not allow an unsigned script in one window or frame to read the properties (such as document.links
of another window or frame unless both windows are displaying documents that came from the same web
server. This restriction prevents important security breaches. Imagine that an employee at a large, security-
conscious company is browsing the Internet through a corporate firewall and is also using another browser
window to browse proprietary company information on the corporate intranet. Without the security restriction
we've described, an untrusted script from some random Internet site could snoop on what was going on in the
other window. The authors of the snooping script might not be able to glean much useful information from the
links[] array of the proprietary documents, but this would nevertheless be a serious breach of security.

The web-crawler program we have described is not a threat to Internet security or privacy, but unfortunately, it
is still subject to the general security restrictions of JavaScript, which prevent it from crawling very far beyond
the site from which it was loaded. (When the crawler loads a page from a different site, it appears as if that
page simply has no links on it.) See Chapter 21 for a complete discussion of JavaScript security, including a
description of how to avoid this security restriction with signed scripts.

14.7.2 Link Event Handlers

The Link object supports a number of interesting event handlers. We already saw the onmouseover
handler in Section 13.3, where it was used with both <a> and <area> tags to change the message in the
browser's status line when the mouse moved over the link. The onclick event handler is invoked when the
user clicks on a hypertext link. In JavaScript 1.1 and later, if this event handler returns false, the browser
doesn't follow the link as it would otherwise. As of JavaScript 1.1, both the <a> and <area> tags support an
onmouseout event handler. This is simply the opposite of the onmouseover handler -- it is run when the
mouse pointer moves off a hypertext link.

The event-handling model has become much more general in JavaScript 1.2, and links support quite a few
other event handlers. See Chapter 19 for details.

Finally, it is worth mentioning that href and the other URL properties of the Link object are read/write. Thus,
you can write a JavaScript program that dynamically modifies the destinations of hypertext links! Here is a
frivolous piece of JavaScript-enhanced HTML that uses a Link event handler to write to the href property and
create a link whose destination is randomly chosen from the set of other links in the document:

<a href="about:"

 onmouseover="status = 'Take a chance... Click me.'; return true;"

 onclick="this.href =

 document.links[Math.floor(Math.random()*document.links.length)];"

>

Random Link

This example demonstrates all the features of the Link object that we've considered: the links[] array, the
use of Link event handlers, and the dynamic setting of the destination of a link. Note that the example sets the
href property of the link but doesn't bother to read the href property of the link it randomly chooses.
it relies on the toString() method of the Link object to return the URL.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.8 Anchors

The anchors[] array of the Document object contains Anchor objects representing named locations in
the HTML document that are marked with the <a> tag and its name attribute. The anchors[] array has
existed since JavaScript 1.0, but the Anchor object is new in JavaScript 1.2. In previous versions, the
elements of the anchors[] array were all undefined, and only the length property was useful.

The Anchor object is a simple one. The only standard property it defines is name, which is the value of the
HTML name attribute. As with the Link object, the text that appears between the <a> and tags of
the anchor is specified by the text property in Netscape 4 and by the innerText property in Internet
Explorer 4. Neither of these properties is supported by the W3C DOM standard, but we'll see other ways
to obtain the text content of an element in Chapter 17.

Example 14-6 shows a function that creates a navigation window for a specified document. It displays the
text, innerText, or name of all the anchors in the document. The anchor text or name is displayed
within hypertext links -- clicking on any anchor causes the original window to scroll to display that anchor.
The code in this example is particularly useful if you write your HTML documents so that all section
headings are enclosed in anchors. For example:

<h2>The Anchor Object</h2>

Example 14-6. Listing all anchors

/*

 * FILE: listanchors.js

 * The function listanchors() is passed a document as its argument and opens

 * a new window to serve as a "navigation window" for that document. The new

 * window displays a list of all anchors in the document. Clicking on any

 * anchor in the list causes the document to scroll to the position of that

 * anchor. A document should not call this function on itself until it is

 * fully parsed, or at least until all the anchors in it are parsed.

 */

function listanchors(d) {

 // Open the new window

 var newwin = window.open("", "navwin",

 "menubar=yes,scrollbars=yes,resizable=yes," +

 "width=600,height=300");

 // Give it a title

 newwin.document.writeln("<h1>Navigation Window:
" +

 document.title + "</h1>");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 document.title + "</h1>");

 // List all anchors

 for(var i = 0; i < d.anchors.length; i++) {

 // For each anchor object, determine the text to display.

 // First, try to get the text between <a> and using a

 // browser-dependent property. If none, use the name instead.

 var a = d.anchors[i];

 var text = null;

 if (a.text) text = a.text; // Netscape 4

 else if (a.innerText) text = a.innerText; // IE 4+

 if ((text == null) || (text == '')) text = a.name; // Default

 // Now output that text as a link. Note the use of the location

 // property of the original window.

 newwin.document.write('<a href="#' + a.name + '"' +

 ' onclick="opener.location.hash="' + a.name +

 '"; return false;">');

 newwin.document.write(text);

 newwin.document.writeln('
');

 }

 newwin.document.close(); // Never forget to close the document!

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.9 Applets

The applets[] array of the Document object contains objects that represent the applets embedded
in the document with the <applet> or <object> tag. An applet is a portable, secure Java program
that is loaded over the Internet and executed by the web browser; both Netscape and Internet
Explorer support Java (although IE 6 no longer includes Java support by default).

As of Netscape 3 and Internet Explorer 3, both browsers allow JavaScript to invoke public methods
and read and write the public properties of Java applets. (As we'll see in Chapter 22, Netscape also
supports much richer bidirectional interactions between JavaScript and Java.) All applets have a few
standard public methods that they inherit from their superclasses, but the most interesting methods
and properties vary on a case-by-case basis. If you are the author of the applet that you want to
control from JavaScript, you already know what public methods and properties it defines. If you are
not the author, you should consult the applet's documentation to determine what you can do with it.

Here's how you might embed a Java applet in a web page with the <applet> tag and then invoke
the start() and stop() methods of that applet from JavaScript event handlers:

<applet name="animation" code="Animation.class" width="500" height="200">

</applet>

<form>

<input type="button" value="Start" onclick="document.animation.start();">

<input type="button" value="Stop" onclick="document.animation.stop();">

</form>

All applets define start() and stop() methods. In this hypothetical example, the methods
cause an animation to start and stop; by defining the HTML form, we've given the user control over
starting and stopping the applet. Note that we've used the name attribute of the <applet> tag, so we
can refer to the applet by name, rather than as a numbered element of the applets[] array.

This example does not fully demonstrate the power of JavaScript to script Java applets: the Java
methods invoked from the JavaScript event handlers are passed no arguments and return no values.
In fact, JavaScript can pass numbers, strings, and boolean values as arguments to Java methods
and can accept numbers, strings, and boolean return values from those functions. (As we'll see in
Chapter 22, Netscape can also pass and return JavaScript and Java objects to and from Java
methods.) The automatic conversion of data between JavaScript and Java allows for rich interactions
between the two programming environments. For example, an applet might implement a method that
returns a string of JavaScript code. JavaScript could then use the eval() method to evaluate that
code.

Applets can also implement methods that don't operate on the applet itself, but instead simply serve
as conduits between JavaScript and the Java environment. For instance, an applet might define a
method that invokes the System.getProperty() method for a given string argument. This applet
would allow JavaScript to look up the value of Java system properties and determine, for example,
the version of Java that is supported by the browser.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

14.10 Embedded Data

The embeds[] array contains objects that represent data (other than applets) embedded in the
document with the <embed> or <object> tag. Embedded data can take many forms (audio,
video, spreadsheets, etc.). The browser must have an appropriate viewer installed or available so
that it can display the data to the user. In Netscape, special modules known as plugins are
responsible for displaying embedded data. In Internet Explorer, embedded data is displayed by
ActiveX controls. Both plugins and ActiveX controls can be automatically downloaded from the
network and installed as needed.

While the elements of the applets[] array all represent Java applets, the elements of the
embeds[] array tend to be more diverse, and few generalizations can be made about them. The
properties and methods of these objects depend upon the particular plugin or ActiveX control that
is used to display the embedded data. You should consult the vendor-specific documentation for
the plugin or ActiveX control you are using. If it supports any kind of scripting from JavaScript, the
documentation should say so, and it should describe the properties and methods that you can use
from JavaScript. For example, the documentation for the LiveVideo plugin from Netscape says
that the LiveVideo object in the embeds[] array supports four methods: play(), stop(),
rewind(), and seek(). With this information, you can write simple scripts that control how
the plugin displays a movie you have embedded on a web page. Note that while some vendors
may produce plugins (for Netscape) and ActiveX controls (for IE) that define the same public API,
this is not always the case, and scripting embedded objects usually involves platform-specific
JavaScript code.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 15. Forms and Form Elements
As we've seen in examples throughout this book, the use of HTML forms is basic to almost all
JavaScript programs. This chapter explains the details of programming with forms in JavaScript. It
is assumed that you are already somewhat familiar with the creation of HTML forms and with the
input elements that they contain. If not, you may want to refer to a good book on HTML.[1] The
client-side reference section of this book lists the HTML syntax along with the JavaScript syntax
for forms and form elements; you may find these useful for quick reference.

[1] Such as HTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy (O'Reilly).

If you are already familiar with server-side programming using HTML forms, you may find that
things are done differently when forms are used with JavaScript. In the server-side model, a form
with the input data it contains is submitted to the web server all at once. The emphasis is on
processing a complete batch of input data and dynamically producing a new web page in
response. With JavaScript, the programming model is quite different. In JavaScript programs, the
emphasis is not on form submission and processing but instead on event handling. A form and all
input elements in it have event handlers that JavaScript can use to respond to user interactions
within the form. If the user clicks on a checkbox, for example, a JavaScript program can receive
notification through an event handler and might respond by changing the value displayed in some
other element of the form.

With server-side programs, an HTML form isn't useful unless it has a Submit button (or unless it
has only a single text input field and allows the user to press the Return key as a shortcut for
submission). With JavaScript, on the other hand, a Submit button is never necessary (unless the
JavaScript program is working with a cooperating server-side program, of course). With
JavaScript, a form can have any number of push buttons with event handlers that perform any
number of actions when clicked. In previous chapters, we've seen some of the possible actions
that such buttons can trigger: replacing one image with another, using the location property to
load and display a new web page, opening a new browser window, and dynamically generating a
new HTML document in another window or frame. As we'll see later in this chapter, a JavaScript
event handler can even trigger a form to be submitted.

As we've seen in examples throughout this book, event handlers are almost always the central
element of any interesting JavaScript program. And the most commonly used event handlers
(excluding the event handlers of the Link object) are those used with forms or form elements. This
chapter introduces the JavaScript Form object and the various JavaScript objects that represent
form elements. It concludes with an example that illustrates how you can use JavaScript to
validate user input on the client before submitting it to a server-side program running on the web
server.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.1 The Form Object

The JavaScript Form object represents an HTML form. Forms are always found as elements of
the forms[] array, which is a property of the Document object. Forms appear in this array in the
order in which they appear within the document. Thus, document.forms[0] refers to the first
form in a document. You can refer to the last form in a document with the following:

document.forms[document.forms.length-1]

The most interesting property of the Form object is the elements[] array, which contains
JavaScript objects (of various types) that represent the various input elements of the form. Again,
elements appear in this array in the same order they appear in the document. So you can refer to
the third element of the second form in the document of the current window like this:

document.forms[1].elements[2]

The remaining properties of the Form object are of less importance. The action , encoding,
method, and target properties correspond directly to the action, encoding, method, and
target attributes of the <form> tag. These properties and attributes are all used to control how
form data is submitted to the web server and where the results are displayed; they are therefore
useful only when the form is actually submitted to a server-side program. See the client-side
reference section for an explanation of the properties, or see a book on HTML or CGI
programming[2] for a thorough discussion of the attributes. What is worth noting here is that these
Form properties are all read/write strings, so a JavaScript program can dynamically set their
values in order to change the way the form is submitted.

[2] Such as CGI Programming on the World Wide Web, by Shishir Gundavaram (O'Reilly).

In the days before JavaScript, a form was submitted with a special-purpose Submit button, and
form elements had their values reset with a special-purpose Reset button. The JavaScript Form
object supports two methods, submit() and (as of JavaScript 1.1) reset(), that serve the
same purpose. Invoking the submit() method of a Form submits the form, and invoking
reset() resets the form elements.

To accompany the submit() and reset() methods, the Form object provides the
onsubmit event handler to detect form submission and (as of JavaScript 1.1) the onreset
event handler to detect form resets. The onsubmit handler is invoked just before the form is
submitted; it can cancel the submission by returning false. This provides an opportunity for a
JavaScript program to check the user's input for errors in order to avoid submitting incomplete or
invalid data over the network to a server-side program. We'll see an example of such error
checking at the end of this chapter. Note that the onsubmit handler is triggered only by a
genuine click on a Submit button. Calling the submit() method of a form does not trigger the
onsubmit handler.

The onreset event handler is similar to the onsubmit handler. It is invoked just before the form
is reset, and it can prevent the form elements from being reset by returning false. This allows a
JavaScript program to ask for confirmation of the reset, which can be a good idea when the form
is long or detailed. You might request this sort of confirmation with an event handler like the
following:

<form...

 onreset="return confirm('Really erase ALL data and start over?')"

>

Like the onsubmit handler, onreset is triggered only by a genuine Reset button. Calling the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Like the onsubmit handler, onreset is triggered only by a genuine Reset button. Calling the
reset() method of a form does not trigger onreset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.2 Defining Form Elements

HTML form elements are the primitive objects with which we create graphical user interfaces for our JavaScript
programs. Figure 15-1 shows a complex form that contains at least one of each of the basic form elements. In
case you are not already familiar with HTML form elements, the figure includes a numbered key identifying each
type of element. We'll conclude this section with an example (Example 15-1) that shows the HTML and JavaScript
code used to create the form pictured in Figure 15-1 and to hook up event handlers to each of the form elements.

Figure 15-1. HTML form elements

Table 15-1 lists the types of form elements that are available to HTML designers and JavaScript programmers.
The first column of the table names the type of form element, the second column shows the HTML tags that are
used to define elements of that type, and the third column lists the value of the type property for each type of
element. As we've seen, each Form object has an elements[] array that contains the objects that
form's elements. Each of these elements has a type property that can be used to distinguish one type of element
from another. By examining the type property of an unknown form element, JavaScript code can determine the
type of the element and figure out what it can do with that element. (We'll see this done in Example 15-2
end of the chapter.) Finally, the fourth column of the table provides a short description of each element and also
lists the most important or most commonly used event handler for that element type.

We'll talk more about form elements later in this chapter. Complete details about the various types of elements
are available in the client-side reference section, under the name listed in the first column of Table 15-1
each type of form element has a separate reference page, note that most of the elements are created with HTML
<input> tags and are, in fact, all Input objects. The client-side reference page named "Input" lists the
that all these elements have in common, and the type-specific pages provide specific details about working with a
particular type of form element. Note that the names Button, Checkbox, and so on from the first column of the
table may not correspond to any actual object in a client-side JavaScript implementation, and note also that the
DOM standard does not define any interfaces with these names. Still, each type of form element has
appearance and distinct behavior, and it is useful to treat them as separate types, at least for the purposes of the
client-side reference section. In the DOM reference section you can find material about forms and their elements
under the names "HTMLFormElement," "HTMLInputElement," "HTMLTextAreaElement," "HTMLSelectElement,"
and "HTMLOptionElement."

Table 15-1. HTML form elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object HTML tag type
property Description and events

Button <input type="button"> or
<button type="button"> "button" A push button; onclick.

Checkbox <input type="checkbox"> "checkbox" A toggle button without radio-button behavior;
onclick.

FileUpload <input type="file"> "file" An input field for entering the name of a file to upload to
the web server; onchange.

Hidden <input type="hidden"> "hidden" Data submitted with the form but not visible to the user;
no event handlers.

Option <option> none A single item within a Select object; event handlers are
on the Select object, not on individual Option objects.

Password <input type="password"> "password" An input field for password entry -- typed characters are
not visible; onchange.

Radio <input type="radio"> "radio" A toggle button with radio-button behavior -- only one
selected at a time; onclick.

Reset <input type="reset"> or
<button type="reset"> "reset" A push button that resets a form; onclick

Select <select> "select-
one"

A list or drop-down menu from which one item may be
selected; onchange. (See also Option object.)

Select <select multiple> "select-
multiple"

A list from which multiple items may be selected;
onchange. (See also Option object.)

Submit <input type="submit"> or
<button type="submit"> "submit" A push button that submits a form; onclick

Text <input type="text"> "text" A single-line text entry field; onchange.
Textarea <textarea> "textarea" A multiline text entry field; onchange.

Now that we've taken a look at the various types of form element and the HTML tags used to create them,
Example 15-1 shows the HTML code used to create the form shown in Figure 15-1. Although the example
consists primarily of HTML, it also contains JavaScript code used to define event handlers for each of the form
elements. You'll notice that the event handlers are not defined as HTML attributes. Instead, they are JavaScript
functions assigned to the properties of the objects in the form's elements[] array. The event handlers all call
the function report(), which contains code that works with the various form elements. The next section of this
chapter explains everything you need to know to understand what the report() function is doing.

Example 15-1. An HTML form containing all form elements

<form name="everything"> <!-- A one-of-everything HTML form... -->

 <table border="border" cellpadding="5"> <!-- in a big HTML table -->

 <tr>

 <td>Username:
[1]<input type="text" name="username" size="15"></td>

 <td>Password:
[2]<input type="password" name="password" size="15"></td>

 <td rowspan="4">Input Events[3]

 <textarea name="textarea" rows="20" cols="28"></textarea></td>

 <td rowspan="4" align="center" valign="center">

 [9]<input type="button" value="Clear" name="clearbutton">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [9]<input type="button" value="Clear" name="clearbutton">

 [10]<input type="submit" name="submitbutton" value="Submit">

 [11]<input type="reset" name="resetbutton" value="Reset"></td></tr>

 <tr>

 <td colspan="2">

 Filename: [4]<input type="file" name="file" size="15"></td></tr>

 <tr>

 <td>My Computer Peripherals:

 [5]<input type="checkbox" name="peripherals" value="modem">56K Modem

 [5]<input type="checkbox" name="peripherals" value="printer">Printer

 [5]<input type="checkbox" name="peripherals" value="tape">Tape Backup</td>

 <td>My Web Browser:

 [6]<input type="radio" name="browser" value="nn">Netscape

 [6]<input type="radio" name="browser" value="ie">Internet Explorer

 [6]<input type="radio" name="browser" value="other">Other</td></tr>

 <tr>

 <td>My Hobbies:[7]

 <select multiple="multiple" name="hobbies" size="4">

 <option value="programming">Hacking JavaScript

 <option value="surfing">Surfing the Web

 <option value="caffeine">Drinking Coffee

 <option value="annoying">Annoying my Friends

 </select></td>

 <td align="center" valign="center">My Favorite Color:
[8]

 <select name="color">

 <option value="red">Red <option value="green">Green

 <option value="blue">Blue <option value="white">White

 <option value="violet">Violet <option value="peach">Peach

 </select></td></tr>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 </select></td></tr>

 </table>

</form>

<div align="center"> <!-- Another table--the key to the one above -->

 <table border="4" bgcolor="pink" cellspacing="1" cellpadding="4">

 <tr>

 <td align="center">Form Elements</td>

 <td>[1] Text</td> <td>[2] Password</td> <td>[3] Textarea</td>

 <td>[4] FileUpload</td> <td>[5] Checkbox</td></tr>

 <tr>

 <td>[6] Radio</td> <td>[7] Select (list)</td>

 <td>[8] Select (menu)</td> <td>[9] Button</td>

 <td>[10] Submit</td> <td>[11] Reset</td></tr>

 </table>

</div>

<script>

// This generic function appends details of an event to the big Textarea

// element in the form above. It is called from various event handlers.

function report(element, event) {

 var elmtname = element.name;

 if ((element.type == "select-one") || (element.type == "select-multiple")){

 value = " ";

 for(var i = 0; i < element.options.length; i++)

 if (element.options[i].selected)

 value += element.options[i].value + " ";

 }

 else if (element.type == "textarea") value = "...";

 else value = element.value;

 var msg = event + ": " + elmtname + ' (' + value + ')\n';

 var t = element.form.textarea;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var t = element.form.textarea;

 t.value = t.value + msg;

}

// This function adds a bunch of event handlers to every element in a form.

// It doesn't bother checking to see if the element supports the event handler,

// it just adds them all. Note that the event handlers call report() above.

// Note that we're defining event handlers by assigning functions to the

// properties of JavaScript objects rather than by assigning strings to

// the attributes of HTML elements.

function addhandlers(f) {

 // Loop through all the elements in the form

 for(var i = 0; i < f.elements.length; i++) {

 var e = f.elements[i];

 e.onclick = function() { report(this, 'Click'); }

 e.onchange = function() { report(this, 'Change'); }

 e.onfocus = function() { report(this, 'Focus'); }

 e.onblur = function() { report(this, 'Blur'); }

 e.onselect = function() { report(this, 'Select'); }

 }

 // Define some special-case event handlers for the three buttons:

 f.clearbutton.onclick = function() {

 this.form.textarea.value=''; report(this,'Click');

 }

 f.submitbutton.onclick = function () {

 report(this, 'Click'); return false;

 }

 f.resetbutton.onclick = function() {

 this.form.reset(); report(this, 'Click'); return false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.form.reset(); report(this, 'Click'); return false;

 }

}

// Finally, activate our form by adding all possible event handlers!

addhandlers(document.everything);

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.3 Scripting Form Elements

The previous section listed the form elements provided by HTML and explained how to embed these
elements in your HTML documents. This section takes the next step and shows you how you can work
with those elements in your JavaScript programs.

15.3.1 Naming Forms and Form Elements

Every form element has a name attribute that must be set in its HTML tag if the form is to be submitted
to a server-side program. While form submission is not generally of interest to JavaScript programs,
there is another useful reason to specify this name attribute, as you'll see shortly.

The <form> tag itself also has a name attribute that you can set. This attribute has nothing to do with
form submission. It exists for the convenience of JavaScript programmers. If the name attribute is
defined in a <form> tag, when the Form object is created for that form, it is stored as an element in the
forms[] array of the Document object, as usual, and it is also stored in its own personal property of the
Document object. The name of this newly defined property is the value of the name attribute. In Example
15-1, for instance, we defined a form with a tag like this:

<form name="everything">

This allowed us to refer to the Form object as:

document.everything

Often, you'll find this more convenient than the array notation:

document.forms[0]

Furthermore, using a form name makes your code position-independent: it works even if the document
is rearranged so that forms appear in a different order.

, <applet>, and other HTML tags also have name attributes that work the same as the name
attribute of <form>. With forms, however, this style of naming goes a step further, because all elements
contained within a form also have name attributes. When you give a form element a name, you create a
new property of the Form object that refers to that element. The name of this property is the value of the
attribute. Thus, you can refer to an element named "zipcode" in a form named "address" as:

document.address.zipcode

With reasonably chosen names, this syntax is much more elegant than the alternative, which relies on
hardcoded (and position-dependent) array indices:

document.forms[1].elements[4]

In order for a group of Radio elements in an HTML form to exhibit mutually exclusive "radio-button"
behavior, they must all be given the same name. In Example 15-1, for instance, we define three Radio
elements that all have a name attribute of "browser". Although it is not strictly necessary, it is also
common practice to define related groups of Checkbox elements with the same name attribute. Sharing
a name attribute like this works naturally for server-side programming, but it is a little awkward on the
client side. The solution is straightforward, though: when more than one element in a form has the same
name attribute, JavaScript simply places those elements into an array with the specified name. The
elements of the array are in the same order as they appear in the document. So, the Radio objects in
Example 15-1 can be referred to as:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.everything.browser[0]

document.everything.browser[1]

document.everything.browser[2]

15.3.2 Form Element Properties

All (or most) form elements have the following properties in common. Some elements have other
special-purpose properties that are described later, when we consider the various types of form
elements individually.

type

A read-only string that identifies the type of the form element. The third column of Table 15-1 lists
the value of this property for each form element.

form

A read-only reference to the Form object in which this element is contained.

name

A read-only string specified by the HTML name attribute.

value

A read/write string that specifies the "value" contained or represented by the form element. This is
the string that is sent to the web server when the form is submitted, and it is only sometimes of
interest to JavaScript programs. For Text and Textarea elements, this property contains the text
that the user entered. For Button elements, this property specifies the text displayed within the
button, which is something that you might occasionally want to change from a script. For Radio
and Checkbox elements, however, the value property is not edited or displayed to the user in
any way. It is simply a string set by the HTML value attribute that is passed to the web server
when the form is submitted. We'll discuss the value property when we consider the different
categories of form elements later in this chapter.

15.3.3 Form Element Event Handlers

Most form elements support most of the following event handlers:

onclick

Triggered when the user clicks the mouse on the element. This handler is particularly useful for
Button and related form elements.

onchange

Triggered when the user changes the value represented by the element by entering text or
selecting an option, for example. Button and related elements typically do not support this event
handler because they do not have an editable value. Note that this handler is not triggered every
time the user types a key in a text field, for example. It is triggered only when the user changes
the value of an element and then moves the input focus to some other form element. That is, the
invocation of this event handler indicates a completed change.

onfocus

Triggered when the form element receives the input focus.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onblur

Triggered when the form element loses the input focus.

Example 15-1 shows how you can define these event handlers for form elements. The example is
designed to report events as they occur by listing them in a large Textarea element. This makes the
example a useful way to experiment with form elements and the event handlers they trigger.

An important thing to know about event handlers is that within the code of an event handler, the this
keyword always refers to the document element that triggered the event. Since all form elements have a
form property that refers to the containing form, the event handlers of a form element can always refer
to the Form object as this.form. Going a step further, this means that an event handler for one form
element can refer to a sibling form element named x as this.form.x.

Note that the four form element event handlers listed in this section are the ones that have particular
significance for form elements. Form elements also support the various event handlers (such as
onmousedown) that are supported by (nearly) all HTML elements. See Chapter 19 for a full discussion
of events and event handlers.

15.3.4 Buttons

The Button form element is one of the most commonly used, because it provides a clear visual way to
allow the user to trigger some scripted action. The Button object has no default behavior of its own, and
it is never useful in a form unless it has an onclick (or other) event handler. The value property of a
Button element controls the text that appears within the button itself. In fourth-generation browsers, you
can set this property to change the text (plain text only, not HTML) that appears in the button, which can
occasionally be a useful thing to do.

Note that hyperlinks provide the same onclick event handler that buttons do, and any button object
can be replaced with a link that does the same thing when clicked. Use a button when you want an
element that looks like a graphical push button. Use a link when the action to be triggered by the
onclick handler can be conceptualized as "following a link."

Submit and Reset elements are just like Button elements, but they have default actions (submitting and
resetting a form) associated with them. Because these elements have default actions, they can be
useful even without an onclick event handler. On the other hand, because of their default actions,
they are more useful for forms that are submitted to a web server than for pure client-side JavaScript
programs. If the onclick event handler returns false, the default action of these buttons is not
performed. You can use the onclick handler of a Submit element to perform form validation, but it is
more common to do this with the onsubmit handler of the Form object itself.

In HTML 4, you can create Button, Submit, and Reset buttons with the <button> tag instead of the
traditional <input> tag. <button> is more flexible, because instead of simply displaying the plain text
specified by the value attribute, it displays any HTML content (formatted text and/or images) that
appears between <button> and </button>. The Button objects created by a <button> tag are
technically different from those created by an <input> tag, but they have the same value for the type
field and otherwise behave quite similarly. The main difference is that because the <button> tag
doesn't use its value attribute to define the appearance of the button, you can't change that
appearance by setting the value property. In this book, we use the terms Button, Submit, and Reset to
refer to objects created with either <input> or <button>.

15.3.5 Toggle Buttons

The Checkbox and Radio elements are toggle buttons, or buttons that have two visually distinct states:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Checkbox and Radio elements are toggle buttons, or buttons that have two visually distinct states:
they can be checked or unchecked. The user can change the state of a toggle button by clicking on it.
Radio elements are designed to be used in groups of related elements, all of which have the same
value for the HTML name attribute. Radio elements created in this way are mutually exclusive -- when
you check one, the one that was previously checked becomes unchecked. Checkboxes are also often
used in groups that share a name attribute, and when you refer to these elements by name, you must
remember that the object you refer to by name is an array of same-named elements. In Example 15-1
we saw three Checkbox objects with the name "peripherals". In this example, we can refer to an array
these three Checkbox objects as:

document.everything.peripherals

To refer to an individual Checkbox element, we must index the array:

document.everything.peripherals[0] // First form element named "peripherals"

Radio and Checkbox elements both define a checked property. This read/write boolean value specifies
whether the element is currently checked. The defaultChecked property is a read-only boolean that
has the value of the HTML checked attribute; it specifies whether the element was checked when the
page was first loaded.

Radio and Checkbox elements do not display any text themselves and are typically displayed with
adjacent HTML text (or, in HTML 4, with an associated <label> tag.) This means that setting the
value property of a Checkbox or Radio element does not alter the visual appearance of the element, as
it does for Button elements. You can set value, but this changes only the string that is sent to the web
server when the form is submitted.

When the user clicks on a toggle button, the Radio or Checkbox element triggers its onclick event
handler to notify the JavaScript program of the change of state. Newer web browsers also trigger the
onchange handler for these elements. Both event handlers convey the same essential information, but
the onclick handler is more portable.

15.3.6 Text Fields

The Text element is probably the most commonly used element in HTML forms and JavaScript
programs. It allows the user to enter a short, single-line string of text. The value property represents
the text the user has entered. You can set this property to specify explicitly the text that should be
displayed in the field. The onchange event handler is triggered when the user enters new text or edits
existing text and then indicates that he is finished editing by moving input focus out of the text field.

The Textarea element is just like the Text element, except that it allows the user to input (and your
JavaScript programs to display) multiline text. Textarea elements are created with a <textarea> tag
using a syntax significantly different from the <input> tag used to create a Text element. Nevertheless,
the two types of element behave quite similarly, and Textarea can be considered to inherit from
HTMLInputElement, even though it technically does not. You can use the value property and
onchange event handler of a Textarea element just as you would for a Text element.

The Password element is a modified Text element that displays asterisks as the user types into it. As the
name indicates, this is useful to allow the user to enter passwords without worrying about others reading
over their shoulders. Password triggers its onchange event handler just as Text does, but there are
some restrictions (or bugs) on the use of its value property. Some old browsers (such as Netscape 3)
implement an ineffective security measure that prevents JavaScript from reading the value the user has
entered into a Password element. In other browsers (such as Netscape 4), the value property may be
set, but setting it does not cause any change to the visual appearance of the form element. Note that
the Password element protects the user's input from prying eyes, but when the form is submitted, that
input is not encrypted in any way (unless it is submitted over a secure HTTPS connection), and it may
be visible as it is transmitted over the network.

Finally, the FileUpload object is designed to allow the user to enter the name of a file to be uploaded to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, the FileUpload object is designed to allow the user to enter the name of a file to be uploaded to
the web server. It is essentially a Text element combined with a built-in button that pops up a file-
chooser dialog box. FileUpload has an onchange event handler, like the Text element. Unlike Text,
however, the value property of FileUpload is read-only. This prevents malicious JavaScript programs
from tricking the user into uploading a file that should not be shared.

Netscape 4 and later and Internet Explorer 4 and later define onkeypress , onkeydown, and onkeyup
event handlers (note, however, that they are not yet part of the DOM standard). These handlers can be
specified for any Document object, but they are most useful (and, in Netscape 4, only useful) when
specified on Text and related form elements that actually accept keyboard input. You may return false
from the onkeypress or onkeydown event handlers to prevent the user's keystroke from being
recorded. This can be useful, for example, when you want to force the user to enter only digits. See
"HTMLElement" in the client-side and DOM reference sections for more details on these and other
event handlers that are supported by all HTML elements.

15.3.7 Select and Option Elements

The Select element represents a set of options (represented by Option elements) from which the user
can select. Browsers typically render Select elements in drop-down menus or list boxes. The Select
element can operate in two very distinct ways, and the value of the type property depends on how it is
configured. If the <select> tag has the multiple attribute, the user is allowed to select multiple
options, and the type property of the Select object is "select-multiple". Otherwise, if the multiple
attribute is not present, only a single item may be selected, and the type property is "select-one".

In some ways, a "select-multiple" element is like a set of Checkbox elements, and a "select-one"
element is like a set of Radio elements. The Select element differs from the toggle-button elements in
that a single Select element represents an entire set of options. These options are specified in HTML
with the <option> tag, and they are represented in JavaScript by Option objects stored in the
options[] array of the Select element. Because a Select element represents a set of choices, it does
not have a value property, as all other form elements do. Instead, as we'll discuss shortly, each Option
object contained by the Select element defines a value property.

When the user selects or deselects an option, the Select element triggers its onchange event handler.
For "select-one" Select elements, the read/write selectedIndex property specifies by number which
one of the options is currently selected. For "select-multiple" elements, the single selectedIndex
property is not sufficient to represent the complete set of selected options. In this case, to determine
which options are selected you must loop through the elements of the options[] array and check the
value of the selected property for each Option object.

In addition to its selected property, the Option element has a text property that specifies the string of
plain text that appears in the Select element for that option. You can set this property to change the text
that is displayed to the user. The value property is also a read/write string that specifies the text to be
sent to the web server when the form is submitted. Even if you are writing a pure client-side program
and your form never gets submitted, the value property (or its corresponding HTML value attribute)
can be a useful place to store any data that you'll need if the user selects a particular option. Note that
the Option element does not define form-related event handlers; use the onchange handler of the
containing Select element instead.

In addition to setting the text property of Option objects, there are other ways you can dynamically
change the options displayed in a Select element. You can truncate the array of Option elements by
setting options.length to the desired number of options, and you can remove all Option objects by
setting options.length to zero. Suppose we have a Select object named "country" in a form named
"address". We can remove all options from the element like this:

document.address.country.options.length = 0; // Remove all options

We can remove an individual Option object from the Select element by setting its spot in the
options[] array to null. This deletes the Option object, and any higher elements in the options[]
array automatically get moved down to fill the empty spot:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Remove a single Option object from the Select element

// The Option that was previously at options[11] gets moved to options[10]...

document.address.country.options[10] = null;

Finally, the Option element defines an Option() constructor that you can use (in JavaScript 1.1 and
later) to dynamically create new Option elements, and you can append new options to a Select element
by assigning them to the end of the options[] array. For example:

// Create a new Option object

var zaire = new Option("Zaire", // The text property

 "zaire", // The value property

 false, // The defaultSelected property

 false); // The selected property

// Display it in a Select element by appending it to the options array:

var countries = document.address.country; // Get the Select object

countries.options[countries.options.length] = zaire;

In HTML 4, you can use the <optgroup> tag to group related options within a Select element. The
<optgroup> tag has a label attribute that specifies text to appear in the Select element. Despite its
visual presence, however, an <optgroup> tag is not selectable by the user, and
HTMLOptGroupElement objects never appear in the options[] array of the Select element.

15.3.8 Hidden Elements

As its name implies, the Hidden element has no visual representation in a form. It exists to allow
arbitrary text to be transmitted to the server when a form is submitted. Server-side programs use this as
a way to save state information that is passed back to them with form submission. Since they have no
visual appearance, Hidden elements cannot generate events and have no event handlers. The value
property allows to you read and write the text associated with a Hidden element, but, in general, Hidden
elements are not commonly used in client-side JavaScript programming.

15.3.9 Fieldset Elements

The HTML 4 standard adds new <fieldset> and <label> tags to the set of elements that can
appear within a form. In IE 5 and later, placing a <fieldset> in a form causes a corresponding object
to be added to the form's elements[] array. Fieldset elements are not scriptable in interesting ways
like other form elements are, and their objects do not have a type property like other form elements do.
Therefore, the presence of Fieldset objects in the elements[] array seems like a mistaken design
decision. This is particularly true since <label> tags do not cause corresponding objects to be added
to the elements[] array. The Mozilla and Netscape 6 browsers have chosen to follow Microsoft's lead
on this in order to be compatible with IE.

What this means is that if you define a form that contains fieldsets, the contents of the elements[]
array differ in recent, HTML 4-capable browsers and in older, pre-HTML 4 browsers. In this situation,
using position-based numeric indexes in the elements[] array is not portable, and you should define
name attributes for all your form elements and refer to them by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name attributes for all your form elements and refer to them by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

15.4 Form Verification Example

We'll close our discussion of forms with an extended example that demonstrates several of the concepts
we've been discussing. Example 15-2 shows how you might use the onsubmit event handler of the
Form object to perform input validation so that you can notify the user and prevent the form from being
submitted when it contains missing or invalid data. After studying this example, you may want to turn back
to Example 1-3, the form-programming example we began this book with. The code of that example
probably makes more sense now that you are a JavaScript expert!

Example 15-2 defines a verify() function suitable for use as a generic form validator. It checks for
required fields that are empty. In addition, it can check that a numeric value is in fact numeric and also
falls within a specified numeric range. This verify() function relies on the type property of a form
element to determine which kind of element it is. The function also relies on additional user-defined
properties to distinguish optional fields from required fields and to specify the allowed ranges for numeric
fields. Note how the function reads the value property of an input field and uses the name property of a
field when reporting errors.

Figure 15-2 shows an example form that uses this verification scheme, with the error message that is
displayed when the user attempts to submit the form before correctly filling it in.

Figure 15-2. A form that failed validation

Example 15-2. Performing form validation

<script language="JavaScript1.1">

// A utility function that returns true if a string contains only

// whitespace characters

function isblank(s) {

 for(var i = 0; i < s.length; i++) {

 var c = s.charAt(i);

 if ((c != ' ') && (c != '\n') && (c != ' ')) return false;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if ((c != ' ') && (c != '\n') && (c != ' ')) return false;

 }

 return true;

}

// This is the function that performs form verification. It is invoked

// from the onsubmit event handler. The handler should return whatever

// value this function returns.

function verify(f) {

 var msg;

 var empty_fields = "";

 var errors = "";

 // Loop through the elements of the form, looking for all Text and

 // Textarea elements that don't have an "optional" property defined.

 // Then check for fields that are empty and make a list of them. Also, if

 // any of these elements have a "min" or a "max" property defined, verify

 // that they are numbers and are in the right range. If the element has a

 // "numeric" property defined, verify that it is a number, but don't check

 // its range. Put together error messages for fields that are wrong.

 for(var i = 0; i < f.length; i++) {

 var e = f.elements[i];

 if (((e.type == "text") || (e.type == "textarea")) && !e.optional) {

 // First check if the field is empty

 if ((e.value == null) || (e.value == "") || isblank(e.value)) {

 empty_fields += "\n " + e.name;

 continue;

 }

 // Now check for fields that are supposed to be numeric

 if (e.numeric || (e.min != null) || (e.max != null)) {

 var v = parseFloat(e.value);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var v = parseFloat(e.value);

 if (isNaN(v) ||

 ((e.min != null) && (v < e.min)) ||

 ((e.max != null) && (v > e.max))) {

 errors += "- The field " + e.name + " must be a number";

 if (e.min != null)

 errors += " that is greater than " + e.min;

 if (e.max != null && e.min != null)

 errors += " and less than " + e.max;

 else if (e.max != null)

 errors += " that is less than " + e.max;

 errors += ".\n";

 }

 }

 }

 }

 // Now, if there were any errors, display the messages, and

 // return false to prevent the form from being submitted.

 // Otherwise, return true.

 if (!empty_fields && !errors) return true;

 msg = "___ _\n\n"

 msg += "The form was not submitted because of the following error(s).\n";

 msg += "Please correct these error(s) and re-submit.\n";

 msg += "___ _\n\n"

 if (empty_fields) {

 msg += "- The following required field(s) are empty:"

 + empty_fields + "\n";

 if (errors) msg += "\n";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (errors) msg += "\n";

 }

 msg += errors;

 alert(msg);

 return false;

}

</script>

<!--

 Here's a sample form to test our verification. Note that we

 call verify() from the onsubmit event handler and return whatever

 value it returns. Also note that we use the onsubmit handler as

 an opportunity to set properties of the Form objects that verify()

 requires for the verification process.

-->

<form onsubmit="

 this.firstname.optional = true;

 this.phonenumber.optional = true;

 this.zip.min = 0;

 this.zip.max = 99999;

 return verify(this);

">

First name: <input type="text" name="firstname">

Last name: <input type="text" name="lastname">

Address:
<textarea name="address" rows="4" cols="40"></textarea>

Zip Code: <input type="text" name="zip">

Phone Number: <input type="text" name="phonenumber">

<input type="submit">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 16. Scripting Cookies
The Document object contains a property named cookie that was not discussed in Chapter 14.
On the surface, this property appears to be a simple string value; however, the cookie property
controls a very important feature of the web browser and is important enough to warrant a
complete chapter of its own.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.1 An Overview of Cookies

A cookie is a small amount of named data stored by the web browser and associated with a
particular web page or web site.[1] Cookies serve to give the web browser a memory, so that
scripts and server-side programs can use data that was input on one page in another page, or so
the browser can recall user preferences or other state variables when the user leaves a page and
then returns. Cookies were originally designed for CGI programming, and at the lowest level, they
are implemented as an extension to the HTTP protocol. Cookie data is automatically transmitted
between the web browser and web server, so CGI scripts on the server can read and write cookie
values that are stored on the client. As we'll see, JavaScript can also manipulate cookies using
the cookie property of the Document object.

[1] The name "cookie" does not have a lot of significance, but it is not used without precedent. In the obscure annals of
computing history, the term "cookie" or "magic cookie" has been used to refer to a small chunk of data, particularly a
chunk of privileged or secret data, akin to a password, that proves identity or permits access. In JavaScript, cookies
are used to save state and can serve to establish a kind of identity for a web browser. Cookies in JavaScript do not
use any kind of cryptography, however, and are not secure in any way.

cookie is a string property that allows you to read, create, modify, and delete the cookie or
cookies that apply to the current web page. Although cookie appears at first to be a normal
read/write string property, its behavior is actually more complex. When you read the value of
cookie, you get a string that contains the names and values of all the cookies that apply to the
document. You create, modify, or delete a cookie by setting the value of the cookie property.
Later sections of this chapter explain in detail how this works. To use the cookie property
effectively, however, you need to know more about cookies and how they work.

In addition to a name and a value, each cookie has four optional attributes that control its lifetime,
visibility, and security. The first attribute is expires, which specifies the cookie's lifetime. Cookies
are transient by default -- the values they store last for the duration of the web-browser session
but are lost when the user exits the browser. If you want a cookie to last beyond a single browsing
session, you use its expires attribute to specify an expiration date -- this attribute causes the
browser to save the cookie in a local file so that it can read it back in the next time the user visits
the web page. Once the expiration date has passed, the cookie is automatically deleted from the
cookie file.

The second attribute of a cookie is path, which specifies the web pages with which a cookie is
associated. By default, a cookie is associated with, and accessible to, the web page that created
it and any other web pages in the same directory or any subdirectories of that directory. If the web
page http://www.acme.com/catalog/index.html creates a cookie, for example, that cookie is also
visible to http://www.acme.com/catalog/order.html and
http://www.acme.com/catalog/widgets/index.html, but it is not visible to
http://www.acme.com/about.html.

This default visibility behavior is often exactly what you want. Sometimes, though, you'll want to
use cookie values throughout a multipage web site, regardless of which page creates the cookie.
For instance, if the user enters his mailing address in a form on one page, you may want to save
that address to use as the default the next time he returns to the page and also as the default in
an entirely unrelated form on another page where he is asked to enter a billing address. To allow
this usage, you specify a path for the cookie. Then, any web page from the same web server that
contains that path in its URL can share the cookies. For example, if a cookie set by
http://www.acme.com/catalog/widgets/index.html has its path set to "/catalog", that cookie is also
visible to http://www.acme.com/catalog/order.html. Or, if the path is set to "/", the cookie is visible
to any page on the www.acme.com web server.

By default, cookies are accessible only to pages on the same web server from which they were
set. Large web sites may want cookies to be shared across multiple web servers, however. For
example, the server at order.acme.com may need to read cookie values set from
catalog.acme.com. This is where the third cookie attribute, domain, comes in. If a cookie created

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

catalog.acme.com. This is where the third cookie attribute, domain, comes in. If a cookie created
by a page on catalog.acme.com sets its path attribute to "/" and its domain attribute to
".acme.com", that cookie is available to all web pages on catalog.acme.com, orders.acme.com,
and any other server in the acme.com domain. If the domain attribute is not set for a cookie, the
default is the hostname of the web server that serves the page. Note that you cannot set the
domain of a cookie to a domain other than the domain of your server.

The fourth and final cookie attribute is a boolean attribute named secure that specifies how
cookie values are transmitted over the network. By default, cookies are insecure, which means
that they are transmitted over a normal, insecure HTTP connection. If a cookie is marked secure,
however, it is transmitted only when the browser and server are connected via HTTPS or another
secure protocol.

Note that the expires, path, domain, and secure attributes of a cookie are not Java-Script
object properties. We'll see later in the chapter how you set these cookie atributes.

If you are interested in the complete technical details of how cookies work, see
http://www.netscape.com/newsref/std/cookie_spec.html. This document is the original
specification for HTTP cookies; it contains low-level details that are more suitable to CGI
programming than to JavaScript programming. The following sections discuss how you can set
and query cookie values in JavaScript and how you can specify the expires, path, domain,
and secure attributes of a cookie.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.2 Storing Cookies

To associate a transient cookie value with the current document, simply set the cookie property
to a string of the form:

name=value

For example:

document.cookie = "version=" + escape(document.lastModified);

The next time you read the cookie property, the name/value pair you stored is included in the list
of cookies for the document. Cookie values may not include semicolons, commas, or whitespace.
For this reason, you may want to use the JavaScript escape() function to encode the value
before storing it in the cookie. If you do this, you'll have to use the corresponding unescape()
function when you read the cookie value.

A cookie written as described above lasts for the current web-browsing session but is lost when
the user exits the browser. To create a cookie that can last across browser sessions, include an
expiration date by setting the expires attribute. You can do this by setting the cookie property
to a string of the form:

name=value; expires=date

When setting an expiration date like this, date should be a date specification in the format written
by Date.toGMTString(). For example, to create a cookie that persists for a year, you can
use code like this:

var nextyear = new Date();

nextyear.setFullYear(nextyear.getFullYear() + 1);

document.cookie = "version=" + document.lastModified +

 "; expires=" + nextyear.toGMTString();

Similarly, you can set the path, domain, and secure attributes of a cookie by appending strings
of the following format to the cookie value before that value is written to the cookie property:

; path=path

; domain=domain

; secure

To change the value of a cookie, set its value again, using the same name and the new value.
Use whatever values are appropriate for expires, path, and the other attributes. To delete a
cookie, set it again using the same name, an arbitrary value, and an expiration date that has
already passed. Note that the browser is not required to delete expired cookies immediately, so a
cookie may remain in the browser's cookie file past its expiration date.

16.2.1 Cookie Limitations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Cookies are intended for infrequent storage of small amounts of data. They are not intended as a
general-purpose communication or data-transfer mechanism, so you should use them in
moderation. Web browsers are not required to retain more than 300 cookies total, 20 cookies per
web server (for the entire server, not just for your page or site on the server), or 4 kilobytes of
data per cookie (both name and value count toward this 4-kilobyte limit). The most restrictive of
these is the 20 cookies per server limit. In order to avoid reaching that limit, you may want to
avoid using a separate cookie for each state variable you want to save. Instead, you can encode
several related state variables into a single named cookie. Example 16-1, later in this chapter,
shows one way that this can be done.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.3 Reading Cookies

When you use the cookie property in a JavaScript expression, the value it returns is a string that
contains all the cookies that apply to the current document.[2] The string is a list of name=value
pairs separated by semicolons, where name is the name of a cookie and value is its string value.
This value does not include any of the attributes that may have been set for the cookie. To
determine the value of a particular named cookie, you can use the String.indexOf() and
String.substring() methods, or you can use String.split() to break the string into
individual cookies.

[2] In Internet Explorer 3, the cookie property works only for Document objects that were retrieved using the HTTP
protocol. Documents retrieved from the local filesystem or via other protocols, such as FTP, cannot have cookies
associated with them.

Once you have extracted the value of a cookie from the cookie property, you must interpret that
value based on whatever format or encoding was used by the cookie's creator. For example, the
cookie might store multiple pieces of information in colon-separated fields. In this case, you would
have to use appropriate string methods to extract the various fields of information. Don't forget to
use the unescape() function on the cookie value if it was encoded using the escape()
function.

The following code shows how you might read the cookie property, extract a single cookie from
it, and use the value of that cookie:

// Read the cookie property. This returns all cookies for this document.

var allcookies = document.cookie;

// Look for the start of the cookie named "version"

var pos = allcookies.indexOf("version=");

// If we find a cookie by that name, extract and use its value

if (pos != -1) {

 var start = pos + 8; // Start of cookie value

 var end = allcookies.indexOf(";", start); // End of cookie value

 if (end == -1) end = allcookies.length;

 var value = allcookies.substring(start, end); // Extract the value

 value = unescape(value); // Decode it

 // Now that we have the cookie value, we can use it.

 // In this case, the cookie was previously set to the modification

 // date of the document, so we can use it to see if the document has

 // changed since the user last visited.

 if (value != document.lastModified)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (value != document.lastModified)

 alert("This document has changed since you were last here");

}

Note that the string returned when you read the value of the cookie property does not contain
any information about the various cookie attributes. The cookie property allows you to set those
attributes, but it does not allow you to read them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

16.4 Cookie Example

Example 16-1 brings together all the aspects of cookies we have discussed so far. First, the example defines a
Cookie class. When you create a Cookie object, you specify a Document object, a name for the cookie,
optionally, an expiration time, a path, a domain, and a boolean value that indicates whether the cookie should
be secure. After creating a Cookie object, you can set arbitrary string properties on this object; the values of
these properties are the values stored in the cookie.

The Cookie class defines three methods. The store() method loops through all of the user-defined
properties of the Cookie object and concatenates their names and values into a single string that serves as the
value of the cookie. The load() method of a Cookie object reads the cookie property of the Document
object to obtain the values of all the cookies for the document. It searches this string to find the value
named cookie and then parses this value into individual names and values, which it stores as properties of the
Cookie object. Finally, the remove() method of the Cookie object deletes the specified cookie from the
document.

After defining the Cookie class, Example 16-1 demonstrates a useful and elegant way to use cookies. The
code is somewhat complicated but is worth studying carefully. You may want to start with the test program at
the end of the example; it shows a typical usage of the Cookie class.

Example 16-1. A utility class for working with cookies

<script language="JavaScript1.1">

// The constructor function: creates a Cookie object for the specified

// document, with a specified name and optional attributes.

// Arguments:

// document: The Document object for which the cookie is stored. Required.

// name: A string that specifies a name for the cookie. Required.

// hours: An optional number that specifies the number of hours from now

// after which the cookie should expire.

// path: An optional string that specifies the cookie path attribute.

// domain: An optional string that specifies the cookie domain attribute.

// secure: An optional boolean value that, if true, requests a secure cookie.

//

function Cookie(document, name, hours, path, domain, secure)

{

 // All the predefined properties of this object begin with '$'

 // to distinguish them from other properties, which are the values to

 // be stored in the cookie

 this.$document = document;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 this.$document = document;

 this.$name = name;

 if (hours)

 this.$expiration = new Date((new Date()).getTime() + hours*3600000);

 else this.$expiration = null;

 if (path) this.$path = path; else this.$path = null;

 if (domain) this.$domain = domain; else this.$domain = null;

 if (secure) this.$secure = true; else this.$secure = false;

}

// This function is the store() method of the Cookie object

Cookie.prototype.store = function () {

 // First, loop through the properties of the Cookie object and

 // put together the value of the cookie. Since cookies use the

 // equals sign and semicolons as separators, we'll use colons

 // and ampersands for the individual state variables we store

 // within a single cookie value. Note that we escape the value

 // of each state variable, in case it contains punctuation or other

 // illegal characters.

 var cookieval = "";

 for(var prop in this) {

 // Ignore properties with names that begin with '$' and also methods

 if ((prop.charAt(0) == '$') || ((typeof this[prop]) == 'function'))

 continue;

 if (cookieval != "") cookieval += '&';

 cookieval += prop + ':' + escape(this[prop]);

 }

 // Now that we have the value of the cookie, put together the

 // complete cookie string, which includes the name and the various

 // attributes specified when the Cookie object was created

 var cookie = this.$name + '=' + cookieval;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (this.$expiration)

 cookie += '; expires=' + this.$expiration.toGMTString();

 if (this.$path) cookie += '; path=' + this.$path;

 if (this.$domain) cookie += '; domain=' + this.$domain;

 if (this.$secure) cookie += '; secure';

 // Now store the cookie by setting the magic Document.cookie property

 this.$document.cookie = cookie;

}

// This function is the load() method of the Cookie object

Cookie.prototype.load = function() {

 // First, get a list of all cookies that pertain to this document

 // We do this by reading the magic Document.cookie property

 var allcookies = this.$document.cookie;

 if (allcookies == "") return false;

 // Now extract just the named cookie from that list

 var start = allcookies.indexOf(this.$name + '=');

 if (start == -1) return false; // Cookie not defined for this page

 start += this.$name.length + 1; // Skip name and equals sign

 var end = allcookies.indexOf(';', start);

 if (end == -1) end = allcookies.length;

 var cookieval = allcookies.substring(start, end);

 // Now that we've extracted the value of the named cookie, we

 // must break that value down into individual state variable

 // names and values. The name/value pairs are separated from each

 // other by ampersands, and the individual names and values are

 // separated from each other by colons. We use the split() method

 // to parse everything.

 var a = cookieval.split('&'); // Break it into an array of name/value pairs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var a = cookieval.split('&'); // Break it into an array of name/value pairs

 for(var i=0; i < a.length; i++) // Break each pair into an array

 a[i] = a[i].split(':');

 // Now that we've parsed the cookie value, set all the names and values

 // of the state variables in this Cookie object. Note that we unescape()

 // the property value, because we called escape() when we stored it.

 for(var i = 0; i < a.length; i++) {

 this[a[i][0]] = unescape(a[i][1]);

 }

 // We're done, so return the success code

 return true;

}

// This function is the remove() method of the Cookie object

Cookie.prototype.remove = function() {

 var cookie;

 cookie = this.$name + '=';

 if (this.$path) cookie += '; path=' + this.$path;

 if (this.$domain) cookie += '; domain=' + this.$domain;

 cookie += '; expires=Fri, 02-Jan-1970 00:00:00 GMT';

 this.$document.cookie = cookie;

}

//===

// The previous code is the definition of the Cookie class.

// The following code is a sample use of that class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// The following code is a sample use of that class.

//===

// Create the cookie we'll use to save state for this web page.

// Since we're using the default path, this cookie will be accessible

// to all web pages in the same directory as this file or "below" it.

// Therefore, it should have a name that is unique among those pages.

// Note that we set the expiration to 10 days in the future.

var visitordata = new Cookie(document, "name_color_count_state", 240);

// First, try to read data stored in the cookie. If the cookie is not

// defined, or if it doesn't contain the data we need, then query the

// user for that data.

if (!visitordata.load() || !visitordata.name || !visitordata.color) {

 visitordata.name = prompt("What is your name:", "");

 visitordata.color = prompt("What is your favorite color:", "");

}

// Keep track of how many times this user has visited the page:

if (visitordata.visits == null) visitordata.visits = 0;

visitordata.visits++;

// Store the cookie values, even if they were already stored, so that the

// expiration date will be reset to 10 days from this most recent visit.

// Also, store them again to save the updated visits state variable.

visitordata.store();

// Now we can use the state variables we read:

document.write('' +

 'Welcome, ' + visitordata.name + '!' +

 '' +

 '<p>You have visited ' + visitordata.visits + ' times.');

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '<p>You have visited ' + visitordata.visits + ' times.');

</script>

<form>

<input type="button" value="Forget My Name" onclick="visitordata.remove();">

</form>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 17. The Document Object Model
A document object model (DOM) is an application programming interface (API) for representing a
document (such as an HTML document) and accessing and manipulating the various elements
(such as HTML tags and strings of text) that make up that document. JavaScript-enabled web
browsers have always defined a document object model; a web-browser DOM may specify, for
example, that the forms in an HTML document are accessible through the forms[] array of the
Document object.

In this chapter, we'll discuss the W3C DOM, a standard document object model defined by the
World Wide Web Consortium and implemented (at least partially) by Netscape 6 and Internet
Explorer 5 and 6. This DOM standard[1] is a full-featured superset of the traditional web-browser
DOM. It represents HTML (and XML) documents in a tree structure and defines properties and
methods for traversing the tree and examining and modifying its nodes. Other portions of the
standard specify techniques for defining event handlers for the nodes of a document, working with
the style sheets of a document, and manipulating contiguous ranges of a document.

[1] Technically, the W3C issues "recommendations." These recommendations serve the same purpose and carry the
same weight as international standards do, however, and are called "standards" in this book.

This chapter begins with an overview of the DOM standard and then describes the core portions
of the standard for working with HTML documents. The discussion of the core standard is
followed by short sections that explain the DOM-like features of Internet Explorer 4 and Netscape
4. The chapter ends with an overview of two optional parts of the DOM standard that are closely
related to the core. Later chapters cover advanced DOM features for working with style sheets
and events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1 An Overview of the DOM

The DOM API is not particularly complicated, but before we can begin our discussion of
programming with the DOM, there are a number of things you should understand about the DOM
architecture.

17.1.1 Representing Documents as Trees

HTML documents have a hierarchical structure that is represented in the DOM as a tree structure.
The nodes of the tree represent the various types of content in a document. The tree
representation of an HTML document primarily contains nodes representing elements or tags
such as <body> and <p> and nodes representing strings of text. An HTML document may also
contain nodes representing HTML comments.[2] Consider the following simple HTML document:

[2] The DOM can also be used to represent XML documents, which have a more complex syntax than HTML
documents, and the tree representation of such a document may contain nodes that represent XML entity references,
processing instructions, CDATA sections, and so on. Most client-side JavaScript programmers do not need to use the
DOM with XML documents, and although the XML-specific features of the DOM are covered in the DOM reference
section, they are not emphasized in this chapter.

<html>

 <head>

 <title>Sample Document</title>

 </head>

 <body>

 <h1>An HTML Document</h1>

 <p>This is a <i>simple</i> document.

 </body>

</html>

The DOM representation of this document is the tree pictured in Figure 17-1.

Figure 17-1. The tree representation of an HTML document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you are not already familiar with tree structures in computer programming, it is helpful to know
that they borrow terminology from family trees. The node directly above a node is the parent of
that node. The nodes one level directly below another node are the children of that node. Nodes
at the same level, and with the same parent, are siblings. The set of nodes any number of levels
below another node are the descendants of that node. And the parent, grandparent, and all other
nodes above a node are the ancestors of that node.

17.1.2 Nodes

The DOM tree structure illustrated in Figure 17-1 is represented as a tree of various types of
Node objects. The Node interface[3] defines properties and methods for traversing and
manipulating the tree. The childNodes property of a Node object returns a list of children of the
node, and the firstChild , lastChild, nextSibling, previousSibling, and
parentNode properties provide a way to traverse the tree of nodes. Methods such as
appendChild() , removeChild(), replaceChild(), and insertBefore() enable
you to add and remove nodes from the document tree. We'll see examples of the use of these
properties and methods later in this chapter.

[3] The DOM standard defines interfaces, not classes. If you are not familiar with the term interface in object-oriented
programming, you can think of it as an abstract kind of class. We'll describe the difference in more detail later in this
DOM overview.

17.1.2.1 Types of nodes

Different types of nodes in the document tree are represented by specific subinterfaces of Node.
Every Node object has a nodeType property that specifies what kind of node it is. If the
nodeType property of a node equals the constant Node.ELEMENT_NODE, for example, you know
the Node object is also an Element object and you can use all the methods and properties defined
by the Element interface with it. Table 17-1 lists the node types commonly encountered in HTML
documents and the nodeType value for each one.

Table 17-1. Common node types
Interface nodeType constant nodeType value

Element Node.ELEMENT_NODE 1
Text Node.TEXT_NODE 3
Document Node.DOCUMENT_NODE 9
Comment Node.COMMENT_NODE 8
DocumentFragment Node.DOCUMENT_FRAGMENT_NODE 11
Attr Node.ATTRIBUTE_NODE 2

The Node at the root of the DOM tree is a Document object. The documentElement property of
this object refers to an Element object that represents the root element of the document. For
HTML documents, this is the <html> tag that is either explicit or implicit in the document. (The
Document node may have other children, such as Comment nodes, in addition to the root
element.) The bulk of a DOM tree consists of Element objects, which represent tags such as
<html> and <i>, and Text objects, which represent strings of text. If the document parser
preserves comments, those comments are represented in the DOM tree by Comment objects.
Figure 17-2 shows a partial class hierarchy for these and other core DOM interfaces.

Figure 17-2. A partial class hierarchy of the core DOM API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.1.2.2 Attributes

The attributes of an element (such as the src and width attributes of an tag) may be
queried, set, and deleted using the getAttribute() , setAttribute(), and
removeAttribute() methods of the Element interface.

Another, more awkward way to work with attributes is with the getAttributeNode() method,
which returns an Attr object representing an attribute and its value. (One reason to use this more
awkward technique is that the Attr interface defines a specified property that allows you to
determine whether the attribute is literally specified in the document, or whether its value is a
default value.) The Attr interface appears in Figure 17-2, and it is a type of node. Note, however,
that Attr objects do not appear in the childNodes[] array of an element and are not directly part
of the document tree in the way that Element and Text nodes are. The DOM specification allows
Attr nodes to be accessed through the attributes[] array of the Node interface, but
Microsoft's Internet Explorer defines a different and incompatible attributes[] array that
makes it impossible to use this feature portably.

17.1.3 The DOM HTML API

The DOM standard was designed for use with both XML and HTML documents. The core DOM
API -- the Node, Element, Document, and other interfaces -- are relatively generic and apply to
both types of documents. The DOM standard also includes interfaces that are specific to HTML
documents. As you can see from Figure 17-2, HTMLDocument is an HTML-specific subinterface
of Document, and HTMLElement is an HTML-specific subinterface of Element. Furthermore, the
DOM defines tag-specific interfaces for many HTML elements. These tag-specific interfaces, such
as HTMLBodyElement and HTMLTitleElement, typically define a set of properties that mirror the
HTML tag's attributes.

The HTMLDocument interface defines various document properties and methods that were
supported by browsers prior to W3C standardization. These include the location property,
forms[] array, and write() method, which are described in Chapter 13, Chapter 14, and
Chapter 15.

The HTMLElement interface defines id, style, title, lang, dir , and className properties.
These properties allow convenient access to the values of the id, style, title, lang, dir,
and class attributes, which are allowed on all HTML tags. A number of HTML tags, listed in
Table 17-2, accept no attributes other than these six, and so are fully represented by the
HTMLElement interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 17-2. Simple HTML tags
<abbr> <acronym> <address> <bdo>
<big> <center> <cite> <code> <dd>
<dfn> <dt> <i> <kbd>
<noframes> <noscript> <s> <samp> <small>
 <strike> <sub> <sup>
<tt> <u> <var>

All other HTML tags have corresponding interfaces defined by the HTML portion of the DOM
specification. For many HTML tags, these interfaces do nothing more than provide a set of
properties that mirror their HTML attributes. For example, the tag has a corresponding
HTMLUListElement interface, and the <body> tag has a corresponding HTMLBodyElement
interface. Because these interfaces simply define properties that are standardized by the HTML
standard, they are not documented in detail in this book. You can safely assume that the
HTMLElement object that represents a particular HTML tag has properties for each of the
standard attributes for that tag (but see the naming conventions described in the next section).
Note that the DOM standard defines properties for HTML attributes as a "convenience" to script
writers. The general (and possibly preferred) way to query and set attribute values is with the
getAttribute() and setAttribute() methods of the Element object.

Some of the interfaces defined in the HTML DOM define additional properties or methods, other
than those that mirror HTML attribute values. For example, the HTMLInputElement interface
defines focus() and blur() methods, and the HTMLFormElement interface defines
submit() and reset() methods and a length property. Methods and properties like these
typically predate DOM standardization and have been made part of the DOM standard for
backward compatibility with existing practice. Interfaces like these are documented in the DOM
reference section. You can usually also find information about the "existing practice" portions of
these interfaces in the client-side reference section, although this information is typically
referenced under a name that also predates DOM standardization; for example, you can find
information about HTMLFormElement and HTMLInputElement in the client-side reference section
under "Form" and "Input."

17.1.3.1 HTML naming conventions

When working with the HTML-specific portions of the DOM standard, you should be aware of
some simple naming conventions. Properties of the HTML-specific interfaces begin with
lowercase letters. If the property name consists of multiple words, the first letters of the second
and subsequent words are capitalized. Thus, the maxlength attribute of the <input> tag
translates into the maxLength property of HTMLInputElement.

When an HTML attribute name conflicts with a JavaScript keyword, it is prefixed with the string
"html" to avoid the conflict. Thus, the for attribute of the <label> tag translates to the htmlFor
property of the HTMLLabelElement. An exception to this rule is the class attribute (which can be
specified for any HTML element); it translates to the className property of HTMLElement.[4]

[4] The name className is misleading, because in addition to specifying a single class name, this property (and the
HTML attribute it represents) can also specify a space-separated list of class names.

17.1.4 DOM Levels and Features

There are two versions, or "levels," of the DOM standard. DOM Level 1 was standardized in
October, 1998. It defines the core DOM interfaces, such as Node, Element, Attr, and Document,
and also defines various HTML-specific interfaces. DOM Level 2 was standardized in November,
2000.[5] In addition to some updates to the core interfaces, this new version of the DOM is greatly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2000.[5] In addition to some updates to the core interfaces, this new version of the DOM is greatly
expanded to define standard APIs for working with document events and CSS style sheets and to
provide additional tools for working with ranges of documents. As of this writing, the DOM
Working Group at the W3C is working to standardize DOM Level 3. You may also sometimes see
a reference to DOM Level 0. This term does not refer to any formal standard but is used to refer
informally to the common features of the HTML document object models implemented by
Netscape and Internet Explorer prior to W3C standardization.

[5] Except for the HTML-specific portions of the standard, which are still at the "working draft" stage as of November
2001. Fortunately, the current working draft is presumed stable and includes only minor changes (documented in this
book) from the HTML-specific portions of the Level 1 standard.

As of Level 2, the DOM standard has been "modularized." The core module, which defines the
basic tree structure of a document with the Document, Node, Element, and Text interfaces
(among others), is the only required module. All other modules are optional and may or may not
be supported, depending on the needs of the implementation. The DOM implementation of a web
browser would obviously support the HTML module, since web documents are written in HTML.
Browsers that support CSS style sheets typically support the StyleSheets and CSS modules,
because (as we'll see in Chapter 18) CSS styles play a crucial role in Dynamic HTML
programming. Similarly, since almost all interesting client-side JavaScript programming requires
event-handling capabilities, you would expect web browsers to support the Events module of the
DOM specification. Unfortunately, the Events module was only recently defined by the DOM Level
2 specification and is not yet widely supported at the time of this writing. We'll see a complete list
of DOM Level 2 modules in the next section.

17.1.5 DOM Conformance

At the time of this writing, no browser is completely conformant to the DOM standard. Recent
releases of Mozilla come closest, and complete DOM Level 2 conformance is a goal of the
Mozilla project. Netscape 6.1 does a good job of conforming to the most important Level 2
modules, and Netscape 6.0 does an adequate job but has gaps in its coverage. Internet Explorer
6 is mostly compliant (with at least one annoying exception) with the Level 1 DOM, but does not
support many of the Level 2 modules -- most notably the Events module, which is the topic of
Chapter 19. Internet Explorer 5 and 5.5 have substantial gaps in their conformance but support
key DOM Level 1 methods well enough to run most of the examples in this chapter. The
Macintosh version of IE 5 has considerably better support for the DOM than the Windows version
of IE 5.

In addition to Mozilla, Netscape, and Internet Explorer, several other browsers offer at least partial
support for the DOM. The number of available browsers has become too large, and the rate of
change in the area of standards support has grown too fast, for this book to even attempt to
provide definitive statements about which browsers support which particular DOM features.
Therefore, you'll have to rely on other information sources to determine exactly how conformant
the DOM implementation in any particular web browser is.

One source for conformance information is the implementation itself. In a conformant
implementation, the implementation property of the Document object refers to a
DOMImplementation object that defines a method named hasFeature(). You can use this
method (if it exists) to ask an implementation whether it supports a specific feature (or module) of
the DOM standard. For example, to determine whether the DOM implementation in a web
browser supports the basic DOM Level 1 interfaces for working with HTML documents, you could
use the following code:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

if (document.implementation &&

 document.implementation.hasFeature &&

 document.implementation.hasFeature("html", "1.0")) {

 // The browser claims to support Level 1 Core and HTML interfaces

}

The hasFeature() method takes two arguments: the first is the name of the feature to check,
and the second is a version number, expressed as a string. It returns true if the specified version
of the specified feature is supported. Table 17-3 lists the feature name/version number pairs that
are defined by the DOM Level 1 and Level 2 standards. Note that the feature names are case-
insensitive: you can capitalize them any way you choose. The fourth column of the table specifies
what other features are required for support of a feature and are therefore implied by a return
value of true. For example, if hasFeature() indicates that the MouseEvents module is
supported, this implies that UIEvents is also supported, which in turn implies that the Events,
Views, and Core modules are supported.

Table 17-3. Features that can be tested with hasFeature()
Feature name Version Description Implies

HTML 1.0 Level 1 Core and HTML interfaces
XML 1.0 Level 1 Core and XML interfaces
Core 2.0 Level 2 Core interfaces
HTML 2.0 Level 2 HTML interfaces Core
XML 2.0 Level 2 XML-specific interfaces Core
Views 2.0 AbstractView interface Core
StyleSheets 2.0 Generic style-sheet traversal Core
CSS 2.0 CSS styles Core, Views
CSS2 2.0 CSS2Properties interface CSS
Events 2.0 Event-handling infrastructure Core
UIEvents 2.0 User-interface events (plus Events and Views) Events, Views
MouseEvents 2.0 Mouse events UIEvents
HTMLEvents 2.0 HTML events Events
MutationEvents 2.0 Document mutation events Events
Range 2.0 Document range interfaces Core
Traversal 2.0 Document traversal interfaces Core

In Internet Explorer 6 (on Windows), hasFeature() returns true only for the feature HTML
and Version 1.0. It does not report compliance to any of the other features listed in Table 17-3
(although, as we'll see in Chapter 18, it supports the most common uses of the CSS2 module.) In
Netscape 6.1, hasFeature() returns true for most feature names and version numbers, with
the notable exceptions of the Traversal and MutationEvents features. It returns false for the
Core and CSS2 features with Version 2.0, indicating incomplete support (even though support for
these features is quite good).

This book documents the interfaces that make up all of the DOM modules listed in Table 17-3.
The Core, HTML, Traversal, and Range modules are covered in this chapter. The StyleSheets,
CSS, and CSS2 modules are covered in Chapter 18, and the various Event modules (except
MutationEvents) are covered in Chapter 19. The DOM reference section includes complete
coverage of all modules.

The hasFeature() method is not always perfectly reliable. As previously noted, IE 6 reports

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The hasFeature() method is not always perfectly reliable. As previously noted, IE 6 reports
Level 1 compliance to HTML features even though there are some problems with its compliance.
On the other hand, Netscape 6.1 reports noncompliance to the Level 2 Core feature even though
it is mostly compliant. In both cases, you need more detailed information about exactly what is
and is not compliant. This is exactly the type of information that is too voluminous and volatile to
include in a printed book.

If you are an active web developer, you undoubtedly already know or will discover many browser-
specific support details on your own. There are also resources on the Web that can help you.
Most importantly, the W3C (in collaboration with the U.S. National Institute of Standards and
Technology) is working on developing an open source test suite for DOM implementations. At the
time of this writing, the test suite effort is just getting off the ground, but it ought to prove to be an
invaluable resource for fine-grained compliance testing of DOM implementations. See
http://www.w3c.org/DOM/Test/ for details.

The Mozilla organization has a set of test suites for a variety of standards, including DOM Level 1
(available athttp://www.mozilla.org/quality/browser_sc.html). Netscape has published a test suite
that includes some DOM Level 2 tests (available
athttp://developer.netscape.com/evangelism/tools/testsuites/). Netscape has also published a
partisan (and dated) comparison of DOM compliance of an early Mozilla release versus IE 5.5
(available at http://home.netscape.com/browsers/future/standards.html). Finally, you can also find
compatibility and compliance information at independent sites on the Web. One notable site is
published by Peter-Paul Koch. You can find a link to his DOM Compatibility Table from his main
JavaScript page (http://www.xs4all.nl/~ppk/js/).

17.1.5.1 DOM conformance in Internet Explorer

Because IE is the most widely used web browser, a few special notes about its compliance to the
DOM specifications are appropriate here. IE 5 and later versions support the Level 1 Core and
HTML features well enough to run the examples in this chapter, and they support the key Level 2
CSS features well enough to run most of the examples in Chapter 18. Unfortunately, IE 5, 5.5,
and 6 do not support the DOM Level 2 Events module, even though Microsoft participated in the
definition of this module and had ample time to implement it for IE 6. As we'll see in Chapter 19,
event handling is crucial for client-side event handling, and IE's lack of support for the standard
event model impedes the development of advanced client-side web applications.

Although IE 6 claims (through its hasFeature() method) to support the Core and HTML
interfaces of the DOM Level 1 standard, this support is actually incomplete. The most egregious
problem, and the one you are most likely to encounter, is a minor but annoying one: IE does not
support the node-type constants defined by the Node interface. Recall that each node in a
document has a nodeType property that specifies what type of node it is. The DOM specification
also says that the Node interface defines constants that represent each of the defined node types.
For example, the constant Node.ELEMENT_NODE represents an Element node. In IE (at least as
high as version 6), these constants simply do not exist.

The examples in this chapter have been modified to work around this problem by using integer
literals instead of the corresponding symbolic constants. For example, you'll see code like this:

if (n.nodeType == 1 /*Node.ELEMENT_NODE*/) // Check if n is an Element

It is good programming style to use constants instead of hardcoded integer literals in your code,
and if you'd like to do this portably, you can include the following code in your programs to define
these constants if they are missing:

if (!window.Node) {

 var Node = { // If there is no Node object, define one

 ELEMENT_NODE: 1, // with the following properties and values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ELEMENT_NODE: 1, // with the following properties and values.

 ATTRIBUTE_NODE: 2, // Note that these are HTML node types only.

 TEXT_NODE: 3, // For XML-specific nodes, you need to add

 COMMENT_NODE: 8, // other constants here.

 DOCUMENT_NODE: 9,

 DOCUMENT_FRAGMENT_NODE: 11

 }

}

17.1.6 Language-Independent DOM Interfaces

Although the DOM standard grew out of a desire to have a common API for dynamic HTML
programming, the DOM is not of interest only to web scripters. In fact, the standard is currently
most heavily used by server-side Java and C++ programs that parse and manipulate XML
documents. Because of its many uses, the DOM standard is defined to be language-independent.
This book describes only the JavaScript binding of the DOM API, but you should be aware of a
few other points. First, note that object properties in the JavaScript binding are typically mapped
to pairs of get/set methods in other language bindings. Thus, when a Java programmer asks you
about the getFirstChild() method of the Node interface, you need to understand that the
JavaScript binding of the Node API doesn't define a getFirstChild() method. Instead, it
simply defines a firstChild property, and reading the value of this property in JavaScript is
equal to calling getFirstChild() in Java.

Another important feature of the JavaScript binding of the DOM API is that certain DOM objects
behave like JavaScript arrays. If an interface defines a method named item(), objects that
implement that interface behave like read-only numerical arrays. For example, suppose you've
obtained a NodeList object by reading the childNodes property of a node. You can obtain the
individual Node objects in the list by passing the desired node number to the item() method,
or, more simply, you can simply treat the NodeList object as an array and index it directly. The
following code illustrates these two options:

var n = document.documentElement; // This is a Node object.

var children = n.childNodes; // This is a NodeList object.

var head = children.item(0); // Here is one way to use a NodeList.

var body = children[1]; // But this way is easier!

Similarly, if a DOM object has a namedItem() method, passing a string to this method is the
same as using the string as an array index for the object. For example, the following lines of code
are all equivalent ways to access a form element:

var f = document.forms.namedItem("myform");

var g = document.forms["myform"];

var h = document.forms.myform;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var h = document.forms.myform;

Because the DOM standard may be used in a variety of ways, the architects of the standard were
careful to define the DOM API in a way that would not restrict the ability of others to implement the
API as they saw fit. Specifically, the DOM standard defines interfaces instead of classes. In
object-oriented programming, a class is a fixed data type that must be implemented exactly as
specified. An interface, on the other hand, is a collection of methods and properties that must be
implemented together. Thus, an implementation of the DOM is free to define whatever classes it
sees fit, but those classes must define the methods and properties of the various DOM interfaces.

This architecture has a couple of important implications. First, the class names used in an
implementation might not correspond directly to the interface names used in the DOM standard
(and in this book). Second, a single class may implement more than one interface. For example,
consider the Document object. This object is an instance of some class defined by the web
browser implementation. We don't know what the specific class is, but we do know that it
implements the Document interface; that is, all methods and properties defined by Document are
available to us through the Document object. Since web browsers work with HTML documents,
we also know that the Document object implements the HTMLDocument interface and that all
methods and properties defined by that interface are available to us as well. Furthermore, if a web
browser supports CSS style sheets and implements the DOM CSS module, the Document object
also implements the DocumentStyle and DocumentCSS DOM interfaces. And if the web browser
supports the Events and Views modules, Document implements the DocumentEvent and
DocumentView interfaces as well.

Because the DOM is broken into independent modules, it defines a number of minor add-on
interfaces, such as DocumentStyle, DocumentEvent, and DocumentView, that define only one or
two methods each. Interfaces such as these are never implemented independently of the core
Document interface, and for this reason, I do not document them independently. When you look
up the Document interface in the DOM reference section, you'll find that it also lists the methods
and properties of its various add-on interfaces. Similarly, if you look up one of the add-on
interfaces, you'll simply find a cross-reference to the core interface with which it is associated. The
exception to this rule is when the add-on interface is a complex one. For example, the
HTMLDocument interface is always implemented by the same object that implements the
Document object, but because it adds substantial new functionality, I have given it a reference
page of its own.

Another important fact you need to understand is that since the DOM standard defines interfaces
instead of classes, it does not define any constructor methods. If you want to create a new Text
object to insert into a document, for example, you cannot simply say:

var t = new Text("this is a new text node"); // No such constructor!

Since it cannot define constructors, the DOM standard instead defines a number of useful factory
methods for creating objects in the Document interface. So, to create a new Text node for a
document, you would write the following:

var t = document.createTextNode("this is a new text node");

Factory methods defined by the DOM have names that begin with the word "create". In addition to
the factory methods defined by Document, a few others are defined by DOMImplementation and
available as document.implementation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.2 Using the Core DOM API

Now that we've studied the tree structure of documents and seen how the tree is composed of Node objects, we
can move on to study the Node object and document trees in more detail. As I noted previously, the core DOM
API is not terribly complex. The following sections contain examples that demonstrate how you can use it to
accomplish common tasks.

17.2.1 Traversing a Document

As we've already discussed, the DOM represents an HTML document as a tree of Node objects. With any tree
structure, one of the most common things to do is traverse the tree, examining each node of the tree in turn.
Example 17-1 shows one way to do this. It is a JavaScript function that recursively examines a node and all
children, adding up the number of HTML tags (i.e., Element nodes) it encounters in the course of the traversal.
Note the use of the childNodes property of a node. The value of this property is a NodeList object, which
behaves (in JavaScript) like an array of Node objects. Thus, the function can enumerate all the children of a given
node by looping through the elements of the childNodes[] array. By recursing, the function enumerates not
just all children of a given node, but all nodes in the tree of nodes. Note that this function also demonstrates the
use of the nodeType property to determine the type of each node.

Example 17-1. Traversing the nodes of a document

<head>

<script>

// This function is passed a DOM Node object and checks to see if that node

// represents an HTML tag; i.e., if the node is an Element object. It

// recursively calls itself on each of the children of the node, testing

// them in the same way. It returns the total number of Element objects

// it encounters. If you invoke this function by passing it the

// Document object, it traverses the entire DOM tree.

function countTags(n) { // n is a Node

 var numtags = 0; // Initialize the tag counter

 if (n.nodeType == 1 /*Node.ELEMENT_NODE*/) // Check if n is an Element

 numtags++; // Increment the counter if so

 var children = n.childNodes; // Now get all children of n

 for(var i=0; i < children.length; i++) { // Loop through the children

 numtags += countTags(children[i]); // Recurse on each one

 }

 return numtags; // Return the total number of tags

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return numtags; // Return the total number of tags

}

</script>

</head>

<!-- Here's an example of how the countTags() function might be used -->

<body onload="alert('This document has ' + countTags(document) + ' tags')">

This is a <i>sample</i> document.

</body>

Another point to notice about Example 17-1 is that the countTags() function it defines is invoked from
onload event handler, so that it is not called until the document is completely loaded. This is a general
requirement when working with the DOM: you cannot traverse or manipulate the document tree until the
document has been fully loaded.

In addition to the childNodes property, the Node interface defines a few other useful properties. firstChild
and lastChild refer to the first and last children of a node, and nextSibling and previousSibling
adjacent siblings of a node. (Two nodes are siblings if they have the same parent node.) These properties provide
another way to loop through the children of a node, demonstrated in Example 17-2. This example counts the
number of characters in all the Text nodes within the <body> of the document. Notice the way the
countCharacters() function uses the firstChild and nextSibling properties to loop through the
children of a node.

Example 17-2. Another way to traverse a document

<head>

<script>

// This function is passed a DOM Node object and checks to see if that node

// represents a string of text; i.e., if the node is a Text object. If

// so, it returns the length of the string. If not, it recursively calls

// itself on each of the children of the node and adds up the total length

// of the text it finds. Note that it enumerates the children of a node

// using the firstChild and nextSibling properties. Note also that the

// function does not recurse when it finds a Text node, because Text nodes

// never have children.

function countCharacters(n) { // n is a Node

 if (n.nodeType == 3 /*Node.TEXT_NODE*/) // Check if n is a Text object

 return n.length; // If so, return its length

 // Otherwise, n may have children whose characters we need to count

 var numchars = 0; // Used to hold total characters of the children

 // Instead of using the childNodes property, this loop examines the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Instead of using the childNodes property, this loop examines the

 // children of n using the firstChild and nextSibling properties.

 for(var m = n.firstChild; m != null; m = m.nextSibling) {

 numchars += countCharacters(m); // Add up total characters found

 }

 return numchars; // Return total characters

}

</script>

</head>

<!--

 The onload event handler is an example of how the countCharacters()

 function might be used. Note that we want to count only the characters

 in the <body> of the document, so we pass document.body to the function.

-->

<body onload="alert('Document length: ' + countCharacters(document.body))">

This is a sample document.<p>How long is it?

</body>

17.2.2 Finding Specific Elements in a Document

The ability to traverse all nodes in a document tree gives us the power to find specific nodes. When
with the DOM API, it is quite common to need a particular node within the document or a list of nodes of a specific
type within the document. Fortunately, the DOM API provides functions that make this easy for us.

In Example 17-2, we referred to the <body> element of an HTML document with the JavaScript expression
document.body. The body property of the Document object is a convenient special-case property and is the
preferred way to refer to the <body> tag of an HTML document. If this convenience property did not exist,
however, we could also refer to the <body> tag like this:

document.getElementsByTagName("body")[0]

This expression calls the Document object's getElementsByTagName() method and selects the first element
of the returned array. The call to getElementsByTagName() returns an array of all <body> elements within
the document. Since HTML documents can have only one <body>, we know that we're interested in the first
element of the returned array.[6]

[6] Technically, the DOM API specifies that getElementsByTagName() returns a NodeList object. In the JavaScript binding of the DOM,
NodeList objects behave like arrays and are typically used that way.

You can use getElementsByTagName() to obtain a list of any type of HTML element. For example, to find all
the tables within a document, you'd do this:

var tables = document.getElementsByTagName("table");

alert("This document contains " + tables.length + " tables");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

alert("This document contains " + tables.length + " tables");

Note that since HTML tags are not case-sensitive, the strings passed to getElementsByTagName()
not case-sensitive. That is, the previous code finds <table> tags even if they are coded as <TABLE>
getElementsByTagName() returns elements in the order in which they appear in the document. Finally, if you
pass the special string "*" to getElementsByTagName(), it returns a list of all the elements in the document,
in the order in which they appear. (This special usage is not supported in IE 5 and IE 5.5. See instead
specific Document.all[] array in the client-side reference section.)

Sometimes you don't want a list of elements but instead want to operate on a single specific element of a
document. If you know a lot about the structure of the document, you may be able to use
getElementsByTagName(). For example, if you want to do something to the fourth paragraph in a document,
you might use this code:

var myParagraph = document.getElementsByTagName("p")[3];

This typically is not the best (nor the most efficient) technique, however, because it depends so heavily on the
structure of the document; a new paragraph inserted at the beginning of the document would break the code.
Instead, when you need to manipulate specific elements of a document, it is best to give those elements an
attribute that specifies a unique (within the document) name for the element. Then you can look up your desired
element by its ID. For example, you might code the special fourth paragraph of your document with a tag like this:

<p id="specialParagraph">

You can then look up the node for that paragraph with JavaScript code like this:

var myParagraph = document.getElementById("specialParagraph");

Note that the getElementById() method does not return an array of elements like
getElementsByTagName() does. Because the value of every id attribute is (or is supposed to be) unique,
getElementById() returns only the single element with the matching id attribute. getElementById()
an important method, and its use is quite common in DOM programming.

getElementById() and getElementsByTagName() are both methods of the Document object. Element
objects also define a getElementsByTagName() method, however. This method of the Element object
behaves just like the method of the Document object, except that it returns only elements that are descendants of
the element on which it is invoked. Instead of searching the entire document for elements of a specific type, it
searches only within the given element. This makes it possible, for example, to use getElementById()
a specific element and then to use getElementsByTagName() to find all descendants of a given type within
that specific tag. For example:

// Find a specific Table element within a document and count its rows

var tableOfContents = document.getElementById("TOC");

var rows = tableOfContents.getElementsByTagName("tr");

var numrows = rows.length;

Finally, note that for HTML documents, the HTMLDocument object also defines a getElementsByName()
method. This method is like getElementById(), but it looks at the name attribute of elements rather than the
id attribute. Also, because the name attribute is not expected to be unique within a document (for example, radio
buttons within HTML forms usually have the same name), getElementsByName() returns an array of
elements rather than a single element. For example:

// Find

var link = document.getElementsByName("top")[0];

// Find all <input type="radio" name="shippingMethod"> elements

var choices = document.getElementsByName("shippingMethod");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var choices = document.getElementsByName("shippingMethod");

17.2.3 Modifying a Document

Traversing the nodes of a document can be useful, but the real power of the core DOM API lies in the
that allow you to use JavaScript to dynamically modify documents. The following examples demonstrate the basic
techniques of modifying documents and illustrate some of the possibilities.

Example 17-3 includes a JavaScript function named reverse(), a sample document, and an HTML
that, when pressed, calls the reverse() function, passing it the node that represents the <body>
the document. (Note the use of getElementsByTagName() within the button's event handler to find the
<body> element.) The reverse() function loops backward through the children of the supplied node and uses
the removeChild() and appendChild() methods of the Node object to reverse the order of those children.

Example 17-3. Reversing the nodes of a document

<head><title>Reverse</title>

<script>

function reverse(n) { // Reverse the order of the children of Node n

 var kids = n.childNodes; // Get the list of children

 var numkids = kids.length; // Figure out how many children there are

 for(var i = numkids-1; i >= 0; i--) { // Loop backward through the children

 var c = n.removeChild(kids[i]); // Remove a child

 n.appendChild(c); // Put it back at its new position

 }

}

</script>

</head>

<body>

<p>paragraph #1<p>paragraph #2<p>paragraph #3 <!-- A sample document -->

<p> <!-- A button to call reverse()-->

<button onclick="reverse(document.body);"

>Click Me to Reverse</button>

</body>

The result of Example 17-3, illustrated in Figure 17-3, is that when the user clicks the button, the order of the
paragraphs and of the button are reversed.

Figure 17-3. A document before and after being reversed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

There are a couple of points worth noting about Example 17-3. First, if you pass a node that is already
document to appendChild() it first removes it, so we could have simplified our code by omitting the call
removeChild(). Second, keep in mind that the childNodes property (like all NodeList objects) is
the document is modified, the modifications are immediately visible through the NodeList. This is an important
features of the NodeList interface, but it can actually make some code trickier to write. A call to removeChild(
), for example, changes the index of all the siblings that follow that child, so if you want to iterate through a
NodeList and delete some of the nodes, you must write your looping code carefully.

Example 17-4 shows a variation on the reverse() function of the previous example. This one uses recursion
to reverse not only the children of a specified node, but also all the node's descendants. In addition, when it
encounters a Text node, it reverses the order of the characters within that node. Example 17-4 shows
JavaScript code for this new reverse() function. It could easily be used in an HTML document like the one
shown in Example 17-3, however.

Example 17-4. A recursive node-reversal function

// Recursively reverse all nodes beneath Node n and reverse Text nodes

function reverse(n) {

 if (n.nodeType == 3 /*Node.TEXT_NODE*/) { // Reverse Text nodes

 var text = n.data; // Get content of node

 var reversed = "";

 for(var i = text.length-1; i >= 0; i--) // Reverse it

 reversed += text.charAt(i);

 n.data = reversed; // Store reversed text

 }

 else { // For non-Text nodes, recursively reverse the order of the children

 var kids = n.childNodes;

 var numkids = kids.length;

 for(var i = numkids-1; i >= 0; i--) { // Loop through kids

 reverse(kids[i]); // Recurse to reverse kid

 n.appendChild(n.removeChild(kids[i])); // Move kid to new position

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 n.appendChild(n.removeChild(kids[i])); // Move kid to new position

 }

 }

}

Example 17-4 shows one way to change the text displayed in a document: simply set the data field
appropriate Text node. Example 17-5 shows another way. This example defines a function, uppercase(
recursively traverses the children of a given node. When it finds a Text node, the function replaces that node with
a new Text node containing the text of the original node, converted to uppercase. Note the use of the
document.createTextNode() method to create the new Text node and the use of Node's replaceChild(
) method to replace the original Text node with the newly created one. Note also that replaceChild()
invoked on the parent of the node to be replaced, not on the node itself. The uppercase() function uses
Node's parentNode property to determine the parent of the Text node it replaces.

In addition to defining the uppercase() function, Example 17-5 includes two HTML paragraphs and a
When the user clicks the button, one of the paragraphs is converted to uppercase. Each paragraph is identified
with a unique name, specified with the id attribute of the <p> tag. The event handler on the button uses the
getElementById() method to get the Element object that represents the desired paragraph.

Example 17-5. Replacing nodes with their uppercase equivalents

<script>

// This function recursively looks at Node n and its descendants,

// replacing all Text nodes with their uppercase equivalents.

function uppercase(n) {

 if (n.nodeType == 3 /*Node.TEXT_NODE*/) {

 // If the node is a Text node, create a new Text node that

 // holds the uppercase version of the node's text, and use the

 // replaceChild() method of the parent node to replace the

 // original node with the new uppercase node.

 var newNode = document.createTextNode(n.data.toUpperCase());

 var parent = n.parentNode;

 parent.replaceChild(newNode, n);

 }

 else {

 // If the node is not a Text node, loop through its children

 // and recursively call this function on each child.

 var kids = n.childNodes;

 for(var i = 0; i < kids.length; i++) uppercase(kids[i]);

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

}

</script>

<!-- Here is some sample text. Note that the <p> tags have id attributes. -->

<p id="p1">This <i>is</i> paragraph 1.</p>

<p id="p2">This <i>is</i> paragraph 2.</p>

<!-- Here is a button that invokes the uppercase() function defined above. -->

<!-- Note the call to document.getElementById() to find the desired node. -->

<button onclick="uppercase(document.getElementById('p1'));">Click Me</button>

The previous two examples show how to modify document content by replacing the text contained within a Text
node and by replacing one Text node with an entirely new Text node. It is also possible to append, insert, delete,
or replace text within a Text node with the appendData() , insertData(), deleteData(), and
replaceData() methods. These methods are not directly defined by the Text interface, but instead are
inherited by Text from CharacterData. You can find more information about them under "CharacterData" in the
DOM reference section.

In the node-reversal examples, we saw how we could use the removeChild() and appendChild()
methods to reorder the children of a Node. Note, however, that we are not restricted to changing the order of
nodes within their parent node; the DOM API allows nodes in the document tree to be moved freely within the tree
(only within the same document, however). Example 17-6 demonstrates this by defining a function named
embolden() that replaces a specified node with a new element (created with the createElement()
of the Document object) that represents an HTML tag and "reparents" the original node as a child of the new
 node. In an HTML document, this causes any text within the node or its descendants to be displayed in
boldface.

Example 17-6. Reparenting a node to a element

<script>

// This function takes a Node n, replaces it in the tree with an Element node

// that represents an HTML tag, and then makes the original node the

// child of the new element.

function embolden(node) {

 var bold = document.createElement("b"); // Create a new element

 var parent = node.parentNode; // Get the parent of the node

 parent.replaceChild(bold, node); // Replace the node with the tag

 bold.appendChild(node); // Make the node a child of the tag

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 bold.appendChild(node); // Make the node a child of the tag

}

</script>

<!-- A couple of sample paragraphs -->

<p id="p1">This <i>is</i> paragraph #1.</p>

<p id="p2">This <i>is</i> paragraph #2.</p>

<!-- A button that invokes the embolden() function on the first paragraph -->

<button onclick="embolden(document.getElementById('p1'));">Embolden</button>

In addition to modifying documents by inserting, deleting, reparenting, and otherwise rearranging nodes, it is also
possible to make substantial changes to a document simply by setting attribute values on document elements.
One way to do this is with the element.setAttribute() method. For example:

var headline = document.getElementById("headline"); // Find named element

headline.setAttribute("align", "center"); // Set align='center'

The DOM elements that represent HTML attributes define JavaScript properties that correspond to each of their
standard attributes (even deprecated attributes such as align), so you can also achieve the same effect
code:

var headline = document.getElementById("headline");

headline.align = "center"; // Set alignment attribute.

17.2.4 Adding Content to a Document

The previous two examples showed how the contents of a Text node can be changed to uppercase and how a
node can be reparented to be a child of a newly created node. The embolden() function showed that it is
possible to create new nodes and add them to a document. You can add arbitrary content to a document by
creating the necessary Element nodes and Text nodes with document.createElement() and
document.createTextNode() and by adding them appropriately to the document. This is demonstrated in
Example 17-7, which defines a function named debug(). This function provides a convenient way to insert
debugging messages into a program, and it serves as a useful alternative to using the built-in alert()
A sample use of this debug() function is illustrated in Figure 17-4.

Figure 17-4. Output of the debug() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The first time debug() is called, it uses the DOM API to create a <div> element and insert it at the end of
document. The debugging messages passed to debug() on this first call and all subsequent calls are then
inserted into this <div> element. Each debugging message is displayed by creating a Text node within a
element and inserting that <p> element at the end of the <div> element.

Example 17-7 also demonstrates a convenient but nonstandard way to add new content to a document. The
<div> element that contains the debugging messages displays a large, centered title. This title could be
and added to the document in the way that other content is, but in this example we instead use the innerHTML
property of the <div> element. Setting this property of any element to a string of HTML text causes that HTML to
be parsed and inserted as the content of the element. Although this property is not part of the DOM API, it is a
useful shortcut that is supported by Internet Explorer 4 and later and Netscape 6. Although it is not standard, it is
in common use and is included in this example for completeness.[7]

[7] The innerHTML property is particularly useful when you want to insert large or complex chunks of HTML text into a document. For simple
fragments of HTML, using DOM methods is more efficient because no HTML parser is required. Note that appending bits of text to the
innerHTML property with the += operator is usually not efficient.

Example 17-7. Adding debugging output to a document

/**

 * This debug function displays plain-text debugging messages in a

 * special box at the end of a document. It is a useful alternative

 * to using alert() to display debugging messages.

 **/

function debug(msg) {

 // If we haven't already created a box within which to display

 // our debugging messages, then do so now. Note that to avoid

 // using another global variable, we store the box node as

 // a proprty of this function.

 if (!debug.box) {

 // Create a new <div> element

 debug.box = document.createElement("div");

 // Specify what it looks like using CSS style attributes

 debug.box.setAttribute("style",

 "background-color: white; " +

 "font-family: monospace; " +

 "border: solid black 3px; " +

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 "border: solid black 3px; " +

 "padding: 10px;");

 // Append our new <div> element to the end of the document

 document.body.appendChild(debug.box);

 // Now add a title to our <div>. Note that the innerHTML property is

 // used to parse a fragment of HTML and insert it into the document.

 // innerHTML is not part of the W3C DOM standard, but it is supported

 // by Netscape 6 and Internet Explorer 4 and later. We can avoid

 // the use of innerHTML by explicitly creating the <h1> element,

 // setting its style attribute, adding a Text node to it, and

 // inserting it into the document, but this is a nice shortcut.

 debug.box.innerHTML = "<h1 style='text-align:center'>Debugging Output</h1>";

 }

 // When we get here, debug.box refers to a <div> element into which

 // we can insert our debugging message.

 // First create a <p> node to hold the message.

 var p = document.createElement("p");

 // Now create a text node containing the message, and add it to the <p>

 p.appendChild(document.createTextNode(msg));

 // And append the <p> node to the <div> that holds the debugging output

 debug.box.appendChild(p);

}

The debug() method listed in Example 17-7 can be used in HTML documents like the following, which is the
document that was used to generate Figure 17-4:

<script src="Debug.js"></script> <!-- Include the debug() function -->

<script>var numtimes=0;</script> <!-- Define a global variable -->

<!-- Now use the debug() function in an event handler -->

<button onclick="debug('clicked: ' + numtimes++);">press me</button>

17.2.5 Working with Document Fragments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The core DOM API defines the DocumentFragment object as a convenient way of working with groups of
Document nodes. A DocumentFragment is a special type of node that does not appear in a document itself but
serves as a temporary container for a sequential collection of nodes and allows those nodes to be manipulated as
a single object. When a DocumentFragment is inserted into a document (using any of the appendChild()
insertBefore(), or replaceChild() methods of the Node object), it is not the DocumentFragment itself
that is inserted, but each of its children.

As an example, you can use a DocumentFragment to rewrite the reverse() method of Example 17-3

function reverse(n) { // Reverses the order of the children of Node n

 var f = document.createDocumentFragment(); // Get an empty DocumentFragment

 while(n.lastChild) // Loop backward through the children,

 f.appendChild(n.lastChild); // moving each one to the DocumentFragment

 n.appendChild(f); // Then move them back (in their new order)

}

Once you have created a DocumentFragment, you can use it with code like this:

document.getElementsByTagName("p")[0].appendChild(fragment);

Note that when you insert a DocumentFragment into a document, the child nodes of the fragment are moved from
the fragment into the document. After the insertion, the fragment is empty and cannot be reused unless you first
add new children to it. We'll see the DocumentFragment object again later in this chapter, when we examine the
DOM Range API.

17.2.6 Example: A Dynamically Created Table of Contents

The previous sections showed how you can use the core DOM API to traverse, modify, and add content to a
document. Example 17-8, at the end of this section, puts all these pieces together into a single longer example.
The example defines a single method, maketoc(), which expects a Document node as its single argument.
maketoc() traverses the document, creates a table of contents (TOC) for it, and replaces the specified node
with the newly created TOC. The TOC is generated by looking for <h1>, <h2>, <h3>, <h4>, <h5>, and
tags within the document and assuming that these tags mark the beginnings of important sections within the
document. In addition to creating a TOC, the maketoc() function inserts named anchors (<a> elements with
the name attribute set instead of the href attribute) before each section heading so that the TOC can link directly
to each section. Finally, maketoc() also inserts links at the beginning of each section back to the TOC; when
the reader reaches a new section, she can either read that section or follow the link back to the TOC
a new section. Figure 17-5 shows what a TOC generated by the maketoc() function looks like.

Figure 17-5. A dynamically created table of contents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If you maintain and revise long documents that are broken into sections with <h1>, <h2>, and related tags, the
maketoc() function may be of interest to you. TOCs are quite useful in long documents, but when you
frequently revise a document it can be difficult to keep the TOC in sync with the document itself. The TOC for this
book was automatically created by postprocessing the content of the book. maketoc() allows you to do
something similar for your web documents. You can use the function in an HTML document like this

<script src="TOC.js"></script> <!-- Load the maketoc() function -->

<!-- Call the maketoc() function when the document is fully loaded -->

<body onload="maketoc(document.getElementById('placeholder'))">

<!-- This span element will be replaced by the generated TOC -->

Table Of Contents

// ... rest of document goes here ...

Another way to use the maketoc() function is to generate the TOC only when the reader requests it. You can
do this by including a link (or button) that replaces itself with the generated TOC when the user clicks on it:

Show Table Of Contents

The code for the maketoc() function follows. Example 17-8 is long, but it is well commented and
techniques that have already been demonstrated. It is worth studying as a practical example of the power of the
DOM API. Note that the maketoc() function relies on two helper functions. For modularity, these helper
functions are defined inside maketoc() itself. This prevents the addition of extra unnecessary functions to the
global namespace.

Example 17-8. Automatically generating a table of contents

/**

 * Create a table of contents for this document, and insert the TOC into

 * the document by replacing the node specified by the replace argument.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * the document by replacing the node specified by the replace argument.

 **/

function maketoc(replace) {

 // Create a <div> element that is the root of the TOC tree

 var toc = document.createElement("div");

 // Set a background color and font for the TOC. We'll learn about

 // the style property in the next chapter.

 toc.style.backgroundColor = "white";

 toc.style.fontFamily = "sans-serif";

 // Start the TOC with an anchor so we can link back to it

 var anchor = document.createElement("a"); // Create an <a> node

 anchor.setAttribute("name", "TOC"); // Give it a name

 toc.appendChild(anchor); // Insert it

 // Make the body of the anchor the title of the TOC

 anchor.appendChild(document.createTextNode("Table Of Contents"));

 // Create a <table> element that will hold the TOC and add it

 var table = document.createElement("table");

 toc.appendChild(table);

 // Create a <tbody> element that holds the rows of the TOC

 var tbody = document.createElement("tbody");

 table.appendChild(tbody);

 // Initialize an array that keeps track of section numbers

 var sectionNumbers = [0,0,0,0,0,0];

 // Recursively traverse the body of the document, looking for sections

 // sections marked with <h1>, <h2>, ... tags, and use them to create

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // sections marked with <h1>, <h2>, ... tags, and use them to create

 // the TOC by adding rows to the table

 addSections(document.body, tbody, sectionNumbers);

 // Finally, insert the TOC into the document by replacing the node

 // specified by the replace argument with the TOC subtree

 replace.parentNode.replaceChild(toc, replace);

 // This method recursively traverses the tree rooted at Node n, looking

 // looking for <h1> through <h6> tags, and uses the content of these tags

 // to build the table of contents by adding rows to the HTML table specified

 // by the toc argument. It uses the sectionNumbers array to keep track of

 // the current section number.

 // This function is defined inside of maketoc() so that it is not

 // visible from the outside. maketoc() is the only function exported

 // by this JavaScript module.

 function addSections(n, toc, sectionNumbers) {

 // Loop through all the children of n

 for(var m = n.firstChild; m != null; m = m.nextSibling) {

 // Check whether m is a heading element. It would be nice if we

 // could just use (m instanceof HTMLHeadingElement), but this is

 // not required by the specification and it does not work in IE.

 // Therefore, we must check the tagname to see if it is H1-H6.

 if ((m.nodeType == 1) && /* Node.ELEMENT_NODE */

 (m.tagName.length == 2) && (m.tagName.charAt(0) == "H")) {

 // Figure out what level heading it is

 var level = parseInt(m.tagName.charAt(1));

 if (!isNaN(level) && (level >= 1) && (level <= 6)) {

 // Increment the section number for this heading level

 sectionNumbers[level-1]++;

 // And reset all lower heading-level numbers to zero

 for(var i = level; i < 6; i++) sectionNumbers[i] = 0;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Now combine section numbers for all heading levels

 // to produce a section number like "2.3.1"

 var sectionNumber = "";

 for(var i = 0; i < level; i++) {

 sectionNumber += sectionNumbers[i];

 if (i < level-1) sectionNumber += ".";

 }

 // Create an anchor to mark the beginning of this section

 // This will be the target of a link we add to the TOC

 var anchor = document.createElement("a");

 anchor.setAttribute("name", "SECT"+sectionNumber);

 // Create a link back to the TOC and make it a

 // child of the anchor

 var backlink = document.createElement("a");

 backlink.setAttribute("href", "#TOC");

 backlink.appendChild(document.createTextNode("Contents"));

 anchor.appendChild(backlink);

 // Insert the anchor into the document right before the

 // section header

 n.insertBefore(anchor, m);

 // Now create a link to this section. It will be added

 // to the TOC below.

 var link = document.createElement("a");

 link.setAttribute("href", "#SECT" + sectionNumber);

 // Get the heading text using a function defined below

 var sectionTitle = getTextContent(m);

 // Use the heading text as the content of the link

 link.appendChild(document.createTextNode(sectionTitle));

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 link.appendChild(document.createTextNode(sectionTitle));

 // Create a new row for the TOC

 var row = document.createElement("tr");

 // Create two columns for the row

 var col1 = document.createElement("td");

 var col2 = document.createElement("td");

 // Make the first column right-aligned and put the section

 // number in it

 col1.setAttribute("align", "right");

 col1.appendChild(document.createTextNode(sectionNumber));

 // Put a link to the section in the second column

 col2.appendChild(link);

 // Add the columns to the row, and the row to the table

 row.appendChild(col1);

 row.appendChild(col2);

 toc.appendChild(row);

 // Modify the section header element itself to add

 // the section number as part of the section title

 m.insertBefore(document.createTextNode(sectionNumber+": "),

 m.firstChild);

 }

 }

 else { // Otherwise, this is not a heading element, so recurse

 addSections(m, toc, sectionNumbers);

 }

 }

 }

 // This utility function traverses Node n, returning the content of

 // all Text nodes found and discarding any HTML tags. This is also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // all Text nodes found and discarding any HTML tags. This is also

 // defined as a nested function, so it is private to this module.

 function getTextContent(n) {

 var s = '';

 var children = n.childNodes;

 for(var i = 0; i < children.length; i++) {

 var child = children[i];

 if (child.nodeType == 3 /*Node.TEXT_NODE*/) s += child.data;

 else s += getTextContent(child);

 }

 return s;

 }

}

17.2.7 Working with XML Documents

Web browsers display HTML documents, but XML documents are becoming more and more important as
sources of data. Since the DOM allows us to traverse and manipulate both HTML and XML documents, we can
use DOM methods to load an XML document, extract information from it, and dynamically create an HTML
version of that information for display in a web browser. Example 17-9 shows how this can be done in
6.1 and Internet Explorer 6. It is an HTML file that consists mostly of JavaScript code. The file expects to be
loaded through a URL that uses the URL query string to specify the relative URL of the data file to load. For
example, you might invoke this example file with a URL like this:

file://C:/javascript/DisplayEmployeeData.html?data.xml

DisplayEmployeeData.html is the name of the example file, and data.xml is the name of the XML file it uses. The
XML file must contain data formatted like this:

<employees>

 <employee name="J. Doe"><job>Programmer</job><salary>32768</salary></employee>

 <employee name="A. Baker"><job>Sales</job><salary>70000</salary></employee>

 <employee name="Big Cheese"><job>CEO</job><salary>1000000</salary></employee>

</employees>

The example contains two JavaScript functions. The first, loadXML(), is a generic function for loading any XML
file. It contains standard DOM Level 2 code to load the XML document and also code that uses a proprietary
Microsoft API to accomplish the same thing. The only really new thing in this example is the creation of a new
Document object with the DOMImplementation.createDocument() method and the call to the
method of that Document object. An important thing to notice here is that documents do not load instantaneously,
so the call to loadXML() returns before the document is loaded. For this reason, we pass loadXML()
reference to another function that it should call when the document has finished loading.

The other function in the example is makeTable(). This is the function that we pass to loadXML()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The other function in the example is makeTable(). This is the function that we pass to loadXML()
XML file finishes loading, it passes the Document object representing the XML file and the URL of the file to
makeTable(). makeTable() uses DOM methods we've seen before to extract information from the XML
document and insert it into a table in the HTML document displayed by the browser. This function also
the use of some table-related convenience methods defined by HTMLTableElement, HTMLTableRowElement,
and related interfaces. See the DOM reference section for complete details about these table-specific interfaces
and their methods. Although the DOM methods and properties used in this function are all straightforward, they
are used in dense combinations. Study the code carefully and you should have no difficulty understanding it.

Example 17-9. Loading and reading data from an XML document

<head><title>Employee Data</title>

<script>

// This function loads the XML document from the specified URL and, when

// it is fully loaded, passes that document and the URL to the specified

// handler function. This function works with any XML document.

function loadXML(url, handler) {

 // Use the standard DOM Level 2 technique, if it is supported

 if (document.implementation && document.implementation.createDocument)

 // Create a new Document object

 var xmldoc = document.implementation.createDocument("", "", null);

 // Specify what should happen when it finishes loading

 xmldoc.onload = function() { handler(xmldoc, url); }

 // And tell it what URL to load

 xmldoc.load(url);

 }

 // Otherwise, use Microsoft's proprietary API for Internet Explorer

 else if (window.ActiveXObject) {

 var xmldoc = new ActiveXObject("Microsoft.XMLDOM"); // Create doc

 xmldoc.onreadystatechange = function() { // Specify onload

 if (xmldoc.readyState == 4) handler(xmldoc, url);

 }

 xmldoc.load(url); // Start loading!

 }

}

// This function builds an HTML table of employees from data it reads from

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// This function builds an HTML table of employees from data it reads from

// the XML document it is passed

function makeTable(xmldoc, url) {

 // Create a <table> object and insert it into the document

 var table = document.createElement("table");

 table.setAttribute("border", "1");

 document.body.appendChild(table);

 // Use convenience methods of HTMLTableElement and related interfaces

 // to define a table caption and a header that gives a name to each column

 var caption = "Employee Data from " + url;

 table.createCaption().appendChild(document.createTextNode(caption));

 var header = table.createTHead();

 var headerrow = header.insertRow(0);

 headerrow.insertCell(0).appendChild(document.createTextNode("Name"));

 headerrow.insertCell(1).appendChild(document.createTextNode("Job"));

 headerrow.insertCell(2).appendChild(document.createTextNode("Salary"));

 // Now find all <employee> elements in our xmldoc document

 var employees = xmldoc.getElementsByTagName("employee");

 // Loop through these <employee> elements

 for(var i = 0; i < employees.length; i++) {

 // For each employee, get name, job, and salary data using standard DOM

 // methods. The name comes from an attribute. The other values are

 // in Text nodes within <job> and <salary> tags.

 var e = employees[i];

 var name = e.getAttribute("name");

 var job = e.getElementsByTagName("job")[0].firstChild.data;

 var salary = e.getElementsByTagName("salary")[0].firstChild.data;

 // Now that we have the employee data, use methods of the table to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Now that we have the employee data, use methods of the table to

 // create a new row and then use the methods of the row to create

 // new cells containing the data as Text nodes

 var row = table.insertRow(i+1);

 row.insertCell(0).appendChild(document.createTextNode(name));

 row.insertCell(1).appendChild(document.createTextNode(job));

 row.insertCell(2).appendChild(document.createTextNode(salary));

 }

}

</script>

</head>

<!--

The body of the document contains no static text; everything is dynamically

generated by the makeTable() function. The onload event handler starts

things off by calling loadXML() to load the XML data file. Note the use of

location.search to encode the name of the XML file in the query string. Load

this HTML file with a URL like this: DisplayEmployeeData.html?data.xml.

-->

<body onload="loadXML(location.search.substring(1), makeTable)">

</body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.3 DOM Compatibility with Internet Explorer 4

Although IE 4 is not DOM-compliant, it has features that are similar to the core DOM APIs. These
features are not part of the DOM standard and are not compatible with Netscape, but they are compatible
with later versions of IE. The features are summarized here; consult the client-side reference section of
this book for more details.

17.3.1 Traversing a Document

The DOM standard specifies that all Node objects, which includes both the Document object and all
Element objects, have a childNodes[] array that contains the children of that node. IE 4 does not
support childNodes[], but it provides a very similar children[] array on its Document and
HTMLElement objects. Thus, it is easy to write a recursive function like the one shown in Example 17-1
traverse the complete set of HTML elements within an IE 4 document.

There is one substantial difference between IE 4's children[] array and the standard DOM
childNodes[] array, however. IE 4 does not have a Text node type and does not consider strings of
text to be children. Thus, a <p> tag that contains only plain text with no markup has an empty
children[] array in IE 4. As we'll see shortly, however, the textual content of a <p> tag is available
through the IE 4 innerText property.

17.3.2 Finding Document Elements

IE 4 does not support the getElementById() and getElementsByTagName() methods of the
Document object. Instead, the Document object and all document elements have an array property
named all[]. As the name suggests, this array represents all the elements in a document or all the
elements contained within another element. Note that all[] does not simply represent the children of
the document or the element -- it represents all descendants, no matter how deeply nested.

The all[] array can be used in several ways. If you index it with an integer n, it returns the n+1th
element of the document or the parent element. For example:

var e1 = document.all[0]; // The first element of the document

var e2 = e1.all[4]; // The fifth element of element 1

Elements are numbered in the order in which they appear in the document source. Note the one big
difference between the IE 4 API and the DOM standard: IE does not have a notion of Text nodes, so the
all[] array contains only document elements, not the text that appears within them.

It is usually much more useful to be able to refer to document elements by name rather than number. The
IE 4 equivalent to getElementbyId() is to index the all[] array with a string rather than a number.
When you do this, IE 4 returns the element whose id or name attribute has the specified value. If there is
more than one such element (which can happen, since it is common to have multiple form elements, such
as radioboxes, with the same name attribute), the result is an array of those elements. For example:

var specialParagraph = document.all["special"];

var radioboxes = form.all["shippingMethod"]; // May return an array

JavaScript also allows us to write these expressions by expressing the array index as a property name:

var specialParagraph = document.all.special;

var radioboxes = form.all.shippingMethod;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var radioboxes = form.all.shippingMethod;

Using the all[] array in this way provides the same basic functionality as getElementById() and
getElementsByName(). The main difference is that the all[] array combines the features of these
two methods, which can cause problems if you inadvertently use the same values for the id and name
attributes of unrelated elements.

The all[] array has an unusual quirk: a tags() method that can be used to obtain an array of
elements by tag name. For example:

var lists = document.all.tags("UL"); // Find all tags in the document

var items = lists[0].all.tags("LI"); // Find all tags in the first

This IE 4 syntax provides essentially the same functionality as the DOM Document and Element objects'
getElementsByTagName() method. Note that in IE 4, the tag name should be specified using all
capital letters.

17.3.3 Modifying Documents

Like the DOM standard, IE 4 exposes the attributes of HTML tags as properties of the corresponding
HTMLElement objects. Thus, it is possible to modify a document displayed in IE 4 by dynamically
changing its HTML attributes. If an attribute modification changes the size of any element, the document
"reflows" to accommodate its new size. The IE 4 HTMLElement object defines setAttribute()
getAttribute(), and removeAttribute() methods as well. These are similar to the methods of
the same name defined by the Element object in the standard DOM API.

The DOM standard defines an API that makes it possible to create new nodes, insert nodes into the
document tree, reparent nodes, and move nodes within the tree. IE 4 cannot do this. Instead, however, all
HTMLElement objects in IE 4 define an innerHTML property. Setting this property to a string of HTML
text allows you to replace the content of an element with whatever you want. Because this innerHTML
property is so powerful, it has been implemented by Netscape 6 (and the Mozilla browser from which it is
derived), even though it is not part of the DOM standard. innerHTML was demonstrated in Example 17-
7.

IE 4 also defines several related properties and methods. The outerHTML property replaces an
element's content and the entire element itself with a specified string of HTML text. The innerText
outerText properties are similar to innerHTML and outerHTML, except that they treat the string as
plain text and do not parse it as HTML. Finally, the insertAdjacentHTML() and
insertAdjacentText() methods leave the content of an element alone but insert new HTML or
plain-text content near (before or after, inside or outside) it. These properties and functions are not as
commonly used as innerHTML and have not been implemented by Netscape 6. For further details, see
"HTMLElement" in the client-side reference section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.4 DOM Compatibility with Netscape 4

Netscape 4 does not even come close to implementing the DOM standard. In particular,
Netscape 4 provides no way to access or set attributes on arbitrary elements of a document.
Netscape 4 supports the Level 0 DOM API, of course, so elements such as forms and links can
be accessed through the forms[] and links[] arrays, but there is no general way to traverse
the children of these elements or set arbitrary attributes on them. Furthermore, Netscape 4 does
not have the ability to "reflow" document content in response to changes in element size.

Despite these restrictions, Netscape 4 does provide an API that allows access to and
manipulation of the crucial "dynamic elements" used to implement DHTML effects. In the
Netscape 4 API, these elements are known as layers; they float above the rest of the document
and can be moved, resized, and modified independently of the other elements of the document.
Layers are typically implemented using CSS style sheets, and the Netscape 4 Layer API is
discussed in detail in Chapter 18.

What follows is simply an overview that explains how you can create, access, and modify the
content of individual layer elements within a document. Although Netscape 4 does not support
anything like the DOM standard, its Layer API allows you to achieve some of the same dynamic
effects that are possible with the standard API. Note that the Layer API was submitted to the W3C
for consideration as part of the DOM standard, but no part of this API was ever standardized.
Because Netscape 6 is based on a complete rewrite of Netscape 4, the Layer API has been
abandoned and is not supported in Netscape 6 (or in Mozilla).

Layers can be created in a document using the <layer> tag, a proprietary Netscape extension to
HTML. More commonly, however, you create a layer in a Netscape 4 document using standard
CSS positioning attributes (which will be explained in detail in Chapter 18). Any element made
dynamic with CSS style attributes is treated as a layer by Netscape 4 and can be manipulated
using the Layer API. (Note, though, that Netscape 4 does not allow all elements to be made
dynamic. To be safe, a <div> wrapper element is usually used around any element that is to be
dynamic.) JavaScript can also dynamically create layers using the Layer() constructor, which
you can read about in the client-side reference section of this book.

Once you've created dynamic elements, or layers, in your document, Netscape 4 allows you to
access them via a simple extension of the Level 0 DOM API. Just as you access form elements
through a forms[] array and image elements through an images[] array, so do you access
layers through a layers[] array of the Document object. If the first layer in a document has a
name attribute of "layer1", you can refer to that layer element with any of the following
expressions:

document.layers[0] // Index the array with a number

document.layers['layer1'] // Index the array with an element name

document.layer1 // Named layers become a document property

If a layer has no name attribute but has an id attribute, the value of this attribute is used as the
layer name instead.

Layers in your documents are represented by Layer objects that define a number of useful
properties and methods you can use to move, resize, show, hide, and set the stacking order of
the layer. These properties and methods are related to CSS style attributes and will be discussed
in Chapter 18. The most interesting thing about the Layer object is that it contains a Document
object of its own: the content of a layer is treated as an entirely separate document from the
document that contains the layer. This allows you to modify the content displayed by a layer by
dynamically rewriting the content of the layer using the document.write() and
document.close() methods. You can also dynamically load documents into a layer using

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.close() methods. You can also dynamically load documents into a layer using
Layer's load() method. Finally, note that layers may themselves contain layers, and you can
refer to such nested layers with expressions like this:

// The second layer nested within the layer named "mylayer"

document.mylayer.document.layers[1];

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

17.5 Convenience Methods: The Traversal and Range APIs

So far in this chapter, we've discussed the core DOM API, which provides basic methods for document traversal
and manipulation. The DOM standard also defines other optional API modules, the most important of which will
be discussed in the chapters that follow. Two of the optional modules are essentially convenience APIs built on
top of the core API. The Traversal API defines advanced techniques for traversing a document and filtering out
nodes that are not of interest. The Range API defines methods for manipulating contiguous ranges of document
content, even when that content does not begin or end at a node boundary. The Traversal and Range APIs are
briefly introduced in the sections that follow. See the DOM reference section for complete documentation. The
Range API is implemented by Netscape 6.1 (and partially implemented by Netscape 6), and the Traversal API is
expected to be fully supported by Mozilla 1.0, which means that a future release of Netscape will support it. At
the time of this writing, IE does not support either of these APIs.

17.5.1 The DOM Traversal API

At the beginning of this chapter, we saw techniques for traversing the document tree by recursively examining
each node in turn. This is an important technique, but it is often overkill; we do not typically want to examine
every node of a document. We instead might want to examine only the elements in a document, or to
traverse only the subtrees of <table> elements. The Traversal API provides advanced techniques for this kind
of selective document traversal. As noted previously, the Traversal API is optional and, at the time of this writing,
is not implemented in major sixth-generation browsers. You can test whether it is supported by a DOM-
compliant browser with the following:

document.implementation.hasFeature("Traversal", 2.0) // True if supported

17.5.1.1 NodeIterator and TreeWalker

The Traversal API consists of two key objects, each of which provides a different filtered view of a document.
The NodeIterator object provides a "flattened" sequential view of the nodes in a document and supports filtering.
You could define a NodeIterator that filters out all document content except tags and presents those
image elements to you as a list. The nextNode() and previousNode() methods of the Node-Iterator
object allow you to move forward and backward through the list. Note that NodeIterator allows you to
selected parts of a document without recursion; you can simply use a NodeIterator within a loop, calling
nextNode() repeatedly until you find the node or nodes in which you are interested, or until it returns
indicating that it has reached the end of the document.

The other key object in the Traversal API is TreeWalker. This object also provides a filtered view of a document
and allows you to traverse the filtered document by calling nextNode() and previousNode(), but it does
not flatten the document tree. TreeWalker retains the tree structure of the document (although this tree structure
may be dramatically modified by node filtering) and allows you to navigate the tree with the firstChild()
lastChild(), nextSibling(), previousSibling(), and parentNode() methods. You would
a TreeWalker instead of a NodeIterator when you want to traverse the filtered tree yourself, instead of simply
calling nextNode() to iterate through it, or when you want to perform a more sophisticated traversal, skipping,
for example, some subtrees.

The Document object defines createNodeIterator() and createTreeWalker() methods for creating
NodeIterator and TreeWalker objects. A practical way to check whether a browser supports the Traversal API
to test for the existence of these methods:

if (document.createNodeIterator && document.createTreeWalker) {

 /* Safe to use Traversal API */

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

Both createNodeIterator() and createTreeWalker() are passed the same four arguments and differ
only in the type of object they return. The first argument is the node at which the traversal is to begin. This
should be the Document object if you want to traverse or iterate through the entire document, or any other node
if you want to traverse only a subtree of the document. The second argument is a number that indicates the
types of nodes NodeIterator or TreeWalker should return. This argument is formed by taking the sum of one or
more of the SHOW_ constants defined by the NodeFilter object (discussed in the next section). The third
argument to both methods is an optional function used to specify a more complex filter than simply including or
rejecting nodes based on their type (again, see the next section). The final argument is a boolean value that
specifies whether entity reference nodes in the document should be expanded during the traversal. This option
can be useful when you're working with XML documents, but web programmers working with HTML documents
can ignore it and pass false.

17.5.1.2 Filtering

One of the most important features of NodeIterator and TreeWalker is their selectivity, their ability to filter out
nodes you don't care about. As described previously, you specify the nodes you are interested in with the
second and (optionally) third arguments to createNodeIterator() and createTreeWalker()
arguments specify two levels of filtering. The first level simply accepts or rejects nodes based on their type. The
NodeFilter object defines a numeric constant for each type of node, and you specify the types of nodes
interested in by adding together (or by using the | bitwise OR operator on) the appropriate constants.

For example, if you are interested in only the Element and Text nodes of a document, you can use the following
expression as the second argument:

NodeFilter.SHOW_ELEMENT + NodeFilter.SHOW_TEXT

If you are interested in only Element nodes, use:

NodeFilter.SHOW_ELEMENT

If you are interested in all nodes or do not want to reject any nodes simply on the basis of their types, use the
special constant:

NodeFilter.SHOW_ALL

And if you are interested in all types of nodes except for comments, use:

~NodeFilter.SHOW_COMMENT

(See Chapter 5 if you've forgotten the meaning of the ~ operator.) Note that this first level of filtering applies to
individual nodes but not to their children. If the second argument is NodeFilter.SHOW_TEXT, your
NodeIterator or TreeWalker does not return element nodes to you, but it does not discard them entirely; it still
traverses the subtree beneath the Element nodes to find the Text nodes you are interested in.

Any nodes that pass this type-based filtration may be put through a second level of filtering. This second filter is
implemented by a function you define and can therefore perform arbitrarily complex filtering. If you do not need
this kind of filtering, you can simply specify null as the value of the third argument to create-
NodeIterator() or createTreeWalker(). But if you do want this kind of filtering, you must pass a
function as the third argument.

The function should expect a single node argument, and it should evaluate the node and return a value that
indicates whether the node should be filtered out. There are three possible return values, defined by three
NodeFilter constants. If your filter function returns NodeFilter.FILTER_ACCEPT, the node is returned by
the NodeIterator or TreeWalker. If your function returns NodeFilter.FILTER_SKIP, the node is filtered out
and is not returned by the NodeIterator or TreeWalker. The children of the node are still traversed, however. If
you are working with a TreeWalker, your filter function may also return the value
NodeFilter.FILTER_REJECT, which specifies that the node should not be returned and that it should not
even be traversed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 17-10 demonstrates the creation and use of a NodeIterator and should clarify the previous discussion.
Note, however, that at the time of this writing none of the major web browsers support the Traversal API, so this
example is untested!

Example 17-10. Creating and using a NodeIterator

// Define a NodeFilter function to accept only elements

function imgfilter(n) {

 if (n.tagName == 'IMG') return NodeFilter.FILTER_ACCEPT;

 else return NodeFilter.FILTER_SKIP;

}

// Create a NodeIterator to find tags

var images = document.createNodeIterator(document, // Traverse entire document

 /* Look only at Element nodes */ NodeFilter.SHOW_ELEMENT,

 /* Filter out all but */ imgfilter,

 /* Unused in HTML documents */ false);

// Use the iterator to loop through all images and do something with them

var image;

while((image = images.nextNode()) != null) {

 image.style.visibility = "hidden"; // Process the image here

}

17.5.2 The DOM Range API

The DOM Range API consists of a single interface, Range. A Range object represents a contiguous range
document content, contained between a specified start position and a specified end position. Many applications
that display text and documents allow the user to select a portion of the document by dragging with the
Such a selected portion of a document is conceptually equivalent to a range.[9] When a node of a document tree
falls within a range, we often say that the node is "selected," even though the Range object may not have
anything to do with a selection action initiated by the end user. When the start and end positions of a
the same, we say that the range is "collapsed." In this case, the Range object represents a single position or
insertion point within a document.

[8] That is, a logically contiguous range. In bidirectional languages such as Arabic and Hebrew, a logically contiguous range of a document
may be visually discontiguous when displayed.

[9] Although web browsers typically allow the user to select document content, the current DOM Level 2 standard does not make the
contents of those ranges available to JavaScript, so there is no standard way to obtain a Range object that corresponds to a user's desired
selection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Range object provides methods for defining the start and end positions of a range, copying and deleting the
contents of a range, and inserting nodes at the start position of a range. Support for the Range API is optional.
At the time of this writing, it is supported by Netscape 6.1. IE 5 supports a proprietary API that is similar to,
not compatible with, the Range API. You can test for Range support with this code:

document.implementation.hasFeature("Range", "2.0"); // True if Range is supported

17.5.2.1 Start and end positions

The start and end positions of a range are each specified by two values. The first value is a document node,
typically a Document, Element, or Text object. The second value is a number that represents a position within
that node. When the node is a document or element, the number represents a position between the
the document or the element. An offset of 0, for example, represents the position immediately before the first
child of the node. An offset of 1 represents the position after the first child and before the second. When the
specified node is a Text node (or another text-based node type, such as Comment), the number represents
position between the characters of text. An offset of 0 specifies the position before the first character of text, an
offset of 1 specifies the position between the first and second characters, and so on. With start and end
positions specified in this way, a range represents all nodes and/or characters between the start and end
positions. The real power of the Range interface is that the start and end positions may fall within different nodes
of the document, and therefore a range may span multiple (and fractional) Element and Text nodes.

To demonstrate the action of the various range-manipulation methods, I'm going to adopt the notation used in
the DOM specification for illustrating the document content represented by a range. Document contents are
shown in the form of HTML source code, with the contents of a range in bold. For example, the following line
represents a range that begins at position 0 within the <body> node and continues to position 8 within the Text
node contained within the <h1> node:

<body><h1>Document Title</h1><body>
To create a Range object, call the createRange() method of the Document object:

var r = document.createRange();

Newly created ranges have both start and end points initialized to position 0 within the Document object. Before
you can do anything interesting with a range, you must set the start and end positions to specify the desired
document range. There are several ways you can do this. The most general way is to call the setStart(
and setEnd() methods to specify the start and end points. Each is passed a node and a position within the
node.

A higher-level technique for setting a start and/or end position is to call setStartBefore(),
setStartAfter(), setEndBefore(), or setEndAfter(). These methods each take a single
their argument. They set the start or end position of the Range to the position before or after the specified node
within the parent of that node.

Finally, if you want to define a Range that represents a single Node or subtree of a document, you can use the
selectNode() or selectNodeContent() method. Both methods take a single node argument.
selectNode() sets the start and end positions before and after the specified node within its parent, defining
a range that includes the node and all of its children. selectNodeContent() sets the start of the range to
the position before the first child of the node and sets the end of the range to the position after the last child of
the node. The resulting range contains all the children of the specified node, but not the node itself.

17.5.2.2 Manipulating ranges

Once you've defined a range, there are a number of interesting things you can do with it. To delete the
document content within a range, simply call the deleteContents() method of the Range object. When a
range includes partially selected Text nodes, the deletion operation is a little tricky. Consider the following range:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<p>This is <i>only</i> a test
After a call to deleteContents(), the affected portion of the document looks like this:

<p>This<i>ly</i> a test

Even though the <i> element was included (partially) in the Range, that element remains (with modified
content) in the document tree after the deletion.

If you want to remove the content of a range from a document but also want to save the extracted content (for
reinsertion as part of a paste operation, perhaps), you should use extractContents() instead of
deleteContents(). This method removes nodes from the document tree and inserts them into a
DocumentFragment (introduced earlier in this chapter), which it returns. When a range includes a partially
selected node, that node remains in the document tree and has its content modified as needed. A clone of the
node (see Node.cloneNode()) is made (and modified) to insert into the DocumentFragment. Consider the
previous example again. If extractContents() is called instead of deleteContents(), the effect on the
document is the same as shown previously, and the returned DocumentFragment contains:

is <i>on</i>

extractContents() works when you want to perform the equivalent of a cut operation on the document. If
instead you want to do a copy operation and extract content without deleting it from the document, use
cloneContents() instead of extractContents().[10]

[10] Implementing word processor-style cut, copy, and paste operations is actually more complex than this. Simple range operations on a
complex document tree do not always produce the desired cut-and-paste behavior in the linear view of the document.

In addition to specifying the boundaries of text to be deleted or cloned, the start position of a range can be used
to indicate an insertion point within a document. The insertNode() method of a range inserts the specified
node (and all of its children) into the document at the start position of the range. If the specified node is already
part of the document tree, it is moved from its current location and reinserted at the position specified by the
range. If the specified node is a DocumentFragment, all the children of the node are inserted instead of the node
itself.

Another useful method of the Range object is surroundContents(). This method reparents the
a range to the specified node and inserts that node into the document tree at the position of the range. For
example, by passing a newly created <i> node to surroundContents(), you could transform this

This is only a test
into:

This is <i>only</i> a test
Note that because opening and closing tags must be properly nested in HTML files, surroundContents()
cannot be used (and will throw an exception) for ranges that partially select any nodes other than Text nodes.
The range used earlier to illustrate the deleteContents() method could not be used with
surroundContents(), for example.

The Range object has various other features as well. You can compare the boundaries of two different ranges
with compareBoundaryPoints(), clone a range with cloneRange(), and extract a plain-text copy of
content of a range (not including any markup) with toString(). The start and end positions of a
accessible through the read-only properties startContainer, startOffset, endContainer, and
endOffset. The start and end points of all valid ranges share a common ancestor somewhere in the document
tree, even if it is the Document object at the root of the tree. You can find out what this common ancestor is
the commonAncestorContainer property of the range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 18. Cascading Style Sheets and Dynamic HTML
Cascading Style Sheets (CSS) is a standard for specifying the visual presentation[1] of HTML (or
XML) documents. In theory, you use HTML markup to specify the structure of your document,
resisting the temptation to use deprecated HTML tags such as to specify how the
document should look. Instead, you use CSS to define a style sheet that specifies how the
structured elements of your document should be displayed. For example, you can use CSS to
specify that the level-one headings defined by <h1> tags should be displayed in bold, sans-serif,
centered, uppercase, 24-point letters.

[1] And, in the CSS2 standard, also the aural presentation.

CSS is a technology intended for use by graphic designers or anyone concerned with the precise
visual display of HTML documents. It is of interest to client-side JavaScript programmers because
the document object model allows the styles that are applied to the individual elements of a
document to be scripted. Used together, CSS and JavaScript enable a variety of visual effects
loosely referred to as Dynamic HTML (DHTML).[2]

[2] Many advanced DHTML effects also involve the event-handling techniques we'll see in Chapter 19.

The ability to script CSS styles allows you to dynamically change colors, fonts, and so on. More
importantly, it allows you to set and change the position of elements and even to hide and show
elements. This means that you can use DHTML techniques to create animated transitions where
document content "slides in" from the right, for example, or an expanding and collapsing outline
list in which the user can control the amount of information that is displayed.

This chapter begins with an overview of CSS style sheets and the use of CSS styles to specify the
position and visibility of document elements. It then explains how CSS styles can be scripted
using the API defined by the DOM Level 2 standard. Finally, it demonstrates the nonstandard,
browser-specific APIs that can be used to achieve DHTML effects in Netscape 4 and Internet
Explorer 4.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.1 Styles and Style Sheets with CSS

Styles in CSS are specified as a semicolon-separated list of name/value attribute pairs, where each
and value are separated by colons. For example, the following style specifies bold, blue, underlined text:

font-weight: bold; color: blue; text-decoration: underline;

The CSS standard defines quite a few style attributes you can set. Table 18-1 lists all the attributes
except for those used only in audio style sheets. You are not expected to understand or be familiar with
all these attributes, their values, or their meanings. As you become familiar with CSS and use it in your
documents and scripts, however, you may find this table a convenient quick reference. For more
complete documentation on CSS, consult Cascading Style Sheets: The Definitive Guide, by Eric Meyer
(O'Reilly), or Dynamic HTML: The Definitive Guide, by Danny Goodman (O'Reilly). Or read the
specification itself -- you can find it at http://www.w3c.org/TR/REC-CSS2/.

The second column of Table 18-1 shows the allowed values for each style attribute. It uses the grammar
used by the CSS specification. Items in fixed-width font are keywords and should appear exactly as
shown. Items in italics specify a data type such as a string or a length. Note that the length type is a
number followed by a units specification such as px (for pixels). See a CSS reference for details on the
other types. Items that appear in italic fixed-width font represent the set of values allowed by
some other CSS attribute. In addition to the values shown in the table, each style attribute may have the
value "inherit", to specify that it should inherit the value from its parent.

Values separated by a | are alternatives; you must specify exactly one. Values separated by || are
options; you must specify at least one, but you may specify more than one, and they can appear in any
order. Square brackets [] are used for grouping values. An asterisk (*) specifies that the previous value
or group may appear zero or more times, a plus sign (+) specifies that the previous value or group may
appear one or more times, and a question mark (?) specifies that the previous item is optional and may
appear zero or one time. Numbers within curly braces specify a number of repetitions. For example, {2}
specifies that the previous item must be repeated twice, and {1,4} specifies that the previous item must
appear at least once and no more than four times. (This repetition syntax may seem familiar: it is the
same one used by JavaScript regular expressions, discussed in Chapter 10.)

Table 18-1. CSS style attributes and their values
Name Values

background [background-color ||background-image ||background-repeat ||
background-attachment ||background-position]

background-
attachment scroll | fixed
background-color color | transparent
background-image url(url) | none
background-
position

[[percentage | length]{1,2} | [[top | center | bottom] || [left | center |
right]]]

background-repeat repeat | repeat-x | repeat-y | no-repeat
border [border-width ||border-style || color]
border-collapse collapse | separate
border-color color{1,4} | transparent
border-spacing length length?

border-style [none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset]{1,4}

border-top border-
right border-
bottom border-left

[border-top-width ||border-top-style || color]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

border-top-color
border-right-
color border-
bottom-color
border-left-color

color

border-top-style
border-right-
style border-
bottom-style
border-left-style

none | hidden | dotted | dashed | solid | double | groove | ridge |
inset | outset

border-top-width
border-right-
width border-
bottom-width
border-left-width

thin | medium | thick | length

border-width [thin | medium | thick | length]{1,4}
bottom length | percentage | auto
caption-side top | bottom | left | right
clear none | left | right | both
clip [rect([length | auto]{4})] | auto
color color

content [string | url(url) | counter | attr(attribute-name) | open-quote | close-
quote | no-open-quote | no-close-quote]+

counter-increment [identifier integer?]+ | none
counter-reset [identifier integer?]+ | none

cursor
[[url(url) ,]* [auto | crosshair | default | pointer | move | e-resize
| ne-resize | nw-resize | n-resize | se-resize | sw-resize | s-
resize | w-resize | text | wait | help]]

direction ltr | rtl

display
inline | block | list-item | run-in | compact | marker | table |
inline-table | table-row-group | table-header-group | table-
footer-group | table-row | table-column-group | table-column
table-cell | table-caption | none

empty-cells show | hide
float left | right | none

font
[[font-style || font-variant || font-weight]? font-size [/ line-
height]? font-family] | caption | icon | menu | message-box |
small-caption | status-bar

font-family [[family-name | serif | sans-serif | monospace | cursive | fantasy
font-size xx-small | x-small | small | medium | large | x-large | xx-large |

smaller | larger | length | percentage
font-size-adjust number | none

font-stretch
normal | wider | narrower | ultra-condensed | extra-condensed |
condensed | semi-condensed | semi-expanded | expanded | extra-
expanded | ultra-expanded

font-style normal | italic | oblique
font-variant normal | small-caps
font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700

800 | 900
height length | percentage | auto
left length | percentage | auto

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

letter-spacing normal | length
line-height normal | number | length | percentage
list-style [list-style-type || list-style-position || list-style-image]
list-style-image url(url) | none
list-style-
position inside | outside

list-style-type

disc | circle | square | decimal | decimal-leading-zero | lower-
roman | upper-roman | lower-greek | lower-alpha | lower-latin |
upper-alpha | upper-latin | hebrew | armenian | georgian | cjk-
ideographic | hiragana | katakana | hiragana-iroha | katakana-
iroha | none

margin [length | percentage | auto]{1,4}
margin-topmargin-
right margin-
bottom margin-left

length | percentage | auto

marker-offset length | auto
marks [crop || cross] | none
max-height length | percentage | none
max-width length | percentage | none
min-height length | percentage
min-width length | percentage
orphans integer
outline [outline-color || outline-style || outline-width]
outline-color color | invert
outline-style none | hidden | dotted | dashed | solid | double | groove | ridge |

inset | outset
outline-width thin | medium | thick | length
overflow visible | hidden | scroll | auto
padding [length | percentage]{1,4}
padding-top
padding-right
padding-bottom
padding-left

length | percentage

page identifier | auto
page-break-after auto | always | avoid | left | right
page-break-before auto | always | avoid | left | right
page-break-inside avoid | auto
position static | relative | absolute | fixed
quotes [string string]+ | none
right length | percentage | auto
size length{1,2} | auto | portrait | landscape
table-layout auto | fixed
text-align left | right | center | justify | string
text-decoration none | [underline || overline || line-through || blink]
text-indent length | percentage
text-shadow none | [color || length length length? ,]* [color || length length length?]
text-transform capitalize | uppercase | lowercase | none
top length | percentage | auto
unicode-bidi normal | embed | bidi-override

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

normal | embed | bidi-override
vertical-align baseline | sub | super | top | text-top | middle | bottom | text-

bottom | percentage | length
visibility visible | hidden | collapse
white-space normal | pre | nowrap
widows integer
width length | percentage | auto
word-spacing normal | length
z-index auto | integer

The CSS standard allows certain style attributes that are commonly used together to be combined using
special shortcut attributes. For example, the font-family, font-size, font-style, and font-
weight attributes can all be set at once using a single font attribute:

font: bold italic 24pt helvetica;

In fact, some of the attributes listed in Table 18-1 are themselves shortcuts. The margin and padding
attributes are shortcuts for attributes that specify margins, padding, and borders for each of the individual
sides of an element. Thus, instead of using the margin attribute, you can use margin-left, margin-
right, margin-top, and margin-bottom, and similarly for padding.

18.1.1 Applying Style Rules to Document Elements

You can apply style attributes to the elements of a document in a number of ways. One way is to use
them in the style attribute of an HTML tag. For example, to set the margins of an individual paragraph,
you can use a tag like this:

<p style="margin-left: 1in; margin-right: 1in;">

One of the important goals of CSS is to separate document content and structure from document
presentation. Specifying styles with the style attribute of individual HTML tags does not accomplish this
(although it can be a useful technique for DHTML). To achieve the separation of structure from
presentation, we use style sheets, which group all the style information into a single place. A CSS style
sheet consists of a set of style rules. Each rule begins with a selector that specifies the document element
or elements to which it applies, followed by a set of style attributes and their values within curly braces.
The simplest kind of rule defines styles for one or more specific tag names. For example, the following
rule sets the margins and background color for the <body> tag:

body { margin-left: 30px; margin-right: 15px; background-color: #ffffff }

The following rule specifies that text within <h1> and <h2> headings should be centered:

h1, h2 { text-align: center; }

In the previous example, note the use of a comma to separate the tag names to which the styles are to
apply. If the comma is omitted, the selector specifies a contextual rule that applies only when one tag
nested within another. For example, the following rules specify that <blockquote> tags are displayed in
an italic font, but text inside an <i> tag inside a <blockquote> is displayed in plain, nonitalic text:

blockquote { font-style: italic; }

blockquote i { font-style: normal; }

Another kind of style sheet rule uses a different selector to specify a class of elements to which its styles
should be applied. The class of an element is defined by the class attribute of the HTML tag. For
example, the following rule specifies that any tag with the attribute class="attention" should be
displayed in bold:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

.attention { font-weight: bold; }

Class selectors can be combined with tag name selectors. The following rule specifies that when a <p>
tag has the class="attention" attribute, it should be displayed in red, in addition to being displayed in
a bold font (as specified by the previous rule):

p.attention { color: red; }

Finally, style sheets can contain rules that apply only to individual elements that have a specified id
attribute. The following rule specifies that the element with an id attribute equal to "p1" should not be
shown:

#p1 { visibility: hidden; }

We've seen the id attribute before: it is used with the DOM function getElementById() to return
individual elements of a document. As you might imagine, this kind of element-specific style sheet rule is
useful when we want to manipulate the style of an individual element. Given the previous rule, for
example, a script might switch the value of the visibility attribute from hidden to visible, causing
the element to dynamically appear.

18.1.2 Associating Style Sheets with Documents

You can incorporate a style sheet into an HTML document by placing it between <style> and
</style> tags within the <head> of the document, or you can store the style sheet in a file of its own
and reference it from the HTML document using a <link> tag. You can also combine these two
techniques by creating a document-specific style sheet between <style> tags that references or imports
a document-independent style sheet using the special @import "at-rule." Consult a CSS reference for
details on @import.

18.1.3 The Cascade

Recall that the C in CSS stands for "cascading." This term indicates that the style rules that apply to any
given element in a document can come from a cascade of different sources. Each web browser typically
has its own default styles for all HTML elements and may allow the user to override these defaults with a
user style sheet. The author of a document can define style sheets within <style> tags or in external
files that are linked in or imported into other style sheets. The author may also define inline styles for
individual elements with the HTML style attribute.

The CSS specification includes a complete set of rules for determining which rules from the cascade take
precedence over the other rules. Briefly, however, what you need to know is that the user style sheet
overrides the default browser style sheet, author style sheets override the user style sheet, and inline
styles override everything. The exception to this general rule is that user style attributes whose values
include the !important modifier override author styles. Within a style sheet, if more than one rule
applies to an element, styles defined by the most specific rule override conflicting styles defined by less
specific rules. Rules that specify an element id are the most specific. Rules that specify a class are
next. Rules that specify only tag names are the least specific, but rules that specify multiple nested tag
names are more specific than rules that specify only a single tag name.

18.1.4 Versions of CSS

At the time of this writing, there are two versions of the CSS standard. CSS1 was adopted in December,
1996 and defines attributes for specifying colors, fonts, margins, borders, and other basic styles.
Netscape 4 and Internet Explorer 4 both implement at least partial support for CSS1. The second edition
of the standard, CSS2, was adopted in May, 1998; it defines a number of more advanced features, most
notably support for absolute positioning of elements. The advanced features of CSS2 are supported only

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

notably support for absolute positioning of elements. The advanced features of CSS2 are supported only
in sixth-generation browsers. Fortunately, however, the crucial positioning features of CSS2 began the
standardization process as part of a separate CSS-Positioning (CSS-P) effort, and therefore some of
these DHTML-enabling features are available in fourth-generation browsers. Work continues on a third
edition of the CSS standard. You can find the CSS specifications and working drafts at
http://www.w3.org/Style/CSS/.

18.1.5 CSS Example

Example 18-1 is an HTML file that defines and uses a style sheet. It demonstrates the previously
described tag name, class, and ID-based style rules, and it also has an example of an inline style defined
with the style attribute. Remember that this example is meant only as an overview of CSS syntax and
capabilities. Full coverage of CSS is beyond the scope of this book.

Example 18-1. Defining and using Cascading Style Sheets

<head>

<style type="text/css">

/* Specify that headings display in blue italic text. */

h1, h2 { color: blue; font-style: italic }

/*

 * Any element of class="WARNING" displays in big bold text with large margins

 * and a yellow background with a fat red border.

 */

.WARNING {

 font-weight: bold;

 font-size: 150%;

 margin: 0 1in 0 1in; /* top right bottom left */

 background-color: yellow;

 border: solid red 8px;

 padding: 10px; /* 10 pixels on all 4 sides */

}

/*

 * Text within an h1 or h2 heading within an element with class="WARNING"

 * should be centered, in addition to appearing in blue italics.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 * should be centered, in addition to appearing in blue italics.

 */

.WARNING h1, .WARNING h2 { text-align: center }

/* The single element with id="P23" displays in centered uppercase. */

#P23 {

 text-align: center;

 text-transform: uppercase;

}

</style>

</head>

<body>

<h1>Cascading Style Sheets Demo</h1>

<div class="WARNING">

<h2>Warning</h2>

This is a warning!

Notice how it grabs your attention with its bold text and bright colors.

Also notice that the heading is centered and in blue italics.

</div>

<p id="P23">

This paragraph is centered

and appears in uppercase letters.

Here we explicitly use an inline style to override the uppercase letters.

</p>

</body>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.2 Element Positioning with CSS

For DHTML content developers, the most important feature of CSS is the ability to use ordinary CSS
attributes to specify the visibility, size, and precise position of individual elements of a document. In order to
do DHTML programming, it is important to understand how these style attributes work. They are summarized
in Table 18-2 and documented in more detail in the sections that follow.

Table 18-2. CSS positioning and visibility attributes
Attribute(s) Description
position Specifies the type of positioning applied to an element
top, left Specifies the position of the top and left edges of an element
bottom,
right Specifies the position of the bottom and right edges of an element

width,
height Specifies the size of an element

z-index Specifies the "stacking order" of an element relative to any overlapping elements; defines a
third dimension of element positioning

display Specifies how and whether an element is displayed
visibility Specifies whether an element is visible

clip Defines a "clipping region" for an element; only portions of the element within this region are
displayed

overflow Specifies what to do if an element is bigger than the space allotted for it

18.2.1 The Key to DHTML: The position Attribute

The CSS position attribute specifies the type of positioning applied to an element. The four possible values
for this attribute are:

static

This is the default value and specifies that the element is positioned according to the normal flow of
document content (for most Western languages, this is left to right and top to bottom.) Statically
positioned elements are not DHTML elements and cannot be positioned with the top, left,
attributes. To use DHTML positioning techniques with a document element, you must first set its
position attribute to one of the other three values.

absolute

This value allows you to specify the position of an element relative to its containing element. Absolutely
positioned elements are positioned independently of all other elements and are not part of the flow of
statically positioned elements. An absolutely positioned element is positioned either relative to the
<body> of the document or, if it is nested within another absolutely positioned element, relative to that
element. This is the most commonly used positioning type for DHTML.

fixed

This value allows you to specify an element's position with respect to the browser window. Elements
with fixed positioning do not scroll with the rest of the document and thus can be used to achieve
frame-like effects. Like absolutely positioned elements, fixed-position elements are independent of all
others and are not part of the document flow. Fixed positioning is a CSS2 feature and is not supported
by fourth-generation browsers. (It is supported in Netscape 6 and IE 5 for the Macintosh, but it is not
supported by IE 5 or IE 6 for Windows).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

relative

When the position attribute is set to relative, an element is laid out according to the normal flow,
and its position is then adjusted relative to its position in the normal flow. The space allocated for the
element in the normal document flow remains allocated for it, and the elements on either side of it do
not close up to fill in that space, nor are they "pushed away" from the new position of the element.
Relative positioning can be useful for some static graphic design purposes, but it is not commonly used
for DHTML effects.

18.2.2 Specifying the Position and Size of Elements

Once you have set the position attribute of an element to something other than static, you can specify
the position of that element with some combination of the left , top, right, and bottom attributes.
most common positioning technique is to specify the left and top attributes, which specify the distance
from the left edge of the containing element (usually the document itself) to the left edge of the element, and
the distance from the top edge of the container to the top edge of the element. For example, to place an
element 100 pixels from the left and 100 pixels from the top of the document, you can specify CSS styles in a
style attribute as follows:

<div style="position: absolute; left: 100px; top: 100px;">

The containing element relative to which a dynamic element is positioned is not necessarily the same as the
containing element within which the element is defined in the document source. Since dynamic elements are
not part of normal element flow, their positions are not specified relative to the static container element within
which they are defined. Most dynamic elements are positioned relative to the document (the <body>
itself. The exception is dynamic elements that are defined within other dynamic elements. In this case, the
nested dynamic element is positioned relative to its nearest dynamic ancestor.

Although it is most common to specify the position of the upper-left corner of an element with left and
you can also use right and bottom to specify the position of the bottom and right edges of an element
relative to the bottom and right edges of the containing element. For example, to position an element so that
its bottom-right corner is at the bottom-right of the document (assuming it is not nested within another
dynamic element), use the following styles:

position: absolute; right: 0px; bottom: 0px;

To position an element so that its top edge is 10 pixels from the top of the window and its right edge is 10
pixels from the right of the window, you can use these styles:

position: fixed; right: 10px; top: 10px;

Note that the right and bottom attributes are newer additions to the CSS standard and are not supported
by fourth-generation browsers, as top and left are.

In addition to the position of elements, CSS allows you to specify their size. This is most commonly done by
providing values for the width and height style attributes. For example, the following HTML creates an
absolutely positioned element with no content. Its width, height, and background-color attributes make
it appear as a small blue square:

<div style="position: absolute; left: 10px; right: 10px;

 width: 10px; height: 10px; background-color: blue">

</div>

Another way to specify the width of an element is to specify a value for both the left and right attributes.
Similarly, you can specify the height of an element by specifying both top and bottom. If you specify a value
for left, right, and width, however, the width attribute overrides the right attribute; if the height of an
element is over-constrained, height takes priority over bottom.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element is over-constrained, height takes priority over bottom.

Bear in mind that it is not necessary to specify the size of every dynamic element. Some elements, such as
images, have an intrinsic size. Furthermore, for dynamic elements that contain text or other flowed content, it
is often sufficient to specify the desired width of the element and allow the height to be determined
automatically by the layout of the element's content.

In the previous positioning examples, values for the position and size attributes were specified with the suffix
"px". This stands for pixels. The CSS standard allows measurements to be done in a number of other units,
including inches ("in"), centimeters ("cm"), points ("pt"), and ems ("em" -- a measure of the line height for the
current font). Pixel units are most commonly used with DHTML programming. Note that the CSS standard
requires a unit to be specified. Some browsers may assume pixels if you omit the unit specification, but you
should not rely on this behavior.

Instead of specifying absolute positions and sizes using the units shown above, CSS also allows you to
specify the position and size of an element as a percentage of the size of the containing element. For
example, the following HTML creates an empty element with a black border that is half as wide and half as
high as the containing element (or the browser window) and centered within that element:

<div style="position: absolute; left: 25%; top: 25%; width: 50%; height: 50%;

 border: 2px solid black">

</div>

18.2.2.1 Element size and position details

It is important to understand some details about how the left , right, width, top, bottom, and
attributes work. First, width and height specify the size of an element's content area only; they do not
include any additional space required for the element's padding, border, or margins. To determine the full
onscreen size of an element with a border, you must add the left and right padding and left and right border
widths to the element width, and you must add the top and bottom padding and top and bottom border widths
to the element's height.

Since width and height specify the element content area only, you might think that left and top
right and bottom) would be measured relative to the content area of the containing element. In fact, the
CSS standard specifies that these values are measured relative to the outside edge of the containing
element's padding (which is the same as the inside edge of the element's border).

Let's consider an example to make this clearer. Suppose you've created a dynamically positioned container
element that has 10 pixels of padding all the way around its content area and a 5 pixel border all the way
around the padding. Now suppose you dynamically position a child element inside this container. If you
the left attribute of the child to "0 px", you'll discover that the child is positioned with its left edge right up
against the inner edge of the container's border. With this setting, the child overlaps the container's padding,
which presumably was supposed to remain empty (since that is the purpose of padding). If you want to
position the child element in the upper left corner of the container's content area, you should set both the
left and top attributes to "10px". Figure 18-1 helps to clarify this.

Figure 18-1. Dynamically positioned container and child elements with some CSS attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Now that you understand that width and height specify the size of an element's content area only and that
the left, top, right, and bottom attributes are measured relative to the containing element's padding,
there is one more detail you must be aware of: Internet Explorer Versions 4 through 5.5 for Windows
IE 5 for the Mac) implement the width and height attributes incorrectly and include an element's border
and padding (but not its margins). For example, if you set the width of an element to 100 pixels and place a
10-pixel margin and a 5-pixel border on the left and right, the content area of the element ends up being only
70 pixels wide in these buggy versions of Internet Explorer.

In IE 6, the CSS position and size attributes work correctly when the browser is in standards mode and
incorrectly (but compatibly with earlier versions) when the browser is in compatibility mode. Standards mode,
and hence correct implementation of the CSS "box model," is triggered by the presence of a <!DOCTYPE>
tag at the start of the document, declaring that the document adheres to the HTML 4.0 (or later) standard or
some version of the XHTML standards. For example, any of the following three HTML document type
declarations cause IE 6 to display documents in standards mode:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Strict//EN">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

Netscape 6 and the Mozilla browser handle the width and height attributes correctly. But these browsers
also have standards and compatibility modes, just as IE does. The absence of a <!DOCTYPE> declaration
puts the Netscape browser in quirks mode, in which it mimics certain (relatively minor) nonstandard layout
behaviors of Netscape 4. The presence of <!DOCTYPE> causes the browser to break compatibility with
Netscape 4 and correctly implement the standards.

18.2.3 The Third Dimension: z-index

We've seen that the left, top, right, and bottom attributes can be used to specify the X and Y
coordinates of an element within the two-dimensional plane of the containing element. The z-index
defines a kind of third dimension: it allows you to specify the stacking order of elements and indicate which of
two or more overlapping elements is drawn on top of the others. The z-index attribute is an integer. The
default value is zero, but you may specify positive or negative values (although fourth-generation browsers
may not support negative z-index values). When two or more elements overlap, they are drawn in order
from lowest to highest z-index; the element with the highest z-index appears on top of all the others. If
overlapping elements have the same z-index, they are drawn in the order in which they appear in the
document, so the last overlapping element appears on top.

Note that z-index stacking applies only to sibling elements (i.e., elements that are children of the same
container). If two elements that are not siblings overlap, setting their individual z-index attributes does not
allow you to specify which one is on top. Instead, you must specify the z-index attribute for the two sibling
containers of the two overlapping elements.

Nonpositioned elements are always laid out in a way that prevents overlaps, so the z-index attribute does
not apply to them. Nevertheless, they have a default z-index of zero, which means that positioned elements
with a positive z-index appear on top of the normal document flow, and positioned elements with a negative
z-index appear beneath the normal document flow.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

z-index appear beneath the normal document flow.

Note, finally, that some browsers do not honor the z-index attribute when it is applied to <iframe>
and you may find that inline frames float on top of other elements, regardless of the specified stacking order.
You may have the same problem with other "windowed" elements such as <select> drop-down menus.
Fourth-generation browsers may display all form-control elements on top of absolutely positioned elements,
regardless of z-index settings.

18.2.4 Element Display and Visibility

There are two CSS attributes you can use to affect the visibility of a document element: visibility
display. The visibility attribute is simple: when the attribute is set to the value hidden, the element is
not shown; when it is set to the value visible, the element is shown. The display attribute is more
general and is used to specify the type of display an item receives. It specifies whether an element is a block
element, an inline element, a list item, and so on. When display is set to none, however, the affected
element is not displayed, or even laid out, at all.

The difference between the visibility and display style attributes has to do with their effect on
elements that are not dynamically positioned. For an element that appears in the normal layout flow (with the
position attribute set to static or relative), setting visibility to none makes the element invisible
but reserves space for it in the document layout. Such an element can be repeatedly hidden and shown
without changing the document layout. If an element's display attribute is set to none, however, no space is
allocated for it in the document layout; elements on either side of it close up as if it were not there.
(visibility and display have equivalent effects when used with absolute- or fixed-position elements,
since these elements are never part of the document layout anyway.) You'll typically use the visibility
attribute when you are working with dynamically positioned elements. The display attribute is useful when
creating things like expanding and collapsing outlines.

Note that it doesn't make much sense to use visibility or display to make an element invisible unless
you are going to use JavaScript to dynamically set these attributes and make the element visible at some
point![3] You'll see how you can do this later in the chapter.

[3] There is an exception: if you are creating a document that depends on CSS, you can warn users of browsers that do not support
CSS with code like this:

18.2.5 Partial Visibility: overflow and clip

The visibility attribute allows you to completely hide a document element. The overflow and
attributes allow you to display only part of an element. The overflow attribute specifies what happens when
the content of an element exceeds the size specified (with the width and height style attributes, for
example) for the element. The allowed values and their meanings for this attribute are as follows:

visible

Content may overflow and be drawn outside of the element's box if necessary. This is the default.

hidden

Content that overflows is clipped and hidden so that no content is ever drawn outside the region
defined by the size and positioning attributes.

scroll

The element's box has permanent horizontal and vertical scrollbars. If the content exceeds the size of
the box, the scrollbars allow the user to scroll to view the extra content. This value is honored only
when the document is displayed on a computer screen; when the document is printed on paper, for
example, scrollbars obviously do not make sense.

auto

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

auto

Scrollbars are displayed only when content exceeds the element's size, rather than being permanently
displayed.

While the overflow property allows you to specify what happens when an element's content is bigger than
the element's box, the clip property allows you to specify exactly which portion of an element should be
displayed, whether or not the element overflows. This attribute is especially useful for scripted DHTML effects
in which an element is progressively displayed or uncovered.

The value of the clip property specifies the clipping region for the element. In CSS2 clipping regions are
rectangular, but the syntax of the clip attribute leaves open the possibility that future versions of the
standard will support clipping shapes other than rectangles. The syntax of the clip attribute is:

rect(top right bottom left)

The top, right, bottom, and left values specify the boundaries of the clipping rectangle relative to the
upper-left corner of the element's box.[4] For example, to display only a 100 x 100-pixel portion of an element,
you can give that element this style attribute:

[4] As the CSS2 specification was originally written, these four values specified the offset of the edges of the clipping region from each
of the corresponding edges of the element's box. All major browser implementations got it wrong, however, and interpreted the right
and bottom values as offsets from the left and top edges. Because the implementations consistently disagree with the specification,
the specification is being modified to match the implementations.

style="clip: rect(0px 100px 100px 0px);"

Note that the four values within the parentheses are length values and must include a unit specification, such
as "px" for pixels. Percentages are not allowed. Values may be negative to specify that the clipping region
extends beyond the box specified for the element. You may also use the keyword auto for any of the four
values to specify that that edge of the clipping region is the same as the corresponding edge of the element's
box. For example, you can display just the leftmost 100 pixels of an element with this style attribute:

style="clip: rect(auto 100px auto auto);"

Note that there are no commas between the values, and the edges of the clipping region are specified in
clockwise order from the top edge.

18.2.6 CSS Positioning Example

Example 18-2 is a nontrivial example using CSS style sheets and CSS positioning attributes. When
HTML document is displayed in a CSS-compliant browser, it creates the visual effect of "subwindows" within
the browser window. Figure 18-2 shows the effect created by the code in Example 18-2. Although the listing
contains no JavaScript code, it is a useful demonstration of the powerful effects that can be achieved with
CSS in general and the CSS positioning attributes in particular.

Figure 18-2. Windows created with CSS

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 18-2. Displaying windows with CSS

<head>

<style type="text/css">

/**

 * This is a CSS style sheet that defines three style rules that we use

 * in the body of the document to create a "window" visual effect.

 * The rules use positioning attributes to set the overall size of the window

 * and the position of its components. Changing the size of the window

 * requires careful changes to positioning attributes in all three rules.

 **/

div.window { /* Specifies size and border of the window */

 position: absolute; /* The position is specified elsewhere */

 width: 300px; height: 200px; /* Window size, not including borders */

 border: outset gray 3px; /* Note 3D "outset" border effect */

}

div.titlebar { /* Specifies position, size, and style of the titlebar */

 position: absolute; /* It's a positioned element */

 top: 0px; height: 18px; /* Titlebar is 18px + padding and borders */

 width: 290px; /* 290 + 5px padding on left and right = 300 */

 background-color: ActiveCaption; /* Use system titlebar color */

 border-bottom: groove black 2px; /* Titlebar has border on bottom only */

 padding: 3px 5px 2px 5px; /* Values clockwise: top, right, bottom, left */

 font: caption; /* Use system font for titlebar */

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 font: caption; /* Use system font for titlebar */

}

div.content { /* Specifies size, position and scrolling for window content */

 position: absolute; /* It's a positioned element */

 top: 25px; /* 18px title+2px border+3px+2px padding */

 height: 165px; /* 200px total - 25px titlebar - 10px padding */

 width: 290px; /* 300px width - 10px of padding */

 padding: 5px; /* Allow space on all four sides */

 overflow: auto; /* Give us scrollbars if we need them */

 background-color: #ffffff; /* White background by default */

}

</style>

</head>

<body>

<!-- Here is how we define a window: a "window" div with a titlebar and -->

<!-- content div nested between them. Note how position is specified with -->

<!-- a style attribute that augments the styles from the style sheet. -->

<div class="window" style="left: 10px; top: 10px; z-index: 10;">

<div class="titlebar">Test Window</div>

<div class="content">

1
2
3
4
5
6
7
8
9
0
 <!-- Lots of lines to -->

1
2
3
4
5
6
7
8
9
0
 <!-- demonstrate scrolling -->

</div>

</div>

<!-- Here's another window with different position, color, and font weight -->

<div class="window" style="left: 170px; top: 140px; z-index: 20;">

<div class="titlebar">Another Window</div>

<div class="content" style="background-color:#d0d0d0; font-weight:bold;">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<div class="content" style="background-color:#d0d0d0; font-weight:bold;">

This is another window. Its <tt>z-index</tt> puts it on top of the other one.

</div>

</div>

</body>

The major shortcoming of this example is that the style sheet specifies a fixed size for all windows. Because
the titlebar and content portions of the window must be precisely positioned within the overall window,
changing the size of a window requires changing the value of various positioning attributes in all three rules
defined by the style sheet. This is difficult to do in a static HTML document, but it would not be so difficult if we
could use a script to set all of the necessary attributes. We'll explore this topic in the next section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.3 Scripting Styles

The crux of DHTML is the ability to use JavaScript to dynamically change the style attributes applied to
elements within a document. The DOM Level 2 standard defines an API that makes this quite easy to do. In
Chapter 17, we saw how to use the DOM API to obtain references to document elements either by tag name or ID
or by recursively traversing the entire document. Once you've obtained a reference to the element whose styles
you want to manipulate, you use the element's style property to obtain a CSS2Properties object for that
document element. This JavaScript object has JavaScript properties corresponding to each of the CSS1 and CSS2
style attributes. Setting these properties has the same effect as setting the corresponding styles in a
attribute on the element. Reading these properties returns the CSS attribute value, if any, that was set in
style attribute of the element. It is important to understand that the CSS2Properties object you obtain
style property of an element specifies only the inline styles of the element. You cannot use the properties
CSS2Properties object to obtain information about the style-sheet styles that apply to the element. By setting
properties on this object, you are defining inline styles that effectively override style-sheet styles.

Consider the following script, for example. It finds all elements in the document and loops through them
looking for ones that appear (based on their size) to be banner advertisements. When it finds an ad, it uses the
style.visibility property to set the CSS visibility attribute to hidden, making the ad invisible:

var imgs = document.getElementsByTagName("img"); // Find all images

for(var i = 0; i < imgs.length; i++) { // Loop through them

 var img=imgs[i];

 if (img.width == 468 && img.height == 60) // If it's a 468x60 banner...

 img.style.visibility = "hidden"; // hide it!

}

I've transformed this simple script into a "bookmarklet" by converting it to a javascript: URL and bookmarking it
in my browser. I take subversive pleasure in using the bookmarklet to immediately hide distracting animated ads
that won't stop animating. Here's a version of the script suitable for bookmarking:

javascript:a=document.getElementsByTagName("img");for(n=0;n<a.length;n++){

i=a[n];if(i.width==468&&i.height==60)i.style.visibility="hidden";}void 0;

The bookmarklet is written with very compact code and is intended to be formatted on a single line. The
javascript: at the beginning of this bookmarklet identifies it as a URL whose body is a string of executable
content. The void 0 statement at the end causes the code to return an undefined value, which means that the
browser continues to display the current web page (minus its banner ads, of course!). Without the void
browser would overwrite the current web page with the return value of the last JavaScript statement executed.

18.3.1 Naming Conventions: CSS Attributes in JavaScript

Many CSS style attributes, such as font-family, contain hyphens in their names. In JavaScript, a hyphen is
interpreted as a minus sign, so it is not possible to write an expression like:

element.style.font-family = "sans-serif";

Therefore, the names of the properties of the CSS2Properties object are slightly different from the names of actual
CSS attributes. If a CSS attribute name contains one or more hyphens, the CSS2Properties property name is
formed by removing the hyphens and capitalizing the letter immediately following each hyphen. Thus, the
left-width attribute is accessed through the borderLeftWidth property, and you can access the
family attribute with code like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

family attribute with code like this:

element.style.fontFamily = "sans-serif";

There is one other naming difference between CSS attributes and the JavaScript properties of CSS2Properties.
The word "float" is a keyword in Java and other languages, and although it is not currently used in JavaScript, it is
reserved for possible future use. Therefore, the CSS2Properties object cannot have a property named
correspond to the CSS float attribute. The solution to this problem is to prefix the float attribute with the string
"css" to form the property name cssFloat. Thus, to set or query the value of the float attribute of an element,
use the cssFloat property of the CSS2Properties object.

18.3.2 Working with Style Properties

When working with the style properties of the CSS2Properties object, remember that all values must be specified
as strings. In a style sheet or style attribute, you can write:

position: absolute; font-family: sans-serif; background-color: #ffffff;

To accomplish the same thing for an element e with JavaScript, you have to quote all of the values:

e.style.position = "absolute";

e.style.fontFamily = "sans-serif";

e.style.backgroundColor = "#ffffff";

Note that the semicolons go outside the strings. These are just normal JavaScript semicolons; the semicolons you
use in CSS style sheets are not required as part of the string values you set with JavaScript.

Furthermore, remember that all the positioning properties require units. Thus, it is not correct to set the
property like this:

e.style.left = 300; // Incorrect: this is a number, not a string

e.style.left = "300"; // Incorrect: the units are missing

Units are required when setting style properties in JavaScript, just as they are when setting style attributes in style
sheets. The correct way to set the value of the left property of an element e to 300 pixels is:

e.style.left = "300px";

If you want to set the left property to a computed value, be sure to append the units at the end of the
computation:

e.style.left = (x0 + left_margin + left_border + left_padding) + "px";

As a side effect of appending the units, the addition of the unit string converts the computed value from a number
to a string.

You can also use the CSS2Properties object to query the values of the CSS attributes that were explicitly set in the
style attribute of an element or to read any inline style values previously set by JavaScript code. Once again,
however, you must remember that the values returned by these properties are strings, not numbers, so the
following code (which assumes that the element e has its margins specified with inline styles) does not do what you
might expect it to:

var totalMarginWidth = e.style.marginLeft + e.style.marginRight;

Instead, you should use code like this:

var totalMarginWidth = parseInt(e.style.marginLeft) + parseInt(e.style.marginRight);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var totalMarginWidth = parseInt(e.style.marginLeft) + parseInt(e.style.marginRight);

This expression simply discards the unit specifications returned at the ends of both strings. It assumes that both
the marginLeft and marginRight properties were specified using the same units. If you exclusively
units in your inline styles, you can usually get away with discarding the units like this.

Recall that some CSS attributes, such as margin, are shortcuts for other properties, such as margin-top
margin-right, margin-bottom, and margin-left. The CSS2Properties object has properties that
correspond to these shortcut attributes. For example, you might set the margin property like this:

e.style.margin = topMargin + "px " + rightMargin + "px " +

 bottomMargin + "px " + leftMargin + "px";

Arguably, it is easier to set the four margin properties individually:

e.style.marginTop = topMargin + "px";

e.style.marginRight = rightMargin + "px";

e.style.marginBottom = bottomMargin + "px";

e.style.marginLeft = leftMargin + "px";

You can also query the values of shortcut properties, but this is rarely worthwhile, because typically you must then
parse the returned value to break it up into its component parts. This is usually difficult to do, and it is much simpler
to query the component properties individually.

Finally, let me emphasize again that when you obtain a CSS2Properties object from the style property of an
HTMLElement, the properties of this object represent the values of inline style attributes for the element. In other
words, setting one of these properties is like setting a CSS attribute in the style attribute of the element: it affects
only that one element, and it takes precedence over conflicting style settings from all other sources in the CSS
cascade. This precise control over individual elements is exactly what we want when using JavaScript to create
DHTML effects.

When you read the values of these CSS2Properties properties, however, they return meaningful values only if
they've previously been set by your JavaScript code or if the HTML element with which you are working has an
inline style attribute that sets the desired property. For example, your document may include a style
sets the left margin for all paragraphs to 30 pixels, but if you read the leftMargin property of one of your
paragraph elements, you'll get the empty string unless that paragraph has a style attribute that overrides the
sheet setting. Thus, although the CSS2Properties object is useful for setting styles that override any other styles, it
does not provide a way to query the CSS cascade and determine the complete set of styles that apply to a given
element. Later in this chapter we will briefly consider the getComputedStyle() method, which does provide
this ability.

18.3.3 Example: Dynamic Bar Charts

When adding graphs and charts to your HTML documents, you typically implement them as static, inline
Because the CSS layout model is heavily based on rectangular boxes, however, it is possible to dynamically create
bar charts using JavaScript, HTML, and CSS. Example 18-3 shows how this can be done. This example defines a
function makeBarChart() that makes it simple to insert bar charts into your HTML documents.

The code for Example 18-3 uses the techniques shown in Chapter 17 to create new <div> elements and add
them to the document and the techniques discussed in this chapter to set style properties on the elements it
creates. No text or other content is involved; the bar chart is just a bunch of rectangles carefully sized and
positioned within another rectangle. CSS border and background-color attributes are used to make
rectangles visible.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The example includes some simple math to compute the height in pixels of each bar based on the values of the
data to be charted. The JavaScript code that sets the position and size of the chart and its bars also includes some
simple arithmetic to account for the presence of borders and padding. With the techniques shown in this example,
you should be able to modify Example 18-2 to include a JavaScript function that dynamically creates windows of
any specified size.

Figure 18-3 shows a bar chart created using the makeBarChart() function as follows:

<html>

<head>

<title>BarChart Demo</title>

<script src="BarChart.js"></script>

</head>

<body>

<h1>y = 2ⁿ</h1>

<script>makeBarChart([2,4,8,16,32,64,128,256,512], 600, 250, "red");</script>

<i>Note that each bar is twice as tall as the one before it,

the result of rapid exponential growth.</i>

</body>

</html>

Figure 18-3. A dynamically created bar chart

Example 18-3. Dynamically creating bar charts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

/**

 * BarChart.js:

 * This file defines makeBarChart(), a function that creates a bar chart to

 * display the numbers from the data[] array. The chart is a block element

 * inserted at the current end of the document. The overall size of the chart

 * is specified by the optional width and height arguments, which include the

 * space required for the chart borders and internal padding. The optional

 * barcolor argument specifies the color of the bars. The function returns the

 * chart element it creates, so the caller can further manipulate it by

 * setting a margin size, for example.

 *

 * Import this function into an HTML file with code like this:

 * <script src="BarChart.js"></script>

 * Use this function in an HTML file with code like this:

 * <script>makeBarChart([1,4,9,16,25], 300, 150, "yellow");</script>

 **/

function makeBarChart(data, width, height, barcolor) {

 // Provide default values for the optional arguments

 if (!width) width = 500;

 if (!height) height = 350;

 if (!barcolor) barcolor = "blue";

 // The width and height arguments specify the overall size of the

 // generated chart. We have to subtract the border and padding

 // sizes to get the size of the element we create.

 width -= 24; // Subtract 10px padding and 2px left and right border

 height -= 14; // Subtract 10px top padding and 2px top and bottom border

 // Now create an element to hold the chart. Note that we make the chart

 // relatively positioned so that it can have absolutely positioned children,

 // but it still appears in the normal element flow.

 var chart = document.createElement("DIV");

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var chart = document.createElement("DIV");

 chart.style.position = "relative"; // Set relative positioning

 chart.style.width = width + "px"; // Set the chart width

 chart.style.height = height + "px"; // Set the chart height

 chart.style.border = "solid black 2px"; // Give it a border

 chart.style.paddingLeft = "10px"; // Add padding on the left,

 chart.style.paddingRight = "10px"; // on the right,

 chart.style.paddingTop = "10px"; // and on the top,

 chart.style.paddingBottom = "0px"; // but not on the bottom

 chart.style.backgroundColor = "white"; // Make the chart background white

 // Compute the width of each bar

 var barwidth = Math.floor(width/data.length);

 // Find the largest number in data[]. Note the clever use of Function.apply().

 var maxdata = Math.max.apply(this, data);

 // The scaling factor for the chart: scale*data[i] gives the height of a bar

 var scale = height/maxdata;

 // Now loop through the data array and create a bar for each datum

 for(var i = 0; i < data.length; i++) {

 var bar = document.createElement("div"); // Create div for bar

 var barheight = data[i] * scale; // Compute height of bar

 bar.style.position = "absolute"; // Set bar position and size

 bar.style.left = (barwidth*i+1+10)+"px"; // Add bar border and chart pad

 bar.style.top = height-barheight+10+"px"; // Add chart padding

 bar.style.width = (barwidth-2) + "px"; // -2 for bar border

 bar.style.height = (barheight-1) + "px"; // -1 for bar top border

 bar.style.border = "solid black 1px"; // Bar border style

 bar.style.backgroundColor = barcolor; // Bar color

 bar.style.fontSize = "1px"; // IE bug workaround

 chart.appendChild(bar); // Add bar to chart

 }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 }

 // Now add the chart we've built to the document body

 document.body.appendChild(chart);

 // Finally, return the chart element so the caller can manipulate it

 return chart;

}

18.3.4 DHTML Animations

Some of the most powerful DHTML techniques you can achieve with JavaScript and CSS are animations. There is
nothing particularly special about DHTML animations; all you have to do is periodically change one or
properties of an element or elements. For example, to slide an image into place from the left, you increment the
image's style.left property repeatedly, until it reaches the desired position. Or you can repeatedly modify
style.clip property to "unveil" the image pixel by pixel.

Example 18-4 contains a simple HTML file that defines a div element to be animated and a short script that
changes the background color of the element every 500 milliseconds. Note that the color change is done simply by
assigning a value to a CSS style property. What makes it an animation is that the color is changed repeatedly,
using the setInterval() function of the Window object. (You'll need to use setInterval() or
setTimeout() for all DHTML animations; you may want to refresh your memory by reading about these
functions in the client-side reference section.) Finally, note the use of the modulo (remainder) operator
through the colors. Consult Chapter 5 if you've forgotten how that operator works.

Example 18-4. A simple color-changing animation

<!-- This div is the element we are animating -->

<div id="urgent"><h1>Red Alert!</h1>The Web server is under attack!</div>

<!-- This is the animation script for the element -->

<script>

var e = document.getElementById("urgent"); // Get Element object

var colors = ["white", "yellow", "orange", "red"] // Colors to cycle through

var nextColor = 0; // Position in the cycle

// Evaluate the following expression every 500 milliseconds

// to animate the background color of the div element

setInterval("e.style.backgroundColor=colors[nextColor++%colors.length];", 500);

</script>

Example 18-4 produces a very simple animation. In practice, CSS animations typically involve modifications to two

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 18-4 produces a very simple animation. In practice, CSS animations typically involve modifications to two
or more style properties (such as top, left, and clip) at the same time. Setting up complex animations using a
technique like that shown in Example 18-4 can get quite complicated. Furthermore, in order to avoid becoming
annoying, animations should typically run for a short while and then stop, but there is no way to stop the animation
produced by Example 18-4.

Example 18-5 shows a JavaScript file that defines a CSS animation function that makes it much easier to set up
animations, even complex ones. The animateCSS() function defined in this example is passed five arguments.
The first specifies the HTMLElement object to be animated. The second and third arguments specify the number of
frames in the animation and the length of time each frame should be displayed. The fourth argument is
JavaScript object that specifies the animation to be performed. And the fifth argument is an optional function that
should be invoked once when the animation is complete.

The fourth argument to animateCSS() is the crucial one. Each property of the JavaScript object must have the
same name as a CSS style property, and the value of each property must be a function that returns a legal value
for the named style. Every time a new frame of the animation is displayed, each of these functions is called to
generate a new value for each of the style properties. Each function is passed the frame number and the total
elapsed time and can use these arguments to help it return an appropriate value.

An example should make the use of animateCSS() much clearer. The following code moves an element up the
screen while gradually uncovering it by enlarging its clipping region:

// Animate the element with id "title" for 40 frames of 50 milliseconds each

animateCSS(document.getElementById("title"), 40, 50,

 { // Set top and clip style properties for each frame as follows:

 top: function(f,t) { return 300-f*5 + "px"; }

 clip: function(f,t) {return "rect(auto "+f*10+"px auto auto)";},

 });

The next code fragment uses animateCSS() to move a Button object in a circle. It uses the optional fifth
argument to animateCSS() to change the button text to "Done" when the animation is complete. Note that the
element being animated is passed as the argument to the function specified by the fifth argument:

// Move a button in a circle, then change the text it displays

animateCSS(document.forms[0].elements[0], 40, 50, // Button, 40 frames, 50ms

 { // This trigonometry defines a circle of radius 100 at (200,200):

 left: function(f,t){ return 200 + 100*Math.cos(f/8) + "px"},

 top: function(f,t){ return 200 + 100*Math.sin(f/8) + "px"}

 },

function(button) { button.value = "Done"; });

The code in Example 18-5 is fairly straightforward; all the real complexity is embedded in the properties of the
animation object that you pass to animateCSS(), as we'll see shortly. animateCSS() defines a nested
function called displayNextFrame() and does little more than use setInterval() to arrange for
displayNextFrame() to be called repeatedly. displayNextFrame() loops through the properties
animation object and invokes the various functions to compute the new values of the style properties.

Note that because displayNextFrame() is defined inside animateCSS(), it has access to the
and local variables of animateCSS(), even though displayNextFrame() is invoked after animateCSS()
has already returned! This works even if animateCSS() is called more than once to animate more than one
element at a time. (If you don't understand why this works, you may want to review Section 11.4.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 18-5. A framework for CSS-based animations

/**

 * AnimateCSS.js:

 * This file defines a function named animateCSS(), which serves as a framework

 * for creating CSS-based animations. The arguments to this function are:

 *

 * element: The HTML element to be animated.

 * numFrames: The total number of frames in the animation.

 * timePerFrame: The number of milliseconds to display each frame.

 * animation: An object that defines the animation; described below.

 * whendone: An optional function to call when the animation finishes.

 * If specified, this function is passed element as its argument.

 *

 * The animateCSS() function simply defines an animation framework. It is

 * the properties of the animation object that specify the animation to be

 * done. Each property should have the same name as a CSS style property. The

 * value of each property must be a function that returns values for that

 * style property. Each function is passed the frame number and the total

 * amount of elapsed time, and it can use these to compute the style value it

 * should return for that frame. For example, to animate an image so that it

 * slides in from the upper left, you might invoke animateCSS as follows:

 *

 * animateCSS(image, 25, 50, // Animate image for 25 frames of 50ms each

 * { // Set top and left attributes for each frame as follows:

 * top: function(frame,time) { return frame*8 + "px"; },

 * left: function(frame,time) { return frame*8 + "px"; }

 * });

 *

 **/

function animateCSS(element, numFrames, timePerFrame, animation, whendone)

 var frame = 0; // Store current frame number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var frame = 0; // Store current frame number

 var time = 0; // Store total elapsed time

 // Arrange to call displayNextFrame() every timePerFrame milliseconds.

 // This will display each of the frames of the animation.

 var intervalId = setInterval(displayNextFrame, timePerFrame);

 // The call to animateCSS() returns now, but the line above ensures that

 // the nested function defined below will be invoked once for each frame

 // of the animation. Because this function is defined inside

 // animateCSS(), it has access to the arguments and local variables of

 // animateCSS() even though it is invoked after that function has returned!

 function displayNextFrame() {

 if (frame >= numFrames) { // First, see if we're done

 clearInterval(intervalId); // If so, stop calling ourselves

 if (whendone) whendone(element); // Invoke whendone function

 return; // And we're finished

 }

 // Now loop through all properties defined in the animation object

 for(var cssprop in animation) {

 // For each property, call its animation function, passing the

 // frame number and the elapsed time. Use the return value of the

 // function as the new value of the corresponding style property

 // of the specified element. Use try/catch to ignore any

 // exceptions caused by bad return values.

 try {

 element.style[cssprop] = animation[cssprop](frame, time);

 } catch(e) {}

 }

 frame++; // Increment the frame number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 frame++; // Increment the frame number

 time += timePerFrame; // Increment the elapsed time

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.4 DHTML in Fourth-Generation Browsers

Internet Explorer 4 and Netscape 4 were the browsers that introduced DHTML technology to the Internet.
browsers include partial support for the CSS1 standard and support the CSS positioning attributes (which were
integrated into the CSS2 standard) that are critical to DHTML. Unfortunately, the DOM standard did not exist
when these fourth-generation browsers were being developed, so they do not conform to that standard.
Nevertheless, it is possible to achieve DHTML effects in both browsers.

18.4.1 DHTML in Internet Explorer 4

As we saw in Chapter 17, IE 4 does not support the document.getElementById() method, nor does it
support an API for dynamically creating new nodes and inserting them into a document. Instead, it provides the
document.all[] array as a way of locating arbitrary elements of the document and allows document
to be altered with the innerHTML property of document elements. IE 4 does not conform to the standards
here, but it provides adequate alternatives.

Although traversing and modifying documents is an important part of DHTML, the focus of this chapter is on
the dynamic use of CSS styles. The good news is that the DOM API described earlier for setting CSS
attributes through the style property was adopted from the IE 4 API. Thus, once you've used
document.all[] to locate the document element you want to modify, you can script the styles of that
element just as you would in a browser that fully supports the DOM API. (Remember, though, that IE 4 does
not fully support CSS, so you should not expect all style properties to be scriptable.)

The CSS2 standard specifies that the position attribute can be used to specify absolute or relative
positioning for any element in a document. IE 4 was implemented before CSS2 was complete, however, and it
supports absolute positioning for only a certain subset of elements. Therefore, when using absolute
in IE 4, you should wrap the content you want to position or animate in <div> or tags, which do honor
the CSS position attribute.

18.4.2 DHTML in Netscape 4

Creating DHTML effects with Netscape 4 is a more complicated affair. Netscape 4 does not support a full
object model, so it does not allow JavaScript programs to refer to arbitrary HTML elements. It cannot,
therefore, allow access to the inline styles of arbitrary elements. Instead, it defines a special Layer object.
Any element that is absolutely positioned (that is, any element that has its position style set to absolute
placed in a separate layer from the rest of the document. This layer can be independently positioned, hidden,
shown, lowered below or raised above other layers, and so on. The Layer API was proposed to the W3C for
standardization but was never standardized. For this reason, it has been dropped by the Mozilla project and is
not supported in Mozilla or in Netscape 6. Thus, the techniques described in this section are useful only in the
4.x series of browsers from Netscape.

[5] Layers were introduced in Chapter 17, when we discussed Netscape 4 compatibility with the core DOM API. Here we expand that
introduction and discuss how layers provide an alternative to the core DOM API and an alternative to the DOM API for accessing CSS
styles.

Each independently positioned layer in a document is represented by a Layer object, and, not surprisingly, the
layers[] array of the Document object contains the complete set of Layer objects in a document. (Layer
objects appear in this array in the order in which they appear in the document.) Additionally, any layer
given a name with the name or id attribute can be accessed by name. For example, if a layer specifies
id="L2", you can refer to it in Netscape as document.L2 or as document.layers["L2"]. Although
Netscape 4 does not provide a way to refer to arbitrary document elements, this layers[] array provides a
way to refer to the most important dynamic elements.

A layer is something like a separate window or frame. Although the Layer object is not the same as the Window
object, it does have a document property, just as windows and frames do. The document property of a Layer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

object, it does have a document property, just as windows and frames do. The document property of a Layer
object refers to a Document object: each layer has its own totally independent HTML document. Layers can
even be nested; we can output some HTML text into a nested layer with code like this:

document.layers[1].document.layers[0].document.write("Layers Are Fun!");

document.layers[1].document.layers[0].document.close();

Netscape 4 does not allow us to create or manipulate the nodes of the document tree, and it does not even
support the innerHTML property of Internet Explorer. However, the fact that layers contain independent
documents does provide a technique for dynamically modifying document content.

Although Netscape 4 defines a layer as an element with the CSS position style set, it does not define any
way to script the styles of a layer element directly. Instead, the Layer object defines properties and methods
that we can use to dynamically position layers.

The properties of the Layer object have names that are similar to important CSS style attributes, but these
layer properties are not exactly the same as style properties. For example, the left and top properties of the
Layer object specify the pixel position of the layer; setting these properties of a layer is like setting the
and top style properties of an element, except that the Layer properties expect numeric pixel values instead of
strings that include a numeric value and a unit specification. The visibility property of a layer specifies
whether the contents of the layer should be visible; it is a lot like the style property with the same name, except
that it expects a value of show or hide instead of the CSS standard visible or hidden. The Layer object
also supports a zIndex property that works just like the zIndex style property. Table 18-3 lists key
properties and the Layer property that is most closely equivalent to each. Note that these are the only style
properties that Netscape 4 allows to be scripted.

Table 18-3. Layer properties in Netscape 4
CSS property Equivalent Layer property Layer notes

left, top left, top
Specify pixels without
units. See also
moveTo()
moveBy()

zIndex zIndex
See also
moveAbove()
moveBelow(

visibility visibility

Layer returns
hide even
this property to the
standard visible
and hidden

clip
clip.bottom, clip.height, clip.left, clip.right,

clip.top, clip.width
Specify pixels without
units.

backgroundColor bgColor
backgroundImage background.src Set to a URL string.

As you can see from Table 18-3, the Layer object supports a couple of useful properties that are not related to
dynamic positioning. The background.src property specifies a background image for the layer, and the
bgColor property specifies a background color for the layer. These properties correspond to the
backgroundImage and backgroundColor style properties.

In addition to its properties, the Layer object offers a number of convenient methods. moveBy() and
moveTo() move a layer by a relative amount or to an absolute position. moveAbove() and moveBelow(
) set the zIndex of a layer relative to that of some other layer. See the client-side reference section of this
book for a complete list of Layer properties and methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because every layer contains an independent document, you can dynamically update the contents of a layer
with the open(), write(), and close() methods of the Document object, as we saw in Chapter 14
addition, the src property of a layer specifies the URL of the document that it displays. By setting this property,
you can force the browser to load an entirely new document for display in the layer. The load() method is
similar; it loads a new URL and changes the layer's width at the same time. Because layers often contain
dynamically generated content, you may find it convenient to use javascript: URLs with the src
and load() method.

We've seen that Netscape 4 automatically creates a Layer object for any element that has its position
property set to absolute. The Netscape 4 API also allows layers to be created in other, less standards-
compliant ways. For example, Netscape 4 defines an HTML <layer> tag that allows layers to be defined
directly in HTML. <layer> remains a proprietary Netscape 4 extension; it was not included in the HTML 4
standard and is not supported in Mozilla or Netscape 6. More importantly, though, Netscape 4 supports a
Layer() constructor that allows Layer objects to be dynamically created, as needed within a program. See
the client-side reference section of this book for details.

18.4.3 Example: A Cross-Platform DHTML Animation

Despite the differences between the DOM API, the IE 4 API, and the Netscape Layer API, it is still possible to
create DHTML effects that work in DOM-compliant browsers, in pre-DOM versions of IE, and in Netscape 4.
Example 18-6 shows one way it can be done. This script displays the word "Hello" and animates it in a straight
line from one point in the browser window to another.

Note the compatibility technique used in this example: we test for the existence of key functions, arrays, and
properties before using them. If the Document object has a property named getElementById, we assume
that we have a DOM-compliant browser with that property referring to the getElementById() method.
Similarly, if the Document object has a property named all, we assume that we're running in Internet Explorer
and use the document.all[] array to locate the element to be animated.

Example 18-6. A cross-browser DHTML animation script

<!-- This is the dynamic element we will animate. We wrap the h1 tag in a -->

<!-- div because IE 4 won't move the h1 without a div or a span container. -->

<div id="title" style="position:absolute"><h1>Hello</h1></div>

<!-- This is the JavaScript code that performs the animation -->

<script>

// These variables set the parameters for our animation:

var id = "title"; // Name of the element to animate

var numFrames = 30; // How many frames to display

var interval = 100; // How long to display each frame

var x0 = 100, y0 = 100; // The element's starting position

var x1 = 500, y1 = 500; // The element's ending position

var dx = (x1 - x0)/(numFrames-1); // Distance to horizontally move each frame

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var dx = (x1 - x0)/(numFrames-1); // Distance to horizontally move each frame

var dy = (y1 - y0)/(numFrames-1); // Distance to vertically move each frame

var frameNum = 0; // Frame we are at now

var element = null; // The element to be animated

// First, we find the element to be animated. Use a DOM-compliant technique

// if the browser supports it; otherwise, fall back on browser-specific code.

if (document.getElementById) { // If this is a DOM-compliant browser,

 element = document.getElementById(id); // use the DOM method

}

else if (document.all) { // Otherwise, if the IE API is supported,

 element = document.all[id]; // use the all[] array to find the element

}

else if (document.layers) { // Else, if the Netscape API is supported,

 element = document.layers[id]; // use the layers[] array to get the element

}

// If we found the element to animate using one of the previous techniques,

// start animating it by calling nextFrame() every interval milliseconds

if (element) {

 var intervalId = setInterval("nextFrame()", interval);

}

// This function is repeatedly called to display each frame of the animation.

// It moves the element using either the DOM API for setting CSS style

// properties or, if the browser does not support that API, the Netscape

// Layer API.

function nextFrame() {

 if (element.style) {

 // If the browser supports it, move the element by setting CSS

 // style properties. Note the inclusion of the units string.

 element.style.left = x0 + dx*frameNum + "px";

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 element.style.left = x0 + dx*frameNum + "px";

 element.style.top = y0 + dy*frameNum + "px";

 }

 else {

 // Otherwise, assume that element is a layer, and move it by

 // setting its properties. We could also use element.moveTo().

 element.left = x0 + dx*frameNum;

 element.top = y0 + dy*frameNum;

 }

 // Increment the frame number, and stop if we've reached the end

 if (++frameNum >= numFrames) clearInterval(intervalId);

}

</script>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

18.5 Other DOM APIs for Styles and Style Sheets

So far in this chapter, we've discussed a simple DOM API for working with CSS styles: every
HTMLElement in a document has a style property that represents the inline style attributes of that
element. The style property refers to a CSS2Properties object that defines a JavaScript property for
each CSS style attribute defined by the CSS2 standard.

Although we've made extensive use of it, the CSS2Properties object is just one part of the DOM API
for CSS.[6] This section provides a quick overview of the rest of the DOM API for working with CSS
style sheets. Note, however, that at the time of this writing, much of the CSS API is not well supported
by current (sixth-generation) browsers. You should test carefully before relying on any of the APIs
described here.

[6] In fact, the CSS2Properties object is optional. A DOM implementation may support CSS without supporting
CSS2Properties. In practice, however, this is the most commonly used API for working with styles, and DOM implementations
in web browsers are effectively required to support it.

18.5.1 Style Declarations

The CSS2Properties interface is a subinterface of CSSStyleDeclaration. Thus, the style property of
each document element also implements the properties and methods of CSSStyleDeclaration. The
methods include setProperty() and getPropertyValue(), which you can use as an
alternative to setting and querying the individual style properties of CSS2Properties. For example,
these two lines of code accomplish the same thing:

element.style.fontFamily = "sans-serif";

element.style.setProperty("font-family", "sans-serif", "");

Other features of the CSSStyleDeclaration interface are the removeProperty() method, which
deletes a named style, and the cssText property, which returns a text representation of all the style
attributes and their values. Since CSSStyleDeclaration objects represent a set of style attributes and
their values, they can also be used as arrays to iterate through the names of the style attributes.

18.5.2 Computed Styles

As I emphasized earlier in this chapter, the style property of a document element represents the
style attribute for that element, and it does not contain any information about other styles (from style
sheets) that affect that element. To determine the complete set of styles that apply to an element, use
the getComputedStyle() method of the Window object (this method is defined by the
AbstractView interface: see the "AbstractView.getComputedStyle()" entry in the DOM reference
section). The return value of this method is a CSSStyleDeclaration object that describes all the styles
that apply to the specified element. You can assume that the returned object also implements the
CSS2Properties interface, just as the style property of an element does.

To illustrate the difference between an element's inline style and its computed style, consider an
element e. To determine whether e has a font specified in its inline style attribute, you can do this:

var inlinefont = e.style.fontFamily;

But to determine what font family e is displayed in (regardless of whether this is specified by an inline
style or by a style sheet), do this instead:

var fontfamily = window.getComputedStyle(e, null).fontFamily;

You may prefer to use getComputedStyle() in a way that makes it clearer that it is defined by the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You may prefer to use getComputedStyle() in a way that makes it clearer that it is defined by the
AbstractView interface:

var fontfamily = document.defaultView.getComputedStyle(e, null).fontFamily;

The style values returned by getComputedStyle() are read-only, since they come from various
places in the style cascade. Setting any of the attributes has no effect on the style of the element. The
getComputedStyle() method should also be considered "expensive," since it must traverse the
entire cascade and build a large CSSStyleDeclaration representing the many style attributes that apply
to the element.

Finally, note that IE 5 and later define a nonstandard but useful currentStyle property in addition to
the style property for all HTML elements. currentStyle refers to a CSS2Properties object that
holds the computed style for that element.

18.5.3 Override Styles

The CSS standard specifies that a web browser have a default style sheet that defines the basic
display styles of HTML elements. The browser may allow the user to specify a user style sheet that
represents the user's style preferences and overrides styles specified in the default style sheet. Author
style sheets are style sheets defined by a document's author -- that is, the styles included in or linked
into a document. Author style sheets override the browser's default styles and the user's styles (except
for !important styles). Inline styles specified with the style attribute of an element can be
considered part of the author style sheet.

The DOM standard introduces the notion of an override style sheet that overrides the author style
sheet, including inline styles. By setting styles for an element in the override style sheet, you can
change the displayed style of an element without modifying the document's style sheets or the inline
style of that element. To obtain the override style of an element, use the getOverrideStyle()
method of the Document object:

var element = document.getElementById("title");

var override = document.getOverrideStyle(element, null);

This method returns a CSSStyleDeclaration object (which also implements CSS2Properties) that you
can use to change the displayed style of an element. Note the difference between setting an override
style and an inline style:

override.backgroundColor = "yellow"; // Sets an override style

element.style.backgroundColor = "pink"; // Sets an inline style

18.5.4 Creating Style Sheets

The DOMImplementation object (accessed as document.implementation) defines a
createCSSStyleSheet() method for creating CSSStyleSheet objects. The CSSStyleSheet object
defines an insertRule() method that you can use to add style rules to the style sheet.
Unfortunately, DOM Level 2 does not define any way to associate a created style sheet with a
document, so there is currently no point in using this method. Future versions of the DOM standard
may remedy this.

18.5.5 Traversing Style Sheets

The core DOM API makes it possible to traverse an HTML (or XML) document and examine every
element, attribute, and Text node of the document. Similarly, the style sheets and CSS modules of the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

element, attribute, and Text node of the document. Similarly, the style sheets and CSS modules of the
DOM make it possible to examine all the style sheets in or linked into a document and to traverse
those style sheets, examining all the rules, selectors, and style attributes that comprise them.

For scripters who want to create DHTML, it is usually sufficient simply to work within the inline styles of
elements using the API shown earlier in this chapter, and it is not typically necessary to traverse style
sheets. Nevertheless, this section briefly introduces the DOM API for style-sheet traversal. You can
find further details on the API in the DOM reference section. At the time of this writing this API is not
well supported, but support in Mozilla is expected soon. Note also that IE 5 defines a proprietary and
incompatible API for traversing style sheets.

The style sheets that are included in or linked into a document are accessible through the
document.styleSheets[] array. For example:

var ss = document.styleSheets[0];

The elements of this array are StyleSheet objects. StyleSheet represents a generic style sheet. In
HTML documents using CSS style sheets, these objects all implement the subinterface
CSSStyleSheet, which provides CSS-specific properties and methods. A CSSStyleSheet object has a
cssRules[] array that contains the rules of the style sheet. For example:

var firstRule = document.styleSheets[0].cssRules[0]

The CSSStyleSheet interface also defines insertRule() and deleteRule() methods for adding
and removing rules from the style sheet:

document.styleSheets[0].insertRule("H1 { text-weight: bold; }", 0);

The elements of the CSSStyleSheet.cssRules[] array are CSSRule objects. CSS style sheets
may contain a number of different types of rules. In addition to the basic style rules that we've seen in
this chapter, there are various "at-rules," which are specified with keywords like @import and @page
You can read about these special types of CSS rules in a CSS reference.

The CSSRule interface is a generic one that can represent any type of rule and has subinterfaces that
represent the specific rule types. The type property of CSSRule specifies the specific rule type. Most
rules in a CSS style sheet are basic style rules, such as:

h1 { font-family: sans-serif; font-weight: bold; font-size: 24pt; }

Rules of this type have a type property of CSSRule.STYLE_RULE and are represented by CSSRule
objects that additionally implement the CSSStyleRule interface. CSSStyleRule objects define a
selectorText property that contains the rule selector (the string "h1" in the previous rule) and a
style property that contains the rule's style attributes and values (such as the font attributes in the
previous rule). For example:

var rule = document.styleSheets[0].cssRules[0]

var styles;

if (rule.type == CSSRule.STYLE_RULE) styles = rule.style;

The value of the CSSStyleRule.style property is a CSSStyleDeclaration object. We've already
encountered this object: it is the same type of object that is used to represent the inline styles of
document elements. It defines methods such as setProperty(), removeProperty(), and
getPropertyValue(). As discussed previously, CSSStyleDeclaration objects typically also
implement the CSS2Properties interface and therefore define a property that corresponds to each CSS
attribute.

The properties of CSS2Properties and the getPropertyValue() method of CSSStyleDeclaration
return the values of CSS style attributes as strings. As discussed earlier in this chapter, this means that
when you query the value of an attribute such as font-size (or when you read the fontSize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when you query the value of an attribute such as font-size (or when you read the fontSize
property of CSS2Properties), what you get back is a number and a units value. This might be "24pt" or
a (probably less useful) value like "10mm". In general, when you get the value of a CSS attribute as a
string, you have to parse it in some way to extract the data you want from it. This is particularly true of
attributes like clip, which have a complex string syntax.

As an alternative to parsing strings, CSSStyleDeclaration provides another method,
getPropertyCSSValue(), that returns the value of a CSS attribute as a CSSValue object instead
of a string. The cssValueType property of the CSSValue object specifies a sub-interface that the
object also implements. If an attribute has more than one value, the CSSValue object implements
CSSValueList and behaves like an array of CSSValue objects. Otherwise, the CSSValue object is
typically a "primitive" value and implements the CSSPrimitiveValue interface. CSSPrimitiveValue
objects have a property named primitiveType that specifies the type of the value or the units that
apply to the value. There are 26 possible types, all represented by constants like
CSSPrimitiveValue.CSS_PERCENTAGE, CSSPrimitiveValue.CSS_PX, and
CSSPrimitiveValue.CSS_RGBCOLOR. In addition to the primitiveType property and the various
type constants, CSSPrimitiveValue defines various methods for setting and querying the value
represented by the object. If the CSSPrimitiveValue object represents a length or percentage, for
example, you call getFloatValue() to obtain the length. If the primitiveType property indicates
that the value represents a color, you use getRGBColorValue() to query the color value.

Finally, the DOM CSS API also defines a few special object types to represent attribute values:
RGBColor objects represent color values, Rect objects represent rectangle values (such as the value
of the clip attribute), and Counter objects represent CSS2 counters. See the DOM reference section
for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 19. Events and Event Handling
As we saw in Chapter 12, interactive JavaScript programs use an event-driven programming
model. In this style of programming, the web browser generates an event whenever something
interesting happens to the document or to some element of it. For example, the web browser
generates an event when it finishes loading a document, when the user moves the mouse over a
hyperlink, or when the user clicks on the Submit button of a form. If a JavaScript application cares
about a particular type of event for a particular document element, it can register an event handler
-- a JavaScript function or snippet of code -- for that type of event on the element of interest.
Then, when that particular event occurs, the browser invokes the handler code. All applications
with graphical user interfaces are designed this way: they sit around waiting for the user to do
something interesting (i.e., they wait for events to occur) and then they respond.

As an aside, it is worth noting that timers and error handlers (both of which are described in
Chapter 13) are related to the event-driven programming model. Like the event handlers
described in this chapter, timers and error handlers work by registering a function with the
browser and allowing the browser to call that function when the appropriate event occurs. In these
cases, however, the event of interest is the passage of a specified amount of time or the
occurrence of a JavaScript error. Although timers and error handlers are not discussed in this
chapter, it is useful to think of them as related to event handling, and I encourage you to reread
Section 13.4, and Section 13.5, in the context of this chapter.

Most nontrivial JavaScript programs rely heavily on event handlers. We've already seen a number
of JavaScript examples that use simple event handlers. This chapter fills in all the missing details
about events and event handling. Unfortunately, these details are more complex than they ought
to be, because there are four distinct and incompatible event-handling models in use. These
models are:

The original event model. This is the simple event-handling scheme that we've used (but not
thoroughly documented) so far in this book. It was codified, to a limited extent, by the HTML 4
standard, and is informally considered to be part of the DOM Level 0 API. Although its features
are limited, it is supported by all JavaScript-enabled web browsers and is therefore portable.

The standard event model. This powerful and full-featured event model was standardized by the
DOM Level 2 standard. It is supported by the Netscape 6 and Mozilla browsers.

The Internet Explorer event model. This event model is implemented by IE 4 and later and has
some, but not all, of the advanced features of the standard event model. Although Microsoft
participated in the creation of the DOM Level 2 event model and had plenty of time to implement
this standard event model in IE 5.5 and IE 6, they have stuck with their proprietary event model
instead. This means that JavaScript programmers who want to used advanced event-handling
features must write special code for IE browsers.

The Netscape 4 event model. This event model was implemented in Netscape 4 and continues
to be (mostly, but not fully) supported in Netscape 6, although it has been superseded by the
standard event model. It has some, but not all, of the advanced features of the standard event
model. JavaScript programmers who want to use advanced event-handling features and retain
compatibility with Netscape 4 need to understand this model.

The rest of this chapter documents each of these event models in turn.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.1 Basic Event Handling

In the code we've seen so far in this book, event handlers have been written as strings of JavaScript
that are used as the values of certain HTML attributes, such as onclick. Although this is the key to the
original event model, there are a number of additional details, described in the following sections, that you
should understand.

19.1.1 Events and Event Types

Different types of occurrences generate different types of events. When the user moves the mouse over
hyperlink, it causes a different type of event than when the user clicks the mouse on the Submit button of
a form. Even the same occurrence can generate different types of events based on context: when the user
clicks the mouse over a Submit button, for example, it generates a different event than when the user
clicks the mouse over the Reset button of a form.

In the original event model, an event is an abstraction internal to the web browser, and JavaScript code
cannot manipulate an event directly. When we speak of an event type in the original event model, what we
really mean is the name of the event handler that is invoked in response to the event. In this model,
handling code is specified using the attributes of HTML elements (and the corresponding properties of the
associated JavaScript objects). Thus, if your application needs to know when the user moves the mouse
over a specific hyperlink, you use the onmouseover attribute of the <a> tag that defines the hyperlink.
And if the application needs to know when the user clicks the Submit button, you use the onclick
attribute of the <input> tag that defines the button or the onsubmit attribute of the <form> element that
contains that button.

There are quite a few different event handler attributes that you can use in the original event model. They
are listed in Table 19-1, which also specifies when these event handlers are triggered and which HTML
elements support the handler attributes.

As client-side JavaScript programming has evolved, so has the event model it supports. With each new
browser version, new event handler attributes have been added. Finally, the HTML 4 specification codified
a standard set of event handler attributes for HTML tags. The third column of Table 19-1 specifies which
HTML elements support each event handler attribute, and it also specifies which browser versions support
that event handler for that tag and whether the event handler is a standard part of HTML 4 for that tag.
this third column, "N" is an abbreviation for Netscape and "IE" is an abbreviation for Internet Explorer. Each
browser version is backward compatible with previous versions, so "N3," for example, means Netscape 3
and all later versions.

If you study the various event handler attributes in Table 19-1 closely, you can discern two broad
categories of events. One category is raw events or input events. These are the events that are generated
when the user moves or clicks the mouse or presses a key on the keyboard. These low-level events simply
describe a user's gesture and have no other meaning. The second category of events are semantic events
These higher-level events have a more complex meaning and can typically occur only in specific contexts:
when the browser has finished loading the document or a form is about to be submitted, for example. A
semantic event often occurs as a side effect of a lower-level event. For example, when the user clicks the
mouse over a Submit button, three input handlers are triggered: onmousedown, onmouseup, and
onclick. And, as a result of this mouse-click, the HTML form that contains the button generates an
onsubmit event.

One final note about Table 19-1 is required. For raw mouse event handlers, column three specifies that the
handler attribute is supported (in HTML 4, at least) by "most elements." The HTML elements that do not
support these event handlers are typically elements that belong in the <head> of a document or do not
have a graphical representation of their own. The tags that do not support the nearly universal mouse
event handler attributes are: <applet>, <bdo>,
, , <frame>, <frameset>, <head>,
<html>, <iframe>, <isindex>, <meta>, and <style>.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<html>, <iframe>, <isindex>, <meta>, and <style>.

Table 19-1. Event handlers and the HTML elements that support them
Handler Triggered when Supported by

onabort Image loading interrupted. N3, IE4:

onblur Element loses input focus.

HTML4, N2, IE3: <button>
<input>, <label>, <select>
<textarea>

N3, IE4: <body>

onchange
Selection in a <select> element or other form
element loses focus and its value has changed since it
gained focus.

HTML4, N2, IE3: <input>,
<select>, <textarea>

onclick
Mouse press and release; follows mouseup event.
Return false to cancel default action (i.e., follow link,
reset, submit).

N2, IE3: <a>, <area>, <input>

HTML4, N6, IE4: most elements
ondblclick Double-click. HTML4, N6, IE4: most elements
onerror Error when loading image. N3, IE4:

onfocus Element gains input focus.

HTML4, N2, IE3: <button>
<input>, <label>, <select>
<textarea>

N3, IE4: <body>

onkeydown Key pressed down. Return false to cancel.
N4: <input>, <textarea>

HTML4, N6, IE4: form elements
and <body>

onkeypress Key pressed and released. Return false to cancel.
N4: <input>, <textarea>

HTML4, N6, IE4: form elements
and <body>

onkeyup Key released.
N4: <input>, <textarea>

HTML4, N6, IE4: form elements
and <body>

onload Document load complete.

HTML4, N2, IE3: <body>,
<frameset>

N3, IE4:

N6, IE4: <iframe>, <object>

onmousedown Mouse button pressed.
N4: <a>, <area>,

HTML4, N6, IE4: most elements
onmousemove Mouse moved. HTML4, N6, IE4: most elements

onmouseout Mouse moves off element.
N3: <a>, <area>

HTML4, N6, IE4: most elements

onmouseover Mouse moves over element. For links, return true to
prevent URL from appearing in status bar.

N2, IE3: <a>, <area>

HTML4, N6, IE4: most elements

onmouseup Mouse button released.
N4: <a>, <area>,

HTML4, N6, IE4: most elements
onreset Form reset requested. Return false to prevent reset. HTML4, N3, IE4: <form>
onresize Window size changes. N4, IE4: <body>, <frameset>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onselect Text selected. HTML4, N6, IE3: <input>,
<textarea>

onsubmit Form submission requested. Return false to prevent
submission. HTML4, N3, IE4: <form>

onunload Document or frameset unloaded. HTML4, N2, IE3: <body>,
<frameset>

19.1.2 Event Handlers as Attributes

As we've seen in a number of examples prior to this chapter, event handlers are specified (in the original
event model) as strings of JavaScript code used for the values of HTML attributes. So, for example, to
execute JavaScript code when the user clicks a button, specify that code as the value of the onclick
attribute of the <input> tag:

<input type="button" value="Press Me" onclick="alert('thanks');">

The value of an event handler attribute is an arbitrary string of JavaScript code. If the handler consists of
multiple JavaScript statements, the statements must be separated from each other by semicolons. For
example:

<input type="button" value="Click Here"

 onclick="if (window.numclicks) numclicks++; else numclicks=1;

 this.value='Click # ' + numclicks;">

When an event handler requires multiple statements, it is usually easier to define them in the body of a
function and then use the HTML event handler attribute to invoke that function. For example, if you want
validate a user's form input before submitting the form, you can use the onsubmit attribute of the <form>
tag. Form validation typically requires several lines of code, at a minimum, so instead of cramming all this
code into one long attribute value, it makes more sense to define a form-validation function and simply use
the onclick attribute to invoke that function. For example, if you defined a function named
validateForm() to perform validation, you could invoke it from an event handler like this:

<form action="processform.cgi" onsubmit="return validateForm();">

Remember that HTML is case-insensitive, so you can capitalize event handler attributes any way you
choose. One common convention is to use mixed-case capitalization, with the initial "on" prefix in
lowercase: onClick, onLoad, onMouseOut, and so on. In this book, I've chosen to use all lowercase,
however, for compatibility with XHTML, which is case-sensitive.

The JavaScript code in an event handler attribute may contain a return statement, and the return value
may have special meaning to the browser. This is discussed shortly. Also, note that the JavaScript code of
an event handler runs in a different scope (see Chapter 4) than global JavaScript code. This, too, is
discussed in more detail later in this section.

19.1.3 Event Handlers as Properties

We've seen that each HTML element in a document has a corresponding JavaScript object in the
document tree, and the properties of this JavaScript object correspond to the attributes of the HTML
element. In JavaScript 1.1 and later, this applies to event handler attributes as well. So if an <input>
has an onclick attribute, the event handler it contains can be referred to with the onclick property of
the form element object. (JavaScript is case-sensitive, so regardless of the capitalization used for the
HTML attribute, the JavaScript property must be all lowercase.)

Technically, the DOM specification does not support the original event model we've described here and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Technically, the DOM specification does not support the original event model we've described here and
does not define JavaScript attributes that correspond to the event handler attributes standardized by HTML
4. Despite the lack of formal standardization by the DOM, this event model is so widely used that all
JavaScript-enabled web browsers allow event handlers to be referred to as JavaScript properties.

Since the value of an HTML event handler attribute is a string of JavaScript code, you might expect the
value of the corresponding JavaScript property to be a string as well. This is not the case: when accessed
through JavaScript, event handler properties are functions. You can verify this with a simple example:

<input type="button" value="Click Here" onclick="alert(typeof this.onclick);">

If you click the button, it displays a dialog box containing the word "function," not the word "string." (Note
that in event handlers, the this keyword refers to the object on which the event occurred. We'll discuss
the this keyword shortly.)

To assign an event handler to a document element using JavaScript, simply set the event handler property
to the desired function. For example, consider the following HTML form:

<form name="f1">

<input name="b1" type="button" value="Press Me">

</form>

The button in this form can be referred to as document.f1.b1, which means that an event handler
be assigned with a line of JavaScript like this one:

document.f1.b1.onclick=function() { alert('Thanks!'); };

An event handler can also be assigned like this:

function plead() { window.status = "Please Press Me!"; }

document.f1.b1.onmouseover = plead;

Pay particular attention to that last line: there are no parentheses after the name of the function. To define
an event handler, we are assigning the function itself to the event handler property, not the result of
invoking the function. This is an area that often trips up beginning JavaScript programmers.

There are a couple of advantages to expressing event handlers as JavaScript properties. First, it reduces
the intermingling of HTML and JavaScript, promoting modularity and cleaner, more maintainable code.
Second, it allows event handler functions to be dynamic. Unlike HTML attributes, which are a static part of
the document and can be set only when the document is created, JavaScript properties can be changed at
any time. In complex interactive programs, it can sometimes be useful to dynamically change the event
handlers registered for HTML elements. One minor disadvantage to defining event handlers in JavaScript
is that it separates the handler from the element to which it belongs. If the user interacts with a document
element before the document is fully loaded (and before all its scripts have executed), the event handlers
for the document element may not yet be defined.

Example 19-1 shows how you can specify a single function to be the event handler for many document
elements. The example is a simple function that defines an onclick event handler for every link in a
document. The event handler asks for the user's confirmation before allowing the browser to follow the
hyperlink on which the user has just clicked. The event handler function returns false if the user does not
confirm, which prevents the browser from following the link. Event handler return values will be discussed
shortly.

Example 19-1. One function, many event handlers

// This function is suitable for use as an onclick event handler for <a> and

// <area> elements. It uses the this keyword to refer to the document element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// <area> elements. It uses the this keyword to refer to the document element

// and may return false to prevent the browser from following the link.

function confirmLink() {

 return confirm("Do you really want to visit " + this.href + "?");

}

// This function loops through all the hyperlinks in a document and assigns

// the confirmLink function to each one as an event handler. Don't call it

// before the document is parsed and the links are all defined. It is best

// to call it from the onload event handler of a <body> tag.

function confirmAllLinks() {

 for(var i = 0; i < document.links.length; i++) {

 document.links[i].onclick = confirmLink;

 }

}

19.1.3.1 Explicitly invoking event handlers

Because the values of JavaScript event handler properties are functions, we can use JavaScript to invoke
event handler functions directly. For example, if we've used the onsubmit attribute of a <form> tag to
define a form-validation function and we want to validate the form at some point before the user attempts
to submit it, we can use the onsubmit property of the Form object to invoke the event handler function.
The code might look like this:

document.myform.onsubmit();

Note, however, that invoking an event handler is not a way to simulate what happens when the event
actually occurs. If we invoke the onclick method of a Link object, for example, it does not make the
browser follow the link and load a new document. It merely executes whatever function we've defined as
the value of that property. To make the browser load a new document, we have to set the location
property of the Window object, as we saw in Chapter 13. The same is true of the onsubmit method of a
Form object or the onclick method of a Submit object: invoking the method runs the event handler
function but does not cause the form to be submitted. (To actually submit the form, we call the submit()
method of the Form object.)

One reason that you might want to explicitly invoke an event handler function is if you want to use
JavaScript to augment an event handler that is (or may be) already defined by HTML code. Suppose you
want to take a special action when the user clicks a button, but you do not want to disrupt any onclick
event handler that may have been defined in the HTML document itself. (This is one of the problems with
the code in Example 19-1 -- by adding a handler for each hyperlink, it overwrites any onclick handlers
that were already defined for those hyperlinks.) You might accomplish this with code like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var b = document.myform.mybutton; // This is the button we're interested in

var oldHandler = b.onclick; // Save the HTML event handler

function newHandler() { /* My event-handling code goes here */ }

// Now assign a new event handler that calls both the old and new handlers

b.onclick = function() { oldHandler(); newHandler(); }

19.1.4 Event Handler Return Values

In many cases, an event handler (whether specified by HTML attribute or JavaScript property) uses its
return value to indicate the disposition of the event. For example, if you use the onsubmit event handler
of a Form object to perform form validation and discover that the user has not filled in all the fields, you can
return false from the handler to prevent the form from actually being submitted. You can ensure that a
form is not submitted with an empty text field like this:

<form action="search.cgi"

 onsubmit="if (this.elements[0].value.length == 0) return false;">

<input type="text">

</form>

Generally, if the web browser performs some kind of default action in response to an event, you can return
false to prevent the browser from performing that action. In addition to onsubmit, other event handlers
from which you can return false to prevent the default action include onclick, onkeydown,
onkeypress, onmousedown, onmouseup, and onreset. The second column of Table 19-1 contains a
note about the return values for these event handlers.

There is one exception to the rule about returning false to cancel: when the user moves the mouse
a hyperlink (or image map), the browser's default action is to display the link's URL in the status line. To
prevent this from happening, you must return true from the onmouseover event handler. For example,
you can display a message other than a URL with code like this:

Help

There is no good reason for this exception: it is this way simply because that is always the way it has been.

Note that event handlers are never required to explicitly return a value. If you don't return a value, the
default behavior occurs.

19.1.5 Event Handlers and the this Keyword

Whether you define an event handler with an HTML attribute or with a JavaScript property, what you are
doing is assigning a function to a property of a document element. In other words, you're defining a new
method of the document element. When your event handler is invoked, it is invoked as a method of the
element on which the event occurred, so the this keyword refers to that target element. This behavior is
useful and unsurprising.

Be sure, however, that you understand the implications. Suppose you have an object o with a method
mymethod. You might register an event handler like this:

button.onclick= o.mymethod;

This statement makes button.onclick refer to the same function that o.mymethod does. This function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This statement makes button.onclick refer to the same function that o.mymethod does. This function
is now a method of both o and button. When the browser triggers this event handler, it invokes the
function as a method of the button object, not as a method of o. The this keyword refers to the Button
object, not to your object o. Do not make the mistake of thinking you can trick the browser into invoking
event handler as a method of some other object. If you want to do that, you must do it explicitly, like this:

button.onclick = function() { o.mymethod(); }

19.1.6 Scope of Event Handlers

As we discussed in Chapter 11, functions in JavaScript are lexically scoped. This means that they run in
the scope in which they were defined, not in the scope from which they are called. When you define an
event handler by setting the value of an HTML attribute to a string of JavaScript code, you are implicitly
defining a JavaScript function (as you can see when you examine the type of the corresponding event
handler property in JavaScript). It is important to understand that the scope of an event handler function
defined in this way is not the same as the scope of other normally defined global JavaScript functions. This
means that event handlers defined as HTML attributes execute in a different scope than other functions.

[1] It is important to understand this, and while the discussion that follows is interesting, it is also dense. You may want to skip it on
your first time through this chapter and come back to it later.

Recall from the discussion in Chapter 4 that the scope of a function is defined by a scope chain, or list of
objects, that is searched, in turn, for variable definitions. When a variable x is looked up or resolved in a
normal function, JavaScript first looks for a local variable or argument by checking the call object of the
function for a property of that name. If no such property is found, JavaScript proceeds to the next object in
the scope chain: the global object. It checks the properties of the global object to see if the variable is a
global variable.

Event handlers defined as HTML attributes have a more complex scope chain than this. The head of the
scope chain is the call object. Any arguments passed to the event handler are defined here (we'll see later
in this chapter that in some advanced event models, event handlers are passed an argument), as are any
local variables declared in the body of the event handler. The next object in an event handler's scope chain
isn't the global object, however; it is the object that triggered the event handler. So, for example, suppose
you use an <input> tag to define a Button object in an HTML form and then use the onclick attribute to
define an event handler. If the code for the event handler uses a variable named form, that variable is
resolved to the form property of the Button object. This can be a useful shortcut when writing event
handlers as HTML attributes.

The scope chain of an event handler does not stop with the object that defines the handler: it proceeds up
the containment hierarchy. For the onclick event handler described earlier, the scope chain begins with
the call object of the handler function. Then it proceeds to the Button object, as we've discussed. After that,
it continues up the HTML element containment hierarchy and includes, at a minimum, the HTML <form>
element that contains the button and the Document object that contains the form. The precise composition
of the scope chain has never been standardized and is implementation-dependent. Netscape 6 and Mozilla
include all containing objects (even things such as <div> tags), while IE 6 sticks to a more minimal set
that includes the target element, plus the containing Form object (if any) and the Document object.
Regardless of the browser, the final object in the scope chain is the Window object, as it always is in client-
side JavaScript.

Having the target object in the scope chain of an event handler can be a useful shortcut. But having an
extended scope chain that includes other document elements can be a nuisance. Consider, for example,
that both the Window and Document objects define methods named open(). If you use the identifier
open without qualification, you are almost always referring to the window.open() method. In an event
handler defined as an HTML attribute, however, the Document object is in the scope chain before the
Window object, and using open by itself refers to the document.open() method. Similarly, consider
what would happen if you added a property named window to a Form object (or defined an input field with
name="window"). Then, if you define an event handler within the form that uses the expression
window.open(), the identifier window resolves to the property of the Form object rather than the global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

window.open(), the identifier window resolves to the property of the Form object rather than the global
Window object, and event handlers within the form have no easy way to refer to the global Window object
or to call the window.open() method!

The moral is that you must be careful when defining event handlers as HTML attributes. Your safest bet is
to keep any such handlers very simple. Ideally, they should just call a global function defined elsewhere
and perhaps return the result:

<script>

function validateForm() {

 /* Form validation code here */

 return true;

}

</script>

<input type="submit" onclick="return validateForm();">

A simple event handler like this is still executed using an unusual scope chain, and you can subvert
defining a validateForm() method on one of the containing elements. But, assuming that the intended
global function does get called, that function executes in the normal global scope. Once again, remember
that functions are executed using the scope in which they were defined, not the scope from which they are
invoked. So, even though our validateForm() method is invoked from an unusual scope, it is still
executed in its own global scope with no possibility for confusion.

Furthermore, since there is no standard for the precise composition of the scope chain of an event handler,
it is safest to assume that it contains only the target element and the global Window object. For example,
use this to refer to the target element, and when the target is an <input> element, feel free to use
to refer to the containing Form object. But don't rely on the Form or Document objects being in the scope
chain. For example, don't use the unqualified identifier write to refer to the Document's write()
method. Instead, spell out that you mean document.write().

Keep in mind that this entire discussion of event-handler scope applies only to event handlers defined as
HTML attributes. If you specify an event handler by assigning a function to an appropriate JavaScript event
handler property, there is no special scope chain involved, and your function executes in the scope in
which it was defined. This is almost always the global scope, unless it is a nested function, in which case
the scope chain can get interesting again!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2 Advanced Event Handling with DOM Level 2

The event-handling techniques we've seen so far in this chapter are part of the Level 0 DOM: the de
facto standard API that is supported by every JavaScript-enabled browser. The DOM Level 2 standard
defines an advanced event-handling API that is significantly different (and quite a bit more powerful)
than the Level 0 API. The Level 2 standard does not incorporate the existing API into the standard
DOM, but there is no danger of the Level 0 API being dropped. For basic event-handling tasks, you
should feel free to continue to use the simple API.

The Level 2 DOM Events module is supported by Mozilla and Netscape 6, but is not supported by
Internet Explorer 6.

19.2.1 Event Propagation

In the Level 0 event model, the browser dispatches events to the document elements on which they
occur. If that object has an appropriate event handler, that handler is run. There is nothing more to it.
The situation is more complex in the Level 2 DOM. In this advanced event model, when an event occurs
on a Document node (known as the event target), the target's event handler or handlers are triggered,
but in addition, each of the target's ancestor nodes has one or two opportunities to handle that event.
Event propagation proceeds in three phases. First, during the capturing phase, events propagate from
the Document object down through the document tree to the target node. If any of the ancestors of the
target (but not the target itself) has a specially registered capturing event handler, those handlers are
run during this phase of event propagation. (We'll learn how both regular and capturing event handlers
are registered shortly.)

The next phase of event propagation occurs at the target node itself: any appropriate event handlers
registered directly on the target are run. This is akin to the kind of event handling provided by the Level
event model.

The third phase of event propagation is the bubbling phase, in which the event propagates or bubbles
back up the document hierarchy from the target element up to the Document object. Although all events
are subject to the capturing phase of event propagation, not all types of events bubble: for example, it
does not make sense for a submit event to propagate up the document beyond the <form> element to
which it is directed. On the other hand, generic events such as mousedown events can be of interest to
any element in the document, so they do bubble up through the document hierarchy, triggering any
appropriate event handlers on each of the ancestors of the target element. In general, raw input events
bubble, while higher-level semantic events do not. (See Table 19-3, later in this chapter, for a definitive
list of which events bubble and which do not.)

During event propagation, it is possible for any event handler to stop further propagation of the event by
calling the stopPropagation() method of the Event object that represents the event. We'll see
more about the Event object and its stopPropagation() method later in this chapter.

Some events cause an associated default action to be performed by the web browser. For example,
when a click event occurs on an <a> tag, the browser's default action is to follow the hyperlink. Default
actions like these are performed only after all three phases of event propagation complete, and any of
the handlers invoked during event propagation have the opportunity to prevent the default action from
occurring by calling the preventDefault() method of the Event object.

Although this kind of event propagation may seem convoluted, it provides an important means of
centralizing your event-handling code. The Level 1 DOM exposes all document elements and allows
events (such as mouseover events) to occur on any of those elements. This means that there are many,
many more places for event handlers to be registered than there were with the old Level 0 event model.
Suppose you want to trigger an event handler whenever the user moves the mouse over a <p> element
in your document. Instead of registering an onmouseover event handler for each <p> tag, you can
instead register a single event handler on the Document object and handle these events during either

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

instead register a single event handler on the Document object and handle these events during either
the capturing or bubbling phase of event propagation.

There is one other important detail about event propagation. In the Level 0 model, you can register only
a single event handler for a particular type of event for a particular object. In the Level 2 model,
however, you can register any number of handler functions for a particular event type on a particular
object. This applies also to ancestors of an event target whose handler function or functions are invoked
during the capturing or bubbling phases of event propagation.

19.2.2 Event Handler Registration

In the Level 0 API, you register an event handler by setting an attribute in your HTML or an object
property in your JavaScript code. In the Level 2 event model, you register an event handler for a
particular element by calling the addEventListener() method of that object. (The DOM standard
uses the term "listener" in its API, but we'll continue to use the synonymous word "handler" in our
discussion.) This method takes three arguments. The first is the name of the event type for which the
handler is being registered. The event type should be a string that contains the lowercase name of the
HTML handler attribute, with the leading "on" removed. Thus, if you use an onmousedown HTML
attribute or onmousedown property in the Level 0 model, you'd use the string "mousedown" in the Level
2 event model.

The second argument to addEventListener() is the handler (or listener) function that should be
invoked when the specified type of event occurs. When your function is invoked, it is passed an Event
object as its only argument. This object contains details about the event (such as which mouse button
was pressed) and defines methods such as stopPropagation(). We'll learn more about the Event
interface and its subinterfaces later.

The final argument to addEventListener() is a boolean value. If true, the specified event handler
is used to capture events during the capturing phase of event propagation. If the argument is false
the event handler is a normal event handler and is triggered when the event occurs directly on the object
or on a descendant of the element and subsequently bubbles up to the element.

For example, you might use addEventListener() as follows to register a handler for submit events
on a <form> element:

document.myform.addEventListener("submit",

 function(e) { validate(e.target); }

 false);

Or, if you wanted to capture all mousedown events that occur within a particular named <div> element,
you might use addEventListener() like this:

var mydiv = document.getElementById("mydiv");

mydiv.addEventListener("mousedown", handleMouseDown, true);

Note that these examples assume that you've defined functions named validate() and
handleMouseDown() elsewhere in your JavaScript code.

Event handlers registered with addEventListener() are executed in the scope in which they are
defined. They are not invoked with the augmented scope chain that is used for event handlers defined
as HTML attributes. (See Section 19.1.6.)

Because event handlers are registered in the Level 2 model by invoking a method rather than by setting
an attribute or property, we can register more than one event handler for a given type of event on a
given object. If you call addEventListener() multiple times to register more than one handler
function for the same event type on the same object, all of the functions you've registered are invoked
when an event of that type occurs on (or bubbles up to, or is captured by) that object. It is important to

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

when an event of that type occurs on (or bubbles up to, or is captured by) that object. It is important to
understand that the DOM standard makes no guarantees about the order in which the handler functions
of a single object are invoked, so you should not rely on them being called in the order in which you
registered them. Also note that if you register the same handler function more than once on the same
element, all registrations after the first are ignored.

Why would you want to have more than one handler function for the same event on the same object?
This can be quite useful for modularizing your software. Suppose, for example, that you've written a
reusable module of JavaScript code that uses mouseover events on images to perform image rollovers.
Now suppose that you have another module that wants to use the same mouseover events to display
additional information about the image (or the link that the image represents) in the browser's status
line. With the Level API, you'd have to merge your two modules into one, so that they could share the
single onmouseover property of the Image object. With the Level 2 API, on the other hand, each
module can register the event handler it needs without knowing about or interfering with the other
module.

addEventListener() is paired with a removeEventListener() method that expects the same
three arguments but removes an event handler function from an object rather than adding it. It is often
useful to temporarily register an event handler and then remove it soon afterward. For example, when
you get a mousedown event, you might register temporary capturing event handlers for mousemove and
mouseup events so you can see if the user drags the mouse. You'd then deregister these handlers
when the mouseup event arrives. In such a situation, your event-handler removal code might look as
follows:

document.removeEventListener("mousemove", handleMouseMove, true);

document.removeEventListener("mouseup", handleMouseUp, true);

Both the addEventListener() and removeEventListener() methods are defined by the
EventTarget interface. In web browsers that support the Level 2 DOM Event API, all Document nodes
implement this interface. For more information about these event-handler registration and deregistration
methods, look up the EventTarget interface in the DOM reference section.

One final note about event-handler registration: in the Level 2 DOM, event handlers are not restricted to
document elements; you can also register handlers for Text nodes. In practice, however, you may find it
simpler to register handlers on containing elements and allow Text node events to bubble up and be
handled at the container level.

19.2.3 addEventListener() and the this Keyword

In the original Level 0 event model, when a function is registered as an event handler for a document
element, it becomes a method of that document element (as discussed previously in Section 19.1.5).
When the event handler is invoked, it is invoked as a method of the element, and, within the function,
the this keyword refers to the element on which the event occurred.

In Mozilla and Netscape 6, when you register an event handler function with addEventListener(
it is treated the same way: when the browser invokes the function, it invokes it as a method of the
document element for which it was registered. Note, however, that this is implementation-dependent
behavior, and the DOM specification does not require that this happen. Thus, you should not rely on the
value of the this keyword in your event handler functions when using the Level 2 event model. Instead,
use the currentTarget property of the Event object that is passed to your handler functions. As we'll
see when we consider the Event object later in this chapter, the currentTarget property refers to the
object on which the event handler was registered but does so in a portable way.

19.2.4 Registering Objects as Event Handlers

addEventListener() allows us to register event handler functions. As discussed in the previous

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

addEventListener() allows us to register event handler functions. As discussed in the previous
section, whether these functions are invoked as methods of the objects for which they are registered is
implementation-dependent. For object-oriented programming, you may prefer to define event handlers
as methods of a custom object and then have them invoked as methods of that object. For Java
programmers, the DOM standard allows exactly this: it specifies that event handlers are objects that
implement the EventListener interface and a method named handleEvent(). In Java, when you
register an event handler, you pass an object to addEventListener(), not a function. For simplicity,
the JavaScript binding of the DOM API does not require us to implement an EventListener interface and
instead allows us to pass function references directly to addEventListener().

If you are writing an object-oriented JavaScript program and prefer to use objects as event handlers,
you might use a function like this to register them:

function registerObjectEventHandler(element, eventtype, listener, captures) {

 element.addEventListener(eventtype,

 function(event) { listener.handleEvent(event); }

 captures);

}

Any object can be registered as an event listener with this function, as long as it defines a method
named handleEvent(). That method is invoked as a method of the listener object, and the this
keyword refers to the listener object, not to the document element that generated the event. This
function works because it uses a nested function literal to capture and remember the listener object in its
scope chain. (If this doesn't make sense to you, you may want to review Section 11.4.)

Although it is not part of the DOM specification, Mozilla 0.9.1 and Netscape 6.1 (but not Netscape 6.0 or
6.01) allow event listener objects that define a handleEvent() method to be passed directly to
addEventListener() instead of a function reference. For these browsers, a special registration
function like the one we just defined is not necessary.

19.2.5 Event Modules and Event Types

As I've noted before, the Level 2 DOM is modularized, so an implementation can support parts of it and
omit support for other parts. The Events API is one such module. You can test whether a browser
supports this module with code like this:

document.implementation.hasFeature("Events", "2.0")

The Events module contains only the API for the basic event-handling infrastructure, however. Support
for specific types of events is delegated to submodules. Each submodule provides support for a
category of related event types and defines an Event type that is passed to event handlers for each of
those types. For example, the submodule named MouseEvents provides support for mousedown,
mouseup, click, and related event types. It also defines the MouseEvent interface. An object that
implements this interface is passed to the handler function for any event type supported by the module.

Table 19-2 lists each event module, the event interface it defines, and the types of events it supports.
Note that the Level 2 DOM does not standardize any type of keyboard event, so no module of key
events is listed here. Support for this type of event is expected in the DOM Level 3 standard.

Table 19-2. Event modules, interfaces, and types

Module name Event
interface Event types

HTMLEvents Event abort, blur, change, error, focus, load, reset, resize, scroll, select,
submit, unload

MouseEvents MouseEvent click, mousedown, mousemove, mouseout, mouseover, mouseup

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UIEvents UIEvent DOMActivate, DOMFocusIn, DOMFocusOut

MutationEvents MutationEvent
DOMAttrModified, DOMCharacterDataModified, DOMNodeInserted,
DOMNodeInsertedIntoDocument, DOMNodeRemoved,
DOMNodeRemovedFromDocument, DOMSubtreeModified

As you can see from Table 19-2, The HTMLEvents and MouseEvents modules define event types that
are familiar from the Level 0 event module. The UIEvents module defines event types that are similar to
the focus, blur, and click events supported by HTML form elements but are generalized so that they can
be generated by any document element that can receive focus or be activated in some way. The
MutationEvents module defines events that are generated when the document changes (is mutated) in
some way. These are specialized event types and are not commonly used.

As I noted earlier, when an event occurs, its handler is passed an object that implements the Event
interface associated with that type of event. The properties of this object provide details about the event
that may be useful to the handler. Table 19-3 lists the standard events again, but this time organizes
them by event type, rather than by event module. For each event type, this table specifies the kind of
event object that is passed to its handler, whether this type of event bubbles up the document hierarchy
during event propagation (the "B" column), and whether the event has a default action that is cancelable
with the preventDefault() method (the "C" column). For events in the HTMLEvents module, the
fifth column of the table specifies which HTML elements can generate the event. For all other event
types, the fifth column specifies which properties of the event object contain meaningful event details
(these properties are documented in the next section). Note that the properties listed in this column do
not include the properties that are defined by the basic Event interface, which contain meaningful values
for all event types.

It is useful to compare Table 19-3 with Table 19-1, which lists the Level 0 event handlers defined by
HTML 4. The event types supported by the two models are largely the same (excluding the UIEvents
and MutationEvents modules). The DOM Level 2 standard adds support for the abort, error, resize,
scroll event types that were not standardized by HTML 4, and it does not support the dblclick event type
that is part of the HTML 4 standard. (Instead, as we'll see shortly, the detail property of the object
passed to a click event handler specifies the number of consecutive clicks that have occurred.)

Table 19-3. Event types
Event type Interface B C Supported by/detail properties

abort Event yes no , <object>

blur Event no no <a>, <area>, <button>, <input>,
<label>, <select>, <textarea>

change Event yes no <input>, <select>, <textarea>

click MouseEvent yes yes
screenX, screenY, clientX,
clientY, altKey, ctrlKey,
shiftKey, metaKey, button, detail

error Event yes no <body>, <frameset>, ,
<object>

focus Event no no <a>, <area>, <button>, <input>,
<label>, <select>, <textarea>

load Event no no <body>, <frameset>, <iframe>,
, <object>

mousedown MouseEvent yes yes
screenX, screenY, clientX,
clientY, altKey, ctrlKey,
shiftKey, metaKey, button, detail

mousemove MouseEvent yes no
screenX, screenY, clientX,
clientY, altKey, ctrlKey,
shiftKey, metaKey

mouseout MouseEvent yes yes
screenX, screenY, clientX,
clientY, altKey, ctrlKey,

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clientY, altKey, ctrlKey,
shiftKey, metaKey, relatedTarget

mouseover MouseEvent yes yes
screenX, screenY, clientX,
clientY, altKey, ctrlKey,
shiftKey, metaKey, relatedTarget

mouseup MouseEvent yes yes
screenX, screenY, clientX,
clientY, altKey, ctrlKey,
shiftKey, metaKey, button, detail

reset Event yes no <form>
resize Event yes no <body>, <frameset>, <iframe>
scroll Event yes no <body>
select Event yes no <input>, <textarea>
submit Event yes yes <form>
unload Event no no <body>, <frameset>
DOMActivate UIEvent yes yes detail

DOMAttrModified MutationEvent yes no attrName, attrChange, prevValue
newValue, relatedNode

DOMCharacterDataModified MutationEvent yes no prevValue, newValue
DOMFocusIn UIEvent yes no none
DOMFocusOut UIEvent yes no none
DOMNodeInserted MutationEvent yes no relatedNode
DOMNodeInsertedIntoDocument MutationEvent no no none
DOMNodeRemoved MutationEvents yes no relatedNode
DOMNodeRemovedFromDocument MutationEvent no no none
DOMSubtreeModified MutationEvent yes no none

19.2.6 Event Interfaces and Event Details

When an event occurs, the DOM Level 2 API provides additional details about the event (such as when
and where it occurred) as properties of an object that is passed to the event handler. Each event
module has an associated event interface that specifies details appropriate to that type of event. Table
19-2 (earlier in this chapter) lists four different event modules and four different event interfaces.

These four interfaces are actually related to one another and form a hierarchy. The Event interface is
the root of the hierarchy; all event objects implement this most basic event interface. UIEvent is a
subinterface of Event: any event object that implements UIEvent also implements all the methods and
properties of Event. The MouseEvent interface is a subinterface of UIEvent. This means, for example,
that the event object passed to an event handler for a click event implements all the methods and
properties defined by each of the MouseEvent, UIEvent, and Event interfaces. Finally, the
MutationEvent interface is a subinterface of Event.

The following sections introduce each of the event interfaces and highlight their most important
properties and methods. You will find complete details about each interface in the DOM reference
section of this book.

19.2.6.1 Event

The event types defined by the HTMLEvents module use the Event interface. All other event types use
subinterfaces of this interface, which means that Event is implemented by all event objects and provides
detailed information that applies to all event types. The Event interface defines the following properties
(note that these properties, and the properties of all Event subinterfaces, are read-only):

type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

type

The type of event that occurred. The value of this property is the name of the event type and is
the same string value that was used when registering the event handler (e.g., "click" or
"mouseover").

target

The node on which the event occurred, which may not be the same as currentTarget.

currentTarget

The node at which the event is currently being processed (i.e., the node whose event handler is
currently being run). If the event is being processed during the capturing or bubbling phase of
propagation, the value of this property is different from the value of the target property. As
discussed earlier, you should use this property instead of the this keyword in your event handler
functions.

eventPhase

A number that specifies what phase of event propagation is currently in process. The value is one
of the constants Event.CAPTURING_PHASE, Event.AT_TARGET, or
Event.BUBBLING_PHASE.

timeStamp

A Date object that specifies when the event occurred.

bubbles

A boolean that specifies whether this event (and events of this type) bubbles up the document
tree.

cancelable

A boolean that specifies whether the event has a default action associated with it that can be
canceled with the preventDefault() method.

In addition to these seven properties, the Event interface defines two methods that are also
implemented by all event objects: stopPropagation() and preventDefault(). Any event
handler can call stopPropagation() to prevent the event from being propagated beyond the node
at which it is currently being handled. Any event handler can call preventDefault() to prevent the
browser from performing a default action associated with the event. Calling preventDefault() in
the DOM Level 2 API is like returning false in the Level 0 event model.

19.2.6.2 UIEvent

The UIEvent interface is a subinterface of Event. It defines the type of event object passed to events of
type DOMFocusIn, DOMFocusOut, and DOMActivate. These event types are not commonly used; what
is more important about the UIEvent interface is that it is the parent interface of MouseEvent. UIEvent
defines two properties in addition to those defined by Event:

view

The Window object (known as a "view" in DOM terminology) within which the event occurred.

detail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

detail

A number that may provide additional information about the event. For click, mousedown, and
mouseup events, this field is the click count: 1 for a single-click, 2 for a double-click, and 3 for a
triple-click. (Note that each click generates an event, but if multiple clicks are close enough
together, the detail value indicates that. That is, a mouse event with a detail of 2 is always
preceded by a mouse event with a detail of 1.) For DOMActivate events, this field is 1 for a
normal activation or 2 for a hyperactivation, such as a double-click or Shift-Enter combination.

19.2.6.3 MouseEvent

The MouseEvent interface inherits the properties and methods of Event and UIEvent and defines the
following additional properties:

button

A number that specifies which mouse button changed state during a mousedown, mouseup, or
click event. A value of 0 indicates the left button, 1 indicates the middle button, and 2 indicates
the right button. This property is used only when a button changes state: it is not used to report
whether a button is held down during a mousemove event, for example. Note also that Netscape
6 gets this wrong and uses the values 1, 2, and 3, instead of 0, 1, and 2. This problem is fixed in
Netscape 6.1.

altKey , ctrlKey, metaKey, shiftKey

These four boolean fields indicate whether the Alt, Ctrl, Meta, or Shift keys were held down
when a mouse event occurred. Unlike the button property, these key properties are valid for any
type of mouse event.

clientX, clientY

These two properties specify the X and Y coordinates of the mouse pointer, relative to the client
area or browser window. Note that these coordinates do not take document scrolling into account:
if an event occurs at the very top of the window, clientY is 0, regardless of how far down the
document has been scrolled. Unfortunately, the Level 2 DOM does not provide a standard way to
translate these window coordinates to document coordinates. In Netscape 6, you can add
window.pageXOffset and window.pageYOffset, and in Internet Explorer, you can add
document.body.scrollLeft and document.body.scrollTop.

screenX, screenY

These two properties specify the X- and Y-coordinates of the mouse pointer relative to the upper-
left corner of the user's monitor. These values are useful if you plan to open a new browser
window at or near the location of the mouse event.

relatedTarget

This property refers to a node that is related to the target node of the event. For mouseover
events, it is the node that the mouse left when it moved over the target. For mouseout events, it is
the node that the mouse entered when leaving the target. It is unused for other event types.

19.2.6.4 MutationEvent

The MutationEvent interface is a subinterface of Event, and is used to provide event details for the event
types defined by the MutationEvents module. These event types are not commonly used in DHTML
programming, so details on the interface are not provided here. See the DOM reference section for
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.2.7 Example: Dragging Document Elements

Now that we've discussed event propagation, event-handler registration, and the various event object
interfaces for the DOM Level 2 event model, we can finally look at how they work. Example 19-2 shows
a JavaScript function, beginDrag() , that, when invoked from a mousedown event handler, allows a
document element to be dragged by the user.

beginDrag() takes two arguments. The first is the element that is to be dragged. This may be the
element on which the mousedown event occurred or a containing element (e.g., you might allow the
user to drag on the titlebar of a window to move the entire window). In either case, however, it must
refer to a document element that is absolutely positioned using the CSS position attribute, and the
left and top CSS attributes must be explicitly set to pixel values in a style attribute. The second
argument is the event object associated with the triggering mousedown event.

beginDrag() records the position of the mousedown event and then registers event handlers for the
mousemove and mouseup events that will follow the mousedown event. The handler for the
mousemove event is responsible for moving the document element, and the handler for the mouseup
event is responsible for deregistering itself and the mousemove handler. It is important to note that the
mousemove and mouseup handlers are registered as capturing event handlers, because the user can
move the mouse faster than the document element can follow it, and some of these events occur
outside of the original target element. Also, note that the moveHandler() and upHandler()
functions that are registered to handle these events are defined as functions nested within beginDrag(
). Because they are defined in this nested scope, they can use the arguments and local variables of
beginDrag(), which considerably simplifies their implementation.

Example 19-2. Dragging with the DOM Level 2 event model

/**

 * Drag.js:

 * This function is designed to be called from a mousedown event handler.

 * It registers temporary capturing event handlers for the mousemove and

 * mouseup events that will follow and uses these handlers to "drag" the

 * specified document element. The first argument must be an absolutely

 * positioned document element. It may be the element that received the

 * mousedown event or it may be some containing element. The second

 * argument must be the event object for the mousedown event.

 **/

function beginDrag(elementToDrag, event) {

 // Figure out where the element currently is

 // The element must have left and top CSS properties in a style attribute

 // Also, we assume they are set using pixel units

 var x = parseInt(elementToDrag.style.left);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 var y = parseInt(elementToDrag.style.top);

 // Compute the distance between that point and the mouse-click

 // The nested moveHandler function below needs these values

 var deltaX = event.clientX - x;

 var deltaY = event.clientY - y;

 // Register the event handlers that will respond to the mousemove

 // and mouseup events that follow this mousedown event. Note that

 // these are registered as capturing event handlers on the document.

 // These event handlers remain active while the mouse button remains

 // pressed and are removed when the button is released.

 document.addEventListener("mousemove", moveHandler, true);

 document.addEventListener("mouseup", upHandler, true);

 // We've handled this event. Don't let anybody else see it.

 event.stopPropagation();

 event.preventDefault();

 /**

 * This is the handler that captures mousemove events when an element

 * is being dragged. It is responsible for moving the element.

 **/

 function moveHandler(event) {

 // Move the element to the current mouse position, adjusted as

 // necessary by the offset of the initial mouse-click

 elementToDrag.style.left = (event.clientX - deltaX) + "px";

 elementToDrag.style.top = (event.clientY - deltaY) + "px";

 // And don't let anyone else see this event

 event.stopPropagation();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 event.stopPropagation();

 }

 /**

 * This is the handler that captures the final mouseup event that

 * occurs at the end of a drag

 **/

 function upHandler(event) {

 // Unregister the capturing event handlers

 document.removeEventListener("mouseup", upHandler, true);

 document.removeEventListener("mousemove", moveHandler, true);

 // And don't let the event propagate any further

 event.stopPropagation();

 }

}

You can use beginDrag() in an HTML file like the following (which is a simplified version of Example
19-2 with the addition of dragging):

<script src="Drag.js"></script> <!-- Include the Drag.js script -->

<!-- Define the element to be dragged -->

<div style="position:absolute; left:100px; top:100px;

 background-color: white; border: solid black;">

<!-- Define the "handle" to drag it with. Note the onmousedown attribute. -->

<div style="background-color: gray; border-bottom: dotted black;

 padding: 3px; font-family: sans-serif; font-weight: bold;"

 onmousedown="beginDrag(this.parentNode, event);">

Drag Me <!-- The content of the "titlebar" -->

</div>

<!-- Content of the dragable element -->

<p>This is a test. Testing, testing, testing.<p>This is a test.<p>Test.

</div>

The key here is the onmousedown attribute of the inner <div> element. Although beginDrag() uses
the DOM Level 2 event model, we register it here using the Level 0 model for convenience. As we'll
discuss in the next section, the event models can be mixed, and when an event handler is specified as
an HTML attribute, the event object is available using the event keyword. (This is not part of the DOM
standard but is a convention of the Netscape 4 and IE event models, which are described later.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's another simple example of using beginDrag(); it defines an image that the user can drag, but
only if the Shift key is held down:

<script src="Drag.js"></script>

<img src="plus.gif" width="20" height="20"

style="position:absolute; left:0px; top:0px;"

onmousedown="if (event.shiftKey) beginDrag(this, event);">

Note the differences between the onmousedown attribute here and the one in the previous example.

19.2.8 Mixing Event Models

So far, we've discussed the traditional Level 0 event model and the new standard DOM Level 2 model.
For backward compatibility, browsers that support the Level 2 model will continue to support the Level 0
event model. This means that you can mix event models within a document, as we did in the HTML
fragments used to demonstrate the element-dragging script in the previous section.

It is important to understand that web browsers that support the Level 2 event model always pass an
event object to event handlers -- even handlers registered by setting an HTML attribute or a JavaScript
property using the Level 0 model. When an event handler is defined as an HTML attribute, it is implicitly
converted to a function that has an argument named event. This means that such an event handler
can use the identifier event to refer to the event object.

The DOM standard never formalized the Level 0 event model. It does not even require properties like
onclick for HTML elements that support an onclick attribute. However, the standard recognizes that
the Level 0 event model will remain in use and specifies that implementations that support the Level 0
model treat handlers registered with that model as if they were registered using addEventListener(
). That is, if you assign a function f to the onclick property of a document element e (or set the
corresponding HTML onclick attribute), it is equivalent to registering that function as follows:

e.addEventListener("click", f, false);

When f() is invoked, it is passed an event object as its argument, even though it was registered using
the Level 0 model. Furthermore, if you change the value of the onclick property from function f to
function g, it is equivalent to this code:

e.removeEventListener("click", f, false);

e.addEventListener("click", g, false);

Note, however, that the Level 2 specification does not say whether an event handler registered by
assigning to the onclick property can be removed by calling removeEventListener(). At the time
of this writing, the Mozilla/Netscape implementation does not allow this.

19.2.9 Synthesizing Events

The DOM Level 2 standard includes an API for creating and dispatching synthetic events. This API
allows events to be generated under program control rather than under user control. Although this is not
a commonly needed feature, it can be useful, for example, to produce regression tests that subject a
DHTML application to a known sequence of events and verify that the result is the same. It could also
be used to implement a macro playback facility to automate commonly performed user-interface actions.
On the other hand, the synthetic event API is not suitable for producing self-running demo programs:
you can create a synthetic mousemove event and deliver it to the appropriate event handlers in your
application, but this does not actually cause the mouse pointer to move across the screen!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Unfortunately, at the time of this writing, the synthetic event API is not supported by Netscape 6, nor by
the current version of Mozilla.

To generate a synthetic event, you must complete three steps:

Create an appropriate event object.

Initialize the fields of the event object.

Dispatch the event object to the desired document element.

To create an event object, call the createEvent() method of the Document object. This method
takes a single argument, which is the name of the event module for which an event object should be
created. For example, to create an event object suitable for use with a click event, call the method as
follows:

document.createEvent("HTMLEvents");

To create an event object suitable for use with any of the mouse event types, call it like this instead:

document.createEvent("MouseEvents");

Note that the argument to createEvent() is plural. This is counterintuitive, but it is the same string
that you'd pass to the hasFeature() method to test whether a browser supports an event module.

After creating an event object, the next step is to initialize its properties. The properties of event objects
are always read-only, however, so you cannot directly assign values to them. Instead, you must call a
method to perform the initialization. Although the earlier descriptions of the Event, MouseEvent, and
other event objects mentioned only properties, each object also defines a single method for initializing
the properties of the event. This initialization method has a name that depends on the type of event
object to be initialized and is passed as many arguments as there are properties to be set. Note that you
can call an event initialization method only before dispatching a synthetic event: you cannot use these
methods to modify the properties of an event object that is passed to an event handler.

Let's look at a couple of examples. As you know, click events are part of the HTMLEvents module and
use event objects of type Event. These objects are initialized with an initEvent() method, as
follows:

e.initEvent("click", "true", "true");

On the other hand, mousedown events are part of the MouseEvents module and use event objects of
the MouseEvent type. These objects are initialized with an initMouseEvent() method that takes
many more arguments:

e.initMouseEvent("mousedown", true, false, // Event properties

 window, 1, // UIEvent properties

 0, 0, 0, 0, // MouseEvent properties

 false, false, false, false,

 0, null);

Note that you pass only the event module name to createEvent(). The name of the actual event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that you pass only the event module name to createEvent(). The name of the actual event
type is passed to the event initialization method. The DOM standard does not require that you use one
of the predefined names. You may create events using any event type name you choose, as long as it
does not begin with a digit or with the prefix "DOM" (in uppercase, lowercase, or mixed case). If you
initialize a synthetic event with a custom event type name, you must register event handlers with that
event type name as well.

After creating and initializing an event object, you can dispatch it by passing it to the dispatchEvent(
) method of the appropriate document element. dispatchEvent() is defined by the EventTarget
interface, so it is available as a method of any document node that supports the addEventListener(
) and removeEventListener() methods. The element to which you dispatch an event becomes
the event target, and the event object goes through the usual sequence of event propagation. At each
stage of event propagation, the event object you created is passed to any event handlers that were
registered for the event type you specified when you initialized the event. Finally, when event
propagation finishes, your call to dispatchEvent() returns. The return value is false if any of the
event handlers called the preventDefault() method on your event object and is true otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.3 The Internet Explorer Event Model

The event model supported by Internet Explorer 4, 5, 5.5, and 6 is an intermediate model, halfway
between the original Level 0 model and the standard DOM Level 2 model. The IE event model includes
an Event object that provides details about events that occur. Instead of being passed to event handler
functions, however, the Event object is made available as a property of the Window object. The IE model
supports event propagation by bubbling, but not by capturing, as the DOM model does. In IE 4, event
handlers are registered in the same way as they are in the original Level 0 model. In IE 5 and later,
however, multiple handlers may be registered with special (but nonstandard) registration functions.

The following sections provide more detail about this event model and document it by comparison to the
original Level 0 event model and the standard Level 2 event model. Therefore, you should be sure you
understand those two event models before reading about the IE model.

19.3.1 The IE Event Object

Like the standard DOM Level 2 event model, the IE event model provides details about each event that
occurs in the properties of an Event object. The Event objects defined in the standard model were in fact
modeled on the IE Event object, so you'll notice a number of similarities between the properties of the IE
Event object and the properties of the DOM Event, UIEvent, and MouseEvent objects.

The most important properties of the IE Event object are:

type

A string that specifies the type of event that occurred. The value of this property is the name of the
event handler with the leading "on" removed (e.g., "click" or "mouseover"). Compatible with the
type property of the DOM Event object.

srcElement

The document element on which the event occurred. Comparable to the target property of the
DOM Event object.

button

An integer that specifies the mouse button that was pressed. A value of 1 indicates the left button,
2 indicates the right button, and 4 indicates the middle button. If multiple buttons are pressed,
these values are added together -- the left and right buttons together produce a value of 3, for
example. Compare this with the button property of the DOM Level 2 MouseEvent object, but note
that although the property names are the same, the interpretation of the property values differs.

clientX , clientY

These integer properties specify the mouse coordinates at the time of the event, relative to the
upper-left corner of the containing window. Note that for documents that are larger than the
window, these coordinates are not the same as the position within the document, and you may
want to add the values document.body.scrollLeft and document.body.scrollTop,
respectively, to account for scrolling. These properties are compatible with the DOM Level 2
MouseEvent properties of the same name.

offsetX, offsetY

These integer properties specify the position of the mouse pointer relative to the source element.
They enable you to determine which pixel of an Image object was clicked on, for example. These
properties have no equivalent in the DOM Level 2 event model.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

altKey , ctrlKey, shiftKey

These boolean properties specify whether the Alt, Ctrl, and Shift keys were held down when
event occurred. These properties are compatible with the properties of the same name in the DOM
Level 2 MouseEvent object. Note, however, that the IE Event object does not have a metaKey
property.

keyCode

This integer property specifies the key code for keydown and keyup events and the Unicode
character code for keypress events. Use String.fromCharCode() to convert character codes
to strings. The DOM Level 2 event model does not standardize key events (although DOM Level 3
is working on this) and has no equivalent to these properties.

fromElement , toElement

fromElement specifies the document element that the mouse used to be over for mouseover
events. toElement specifies the document element that the mouse has moved to for mouseout
events. Comparable to the relatedTarget property of the DOM Level 2 MouseEvent object.

cancelBubble

A boolean property that, when set to true, prevents the current event from bubbling any further up
the element containment hierarchy. Comparable to the stopPropagation() method of the
DOM Level 2 Event object.

returnValue

A boolean property that can be set to false to prevent the browser from performing the default
action associated with the event. This is an alternative to the traditional technique of returning
false from the event handler. Comparable to the preventDefault() method of the DOM
Level 2 Event object.

You can find complete documentation for the IE Event object in the client-side reference section of this
book.

19.3.2 The IE Event Object as a Global Variable

Although the IE event model provides event details in an Event object, it never passes Event objects as
arguments to event handlers. Instead, it makes the Event object available as the event property of the
global Window object. This means that an event handling function in IE can refer to the Event object as
window.event or simply as event. Although it seems strange to use a global variable where a function
argument would do, the IE scheme works because it is implicit in the event-driven programming model
that only one event is ever being processed at a time. Since two events are never handled concurrently, it
is safe to use a global variable to store details on the event that is currently being processed.

The fact that the Event object is a global variable is incompatible with the standard DOM Level 2 event
model, but there is a one-line workaround. If you want to write an event handler function that works with
either event model, write the function so that it expects an argument, and then, if no argument is passed,
initialize the argument from the global variable. For example:

function portableEventHandler(e) {

 if (!e) e = window.event; // Get event details for IE

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (!e) e = window.event; // Get event details for IE

 // Body of the event handler goes here

}

19.3.3 Event Bubbling in IE

The IE event model does not have any notion of event capturing, as the DOM Level 2 model does.
However, events do bubble up through the containment hierarchy in the IE model, just as they do in the
Level 2 model. As with the Level 2 model, event bubbling applies only to raw or input events (primarily
mouse and keyboard events), not to higher-level semantic events. The primary difference between event
bubbling in the IE and DOM Level 2 event models is the way that you stop bubbling. The IE Event object
does not have a stopPropagation() method, as the DOM Event object does. To prevent an event
from bubbling or stop it from bubbling any further up the containment hierarchy, an IE event handler must
set the cancelBubble property of the Event object to true:

window.event.cancelBubble = true;

Note that setting cancelBubble applies only to the current event. When a new event is generated, a
new Event object is assigned to window.event, and cancelBubble is restored to its default value of
false.

19.3.4 IE Event-Handler Registration

In IE 4, event handlers are registered in the same way they are in the original Level 0 event model: by
specifying them as HTML attributes or assigning functions to the event handler properties of document
elements. The only difference is that IE 4 allows access to (and event-handler registration on) all of the
elements in a document, instead of just the form, image, and link elements that are accessible with the
Level 0 DOM.

IE 5 and later introduce the attachEvent() and detachEvent() methods, which provide a way to
register more than one handler function for a given event type on a given object. These methods work
like addEventListener() and removeEventListener(), except that since the IE event model
does not support event capturing, they expect only two arguments: the event type and the handler
function. Also, unlike with the Level 2 event model, the event handler names passed to the IE method
should include the "on" prefix: use "onclick" instead of just "click". You can use attachEvent() to
register an event handler as follows:

function highlight() { /* Event-handler code goes here */ }

document.getElementById("myelt").attachEvent("onmouseover", highlight);

Another difference between attachEvent() and addEventListener() is that functions registered
with attachEvent() are invoked as global functions, rather than as methods of the document element
on which the event occurred. That is, when an event handler registered with attachEvent() executes,
the this keyword refers to the Window object, not to the event's target element.

19.3.5 Example: Dragging with the IE Event Model

Example 19-3 is a modified version of the beginDrag() function that was presented in Example 19-2
This version includes code that makes it work with the IE event model, in addition to the DOM Level 2
event model. The design and intended usage of this version of beginDrag() are the same as in
Example 19-2, so if you understood that example, you should have no trouble understanding this one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 19-2, so if you understood that example, you should have no trouble understanding this one.
What makes this example interesting is that it juxtaposes two event models, clearly highlighting their
differences.

The biggest difference in the IE version of the code is that it must rely on event bubbling rather than event
capturing. This usually works, but it is not the ideal solution for this problem. Another important difference
to note is that IE event handlers are not passed an Event object. Note that the code in this example also
distinguishes between IE 5 and later, which support attachEvent(), and IE 4, which does not. See
the discussion of Example 19-2 for a sample HTML document that is designed to use this beginDrag(
) function.

Example 19-3. Dragging with the IE event model

/**

 * PortableDrag.js:

 * beginDrag() is designed to be called from an onmousedown event handler.

 * elementToDrag may be the element that received the mousedown event, or it

 * may be some containing element. event must be the Event object for the

 * mousedown event. This implementation works with both the DOM Level 2

 * event model and the IE event model.

 **/

function beginDrag(elementToDrag, event) {

 // Compute the distance between the upper-left corner of the element

 // and the mouse-click. The moveHandler function below needs these values.

 var deltaX = event.clientX - parseInt(elementToDrag.style.left);

 var deltaY = event.clientY - parseInt(elementToDrag.style.top);

 // Register the event handlers that will respond to the mousemove events

 // and the mouseup event that follow this mousedown event.

 if (document.addEventListener) { // DOM Level 2 Event Model

 // Register capturing event handlers

 document.addEventListener("mousemove", moveHandler, true);

 document.addEventListener("mouseup", upHandler, true);

 }

 else if (document.attachEvent) { // IE 5+ Event Model

 // In the IE event model, we can't capture events, so these handlers

 // are triggered only if the event bubbles up to them.

 // This assumes that there aren't any intervening elements that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // This assumes that there aren't any intervening elements that

 // handle the events and stop them from bubbling.

 document.attachEvent("onmousemove", moveHandler);

 document.attachEvent("onmouseup", upHandler);

 }

 else { // IE 4 Event Model

 // In IE 4 we can't use attachEvent(), so assign the event handlers

 // directly after storing any previously assigned handlers, so they

 // can be restored. Note that this also relies on event bubbling.

 var oldmovehandler = document.onmousemove;

 var olduphandler = document.onmouseup;

 document.onmousemove = moveHandler;

 document.onmouseup = upHandler;

 }

 // We've handled this event. Don't let anybody else see it.

 if (event.stopPropagation) event.stopPropagation(); // DOM Level 2

 else event.cancelBubble = true; // IE

 // Now prevent any default action.

 if (event.preventDefault) event.preventDefault(); // DOM Level 2

 else event.returnValue = false; // IE

 /**

 * This is the handler that captures mousemove events when an element

 * is being dragged. It is responsible for moving the element.

 **/

 function moveHandler(e) {

 if (!e) e = window.event; // IE Event Model

 // Move the element to the current mouse position, adjusted as

 // necessary by the offset of the initial mouse-click.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // necessary by the offset of the initial mouse-click.

 elementToDrag.style.left = (e.clientX - deltaX) + "px";

 elementToDrag.style.top = (e.clientY - deltaY) + "px";

 // And don't let anyone else see this event.

 if (e.stopPropagation) e.stopPropagation(); // DOM Level 2

 else e.cancelBubble = true; // IE

 }

 /**

 * This is the handler that captures the final mouseup event that

 * occurs at the end of a drag.

 **/

 function upHandler(e) {

 if (!e) e = window.event; // IE Event Model

 // Unregister the capturing event handlers.

 if (document.removeEventListener) { // DOM Event Model

 document.removeEventListener("mouseup", upHandler, true);

 document.removeEventListener("mousemove", moveHandler, true);

 }

 else if (document.detachEvent) { // IE 5+ Event Model

 document.detachEvent("onmouseup", upHandler);

 document.detachEvent("onmousemove", moveHandler);

 }

 else { // IE 4 Event Model

 document.onmouseup = olduphandler;

 document.onmousemove = oldmovehandler;

 }

 // And don't let the event propagate any further.

 if (e.stopPropagation) e.stopPropagation(); // DOM Level 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 if (e.stopPropagation) e.stopPropagation(); // DOM Level 2

 else e.cancelBubble = true; // IE

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

19.4 The Netscape 4 Event Model

The Netscape 4 event model is like the original Level 0 event model, except that it provides event details
in an Event object that is passed as an argument to handler functions. It also supports special methods to
enable event capturing. These features are explained in the sections that follow.

19.4.1 The Netscape 4 Event Object

The Netscape 4 event model defines an Event object that contains details about the event that occurred.
Like the DOM Level 2 model, it passes an Event object as an argument to all event handlers.
Unfortunately, however, the properties of the Netscape 4 Event object are almost entirely different than
those of the IE Event object and the various DOM Level 2 event objects. The key Event properties in the
Netscape 4 event model are:

type

A string that specifies the type of event that occurred. This string is the name of the event handler,
minus the "on" prefix (e.g., "click" or "mousedown"). This property is compatible with the IE and
DOM Level 2 Event objects.

target

The document element on which the event occurred. This property is compatible with the target
property of the DOM Level 2 Event object and comparable to srcElement in the IE Event object.

pageX , pageY

These properties specify the pixel coordinates at which the event occurred, relative to the upper-
left corner of the window. For documents that are larger than the window, you need to add in the
offsets window.pageXOffset and window.pageYOffset to convert these to document
coordinates. Comparable to the clientX and clientY properties of the DOM Level 2
MouseEvent object and the IE Event object.

which

An integer that specifies which mouse button or key was pressed. For mouse events, the left,
middle, and right buttons are specified by the values 1, 2, and 3, respectively. Compare this to the
(mutually incompatible) button properties of the DOM Level 2 MouseEvent object and the IE
Event object. For keyboard events, this property contains the Unicode encoding of the key that was
pressed. Compare this to the keyCode property of the IE Event object.

modifiers

An integer that specifies which keyboard modifier keys were pressed when the event occurred. The
value is a bitmask comprised of any of the following values: Event.ALT_MASK,
Event.CONTROL_MASK, Event.META_MASK, and Event.SHIFT_MASK. Comparable to the
altKey, ctrlKey, metaKey, and shiftKey properties of the DOM Level 2 MouseEvent object
and the IE Event object.

In the Netscape 4 event model, an Event object is passed to all event handlers. When an event handler is
defined as a string of JavaScript code in an HTML attribute, that code is implicitly converted to a function
with an argument named event. This means that HTML event handlers can refer to the Event object with
the identifier event. (Compare this to the IE model, in which the event identifier refers to the global
Event object. The implementations are quite different, but the practical result is the same.)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For backward compatibility, the Event objects used by Mozilla and Netscape 6 implement most of the
properties of the Netscape 4 Event object, with the notable exception, at the time of this writing, of the
modifiers property.

19.4.2 Event Capturing in Netscape 4

The Netscape 4 event model does not support event bubbling, as the IE event model does, but it does
support a limited form of event capturing, like the DOM Level 2 model does. (In fact, the event-
propagation model for the DOM standard is a combination of the Netscape capturing and IE bubbling
models.) Although Netscape 4 supports a form of event capturing, the way it works is quite different from
that defined by the DOM Level 2 event model.

In Netscape 4, the Window, Document, and Layer objects may request the opportunity to preview certain
types of events before they are processed by the elements that generated them. Such a request is made
with the captureEvents() method of these objects. The argument to this method specifies the type of
events to be captured; it is a bitmask composed of constants defined as static properties of the Event
constructor. So, for example, if a program wants all mousedown and mouseup events to be routed to the
Window object before being handled by the object for which they were intended, it can call
captureEvents() like this:

window.captureEvents(Event.MOUSEDOWN | Event.MOUSEUP);

Having made this request to receive the events, the program then has to register event handlers for those
events:

window.onmousedown = function(event) { ... };

window.onmouseup = function(event) { ... };

When one of these capturing event handlers receives an event, it gets to decide what should happen to it
next. In some programs, a captured event is handled and propagates no further. In other circumstances,
however, the program wants to pass the event along. If you pass the event to the routeEvent()
method of the Window, Document, and Layer objects, the method passes the event to the next Window,
Document, or Layer object that has used captureEvents() to specify interest in that type of event.
Or, if there is no other capturing object to which to route the event, it is routed to its original source object
and the appropriate event handler of that object is invoked. For example:

function clickHandler(event) {

 if (event.which == 3) { // It is the right mouse button

 // Handle the event here, and do nothing else

 // The event will not propagate any further

 }

 else { // It is not the right mouse button

 // We're not interested in this event, so let it propagate on

 // to some element that is interested in it

 window.routeEvent(event);

 }

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

}

An alternative to calling routeEvent() is to simply pass the Event object to the handleEvent(
method of the object to which you want the event delivered. The handleEvent() method passes the
event to the appropriate event handler of that object.

When a Window, Document, or Layer object no longer wishes to capture events, it should call the
releaseEvents() method, specifying the same argument it passed to captureEvents().

The Netscape 4 event-capturing model is fundamentally incompatible with the DOM Level 2 event-
capturing model. For example, the DOM model propagates captured events by default, but the Netscape
model does not. Mozilla and Netscape 6 implement the Netscape 4 event-capturing API, but the API
appears to be nonfunctional.

19.4.3 Example: Dragging with the Netscape 4 Event Model

Example 19-4 is an implementation of our familiar beginDrag() method, using the Netscape 4 event
model (and the Netscape 4 Layer-based DOM). It demonstrates how events are captured and how event
handlers are written for this event model. This example includes both JavaScript code and a simple
HTML document that uses the beginDrag() method to define an image that the user can drag.
Compare this implementation of beginDrag() to the two we've seen previously. Note that this example
defines its nested event handler functions at the beginning of the beginDrag() function instead of
the end. This is a bug workaround: if the nested functions are placed at the end of beginDrag(), they
do not work in Netscape 4. Also note the onmousedown handler at the end of the example: it allows
dragging only if the Shift key is held down and tests for this modifier key using the Netscape 4 Event
object API, which is significantly different from the DOM Level 2 and IE APIs.[2]

[2] At the time of this writing, Mozilla and Netscape 6 have not retained compatibility with the modifiers property of the
Netscape 4 Event object, so the onmousedown handler shown here works only in Netscape 4, not in Netscape 6.

Example 19-4. Dragging in Netscape 4

<script>

/**

 * This function is intended for use in a mousedown event handler of an object

 * within a layer. The first argument must be a Layer object. The second

 * argument must be the Event object for the mousedown event.

 **/

function beginDrag(layerToDrag, event) {

 // This nested function responds to mousemove events and moves the layer

 function moveHandler(event) {

 // Move the element to the current mouse position, adjusted as

 // necessary by the offset of the initial mouse-click

 layerToDrag.moveTo(event.pageX - deltaX, event.pageY-deltaY);

 // Don't take any default action, and don't propagate further

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // Don't take any default action, and don't propagate further

 return false;

 }

 // This nested function handles mouseup events

 // It stops capturing events and deregisters the handlers

 function upHandler(event) {

 // Stop capturing and handling drag events

 document.releaseEvents(Event.MOUSEMOVE | Event.MOUSEUP);

 document.onmousemove = null;

 document.onmouseup = null;

 // Don't take any default action, and don't propagate further

 return false;

 }

 // Compute the distance between the upper-left corner of the layer and

 // the mouse-click. The moveHandler function below needs these values.

 var deltaX = event.pageX - layerToDrag.left;

 var deltaY = event.pageY - layerToDrag.top;

 // Arrange to capture mousemove and mouseup events

 // Then arrange to handle them using the functions defined below

 document.captureEvents(Event.MOUSEMOVE | Event.MOUSEUP);

 document.onmousemove = moveHandler;

 document.onmouseup = upHandler;

}

</script>

<!-- Here's how we might use beginDrag() in Netscape 4 -->

<!-- Define a layer using CSS attributes -->

<div id="div1" style="position:absolute; left:100px; top:100px;">

<!-- Give the layer some content and a mousedown event handler -->

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<!-- Give the layer some content and a mousedown event handler -->

<img src="plus.gif" width="20" height="20"

 onmousedown="if (event.modifiers & Event.SHIFT_MASK)

 beginDrag(window.document.div1, event);">

</div>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 20. Compatibility Techniques
JavaScript, like Java, is one of a new breed of platform-independent languages. That is, you can
develop a program in JavaScript and expect to run it unchanged in a JavaScript-enabled web
browser running on any type of computer with any type of operating system. Though this is the
ideal, we live in an imperfect world and have not yet reached that state of perfection.

There are, and probably always will be, compatibility problems that JavaScript programmers must
bear in mind. The one fact that we must always remember is that it is a heterogeneous network
out there. Your JavaScript programs may run on three or more operating systems, using three or
more versions of browsers from at least two different vendors. This can be difficult to keep in mind
for those of us who come from the nonportable past, when programs were developed on a
platform-specific basis. Remember: which platform you develop a program on doesn't matter. It
may work fine on that platform, but the real test is whether it works (or fails gracefully) on all
platforms on which it is used.

The compatibility issues fall into two broad categories: platform-specific, browser-specific, and
version-specific features on one hand; and bugs and language-level incompatibilities, including
the incompatibility of JavaScript with non-JavaScript browsers, on the other. This chapter
discusses techniques for coping with compatibility issues in both of these areas. If you've worked
your way through all the previous chapters in this book, you are probably an expert JavaScript
programmer, and you may already be writing serious JavaScript programs. Don't release those
programs on the Internet (or onto a heterogeneous intranet) before you've read this chapter,
though!

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1 Platform and Browser Compatibility

When developing production-quality JavaScript code, testing and knowledge of platform-specific,
vendor-specific, and version-specific incompatibilities are your chief allies. If you know, for example,
that Netscape 2 on Macintosh platforms always gets the time wrong by about an hour, you can take
steps to deal with this problem. If you know that Netscape 2 and 3 on Windows platforms do not
automatically clear your setting of the status line when the mouse moves off a hypertext link, you can
provide an appropriate event handler to explicitly clear the status line. If you know that Internet
Explorer 4 and Netscape 4 support vastly different Dynamic HTML models, you can write pages that
use the appropriate mechanism depending on the browser in use.

Knowledge of existing incompatibilities is crucial to writing compatible code. Unfortunately, producing a
definitive listing of all known vendor, version, and platform incompatibilities would be an enormous
task. It is beyond the scope and mission of this book, and it has apparently never even been seriously
attempted. You may find some assistance on the Internet, but you will have to rely primarily on your
own experience and testing. Once you have identified an area of incompatibility, however, there are a
number of basic approaches you can take to coping with it, as described in the following sections.

20.1.1 The Least-Common-Denominator Approach

One technique for dealing with incompatibilities is to avoid them like the plague. For example, the Date
object is notoriously buggy in Netscape 2. If you want Netscape 2 users to be able to use your
programs, you can simply avoid relying on the Date object at all.[1]

[1] I don't actually recommend doing this. At the time of this writing, Netscape 2 is so far out of date that it is safe to ignore it.

As another example, Netscape 3 and IE 3 both support the opener property of the Window object, but
Netscape 2 does not. The least-common-denominator approach says that you should not use this
property if compatibility with Netscape 2 is a goal. Instead, you can create an equivalent property of
your own whenever you open a new window:

newwin = window.open("", "new", "width=500, height=300");

newwin.creator = self;

If you consistently set a creator property for each new window you create, you can rely on that
property instead of the nonportable opener property. (Another alternative, as we'll see later, is to give
up on compatibility with Netscape 2 and require a browser that supports JavaScript 1.1 or later, as all
such browsers support the opener property.)

With this technique, you use only features that are known to work on all your target platforms. It doesn't
allow you to write cutting-edge programs or push the envelope, but it results in portable, safe programs
that can serve many important functions.

20.1.2 Defensive Coding

With the defensive coding approach to compatibility, you write code that contains platform-independent
workarounds for platform-specific incompatibilities. For example, if you set the status property of a
Window object from the onmouseover event handler to display a custom message in the status line,
the status line is cleared when you move the mouse off the hyperlink, except in Windows versions of
Netscape 2 and 3. To correct for this problem, you could get in the habit of including an onmouseout
event handler to clear the status line. This precaution fixes the bug in current (and future) platforms
that have it and doesn't do any harm on platforms that don't have the bug.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.1.3 Feature Testing

Feature testing is a powerful technique for coping with incompatibilities. If you want to use a feature
that may not be supported by all browsers, include code in your script that tests to see whether that
feature is supported. If the desired feature is not supported on the current platform, either do not use it
on that platform or provide alternative code that works on all platforms.

Consider again the opener property. In the least-common-denominator approach, we simply avoided
the use of this property and used an alternative on all platforms. With the feature-testing approach, we
provide the alternative only when the current platform does not support opener:

newwin = window.open("", "new", "width=500, height=300");

if (!newwin.opener) newwin.opener = self;

Note how we tested for the existence of the opener property. The same technique works to test for
the existence of methods. For example, the split() method of the String object exists only for
JavaScript 1.1 implementations. We can write our own version of this function that works in all versions
of JavaScript, but for efficiency we'd like to use the fast, built-in method on those platforms that do
support it. Thus, our feature-testing code to split() a string might end up looking like this:

if (s.split) // Check if the method exists, without invoking it

 a = s.split(":"); // If it does exist, it is safe to invoke it

else // Otherwise:

 a = mysplit(s, ":"); // use our alternative implementation

Feature testing is commonly used for performing DHTML effects that are supported only on some
browsers or are implemented differently in different browsers. For example, if you are designing a site
that includes image rollover effects, you can use feature testing with code like this:

if (document.images) { // If the browser defines an images[] array,

 // we include image rollover code here

}

// Otherwise, we simply omit the image rollover effect

As another example, suppose we want to work with a dynamically positioned document element.
Different browsers have different APIs for doing this, so we first use feature testing to see which API is
supported by the current browser with code like this:

if (document.getElementById) { // If the W3C DOM API is supported,

 // do our DHTML using the W3C DOM API

}

else if (document.all) { // If the IE 4 API is supported,

 // do our DHTML using the IE 4 API

}

else if (document.layers) { // If the Netscape 4 API is supported,

 // do the DHTML effect (as best we can) using the Netscape 4 API

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 // do the DHTML effect (as best we can) using the Netscape 4 API

}

else { // Otherwise, DHTML is not supported,

 // so provide a static alternative to DHTML, if we can

}

The nice thing about the feature-testing technique is that it results in code that is not tied to a specific
list of browser vendors or browser version numbers. It works with the set of browsers that exist today
and should continue to work with future browsers, whatever feature sets they implement.

20.1.4 Platform-Specific Workarounds

Feature testing is well suited to checking for support of large functional areas. You can use it to
determine whether a browser supports image rollovers or the W3C DOM API, for example. On the
other hand, sometimes you may need to work around individual bugs or quirks in a particular browser,
and there may be no easy way to test for the existence of the bug. In this case, you will need to create
a platform-specific workaround that is tied to a particular browser vendor, version, or operating system
(or some combination of the three).

Recall from Chapter 13 that the navigator property of the Window object provides information about
the vendor and version of the browser and the operating system on which it is running. You can use
this information to insert platform-specific code into your program.

An example of a platform-specific workaround involves the bgColor property of the Document object.
On Windows and Macintosh platforms, you can set this property at runtime to change the background
color of a document. Unfortunately, when you do this on Unix versions of Netscape 2 and 3, the color
changes but the document contents temporarily disappear. If you wanted to create a special effect
using a changing background color, you could use the Netscape object to test for Unix platforms and
simply skip the special effect for those platforms. The code could look like this:

// Check whether we're running Netscape 2 or 3 on a Unix platform

var nobg = (parseInt(navigator.appVersion) < 4) && // Version

 (navigator.appName.indexOf("Netscape") != -1) && // Vendor

 (navigator.appVersion.indexOf("X11") != -1); // OS

// If we're not, then go ahead and animate the page background color

if (!nobg) animate_bg_color();

When writing platform-specific workarounds, it is common to use " client-sniffer" code to determine
what the current platform is, based (typically) on the properties of the navigator object. You run your
client-sniffer code once, and it sets variables that describe the current platform. Then you don't have to
reparse the properties of navigator for each platform-specific bit of code you write; you can simply
use the variables set by the sniffer code. A simple sniffer that may be sufficient for many purposes
might look like this:

var browserVersion = parseInt(navigator.appVersion);

var isNetscape = navigator.appName.indexOf("Netscape") != -1;

var isIE = navigator.appName.indexOf("Microsoft") != -1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var isIE = navigator.appName.indexOf("Microsoft") != -1;

var agent = navigator.userAgent.toLowerCase();

var isWindows = agent.indexOf("win") != -1;

var isMac = agent.indexOf("mac") != -1;

var isUnix = agent.indexOf("X11") != -1;

With variables like these defined, you might write code like the following:

if (isNetscape && browserVersion < 4 && isUnix) {

 // Work around a bug in Netscape 3 on Unix platforms here

}

A variety of prewritten client sniffers are available on the Internet. You can find a thorough one (along
with a helpful discussion of its use) at http://www.mozilla.org/docs/web-
developer/sniffer/browser_type.html.

20.1.5 Compatibility Through Server-Side Scripts

Another platform-specific approach to compatibility is possible if your web application includes the use
of server-side scripts, such as CGI scripts or server-side JavaScript. A program on the server side can
inspect the User-Agent field of the HTTP request header, which allows it to determine exactly what
browser the user is running. With this information, the program can generate customized JavaScript
code that is known to work correctly on that browser. Or, if the server-side script detects that the user's
browser does not support JavaScript, it can generate web pages that do not require JavaScript at all.
An important drawback to this approach is that a server-side script cannot detect when a user has
disabled JavaScript support in her browser.

Note that the topics of CGI programming and server-side scripting in general are beyond the scope of
this book.

20.1.6 Ignore the Problem

An important question to ask when considering any incompatibility is, how important is it? If the
incompatibility is minor or cosmetic, affects a browser or platform that is not widely used, or affects only
an out-of-date version of a browser, you might simply decide to ignore the problem and let the users
affected by it cope with it on their own.

For example, earlier I suggested defining an onmouseout event handler to correct for the fact that
Netscape 2 and 3 for Windows do not correctly clear the status line. Unfortunately, the onmouseout
event handler is not supported in Netscape 2, so this workaround won't work for that platform. If you
expect your application to have a lot of users who use Netscape 2 on Windows and you think that it is
really important to get that status line cleared, you'll have to develop some other workaround. You
could use setTimeout() in your onmouseover event handler to arrange for the status line to be
cleared in two seconds. But this solution brings problems with it: what if the mouse is still over the
hypertext link and the status line shouldn't be cleared in two seconds? In this case, a simpler approach
might be to simply ignore the problem. This approach can easily be justified, because Netscape 2 is by
now well out of date; any users still relying on it should be encouraged to upgrade.

20.1.7 Fail Gracefully

Finally, there are some incompatibilities that cannot be ignored and cannot be worked around. In these

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Finally, there are some incompatibilities that cannot be ignored and cannot be worked around. In these
cases, your program should work correctly on all platforms, browsers, and versions that provide the
needed features and fail gracefully on all others. Failing gracefully means recognizing that the required
features are not available and informing the user that he will not be able to use your JavaScript
program.

For example, the image-replacement technique we saw during the discussion of images in Chapter 14
does not work in Netscape 2 or Internet Explorer 3, and there is really no workaround that can simulate
it. Therefore, we should not even attempt to run the program on those platforms; instead, we should
politely notify the user of the incompatibility.

Failing gracefully can be harder than it sounds. Much of the rest of this chapter explains techniques for
doing so.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.2 Language Version Compatibility

The previous section discussed general compatibility techniques that are useful for coping with
incompatibilities between different versions of browsers from different vendors running on different
platforms. This section addresses another compatibility concern: how to use new features of the
JavaScript language in a way that does not cause errors on browsers that do not support those
features. Our goals are simple: we need to prevent JavaScript code from being interpreted by
browsers that don't understand it, and we need to display special messages on those browsers that
inform users that their browsers cannot run the scripts.

20.2.1 The language Attribute

The first goal is easy. As we saw in Chapter 12, we can prevent a browser from attempting to run code
that it cannot understand by setting the language attribute of the <script> tag appropriately. For
example, the following <script> tag specifies that the code it contains uses features of JavaScript
1.1 and that browsers that do not support that version of the scripting language should not attempt to
run it:

<script language="JavaScript1.1">

 // JavaScript 1.1 code goes here

</script>

Note that the use of the language attribute is a general technique. When set to the string
"JavaScript1.2", the attribute prevents JavaScript 1.0 or 1.1 browsers from attempting to run the code.
At the time of this writing, the latest browsers (Netscape 6 and IE 6) support language versions 1.0,
1.1, 1.2, 1.3, 1.4, and 1.5. If you write JavaScript code that includes the try/catch exception-
handling statement, for example, you should include it in a <script> tag with
language="JavaScript1.5" to prevent browsers that do not understand this statement from trying
to run it.

Unfortunately, the language attribute is marred by the fact that specifying
language="JavaScript1.2" causes Netscape to behave in ways that are incompatible with the
ECMA-262 standard. For example, as we saw in Chapter 5, setting the language attribute to this
value causes the == operator to perform equality comparisons without doing any type conversions.
And as we saw in Chapter 8, specifying "JavaScript1.2" also causes the toString() method to
behave quite differently. Unless you explicitly want these new, incompatible behaviors, or unless you
can carefully avoid all incompatible features, you should avoid the use of
language="JavaScript1.2".

Note that the version numbers used by the language attribute match the version numbers of
Netscape's (and now Mozilla's) JavaScript interpreter. Microsoft's interpreter has more or less followed
the evolution of Netscape's, but bear in mind that the language attribute is still somewhat vendor-
specific: the language features supported by different vendors for a given version number are not
guaranteed to be the same. This is particularly so for language="JavaScript1.2", but caution is
advisable for other versions as well. Unfortunately, there is no way to specify a specification version
with the language attribute. That is, you cannot write:

<script language="ECMAScript3">...</script>

20.2.2 Explicit Version Testing

The language attribute provides at least a partial solution to the problem of language version

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The language attribute provides at least a partial solution to the problem of language version
compatibility, but it solves only half of the problem. We also need to be able to fail gracefully for
browsers that do not support the desired version of JavaScript. If we require JavaScript 1.1, we'd like
to be able to notify users of JavaScript 1.0 browsers that they cannot use the page. Example 20-1
shows how we can do this.

Example 20-1. A message for browsers that do not support JavaScript 1.1

<!-- Set a variable to determine what version of JavaScript we support -->

<!-- This technique can be extended to any number of language versions -->

<script language="JavaScript"> var _version = 1.0; </script>

<script language="JavaScript1.1"> _version = 1.1; </script>

<script language="JavaScript1.2"> _version = 1.2; </script>

<!-- Run this code on any JavaScript-enabled browser -->

<!-- If the version is not high enough, display a message -->

<script language="JavaScript">

 if (_version < 1.1) {

 document.write('<hr><h1>This Page Requires JavaScript 1.1</h1>');

 document.write('Your JavaScript 1.0 browser cannot run this page.<hr>');

 }

</script>

<!-- Now run the actual program only on JavaScript 1.1 browsers -->

<script language="JavaScript1.1">

 // The actual JavaScript 1.1 code goes here

</script>

20.2.3 Suppressing Version-Related Errors

Example 20-1 showed how we can write JavaScript 1.1 code that JavaScript 1.0 browsers do not
attempt to execute. What if we wanted to write JavaScript 1.2 code that JavaScript 1.1 browsers do not
attempt to execute? We could use the language attribute to explicitly specify "JavaScript1.2", but as
we discussed earlier, this causes Netscape to behave incompatibly. Unfortunately, JavaScript 1.2 adds
a lot of new syntax to the language. If you write code that uses a switch statement, an object
initializer, or a function literal and then run that code on a JavaScript 1.1 browser, you'll cause runtime
syntax errors.

One way to work around this problem is simply to suppress any errors that occur on JavaScript 1.1
browsers. Example 20-2 shows how this can be done using the onerror error handler of the Window
object (which was described in Chapter 13).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 20-2. Suppressing version-related errors

<!-- Check whether JavaScript 1.2 is supported -->

<script language="JavaScript1.2">var _js12_ = 1.2</script>

<!-- Now avoid the problems with JavaScript 1.2 on Netscape by running -->

<!-- the following code on any browser that supports JavaScript 1.1. If -->

<!-- the browser does not support JavaScript 1.2, however, we'll display -->

<!-- an error message and suppress any syntax errors that occur. -->

<script language="JavaScript1.1">

// If JavaScript 1.2 is not supported, fail gracefully

function supressErrors() { return true; }

if (!_js12_) {

 window.onerror = supressErrors;

 alert("This program requires a browser with JavaScript 1.2 support");

}

// Now proceed with the JavaScript 1.2 code

</script>

20.2.4 Loading a New Page for Compatibility

Another approach to version compatibility is to load a web page that requires a specific level of
JavaScript support only after determining whether the browser provides that level of support. Example
20-3 shows how this might be done with a short script that tests whether JavaScript 1.2 is supported. If
the browser supports this version, the script uses the Location.replace() method to load in a
new web page that requires JavaScript 1.2. If JavaScript 1.2 is not supported, the script displays a
message saying that it is required.

Example 20-3. A web page to test for JavaScript compatibility

<head>

<script language="JavaScript1.2">

// If JavaScript 1.2 is supported, extract a new URL from the portion of

// our URL following the question mark, and load in that new URL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// our URL following the question mark, and load in that new URL

location.replace(location.search.substring(1));

// Enter a really long, empty loop, so that the body of this document

// doesn't get displayed while the new document is loading

for(var i = 0; i < 10000000; i++);

</script>

</head>

<body>

<hr size="4">

<h1>This Page Requires JavaScript 1.2</h1>

Your browser cannot run this page. Please upgrade to a browser that

supports JavaScript 1.2, such as Netscape 4 or Internet Explorer 4.

<hr size="4">

</body>

The most interesting thing about this example is that it is a generic one -- the name of the JavaScript
1.2 file to be loaded is encoded in the search portion of the original URL; that file is loaded only if
JavaScript 1.2 is supported. Thus, if the file in this example has the name testjs12.html, you can use it
in URLs like the one shown in this hyperlink:

Visit my cool JavaScript 1.2 page!

The other thing to note about Example 20-3 is that calling Location.replace() starts a new page
loading but does not immediately stop the current page from loading. Therefore, the JavaScript code in
this example enters a long, empty loop after it calls replace(). This prevents the rest of the
document from being parsed and displayed, so that users of JavaScript 1.2 browsers do not see the
message intended for users of browsers that do not support JavaScript 1.2.

Finally, note that the technique shown in Example 20-3 is useful not only to distinguish one version of
JavaScript from another, but also to distinguish between browsers that support JavaScript and those
that do not. The next section discusses other compatibility techniques that are useful with non-
JavaScript browsers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

20.3 Compatibility with Non-JavaScript Browsers

The previous section discussed compatibility with browsers that do not support a particular
version of JavaScript. This section considers compatibility with browsers that do not support
JavaScript at all. These are either browsers that have no JavaScript capability or browsers in
which the user has disabled JavaScript (which some users do because of security concerns).
Because a number of such browsers are still in use, you should design your web pages to fail
gracefully when read into browsers that do not understand JavaScript. There are two parts to
doing this: first, you must take care to ensure that your JavaScript code does not appear as if it
were HTML text; and second, you should arrange to display a message informing the visitor that
her browser cannot correctly handle the page.

20.3.1 Hiding Scripts from Old Browsers

Web browsers that support JavaScript execute the JavaScript statements that appear between
the <script> and </script> tags. Browsers that don't support JavaScript but recognize the
<script> tag simply ignore everything between <script> and </script>. This is as it should
be. Really old browsers, however (and there are still some out there), do not even recognize the
<script> and </script> tags. This means that they ignore the tags themselves and treat all
the JavaScript between them as HTML text to be displayed. Unless you take steps to prevent it,
users of these old browsers see your JavaScript code formatted into big meaningless paragraphs
and presented as web page content!

To prevent this, enclose the body of your script within an HTML comment, using the format shown
in Example 20-4.

Example 20-4. A script hidden from old browsers

<script language="JavaScript">

<!-- Begin HTML comment that hides the script

 // JavaScript statements go here

 // .

 // .

// End HTML comment that hides the script -->

</script>

Browsers that do not understand the <script> and </script> tags simply ignore them. Thus,
lines one and seven in Example 20-4 have no effect on these browsers. They'll ignore lines two
through six as well, because the first four characters on line two begin an HTML comment and the
last three characters on line six end that comment -- everything in between is ignored by the
HTML parser.

This script-hiding technique also works for browsers that do support JavaScript. Lines one and
seven indicate the beginning and end of a script. Client-side JavaScript interpreters recognize the
HTML comment-opening string <!-- but treat it as a single-line comment. Thus, a browser with
JavaScript support treats line two as a single-line comment. Similarly, line six begins with the //
single-line comment string, so that line is ignored by JavaScript-enabled browsers as well. This
leaves lines three through five, which are executed as JavaScript statements.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While it takes a little getting used to, this simple and elegant mix of HTML and JavaScript
comments does exactly what we need: it prevents JavaScript code from being displayed by
browsers that do not support JavaScript. Although a declining number of browsers require this
type of commenting, it is still quite common to see it used in JavaScript code on the Internet. The
comments need not be as verbose as in Example 20-4, of course. It is common to see scripts like
this:

<script language="JavaScript">

<!--

 document.write(new Date());

// -->

</script>

This commenting technique has solved the problem of hiding our JavaScript code from browsers
that can't run it. The next step in failing gracefully is to display a message to the user to let him
know that the page cannot run.

20.3.2 <noscript>

The <noscript> and </noscript> tags enclose an arbitrary block of HTML text that should be
displayed by any browser that does not support JavaScript. These tags can be employed to let a
user know that his browser cannot correctly display your pages that require JavaScript. For
example:

<script language="JavaScript1.1">

 // Your JavaScript code here

</script>

<noscript>

<hr size="4">

<h1>This Page Requires JavaScript 1.1</h1>

This page requires a browser that supports JavaScript 1.1.<p>

Your browser either does not support JavaScript, or it has JavaScript

support disabled. If you want to correctly view this page, please

upgrade your browser or enable JavaScript support.

<hr size="4">

</noscript>

There is one problem with the <noscript> tag. It was introduced into HTML by Netscape with
the release of Netscape 3. Thus, it is not supported in Netscape 2. Since Netscape 2 does not
support <noscript> and </noscript>, it ignores the tags and displays the text that appears
between them, even though it does support scripting. In the previous code, however, this works
out to our advantage, because we've specified that the code requires JavaScript 1.1 support.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 21. JavaScript Security
Because of the wide-open nature of the Internet, security is an important issue. This is particularly
true with the introduction of languages such as Java and JavaScript, because they allow
executable content to be embedded in otherwise static web pages. Since loading a web page can
cause arbitrary code to be executed on your computer, stringent security precautions are required
to prevent malicious code from doing any damage to your data or your privacy. This chapter
discusses Internet security issues related to JavaScript. Note that this chapter does not cover any
of the many other issues involved in web security, such as the authentication and cryptographic
technologies used to keep the contents of web documents and HTML forms private while they
traverse the Web.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.1 JavaScript and Security

JavaScript's first line of defense against malicious code is that the language simply does not
support certain capabilities. For example, client-side JavaScript does not provide any way to write
or delete files or directories on the client computer. With no File object and no file access
functions, a JavaScript program cannot delete a user's data or plant viruses on the user's system.

Similarly, client-side JavaScript has no networking primitives of any type. A JavaScript program
can load URLs and can send HTML form data to web servers, CGI scripts, and email addresses,
but it cannot establish a direct connection to any other hosts on the network. This means, for
example, that a JavaScript program cannot use a client's machine as an attack platform from
which to attempt to crack passwords on another machine. (This would be a particularly dangerous
possibility if the JavaScript program had been loaded from the Internet through a firewall and
could then attempt to break into the intranet protected by the firewall.)

Although the core JavaScript language and the basic client-side object model lack the filesystem
and networking features that most malicious code requires, the situation is not quite as simple as
it appears. In many web browsers, JavaScript is used as a "script engine" for other software
components, such as ActiveX controls in Internet Explorer and plugins in Netscape. These
components may have filesystem and network capabilities, and the fact that JavaScript programs
can control them clouds the picture and raises security concerns. This is particularly true with
ActiveX controls, and Microsoft has at times had to release security patches to prevent JavaScript
code from exploiting the capabilities of scriptable ActiveX objects. We'll touch on this issue again
briefly at the end of this chapter.

While this intentional lack of features in client-side JavaScript provides a basic level of security
against the most egregious attacks, other security issues remain. These are primarily privacy
issues -- JavaScript programs must not be allowed to export information about the user of a
browser when that information is supposed to be private.

When you browse the Web, one of the pieces of information you are by default consenting to
release about yourself is which web browser you use. As a standard part of the HTTP protocol, a
string identifying your browser, its version, and its vendor is sent with every request for a web
page. This information is public, as is the IP address of your Internet connection, for example.
Other information, however, should not be public: this includes your email address, which should
not be released unless you choose to do so by sending an email message or authorizing an
automated email message to be sent under your name.

Similarly, your browsing history (the record of which sites you've already visited) and the contents
of your bookmarks list should remain private. Your browsing history and bookmarks say a lot
about your interests; this is information that direct marketers and others pay good money for so
that they can target sales pitches to you more effectively. You can be sure that if a web browser
or JavaScript allowed this valuable private information to be stolen, some people would steal it
every time you visited their sites, and it would be on the market only seconds later. Most web
users would be uncomfortable knowing that any site they visited could find out that they were cat
fanciers, for example, who were also interested in women's footwear and the Sierra Club.

Even assuming that we have no embarrassing fetishes to hide, there are plenty of good reasons
to be concerned about data privacy. One such reason is a pragmatic concern about receiving
electronic junk mail (spam) and the like. Another is a legitimate concern about keeping secrets.
We don't want a JavaScript program loaded from the Internet and running in one web browser
window to be able to start examining the contents of other browser windows that contain pages
loaded from the company intranet behind the firewall. The remainder of this chapter explains how
JavaScript defends itself against such abuses.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.2 Restricted Features

As I've already mentioned, the first line of defense against malicious scripts in client-side
JavaScript is that the language simply omits certain capabilities. The second line of defense is
that JavaScript imposes restrictions on certain features that it does support. For example, client-
side JavaScript supports a close() method for the Window object, but most (hopefully all)
web-browser implementations restrict this method so that a script can close only a window that
was opened by a script from the same web server. In particular, a script cannot close a window
that the user opened; if it tries to do so, the user is presented with a confirmation box asking if he
really wants to close the window.

The most important of these security restrictions is known as the same-origin policy and is
described in the next section. The following is a list of the other security restrictions found in most
implementations of client-side JavaScript. This is not a definitive list. Each browser may have a
slightly different set of restrictions, and the proprietary features of each browser may well have
proprietary security restrictions to go along with them.

The History object was originally designed as an array of URLs that represented the
complete browsing history of the browser. Once the privacy implications of this became
apparent, however, all access to the actual URLs was restricted, and the History object was
left with only its back(), forward(), and go() methods to move the browser through
the history array without revealing the contents of the array.

The value property of the FileUpload object cannot be set. If this property could be set, a
script could set it to any desired filename and cause the form to upload the contents of any
specified file (such as a password file) to the server.

A script cannot submit a form (using the submit() method of the Form object, for
example) to a mailto: or news: URL without the user's explicit approval through a
confirmation dialog box. Such a form submission would contain the user's email address,
which should not be made public without obtaining the user's permission.

A JavaScript program cannot close a browser window without user confirmation unless it
opened the window itself. This prevents malicious scripts from calling self.close() to
close the user's browsing window, thereby causing the program to exit.

A script cannot open a window that is smaller than 100 pixels on a side or cause a window
to be resized to smaller than 100 pixels on a side. Similarly, such a script cannot move a
window off the screen, or create a window that is larger than the screen. This prevents
scripts from opening windows that the user cannot see or could easily overlook; such
windows could contain scripts that keep running after the user thinks they have stopped.
Also, a script may not create a browser window without a titlebar, because such a window
could be made to spoof an operating-system dialog box and trick the user into entering a
sensitive password, for example.

A script may not cause a window or frame to display an about: URL, such as
about:cache, because these URLs can expose system information, such as the contents
of the browser's cache.

A script cannot set any of the properties of an Event object. This prevents scripts from
spoofing events. A script cannot register event listeners within for or capture events for
documents loaded from different sources than the script. This prevents scripts from
snooping on the user's input (such as the keystrokes that constitute a password entry) to
other pages.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.3 The Same-Origin Policy

There is one far-reaching security restriction in JavaScript that deserves its own section. This
restriction is known as the same-origin policy: a script can read only the properties of windows
and documents that have the same origin (i.e., that were loaded from the same host, through the
same port, and by the same protocol) as the script itself.

The same-origin policy does not actually apply to all properties of all objects in a window from a
different origin. But it does apply to many of them, and in particular, it applies to practically all of
the properties of the Document object. For all intents and purposes, you should consider all
predefined properties of all client-side objects with different origins off-limits to your scripts. User-
defined properties of objects with different origins may also be restricted, although this may vary
from implementation to implementation.

The same-origin policy is a fairly severe restriction, but it is necessary to prevent scripts from
stealing proprietary information. Without this restriction, an untrusted script (perhaps a script
loaded through a firewall into a browser on a secure corporate intranet) in one window could use
DOM methods to read the contents of documents in other browser windows, which might contain
private information.

Still, there are circumstances in which the same-origin policy is too restrictive. It poses particular
problems for large web sites that use more than one server. For example, a script from
home.netscape.com might legitimately want to read properties of a document loaded from
developer.netscape.com, or scripts from orders.acme.com might need to read properties from
documents on catalog.acme.com. To support large web sites of this sort, JavaScript 1.1
introduced the domain property of the Document object. By default, the domain property
contains the hostname of the server from which the document was loaded. You can set this
property, but only to a string that is a valid domain suffix of itself. Thus, if domain is originally the
string "home.netscape.com", you can set it to the string "netscape.com", but not to
"home.netscape" or "cape.com", and certainly not to "microsoft.com". (The domain value must
have at least one dot in it; you cannot set it to "com" or any other top-level domain.)

If two windows (or frames) contain scripts that set domain to the same value, the same-origin
policy is relaxed for these two windows and each of the windows may read properties from the
other. For example, cooperating scripts in documents loaded from orders.acme.com and
catalog.acme.com might set their document.domain properties to "acme.com", thereby making
the documents appear to have the same origin and enabling each document to read properties of
the other.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

21.4 Security Zones and Signed Scripts

A one-size-fits-all security policy is never entirely satisfactory. If the policy is too restrictive, trusted
scripts don't have the ability to do the interesting and useful things we would like them to do. On
the other hand, if the policy is too permissive, untrusted scripts may cause havoc! The ideal
solution is to allow the security policy to be configured so that trusted scripts are subject to fewer
security restrictions than untrusted scripts. The two major browser vendors, Microsoft and
Netscape, have taken different approaches to allowing configurable security; their approaches are
briefly described in this section.

Internet Explorer defines "security zones" in which you can list web sites whose scripts you trust
and web sites whose scripts you do not trust. You can then configure the security policies of these
two zones separately, giving more privileges to and placing fewer restrictions on the trusted sites.
(You may also separately configure the privileges of internet and intranet sites that are not
explicitly listed in either of the other two zones.)

Unfortunately, this is not a complete or fine-grained solution for JavaScript security, because most
of the security options that IE allows you to configure are not directly related to JavaScript. In IE 6
beta, for example, you can specify whether scripts are allowed to control ActiveX objects and
Java applets, and whether they can perform paste (as in cut-and-paste) operations. You are not
given the option, for example, of disabling the same-origin policy for a trusted site or of allowing
scripts from trusted sites to send email messages without a user confirmation.

Netscape 4 and Netscape 6 implement configurable security with an approach known as "signed
scripts." Signed scripts provide complete fine-grained configurability of security policies and do it
in a way that is cryptographically secure and theoretically very compelling. Unfortunately, since
Microsoft has no compatible technology, the process of creating signed scripts is cumbersome for
script authors, and the use of signed scripts can be confusing for end users, the use of this
promising technology has never really caught on.

Briefly, a signed script bears an unforgeable digital signature that specifies the person or
organization that wrote or otherwise takes responsibility for the script. When a signed script needs
to circumvent one of the security restrictions described earlier, it first requests a special "privilege"
that allows it to do so. When a script requests a privilege, the browser defers to the user. The user
is told who the signer of the script is and is asked whether she wants to grant the requested
privilege to a script written by that person or organization. Once the user makes the decision, she
can have the browser remember it so that she doesn't get asked the same question in the future.
In effect, this procedure allows a user to configure a fine-grained customized security policy on
the fly, as the need arises.

As I've already mentioned, the process of creating signed scripts is somewhat cumbersome. Also,
the details of how it is done have change between Netscape 4 and Netscape 6. Those details are
beyond the scope of this book, but you can learn more online at
http://developer.netscape.com/docs/manuals/signedobj/trust/index.htm and
http://www.mozilla.org/projects/security/components/.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 22. Using Java with JavaScript
As we discussed in Chapter 14, Netscape 3 and later and Internet Explorer 4 and later both allow
JavaScript programs to read and write the public fields and invoke the public methods of Java
applets embedded in HTML documents. Netscape supports JavaScript interaction with Java
applets through a technology known as LiveConnect. Internet Explorer instead treats every Java
object (including applets) as an ActiveX control and uses its ActiveX scripting technology to allow
JavaScript programs to interact with Java. Because Netscape's technology is specifically
designed for communication between JavaScript and Java, it has some features that IE's ActiveX
technology cannot provide. In practice, however, the two technologies are fairly compatible.
Although this chapter is based on Netscape's LiveConnect, the key features it describes work in
IE as well.[1]

[1] Note that Netscape 6 was released with poor support for LiveConnect but that it is fully implemented in Netscape
6.1 and later.

This chapter begins with a discussion of how you can use JavaScript to script Java applets, how
your Java applets can invoke JavaScript code, and how (in Netscape only) you can use
JavaScript to work directly with Java system classes. It then documents the nitty-gritty details of
how LiveConnect works. It assumes you have at least a basic familiarity with Java programming
(see Java in a Nutshell, by David Flanagan, and Learning Java, by Patrick Niemeyer and
Jonathan Knudsen, both published by O'Reilly).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.1 Scripting Java Applets

As discussed in Chapter 14, all Java applets embedded in a web page become part of the
Document.applets[] array. Also, if given a name or id, an applet can be accessed directly as a
property of the Document object. For example, the applet created by an <applet> tag with a name
attribute of "chart" can be referred to as document.chart.

The public fields and methods of every applet are accessible to JavaScript as if they were the
properties and methods of a JavaScript object. For example, if an applet named "chart" defines a
field named lineColor whose type is String, a JavaScript program can query and set this field
with code like this:

var chartcolor = document.chart.lineColor; // Read an applet field

document.chart.lineColor = "#ff00ff"; // Set an applet field

JavaScript can even query and set the values of fields that are arrays. Suppose that the chart applet
defines two fields declared as follows (Java code):

public int numPoints;

public double[] points;

A JavaScript program might use these fields with code like this:

for(var i = 0; i < document.chart.numPoints; i++)

 document.chart.points[i] = i*i;

This example illustrates the tricky thing about connecting JavaScript and Java: type conversion.
Java is a strongly typed language with a fair number of distinct primitive types. JavaScript is loosely
typed and has only a single numeric type. In the previous example, a Java integer is converted to a
JavaScript number and various JavaScript numbers are converted to Java double values. There is
a lot of work going on behind the scenes to ensure that these values are properly converted as
needed. Later in this chapter, we'll consider the topic of data type conversion in detail.

In addition to querying and setting the fields of a Java applet, JavaScript can also invoke the
methods of an applet. Suppose, for example, that the chart applet defines a method named
redraw(). This method takes no arguments and simply serves to notify the applet that its
points[] array has been modified and it should redraw itself. JavaScript can invoke this method
just as if it was a JavaScript method:

document.chart.redraw();

JavaScript can also call methods that take arguments and return values. The underlying
LiveConnect or ActiveX scripting technology does the work of converting JavaScript argument
values into legal Java values and converting Java return values into legal JavaScript values.
Suppose the chart applet defines Java methods like these:

public void setDomain(double xmin, double xmax);

public void setChartTitle(String title);

public String getXAxisLabel();

JavaScript can call these methods with code like this:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.chart.setDomain(0, 20);

document.chart.setChartTitle("y = x*x");

var label = document.chart.getXAxisLabel();

Finally, note that Java methods can return Java objects as their return values, and JavaScript can
read and write the public fields and invoke the public methods of these objects as well. JavaScript
can also use Java objects as arguments to Java methods. Suppose the Java applet defines a
method named getXAxis() that returns a Java object that is an instance of a class named Axis
and a method named setYAxis() that takes an argument of the same type. Now, suppose
further that Axis has a method named setTitle(). We might use these methods with JavaScript
code like this:

var xaxis = document.chart.getXAxis(); // Get an Axis object

var newyaxis = xaxis.clone(); // Make a copy of it

newyaxis.setTitle("Y"); // Call a method of it...

document.chart.setYAxis(newyaxis); // and pass it to another method

There is one complication when we use JavaScript to invoke the methods of a Java object. Java
allows two or more methods to have the same name, as long as they have different argument types.
For example, a Java object could declare these two methods:

public String convert(int i); // Convert an integer to a string

public String convert(double d); // Convert a floating-point number

JavaScript has only one numeric type and doesn't distinguish between integers and floating-point
values, so when you use JavaScript to pass a number to the method named "convert", it cannot tell
which one you intended to call. In practice, this problem doesn't arise often, and it is usually possible
to work around it by simply renaming the methods as needed. The latest versions of LiveConnect (in
Netscape 6.1 and later) also allow you to disambiguate cases like this by including the argument
types in the method name. For example, if the two methods above were defined by
document.applets[0], you could disambiguate them like this:

var iconvert = document.applets[0]["convert(int)"]; // Get int method

iconvert(3); // Invoke the method like this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.2 Using JavaScript from Java

Having explored how to control Java from JavaScript code, we now turn to the opposite problem: how to
JavaScript from Java code. This control is accomplished primarily through the Java netscape.javascript.JSObject
class, which represents a JavaScript object within a Java program. The JavaScript-to-Java capabilities described
in the previous section typically work well in both Netscape and Internet Explorer. In contrast, the Java-to-
JavaScript techniques described here are not as robustly supported, and you may well encounter bugs in both
Netscape and IE.

22.2.1 The JSObject Class

All Java interactions with JavaScript are handled through an instance of the netscape.javascript.JSObject
An instance of this class is a wrapper around a single JavaScript object. The class defines methods that allow you
to read and write property values and array elements of the JavaScript object and to invoke methods of the
object. Here is a synopsis of this class:

public final class JSObject extends Object {

 // Static method to obtain initial JSObject for applet's browser window

 public static JSObject getWindow(java.applet.Applet applet);

 public Object getMember(String name); // Read object property

 public Object getSlot(int index); // Read array element

 public void setMember(String name, Object value); // Set object property

 public void setSlot(int index, Object value); // Set array element

 public void removeMember(String name); // Delete property

 public Object call(String methodName, Object args[]); // Invoke method

 public Object eval(String s); // Evaluate string

 public String toString(); // Convert to string

 protected void finalize();

}

Because all JavaScript objects appear in a hierarchy rooted in the current browser window, JSObject objects
must also appear in a hierarchy. To interact with any JavaScript objects, a Java applet must first obtain a
JSObject that represents the browser window (or frame) in which the applet appears. The JSObject class does
not define a constructor method, so we cannot simply create an appropriate JSObject. Instead, we must call the
static getWindow() method. When passed a reference to an applet, this method returns a JSObject that
represents the browser window that contains the applet. Thus, every applet that interacts with JavaScript includes
a line that looks something like this:

JSObject jsroot = JSObject.getWindow(this); // "this" is the applet itself

Having obtained a JSObject that refers to the root window of the JavaScript object hierarchy, you can use
instance methods of the JSObject to read the values of properties of the JavaScript object that it represents. Most
of these properties have values that are themselves JavaScript objects, so you can continue the process and
read their properties as well. The JSObject getMember() method returns the value of a named property, while
the getSlot() method returns the value of a numbered array element of the specified JavaScript object. You

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the getSlot() method returns the value of a numbered array element of the specified JavaScript object. You
might use these methods as follows:

import netscape.javascript.JSObject; // This must be at the top of the file

 ...

JSObject jsroot = JSObject.getWindow(this); // self

JSObject document = (JSObject) jsroot.getMember("document"); // .document

JSObject applets = (JSObject) document.getMember("applets"); // .applets

Applet applet0 = (Applet) applets.getSlot(0); // [0]

You should note two things about this code fragment. First, getMember() and getSlot() both return a
value of type "Object", which generally must be cast to some more specific value, such as a JSObject. Second,
the value read from slot 0 of the applets array can be cast to an Applet, rather than a JSObject. This is because
the elements of the JavaScript applets[] array are JavaObject objects that represent Java Applet objects.
When Java reads a JavaScript JavaObject, it unwraps that object and returns the Java object that it contains (in
this case, an Applet). The data conversion that occurs through the JSObject interface is documented
chapter.

The JSObject class also supports methods for setting properties and array elements of JavaScript objects.
setMember() and setSlot() are analogous to the getMember() and getSlot() methods. These
methods set the value of a named property or a numbered array element to a specified value. Note, however, that
the value to be set must be a Java object. If you want to set a value of a primitive type, use the corresponding
Java wrapper class: use an Integer object instead of an int value, for example. Finally, the removeMember()
method allows you to delete the value of a named property from a JavaScript object.

In addition to reading and writing properties and array elements from JavaScript objects, the JSObject
allows you to invoke methods of JavaScript objects. The JSObject call() method invokes a named method of
the specified JavaScript object and passes a specified array of Java objects as arguments to that method. As we
saw when setting JavaScript properties, it is not possible to pass primitive Java values as arguments to a
JavaScript method; instead you must use the corresponding Java object types. For example, you might use the
call() method in Java code like the following to open a new browser window:

public JSObject newwin(String url, String window_name)

{

 Object[] args = { url, window_name };

 JSObject win = JSObject.getWindow(this);

 return (JSObject) win.call("open", args);

}

The JSObject class has one more important method: eval(). This Java method works just like the JavaScript
function of the same name -- it executes a string that contains JavaScript code. You'll find that using
often much easier than using the various other methods of the JSObject class. Since all the code is
string, you can use string representations of the data types you want -- you do not have to convert Java primitive
types to their corresponding object types. For example, compare the following two lines of code that set properties
of the main browser window:

jsroot.setMember("i", new Integer(0));

jsroot.eval("self.i = 0");

The second line is obviously easier to understand. As another example, consider the following use of
write a particular frame being displayed in the browser window:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject jsroot = JSObject.getWindow(this);

jsroot.eval("parent.frames[1].document.write('Hello from Java!')");

To do the equivalent without the eval() method is a lot harder:

JSObject jsroot = JSObject.getWindow(this);

JSObject parent = (JSObject) jsroot.getMember("parent");

JSObject frames = (JSObject) parent.getMember("frames");

JSObject frame1 = (JSObject) frames.getSlot(1);

JSObject document = (JSObject) frame1.getMember("document");

Object[] args = { "Hello from Java!" };

document.call("write", args);

22.2.2 Using JSObjects in Applets

Example 22-1 shows the init() method of an applet that uses LiveConnect to interact with JavaScript.

Example 22-1. Using JavaScript from an applet method

import netscape.javascript.*

public void init()

{

 // Get the JSObject representing the applet's browser window.

 JSObject win = JSObject.getWindow(this);

 // Run JavaScript with eval(). Careful with those nested quotes!

 win.eval("alert('The CPUHog applet is now running on your computer. " +

 "You may find that your system slows down a bit.');");

}

In order to use any applet, you must compile it and then embed it in an HTML file. When the applet interacts with
JavaScript, special instructions are required for both of these steps.

22.2.2.1 Compiling applets that use the JSObject class

Any applet that interacts with JavaScript uses the netscape.javascript.JSObject class. To compile such an applet,
therefore, your Java compiler must know where to find a definition of this class. Because the class is
shipped by Netscape and not by Sun, the javac compiler from Sun does not know about it. This section explains

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shipped by Netscape and not by Sun, the javac compiler from Sun does not know about it. This section explains
how to enable your compiler to find this required class. If you are not using the JDK from Sun, you may have
something a little different -- see the documentation from the vendor of your Java compiler or Java development
environment.

To tell the JDK compiler where to find classes, you set the CLASSPATH environment variable. This environment
variable specifies a list of directories and JAR files (or ZIP files) that the compiler should search for class
definitions (in addition to its standard directory of system classes). The trick is to figure out which JAR file on your
system holds the definition of the netscape.javascript.JSObject class. In Netscape 6.1, the file is
plugins/java2/javaplugin.jar, under the Netscape installation directory. In Netscape 4, the file is
java/classes/java40.jar, under the installation directory. For Netscape 4 on a Windows system, for example, you
would probably find java40.jar at C:\Program Files\Netscape\Communicator\Program\ Java\Classes\

For Internet Explorer, the class definition you need is usually in one of the ZIP files in c:\Windows\
Java\Packages. The trouble is that this directory contains a bunch of ZIP files, all of whose names are
and change from release to release! The largest of the files is typically the one you need. You can use an unzip
utility to verify that it contains the file netscape/javascript/JSObject.class.

Once you have found the JAR or ZIP file you need, you can tell the compiler about it by setting the CLASSPATH
environment variable. For a Unix system, set a path like this:

setenv CLASSPATH .:/usr/local/netscape/plugins/java2/javaplugin.jar

And for a Windows system, set a path like this:

set CLASSPATH=.;C:\Windows\Java\Packages\5fpnnz7t.zip

With CLASSPATH set, you should be able to compile your applet with javac as you would normally.

22.2.2.2 The mayscript attribute

There is an additional requirement for running an applet that interacts with JavaScript. As a security precaution,
an applet is not allowed to use JavaScript unless the web page author (who may not be the applet author)
explicitly gives the applet permission to do so. To give this permission, you must include the new mayscript
attribute in the applet's <applet> tag in the HTML file.

Example 22-1 showed a fragment of an applet that used JavaScript to display an alert dialog box. Once you have
successfully compiled this applet, you might include it in an HTML file as follows:

<applet code="CPUHog.class" width="300" height="300" mayscript></applet>

If you do not remember to include the mayscript attribute, the applet is not allowed to use the JSObject class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.3 Using Java Classes Directly

As described in the previous two sections, both Netscape and Internet Explorer allow JavaScript
code to interact with Java applets and Java applets to interact with JavaScript. Netscape's
LiveConnect technology also allows JavaScript programs to instantiate their own Java objects
and use them, even in the absence of any applets. Internet Explorer does not have any
analogous capability.

In Netscape, the Packages object provides access to all the Java packages that Netscape
knows about. The expression Packages.java.lang refers to the java.lang package, and the
expression Packages.java.lang.System refers to the java.lang.System class. For
convenience, java is a shortcut for Packages.java. In Netscape, JavaScript code might invoke
a static method of this java.lang.System class as follows:

// Invoke the static Java method System.getProperty()

var javaVersion = java.lang.System.getProperty("java.version");

This use of LiveConnect is not limited to system classes, because LiveConnect allows us to use
the JavaScript new operator to create new instances of Java classes (just as we would in Java).
Example 22-2 shows JavaScript code that uses standard Java classes (the JavaScript code looks
almost identical to Java code, in fact) to pop up a window and display some text. The result is
shown in Figure 22-1.

Figure 22-1. A Java window created from JavaScript

Example 22-2. Scripting the built-in Java classes

var f = new java.awt.Frame("Hello World");

var ta = new java.awt.TextArea("hello, world", 5, 20);

f.add("Center", ta);

f.pack();

f.show();

The code in Example 22-2 creates a simple Java user interface. What is missing, however, is any
form of event handling or user interaction. A program like the one shown here is restricted to
doing output, since it doesn't include any way for JavaScript to be notified when the user interacts
with the Java window. It is possible, though complicated, to use JavaScript to define a Java user
interface that responds to events. In Java 1.1 and later, notification of an event is performed by
invoking a method of an EventListener object. Since Java applets can execute arbitrary strings of
JavaScript code, it is possible to define a Java class that implements the appropriate
EventListener interface and invokes a specified string of JavaScript code when it is notified that
an event has occurred. If you create an applet with a method that allows you to create such
EventListener objects, you can use JavaScript to piece together Java GUIs that include event
handlers defined in JavaScript.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

handlers defined in JavaScript.

Note that LiveConnect does not give complete and unrestricted access to the Java system; in
other words, there are some things we cannot do with LiveConnect. For example, LiveConnect
does not give us the capability to define new Java classes or subclasses from within JavaScript,
nor does it give us the ability to create Java arrays.[2] In addition to these limitations, access to the
standard Java classes is restricted for security reasons. An untrusted JavaScript program cannot
use the java.io.File class, for example, because that would give it the power to read, write, and
delete files on the host system. Untrusted JavaScript code can use Java only in the ways that
untrusted applets can.

[2] JavaScript programs can create arrays indirectly, using the Java 1.1 method
java.lang.reflect.Array.newInstance().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.4 LiveConnect Data Types

To understand how LiveConnect does its job of connecting JavaScript to Java, you have to understand the
JavaScript data types that LiveConnect uses. The following sections explain these JavaScript data types.
Although Internet Explorer uses a different technology, an understanding of how LiveConnect works
help you understand the workings of IE. Some of the LiveConnect data types described here have analogs
in IE.

22.4.1 The JavaPackage Class

A package in Java is collection of related Java classes. The JavaPackage class is a JavaScript data type
that represents a Java package. The properties of a JavaPackage are the classes that the package contains
(classes are represented by the JavaClass class, which we'll see shortly), as well as any other packages
that the package contains. There is a restriction on the JavaPackage class: you cannot use a JavaScript
for/in loop to obtain a complete list of all packages and classes that a JavaPackage contains. This
restriction is the result of an underlying restriction in the Java virtual machine.

All JavaPackage objects are contained within a parent JavaPackage; the Window property named
Packages is a top-level JavaPackage that serves as the root of this package hierarchy. It has properties
such as java, sun, and netscape, which are JavaPackage objects that represent the various hierarchies
of Java classes that are available to the browser. For example, the JavaPackage Packages.java contains
the JavaPackage Packages.java.awt. For convenience, every Window object also has java, sun
netscape properties that are shortcuts to Packages.java, Packages.sun, and Packages.netscape
Thus, instead of typing Packages.java.awt, you can simply type java.awt.

To continue with the example, java.awt is a JavaPackage object that contains JavaClass objects such as
java.awt.Button, which represents the java.awt.Button class. But it also contains yet another
JavaPackage object, java.awt.image, which represents the java.awt.image package in Java.

As you can see, the property naming scheme for the JavaPackage hierarchy mirrors the naming scheme for
Java packages. Note, however, that there is one big difference between the JavaPackage class and
actual Java packages that it represents. Packages in Java are collections of classes, not collections of other
packages. That is, java.lang is the name of a Java package, but java is not. So the JavaPackage object
named java does not actually represent a package in Java -- it is simply a convenient placeholder in the
package hierarchy for other JavaPackage objects that do represent real Java packages.

On most systems, Java classes are installed in files in a directory hierarchy that corresponds to their
package names. For example, the java.lang.String class is stored in the file java/lang/String.class. Actually,
this file is usually contained in a ZIP file, but the directory hierarchy is still there, encoded within the archive.
Therefore, instead of thinking of a JavaPackage object as representing a Java package, you may find it
clearer to think of it as representing a directory or subdirectory in the directory hierarchy of Java classes.

The JavaPackage class has a few shortcomings. There is no way for LiveConnect to tell in advance whether
a property of a JavaPackage refers to a Java class or to another Java package, so JavaScript assumes that
it is a class and tries to load a class. Thus, when you use an expression like java.awt, LiveConnect first
looks for a class file java/awt.class. It may even search for this class over the network, causing the web
server to log a "404 File Not Found" error. If LiveConnect does not find a class, it assumes that the property
refers to a package, but it has no way to ascertain that the package actually exists and has real classes in it.
This causes the second shortcoming: if you misspell a class name, LiveConnect happily treats it as a
package name, rather than telling you that the class you are trying to use does not exist.

22.4.2 The JavaClass Class

The JavaClass class is a JavaScript data type that represents a Java class. A JavaClass object does not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JavaClass class is a JavaScript data type that represents a Java class. A JavaClass object does not
have any properties of its own -- all of its properties represent (and have the same name as) the public static
fields and methods of the represented Java class. These public static fields and methods are sometimes
called class fields and class methods, to indicate that they are associated with a class rather than an object
instance. Unlike the JavaPackage class, JavaClass does allow the use of the for/in loop to enumerate its
properties. Note that JavaClass objects do not have properties representing the instance fields and methods
of a Java class -- individual instances of a Java class are represented by the JavaObject class, which is
documented in the next section.

As we saw earlier, JavaClass objects are contained in JavaPackage objects. For example, java.lang
JavaPackage that contains a System property. Thus, java.lang.System is a JavaClass object,
representing the Java class java.lang.System. This JavaClass object, in turn, has properties such as
and in that represent static fields of the java.lang.System class. You can use JavaScript to refer to any of
the standard Java system classes in this same way. The java.lang.Double class is named
java.lang.Double (or Packages.java.lang.Double), for example, and the java.awt.Button class is
java.awt.Button.

Another way to obtain a JavaClass object in JavaScript is to use the getClass() function. Given any
JavaObject object, you can obtain a JavaClass object that represents the class of that Java object by
passing the JavaObject to getClass().[3]

[3] Don't confuse the JavaScript getClass() function, which returns a JavaClass object, with the Java getClass() method,
which returns a java.lang.Class object.

Once you have a JavaClass object, there are several things you can do with it. The JavaClass class
implements the LiveConnect functionality that allows JavaScript programs to read and write the public static
fields of Java classes and invoke the public static methods of Java classes. For example,
java.lang.System is a JavaClass. We can read the value of a static field of java.lang.System
this:

var java_console = java.lang.System.out;

Similarly, we might invoke a static method of java.lang.System with a line like this one:

var java_version = java.lang.System.getProperty("java.version");

Recall that Java is a typed language -- all fields and method arguments have types. If you attempt to set a
field or pass an argument of the wrong type, an exception is thrown. (Or, in versions of JavaScript prior to
1.5, a JavaScript error occurs.)

There is one more important feature of the JavaClass class. You can use JavaClass objects with the
JavaScript new operator to create new instances of Java classes -- i.e., to create JavaObject objects. The
syntax for doing so is just as it is in JavaScript (and just as it is in Java):

var d = new java.lang.Double(1.23);

Finally, having created a JavaObject in this way, we can return to the getClass() function and show an
example of its use:

var d = new java.lang.Double(1.23); // Create a JavaObject

var d_class = getClass(d); // Obtain the JavaClass of the JavaObject

if (d_class == java.lang.Double) ...; // This comparison will be true

When working with standard system classes like this, you can typically use the name of the system class
directly rather than calling getClass(). The getClass() function is more useful in obtaining the class
of a non-system object, such as an applet instance.

Instead of referring to a JavaClass with a cumbersome expression like java.lang.Double, you can
define a variable that serves as a shortcut:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var Double = java.lang.Double;

This mimics the Java import statement and can improve the efficiency of your program, since LiveConnect
does not have to look up the lang property of java and the Double property of java.lang.

22.4.3 The JavaObject Class

The JavaObject class is a JavaScript data type that represents a Java object. The JavaObject class is, in
many ways, analogous to the JavaClass class. As with JavaClass, a JavaObject has no properties of
-- all of its properties represent (and have the same names as) the public instance fields and public instance
methods of the Java object it represents. As with JavaClass, you can use a JavaScript for/in loop to
enumerate all the properties of a JavaObject object. The JavaObject class implements the LiveConnect
functionality that allows us to read and write the public instance fields and invoke the public methods of a
Java object.

For example, if d is a JavaObject that represents an instance of the java.lang.Double class, we can invoke a
method of that Java object with JavaScript code like this:

n = d.doubleValue();

Similarly, we saw earlier that the java.lang.System class has a static field out. This field refers to a Java
object of class java.io.PrintStream. In JavaScript, we can refer to the corresponding JavaObject as:

java.lang.System.out

and we can invoke a method of this object like this:[4]

[4] The output of this line of code doesn't appear in the web browser itself, but rather in the Java Console. In Netscape 6, select
Tasks Tools Java Console to see this window.

java.lang.System.out.println("Hello world!");

A JavaObject object also allows us to read and write the public instance fields of the Java object it
represents. Neither the java.lang.Double class nor the java.io.PrintStream class used in the preceding
examples has any public instance fields, however. But suppose we use JavaScript to create an instance of
the java.awt.Rectangle class:

r = new java.awt.Rectangle();

Then we can read and write its public instance fields with JavaScript code like the following:

r.x = r.y = 0;

r.width = 4;

r.height = 5;

var perimeter = 2*r.width + 2*r.height;

The beauty of LiveConnect is that it allows a Java object, r, to be used just as if it were a JavaScript
Some caution is required, however: r is a JavaObject and does not behave identically to regular JavaScript
objects. The differences will be detailed later. Also, remember that unlike JavaScript, the fields of Java
objects and the arguments of their methods are typed. If you do not specify JavaScript values of the correct
types, you cause JavaScript errors or exceptions.

In Netscape 6.1 and later the JavaObject class makes methods available by name and by name plus
argument type, which is useful when there are two or methods that share the same name but expect
different types of arguments. As we saw earlier in this chapter, if a JavaObject o represents an object that
has two methods named "convert", the convert property of o may refer to either of those methods. In

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

has two methods named "convert", the convert property of o may refer to either of those methods. In
recent versions of LiveConnect, however, o also defines properties that include the argument types, and you
can specify which version of the method you want by including this type information:

var iconvert = o["convert(int)"]; // Get the method we want

iconvert(3); // Invoke it

Because the name of the property includes parentheses, you can't use the regular "." notation to access it
and must express it as a string within square brackets. The JavaClass type has the same capability for
overridden static methods.

22.4.4 The JavaArray Class

The final LiveConnect data type for JavaScript is the JavaArray class. As you might expect by now,
instances of this class represent Java arrays and provide the LiveConnect functionality that allows
JavaScript to read the elements of Java arrays. Like JavaScript arrays (and like Java arrays), a JavaArray
object has a length property that specifies the number of elements it contains. The elements of a
JavaArray object are read with the standard JavaScript [] array index operator. They can also be
enumerated with a for/in loop. You can use JavaArray objects to access multidimensional arrays (actually
arrays of arrays), just as in JavaScript or Java.

For example, suppose we create an instance of the java.awt.Polygon class:

p = new java.awt.Polygon();

The JavaObject p has properties xpoints and ypoints that are JavaArray objects representing Java
arrays of integers. (To learn the names and types of these properties, look up the documentation for
java.awt.Polygon in a Java reference manual.) We can use these JavaArray objects to randomly initialize
the Java polygon with code like this:

for(var i = 0; i < p.xpoints.length; i++)

 p.xpoints[i] = Math.round(Math.random()*100);

for(var i = 0; i < p.ypoints.length; i++)

 p.ypoints[i] = Math.round(Math.random()*100);

22.4.5 Java Methods

The JavaClass and JavaObject classes allow us to invoke static methods and instance methods,
respectively. In Netscape 3, Java methods were internally represented by a JavaMethod object. In Netscape
4, however, Java methods are simply native methods, like the methods of built-in JavaScript objects such
String and Date.

When you're using Java methods, remember that they expect a fixed number of arguments of fixed types. If
you pass the wrong number of arguments, or an argument of the wrong type, you cause a JavaScript error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.5 LiveConnect Data Conversion

Java is a strongly typed language with a relatively large number of data types, while JavaScript is
an untyped language with a relatively small number of types. Because of this major structural
difference between the two languages, one of the central responsibilities of LiveConnect is data
conversion. When JavaScript sets a Java class or instance field or passes an argument to a Java
method, a JavaScript value must be converted to an equivalent Java value, and when JavaScript
reads a Java class or instance field or obtains the return value of a Java method, that Java value
must be converted into a compatible JavaScript value.[5]

[5] In addition, data conversion must happen when Java reads or writes a JavaScript field or invokes a JavaScript
method. These conversions are done differently, however, and are described later in this chapter, when we discuss
how to use JavaScript from Java. For now, we're considering only the data conversion that happens when JavaScript
code interacts with Java, not the other way around.

Figure 22-2 and Figure 22-3 illustrate how data conversion is performed when JavaScript writes
Java values and when it reads them, respectively.

Figure 22-2. Data conversions performed when JavaScript writes Java values

Figure 22-3. Data conversions performed when JavaScript reads Java values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notice the following points about the data conversions illustrated in Figure 22-2:

Figure 22-2 does not show all possible conversions between JavaScript types and Java
types. This is because JavaScript-to-JavaScript type conversions can occur before the
JavaScript-to-Java conversion takes place. For example, if you pass a JavaScript number
to a Java method that expects a java.lang.String argument, JavaScript first converts that
number to a JavaScript string, which can then be converted to a Java string.

A JavaScript number can be converted to any of the primitive Java numeric types. The
actual conversion performed depends, of course, on the type of the Java field being set or
the method argument being passed. Note that you can lose precision doing this, for
example, when you pass a large number to a Java field of type short or when you pass a
floating-point value to a Java integral type.

A JavaScript number can also be converted to an instance of the Java class
java.lang.Double but not to an instance of a related class, such as java.lang.Integer or
java.lang.Float.

JavaScript does not have any representation for character data, so a JavaScript number
may also be converted to the Java primitive char type.

A JavaObject in JavaScript is "unwrapped" when passed to Java -- that is, it is converted to
the Java object it represents. Note, however, that JavaClass objects in JavaScript are not
converted to instances of java.lang.Class, as might be expected.

JavaScript arrays are not converted to Java arrays.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also notice these points about the conversions illustrated in Figure 22-3:

Since JavaScript does not have a type for character data, the Java primitive char type is
converted to a JavaScript number, not a string, as might be expected.

A Java instance of java.lang.Double, java.lang.Integer, or a similar class is not converted to
a JavaScript number. Like any Java object, it is converted to a JavaObject object in
JavaScript.

A Java string is an instance of java.lang.String, so like any other Java object, it is converted
to a JavaObject object rather than to an actual JavaScript string.

Any type of Java array is converted to a JavaArray object in JavaScript.

22.5.1 Wrapper Objects

Another important concept that you must grasp in order to fully understand Figure 22-2 and
Figure 22-3 is the idea of wrapper objects. While conversions between most JavaScript and Java
primitive types are possible, conversions between object types are generally not possible. This is
why LiveConnect defines the JavaObject object in JavaScript -- it represents a Java object that
cannot be directly converted to a JavaScript object. In a sense, a JavaObject is a JavaScript
wrapper around a Java object. When JavaScript reads a Java value (a field or the return value of
a method), any Java objects are wrapped and JavaScript sees a JavaObject.

A similar thing happens when JavaScript writes a JavaScript object into a Java field or passes a
JavaScript object to a Java method. There is no way to convert the JavaScript object to a Java
object, so the object gets wrapped. The Java wrapper for a JavaScript object is the Java class
netscape.javascript.JSObject.

Things get interesting when these wrapper objects are passed back. If JavaScript writes a
JavaObject into a Java field or passes it to a Java method, LiveConnect first unwraps the object,
converting the JavaObject back into the Java object that it represents. Similarly, if JavaScript
reads a Java field or gets the return value of a Java method that is an instance of
netscape.javascript.JSObject, that JSObject is also unwrapped to reveal and return the original
JavaScript object.

22.5.2 LiveConnect Data Conversion in Netscape 3

In Netscape 3, there was a bug in the way that LiveConnect converted Java values to JavaScript
values: the value of a primitive field of a Java object was incorrectly returned as a JavaScript
object, rather than as a JavaScript primitive value. For example, if JavaScript read the value of a
field of type int, LiveConnect in Netscape 3 converted that value to a Number object, rather than
to a primitive numeric value. Similarly, LiveConnect converted the value of Java boolean fields
to JavaScript Boolean objects, rather than primitive JavaScript boolean values. Note that this bug
occurred only when querying the values of Java fields. It did not occur when LiveConnect
converted the return value of a Java method.

Number and Boolean objects in JavaScript behave almost, but not exactly, the same as primitive
number and boolean values. One important difference is that Number objects, like all JavaScript
objects, use the + operator for string concatenation rather than for addition. As a result, code like
the following that uses LiveConnect in Netscape 3 can yield unexpected results:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var r = new java.awt.Rectangle(0,0,5,5);

var w = r.width; // This is a Number object, not a primitive number.

var new_w = w + 1; // Oops! new_w is now "51", not 6, as expected.

To work around this problem, you can explicitly call the valueOf() method to convert a
Number object to its corresponding numeric value. For example:

var r = new java.awt.Rectangle(0,0,5,5);

var w = r.width.valueOf(); // Now we've got a primitive number.

var new_w = w + 1; // This time, new_w is 6, as desired.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.6 JavaScript Conversion of JavaObjects

Having worked your way through the previous dense section, you may hope that we are done with
the topic of data conversion. Unfortunately, there is more to be discussed on the topic of how
JavaScript converts JavaObject objects to various JavaScript primitive types. Notice in Figure 22-
3 that quite a few Java data types, including Java strings (instances of java.lang.String), are
converted to JavaObject objects in JavaScript rather than being converted to actual JavaScript
primitive types, such as strings. This means that when you use LiveConnect, you'll often be
working with JavaObject objects.

Refer back to Table 11-1, which shows how various JavaScript data types are converted when
used in various contexts. For example, when a number is used in a string context, it is converted
to a string, and when an object is used in a boolean context, it is converted to the value false if it
is null and true otherwise. These conversion rules don't apply to JavaObject objects, which are
converted using their own rules, as follows:

When a JavaObject is used in a numeric context, it is converted to a number by invoking
the doubleValue() method of the Java object it represents. If the Java object does not
define this method, a JavaScript error occurs.

When a JavaObject is used in a boolean context, it is converted to a boolean value by
invoking the booleanValue() method of the Java object it represents. If the Java object
does not define this method, a JavaScript error occurs.

When a JavaObject is used in a string context, it is converted to a string value by invoking
the toString() method of the Java object it represents. All Java objects define or
inherit this method, so this conversion always succeeds.

When a JavaObject is used in an object context, no conversion is necessary, since it is
already a JavaScript object.

Because of these different conversion rules, and for other reasons as well, JavaObject objects
behave differently than other JavaScript objects, and there are some common pitfalls that you
need to recognize. First, it is not uncommon to work with a JavaObject that represents an
instance of java.lang.Double or some other numeric object. In many ways, such a JavaObject
behaves like a primitive number value, but be careful when using the + operator. When you use a
JavaObject (or any JavaScript object) with +, you are specifying a string context, so the object is
converted to a string for string concatenation instead of being converted to a number for addition.

When you want to explicitly convert a JavaScript object to a primitive value, you usually call its
valueOf() method. Note that this does not work with JavaObject objects. As we discussed
earlier, the JavaObject class defines no properties of its own; all of its properties represent fields
and methods of the Java object it represents. This means that JavaObject objects don't support
common JavaScript methods, such as valueOf(). In the case of our JavaObject-wrapped
java.lang.Double object, you should call the Java doubleValue() method when you need
to force the object into a primitive value.

Another difference between JavaObject objects and other JavaScript data types is that
JavaObjects can be used in a boolean context only if they define a booleanValue() method.
Suppose button is a JavaScript variable that may contain null or may hold a JavaObject that
represents an instance of the java.awt.Button class. If you want to check whether the variable
contains null, you might write code like this, out of habit:

if (!button) { ... }

If button is null, this works fine. But if button actually contains a JavaObject representing a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If button is null, this works fine. But if button actually contains a JavaObject representing a
java.awt.Button instance, LiveConnect tries to invoke the booleanValue() method. When it
discovers that the java.awt.Button class doesn't define one, it causes a JavaScript error. The
workaround in this case is to be explicit about what you are testing for, to avoid using the
JavaObject in a boolean context:

if (button != null) { ... }

This is a good habit to get into, in any case, since it makes your code easier to read and
understand.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

22.7 Java-to-JavaScript Data Conversion

In the last two sections, we discussed the rules by which values are converted when JavaScript
reads and writes Java fields and invokes Java methods. Those rules explained how the
JavaScript JavaObject, JavaArray, and JavaClass objects convert data; they apply only to the
case of JavaScript manipulating Java. When Java manipulates JavaScript, the conversion is
performed by the Java JSObject class, and the conversion rules are different. Figure 22-4 and
Figure 22-5 illustrate these conversions.

Figure 22-4. Data conversions performed when Java writes JavaScript values

Figure 22-5. Data conversions performed when Java reads JavaScript values

The point to remember when studying these figures is that Java can interact with JavaScript only
through the API provided by the JSObject class. Because Java is a strongly typed language, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

through the API provided by the JSObject class. Because Java is a strongly typed language, the
methods defined by this class can work only with Java objects, not with primitive values. For
example, when you read the value of a JavaScript number, the getMember() method returns a
java.lang.Double object, rather than a primitive double value.

When writing JavaScript functions that are invoked from Java, bear in mind that the arguments
passed by Java are either JavaScript objects from unwrapped Java JSObjects, or JavaObjects.
LiveConnect simply does not allow Java to pass primitive values as method arguments. As we
saw earlier in this chapter, JavaObject objects behave somewhat differently than other objects.
For example, an instance of java.lang.Double behaves differently than a primitive JavaScript
number or even a JavaScript Number object. The same caution applies when you are working
with JavaScript properties that have their values set by Java.

One way to avoid the whole issue of data conversion is to use the eval() method of the
JSObject class whenever your Java code wants to communicate with JavaScript. In order to do
this, your Java code must convert all method arguments or property values to string form. Then,
the string to be evaluated can be passed unchanged to JavaScript, which can convert the string
form of the data to the appropriate JavaScript data values.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part III: Core JavaScript Reference
This part of the book is a complete reference to all of the objects, properties,
functions, methods, and event handlers in the core JavaScript language. The first
few pages of this part explain how to use this reference material.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 23. Core JavaScript Reference
This part of the book is a reference section that documents the classes, methods, and properties
defined by the core JavaScript language. The introduction and sample reference page explain
how to use and get the most out of this reference section. Take the time to read this material
carefully, and you will find it easier to locate and use the information you need!

This reference section is arranged alphabetically. The reference pages for the methods and
properties of classes are alphabetized by their full names, which include the names of the classes
that define them. For example, if you want to read about the replace() method of the String
class, you would look under "String.replace," not just "replace."

Core JavaScript defines some global functions and properties, such as eval() and NaN.
Technically, these are properties of a global object. Since the global object has no name,
however, they are listed in this reference section under their own unqualified names. For
convenience, the full set of global functions and properties in core JavaScript is summarized in a
special reference page named "Global" (even though there is no object or class by that name).

Sometimes you may find that you don't know the name of the class or interface that defines the
method or property want to look up, or you may not be sure which of the three reference sections
to look up a class or interface in. Part VI of this book is a special index designed to help with
these situations. Look up the name of a class, method, or property, and it will tell you which
reference section to look in and which class to look under in that section. For example, if you look
up "Date," it will tell you that the Date class is documented in this core reference section. And if
you look up the name "match," it will tell you that match() is a method of the String class and is
also documented in this section.

Once you've found the reference page you're looking for, you shouldn't have much difficulty
finding the information you need. Still, you'll be able to make better use of this reference section if
you understand how the reference pages are written and organized. What follows is a sample
reference page titled "Sample Entry" that demonstrates the structure of each reference page and
tells you where to find various types of information within the pages. Take the time to read this
page before diving into the rest of the reference material.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sample Entry how to read core JavaScript reference pages

Title and Short Description

Every reference entry begins with a four-part title block like that above. The entries are
alphabetized by title. The short description, shown below the title, gives you a quick summary of
the item documented in the entry; it can help you quickly decide if you're interested in reading the
rest of the page.

Availability

The availability information is shown in the upper-right corner of the title block. This information
tells you which version of Netscape's JavaScript interpreter and Microsoft's JScript interpreter the
item (class, method, or property) was introduced in. If the item has been standardized in
ECMAScript, it tells you which version of the standard introduced it. You can assume that
anything available in one version of JavaScript is also available in later versions. Note, however,
that if this section says the item is deprecated it may be removed in the future and you should
avoid using it.

Inherits from/Overrides

If a class inherits from a superclass or a method overrides a method in a superclass, that
information is shown in the lower-right corner of the title block.

As described in Chapter 8, JavaScript classes can inherit properties and methods from other
classes. For example, the String class inherits from Object, and the RangeError class inherits
from Error, which in turn inherits from Object. When you see this inheritance information, you may
also want to look up the listed superclasses.

When a method has the same name as a method in a superclass, the method overrides the
superclass's method. See Array.toString() for an example.

Constructor

If the reference page documents a class, it usually has a "Constructor" section that shows you
how to use the constructor method to create instances of the class. Since constructors are a type
of method, the "Constructor" section looks a lot like the "Synopsis" section of a method's
reference page.

Synopsis

Reference pages for functions, methods, and properties have a "Synopsis" section that shows
how you might use the function, method, or property in your code. For example, the synopsis for
the Array.concat() method is:

array.concat(value, ...)

The italic font indicates text that is to be replaced with something else. array should be
replaced with a variable or JavaScript expression that holds or evaluates to an array. And value
simply represents an arbitrary value that is to be concatenated to the array. The ellipsis (...)
indicates that this method can take any number of value arguments. Because the terms concat
and the open and close parentheses are not in italics, you must include them exactly as

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

and the open and close parentheses are not in italics, you must include them exactly as
shown in your JavaScript code.

Arguments

If a reference page documents a function, a method, or a class with a constructor method, the
"Constructor" or "Synopsis" section is followed by an "Arguments" subsection that describes the
arguments to the method, function, or constructor. If there are no arguments, this subsection is
simply omitted.

arg1

The arguments are described in a list here. This is the description for argument arg1, for
example.

arg2

And this is the description for argument arg2.

Returns

If a constructor, function, or method has a return value, this subsection explains that value.

Throws

If a constructor, function, or method can throw an exception, this subsection lists the types of
exceptions that may be thrown and explains the circumstances under which this can occur.

Properties

If the reference page documents a class, the "Properties" section lists the properties defined by
the class and provides short explanations of each. In this core reference section, each property
also has a complete reference page of its own. For example, the reference page for the Array
class lists the length property in this section and gives a brief explanation of it, but the property
is fully documented in the "Array.length" reference page. The property listing looks like this:

prop1

This is a summary of property prop1, including its type, its purpose or meaning, and
whether it is read-only or read/write.

prop2

This is the same for prop2.

Methods

The reference page for a class that defines methods includes a "Methods" section. It is just like
the "Properties" section, except that it summarizes methods instead of properties. All methods
also have reference pages of their own.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Most reference pages contain a "Description" section, which is the basic description of the class,
method, function, or property that is being documented. This is the heart of the reference page. If
you are learning about a class, method, or property for the first time, you may want to skip directly
to this section and then go back and look at previous sections such as "Arguments," "Properties,"
and "Methods." If you are already familiar with a class, method, or property, you probably won't
need to read this section and instead will just want to quickly look up some specific bit of
information (for example, from the "Arguments" or "Properties" sections).

In some entries, this section is no more than a short paragraph. In others, it may occupy a page
or more. For some simple methods, the "Arguments" and "Returns" sections document the
method sufficiently by themselves, so the "Description" section is omitted.

Example

Some pages include an example that shows typical usage. Most pages do not contain examples,
however -- you'll find those in first half of this book.

Bugs

When an item doesn't work quite right, this section describes the bugs. Note, however, that this
book does not attempt to catalog every bug in every version and implementation of JavaScript.

See Also

Many reference pages conclude with cross-references to related reference pages that may be of
interest. Sometimes reference pages also refer back to one of the main chapters of the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

arguments[] an array of function arguments

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

arguments

Description

The arguments[] array is defined only within a function body. Within the body of a function,
arguments refers to the Arguments object for the function. This object has numbered properties
and serves as an array containing all arguments passed to the function. The arguments
identifier is essentially a local variable automatically declared and initialized within every function.
It refers to an Arguments object only within the body of a function and is undefined in global code.

See Also

Arguments; Chapter 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments arguments and other properties of a function

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Synopsis

arguments

arguments[n]

Elements

The Arguments object is defined only within a function body. Although it is not technically an
array, the Arguments object has numbered properties that function as array elements and a
length property that specifies the number of array elements. Its elements are the values that
were passed as arguments to the function. Element 0 is the first argument, element 1 is the
second argument, and so on. All values passed as arguments become array elements of the
Arguments object, whether or not those arguments are given names in the function declaration.

Properties

callee

A reference to the function that is currently executing.

length

The number of arguments passed to the function and the number of array elements in the
Arguments object.

Description

When a function is invoked, an Arguments object is created for it and the local variable
arguments is automatically initialized to refer to that Arguments object. The main purpose of the
Arguments object is to provide a way to determine how many arguments were passed to the
function and to refer to unnamed arguments. In addition to the array elements and length
property, however, the callee property allows an unnamed function to refer to itself.

For most purposes, the Arguments object can be thought of as an array with the addition of the
callee property. However, it is not an instance of Array, and the Arguments.length property
does not have any of the special behaviors of the Array.length property and cannot be used
to change the size of the array.

The Arguments object has one very unusual feature. When a function has named arguments, the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Arguments object has one very unusual feature. When a function has named arguments, the
array elements of the Arguments object are synonyms for the local variables that hold the function
arguments. The Arguments object and the argument names provide two different ways of
referring to the same variable. Changing the value of an argument with an argument name
changes the value that is retrieved through the Arguments object, and changing the value of an
argument through the Arguments object changes the value that is retrieved by the argument
name.

See Also

Function; Chapter 7

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments.callee the function that is currently running

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v1

Synopsis

arguments.callee

Description

arguments.callee refers to the function that is currently running. It provides a way for an
unnamed function to refer to itself. This property is defined only within a function body.

Example

// An unnamed function literal uses the callee property to refer

// to itself so that it can be recursive

var factorial = function(x) {

 if (x < 2) return 1;

 else return x * arguments.callee(x-1);

}

var y = factorial(5); // Returns 120

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Arguments.length the number of arguments passed to a function

Availability

JavaScript 1.1; JScript 2; ECMAScript v1

Synopsis

arguments.length

Description

The length property of the Arguments object specifies the number of arguments passed to the current
function. This property is defined only within a function body.

Note that this property specifies the number of arguments actually passed, not the number expected. See
Function.length for the number of declared arguments. Note also that this property does not have any of
the special behavior of the Array.length property.

Example

// Use an Arguments object to check that correct # of args were passed

function check(args) {

 var actual = args.length; // The actual number of arguments

 var expected = args.callee.length; // The expected number of arguments

 if (actual != expected) { // Throw exception if they don't match

 throw new Error("Wrong number of arguments: expected: " +

 expected + "; actually passed " + actual);

 }

}

// A function that demonstrates how to use the function above

function f(x, y, z) {

 check(arguments); // Check for correct number of arguments

 return x + y + z; // Now do the rest of the function normally

}

See Also

Array.length, Function.length

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array built-in support for arrays

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Constructor

new Array()

new Array(size)

new Array(element0, element1, ..., elementn)

Arguments

size

The desired number of elements in the array. The returned array has its length field set to
size.

element0, ... elementn

An argument list of two or more arbitrary values. When the Array() constructor is
invoked with these arguments, the newly created array is initialized with the specified
argument values as its elements and its length field set to the number of arguments.

Returns

The newly created and initialized array. When Array() is invoked with no arguments, the
returned array is empty and has a length field of 0. When invoked with a single numeric
argument, the constructor returns an array with the specified number of undefined elements.
When invoked with any other arguments, the constructor initializes the array with the values
specified by the arguments. When the Array() constructor is called as a function, without the
new operator, it behaves exactly as it does when called with the new operator.

Throws

RangeError

When a single integer size argument is passed to the Array() constructor, a
RangeError exception is thrown if size is negative or is larger than 232 -1.

Literal Syntax

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ECMAScript v3 specifies and JavaScript 1.2 and JScript 3.0 implement an array literal syntax.
You may also create and initialize an array by placing a comma-separated list of expressions
within square brackets. The values of these expressions become the elements of the array. For
example:

var a = [1, true, 'abc'];

var b = [a[0], a[0]*2, f(x)];

Properties

length

A read/write integer specifying the number of elements in the array or, when the array does
not have contiguous elements, a number one larger than the index of the last element in
the array. Changing the value of this property truncates or extends the array.

Methods

concat()

Concatenates elements to an array.

join()

Converts all array elements to strings and concatenate them.

pop()

Removes an item from the end of an array.

push()

Pushes an item onto the end of an array.

reverse()

Reverses, in place, the order of the elements of an array.

shift()

Shifts an element off the beginning of an array.

slice()

Returns a subarray slice of an array.

sort()

Sorts, in place, the elements of an array.

splice()

Inserts, deletes, or replaces array elements.

toLocaleString()

Converts an array to a localized string.

toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toString()

Converts an array to a string.

unshift()

Inserts elements at the beginning of an array.

Description

Arrays are a basic feature of JavaScript and are documented in detail in Chapter 9.

See Also

Chapter 9

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.concat() concatenate arrays

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

array.concat(value, ...)

Arguments

value, ...

Any number of values to be concatenated with array.

Returns

A new array, which is formed by concatenating each of the specified arguments to array.

Description

concat() creates and returns a new array that is the result of concatenating each of its
arguments to array. It does not modify array. If any of the arguments to concat() is itself an
array, the elements of that array are concatenated, rather than the array itself.

Example

var a = [1,2,3];

a.concat(4, 5) // Returns [1,2,3,4,5]

a.concat([4,5]); // Returns [1,2,3,4,5]

a.concat([4,5],[6,7]) // Returns [1,2,3,4,5,6,7]

a.concat(4, [5,[6,7]]) // Returns [1,2,3,4,5,[6,7]]

See Also

Array.join(), Array.push(), Array.splice()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.join() concatenate array elements to form a string

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

array.join()

array.join(separator)

Arguments

separator

An optional character or string used to separate one element of the array from the next in
the returned string. If this argument is omitted, a comma is used.

Returns

The string that results from converting each element of array to a string and then concatenating
them together, with the separator string between elements.

Description

join() converts each of the elements of an array to a string and then concatenates those
strings, inserting the specified separator string between the elements. It returns the resulting
string.

You can perform a conversion in the opposite direction -- splitting a string up into array elements -
- with the split() method of the String object. See the String.split() reference page for details.

Example

a = new Array(1, 2, 3, "testing");

s = a.join("+"); // s is the string "1+2+3+testing"

See Also

String.split()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.length the size of an array

Availability

JavaScript 1.1, JScript 2.0; ECMAScript v1

Synopsis

array.length

Description

The length property of an array is always one larger than the highest element defined in the
array. For traditional "dense" arrays that have contiguous elements and begin with element 0, the
length property specifies the number of elements in the array.

The length property of an array is initialized when the array is created with the Array()
constructor method. Adding new elements to an array updates the length, if necessary:

a = new Array(); // a.length initialized to 0

b = new Array(10); // b.length initialized to 10

c = new Array("one", "two", "three"); // c.length initialized to 3

c[3] = "four"; // c.length updated to 4

c[10] = "blastoff"; // c.length becomes 11

You can set the value of the length property to change the size of an array. If you set length to
be smaller than its previous value, the array is truncated and elements at the end are lost. If you
set length to be larger than its previous value, the array becomes bigger and the new elements
added at the end of the array have the undefined value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.pop() remove and return the last element of an array

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

array.pop()

Returns

The last element of array.

Description

pop() deletes the last element of array, decrements the array length, and returns the value of
the element that it deleted. If the array is already empty, pop() does not change the array and
returns the undefined value.

Example

pop(), and its companion method push(), provide the functionality of a first-in, last-out stack.
For example:

var stack = []; // stack: []

stack.push(1, 2); // stack: [1,2] Returns 2

stack.pop(); // stack: [1] Returns 2

stack.push([4,5]); // stack: [1,[4,5]] Returns 2

stack.pop() // stack: [1] Returns [4,5]

stack.pop(); // stack: [] Returns 1

See Also

Array.push()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.push() append elements to an array

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

array.push(value, ...)

Arguments

value, ...

One or more values to be appended to the end of array.

Returns

The new length of the array, after the specified values are appended to it.

Description

push() appends its arguments, in order, to the end of array. It modifies array directly, rather
than creating a new array. push(), and its companion method pop(), use arrays to provide
the functionality of a first in, last out stack. See Array.pop() for an example.

Bugs

In Netscape's implementations of JavaScript, when the language version is explicitly set to 1.2
this function returns the last value appended, rather than returning the new array length.

See Also

Array.pop()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.reverse() reverse the elements of an array

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

array.reverse()

Description

The reverse() method of an Array object reverses the order of the elements of an array. It
does this "in place" -- it rearranges the elements of the specified array, without creating a new
array. If there are multiple references to array, the new order of the array elements is visible
through all references.

Example

a = new Array(1, 2, 3); // a[0] == 1, a[2] == 3;

a.reverse(); // Now a[0] == 3, a[2] == 1;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.shift() shift array elements down

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

array.shift()

Returns

The former first element of the array.

Description

shift() removes and returns the first element of array, shifting all subsequent elements
down one place to occupy the newly vacant space at the start of the array. If the array is empty,
shift() does nothing and returns the undefined value. Note that shift() does not create
a new array; instead, it modifies array directly.

shift() is similar to Array.pop(), except it operates on the beginning of an array rather
than the end. shift() is often used in conjunction with unshift().

Example

var a = [1, [2,3], 4]

a.shift(); // Returns 1; a = [[2,3], 4]

a.shift(); // Returns [2,3]; a = [4]

See Also

Array.pop(), Array.unshift()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.slice() return a portion of an array

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

array.slice(start, end)

Arguments

start

The array index at which the slice is to begin. If negative, this argument specifies a position
measured from the end of the array. That is, -1 indicates the last element, -2 indicates the
second from last element, and so on.

end

The array index immediately after the end of the slice. If not specified, the slice includes all
array elements from the start to the end of the array. If this argument is negative, it
specifies an array element measured from the end of the array.

Returns

A new array that contains the elements of array from the element specified by start, up to, but
not including, the element specified by end.

Description

slice() returns a slice, or subarray, of array. The returned array contains the element
specified by start and all subsequent elements up to, but not including, the element specified by
end. If end is not specified, the returned array contains all elements from the start to the end of
array.

Note that slice() does not modify the array. If you want to actually remove a slice of an array,
use Array.splice().

Example

var a = [1,2,3,4,5];

a.slice(0,3); // Returns [1,2,3]

a.slice(3); // Returns [4,5]

a.slice(1,-1); // Returns [2,3,4]

a.slice(-3,-2); // Returns [3]; buggy in IE 4: returns [1,2,3]

Bugs

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

start cannot be a negative number in Internet Explorer 4.

See Also

Array.splice()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.sort() sort the elements of an array

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

array.sort() array.sort(orderfunc)

Arguments

orderfunc

An optional function used to specify the sorting order.

Returns

A reference to the array. Note that the array is sorted in place and no copy is made.

Description

The sort() method sorts the elements of array in place -- no copy of the array is made. If
sort() is called with no arguments, the elements of the array are arranged in alphabetical
order (more precisely, the order determined by the character encoding). To do this, elements are
first converted to strings, if necessary, so that they can be compared.

If you want to sort the array elements in some other order, you must supply a comparison function
that compares two values and returns a number indicating their relative order. The comparison
function should take two arguments, a and b, and should return one of the following:

A value less than zero, if, according to your sort criteria, a is "less than" b and should
appear before b in the sorted array.

Zero, if a and b are equivalent for the purposes of this sort.

A value greater than zero, if a is "greater than" b for the purposes of the sort.

Note that undefined elements of an array are always sorted to the end of the array. This is true
even if you provide a custom ordering function: undefined values are never passed to the
orderfunc you supply.

Example

The following code shows how you might write a comparison function to sort an array of numbers
in numerical, rather than alphabetical order:

// An ordering function for a numerical sort

function numberorder(a, b) { return a - b; }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

function numberorder(a, b) { return a - b; }

a = new Array(33, 4, 1111, 222);

a.sort(); // Alphabetical sort: 1111, 222, 33, 4

a.sort(numberorder); // Numerical sort: 4, 33, 222, 1111

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.splice() insert, remove, or replace array elements

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

array.splice(start, deleteCount, value, ...)

Arguments

start

The array element at which the insertion and/or deletion is to begin.

deleteCount

The number of elements, starting with and including start, to be deleted from array. This
argument is optional; if not specified, splice() deletes all elements from start to the end of
the array.

value, ...

Zero or more values to be inserted into array, beginning at the index specified by start.

Returns

An array containing the elements, if any, deleted from array. Note, however, that due to a bug, the
return value is not always an array in the Netscape implementation of JavaScript 1.2.

Description

splice() deletes zero or more array elements starting with and including the element start and
replaces them with zero or more values specified in the argument list. Array elements that appear after
the insertion or deletion are moved as necessary so that they remain contiguous with the rest of the array.
Note that, unlike the similarly named slice(), splice() modifies array directly.

Example

The operation of splice() is most easily understood through an example:

var a = [1,2,3,4,5,6,7,8]

a.splice(4); // Returns [5,6,7,8]; a is [1,2,3,4]

a.splice(1,2); // Returns [2,3]; a is [1,4]

a.splice(1,1); // Netscape/JavaScript 1.2 returns 4 instead of [4]

a.splice(1,0,2,3); // Netscape/JavaScript 1.2 returns undefined instead of []

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

a.splice(1,0,2,3); // Netscape/JavaScript 1.2 returns undefined instead of []

Bugs

splice() is supposed to return an array of deleted elements in all cases. However, in Netscape's
JavaScript 1.2 interpreter, when a single element is deleted it returns that element rather than an array
containing the element. Also, if no elements are deleted, it returns nothing instead of returning an empty
array. Netscape implementions of JavaScript emulate this buggy behavior whenever Version 1.2 of the
language is explicitly specified.

See Also

Array.slice()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.toLocaleString() convert an array to a localized string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v1

Inherits from/Overrides

Overrides Object.toLocaleString()

Synopsis

array.toLocaleString()

Returns

A localized string representation of array.

Throws

TypeError

If this method is invoked on an object that is not an Array.

Description

The toString() method of an array returns a localized string representation of an array. It
does this by calling the toLocaleString() method of all of the array elements, then
concatenating the resulting strings using a locale-specific separator character.

See Also

Array.toString(), Object.toLocaleString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.toString() convert an array to a string

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Overrides Object.toString()

Synopsis

array.toString()

Returns

A string representation of array.

Throws

TypeError

If this method is invoked on an object that is not an Array.

Description

The toString() method of an array converts an array to a string and returns the string. When
an array is used in a string context, JavaScript automatically converts it to a string by calling this
method. On some occasions, however, you may want to call toString() explicitly.

toString() converts an array to a string by first converting each of the array elements to
strings (by calling their toString() methods). Once each element is converted to a string, it
outputs them in a comma-separated list. This return value is the same string that would be
returned by the join() method with no arguments.

Bugs

In Netscape implementations, when Version 1.2 of the language is explicitly specified,
toString() returns its list of comma-and-space-separated array elements within square
brackets using array literal notation. This occurs, for example, when the language attribute of a
<script> tag is explicitly specified as "JavaScript1.2".

See Also

Array.toLocaleString(), Object.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Array.unshift() insert elements at the beginning of an array

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

array.unshift(value, ...)

Arguments

value, ...

One or more values that are to be inserted at the start of array.

Returns

The new length of the array.

Description

unshift() inserts its arguments at the beginning of array, shifting the existing elements to
higher indexes to make room. The first argument to shift() becomes the new element 0 of
the array, the second argument, if any, becomes the new element 1, and so on. Note that
unshift() does not create a new array; it modifies array directly.

Example

unshift() is often used in conjunction with shift(). For example:

var a = []; // a:[]

a.unshift(1); // a:[1] Returns: 1

a.unshift(22); // a:[22,1] Returns: 2

a.shift(); // a:[1] Returns: 22

a.unshift(33,[4,5]); // a:[33,[4,5],1] Returns: 3

See Also

Array.shift()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean support for boolean values

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Constructor

new Boolean(value) //Constructor function

Boolean(value) // Conversion function

Arguments

value

The value to be held by the Boolean object or to be converted to a boolean value.

Returns

When invoked as a constructor with the new operator, Boolean() converts its argument to a
boolean value and returns a Boolean object that contains that value. When invoked as a function,
without the new operator, Boolean() simply converts its argument to a primitive boolean value
and returns that value.

The values 0, NaN, null, the empty string "", and the undefined value are all converted to
false. All other primitive values, except false (but including the string "false"), and all objects
and arrays are converted to true.

Methods

toString()

Returns true or false, depending on the boolean value represented by the Boolean
object.

valueOf()

Returns the primitive boolean value contained in the Boolean object.

Description

Boolean values are a fundamental data type in JavaScript. The Boolean object is an object
wrapper around the boolean value. This Boolean object type exists primarily to provide a
toString() method to convert boolean values to strings. When the toString() method is
invoked to convert a boolean value to a string (and it is often invoked implicitly by JavaScript)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

invoked to convert a boolean value to a string (and it is often invoked implicitly by JavaScript)
JavaScript internally converts the boolean value to a transient Boolean object, on which the
method can be invoked.

See Also

Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean.toString() convert a boolean value to a string

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Overrides Object.toString()

Synopsis

b.toString()

Returns

The string "true" or "false", depending on the value of the primitive boolean value or Boolean
object b.

Throws

TypeError

If this method is invoked on an object that is not a Boolean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Boolean.valueOf() the boolean value of a Boolean object

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Overrides Object.valueOf()

Synopsis

b.valueOf()

Returns

The primitive boolean value held by the Boolean object b.

Throws

TypeError

If this method is invoked on an object that is not a Boolean.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date manipulate dates and times

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Constructor

new Date()

new Date(milliseconds)

new Date(datestring)

new Date(year, month, day, hours, minutes, seconds, ms)

With no arguments, the Date() constructor creates a Date object set to the current date and time. When
one numeric argument is passed, it is taken as the internal numeric representation of the date in
milliseconds, as returned by the getTime() method. When one string argument is passed, it is a string
representation of a date, in the format accepted by the Date.parse() method. Otherwise, the constructor
is passed between two and seven numeric arguments that specify the individual fields of the date and time.
All but the first two arguments -- the year and month fields -- are optional. Note that these date and time
fields are specified using local time, not UTC (similar to GMT) time. See the static Date.UTC() method for
an alternative.

Date() may also be called as a function, without the new operator. When invoked in this way, Date()
ignores any arguments passed to it and returns a string representation of the current date and time.

Arguments

milliseconds

The number of milliseconds between the desired date and midnight on January 1, 1970 (UTC). For
example, passing the argument 5000 would create a date that represents five seconds past midnight
on 1/1/70.

datestring

A single argument that specifies the date and, optionally, the time as a String. The string should be in
a format accepted by Date.parse().

year

The year, in four-digit format. For example, specify 2001 for the year 2001. For compatibility with
early implementations of JavaScript, if this argument is between 0 and 99, 1900 is added to it.

month

The month, specified as an integer from 0 (January) to 11 (December).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

day

The day of the month, specified as an integer from 1 to 31. Note that this argument uses 1 as its
lowest value, while other arguments use 0 as their lowest value. Optional.

hours

The hour, specified as an integer from 0 (midnight) to 23 (11 p.m.). Optional.

minutes

The minutes in the hour, specified as an integer from 0 to 59. Optional.

seconds

The seconds in the minute, specified as an integer from 0 to 59. Optional.

ms

The milliseconds in the second, specified as an integer from 0 to 999. Optional.

Methods

The Date object has no properties that can be read and written directly; instead, all access to date and time
values is done through methods. Most methods of the Date object come in two forms: one that operates
using local time, and one that operates using universal (UTC or GMT) time. If a method has "UTC" in its
name, it operates using universal time. These pairs of methods are listed together below. For example, the
listing for get[UTC]Day() refers to both the methods getDay() and getUTCDay().

Date methods may be invoked only on Date objects and throw a TypeError exception if you attempt to
invoke them on any other type of object.

get[UTC]Date()

Returns the day of the month of a Date object, in local or universal time.

get[UTC]Day()

Returns the day of the week of a Date object, in local or universal time.

get[UTC]FullYear()

Returns the year of the date in full four-digit form, in local or universal time.

get[UTC]Hours()

Returns the hours field of a Date object, in local or universal time.

get[UTC]Milliseconds()

Returns the milliseconds field of a Date object, in local or universal time.

get[UTC]Minutes()

Returns the minutes field of a Date object, in local or universal time.

get[UTC]Month()

Returns the month field of a Date object, in local or universal time.

get[UTC]Seconds()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

get[UTC]Seconds()

Returns the seconds field of a Date object, in local or universal time.

getTime()

Returns the internal, millisecond representation of a Date object. Note that this value is independent
of time zone, and therefore, there is not a separate getUTCTime() method.

getTimezoneOffset()

Returns the difference, in minutes, between the local and UTC representations of this date. Note that
the value returned depends on whether daylight savings time is or would be in effect at the specified
date.

getYear()

Returns the year field of a Date object. Deprecated in favor of getFullYear().

set[UTC]Date()

Sets the day of the month field of the date, using local or universal time.

set[UTC]FullYear()

Sets the year (and optionally month and day) of the date, using local or universal time.

set[UTC]Hours()

Sets the hour (and optionally the minutes, seconds, and milliseconds fields) of the date, using local or
universal time.

set[UTC]Milliseconds()

Sets the milliseconds field of a date, using local or universal time.

set[UTC]Minutes()

Sets the minutes field (and optionally the seconds and milliseconds fields) of a date, using local or
universal time.

set[UTC]Month()

Sets the month field (and optionally the day of the month) of a date, using local or universal time.

set[UTC]Seconds()

Sets the seconds field (and optionally the milliseconds field) of a date, using local or universal time.

setTime()

Sets the fields of a Date object using the millisecond format.

setYear()

Sets the year field of a Date object. Deprecated in favor of setFullYear().

toDateString()

Returns a string that represents the date portion of the date, expressed in the local time zone.

toGMTString()

Converts a Date to a string, using the GMT time zone. Deprecated in favor of toUTCString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Converts a Date to a string, using the GMT time zone. Deprecated in favor of toUTCString()

toLocaleDateString()

Returns a string that represents the date portion of the date, expressed in the local time zone, using
the local date formatting conventions.

toLocaleString()

Converts a Date to a string, using the local time zone and the local date formatting conventions.

toLocaleTimeString()

Returns a string that represents the time portion of the date, expressed in the local time zone, using
the local time formatting conventions.

toString()

Converts a Date to a string using the local time zone.

toTimeString()

Returns a string that represents the time portion of the date, expressed in the local time zone.

toUTCString()

Converts a Date to a string, using universal time.

valueOf()

Converts a Date to its internal millisecond format.

Static Methods

In addition to the many instance methods listed above, the Date object also defines two static methods.
These methods are invoked through the Date() constructor itself, not through individual Date objects:

Date.parse()

Parses a string representation of a date and time and returns the internal millisecond representation
of that date.

Date.UTC()

Returns the millisecond representation of the specified UTC date and time.

Description

The Date object is a data type built into the JavaScript language. Date objects are created with the new
Date() syntax shown in the preceding Section section.

Once a Date object is created, there are a number of methods that allow you to operate on it. Most of the
methods simply allow you to get and set the year, month, day, hour, minute, second, and millisecond fields
of the object, using either local time or UTC (universal, or GMT) time. The toString() method and its
variants convert dates to human-readable strings. getTime() and setTime() convert to and from the
internal representation of the Date object -- the number of milliseconds since midnight (GMT) on January 1,
1970. In this standard millisecond format, a date and time are represented by a single integer, which makes
date arithmetic particularly easy. The ECMAScript standard requires the Date object to be able to represent
any date and time, to millisecond precision, within 100 million days before or after 1/1/1970. This is a range
of plus or minus 273,785 years, so the JavaScript clock will not "roll over" until the year 275755.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

Once you create a Date object, there are a variety of methods you can use to operate on it:

d = new Date(); // Get the current date and time

document.write('Today is: " + d.toLocaleDateString() + '. '); // Display date

document.write('The time is: ' + d.toLocaleTimeString()); // Display time

var dayOfWeek = d.getDay(); // What weekday is it?

var weekend = (dayOfWeek == 0) || (dayOfWeek == 6); // Is it a weekend?

Another common use of the Date object is to subtract the millisecond representations of the current time
from some other time to determine the difference between the two times. The following client-side example
shows two such uses:

<script language="JavaScript">

today = new Date(); // Make a note of today's date

christmas = new Date(); // Get a date with the current year

christmas.setMonth(11); // Set the month to December...

christmas.setDate(25); // and the day to the 25th

// If Christmas hasn't already passed, compute the number of

// milliseconds between now and Christmas, convert this

// to a number of days and print a message

if (today.getTime() < christmas.getTime()) {

 difference = christmas.getTime() - today.getTime();

 difference = Math.floor(difference / (1000 * 60 * 60 * 24));

 document.write('Only ' + difference + ' days until Christmas!<p>');

}

</script>

// ... rest of HTML document here ...

<script language="JavaScript">

// Here we use Date objects for timing

// We divide by 1000 to convert milliseconds to seconds

now = new Date();

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

now = new Date();

document.write('<p>It took ' +

 (now.getTime()-today.getTime())/1000 +

 'seconds to load this page.');

</script>

See Also

Date.parse(), Date.UTC()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getDate() return the day of the month

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getDate()

Returns

The day of the month of the specified Date object date, using local time. Return values are
between 1 and 31.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getDay() return the day of the week

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getDay()

Returns

The day of the week of the specified Date object date, using local time. Return values are
between 0 (Sunday) and 6 (Saturday).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getFullYear() return the year

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getFullYear()

Returns

The year that results when date is expressed in local time. The return value is a full four-digit
year, including the century, not a two-digit abbreviation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getHours() return the hours field of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getHours()

Returns

The hours field, expressed in local time, of the specified Date object date. Return values are
between 0 (midnight) and 23 (11 p.m.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getMilliseconds() return the milliseconds field of a Date

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getMilliseconds()

Returns

The milliseconds field, expressed in local time, of date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getMinutes() return the minutes field of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getMinutes()

Returns

The minutes field, expressed in local time, of the specified Date object date. Return values are
between 0 and 59.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getMonth() return the month of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getMonth()

Returns

The month field, expressed in local time, of the specified Date object date. Return values are
between 0 (January) and 11 (December).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getSeconds() return the seconds field of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getSeconds()

Returns

The seconds field, expressed in local time, of the specified Date object date. Return values are
between 0 and 59.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getTime() return a Date in milliseconds

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getTime()

Returns

The millisecond representation of the specified Date object date; that is, the number of
milliseconds between midnight (GMT) on 1/1/1970 and the date and time specified by date.

Description

getTime() converts a date and time to a single integer. This is useful when you want to
compare two Date objects or to determine the time elapsed between two dates. Note that the
millisecond representation of a date is independent of the time zone, so there is no
getUTCTime() method in addition to this one. Don't confuse this getTime() method with the
getDay() and getDate() methods, which return the day of the week and the day of the
month, respectively.

Date.parse() and Date.UTC() allow you to convert a date and time specification to
millisecond representation without going through the overhead of first creating a Date object.

See Also

Date, Date.parse(), Date.setTime(), Date.UTC()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getTimezoneOffset() determine the offset from GMT

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.getTimezoneOffset()

Returns

The difference, in minutes, between Greenwich Mean Time (GMT) and local time.

Description

getTimezoneOffset() returns the number of minutes difference between the GMT or UTC
time and the local time. In effect, this function tells you what time zone the JavaScript code is
running in and whether or not daylight savings time is (or would be) in effect at the specified
date.

The return value is measured in minutes, rather than hours, because some countries have time
zones that are not at even one-hour intervals.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCDate() return the day of the month (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCDate()

Returns

The day of the month (a value between 1 and 31) that results when date is expressed in
universal time.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCDay() return the day of the week (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCDay()

Returns

The day of the week that results when date is expressed in universal time. Return values are
between 0 (Sunday) and 6 (Saturday).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCFullYear() return the year (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCFullYear()

Returns

The year that results when date is expressed in universal time. The return value is a full four-digit
year, not a two-digit abbreviation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCHours() return the hours field of a Date (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCHours()

Returns

The hours field, expressed in universal time, of date. The return value is an integer between 0
(midnight) and 23 (11 p.m.).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCMilliseconds(
)

return the milliseconds field of a Date (universal
time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCMilliseconds()

Returns

The milliseconds field, expressed in universal time, of date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCMinutes() return the minutes field of a Date (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCMinutes()

Returns

The minutes field, expressed in universal time, of date. The return value is an integer between 0
and 59.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCMonth() return the month of the year (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCMonth()

Returns

The month of the year that results when date is expressed in universal time. The return value is
an integer between 0 (January) and 11 (December). Note that the Date object represents the first
day of the month as 1 but represents the first month of the year as 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getUTCSeconds() return the seconds field of a Date (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.getUTCSeconds()

Returns

The seconds field, expressed in universal time, of date. The return value is an integer between 0
and 59.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.getYear() return the year field of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated by ECMAScript v3

Synopsis

date.getYear()

Returns

The year field of the specified Date object date minus 1900.

Description

getYear() returns the year field of a specified Date object minus 1900. As of ECMAScript v3, it
is not required in conforming JavaScript implementations; use getFullYear() instead.

Bugs

Netscape implementations of JavaScript 1.0 through 1.2 subtract 1900 only for years between
1900 and 1999.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.parse() parse a date/time string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Date.parse(date)

Arguments

date

A string containing the date and time to be parsed.

Returns

The number of milliseconds between the specified date and time and midnight GMT on January
1, 1970.

Description

Date.parse() is a static method of Date. It is always invoked through the Date constructor as
Date.parse(), not through a Date object as date.parse(). Date.parse() takes a
single string argument. It parses the date contained in this string and returns it in millisecond
format, which can be used directly, used to create a new Date object, or used to set the date in an
existing Date object with Date.setTime().

The ECMAScript standard does not specify the format of the strings that can be parsed by
Date.parse() except to say that this method can parse the strings returned by the
Date.toString() and Date.toUTCString() methods. Unfortunately, these functions
format dates in an implementation-dependent way, so it is not in general possible to write dates in
a way that is guaranteed to be understood by all JavaScript implementations.

See Also

Date, Date.setTime(), Date.toGMTString(), Date.UTC()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setDate() set the day of the month

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setDate(day_of_month)

Arguments

day_of_month

An integer between 1 and 31 that is used as the new value (in local time) of the day-of-
month field of date.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setFullYear() set the year and, optionally, the month and date

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setFullYear(year)

date.setFullYear(year, month)

date.setFullYear(year, month, day)

Arguments

year

The year, expressed in local time, to be set in date. This argument should be an integer
that includes the century, such as 1999; it should not be an abbreviation, such as 99.

month

An optional integer, between 0 and 11 that is used as the new value (in local time) of the
month field of date.

day

An optional integer, between 1 and 31 that is used as the new value (in local time) of the
day-of-month field of date.

Returns

The internal millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setHours(
)

set the hours, minutes, seconds, and milliseconds fields of a
Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setHours(hours)

date.setHours(hours, minutes)

date.setHours(hours, minutes,

seconds)

date.setHours(hours, minutes, seconds, millis)

Arguments

hours

An integer between 0 (midnight) and 23 (11 p.m.) local time that is set as the new hours
value of date.

minutes

An optional integer, between 0 and 59, that is used as the new value (in local time) of the
minutes field of date. This argument is not supported prior to ECMAScript standardization.

seconds

An optional integer, between 0 and 59, that is used as the new value (in local time) of the
seconds field of date. This argument is not supported prior to ECMAScript standardization.

millis

An optional integer, between 0 and 999, that is used as the new value (in local time) of the
milliseconds field of date. This argument is not supported prior to ECMAScript
standardization.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setMilliseconds() set the milliseconds field of a Date

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setMilliseconds(millis)

Arguments

millis

The milliseconds field, expressed in local time, to be set in date. This argument should be
an integer between 0 and 999.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setMinutes() set the minutes and seconds fields of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setMinutes(minutes)

date.setMinutes(minutes, seconds)

date.setMinutes(minutes, seconds, millis)

Arguments

minutes

An integer between 0 and 59 that is set as the minutes value (in local time) of the Date
object date.

seconds

An optional integer, between 0 and 59, that is used as the new value (in local time) of the
seconds field of date. This argument is not supported prior to ECMAScript standardization.

millis

An optional integer, between 0 and 999, that is used as the new value (in local time) of the
milliseconds field of date. This argument is not supported prior to ECMAScript
standardization.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setMonth() set the month and day fields of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setMonth(month)

date.setMonth(month, day)

Arguments

month

An integer between 0 (January) and 11 (December) that is set as the month value (in local
time) for the Date object date. Note that months are numbered beginning with 0, while
days within the month are numbered beginning with 1.

day

An optional integer, between 1 and 31 that is used as the new value (in local time) of the
day-of-month field of date. This argument is not supported prior to ECMAScript
standardization.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setSeconds() set the seconds and milliseconds fields of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setSeconds(seconds)

date.setSeconds(seconds, millis)

Arguments

seconds

An integer between 0 and 59 that is set as the seconds value for the Date object date.

millis

An optional integer, between 0 and 999, that is used as the new value (in local time) of the
milliseconds field of date. This argument is not supported prior to ECMAScript
standardization.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setTime() set a Date in milliseconds

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.setTime(milliseconds)

Arguments

milliseconds

The number of milliseconds between the desired date and time and midnight GMT on
January 1, 1970. A millisecond value of this type may also be passed to the Date()
constructor and may be obtained by calling the Date.UTC() and Date.parse()
methods. Representing a date in this millisecond format makes it independent of time zone.

Returns

The milliseconds argument. Prior to ECMAScript standardization, this method returns nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCDate() set the day of the month (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCDate(day_of_month)

Arguments

day_of_month

The day of the month, expressed in universal time, to be set in date. This argument should
be an integer between 1 and 31.

Returns

The internal millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCFullYear() set the year, month, and day (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCFullYear(year)

date.setUTCFullYear(year, month)

date.setUTCFullYear(year, month, day)

Arguments

year

The year, expressed in universal time, to be set in date. This argument should be an
integer that includes the century, such as 1999, not be an abbreviation, such as 99.

month

An optional integer, between 0 and 11 that is used as the new value (in universal time) of
the month field of date.

day

An optional integer, between 1 and 31 that is used as the new value (in universal time) of
the day-of-month field of date.

Returns

The internal millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCHours(
)

set the hours, minutes, seconds, and milliseconds fields
of a Date (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCHours(hours)

date.setUTCHours(hours, minutes)

date.setUTCHours(hours, minutes, seconds)

date.setUTCHours(hours,minutes, seconds, millis)

Arguments

hours

The hours field, expressed in universal time, to be set in date. This argument should be an
integer between 0 (midnight) and 23 (11 p.m.).

minutes

An optional integer, between 0 and 59, that is used as the new value (in universal time) of
the minutes field of date.

seconds

An optional integer, between 0 and 59, that is used as the new value (in universal time) of
the seconds field of date.

millis

An optional integer, between 0 and 999, that is used as the new value (in universal time) of
the milliseconds field of date.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCMilliseconds(
)

set the milliseconds field of a Date (universal
time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCMilliseconds(millis)

Arguments

millis

The milliseconds field, expressed in universal time, to be set in date. This argument
should be an integer between 0 and 999.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCMinutes(
)

set the minutes and seconds fields of a Date
(universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCMinutes(minutes)

date.setUTCMinutes(minutes, seconds)

date.setUTCMinutes(minutes, seconds, millis)

Arguments

minutes

The minutes field, expressed in universal time, to be set in date. This argument should be
an integer between 0 and 59.

seconds

An optional integer, between 0 and 59, that is used as the new value (in universal time) of
the seconds field of date.

millis

An optional integer, between 0 and 999, that is used as the new value (in universal time) of
the milliseconds field of date.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCMonth(
)

set the month and day fields of a Date (universal
time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCMonth(month)

date.setUTCMonth(month, day)

Arguments

month

The month, expressed in universal time, to be set in date. This argument should be an
integer between 0 (January) and 11 (December). Note that months are numbered
beginning with 0, while days within the month are numbered beginning with 1.

day

An optional integer, between 1 and 31 that is used as the new value (in universal time) of
the day-of-month field of date.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setUTCSeconds(
)

set the seconds and milliseconds fields of a Date
(universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.setUTCSeconds(seconds)

date.setUTCSeconds(seconds, millis)

Arguments

seconds

The seconds field, expressed in universal time, to be set in date. This argument should be
an integer between 0 and 59.

millis

An optional integer, between 0 and 999, that is used as the new value (in universal time) of
the milliseconds field of date.

Returns

The millisecond representation of the adjusted date.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.setYear() set the year field of a Date

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated by ECMAScript v3

Synopsis

date.setYear(year)

Arguments

year

An integer that is set as the year value (in local time) for the Date object date. If this value
is between 0 and 99, inclusive, 1900 is added to it and it is treated as a year between 1900
and 1999.

Returns

The millisecond representation of the adjusted date. Prior to ECMAScript standardization, this
method returns nothing.

Description

setYear() sets the year field of a specified Date object, with special behavior for years
between 1900 and 1999.

As of ECMAScript v3, this function is no longer required in conforming JavaScript
implementations; use setFullYear() instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toDateString() return the date portion of a Date as a string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

date.toDateString()

Returns

An implementation-dependent human-readable string representation of the date portion of date,
expressed in the local time zone.

See Also

Date.toLocaleDateString(), Date.toLocaleString(), Date.toLocaleTimeString(), Date.toString(),
Date.toTimeString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toGMTString() convert a Date to a universal time string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated by ECMAScript v3

Synopsis

date.toGMTString()

Returns

A string representation of the date and time specified by the Date object date. The date is
converted from the local time zone to the GMT time zone before being converted to a string.

Description

toGMTString() is deprecated in favor of the identical method Date.toUTCString().

As of ECMAScript v3, conforming implementations of JavaScript are no longer required to provide
this method; use toUTCString() instead.

See Also

Date.toUTCString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toLocaleDateString(
)

return the date portion of a Date as a locally
formatted string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

date.toLocaleDateString()

Returns

An implementation-dependent human-readable string representation of the date portion of date,
expressed in the local time zone and formatted according to local conventions.

See Also

Date.toDateString(), Date.toLocaleString(), Date.toLocaleTimeString(), Date.toString(),
Date.toTimeString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toLocaleString() convert a Date to a locally formatted string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

date.toLocaleString()

Returns

A string representation of the date and time specified by date. The date and time are
represented in the local time zone and formatted using locally appropriate conventions.

Usage

toLocaleString() converts a date to a string, using the local time zone. This method also
uses local conventions for date and time formatting, so the format may vary from platform to
platform and from country to country. toLocaleString() returns a string formatted in what is
likely the user's preferred date and time format.

See Also

Date.toLocaleDateString(), Date.toLocaleTimeString(), Date.toString(), Date.toUTCString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toLocaleTimeString(
)

return the time portion of a Date as a locally
formatted string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

date.toLocaleTimeString()

Returns

An implementation-dependent human-readable string representation of the time portion of date,
expressed in the local time zone and formatted according to local conventions.

See Also

Date.toDateString(), Date.toLocaleDateString(), Date.toLocaleString(), Date.toString(),
Date.toTimeString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toString() convert a Date to a string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1 Overrides Object.toString()

Synopsis

date.toString()

Returns

A human-readable string representation of date, expressed in the local time zone.

Description

toString() returns a human-readable, implementation-dependent string representation of
date. Unlike toUTCString(), toString() expresses the date in the local time zone. Unlike
toLocaleString(), toString() may not represent the date and time using locale-specific
formatting.

See Also

Date.parse(), Date.toDateString(), Date.toLocaleString(), Date.toTimeString(),
Date.toUTCString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toTimeString() return the time portion of a Date as a string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

date.toTimeString()

Returns

A implementation-dependent human-readable string representation of the time portion of date,
expressed in the local time zone.

See Also

Date.toString(), Date.toDateString(), Date.toLocaleDateString(), Date.toLocaleString(),
Date.toLocaleTimeString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.toUTCString() convert a Date to a string (universal time)

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

date.toUTCString()

Returns

A human-readable string representation, expressed in universal time, of date.

Description

toUTCString() returns an implementation-dependent string that represents date in universal
time.

See Also

Date.toLocaleString(), Date.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.UTC() convert a Date specification to milliseconds

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Date.UTC(year, month, day, hours, minutes, seconds, ms)

Arguments

year

The year in four-digit format. If this argument is between 0 and 99, inclusive, 1900 will be
added to it and it will be treated as a year between 1900 and 1999.

month

The month, specified as an integer from 0 (January) to 11 (December).

day

The day of the month, specified as an integer from 1 to 31. Note that this argument uses 1
as its lowest value, while other arguments use 0 as their lowest value. This argument is
optional.

hours

The hour, specified as an integer from 0 (midnight) to 23 (11 p.m.). This argument is
optional.

minutes

The minutes in the hour, specified as an integer from 0 to 59. This argument is optional.

seconds

The seconds in the minute, specified as an integer from 0 to 59. This argument is optional.

ms

The number of milliseconds. This argument is optional and is ignored prior to ECMAScript
standardization.

Returns

The millisecond representation of the specified universal time. That is, this method returns the
number of milliseconds between midnight GMT on January 1, 1970 and the specified time.

Description

Date.UTC() is a static method; it is invoked through the Date() constructor, not through an
individual Date object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The arguments to Date.UTC() specify a date and time and are understood to be in UTC
(Universal Coordinated Time) -- they are in the GMT time zone. The specified UTC time is
converted to the millisecond format, which can be used by the Date() constructor method and
by the Date.setTime() method.

The Date() constructor method can accept date and time arguments identical to those that
Date.UTC() accepts. The difference is that the Date() constructor assumes local time, while
Date.UTC() assumes universal time (GMT). To create a Date object using a UTC time
specification, you can use code like this:

d = new Date(Date.UTC(1996, 4, 8, 16, 30));

See Also

Date, Date.parse(), Date.setTime()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Date.valueOf() convert a Date to millisecond representation

Availability

JavaScript 1.1; ECMAScript v1

Inherits from/Overrides

Overrides Object.valueOf()

Synopsis

date.valueOf()

Returns

The millisecond representation of date. The value returned is the same as that returned by
Date.getTime().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decodeURI() unescape characters in a URI

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

decodeURI(uri)

Arguments

uri

A string that contains an encoded URI or other text to be decoded.

Returns

A copy of uri, with any hexadecimal escape sequences replaced with the characters they
represent.

Throws

URIError

Indicates that one or more of the escape sequences in uri is malformed and cannot be
correctly decoded.

Description

decodeURI() is a global function that returns a decoded copy of its uri argument. It reverses
the encoding performed by encodeURI(); see that function for details.

See Also

decodeURIComponent(), encodeURI(), encodeURIComponent(), escape(), unescape()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

decodeURIComponent() unescape characters in a URI component

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

decodeURI(s)

Arguments

s

A string that contains an encoded URI component or other text to be decoded.

Returns

A copy of s, with any hexadecimal escape sequences replaced with the characters they
represent.

Throws

URIError

Indicates that one or more of the escape sequences in s is malformed and cannot be
correctly decoded.

Description

decodeURIComponent() is a global function that returns a decoded copy of its s argument. It
reverses the encoding performed by encodeURIComponent(). See that function's reference
page for details.

See Also

decodeURI(), encodeURI(), encodeURIComponent(), escape(), unescape()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encodeURI() escape characters in a URI

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

encodeURI(uri)

Arguments

uri

A string that contains the URI or other text to be encoded.

Returns

A copy of uri, with certain characters replaced by hexadecimal escape sequences.

Throws

URIError

Indicates that uri contains malformed Unicode surrogate pairs and cannot be encoded.

Description

encodeURI() is a global function that returns an encoded copy of its uri argument. ASCII
letters and digits are not encoded, nor are the following ASCII punctuation characters:

- _ . ! ~ * ' ()

Because encodeURI() is intended to encode complete URIs, the following ASCII punctuation
characters, which have special meaning in URIs, are not escaped either:

; / ? : @ & = + $, #

Any other characters in uri are replaced by converting the character to its UTF-8 encoding and
then encoding each of the resulting one, two, or three bytes with a hexadecimal escape sequence
of the form %xx. In this encoding scheme, ASCII characters are replaced with a single %xx
escape, characters with encodings between \u0080 and \u07ff are replaced with two escape
sequences, and all other 16-bit Unicode characters are replaced with three escape sequences.

If you use this method to encode a URI, you should be certain that none of the components of the
URI (such as the query string) contain URI separator characters such as ? and #. If the
components may contain these characters, you should encode each component separately with
encodeURIComponent().

Use decodeURI() to reverse the encoding applied by this method. Prior to ECMAScript v3, you
can use escape() and unescape() methods (which are now deprecated) to perform a
similar kind of encoding and decoding.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

// Returns http://www.isp.com/app.cgi?arg1=1&arg2=hello%20world

encodeURI("http://www.isp.com/app.cgi?arg1=1&arg2=hello world");

encodeURI("\u00a9"); // The copyright character encodes to %C2%A9

See Also

decodeURI(), decodeURIComponent(), encodeURIComponent(), escape(), unescape()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

encodeURIComponent() escape characters in a URI component

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

encodeURIComponent(s)

Arguments

s

A string that contains a portion of a URI or other text to be encoded.

Returns

A copy of s, with certain characters replaced by hexadecimal escape sequences.

Throws

URIError

Indicates that s contains malformed Unicode surrogate pairs and cannot be encoded.

Description

encodeURIComponent() is a global function that returns an encoded copy of its s argument.
ASCII letters and digits are not encoded, nor are the following ASCII punctuation characters:

- _ . ! ~ * ' ()

All other characters, including punctuation characters such as /, :, # that serve to separate the
various components of a URI, are replaced with one or more hexadecimal escape sequences.
See encodeURI() for a description of the encoding scheme used.

Note the difference between encodeURIComponent() and encodeURI():
encodeURIComponent() assumes that its argument is a portion (such as the protocol,
hostname, path, or query string) of a URI. Therefore it escapes the punctuation characters that
are used to separate the portions of a URI.

Example

encodeURIComponent("hello world?"); // Returns hello%20world%3F

See Also

decodeURI(), decodeURIComponent(), encodeURI(), escape(), unescape()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error a generic exception

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Inherits from/Overrides

Inherits from Object

Constructor

new Error()

new Error(message)

Arguments

message

An optional error message that provides details about the exception.

Returns

A newly constructed Error object. If the message argument is specified, the Error object will use it as
the value of its message property; otherwise, it will use an implementation-defined default string as
the value of that property. When the Error() constructor is called as a function, without the new
operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor or an implementation-defined default string.

name

A string that specifies the type of the exception. For instances of the Error class and all of its
subclasses, this property specifies the name of the constructor used to create the instance.

Methods

toString()

Returns an implementation-defined string that represents this Error object.

Description

Instances of the Error class represent errors or exceptions and are typically used with the throw and
try/catch statements. The name property specifies the type of the exception, and the message
property can be used to provide human-readable details about the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JavaScript interpreter never throws Error object directly; instead, it throws instances of one of the
Error subclasses such as SyntaxError or RangeError. In your own code you may find it convenient to
throw Error objects to signal exceptions, or you may prefer to simply throw an error message or error
code as a primitive string or number value.

Note that the ECMAScript specification defines a toString() method for the Error class (it is
inherited by each of the subclasses of Error) but that it does not require this toString() method to
return a string that contains the contents of the message property. Therefore, you should not expect
the toString() method to convert an Error object to convert to a meaningful human-readable
string. To display an error message to a user, you should explicitly use the name and message
properties of the Error object.

Example

You might signal an exception with code like the following:

function factorial(x) {

 if (x < 0) throw new Error("factorial: x must be >= 0");

 if (x <= 1) return 1; else return x * factorial(x-1);

}

And if you catch an exception, you might display its to the user with code like the following (which
uses the client-side Window.alert() method):

try { &*(&/* an error is thrown here */ }

catch(e) {

 if (e instanceof Error) { // Is it an instance of Error or a subclass?

 alert(e.name + ": " + e.message);

 }

}

See Also

EvalError, RangeError, ReferenceError, SyntaxError, TypeError, URIError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error.message a human-readable error message

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

error.message

Description

The message property of an Error object (or of an instance of any subclass of Error) is intended
to contain a human-readable string that provides details about the error or exception that
occurred. If a message argument is passed to the Error() constructor, this message becomes
the value of the message property. If no message argument is passed, an Error object inherits an
implementation-defined default value (which may be the empty string) for this property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error.name the type of an error

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

error.name

Description

The name property of an Error object (or of an instance of any subclass of Error) specifies the
type of error or exception that occurred. All Error objects inherit this property from their
constructor. The value of the property is the same as the name of the constructor. Thus
SyntaxError objects have a name property of "SyntaxError" and EvalError objects have a name of
"EvalError".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error.toString() convert an Error object to a string

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Inherits from/Overrides

Overrides Object.toString()

Synopsis

error.toString()

Returns

An implementation-defined string. The ECMAScript standard does not specify anything about the
return value of this method, except that it is a string. Notably, it does not require the returned
string to contain the error name or the error message.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

escape() encode a string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated in ECMAScript v3

Synopsis

escape(s)

Arguments

s

The string that is to be "escaped" or encoded.

Returns

An encoded copy of s in which certain characters have been replaced by hexadecimal escape
sequences.

Description

escape() is a global function. It returns a new string that contains an encoded version of s.
The string s itself is not modified.

escape() returns a string in which all characters of s other than ASCII letters, digits, and the
punctuation characters @, *, _, +, -, ., and / have been replaced by escape sequences of the form
%xx or %uxxxx (where x represents a hexadecimal digit). Unicode characters \u0000 to \u00ff
are replaced with the %xx escape sequence, and all other Unicode characters are replaced with
the %uxxxx sequence.

Use the unescape() function to decode a string encoded with escape().

In client-side JavaScript, a common use of escape() is to encode cookie values, which have
restrictions on the punctuation characters they may contain. See the Document.cookie reference
page in the client-side reference section.

Although the escape() function was standardized in the first version of ECMAScript, it has
been deprecated and removed from the standard by ECMAScript v3. Implementations of
ECMAScript are likely to implement this function, but they are not required to. In JavaScript 1.5
and JScript 5.5 and later, you should use encodeURI() and encodeURIComponent()
instead of escape().

Example

escape("Hello World!"); // Returns "Hello%20World%21"

See Also

encodeURI(), encodeURIComponent(), String, escape(); Document.cookie in the client-side
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eval() execute JavaScript code from a string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

eval(code)

Arguments

code

A string that contains the JavaScript expression to be evaluated or the statements to be executed.

Returns

The value of the evaluated code, if any.

Throws

SyntaxError

Indicates that code does not contain legal JavaScript.

EvalError

Indicates that eval() was called illegally, through an identifier other than "eval", for example. See
restrictions on this function described below.

Other exception

If the JavaScript code passed to eval() generates an exception, eval() will pass that exception on
to the caller.

Description

eval() is a global method that evaluates a string containing JavaScript code. If code contains an
expression, eval evaluates the expression and returns its value. If code contains a JavaScript statement or
statements, eval() executes those statements and returns the value, if any, returned by the last statement.
If code does not return any value, eval() returns undefined. Finally, if code throws an exception,
) passes that exception on to the caller.

eval() provides a very powerful capability to the JavaScript language, but its use is infrequent in real-world
programs. Obvious uses are to write programs that act as recursive JavaScript interpreters and to write
programs that dynamically generate and evaluate JavaScript code.

Most JavaScript functions and methods that expect string arguments accept arguments of other types as well
and simply convert those argument values to strings before proceeding. eval() does not behave like this. If
the code argument is not a primitive string, it is simply returned unchanged. Be careful, therefore, that you do
not inadvertently pass a String object to eval() when you intended to pass a primitive string value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

not inadvertently pass a String object to eval() when you intended to pass a primitive string value.

For purposes of implementation efficiency, the ECMAScript v3 standard places an unusual restriction on the
use of eval(). An ECMAScript implementation is allowed to throw an EvalError exception if you attempt to
overwrite the eval property or if you assign the eval() method to another property and attempt to invoke it
through that property.

Example

eval("1+2"); // Returns 3

// This code uses client-side JavaScript methods to prompt the user to

// enter an expression and to display the results of evaluating it.

// See the client-side methods Window.alert() and Window.prompt() for details.

try {

 alert("Result: " + eval(prompt("Enter an expression:","")));

}

catch(exception) {

 alert(exception);

}

var myeval = eval; // May throw an EvalError

myeval("1+2"); // May throw an EvalError

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EvalError thrown when eval() is used improperly

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Inherits from/Overrides

Inherits from Error

Constructor

new EvalError()

new EvalError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the EvalError object.

Returns

A newly constructed EvalError object. If the message argument is specified, the Error object will
use it as the value of its message property; otherwise, it will use an implementation-defined
default string as the value of that property. When the EvalError() constructor is called as a
function, without the new operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor or an implementation-defined default string. See Error.message
for details.

name

A string that specifies the type of the exception. All EvalError objects inherit the value
"EvalError" for this property.

Description

An instance of the EvalError class may be thrown when the global function eval() is invoked
under any other name. See eval() for an explanation of the restrictions on how this function may
be invoked. See Error for details about throwing and catching exceptions.

See Also

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function a JavaScript function

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Synopsis

function functionname(argument_name_list) // Function definition statement

{

 body

}

function (argument_name_list) { body } // Unnamed function literal; JavaScript 1.2

functionname(argument_value_list) // Function invocation

Constructor

new Function(argument_names..., body) // JavaScript 1.1 and later

Arguments

argument_names...

Any number of string arguments, each naming one or more arguments of the Function object being
created.

body

A string that specifies the body of the function. It may contain any number of JavaScript statements,
separated with semicolons, and may refer to any of the argument names specified by previous arguments
to the constructor.

Returns

A newly created Function object. Invoking the function executes the JavaScript code specified by body

Throws

SyntaxError

Indicates that there was a JavaScript syntax error in the body argument or in one of the
argument_names arguments.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Properties

arguments[]

An array of arguments that were passed to the function. Deprecated.

caller

A reference to the Function object that invoked this one, or null if the function was invoked from top-
level code. Deprecated.

length

The number of named arguments specified when the function was declared.

prototype

An object which, for a constructor function, defines properties and methods shared by all objects created
with that constructor function.

Methods

apply()

Invokes a function as a method of a specified object, passing a specified array of arguments.

call()

Invokes a function as a method of a specified object, passing the specified arguments.

toString()

Returns a string representation of the function.

Description

A function is a fundamental data type in JavaScript. Chapter 7 explains how to define and use functions, and
Chapter 8 covers the related topics of methods, constructors, and the prototype property of functions. See
those chapters for complete details. Note that although function objects may be created with the Function(
constructor described here, this is not efficient, and the preferred way to define functions, in most cases, is with
a function definition statement or a function literal.

In JavaScript 1.1 and later, the body of a function is automatically given a local variable, named arguments
that refers to an Arguments object. This object is an array of the values passed as arguments to the function.
Don't confuse this with the deprecated arguments[] property listed above. See the Arguments reference page
for details.

See Also

Arguments; Chapter 7; Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.apply() invoke a function as a method of an object

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

function.apply(thisobj, args)

Arguments

thisobj

The object to which function is to be applied. In the body of the function, thisobj
becomes the value of the this keyword.

args

An array of values to be passed as arguments to function.

Returns

Whatever value is returned by the invocation of function.

Throws

TypeError

If this method is invoked on an object that is not a function or if this method is invoked with
an args argument that is not an array or an Arguments object.

Description

apply() invokes the specified function as if it were a method of thisobj, passing it the
arguments contained in the args array. It returns the value returned by the function invocation.
Within the body of the function, the this keyword refers to the thisobj object.

The args argument must be an array or an Arguments object. Use Function.call() instead
if you want to specify the arguments to pass to the function individually instead of as array
elements.

Example

// Apply the default Object.toString() method to an object that

// overrides it with its own version of the method. Note no arguments.

Object.prototype.toString.apply(o);

// Invoke the Math.max() method with apply to find the largest

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Invoke the Math.max() method with apply to find the largest

// element in an array. Note that first argument doesn't matter

// in this case.

var data = [1,2,3,4,5,6,7,8];

Math.max.apply(null, data);

See Also

Function.call()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.arguments[] arguments passed to a function

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated by ECMAScript v3

Synopsis

function.arguments[i]

function.arguments.length

Description

The arguments property of a Function object is an array of the arguments that are passed to a
function. It is only defined while the function is executing. arguments.length specifies the
number of elements in the array.

This property is deprecated in favor of the Arguments object. Although ECMAScript v1 supports
the Function.arguments property, it has been removed from ECMAScript v3 and conforming
implementations may no longer support this property. Therefore, it should never be used in new
JavaScript code.

See Also

Arguments

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.call() invoke a function as a method of an object

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

function.call(thisobj, args...)

Arguments

thisobj

The object on which function is to be invoked. In the body of the function, thisobj
becomes the value of the this keyword.

args...

Any number of arguments, which will be passed as arguments to function.

Returns

Whatever value is returned by the invocation of function.

Throws

TypeError

If this method is invoked on an object that is not a function.

Description

call() invokes the specified function as if it were a method of thisobj, passing it any
arguments that follow thisobj in the argument list. The return value of call() is the value
returned by the function invocation. Within the body of the function, the this keyword refers to
the thisobj object.

Use Function.apply() instead if you want to specify the arguments to pass to the function in
an array.

Example

// Call the default Object.toString() method on an object that

// overrides it with its own version of the method. Note no arguments.

Object.prototype.toString.call(o);

See Also

Function.apply()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.caller the function that called this one

Availability

JavaScript 1.0, JScript 2.0; deprecated by ECMAScript

Synopsis

function.caller

Description

In early versions of JavaScript, the caller property of a Function object is a reference to the
function that invoked the current one. If the function was invoked from the top level of a
JavaScript program, caller is null. This property may only be used from within the function
(i.e., the caller property is only defined for a function while that function is executing).

Function.caller is not part of the ECMAScript standard and is not required in conforming
implementations. It should not be used.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.length the number of declared arguments

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

function.length

Description

The length property of a function specifies the number of named arguments declared when the
function was defined. The function may actually be invoked with more than or fewer than this
number of arguments. Don't confuse this property of a Function object with the length property
of the Arguments object which specifies the number of arguments actually passed to the function.
See Arguments.length for an example.

See Also

Arguments.length

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.prototype the prototype for a class of objects

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

function.prototype

Description

The prototype property is used when a function is used as a constructor. It refers to an object
that serves as the prototype for an entire class of objects. Any object created by the constructor
inherits all properties of the object referred to by the prototype property.

See Chapter 8 for a full discussion of constructor functions, the prototype property, and the
definition of classes in JavaScript.

Bugs

JavaScript 1.1 requires a constructor to be used once before anything can be assigned to its
prototype object.

See Also

Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Function.toString() convert a function to a string

Availability

JavaScript 1.0; JScript 2.0; ECMAScript v1

Synopsis

function.toString()

Returns

A string that represents the function.

Throws

TypeError

If this method is invoked on an object that is not a Function.

Description

The toString() method of the Function object converts a function to a string in an
implementation-dependent way. In Netscape implementations, this method returns a string of
valid JavaScript code -- code that includes the function keyword, argument list, the complete
body of the function, and so on.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Global the global object

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

this

Global Properties

The global object is not a class, so the following global properties have individual reference
entries under their own name. That is, you can find details on the undefined property listed
under the name "undefined," not under "Global.undefined." Note that all top-level variables are
also properties of the global object.

Infinity

A numeric value that represents positive infinity.

NaN

The not-a-number value.

undefined

The undefined value.

Global Functions

The global object is an object, not a class. The global functions listed below are not methods of
any object, and their reference entries appear under the function name. For example, you'll find
details on the parseInt() function under "parseInt()," not "Global.parseInt()."

decodeURI()

Decodes a string escaped with encodeURI().

decodeURIComponent()

Decodes a string escaped with encodeURIComponent().

encodeURI

Encodes a URI by escaping certain characters.

encodeURIComponent

Encodes a URI component by escaping certain characters.

escape()

Encodes a string by replacing certain characters with escape sequences.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

eval()

Evaluates a string of JavaScript code and return the result.

isFinite()

Tests whether a value is a finite number.

isNaN

Tests whether a value is the not-a-number value.

parseFloat()

Parses a number from a string.

parseInt()

Parses an integer from a string.

unescape()

Decodes a string encoded with escape().

Global Objects

In addition to the global properties and functions listed above, the global object also defines
properties that refer to all the other predefined JavaScript objects. All of these properties are
constructor functions that define classes except for Math, which is a reference to an object that is
not a constructor.

Array

The Array() constructor.

Boolean

The Boolean() constructor.

Date

The Date() constructor.

Error

The Error() constructor.

EvalError

The EvalError() constructor.

Function

The Function() constructor.

Math

A reference to an object that defines mathematical functions.

Number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number

The Number() constructor.

Object

The Object() constructor.

RangeError

The RangeError() constructor.

ReferenceError

The ReferenceError() constructor.

RegExp

The RegExp() constructor.

String

The String() constructor.

SyntaxError

The SyntaxError() constructor.

TypeError

The TypeError() constructor.

URIError

The URIError() constructor.

Description

The global object is a predefined object that serves as a placeholder for the global properties and
functions of JavaScript. All other predefined objects, functions, and properties are accessible
through the global object. The global object is not a property of any other object, so it does not
have a name. (The title of this reference page was chosen simply for organizational convenience
and does not indicate that the global object is named "Global"). In top-level JavaScript code, you
can refer to the global object with the keyword this. It is rarely necessary to refer to the global
object in this way, however, because the global object serves as the top of the scope chain, which
means that unqualified variable and function names are looked up as properties of the object.
When JavaScript code refers to the parseInt() function, for example, it is referring to the
parseInt property of the global object. The fact that the global object is the top of the scope
chain also means that all variables declared in top-level JavaScript code become properties of the
global object.

The global object is simply an object, not a class. There is no Global() constructor, and there
is no way to instantiate a new global object.

When JavaScript is embedded in a particular environment, the global object is usually given
additional properties that are specific to that environment. In fact, the type of the global object is
not specified by the ECMAScript standard, and an implementation or embedding of JavaScript
may use an object of any type as the global object, as long as the object defines the basic
properties and functions listed here. In client-side JavaScript, for example, the global object is a
Window object and represents the web browser window within which the JavaScript code is
running.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

In core JavaScript, none of the predefined properties of the global object are enumerable, so you
can list all implicitly and explicitly declared global variables with a for/in loop like this:

var variables = ""

for(var name in this)

 variables += name + "\n";

See Also

Window in the client-side reference section; Chapter 4

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Infinity a numeric property that represents infinity

Availability

JavaScript 1.3; JScript 3.0; ECMAScript v1

Synopsis

Infinity

Description

Infinity is a global property that contains the special numeric value representing positive
infinity. The Infinity property is not enumerated by for/in loops and cannot be deleted with
the delete operator. Note that Infinity is not a constant and can be set to any other value,
something that you should take care not to do. (Number.POSITIVE_INFINITY is a constant,
however.)

See Also

isFinite(), NaN, Number.POSITIVE_INFINITY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isFinite() determine whether a number is finite

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

isFinite(n)

Arguments

n

The number to be tested.

Returns

true if n is (or can be converted to) a finite number or false if n is NaN (not a number) or
positive or negative infinity.

See Also

Infinity, isNaN(), NaN, Number.NaN, Number.NEGATIVE_INFINITY,
Number.POSITIVE_INFINITY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

isNaN() check for not-a-number

Availability

JavaScript 1.1; JScript 1.0; ECMAScript v1

Synopsis

isNaN(x)

Arguments

x

The value to be tested.

Returns

true if x is (or can be converted to) the special not-a-number value; false if x is any other
value.

Description

isNaN() tests its argument to determine whether it is the value NaN, which represents an illegal
number (such as the result of division by zero). This function is required, because comparing a
NaN with any value, including itself, always returns false, so it is not possible to test for NaN with
the == or === operators.

A common use of isNaN() is to test the results of parseFloat() and parseInt() to
determine if they represent legal numbers. You can also use isNaN() to check for arithmetic
errors, such as division by zero.

Example

isNaN(0); // Returns false

isNaN(0/0); // Returns true

isNaN(parseInt("3")); // Returns false

isNaN(parseInt("hello")); // Returns true

isNaN("3"); // Returns false

isNaN("hello"); // Returns true

isNaN(true); // Returns false

isNaN(undefined); // Returns true

See Also

isFinite(), NaN, Number.NaN, parseFloat(), parseInt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math mathematical functions and constants

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.constant

Math.function()

Constants

Math.E

The constant e the base of the natural logarithms.

Math.LN10

The natural logarithm of 10.

Math.LN2

The natural logarithm of 2.

Math.LOG10E

The base-10 logarithm of e

Math.LOG2E

The base-2 logarithm of e

Math.PI

The constant .

Math.SQRT1_2

1 divided by the square root of 2.

Math.SQRT2

The square root of 2.

Static Functions

Math.abs()

Computes an absolute value.

Math.acos()

Computes an arc cosine.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.asin()

Computes an arc sine.

Math.atan()

Computes an arc tangent.

Math.atan2()

Computes the angle from the X-axis to a point.

Math.ceil()

Rounds a number up.

Math.cos()

Computes a cosine.

Math.exp()

Computes an exponent of e

Math.floor()

Rounds a number down.

Math.log()

Computes a natural logarithm.

Math.max()

Returns the larger of two numbers.

Math.min()

Returns the smaller of two numbers.

Math.pow()

Computes xy

Math.random()

Computes a random number.

Math.round()

Rounds to the nearest integer.

Math.sin()

Computes a sine.

Math.sqrt()

Computes a square root.

Math.tan()

Computes a tangent.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

Math is an object that defines properties that refer to useful mathematical functions and
constants. These functions and constants are conveniently grouped by this Math object and are
invoked with syntax like this:

y = Math.sin(x);

area = radius * radius * Math.PI;

Math is not a class of objects like Date and String are. There is no Math() constructor, and
functions like Math.sin() are simply functions, not methods that operate on an object.

See Also

Number

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.abs() compute an absolute value

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.abs(x)

Arguments

x

Any number.

Returns

The absolute value of x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.acos() compute an arc cosine

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.acos(x)

Arguments

x

A number between -1.0 and 1.0.

Returns

The arc cosine, or inverse cosine, of the specified value x. This return value is between 0 and
radians.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.asin() compute an arc sine

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.asin(x)

Arguments

x

A number between -1.0 and 1.0.

Returns

The arc sine of the specified value x. This return value is between - /2 and /2 radians.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.atan() compute an arc tangent

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.atan(x)

Arguments

x

Any number.

Returns

The arc tangent of the specified value x. This return value is between - /2 and /2 radians.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.atan2() compute the angle from the X-axis to a point

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.atan2(y, x)

Arguments

y

The Y-coordinate of the point.

x

The X-coordinate of the point.

Returns

A value between - and radians that specifies the counterclockwise angle between the positive
X-axis and the point (x, y).

Description

The Math.atan2() function computes the arc tangent of the ratio y/x. The y argument can be
considered the Y-coordinate (or "rise") of a point, and the x argument can be considered the X-
coordinate (or "run") of the point. Note the unusual order of the arguments to this function: the Y-
coordinate is passed before the X-coordinate.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.ceil() round a number up

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.ceil(x)

Arguments

x

Any numeric value or expression.

Returns

The closest integer greater than or equal to x.

Description

Math.ceil() computes the ceiling function -- i.e., it returns the closest integer value that is
greater than or equal to the function argument. Math.ceil() differs from Math.round() in
that it always rounds up, rather than rounding up or down to the closest integer. Also note that
Math.ceil() does not round negative numbers to larger negative numbers; it rounds them up
toward zero.

Example

a = Math.ceil(1.99); // Result is 2.0

b = Math.ceil(1.01); // Result is 2.0

c = Math.ceil(1.0); // Result is 1.0

d = Math.ceil(-1.99); // Result is -1.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.cos() compute a cosine

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.cos(x)

Arguments

x

An angle, measured in radians. To convert degrees to radians, multiply the degree value by
0.017453293 (2 /360).

Returns

The cosine of the specified value x. This return value is between -1.0 and 1.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.E the mathematical constant e

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.E

Description

Math.E is the mathematical constant e the base of the natural logarithms, with a value of
approximately 2.71828.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.exp() compute ex

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.exp(x)

Arguments

x

A numeric value or expression to be used as the exponent.

Returns

ex, e raised to the power of the specified exponent x, where e is the base of the natural
logarithms, with a value of approximately 2.71828.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.floor() round a number down

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.floor(x)

Arguments

x

Any numeric value or expression.

Returns

The closest integer less than or equal to x.

Description

Math.floor() computes the floor function -- in other words, it returns the nearest integer
value that is less than or equal to the function argument.

Math.floor() rounds a floating-point value down to the closest integer. This behavior differs
from that of Math.round(), which rounds up or down to the nearest integer. Also note that
Math.floor() rounds negative numbers down (i.e., to be more negative), not up (i.e., closer
to zero).

Example

a = Math.floor(1.99); // Result is 1.0

b = Math.floor(1.01); // Result is 1.0

c = Math.floor(1.0); // Result is 1.0

d = Math.floor(-1.01); // Result is -2.0

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.LN10 the mathematical constant loge10

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.LN10

Description

Math.LN10 is loge2, the natural logarithm of 10. This constant has a value of approximately
2.3025850929940459011.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.LN2 the mathematical constant loge2

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.LN2

Description

Math.LN2 is loge2 the natural logarithm of 2. This constant has a value of approximately
0.69314718055994528623.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.log() compute a natural logarithm

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.log(x)

Arguments

x

Any numeric value or expression greater than zero.

Returns

The natural logarithm of x.

Description

Math.log() computes log3x the natural logarithm of its argument. The argument must be
greater than zero.

You can compute the base-10 and base-2 logarithms of a number with these formulas:

log10x = log10e·logex

log2x = log2e·logex

These formulas translate into the following JavaScript functions:

function log10(x) { return Math.LOG10E * Math.log(x); }

function log2(x) { return Math.LOG2E * Math.log(x); }

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.LOG10E the mathematical constant log10e

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.LOG10E

Description

Math.LOG10E is log10e, the base-10 logarithm of the constant e. It has a value of approximately
0.43429448190325181667.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.LOG2E the mathematical constant log2e

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.LOG2E

Description

Math.LOG2E is log2e, the base-2 logarithm of the constant e. It has a value of approximately
1.442695040888963387.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.max() return the largest argument

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; enhanced in ECMAScript v3

Synopsis

Math.max(args...)

Arguments

args...

Zero or more values. Prior to ECMAScript v3, this method expects exactly two arguments.

Returns

The largest of the arguments. Returns -Infinity if there are no arguments. Returns NaN if any
of the arguments is NaN or is a non-numeric value that cannot be converted to a number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.min() return the smallest argument

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; enhanced in ECMAScript v3

Synopsis

Math.min(args...)

Arguments

args...

Any number of arguments. Prior to ECMAScript v3, this function expects exactly two
arguments.

Returns

The smallest of the specified arguments. Returns Infinity if there are no arguments. Returns
NaN if any argument is NaN or is a non-numeric value that cannot be converted to a number.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.PI the mathematical constant

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.PI

Description

Math.PI is the constant or pi, the ratio of the circumference of a circle to its diameter. It has a
value of approximately 3.14159265358979.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.pow() compute xy

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.pow(x, y)

Arguments

x

The number to be raised to a power.

y

The power that x is to be raised to.

Returns

x to the power of y, xy.

Description

Math.pow() computes x to the power of y. Any values of x and y may be passed to
Math.pow(). However, if the result is an imaginary or complex number, Math.pow() returns
NaN. In practice, this means that if x is negative, y should be a positive or negative integer. Also,
bear in mind that large exponents can easily cause floating-point overflow and return a value of
Infinity.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.random() return a pseudorandom number

Availability

JavaScript 1.1; JScript 1.0; ECMAScript v1

Synopsis

Math.random()

Returns

A pseudorandom number between 0.0 and 1.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.round() round to the nearest integer

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.round(x)

Arguments

x

Any number.

Returns

The integer closest to x.

Description

Math.round() rounds its argument up or down to the nearest integer. It rounds .5 up. For
example, it rounds 2.5 to 3 and rounds -2.5 to -2.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.sin() compute a sine

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.sin(x)

Arguments

x

An angle, in radians. To convert degrees to radians, multiply by 0.017453293 (2 /360).

Returns

The sine of x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.sqrt() compute a square root

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.sqrt(x)

Arguments

x

A numeric value greater than or equal to zero.

Returns

The square root of x. Returns NaN if x is less than zero.

Description

Math.sqrt() computes the square root of a number. Note, however, that you can compute
arbitrary roots of a number with Math.pow(). For example:

Math.cuberoot = function(x){ return Math.pow(x,1/3); }

Math.cuberoot(8); // Returns 2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.SQRT1_2 the mathematical constant 1/

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.SQRT1_2

Description

Math.SQRT1_2 is 1/ the reciprocal of the square root of 2. This constant has a value of
approximately 0.7071067811865476.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.SQRT2 the mathematical constant

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.SQRT2

Description

Math.SQRT2 is the constant , the square root of 2. This constant has a value of approximately
1.414213562373095.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math.tan() compute a tangent

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

Math.tan(x)

Arguments

x

An angle, measured in radians. To convert degrees to radians, multiply the degree value by
0.017453293 (2 /360).

Returns

The tangent of the specified angle x.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NaN the not-a-number property

Availability

JavaScript 1.3; JScript 3.0; ECMAScript v1

Synopsis

NaN

Description

NaN is global property that refers to the special numeric not-a-number value. The NaN property is
not enumerated by for/in loops and cannot be deleted with the delete operator. Note that
NaN is not a constant and can be set to any other value, something that you should take care not
to do.

To determine if a value is not a number, use isNaN(), since NaN always compares non-equal
to any other value, including itself!

See Also

Infinity, isNaN(), Number.NaN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number support for numbers

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Constructor

new Number(value)

Number(value)

Arguments

value

The numeric value of the Number object being created, or a value to be converted to a
number.

Returns

When Number() is used with the new operator as a constructor, it returns a newly constructed
Number object. When Number() is invoked as a function without the new operator, it converts
its argument to a primitive numeric value and returns that value (or NaN if the conversion failed).

Constants

Number.MAX_VALUE

The largest representable number.

Number.MIN_VALUE

The smallest representable number.

Number.NaN

Not-a-number value.

Number.NEGATIVE_INFINITY

Negative infinite value; returned on overflow.

Number.POSITIVE_INFINITY

Infinite value; returned on overflow.

Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toString()

Converts a number to a string, using a specified radix (base).

toLocaleString()

Converts a number to a string, using local number formatting conventions.

toFixed()

Converts a number to a string that contains a specified number of digits after the decimal
place.

toExponential()

Converts a number to a string using exponential notation with the specified number of digits
after the decimal place.

toPrecision()

Converts a number to a string using the specified number of significant digits. Uses
exponential or fixed-point notation depending on the size of the number and the number of
significant digits specified.

Description

Numbers are a basic, primitive data type in JavaScript. In JavaScript 1.1, however, JavaScript
also supports the Number object, which is a wrapper object around a primitive numeric value.
JavaScript automatically converts between the primitive and object forms as necessary. In
JavaScript 1.1, you can explicitly create a Number object with the Number() constructor,
although there is rarely any need to do so.

The Number() constructor can also be used without the new operator, as a conversion function.
When invoked in this way, it attempts to convert its argument to a number and returns the
primitive numeric value (or NaN) that results from the conversion.

The Number() constructor is also used as a placeholder for five useful numeric constants: the
largest and smallest representable numbers; positive and negative infinity; and the special not-a-
number value. Note that these values are properties of the Number() constructor function itself,
not of individual number objects. For example, you can use the MAX_VALUE property as follows:

var biggest = Number.MAX_VALUE

but not like this:

var n = new Number(2);

var biggest = n.MAX_VALUE

By contrast, the toString() and other methods of the Number object are methods of each
Number object, not of the Number() constructor function. As noted earlier, JavaScript
automatically converts from primitive numeric values to Number objects whenever necessary.
This means that we can use the Number methods with primitive numeric values as well as with
Number objects.

var value = 1234;

var binary_value = n.toString(2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Infinity, Math, NaN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.MAX_VALUE the maximum numeric value

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Synopsis

Number.MAX_VALUE

Description

Number.MAX_VALUE is the largest number representable in JavaScript. Its value is
approximately 1.79E+308.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.MIN_VALUE the minimum numeric value

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Synopsis

Number.MIN_VALUE

Description

Number.MIN_VALUE is the smallest (closest to zero, not most negative) number representable in
JavaScript. Its value is approximately 5E-324.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.NaN the special not-a-number value

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Synopsis

Number.NaN

Description

Number.NaN is a special value that indicates that the result of some mathematical operation
(such as taking the square root of a negative number) is not a number. parseInt() and
parseFloat() return this value when they cannot parse the specified string, and you might
use Number.NaN in a similar way to indicate an error condition for some function that normally
returns a valid number.

JavaScript prints the Number.NaN value as NaN. Note that the NaN value always compares
unequal to any other number, including NaN itself. Thus, you cannot check for the not-a-number
value by comparing to Number.NaN. Use the isNaN() function instead. In ECMAScript v1 and
later, you can also use the predefined global constant NaN instead of using Number.NaN.

See Also

isNaN(), NaN

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.NEGATIVE_INFINITY negative infinity

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Synopsis

Number.NEGATIVE_INFINITY

Description

Number.NEGATIVE_INFINITY is a special numeric value that is returned when an arithmetic
operation or mathematical function generates a negative value greater than the largest
representable number in JavaScript (i.e., more negative than -Number.MAX_VALUE).

JavaScript displays the NEGATIVE_INFINITY value as -Infinity. This value behaves
mathematically like infinity; for example, anything multiplied by infinity is infinity and anything
divided by infinity is zero. In ECMAScript v1 and later, you can also use -Infinity instead of
Number.NEGATIVE_INFINITY.

See Also

Infinity, isFinite()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.POSITIVE_INFINITY infinity

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Synopsis

Number.POSITIVE_INFINITY

Description

Number.POSITIVE_INFINITY is a special numeric value returned when an arithmetic operation
or mathematical function overflows or generates a value greater than the largest representable
number in JavaScript (i.e., greater than Number.MAX_VALUE). Note that when numbers
"underflow," or become less than Number.MIN_VALUE, JavaScript converts them to zero.

JavaScript displays the POSITIVE_INFINITY value as Infinity. This value behaves
mathematically like infinity; for example, anything multiplied by infinity is infinity and anything
divided by infinity is zero. In ECMAScript v1 and later, you can also use the predefined global
constant Infinity instead of Number.POSITIVE_INFINITY.

See Also

Infinity, isFinite()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.toExponential() format a number using exponential notation

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

number.toExponential(digits)

Arguments

digits

The number of digits that will appear after the decimal point. This may be a value between
0 and 20, inclusive, and implementations may optionally support a larger range of values. If
this argument is omitted, as many digits as necessary will be used.

Returns

A string representation of number, in exponential notation, with one digit before the decimal place
and digits digits after the decimal place. The fractional part of the number is rounded, or
padded with zeros, as necessary, so that it has the specified length.

Throws

RangeError

If digits is too small or too large. Values between 0 and 20, inclusive, will not cause a
RangeError. Implementations are allowed to support larger and smaller values as well.

TypeError

If this method is invoked on an object that is not a Number.

Example

var n = 12345.6789;

n.toExponential(1); // Returns 1.2e+4

n.toExponential(5); // Returns 1.23457e+4

n.toExponential(10); // Returns 1.2345678900e+4

n.toExponential(); // Returns 1.23456789e+4

See Also

Number.toFixed(), Number.toLocaleString(), Number.toPrecision(), Number.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.toFixed() format a number using fixed-point notation

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

number.toFixed(digits)

Arguments

digits

The number of digits to appear after the decimal point; this may be a value between 0 and 20,
inclusive, and implementations may optionally support a larger range of values. If this argument is
omitted, it is treated as 0.

Returns

A string representation of number that does not use exponential notation and has exactly digits digits
after the decimal place. The number is rounded if necessary, and the fractional part is padded with
zeros if necessary so that it has the specified length. If number is greater than 1e+21, this method
simply calls Number.toString() and returns a string in exponential notation.

Throws

RangeError

If digits is too small or too large. Values between 0 and 20, inclusive, will not cause a
RangeError. Implementations are allowed to support larger and smaller values as well.

TypeError

If this method is invoked on an object that is not a Number.

Example

var n = 12345.6789;

n.toFixed(); // Returns 12346: note rounding, no fractional part

n.toFixed(1); // Returns 12345.7: note rounding

n.toFixed(6); // Returns 12345.678900: note added zeros

(1.23e+20).toFixed(2); // Returns 123000000000000000000.00

(1.23e-10).toFixed(2) // Returns 0.00

See Also

Number.toExponential(), Number.toLocaleString(), Number.toPrecision(), Number.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.toLocaleString() convert a number to a locally formatted string

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

number.toLocaleString()

Returns

An implementation-dependent string representation of the number, formatted according to local
conventions, which may affect such things as the punctuation characters used for the decimal
point and the thousands separator.

Throws

TypeError

If this method is invoked on an object that is not a Number.

See Also

Number.toExponential(), Number.toFixed(), Number.toPrecision(), Number.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.toPrecision() format the significant digits of a number

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

number.toPrecision(precision)

Arguments

precision

The number of significant digits to appear in the returned string. This may be a value
between 1 and 21, inclusive. Implementations are allowed to optionally support larger and
smaller values of precision. If this argument is omitted, the toString() method is
used instead to convert the number to a base-10 value.

Returns

A string representation of number that contains precision significant digits. If precision is
large enough to include all the digits of the integer part of number, the returned string uses fixed-
point notation. Otherwise, exponential notation is used with one digit before the decimal place and
precision -1 digits after the decimal place. The number is rounded or padded with zeros as
necessary.

Throws

RangeError

If digits is too small or too large. Values between 1 and 21, inclusive, will not cause a
RangeError. Implementations are allowed to support larger and smaller values as well.

TypeError

If this method is invoked on an object that is not a Number.

Example

var n = 12345.6789;

n.toPrecision(1); // Returns 1e+4

n.toPrecision(3); // Returns 1.23e+4

n.toPrecision(5); // Returns 12346: note rounding

n.toPrecision(10); // Returns 12345.67890: note added zero

See Also

Number.toExponential(), Number.toFixed(), Number.toLocaleString(), Number.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.toString() convert a number to a string

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Inherits from/Overrides

Overrides Object.toString()

Synopsis

number.toString(radix)

Arguments

radix

An optional argument that specifies the radix, or base, between 2 and 36, in which the
number should be represented. If omitted, base 10 is used. Note, however, that the
ECMAScript specification allows an implementation to return any value if this argument is
specified as any value other than 10.

Returns

A string representation of the number.

Throws

TypeError

If this method is invoked on an object that is not a Number.

Description

The toString() method of the Number object converts a number to a string. When the radix
argument is omitted or is specified as 10, the number is converted to a base-10 string. If radix is
any other value, this method returns an implementation-defined string. Netscape implementations
and Microsoft implementations after JScript 3.0 honor the radix argument and return a string
representation of the number in the specified base.

See Also

Number.toExponential(), Number.toFixed(), Number.toLocaleString(), Number.toPrecision()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Number.valueOf() return the primitive number value

Availability

JavaScript 1.1; JScript 2.0, ECMAScript v1

Inherits from/Overrides

Overrides Object.valueOf()

Synopsis

number.valueOf()

Returns

The primitive number value of this Number object. It is rarely necessary to call this method
explicitly.

Throws

TypeError

If this method is invoked on an object that is not a Number.

See Also

Object.valueOf()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object a superclass that contains features of all

Availability

JavaScript objectsJavaScript 1.0; JScript 1.0; ECMAScript v1

Constructor

new Object()new

Object(value)

Arguments

value

This optional argument specifies a primitive JavaScript value -- a number, boolean, or
string -- that is to be converted to a Number, Boolean, or String object. This object is not
supported prior to JavaScript 1.1 and ECMAScript v1.

Returns

If no value argument is passed, this constructor returns a newly created Object instance. If a
primitive value argument is specified, the constructor creates and returns a Number, Boolean, or
String object wrapper for the primitive value. When the Object() constructor is called as a
function, without the new operator, it behaves just as it does when used with the new operator.

Properties

constructor

A reference to the JavaScript function that was the constructor for the object.

Methods

hasOwnProperty()

Checks whether an object has a locally defined (noninherited) property with a specified
name.

isPrototypeOf()

Checks whether this object is the prototype object of a specified object.

propertyIsEnumerable()

Checks whether a named property exists and would be enumerated by a for/in loop.

toLocaleString()

Returns a localized string representation of the object. The default implementation of this
method simply calls toString(), but subclasses may override it to provide localization.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

method simply calls toString(), but subclasses may override it to provide localization.

toString()

Returns a string representation of the object. The implementation of this method provided
by the Object class is quite generic and does not provide much useful information.
Subclasses of Object typically override this method by defining their own toString()
method which produces more useful output.

valueOf()

Returns the primitive value of the object, if any. For objects of type Object, this method
simply returns the object itself. Subclasses of Object, such as Number and Boolean,
override this method to return the primitive value associated with the object.

Description

The Object class is a built-in data type of the JavaScript language. It serves as the superclass for
all other JavaScript objects; therefore, methods and behavior of the Object class are inherited by
all other objects. The basic behavior of objects in JavaScript is explained in Chapter 8.

In addition to the Object() constructor shown above, objects can also be created and
initialized using the Object literal syntax described in Chapter 8.

See Also

Array, Boolean, Function, Function.prototype, Number, String; Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.constructor an object's constructor function

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

object.constructor

Description

The constructor property of any object is a reference to the function that was used as the
constructor for that object. For example, if you create an array a with the Array() constructor,
a.constructor is an Array:

a = new Array(1,2,3); // Create an object

a.constructor == Array // Evaluates to true

One common use of the constructor property is to determine the type of unknown objects.
Given an unknown value, you can use the typeof operator to determine whether it is a primitive
value or an object. If it is an object, you can use the constructor property to determine what
type of object it is. For example, the following function determines whether a given value is an
array:

function isArray(x) {

 return ((typeof x == "object") && (x.constructor == Array));

}

Note, however, that while this technique works for the objects built-in to core JavaScript, it is not
guaranteed to work with "host objects" such as the Window object of client-side JavaScript. The
default implementation of the Object.toString() method provides another way to determine
the type of an unknown object.

See Also

Object.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.hasOwnProperty() check whether a property is inherited

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

object.hasOwnProperty(propname)

Arguments

propname

A string that contains the name of a property of object.

Returns

true if object has a noninherited property with the name specified by propname. Returns false
object does not have a property with the specified name or if it inherits that property from its prototype
object.

Description

As explained in Chapter 8, JavaScript objects may have properties of their own, and they may also inherit
properties from their prototype object. The hasOwnProperty() method provides a way to distinguish
between inherited properties and noninherited local properties.

Example

var o = new Object(); // Create an object

o.x = 3.14; // Define a noninherited local property

o.hasOwnProperty("x"); // Returns true: x is a local property of o

o.hasOwnProperty("y"); // Returns false: o doesn't have a property y

o.hasOwnProperty("toString"); // Returns false: toString property is inherited

See Also

Function.prototype, Object.propertyIsEnumerable(); Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.isPrototypeOf() is one object the prototype of another?

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

object.isPrototypeOf(o)

Arguments

o

Any object.

Returns

true if object is the prototype of o. Returns false if o is not an object or if object is not the prototype
o.

Description

As explained in Chapter 8, JavaScript objects inherit properties from their prototype object. The prototype of
an object is referred to by the prototype property of the constructor function used to create and initialize
the object. The isPrototypeOf() method provides a way to determine if one object is the prototype of
another. This technique can be used to determine the class of an object.

Example

var o = new Object(); // Create an object

Object.prototype.isPrototypeOf(o) // true: o is an object

Function.prototype.isPrototypeOf(o.toString); // true: toString is a function

Array.prototype.isPrototypeOf([1,2,3]); // true: [1,2,3] is an array

// Here is a way to perform a similar test

(o.constructor == Object); // true: o was created with Object() constructor

(o.toString.constructor == Function); // true: o.toString is a function

// Prototype objects themselves have prototypes. The following call

// returns true, showing that function objects inherit properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// returns true, showing that function objects inherit properties

// from Function.prototype and also from Object.prototype.

Object.prototype.isPrototypeOf(Function.prototype);

See Also

Function.prototype, Object.constructor; Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.propertyIsEnumerable() will property be seen by a for/in loop?

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

object.propertyIsEnumerable(propname)

Arguments

propname

A string that contains the name of a property of object.

Returns

true if object has a noninherited property with the name specified by propname and if that property is
"enumerable," which means that it would be enumerated by a for/in loop on object.

Description

The for/in statement loops through the "enumerable" properties of an object. Not all properties of an object
are enumerable, however: properties added to an object by JavaScript code are enumerable, but the
predefined properties (such as methods) of built-in objects are not usually enumerable. The
propertyIsEnumerable() method provides a way to distinguish between enumerable and
nonenumerable properties. Note, however, that the ECMAScript specification states that
propertyIsEnumerable() does not examine the prototype chain, which means that it only works for local
properties of an object and does not provide any way to test the enumerability of inherited properties.

Example

var o = new Object(); // Create an object

o.x = 3.14; // Define a property

o.propertyIsEnumerable("x"); // true: property x is local and enumerable

o.propertyIsEnumerable("y"); // false: o doesn't have a property y

o.propertyIsEnumerable("toString"); // false: toString property is inherited

Object.prototype.propertyIsEnumerable("toString"); // false: nonenumerable

Bugs

The specification is apparently in error when it restricts propertyIsEnumerable() to check only
noninherited properties. Internet Explorer 5.5 implements this method as specified. Netscape 6.0 implements it
so that it does consider the prototype chain. Although this is the way the method was probably intended to
work, it violates the specification, and Netscape 6.1 has been modified to match the IE 5.5. Because of the
error in the specification, this method is less useful than it should be.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Function.prototype, Object.hasOwnProperty(); Chapter 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.toLocaleString() return an object's localized string representation

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

object.toString()

Returns

A string representing the object.

Description

This method is intended to return a string representation of the object, localized as appropriate for
the current locale. The default toLocaleString() method provided by the Object class simply
calls the toString() method and returns the nonlocalized string that it returns. Note, however,
that other classes, including Array, Date, and Number, define their own versions of this method to
perform localized string conversions. When defining your own classes, you may want to override
this method as well.

See Also

Array.toLocaleString(), Date.toLocaleString(), Number.toLocaleString(), Object.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.toString() define an object's string representation

Availability

JavaScript 1.0; JScript 2.0; ECMAScript v1

Synopsis

object.toString()

Returns

A string representing the object.

Description

The toString() method is not one you often call explicitly in your JavaScript programs.
Instead, you define this method in your objects, and the system calls it whenever it needs to
convert your object to a string.

The JavaScript system invokes the toString() method to convert an object to a string
whenever the object is used in a string context. For example, if an object is converted to a string
when it is passed to a function that expects a string argument:

alert(my_object);

Similarly, objects are converted to strings when they are concatenated to strings with the +
operator:

var msg = 'My object is: ' + my_object;

The toString() method is invoked without arguments and should return a string. To be
useful, the string you return should be based, in some way, on the value of the object for which
the method was invoked.

When you define a custom class in JavaScript, it is good practice to define a toString()
method for the class. If you do not, the object inherits the default toString() method from the
Object class. This default method returns a string of the form:

[object class]

where class is the class of the object: a value such as "Object", "String", "Number", "Function",
"Window", "Document", and so on. This behavior of the default toString() method is
occasionally useful to determine the type or class of an unknown object. Because most objects
have a custom version of toString(), however, you must explicitly invoke the
Object.toString() method on an object o with code like this:

Object.prototype.toString.apply(o);

Note that this technique for identifying unknown objects works only for built-in objects. If you
define your own object class, it will have a class of "Object". In this case, you can use the
Object.constructor property to obtain more information about the object.

The toString() method can be quite useful when you are debugging JavaScript programs -- it

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The toString() method can be quite useful when you are debugging JavaScript programs -- it
allows you to print objects and see their value. For this reason alone, it is a good idea to define a
toString() method for every object class you create.

Although the toString() method is usually invoked automatically by the system, there are
times when you may invoke it yourself. For example, you might want to do an explicit conversion
of an object to a string in a situation where JavaScript does not do it automatically for you:

y = Math.sqrt(x); // Compute a number

ystr = y.toString(); // Convert it to a string

Note in this example that numbers have a built-in toString() method that you can use to
force a conversion.

In other circumstances, you might choose to use a toString() call even in a context where
JavaScript would do the conversion automatically. Using toString() explicitly can help to
make your code clearer:

alert(my_obj.toString());

See Also

Object.constructor, Object.toLocaleString(), Object.valueOf()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.valueOf() the primitive value of the specified object

Availability

JavaScript 1.1; JScript 2.0; ECMAScript v1

Synopsis

object.valueOf()

Returns

The primitive value associated with the object, if any. If there is no value associated with
object, returns the object itself.

Description

The valueOf() method of an object returns the primitive value associated with that object, if
there is one. For objects of type Object there is no primitive value, and this method simply returns
the object itself.

For objects of type Number, however, valueOf() returns the primitive numeric value
represented by the object. Similarly, it returns the primitive boolean value associated with a
Boolean object and the string associated with a String object.

It is rarely necessary to invoke the valueOf() method yourself. JavaScript does this
automatically whenever an object is used where a primitive value is expected. In fact, because of
this automatic invocation of the valueOf() method, it is difficult to even distinguish between
primitive values and their corresponding objects. The typeof operator shows you the difference
between strings and String objects for example, but in practical terms, you can use them
equivalently in your JavaScript code.

The valueOf() methods of the Number, Boolean, and String objects convert these wrapper
objects to the primitive values they represent. The Object() constructor performs the opposite
operation when invoked with a number, boolean, or string argument: it wraps the primitive value in
an appropriate object wrapper. JavaScript performs this primitive-to-object conversion for you in
almost all circumstances, so it is rarely necessary to invoke the Object() constructor in this
way.

In some circumstances, you may want to define a custom valueOf() method for your own
objects. For example, you might define a JavaScript object type to represent complex numbers (a
real number plus an imaginary number). As part of this object type, you would probably define
methods for performing complex addition, multiplication, and so on. But you might also want the
ability to treat your complex numbers like ordinary real numbers by discarding the imaginary part.
To achieve this, you might do something like the following:

Complex.prototype.valueOf = new Function("return this.real");

With this valueOf() method defined for your Complex object type, you could then do things
like pass one of your complex number objects to Math.sqrt(), which would compute the
square root of the real portion of the complex number.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Object.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parseFloat() convert a string to a number

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Synopsis

parseFloat(s)

Arguments

s

The string to be parsed and converted to a number.

Returns

The parsed number, or NaN if s does not begin with a valid number. In JavaScript 1.0,
parseFloat() returns 0 instead of NaN when s cannot be parsed as a number.

Description

parseFloat() parses and returns the first number that occurs in s. Parsing stops, and the
value is returned, when parseFloat() encounters a character in s that is not a valid part of
the number. If s does not begin with a number that parseFloat() can parse, the function the
not-a-number value NaN. Test for this return value with the isNaN() function. If you want to
parse only the integer portion of a number, use parseInt() instead of parseFloat().

Bugs

NaN is not supported in JavaScript 1.0, so in that version of the language, parseFloat()
returns 0 when it cannot parse s. This means that in JavaScript 1.0, if the return value of
parseFloat() is 0, you must perform additional tests on s to determine whether it really
represents the number zero or does not represent a number at all.

See Also

isNaN(), parseInt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parseInt() convert a string to an integer

Availability

JavaScript 1.0; JScript 1.1; ECMAScript v1

Synopsis

parseInt(s)

parseInt(s, radix)

Arguments

s

The string to be parsed.

radix

An optional integer argument that represents the radix (i.e., base) of the number to be
parsed. If this argument is omitted or is 0, the number is parsed in base 10, or in base 16 if
it begins with "0x" or "0X". If this argument is less than 2 or greater than 36, parseInt()
returns NaN.

Returns

The parsed number, or NaN if s does not begin with a valid integer. In JavaScript 1.0, parseInt(
) returns 0 instead of NaN when it cannot parse s.

Description

parseInt() parses and returns the first number (with an optional leading minus sign) that
occurs in s. Parsing stops, and the value is returned, when parseInt() encounters a
character in s that is not a valid digit for the specified radix. If s does not begin with a number
that parseInt() can parse, the function returns the not-a-number value NaN. Use the isNaN(
) function to test for this return value.

The radix argument specifies the base of the number to be parsed. Specifying 10 makes the
parseInt() parse a decimal number. The value 8 specifies that an octal number (using digits
0 through 7) is to be parsed. The value 16 specifies a hexadecimal value, using digits 0 through 9
and letters A through F. radix can be any value between 2 and 36.

If radix is 0 or is not specified, parseInt() tries to determine the radix of the number from s.
If s begins (after an optional minus sign) with 0x, parseInt() parses the remainder of s as a
hexadecimal number. If s begins with a 0, the ECMAScript v3 standard allows an implementation
of parseInt() to interpret the following characters as an octal number or as a decimal
number. Otherwise, if s begins with a digit from 1 through 9, parseInt() parses it as a
decimal number.

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

parseInt("19", 10); // Returns 19 (10 + 9)

parseInt("11", 2); // Returns 3 (2 + 1)

parseInt("17", 8); // Returns 15 (8 + 7)

parseInt("1f", 16); // Returns 31 (16 + 15)

parseInt("10"); // Returns 10

parseInt("0x10"); // Returns 16

parseInt("010"); // Ambiguous: returns 10 or 8

Bugs

When no radix is specified, ECMAScript v3 allows an implementation to parse a string that
begins with "0" (but not "0x" or "0X") as an octal or as a decimal number. To avoid this ambiguity,
you should explicitly specify a radix or leave the radix unspecified only when you are sure that all
numbers to be parsed will be decimal or hexadecimal numbers with the "0x" or "0X" prefix.

In JavaScript 1.0, NaN is not supported, and parseInt() returns 0 instead of NaN when it
cannot parse s. In this version of the language, parseInt() cannot distinguish between
malformed input and a the legal input "0".

See Also

isNaN(), parseFloat()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RangeError thrown when a number is out of its legal range

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3 Inherits from Error

Constructor

new RangeError()

new RangeError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the RangeError object.

Returns

A newly constructed RangeError object. If the message argument is specified, the Error object
will use it as the value of its message property; otherwise, it will use an implementation-defined
default string as the value of that property. When the RangeError() constructor is called as a
function, without the new operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor, or an implementation-defined default string. See Error.message
for details.

name

A string that specifies the type of the exception. All RangeError objects inherit the value
"RangeError" for this property.

Description

An instance of the RangeError class is thrown when a numeric value is not in its legal range. For
example, setting the length of an array is set to a negative number causes a RangeError to be
thrown. See Error for details about throwing and catching exceptions.

See Also

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ReferenceError thrown when reading a variable that does not exist

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Inherits from/Overrides

Inherits from Error

Constructor

new ReferenceError()

new ReferenceError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the ReferenceError object.

Returns

A newly constructed ReferenceError object. If the message argument is specified, the Error
object will use it as the value of its message property; otherwise, it will use an implementation-
defined default string as the value of that property. When the ReferenceError() constructor
is called as a function, without the new operator, it behaves just as it does when called with the
new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor, or an implementation-defined default string. See Error.message
for details.

name

A string that specifies the type of the exception. All ReferenceError objects inherit the value
"ReferenceError" for this property.

Description

An instance of the ReferenceError class is thrown when you attempt to read the value of a
variable that does not exist. See Error for details about throwing and catching exceptions.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp regular expressions for pattern matching

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Literal Syntax

/pattern/attributes

Constructor

new RegExp(pattern, attributes)

Arguments

pattern

A string that specifies the pattern of the regular expression, or another regular expression.

attributes

An optional string containing any of the "g", "i", and "m" attributes that specify global, case-
insensitive, and multiline matches. The "m" attribute is not available prior to ECMAScript
standardization. If the pattern argument is a regular expression instead of a string, this
argument must be omitted.

Returns

A new RegExp object, with the specified pattern and flags. If the pattern argument is a regular
expression rather than a string, the RegExp() constructor creates a new RegExp object using
the same pattern and flags as the specified RegExp. If RegExp() is called as a function without
the new operator, it behaves just as it would with the new operator, except when pattern is a
regular expression; in that case, it simply returns pattern instead of creating a new RegExp
object.

Throws

SyntaxError

If pattern is not a legal regular expression or if attributes contains characters other
than "g", "i", and "m".

TypeError

If pattern is a RegExp object and the attributes argument is not omitted.

Instance Properties

global

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

global

Whether the RegExp has the g attribute.

ignoreCase

Whether the RegExp has the i attribute.

lastIndex

The character position of the last match; used for finding multiple matches in a string.

multiline

Whether the RegExp has the m attribute.

source

The source text of the regular expression.

Methods

exec()

Performs powerful, general-purpose pattern matching.

test()

Tests whether a string contains a pattern.

Description

The RegExp object represents a regular expression, a powerful tool for performing pattern
matching on strings. See Chapter 10 for complete details on regular expression syntax and use.

See Also

Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.exec() general-purpose pattern matching

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

regexp.exec(string)

Arguments

string

The string to be searched.

Returns

An array containing the results of the match, or null if no match was found. The format of the
returned array is described below.

Throws

TypeError

If this method is invoked on an object that is not a RegExp.

Description

exec() is the most powerful of all the RegExp and String pattern matching methods. It is a
general-purpose method that is somewhat more complex to use than RegExp.test(),
String.search(), String.replace(), and String.match().

exec() searches string for text that matches regexp. If it finds a match, it returns an array of
results; otherwise, it returns null. Element 0 of the returned array is the matched text. Element 1
is the text that matched the first parenthesized subexpression, if any, within regexp. Element 2
contains the text that matched the second subexpression, and so on. The array length property
specifies the number of elements in the array, as usual. In addition to the array elements and the
length property, the value returned by exec() also has two other properties. The index
property specifies the character position of the first character of the matched text. The input
property refers to string. This returned array is the same as the array that is returned by the
String.match() method, when invoked on a nonglobal RegExp object.

When exec() is invoked on a nonglobal pattern, it performs the search and returns the result
described above. When regexp is a global regular expression, however, exec() behaves in a
slightly more complex way. It begins searching string at the character position specified by the
lastIndex property of regexp. When it finds a match, it sets lastIndex to the position of the
first character after the match. This means that you can invoke exec() repeatedly in order to
loop through all matches in a string. When exec() cannot find any more matches, it returns
null and resets lastIndex to zero. If you begin searching a new string immediately after
successfully finding a match in another string, you must be careful to manually reset lastIndex

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

successfully finding a match in another string, you must be careful to manually reset lastIndex
to zero.

Note that exec() always includes full details of every match in the array it returns, whether or
not regexp is a global pattern. This is where exec() differs from String.match(), which
returns much less information when used with global patterns. Calling the exec() method
repeatedly in a loop is the only way to obtain complete pattern matching information for a global
pattern.

Example

You can use exec() in a loop to find all matches within a string. For example:

var pattern = /\bJava\w*\b/g;

var text = "JavaScript is more fun than Java or JavaBeans!";

var result;

while((result = pattern.exec(text)) != null) {

 alert("Matched `" + result[0] +

 "' at position " + result.index +

 " next search begins at position " + pattern.lastIndex);

}

Bugs

In JScript 3.0, exec() does not properly set or use the lastIndex property, so it cannot be
used with global patterns in the kind of loop shown in the example above.

See Also

RegExp.lastIndex, RegExp.test(), String.match(), String.replace(), String.search(); Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.global whether a regular expression matches globally

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

regexp.global

Description

global is a read-only boolean property of RegExp objects. It specifies whether a particular
regular expression performs global matching; i.e., whether it was created with the g attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.ignoreCase whether a regular expression is case-insensitive

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

regexp.ignoreCase

Description

ignoreCase is a read-only boolean property of RegExp objects. It specifies whether a particular
regular expression performs case-insensitive matching; i.e.,whether it was created with the i
attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.lastIndex the starting position of the next match

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v3

Synopsis

regexp.lastIndex

Description

lastIndex is a read/write property of RegExp objects. For regular expressions with the g
attribute set, it contains an integer that specifies the character position immediately following the
last match found by the RegExp.exec() and RegExp.test() methods. These methods use
this property as the starting point for the next search they conduct. This allows you to call those
methods repeatedly, to loop through all matches in a string. Note that lastIndex is not used by
RegExp objects that do not have the g attribute and do not represent global patterns.

This property is read/write, so you can set it at any time to specify where in the target string the
next search should begin. exec() and test() automatically reset lastIndex to 0 when
they fail to find a match (or another match). If you begin to search a new string after a successful
match of some other string, you have to explicitly set this property to 0.

See Also

RegExp.exec(), RegExp.test()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.source the text of the regular expression

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

regexp.source

Description

source is a read-only string property of RegExp objects. It contains the text of the RegExp
pattern. This text does not include the delimiting slashes used in regular expression literals, and it
does not include the g, i, and m attributes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.test() test whether a string matches a pattern

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

regexp.test(string)

Arguments

string

The string to be tested.

Returns

true if string contains text that matches regexp; false otherwise.

Throws

TypeError

If this method is invoked on an object that is not a RegExp.

Description

test() tests string to see if it contains text that matches regexp. If so, it returns true;
otherwise, it returns false. Calling the test method of a RegExp r and passing it the string s is
equivalent to the following expression:

(r.exec(s) != null)

Example

var pattern = /java/i;

pattern.test("JavaScript"); // Returns true

pattern.test("ECMAScript"); // Returns false

See Also

RegExp.exec(), RegExp.lastIndex, String.match(), String.replace(), String.substring(); Chapter
10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RegExp.toString() convert a regular expression to a string

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Inherits from/Overrides

Overrides Object.toString()

Synopsis

regexp.toString()

Returns

A string representation of regexp.

Throws

TypeError

If this method is invoked on an object that is not a RegExp.

Description

The RegExp.toString() method returns a string representation of a regular expression in the
form of a regular expression literal.

Note that implementations are not required to add escape sequences to ensure that the returned
string is a legal regular expression literal. Consider the regular expression created by the
expression new RegExp("/", "g"). An implementation of RegExp.toString() could
return ///g for this regular expression, or it could also add an escape sequence and return
/\//g.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String support for strings

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1

Inherits from/Overrides

Inherits from Object

Constructor

new String(s) // Constructor function

String(s) // Conversion function

Arguments

s

The value to be stored in a String object or converted to a primitive string.

Returns

When String() is used as a constructor with the new operator, it returns a String object, which
holds the string s or the string representation of s. When the String() constructor is used
without the new operator, it simply converts s to a primitive string and returns the converted value.

Properties

length

The number of characters in the string.

Methods

charAt()

Extracts the character at a given position from a string.

charCodeAt()

Returns the encoding of the character at a given position in a string.

concat()

Concatenates one or more values to a string.

indexOf()

Searches the string for a character or substring.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

lastIndexOf()

Searches the string backward for a character or substring.

match()

Performs pattern matching with a regular expression.

replace()

Performs a search-and-replace operation with a regular expression.

search()

Searches a string for a substring that matches a regular expression.

slice()

Returns a slice or substring of a string.

split()

Splits a string into an array of strings, breaking at a specified delimiter string or regular
expression.

substring()

Extracts a substring of a string.

substr()

Extracts a substring of a string. A variant of substring().

toLowerCase()

Returns a copy of the string, with all characters converted to lowercase.

toString()

Returns the primitive string value.

toUpperCase()

Returns a copy of the string, with all characters converted to uppercase.

valueOf()

Returns the primitive string value.

Static Methods

String.fromCharCode()

Creates a new string using the character codes passed as arguments.

HTML Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Since JavaScript 1.0 and JScript 1.0, the String class has defined a number of methods that return a
string modified by placing it within HTML tags. These methods have never been standardized by
ECMAScript but can be useful in both client-side and server-side JavaScript code that dynamically
generates HTML. If you are willing to use nonstandard methods, you might create the HTML source
for a bold, red hyperlink, with code like this:

var s = "click here!";

var html = s.bold().link("javascript:alert('hello')").fontcolor("red");

Because these methods are not standardized, they do not have individual reference entries in the
pages that follow:

anchor(name)

Returns a copy of the string, in an environment.

big()

Returns a copy of the string, in a <big> environment.

blink()

Returns a copy of the string, in a <blink> environment.

bold()

Returns a copy of the string, in a environment.

fixed()

Returns a copy of the string, in a <tt> environment.

fontcolor(color)

Returns a copy of the string, in a environment.

fontsize(size)

Returns a copy of the string, in a environment.

italics()

Returns a copy of the string, in a <i> environment.

link(url)

Returns a copy of the string, in a environment.

small()

Returns a copy of the string, in a <small> environment.

strike()

Returns a copy of the string, in a <strike> environment.

sub()

Returns a copy of the string, in a <sub> environment.

sup()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

sup()

Returns a copy of the string, in a <sup> environment.

Description

Strings are a primitive data type in JavaScript. The String class type exists to provide methods for
operating on primitive string values. The length property of a String object specifies the number of
characters in the string. The String class defines a number of methods for operating on strings:
there are methods for extracting a character or a substring from the string or searching for a
character or a substring, for example. Note that JavaScript strings are immutable: none of the
methods defined by the String class allows you to change the contents of a string. Instead, methods
like String.toUpperCase() return an entirely new string, without modifying the original.

In Netscape implementations of JavaScript 1.2 and later, strings behave like read-only arrays of
characters. For example, to extract the 3rd character from a string s, you could write s[2] instead
of the more standard s.charAt(2). In addition, when the for/in statement is applied to a string,
it enumerates these array indexes for each character in the string. (Note, however, that the length
property is not enumerated, as per the ECMAScript specification.) Because this string-as-array
behavior of Netscape's implementations is not standard, you should usually avoid using it.

See Also

Chapter 3

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.charAt() get the nth character from a string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.charAt(n)

Arguments

n

The index of the character that should be returned from string.

Returns

The nth character of string.

Description

String.charAt() returns the nth character of the string string. The first character of the
string is numbered 0. If n is not between 0 and string.length-1, this method returns an empty
string. Note that JavaScript does not have a character data type that is distinct from the string
type, so the returned character is a string of length 1.

See Also

String.charCodeAt(), String.indexOf(), String.lastIndexOf()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.charCodeAt() get the nth character code from a string

Availability

JavaScript 1.2; JScript 5.5; ECMAScript v1

Synopsis

string.charCodeAt(n)

Arguments

n

The index of the character whose encoding is to be returned.

Returns

The Unicode encoding of the nth character within string. This return value is a 16-bit integer
between 0 and 65535.

Description

charCodeAt() is like charAt() except that it returns the character encoding at a specific
location, rather than returning a substring that contains the character itself. If n is negative or
greater than or equal to the string length, charCodeAt() returns NaN.

See String.fromCharCode() for a way to create a string from Unicode encodings.

Bugs

JavaScript 1.2 (as implemented by Netscape 4.0, for example) does not have full support for 16-
bit Unicode characters and strings.

See Also

String.charAt(), String.fromCharCode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.concat() concatenate strings

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

string.concat(value, ...)

Arguments

value, ...

One or more values to be concatenated to string.

Returns

A new string that results from concatenating each of the arguments to string.

Description

concat() converts each of its arguments to a string (if necessary) and appends them, in order,
to the end of string. It returns the resulting concatenation. Note that string itself is not
modified.

String.concat() is an analog to Array.concat(). Note that it is often easier to use the +
operator to perform string concatenation.

See Also

Array.concat()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.fromCharCode() create a string from character encodings

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v1

Synopsis

String.fromCharCode(c1, c2, ...)

Arguments

c1, c2, ...

Zero or more integers that specify the Unicode encodings of the characters in the string to
be created.

Returns

A new string containing characters with the specified encodings.

Description

This static method provides a way to create a string by specifying the individual numeric Unicode
encodings of its characters. Note that as a static method, fromCharCode() is a property of the
String() constructor and is not actually a method of strings or String objects.

String.charCodeAt() is a companion instance method that provides a way to obtain the
encodings of the individual characters of a string.

Example

// Create the string "hello"

var s = String.fromCharCode(104, 101, 108, 108, 111);

Bugs

JavaScript 1.2 (as implemented by Netscape 4.0, for example) does not have full support for 16-
bit Unicode characters and strings.

See Also

String.charCodeAt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.indexOf() search a string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.indexOf(substring)

string.indexOf(substring,start)

Arguments

substring

The substring that is to be searched for within string.

start

An optional integer argument that specifies the position within string at which the search
is to start. Legal values are 0 (the position of the first character in the string) to
string.length-1 (the position of the last character in the string). If this argument is
omitted, the search begins at the first character of the string.

Returns

The position of the first occurrence of substring within string that appears after the start
position, if any, or -1 if no such occurrence is found.

Description

String.indexOf() searches the string string from beginning to end to see if it contains an
occurrence of substring. The search begins at position start within string, or at the
beginning of string if start is not specified. If an occurrence of substring is found,
String.indexOf() returns the position of the first character of the first occurrence of
substring within string. Character positions within string are numbered starting with zero.

If no occurrence of substring is found within string, String.indexOf() returns -1.

Bugs

In JavaScript 1.0 and 1.1, if start is greater than the length of string, indexOf() returns
the empty string, rather than -1.

See Also

String.charAt(), String.lastIndexOf(), String.substring()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.lastIndexOf() search a string backward

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.lastIndexOf(substring)

string.lastIndexOf(substring, start)

Arguments

substring

The substring that is to be searched for within string.

start

An optional integer argument that specifies the position within string where the search is
to start. Legal values are from 0 (the position of the first character in the string) to
string.length-1 (the position of the last character in the string). If this argument is
omitted, the search begins with the last character of the string.

Returns

The position of the last occurrence of substring within string that appears before the start
position, if any, or -1 if no such occurrence is found within string.

Description

String.lastIndexOf() searches the string from end to beginning to see if it contains an
occurrence of substring. The search begins at position start within string, or at the end of
string if start is not specified. If an occurrence of substring is found,
String.lastIndexOf() returns the position of the first character of that occurrence. Since
this method searches from end to beginning of the string, the first occurrence found is the last one
in the string that occurs before the start position.

If no occurrence of substring is found, String.lastIndexOf() returns -1.

Note that although String.lastIndexOf() searches string from end to beginning, it still
numbers character positions within string from the beginning. The first character of the string
has position 0 and the last has position string.length-1.

See Also

String.charAt(), String.indexOf(), String.substring()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.length the length of a string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.length

Description

The String.length property is a read-only integer that indicates the number of characters in
the specified string. For any string s, the index of the last character is s.length-1. The
length property of a string is not enumerated by a for/in loop and may not be deleted with the
delete operator.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.localeCompare(
)

compare one string to another, using locale-specific
ordering

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

string.localeCompare(target)

Arguments

target

A string to be compared, in a locale-sensitive fashion, with string.

Returns

A number that indicates the result of the comparison. If string is "less than" target,
localeCompare() returns a number less than zero. If string is "greater than" target, the
method returns a number greater than zero. And if the strings are identical or indistinguishable
according to the locale ordering conventions, the method returns 0.

Description

When the < and > operators are applied to strings, they compare those strings using only the
Unicode encodings of those characters and do not consider the collation order of the current
locale. The ordering produced in this way is not always correct. Consider Spanish, for example, in
which the letters "ch" are traditionally sorted as if they were a single letter that appeared between
the letters "c" and "d".

localeCompare() provides a way to compare strings that does take the collation order of the
default locale into account. The ECMAScript standard does not specify how the locale-specific
comparison is done; it merely specifies that this function utilizes the collation order provided by
the underlying operating system.

Example

You can use code like the following to sort an array of strings into a locale-specific ordering:

var strings; // The array of strings to sort; initialized elsewhere

strings.sort(function(a,b) { return a.localeCompare(b) });

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.match() find one or more regular expression matches

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

string.match(regexp)

Arguments

regexp

A RegExp object that specifies the pattern to be matched. If this argument is not a RegExp,
it is first converted to one by passing it to the RegExp() constructor.

Returns

An array containing the results of the match. The contents of the array depend on whether
regexp has the global g attribute set. Details on this return value are given below.

Description

match() searches string for one or more matches of regexp. The behavior of this method
depends significantly on whether regexp has the g attribute or not. See Chapter 10 for full details
on regular expressions.

If regexp does not have the g attribute, match() searches string for a single match. If no
match is found, match() returns null. Otherwise, it returns an array containing information
about the match that it found. Element 0 of the array contains the matched text. The remaining
elements contain the text that matched any parenthesized subexpressions within the regular
expression. In addition to these normal array elements, the returned array also has two object
properties. The index property of the array specifies the character position within string of the
start of the matched text. Also, the input property of the returned array is a reference to string
itself.

If regexp has the g flag, match() does a global search, searching string for all matching
substrings. It returns null if no match is found, and it returns an array if one or more matches are
found. The contents of this returned array are quite different for global matches, however. In this
case, the array elements contain each of the matched substrings within string. The returned
array does not have index or input properties in this case. Note that for global matches,
match() does not provide information about parenthesized subexpressions, nor does it specify
where within string each match occurred. If you need to obtain this information for a global
search, you can use RegExp.exec().

Example

The following global match finds all numbers within a string:

"1 plus 2 equals 3".match(/\d+/g) // Returns ["1", "2", "3"]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

"1 plus 2 equals 3".match(/\d+/g) // Returns ["1", "2", "3"]

The following nonglobal match uses a more complex regular expression with several
parenthesized subexpressions. It matches a URL, and its subexpressions match the protocol,
host, and path portions of the URL:

var url = /(\w+):\/\/([\w.]+)\/(\S*)/;

var text = "Visit my home page at http://www.isp.com/~david";

var result = text.match(url);

if (result != null) {

 var fullurl = result[0]; // Contains "http://www.isp.com/~david"

 var protocol = result[1]; // Contains "http"

 var host = result[2]; // Contains "www.isp.com"

 var path = result[3]; // Contains "~david"

}

See Also

RegExp, RegExp.exec(), RegExp.test(), String.replace(), String.search(); Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.replace() replace substring(s) matching a regular expression

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

string.replace(regexp, replacement)

Arguments

regexp

The RegExp object that specifies the pattern to be replaced. If this argument is a string, it is
used as a literal text pattern to be searched for; it is not first converted to a RegExp object.

replacement

A string that specifies the replacement text, or a function that is invoked to generate the
replacement text. See the Section section for details.

Returns

A new string, with the first match, or all matches, of regexp replaced with replacement.

Description

replace() performs a search-and-replace operation on string. It searches string for one
or more substrings that match regexp and replaces them with replacement. If regexp has the
global g attribute specified, replace() replaces all matching substrings. Otherwise, it replaces
only the first matching substring.

replacement may be a string or a function. If it is a string, each match is replaced by the string.
Except, however, that the $ character has special meaning within the replacement string. As
shown in the following table, it indicates that a string derived from the pattern match is to be used
in the replacement.

Characters Replacement
$1, $2, ...
$99

The text that matched the 1st through 99th parenthesized subexpression within
regexp

$& The substring that matched regexp
$` The text to the left of the matched substring
$' The text to the right of the matched substring
$$ A literal dollar sign

ECMAScript v3 specifies that the replacement argument to replace() may be a function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ECMAScript v3 specifies that the replacement argument to replace() may be a function
instead of a string, and this feature is implemented in JavaScript 1.2 and JScript 5.5. In this case,
the function is invoked for each match and the string it returns is used as the replacement text.
The first argument to the function is the string that matched the pattern. The next arguments are
the strings that matched any parenthesized subexpressions within the pattern. There may be zero
or more of these arguments. The next argument is an integer that specifies the position within
string at which the match occurred, and the final argument to the replacement function is
string itself.

Example

To ensure that the capitalization of the word "JavaScript" is correct:

text.replace(/javascript/i, "JavaScript");

To convert a single name from "Doe, John" format to "John Doe" format:

name.replace(/(\w+)\s*,\s*(\w+)/, "$2 $1");

To replace all double quotes with double back and forward single quotes:

text.replace(/"([^"]*)"/g, "``$1''");

To capitalize the first letter of all words in a string:

text.replace(/\b\w+\b/g, function(word) {

 return word.substring(0,1).toUpperCase() +

 word.substring(1);

 });

See Also

RegExp, RegExp.exec(), RegExp.test(), String.match(), String.search(); Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.search() search for a regular expression

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

string.search(regexp)

Arguments

regexp

A RegExp object that specifies the pattern to be searched for in string. If this argument is
not a RegExp, it is first converted to one by passing it to the RegExp() constructor.

Returns

The position of the start of the first substring of string that matches regexp, or -1 if no match
was found.

Description

search() looks for a substring matching regexp within string and returns the position of the
first character of the matching substring, or -1 if no match was found.

search() does not do global matches; it ignores the g flag. It also ignores the lastIndex
property of regexp and always searches from the beginning of the string, which means that it
always returns the position of the first match in string.

Example

var s = "JavaScript is fun";

s.search(/script/i) // Returns 4

s.search(/a(.)a/) // Returns 1

See Also

RegExp, RegExp.exec(), RegExp.test(), String.match(), String.replace(); Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.slice() extract a substring

Availability

JavaScript 1.2; JScript 3.0; ECMAScript v3

Synopsis

string.slice(start, end)

Arguments

start

The string index where the slice is to begin. If negative, this argument specifies a position
measured from the end of the string. That is, -1 indicates the last character, -2 indicates the
second from last character, and so on.

end

The string index immediately after the end of the slice. If not specified, the slice includes all
characters from start to the end of the string. If this argument is negative, it specifies a
position measured from the end of the string.

Returns

A new string that contains all the characters of string from and including start and up to but
not including end.

Description

slice() returns a string containing a slice, or substring, of string. It does not modify
string.

The String methods slice(), substring(), and the deprecated substr() all return
specified portions of a string. slice() is more flexible than substring() because it allows
negative argument values. slice() differs from substr() in that it specifies a substring with
two character positions, while substr() uses one position and a length. Note also that
String.slice() is an analog of Array.slice().

Example

var s = "abcdefg";

s.slice(0,4) // Returns "abcd"

s.slice(2,4) // Returns "cd"

s.slice(4) // Returns "efg"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s.slice(4) // Returns "efg"

s.slice(3,-1) // Returns "def"

s.slice(3,-2) // Returns "de"

s.slice(-3,-1) // Should return "ef"; returns "abcdef" in IE 4

Bugs

Negative values for start do not work in JScript 3.0 (Internet Explorer 4). Instead of specifying a
character position measured from the end of the string, they specify character position 0.

See Also

Array.slice(), String.substring()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.split() break a string into an array of strings

Availability

JavaScript 1.1; JScript 3.0; ECMAScript v1; enhanced in ECMAScript v3

Synopsis

string.split(delimiter, limit)

Arguments

delimiter

The string or regular expression at which the string splits. The use of a regular
expression as a delimiter is standardized by ECMAScript v3 and implemented in JavaScript
1.2 and JScript 3.0; it is not implemented in JavaScript 1.1.

limit

This optional integer specifies the maximum length of the returned array. If specified, no
more than this number of substrings will be returned. If not specified, the entire string will
be split, regardless of its length. This argument is standardized by ECMAScript v3 and
implemented in JavaScript 1.2 and JScript 3.0; it is not implemented in JavaScript 1.1.

Returns

An array of strings, created by splitting string into substrings at the boundaries specified by
delimiter. The substrings in the returned array do not include delimiter itself, except in the
case noted below.

Description

The split() method creates and returns an array of as many as limit substrings of the
specified string. These substrings are created by searching the string from start to end for text
that matches delimiter and breaking the string before and after that matching text. The
delimiting text is not included in any of the returned substrings, except as noted below. Note that if
the delimiter matches the beginning of the string, the first element of the returned array will be an
empty string -- the text that appears before the delimiter. Similarly, if the delimiter matches the
end of the string, the last element of the array (assuming no conflicting limit) will be the empty
string.

If no delimiter is specified, the string is not split at all, and the returned array contains only a
single, unbroken string element. If delimiter is the empty string or a regular expression that
matches the empty string, the string is broken between each character, and the returned array
has the same length as the string does, assuming no smaller limit is specified. (Note that this is
a special case since the empty string before the first character and after the last character is not
matched.)

We said above that the substrings in the array returned by this method do not contain the
delimiting text used to split the string. However, if delimiter is a regular expression that

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

delimiting text used to split the string. However, if delimiter is a regular expression that
contains parenthesized subexpressions, the substrings that match those parenthesized
subexpressions (but not the text that matches the regular expression as a whole) are included in
the returned array.

Note that the String.split() method is the inverse of the Array.join() method.

Example

The split() method is most useful when you are working with highly structured strings. For
example:

"1:2:3:4:5".split(":"); // Returns ["1","2","3","4","5"]

"|a|b|c|".split("|"); // Returns ["", "a", "b", "c", ""]

Another common use of the split() method is to parse commands and similar strings by
breaking them down into words delimited by spaces:

var words = sentence.split(' ');

See the Section section for details on a special case when delimiter is a single space. It is
easier to split a string into words using a regular expression as a delimiter:

var words = sentence.split(/\s+/);

To split a string into an array of characters, use the empty string as the delimiter. Use the limit
argument if you only want to split a prefix of the string into an array of characters:

"hello".split(""); // Returns ["h","e","l","l","o"]

"hello".split("", 3); // Returns ["h","e","l"]

If you want the delimiters, or one or more portions of the delimiter included in the returned array,
use a regular expression with parenthesized subexpressions. For example, the following code
breaks a string at HTML tags and includes those tags in the returned array:

var text = "hello world";

text.split(/(<[^>]*>)/); // Returns ["hello ","","world","",""]

Bugs

In Netscape's implementations of JavaScript, when language Version 1.2 is explicitly requested
(with the language attribute of a <script> tag, for example), the split() method has one
special-case behavior: if delimiter is a single space, the method splits the string at spaces but
ignores any white space at the beginning and end of the string. See Section 11.6, for further
details.

See Also

Array.join(), RegExp; Chapter 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.substr() extract a substring

Availability

JavaScript 1.2; JScript 3.0; deprecated

Synopsis

string.substr(start, length)

Arguments

start

The start position of the substring. If this argument is negative, it specifies a position
measured from the end of the string: -1 specifies the last character, -2 specifies the
second-to-last character, and so on.

length

The number of characters in the substring. If this argument is omitted, the returned
substring includes all characters from the starting position to the end of the string.

Returns

A copy of the portion of string starting at and including the character specified by start and
continuing for length characters, or to the end of the string if length is not specified.

Description

substr() extracts and returns a substring of string. It does not modify string.

Note that substr() specifies the desired substring with a character position and a length. This
provides a useful alternative to String.substring() and String.splice(), which
specify a substring with two character positions. Note, however, that this method has not been
standardized by ECMAScript and is therefore deprecated.

Example

var s = "abcdefg";

s.substr(2,2); // Returns "cd"

s.substr(3); // Returns "defg"

s.substr(-3,2); // Should return "ef"; returns "ab" in IE 4

Bugs

Negative values for start do not work in JScript 3.0 (IE 4). Instead of specifying a character
position measured from the end of the string, they specify character position 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

String.slice(), String.substring()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.substring() return a substring of a string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.substring(from, to)

Arguments

from

An integer that specifies the position within string of the first character of the desired
substring.

to

An optional integer that is one greater than the position of the last character of the desired
substring. If this argument is omitted, the returned substring runs to the end of the string.

Returns

A new string, of length to-from, which contains a substring of string. The new string contains
characters copied from positions from to to -1 of string.

Description

String.substring() returns a substring of string consisting of the characters between
positions from and to. The character at position from is included, but the character at position
to is not included.

If from equals to, this method returns an empty (length 0) string. If from is greater than to, this
method first swaps the two arguments and then returns the substring between them.

It is important to remember that the character at position from is included in the substring but that
the character at position to is not included in the substring. While this may seem arbitrary or
counterintuitive, a notable feature of this system is that the length of the returned substring is
always equal to to -from.

Note that String.slice() and the nonstandard String.substr() can also be used to
extract substrings from a string.

Bugs

In Netscape's implementations of JavaScript, when language Version 1.2 is explicitly requested
(with the language attribute of a <script> tag, for example), this method does not correctly
swap its arguments if from is greater than to. Instead it returns the empty string.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.charAt(), String.indexOf(), String.lastIndexOf(), String.slice(), String.substr()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.toLocaleLowerCase() convert a string to lowercase

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

string.toLocaleLowerCase()

Returns

A copy of string, converted to lowercase letters in a locale-specific way. Only a few languages,
such as Turkish, have locale-specific case mappings, so this method usually returns the same
value as toLowerCase().

See Also

String.toLocaleUpperCase(), String.toLowerCase(), String.toUpperCase()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.toLocaleUpperCase() convert a string to uppercase

Availability

JavaScript 1.5; JScript 5.5, ECMAScript v3

Synopsis

string.toLocaleUpperCase()

Returns

A copy of string, converted to uppercase letters in a locale-specific way. Only a few languages,
such as Turkish, have locale-specific case mappings, so this method usually returns the same
value as toUpperCase().

See Also

String.toLocaleLowerCase(), String.toLowerCase(), String.toUpperCase()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.toLowerCase() convert a string to lowercase

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.toLowerCase()

Returns

A copy of string, with each uppercase letter converted to its lowercase equivalent, if it has one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.toString() return the string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1 Overrides Object.toString()

Synopsis

string.toString()

Returns

The primitive string value of string. It is rarely necessary to call this method.

Throws

TypeError

If this method is invoked on an object that is not a String.

See Also

String.valueOf()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.toUpperCase() convert a string to uppercase

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1

Synopsis

string.toUpperCase()

Returns

A copy of string, with each lowercase letter converted to its uppercase equivalent, if it has one.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

String.valueOf() return the string

Availability

JavaScript 1.0; JScript 1.0, ECMAScript v1 Overrides Object.valueOf()

Synopsis

string.valueOf()

Returns

The primitive string value of string.

Throws

TypeError

If this method is invoked on an object that is not a String.

See Also

String.toString()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

SyntaxError thrown to signal a syntax error

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Inherits from/Overrides

Inherits from Error

Constructor

new SyntaxError()new SyntaxError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the SyntaxError object.

Returns

A newly constructed SyntaxError object. If the message argument is specified, the Error object
will use it as the value of its message property; otherwise, it will use an implementation-defined
default string as the value of that property. When the SyntaxError() constructor is called as a
function, without the new operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor, or an implementation-defined default string. See Error.message
for details.

name

A string that specifies the type of the exception. All SyntaxError objects inherit the value
"SyntaxError" for this property.

Description

An instance of the SyntaxError class is thrown to signal a syntax error in JavaScript code. The
eval() method, the Function() constructor, and the RegExp() constructor may all throw
exceptions of this type. See Error for details about throwing and catching exceptions.

See Also

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TypeError thrown when a value is of the wrong type

Availability

JavaScript 1.5; JScript 5.5; ECMAScript

Inherits from/Overrides

v3 Inherits from Error

Constructor

new TypeError()

new TypeError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the TypeError object.

Returns

A newly constructed TypeError object. If the message argument is specified, the Error object will
use it as the value of its message property; otherwise, it will use an implementation-defined
default string as the value of that property. When the TypeError() constructor is called as a
function, without the new operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor, or an implementation-defined default string. See Error.message
for details

name

A string that specifies the type of the exception. All TypeError objects inherit the value
"TypeError" for this property.

Description

An instance of the TypeError class is thrown when a value is not of the type expected. This
happens most often when you attempt to access a property of a null or undefined value. It can
also occur if you invoke a method defined by one class on an object that is an instance of some
other class or if you use the new operator with a value that is not a constructor function, for
example. JavaScript implementations are also permitted to throw TypeError objects when a
built-in function or method is called with more arguments than expected. See Error for details
about throwing and catching exceptions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

undefined the undefined value

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3

Synopsis

undefined

Description

undefined is a global property that holds the JavaScript undefined value. This is the same
value that is returned when you attempt to read the value of a nonexistent object property. The
undefined property is not enumerated by for/in loops and cannot be deleted with the delete
operator. Note that undefined is not a constant and can be set to any other value, something
that you should take care not to do.

When testing a value to see whether it is undefined, use the === operator, because the ==
operator treats the undefined value as equal to null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unescape() decode an escaped string

Availability

JavaScript 1.0; JScript 1.0; ECMAScript v1; deprecated in ECMAScript v3

Synopsis

unescape(s)

Arguments

s

The string that is to be decoded or "unescaped."

Returns

A decoded copy of s.

Description

unescape() is a global function that decodes a string encoded with escape(). It decodes s
by finding and replacing character sequences of the form %xx and %uxxxx (where x represents a
hexadecimal digit) with the Unicode characters \u00xx and \uxxxx.

Although unescape() was standardized in the first version of ECMAScript, it has been
deprecated and removed from the standard by ECMAScript v3. Implementations of ECMAScript
are likely to implement this function, but they are not required to. In JavaScript 1.5 and JScript 5.5
and later, you should use decodeURI() and decodeURIComponent() instead of
unescape(). See escape() for more details and an example.

See Also

decodeURI(), decodeURIComponent(), escape(), String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

URIError thrown by URI encoding and decoding methods

Availability

JavaScript 1.5; JScript 5.5; ECMAScript v3 Inherits from Error

Constructor

new URIError()

new URIError(message)

Arguments

message

An optional error message that provides details about the exception. If specified, this
argument is used as the value for the message property of the URIError object.

Returns

A newly constructed URIError object. If the message argument is specified, the Error object will
use it as the value of its message property; otherwise, it will use an implementation-defined
default string as the value of that property. When the URIError() constructor is called as a
function without the new operator, it behaves just as it does when called with the new operator.

Properties

message

An error message that provides details about the exception. This property holds the string
passed to the constructor, or an implementation-defined default string. See Error.message
for details.

name

A string that specifies the type of the exception. All URIError objects inherit the value
"URIError" for this property.

Description

An instance of the URIError class is thrown by decodeURI() and decodeURIComponent()
if the specified string contains illegal hexadecimal escapes. It can also be thrown by encodeURI(
) and encodeURIComponent() if the specified string contains illegal Unicode surrogate pairs.
See Error for details about throwing and catching exceptions.

See Also

Error, Error.message, Error.name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part IV: Client-Side JavaScript Reference
This part of the book is a complete reference to all of the objects, properties,
functions, methods, and event handlers in client-side JavaScript. The first few pages
of this part explain how to use this reference material.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 24. Client-Side JavaScript Reference
This part of the book is a reference section that documents the classes, methods, properties, and
event handlers defined by web browsers that support client-side JavaScript. These classes,
methods, and properties form the de facto standard called the DOM Level 0 API. Beginning
scripters and programmers writing with backward compatibility in mind will use this reference
section in conjunction with the core JavaScript reference of Part III. The introduction and sample
reference page explain how to use and get the most out of this reference section. Take the time
to read this material carefully, and you will find it easier to locate and use the information you
need!

This reference section is arranged alphabetically. The reference pages for the methods and
properties of classes are alphabetized by their full names, which include the names of the classes
that define them. For example, if you want to read about the submit() method of the Form
class, you would look under "Form.submit," not just "submit."

To save space in this enlarged fourth edition of the book, most properties in this reference section
do not have reference pages of their own (all methods and event handlers do have their own
reference pages, however). Instead, simple properties are completely documented in the
reference page for the class that defines them. For example, you can read about the images[]
property of the Document class in the "Document" reference page. Nontrivial properties that
require substantial explanation do have reference pages of their own, and you'll find a cross-
reference to these pages within the reference page of the class or interface that defines the
properties. For example, when you look up the cookie property in the "Document" reference
page or the status property in the "Window" reference page, you'll find a short description of the
property and a reference to pages named "Document.cookie" and "Window.status."

Client-side JavaScript has a number of global properties and functions, such as window,
history, and alert(). In client-side JavaScript, a Window object serves as the global object,
and the "global" properties and functions of client-side JavaScript are actually properties of the
Window class. Therefore, in this client-side reference section, global properties and functions are
documented in the "Window" reference page or under names such as "Window.alert()."

Sometimes you may find that you don't know the name of the class or interface that defines the
method or property you want to look up, or you may not be sure which of the three reference
sections to look up a class or interface in. Part VI of this book is a special index designed to help
with these situations. Look up the name of a class, method, or property, and it will tell you which
reference section to look in and which class to look under in that section. For example, if you look
up "Button," it will tell you that the Button class is documented in this client-side reference section.
And if you look up the name "alert," it will tell you that alert() is a method of the client-side
Window class.

Once you've found the reference page you're looking for, you shouldn't have much difficulty
finding the information you need. Still, you'll be able to make better use of this reference section if
you understand how the reference pages are written and organized. What follows is a sample
reference page titled "Sample Entry" that demonstrates the structure of each reference page and
tells you where to find various types of information within the pages. Take the time to read this
page before diving into the rest of the reference material.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sample Entry how to read client-side reference pages

Availability

Availability

Inherits from/Overrides

Inherits from

Title and Short Description

Every reference entry begins with a four-part title block like that above. The entries are
alphabetized by title. The short description, shown below the title, gives you a quick summary of
the item documented in the entry; it can help you quickly decide if you're interested in reading the
rest of the page.

Availability

The availability information is shown in the upper-right corner of the title block. This information
tells you when a class, method, or event handler was introduced. For some less portable items,
this section specifies which versions of Netscape and Internet Explorer support it. If the item is
well supported by web browsers and support was added by Netscape and IE within the same
browser generation, this section specifies its availability in terms of a version of core JavaScript.
You can use the tables in Chapter 1 to determine the particular releases of Netscape and Internet
Explorer to which these versions correspond. Of course, since most properties do not have their
own reference pages, they do not have availability information. If the availability of a property is
different from the availability of the class that defines it, however, this fact is noted in the
description of the property.

Inherits from

If a class inherits from a superclass, that information is shown in the lower-right corner of the title
block. As described in Chapter 8, JavaScript classes can inherit properties and methods from
other classes. For example, the Button class inherits from Input, which in turn inherits from
HTMLElement. When you see this inheritance information, you may also want to look up the listed
superclasses.

Synopsis

Every reference page has a "Synopsis" section that shows how you might use the class, method,
or event handler in your code. For example, the synopsis for the Form class is:

document.form_name

document.forms[form_number]

This synopsis shows two different ways of referring to a Form object. Text in this font must be
typed exactly as shown. The italic font indicates text that is to be replaced with something
else. form_name should be replaced with the name of a form, and form_number should be
replaced with the index of the form in the forms[] array. Similarly, document should be

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaced with the index of the form in the forms[] array. Similarly, document should be
replaced in these synopses with a reference to a Document object. By looking at the "Synopsis"
section of the "Document" reference page, we discover that it also has two forms:

document

window.document

That is, you can replace document with the literal document or with window.document. If you
choose the latter, you'll need to look up the synopsis of the Window class to find out how to refer
to a Window -- that is, what to replace window with.

Arguments

If a reference page documents a method, the "Synopsis" section is followed by an "Arguments"
subsection that describes the arguments to the method. If the method has no arguments, this
subsection is simply omitted.

arg1

The arguments are described in a list here. This is the description for argument arg1, for
example.

arg2

And this is the description for argument arg2.

Returns

This section explains the method's return value. If the method does not return a value, this
subsection is omitted.

Constructor

If the reference page documents a class that has a constructor method, this section shows you
how to use the constructor method to create instances of the class. Since constructors are a type
of method, the "Constructor" section looks a lot like the "Synopsis" section of a method's
reference page and has an "Arguments" subsection as well.

Properties

If the reference page documents a class, the "Properties" section lists and documents the
properties defined by that class. In this client-side reference section, only particularly complex
properties have reference pages of their own.

prop1

This is documentation for property prop1, including its type, its purpose or meaning, and
whether it is read-only or read/write.

prop2

This is the same for prop2.

Methods

The reference page for a class that defines methods includes a "Methods" section that lists the
names of the methods and provides a short description of each. Full documentation for each
method is found in a separate reference page.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event Handlers

The reference page for a class that defines event handlers includes an "Event Handlers" section
that lists the names of the handlers and provides a short description of each. Full documentation
for each event handler is found in a separate reference page.

HTML Syntax

A number of client-side JavaScript classes have analogs in HTML. The reference pages for these
classes include a section that shows the annotated HTML syntax used to create an HTML
element that corresponds to a JavaScript object.

Description

Most reference pages contain a "Description" section, which is the basic description of the class,
method, or event handler that is being documented. This is the heart of the reference page. If you
are learning about a class, method, or handler for the first time, you may want to skip directly to
this section and then go back and look at previous sections such as "Arguments," "Properties,"
and "Methods." If you are already familiar with an item, you probably won't need to read this
section and instead will just want to quickly look up some specific bit of information (for example,
from the "Arguments" or "Properties" sections).

In some entries, this section is no more than a short paragraph. In others, it may occupy a page
or more. For some simple methods, the "Arguments" and "Returns" sections document the
method sufficiently by themselves, so the "Description" section is omitted.

Example

A few pages include an example that shows typical usage. Most pages do not contain examples,
however -- you'll find those in first half of this book.

Bugs

When an item doesn't work quite right, this section describes the bugs. Note, however, that this
book does not attempt to catalog every bug in every version and implementation of client-side
JavaScript.

See Also

Many reference pages conclude with cross-references to related reference pages that may be of
interest. Most of these cross references are to other reference pages in this client-side reference
section. Some are to individual property descriptions contained within a class reference page,
however, and others are to related reference pages in the DOM reference section or to chapters
in the first two parts of the book.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Anchor the target of a hypertext link

Availability

JavaScript 1.2

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

document.anchors[i]

document.anchors.length

Properties

Anchor inherits properties from HTMLElement and defines or overrides the following:

name

Contains the name of an Anchor object. The value of this property is initially set by the
name attribute of the <a> tag.

text [Netscape 4]

This property specifies the plain text, if any, between the <a> and tags of an anchor.
Note that this property works correctly only if there are no intervening HTML tags between
the <a> and tags. If there are other HTML tags, the text property may contain only
a portion of the anchor text.

HTMLElement.innerText provides the IE 4 equivalent of this Netscape-specific property.

HTML Syntax

An Anchor object is created by any standard HTML <a> tag that contains a name attribute:

<a

 name="name" // Links may refer to this anchor by this name

>

text

Description

An anchor is a named location within an HTML document. Anchors are created with an <a> tag
that has a name attribute specified. The Document object has an anchors[] array property that
contains Anchor objects that represent each of the anchors in the document. This anchors[]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contains Anchor objects that represent each of the anchors in the document. This anchors[]
array has existed since JavaScript 1.0, but the Anchor object was not implemented until
JavaScript 1.2. Therefore, the elements of anchors[] were null until JavaScript 1.2.

Note that the <a> tag used to create anchors is also used to create hypertext links. Although
hypertext links are often called anchors in HTML parlance, they are represented in JavaScript
with the Link object, not with the Anchor object. In the DOM reference section of this book,
however, both anchors and links are documented under HTMLAnchorElement.

See Also

anchors[] property of the Document object, Link; HTMLAnchorElement in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Applet an applet embedded in a web page

Availability

JavaScript 1.1

Synopsis

document.applets[i]

document.appletName

Properties

The properties of an Applet object are the same as the public fields of the Java applet it
represents.

Methods

The methods of an Applet object are the same as the public methods of the Java applet it
represents.

Description

The Applet object represents a Java applet embedded in an HTML document. The properties of
the Applet object represent the public fields of the applet, and the methods of the Applet object
represent the public methods of the applet. LiveConnect technology in Netscape and ActiveX
technology in Internet Explorer allow JavaScript programs to use the Applet object to read and
write the fields and invoke the methods of the corresponding Java applet. See Chapter 22 for
details.

Remember that Java is a strongly typed language. This means that each field of an applet has
been declared to have a specific data type, and setting it to a value of some other type causes a
runtime error. The same is true of applet methods: each argument has a specific type, and
arguments cannot be omitted as they can be in JavaScript.

See Also

JavaObject; Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Area see Link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Button a graphical push button

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.button_name

form.elements[i]

Properties

Button inherits properties from Input and HTMLElement and defines or overrides the following:

value

A string property that specifies the text that appears in the button. The value of this property is
by the value attribute of the HTML <input> tag that creates the button. In browsers that cannot reflow
document content, this property may be read-only.

Methods

Button inherits methods from Input and HTMLElement.

Event Handlers

Button inherits event handlers from Input and HTMLElement and defines or overrides the following:

onclick

Invoked when the button is clicked.

HTML Syntax

A Button element is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="button" // Specifies that this is a button

 value="label" // The text that is to appear within the button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 value="label" // The text that is to appear within the button

 // Specifies the value property

 [name="name"] // A name you can use later to refer to the button

 // Specifies the name property

 [onclick="handler"] // JavaScript statements to be executed when the button

 // is clicked

 >

 ...

</form>

Button objects can also be created with the HTML 4 <button> tag:

<button id="name"

 onclick="handler">

label

</button>

Description

The Button element represents a graphical push button in a form within an HTML document. The value
property contains the text displayed by the button. The name property is the name the button may be
to as. The onclick event handler is invoked when the user clicks on the button.

Usage

Use a Button element whenever you want to allow the user to trigger some action on your web page. You can
sometimes use a Link object for the same purpose, but unless the desired action is to follow a hypertext link, a
Button is a better choice than a Link, because it makes it more explicit to the user that there is something to be
triggered.

Note that the Submit and Reset elements are types of Buttons that submit a form and reset a form's values.
Often these default actions are sufficient for a form, and you do not need to create any other types of buttons.

Example

<form name="form1">

 <input type="button"

 name="press_me_button"

 value="Press Me"

 onclick="username = prompt('What is your name?',")"

 >

</form>

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form, HTMLElement, Input, Reset, Submit; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Button.onclick the handler invoked when a Button is clicked

Availability

JavaScript 1.0

Synopsis

<input type="button" value="button-text" onclick="handler">

button.onclick

Description

The onclick property of a Button object refers to an event handler function that is invoked when
the user clicks on the button. See HTMLElement.onclick for complete details. Note, however, that
Button.onclick has been supported since JavaScript 1.0, unlike the generalized
HTMLElement.onclick handler.

See Also

HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checkbox a graphical checkbox

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

A single Checkbox element with a unique name may be referenced in either of these ways:

form.checkbox_name

form.elements[i]

When a form contains a group of checkboxes with the same name, they are placed in an array and may be
referenced as follows:

form.checkbox_name[j]

form.checkbox_name.length

Properties

Checkbox inherits properties from Input and HTMLElement and defines or overrides the following:

checked

A read/write boolean property. If the checkbox is checked, the checked property is true. If the checkbox
is not checked, checked is false.

If you set checked to true, the checkbox appears checked. Similarly, if you set this property to false
checkbox appears unchecked. Note that setting the checked property does not cause the Checkbox element's
onclick event handler to be invoked.

defaultChecked

A read-only boolean that specifies the initial state of the checkbox. It is true if the checkbox is initially
checked -- i.e., if the checked attribute appears in the checkbox's HTML <input> tag. If this attribute
does not appear, the checkbox is initially unchecked and defaultChecked is false.

value

A read/write string property that specifies the text passed to the web server if the checkbox is checked
when the form is submitted. The initial value of value is specified by the value attribute of the
checkbox's HTML <input> tag. If no value attribute is specified, the default value string is "on".

Note that the value field does not specify whether the checkbox is selected; the checked property
the current state of the checkbox. When defining a group of related checkboxes that share the same name in a
form that is submitted to the server, it is important that each be given a distinct value attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Methods

Checkbox inherits the methods of Input and HTMLElement.

Event Handlers

Checkbox inherits event handlers from Input and HTMLElement and defines or overrides the following:

onclick

Invoked when the checkbox is clicked.

HTML Syntax

A Checkbox element is created with a standard HTML <input> tag. Multiple Checkbox elements are often
created in groups by specifying multiple <input> tags that have the same name attribute.

<form>

 ...

 <input

 type="checkbox" // Specifies that this is a checkbox

 [name="name"] // A name you can use later to refer to this checkbox

 // or to the group of checkboxes with this name

 // Specifies the name property

 [value="value"] // The value returned when this checkbox is selected

 // Specifies the value property

 [checked] // Specifies that the checkbox is initially checked

 // Specifies the defaultChecked property

 [onclick="handler"] // JavaScript statements to be executed

 > // when the checkbox is clicked

label // The HTML text that should appear next to the checkbox

 ...

</form>

Description

The Checkbox element represents a single graphical checkbox in an HTML form. Note that the text that appears
next to the checkbox is not part of the Checkbox element itself and must be specified externally to the
Checkbox's HTML <input> tag.

The onclick event handler allows you to specify JavaScript code to be executed when the checkbox is
checked or unchecked. You can examine the checked property to determine the state of the checkbox and set
this property to check or uncheck the checkbox. Note that setting checked changes the graphical appearance
of the checkbox but does not invoke the onclick event handler.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

of the checkbox but does not invoke the onclick event handler.

It is good programming style to specify the name attribute for a checkbox; this is mandatory if the checkbox is
part of a form that submits data to a CGI script running on a web server. Specifying a name attribute sets the
name property and allows you to refer to the checkbox by name (instead of as a member of the form
array) in your JavaScript code, which makes the code more modular and portable.

For example, if the name attribute of a checkbox in form f is "opts", f.opts refers to the Checkbox element.
Checkbox elements are often used in related groups, however, and each member of the group is given the
same name attribute (the shared name defines the members of the group). In this case, JavaScript places each
Checkbox element in the group in an array, and the array is given the shared name. If, for example, each of a
group of checkboxes in form f has its name attribute set to "opts", f.opts is an array of Checkbox elements,
and f.opts.length is the number of elements in the array.

You can set the value attribute or the value property of a checkbox to specify the string that is passed to the
server if the checkbox is checked when the form is submitted. For a single checkbox used alone, the default
value of "on" is usually adequate. When multiple checkboxes with the same name are used, each should
specify a distinct value so a list of values from selected checkboxes can be passed to the server.

Usage

Checkbox elements can present the user with one or more options. This element type is suitable for presenting
non-mutually exclusive choices. Use the Radio element for mutually exclusive lists of options.

See Also

Form, HTMLElement, Input, Radio; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Checkbox.onclick the handler invoked when a checkbox is selected

Availability

JavaScript 1.0

Synopsis

<input type="checkbox" onclick="handler">

checkbox.onclick

Description

The onclick property of a Checkbox object refers to an event handler function that is invoked
when the user clicks on the checkbox. See HTMLElement.onclick for complete details. Note,
however, that Checkbox.onclick has been supported since JavaScript 1.0, unlike the
generalized HTMLElement.onclick handler.

See Also

HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document represents an HTML document

Availability

JavaScript 1.0; enhanced in JavaScript 1.1, Netscape 4, and IE 4

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

window.document

document

Properties

Document inherits properties from HTMLElement and defines the following properties. Netscape and
Internet Explorer both define a number of incompatible Document properties that are used mostly for
DHTML; they are listed separately after these properties.

alinkColor

alinkColor is a string property that specifies the color of activated links in document. Browsers
may display this color between the times that the user presses and releases the mouse button
the link. The alink attribute of the <body> HTML tag specifies the initial value of this property. This
property may be set, but only in the <head> of the document. See also the color properties of
HTMLBodyElement in the DOM reference section.

anchors[]

An array of Anchor objects, one for each anchor that appears in document. An anchor is a named
position within the document that can serve as the target of a hypertext link. The anchors[]
has anchors.length elements, numbered from zero to anchors.length-1. Do not confuse
anchors with hypertext links, which are represented in JavaScript by the Link objects in the
Document.links[] array.

Prior to JavaScript 1.2, the Anchor object was unimplemented, and the elements of anchors[] were all
null.

applets[] [JavaScript 1.1]

An array of Applet objects, one for each applet that appears in the document. You can use the
Applet object to read and write all public variables in the applet, and you can invoke all of the
applet's public methods. If an <applet> tag has a name attribute, the applet may also be referred to
by using the name as a property of document or as an index into the applets array. Thus, if the
first applet in a document has name="animator", you can refer to it in any of these ways:

document.applets[0]

document.animator

document.applets["animator"]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

document.applets["animator"]

bgColor

A string property that specifies the background color of document. The initial value of this property
comes from the bgcolor attribute of the <body> tag. The background color may be changed by
assigning a value to bgColor. Unlike the other color properties, bgColor can be set at any time.
See also the color properties of HTMLBodyElement in the DOM reference section.

cookie

A string that is the value of a cookie associated with this document. See the Document.cookie
reference page.

domain

A string that specifies the document's Internet domain. Used for security purposes. JavaScript 1.1
and higher. See the Document.domain reference page.

embeds[] [JavaScript 1.1]

An array of objects that represent data embedded in the document with the <embed> tag. The
objects in the embeds[] array do not refer to the embedded data directly but refer instead to the
object that displays that data. You can use the objects in the embeds[] array to interact with
embedded data. The way you do this, however, is specific to the type of embedded data and the
plugin or ActiveX control used to display it. Consult the developer's documentation for the plugin or
ActiveX control to learn whether it can be scripted from JavaScript and, if so, what the supported
APIs are.

Document.plugins[] is a synonym for Document.embeds[]. Do not confuse it with
Navigator.plugins[].

fgColor

A string property that specifies the default color of text in document. The initial value of this property
is from the text attribute of the <body> tag, and you can set the value of this property from a script
within the <head> of the document. See also the color properties of HTMLBodyElement in the DOM
reference section.

forms[]

An array of Form objects, one for each HTML form that appears in document. The forms[]
has forms.length elements, numbered from zero to forms.length-1.

images[] [JavaScript 1.1]

An array of Image objects, one for each image that is embedded in the document with the HTML
 tag. If the name attribute is specified in the tag for an Image, a reference to that
image is also stored in a property of the Document object. This property has the same name as the
image. So if an image has a name="toggle" attribute, you can refer to the image with
document.toggle.

lastModified

A read-only string that specifies the date of the most recent change to the document (as reported by
the web server). See the Document.lastModified reference page.

linkColor

A string property that specifies the color of unvisited links in the document. The value of this property
is set by the link attribute of the <body> tag, and it may also be set by a script in the <head>
the document. See also the color properties of HTMLBodyElement in the DOM reference section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

links[]

An array of Link objects, one for each hypertext link that appears in the document. The links[]
array has links.length elements, numbered from zero to links.length-1.

location [Deprecated]

A Location object that contains the complete URL of the current document; a synonym for the
Window.location property. In JavaScript 1.0, this property was instead a read-only string object
that served the same purpose as the Document.URL property.

plugins[] [JavaScript 1.1]

A synonym for the embeds[] array. Refers to an array of objects that represent the plugins or
ActiveX controls used to display embedded data in a document. The embeds property is the
preferred way to access this array, since it avoids confusion with the Navigator.plugins[]
array.

referrer

A read-only string property that contains the URL of the document, if any, from which the current
document was reached. For example, if the user follows a link in document A to document B, the
Document.referrer property in document B contains the URL of document A. On the other hand,
if the user types the URL of document B directly and does not follow any link to get there, the
Document.referrer property for document B is an empty string.

title

A read-only string property that specifies the title of the current document. The title is any text
appears between the <title> and </title> tags in the <head> of the document.

URL

A read-only string that specifies the URL of the document. See the Document.URL reference page.

vlinkColor

A string property that specifies the color of visited links in document. The value of this property is
set by the vlink attribute of the <body> tag, and you can also set it from a script within the <head>
of the document. See also the color properties of HTMLBodyElement in the DOM reference section.

Netscape Properties

height [Netscape 4]

The height, in pixels, of the document.

layers[] [Netscape 4 only]

An array of Layer objects that represent the layers contained within a document. Each Layer object
contains its own subdocument, accessible through the document property of the Layer object. This
property is available only in Netscape 4; it has been discontinued in Netscape 6.

width [Netscape 4]

The width, in pixels, of the document.

Internet Explorer Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

activeElement [IE 4]

A read-only property that refers to the input element within the document that is currently active (i.e.,
has the input focus).

all[] [IE 4]

An array of all elements within the document. See the Document.all[] reference page.

charset [IE 4]

The character set of the document.

children[] [IE 4]

An array that contains the HTML elements, in source order, that are direct children of the document.
Note that this is different than the all[] array that contains all elements in the document,
regardless of their position in the containment hierarchy.

defaultCharset [IE 4]

The default character set of the document.

expando [IE 4]

This property, if set to false, prevents client-side objects from being expanded. That is, it causes a
runtime error if a program attempts to set the value of a nonexistent property of a client-side object.
Setting expando to false can sometimes catch bugs caused by property misspellings, which can
otherwise be difficult to detect. This property can be particularly helpful for programmers who are
switching to JavaScript after becoming accustomed to case-insensitive languages. Although
expando works only in IE 4, it can be set safely (if ineffectively) in Netscape.

parentWindow [IE 4]

The window that contains the document.

readyState

Specifies the loading status of a document. It has one of the following four string values:

uninitialized

The document has not started loading.

loading

The document is loading.

interactive

The document has loaded sufficiently for the user to interact with it.

complete

The document is completely loaded.

Methods

Document inherits methods from HTMLElement and defines the following methods. Netscape and IE both
define a number of incompatible Document methods that are used mostly for DHTML; they are listed
separately.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

clear()

Erases the contents of the document. This method is deprecated in JavaScript 1.1.

close()

Closes a document stream opened with the open() method.

open()

Opens a stream to which document contents may be written.

write()

Inserts the specified string or strings into the document currently being parsed or into a document
stream opened with open().

writeln()

Identical to write(), except that it appends a newline character to the output.

Netscape Methods

captureEvents()

Requests events of specified types.

getSelection()

Returns the currently selected document text.

releaseEvents

Stops capturing specified event types.

routeEvent()

Routes a captured event to the next interested element. See Window.routeEvent().

Internet Explorer Methods

elementFromPoint()

Returns the element located at a given (X-coordinate, Y-coordinate) point.

Event Handlers

The <body> tag has onload and onunload attributes. Technically, however, the onload and onunload
event handlers belong to the Window object rather than the Document object. See Window.onload and
Window.onunload.

HTML Syntax

The Document object obtains values for a number of its properties from attributes of the HTML <body>
tag. Also, the HTML contents of a document appear between the <body> and </body> tags:

<body

 [background="imageURL"] // A background image for the document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [background="imageURL"] // A background image for the document

 [bgcolor="color"] // A background color for the document

 [text="color"] // The foreground color for the document's text

 [link="color"] // The color for unvisited links

 [alink="color"] // The color for activated links

 [vlink="color"] // The color for visited links

 [onload="handler"] // JavaScript to run when the document is loaded

 [onunload="handler"] // JavaScript to run when the document is unloaded

>

// HTML document contents go here

</body>

Description

The Document object represents the HTML document displayed in a browser window or frame (or layer, in
Netscape 4). The properties of this object provide details about many aspects of the document, from
colors of the text, background, and anchors, to the date on which the document was last modified. The
Document object also contains a number of arrays that describe the contents of the document. The
links[] array contains one Link object for each hypertext link in the document. Similarly, the applets[]
array contains one object for each Java applet embedded in the document, and the forms[] array
contains one Form object for each HTML form that appears in the document.

The write() method of the Document object is especially notable. When invoked in scripts that are run
while the document is loading, you can call document.write() to insert dynamically generated HTML
text into the document.

See Chapter 14 for an overview of the Document object and of many of the JavaScript objects to which it
refers. See Chapter 17 for an overview of the DOM standard.

See Also

Form, the document property of the Window object; Chapter 14; Document, HTMLDocument, and
HTMLBodyElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.all[] all HTML elements in a document Internet Explorer 4

Synopsis

document.all[i]

document.all[name]

document.all.tags(tagname)

Description

all[] is a versatile array that contains all the HTML elements in a document. all[] contains
the elements in source order, and you can extract them directly from the array if you know their
exact numeric position within the array. It is more common, however, to use the all[] array to
retreive elements by the value of their name or id HTML attributes. If more than one element has
the specified name, using that name as an index into the all[] returns an array of elements that
share the name.

all.tags() is passed a tag name and returns an array of HTML elements of the specified
type.

See Also

HTMLElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.captureEvents() see Window.captureEvents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.clear() clear a document

Availability

JavaScript 1.0; deprecated

Synopsis

document.clear()

Description

The clear() method of the Document object is deprecated and should not be used. To clear a
document, you should simply open a new one with Document.open().

See Also

Document.close(), Document.open(), Document.write()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.close() close an output stream

Availability

JavaScript 1.0

Synopsis

document.close()

Description

This method displays any output to document that has been written but not yet displayed and
closes the output stream to document. When generating complete HTML pages with
Document.write(), you should invoke Document.close() when you reach the end of the
page.

After document.close() has been called, if any further output is written to document (e.g.,
with document.write()), the document is implicitly cleared and reopened, erasing all the
output that was written prior to calling the close() method.

See Also

Document.open(), Document.write()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.cookie the cookie(s) of the document

Availability

JavaScript 1.0

Synopsis

document.cookie

Description

cookie is a string property that allows you to read, create, modify, and delete the cookie or
cookies that apply to the current document. A cookie is a small amount of named data stored by
the web browser. It gives web browsers a "memory" so they can use data input on one page in
another page or recall user preferences across web browsing sessions. Cookie data is
automatically transmitted between web browser and web server when appropriate so CGI scripts
on the server end can read and write cookie values. Client-side JavaScript code can also read
and write cookies with this property.

The Document.cookie property does not behave like a normal read/write property. You may
both read and write the value of Document.cookie, but the value you read from this property is,
in general, not the same as the value you write. For complete details on the use of this particularly
complex property, see Chapter 16.

Usage

Cookies are intended for infrequent storage of small amounts of data. They are not intended as a
general-purpose communication or programming mechanism, so use them in moderation. Note
that web browsers are not required to retain the value of more than 20 cookies per web server
(for the entire server, not just for your site on the server), nor to retain a cookie name/value pair
of more than 4 KB in length.

See Also

Chapter 16

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.domain the security domain of a document

Availability

JavaScript 1.1

Synopsis

document.domain

Description

For security reasons, an unsigned script running in one window is not allowed to read properties
of another window unless that window comes from the same web server as the host. This causes
problems for large web sites that use multiple servers. For example, a script on the host
www.oreilly.com might want to share properties with a script from the host search.oreilly.com.

The domain property helps to address this problem. Initially, this string property contains the
hostname of the web server from which the document was loaded. You can set this property, but
only in a very restricted way: it can be set only to a domain suffix of itself. For example, a script
loaded from search.oreilly.com could set its own domain property to "oreilly.com". If a script from
www.oreilly.com is running in another window, and it also sets its domain property to
"oreilly.com", these two scripts can share properties, even though they did not originate on the
same server.

Note, however, that a script from search.oreilly.com cannot set its domain property to
"search.oreilly". And, more importantly, a script from snoop.spam.com cannot set its domain to
"oreilly.com", which might allow it to determine, for example, which search keywords you use.

See Also

Chapter 21

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.elementFromPoint(
)

determine which HTML element is at a
given point

Availability

Internet Explorer 4

Synopsis

document.elementFromPoint(x, y)

Arguments

x

The X-coordinate.

y

The Y-coordinate.

Returns

The HTML element that appears at point (x, y) in document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getSelection() return the selected text Netscape 4

Synopsis

document.getSelection()

Returns

The text, if any, that is currently selected within the document. This returned text has HTML
formatting tags removed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.handleEvent() see Window.handleEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.lastModified the modification date of a document

Availability

JavaScript 1.0

Synopsis

document.lastModified

Description

lastModified is a read-only string property that contains the date and time at which document
was most recently modified. This data is derived from HTTP header data sent by the web server.
The web server generally obtains the last-modified date by examining the modification date of the
file itself.

Web servers are not required to provide last-modified dates for the documents they serve. When
a web server does not provide a last-modified date, JavaScript assumes 0, which translates to a
date of midnight, January 1, 1970, GMT. The following example shows how you can test for this
case.

Example

It is a good idea to let readers know how recent the information you provide on the Web is. You
can include an automatic timestamp in your documents by placing the following script at the end
of each HTML file. Doing this means you do not need to update the modification time by hand
each time you make a change to the file. Note that this script tests that the supplied date is valid
before displaying it:

<script>

if (Date.parse(document.lastModified) != 0)

 document.write('<p><hr><small><i>Last modified: '

 + document.lastModified

 + '</i></small>');

</script>

See Also

The Document location, referrer, and title properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.links[] the Link objects in a document

Availability

JavaScript 1.0

Synopsis

document.links

document.links.length

Description

The links property is an array of Link objects -- one object for each hypertext link that appears in
document. The links[] array has links.length elements, numbered from zero to
links.length-1.

See Also

Link

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.open() begin a new document

Availability

JavaScript 1.0

Synopsis

document.open()

document.open(mimetype)

Arguments

mimetype

An optional string argument that specifies the type of data to be written to and displayed in
document. The value of this argument should be one of the standard MIME types that the
browser understands ("text/html", "text/plain", "image/gif", "image/jpeg", and "image/x-
bitmap" for Netscape) or some other MIME type that can be handled by an installed plugin.
If this argument is omitted, it is taken to be "text/html". This argument is ignored by IE 3,
which always assumes a document of type "text/html". This argument is also not supported
in the standard W3C DOM version of this method. See the HTMLDocument.open() entry in
the DOM reference section.

Description

The document.open() method opens a stream to document so subsequent
document.write() calls can append data to the document. The optional mimetype argument
specifies the type of data to be written and tells the browser how to interpret that data.

If any existing document is displayed when the open() method is called, it is automatically
cleared by the call to open() or by the first call to write() or writeln(). After opening a
document with open() and writing data to it with write(), you should complete the document
by calling close().

Usage

You usually call Document.open() with no argument to open an HTML document.
Occasionally, a "text/plain" document is useful, for example, for a pop-up window of debugging
messages.

See Also

Document.close(), Document.write(); HTMLDocument.open() in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.releaseEvents() see Window.releaseEvents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.routeEvent() see Window.routeEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.URL the URL of the current document

Availability

JavaScript 1.1

Synopsis

document.URL

Description

URL is a read-only string property that contains the complete URL of the current document.

document.URL is usually equal to window.location.href for the window that contains
document. These two are not always equal, however, because the Document.URL property may
be modified through URL redirection -- Window.location contains the requested URL, and
Document.URL specifies the actual URL where it was found.

Usage

Some web authors like to include the URL of a document somewhere within the document so, for
example, if the document is cut-and-pasted to a file or printed out, there is still a reference to its
location online. The following script, when appended to a document, automatically adds the
document's URL:

<script>

document.write('<p><hr><small><i>URL: ' + document.URL

 + '</i></small>');

</script>

See Also

The lastModified, location, referrer, and title properties of the Document object; the
location property of the Window object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.write() append data to a document

Availability

JavaScript 1.0

Synopsis

document.write(value, ...)

Arguments

value

An arbitrary JavaScript value to be appended to document. If the value is not a string, it is
converted to one before being appended.

...

Any number (zero or higher) of additional values to be appended (in order) to document.

Description

document.write() appends each of its arguments, in order, to document. Any arguments
that are not strings are converted to strings before they are written to the end of the document.

Document.write() is usually used in one of two ways. First, it can be invoked on the current
document within a <script> tag or within a function that is executed while the document is being
parsed. In this case, the write() method writes its HTML output as if that output appeared
literally in the file at the location of the code that invoked the method.

Second, you can use Document.write() to dynamically generate the contents of a document
for a window other than the current window. In this case, the target document is never in the
process of being parsed, and so the output cannot appear "in place" as it does in the case just
described. In order for write() to output text into a document, that document must be open.
You can open a document by explicitly calling the Document.open() method. In most cases
this is unnecessary, however, because when write() is invoked on a document that is closed,
it implicitly opens the document. When a document is opened, any contents that previously
appeared in that document are discarded and replaced with a blank document.

Once a document is open, Document.write() can append any amount of output to the end of
the document. When a new document has been completely generated by this technique, the
document should be closed by calling Document.close(). Note that although the call to
open() is usually optional, the call to close() is never optional.

The results of calling Document.write() may not be immediately visible in the targeted web
browser window or frame. This is because a web browser may buffer up data to output in larger
chunks. Calling Document.close() is the only way to explicitly force all buffered output to be
"flushed" and displayed in the browser window.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.close(), Document.open(), Document.writeln(); Chapter 14

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.writeln() append data and a newline to a document

Availability

JavaScript 1.0

Synopsis

document.writeln(value, ...)

Arguments

value

An arbitrary JavaScript value to be appended to document. If the value is not a string, it is
converted to one before being appended.

...

Any number (zero or higher) of additional values to be appended (in order) to document.

Description

Document.writeln() behaves just like Document.write() except that after appending all
of its arguments to document, it also appends a newline character. See the Document.write()
reference page for more information on this method.

Newline characters are not usually displayed in HTML documents, so Document.writeln() is
generally useful only when writing text to appear in a <pre> environment, or when writing to a
document opened with a MIME type of "text/plain".

See Also

Document.close(), Document.open(), Document.write()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element see Input

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event details about an event

Availability

JavaScript 1.2; incompatible versions supported by Netscape 4 and IE 4

Synopsis

function handler(event) { ... } // Event handler argument in Netscape 4

window.event // Window property in IE 4

Constants

In Netscape 4, the Event object defines bitmask constants for each of the supported event types.
These static properties are used to form the bitmasks that are passed to captureEvents()
and releaseEvents(). The available constants are:

Event.ABORT Event.BLUR Event.CHANGE Event.CLICK
Event.DBLCLICK Event.DRAGDROP Event.ERROR Event.FOCUS
Event.KEYDOWN Event.KEYPRESS Event.KEYUP Event.LOAD
Event.MOUSEDOWN Event.MOUSEMOVE Event.MOUSEOUT Event.MOUSEOVER
Event.MOUSEUP Event.MOVE Event.RESET Event.RESIZE
Event.SELECT Event.SUBMIT Event.UNLOAD

Netscape 4 Properties

height

Set only in events of type "resize". Specifies the new height of the window or frame that
was resized.

layerX, layerY

Specify the X- and Y-coordinates, relative to the enclosing layer, at which an event
occurred.

modifiers

Specifies which keyboard modifier keys were held down when the event occurred. This
numeric value is a bitmask consisting of any of the constants Event.ALT_MASK,
Event.CONTROL_MASK, Event.META_MASK, or Event.SHIFT_MASK. Due to a bug, this
property is not defined in Netscape 6 or 6.1.

pageX, pageY

Specify the X- and Y-coordinates, relative to the web browser page, at which the event
occurred. Note that these coordinates are relative to the top-level page, not to any
enclosing layers.

screenX, screenY

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

screenX, screenY

Specify the X- and Y-coordinates, relative to the screen, at which the event occurred. Note
that, unlike most Event properties, these properties are supported by and have the same
meaning in both Netscape 4 and Internet Explorer 4.

target

Specifies the Window, Document, Layer, or HTMLElement object on which the event
occurred.

type

A string property that specifies the type of the event. Its value is the name of the event
handler minus the "on" prefix. So when the onclick() event handler is invoked, the
type property of the Event object is "click".

which

For keyboard and mouse events, which specifies which key or mouse button was pressed
or released. For keyboard events, this property contains the character encoding of the key
that was pressed. For mouse events, it contains 1, 2, or 3, indicating the left, middle, or
right buttons.

width

Set only in events of type "resize". Specifies the new width of the window or frame that was
resized.

x, y

Specify the X- and Y-coordinates at which the event occurred. In Netscape 4, these
properties are synonyms for layerX and layerY and specify the position relative to the
containing layer (if any). Their meaning is different in Internet Explorer (see below).

Internet Explorer 4 Properties

altKey

A boolean value that specifies whether the Alt key was held down when the event
occurred.

button

For mouse events, button specifies which mouse button or buttons were pressed. This
read-only integer is a bitmask: the 1 bit is set if the left button was pressed; the 2 bit is set if
the right button was pressed; and the 4 bit is set if the middle button (of a three-button
mouse) was pressed.

cancelBubble

If an event handler wants to stop an event from being propagated up to containing objects,
it must set this property to true.

clientX, clientY

Specify the X- and Y-coordinates, relative to the web browser page, at which the event
occurred.

ctrlKey

A boolean value that specifies whether the Ctrl key was held down when the event

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A boolean value that specifies whether the Ctrl key was held down when the event
occurred.

fromElement

For mouseover and mouseout events, fromElement refers to the object from which the
mouse pointer is moving.

keyCode

For keyboard events, keyCode specifies the Unicode character code generated by the key
that was struck.

offsetX, offsetY

Specify the X- and Y-coordinates at which the event occurred within the coordinate system
of the event's source element (see srcElement).

reason

For the datasetcomplete event, reason contains a code that specifies the status of the
data transfer. A value of 0 indicates a successful transfer. A value of 1 indicates that the
transfer was aborted. A value of 2 indicates that an error occurred during data transfer.

returnValue

If this property is set, its value takes precedence over the value actually returned by an
event handler. Set this property to false to cancel the default action of the source element
on which the event occurred.

screenX, screenY

Specify the X- and Y-coordinates, relative to the screen, at which the event occurred. Note
that, unlike most Event properties, these two properties are supported by and have the
same meaning in both Netscape 4 and Internet Explorer 4.

shiftKey

A boolean value that specifies whether the Shift key was held down when the event
occurred.

srcElement

A reference to the Window, Document, or HTMLElement object that generated the event.

srcFilter

For filterchange events, srcFilter specifies the filter that changed.

toElement

For mouseover and mouseout events, toElement refers to the object into which the
mouse pointer is moving.

type

A string property that specifies the type of the event. Its value is the name of the event
handler minus the "on" prefix. So when the onclick() event handler is invoked, the
type property of the Event object is "click".

x, y

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

x, y

Specify the X- and Y-coordinates at which the event occurred. In Internet Explorer 4, this
property specifies the X position relative to the innermost containing element that is
dynamically positioned using CSS. The interpretation of these properties is different in
Netscape 4 (see the previous section).

Description

The Event object provides details about an event that has occurred. Unfortunately, these details
are not standardized, and Netscape 4 and IE 4 define Event objects that are almost entirely
incompatible. Besides having different properties, Netscape 4 and IE 4 provide access to Event
objects in different ways. In Netscape, an Event object is passed as an argument to every event
handler. For event handlers defined by HTML attributes, the name of the event argument is
event. In IE, the Event object of the most recent event is instead stored in the event property of
the Window object.

In addition to the incompatibility between the Netscape 4 Event object and the IE Event object,
the W3C DOM defines its own Event object that is incompatible with both. See the Event,
UIEvent, and MouseEvent entries in the DOM reference section.

See Also

Chapter 19; Event, UIEvent, and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileUpload a file upload field for form input

Availability

JavaScript 1.0 Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

FileUpload inherits properties from Input and HTMLElement and defines or overrides the following:

value [JavaScript 1.1]

A read-only string that specifies the filename entered by the user into the FileUpload object. The user
may enter a filename either by typing it directly or by using the directory browser associated with
FileUpload object.

To prevent malicious programs from uploading arbitrary files from the client, this property may not be set by
JavaScript code. Similarly, the value attribute of the <input> tag does not specify the initial value for this
property.

Methods

FileUpload inherits methods from Input and HTMLElement.

Event Handlers

FileUpload inherits event handlers from Input and HTMLElement and defines or overrides the following:

onchange

Invoked when the user changes the value in the FileUpload element and moves the keyboard focus
elsewhere. This event handler is not invoked for every keystroke in the FileUpload element, but only
when the user completes an edit.

HTML Syntax

A FileUpload element is created with a standard HTML <input> tag:

<form enctype="multipart/form-data"

 method="post"> // Required attributes

 ...

 <input

 type="file" // Specifies that this is a FileUpload element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 type="file" // Specifies that this is a FileUpload element

 [name="name"] // A name you can use later to refer to this element

 // Specifies the name property

 [size="integer"] // How many characters wide the element is

 [maxlength="integer"] // Maximum allowed number of input characters

 [onblur="handler"] // The onblur() event handler

 [onchange="handler"] // The onchange() event handler

 [onfocus="handler"] // The onfocus() event handler

 >

 ...

Description

The FileUpload element represents a file upload input element in a form. In many respects, this input
is much like the Text element. On the screen, it appears like a text input field with the addition of a Browse
button that opens a directory browser. Entering a filename into a FileUpload element (either directly or
through the browser) causes Netscape to submit the contents of that file along with the form. For this to work,
the form must use "multipart/form-data" encoding and the POST method.

The FileUpload element does not have a defaultValue property and does not recognize the value
attribute to specify an initial value for the input field. Similarly, the value property of the FileUpload element is
read-only. Only the user may enter a filename; JavaScript may not enter text into the FileUpload field in
way. This is to prevent malicious JavaScript programs from uploading arbitrary files (such as password files)
from the user's machine.

See Also

Form, HTMLElement, Input, Text; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

FileUpload.onchange the handler invoked when input value changes

Available

JavaScript 1.0

Synopsis

<input type="file" onchange="handler"...>

fileupload.onchange

Description

The onchange property of a FileUpload element specifies an event handler function that is
invoked when the user changes the value in the input field (either by typing directly or using the
Browse button) and then moves input focus elsewhere. This handler is intended to process a
complete change to the input value and therefore is not invoked on a keystroke-by-keystroke
basis.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onchange attribute of the HTML tag that defined the object. When an
event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

In the Netscape 4 event model, the onchange handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

Input.onchange; Chapter 19; Event, EventListener, and EventTarget in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form an HTML input form

Availability

JavaScript 1.0 Inherits from HTMLElement

Synopsis

document.form_name

document.forms[form_number]

Properties

Form inherits properties from HTMLElement and defines or overrides the following:

action

A read/write string (read-only in IE 3) that specifies the URL to which the form data is sent
when the form is submitted. The initial value of this property is specified by the action
attribute of the <form> HTML tag. Usually, this URL specifies the address as a CGI script,
although it can also be a mailto: or news: address.

elements[]

An array of input elements that appear in the form. Each element is a Button, Checkbox,
Hidden, Password, Radio, Reset, Select, Submit, Text, or Textarea object. See the
Form.elements[] reference page.

encoding

A read/write string (read-only in IE 3) that specifies how form data is encoded for transmission
when the form is submitted. The initial value of this property is specified by the enctype
attribute of the <form> tag. The default value is "application/x-www-form-urlencoded", which
is sufficient for almost all purposes. Other values may sometimes be necessary. For example,
a value of "text/plain" is convenient when the form is submitted by email to a mailto: URL.
See CGI Programming on the World Wide Web, by Shishir Gundavaram (O'Reilly), for further
information.

length

The number of elements in the form. Equivalent to elements.length.

method

A read/write string (read-only in IE 3) that specifies the method by which form data is
submitted. The initial value of this property is specified by the method attribute of the <form>
tag. The two legal values are get and post.

The get method is the default. It is usually used for form submissions such as database
queries that do not have side effects. With this method, the encoded form data is appended
to the URL specified by the Form.action property. The post method is appropriate for form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to the URL specified by the Form.action property. The post method is appropriate for form
submissions, such as additions to databases, that have side effects. With this method,
encoded form data is sent in the body of the HTTP request.

name

Specifies the name of the form. The initial value of this read/write string property is the value
of the name attribute of the <form> tag.

target

A read/write string that specifies the name of the frame or window in which the results of
submitting a form should be displayed. Initially specified by the target attribute. The special
names "_top", "_parent", "_self", and "_blank" are also supported for the target
property and the target attribute. See the Form.target reference page.

Methods

Form inherits methods from HTMLElement and defines the following:

reset()

Resets each of the input elements of the form to their default values.

submit()

Submits the form.

Event Handlers

Form inherits event handlers from HTMLElement and defines the following:

onreset

Invoked just before the elements of the form are reset. Specified in HTML by the onreset
attribute.

onsubmit

Invoked just before the form is submitted. Specified in HTML by the onsubmit attribute. This
event handler allows form entries to be validated before being submitted.

HTML Syntax

A Form object is created with a standard HTML <form> tag. The form contains any input elements
created with the <input>, <select>, and <textarea> tags between <form> and </form>:

<form

 [name="form_name"] // Used to name the form in JavaScript

 [target="window_name"] // The name of the window for responses

 [action="url"] // The URL to which the form is submitted

 [method=("get"|"post")] // The method of form submission

 [enctype="encoding"] // How the form data is encoded

 [onreset="handler"] // A handler invoked when form is reset

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [onreset="handler"] // A handler invoked when form is reset

 [onsubmit="handler"] // A handler invoked when form is submitted

>

// Form text and input elements go here

</form>

Description

The Form object represents an HTML <form> in a document. Each form in a document is
represented as an element of the Document.forms[] array. Named forms are also represented
by the form_name property of their document, where form_name is the name specified in the name
attribute of the <form> tag.

The elements of a form (buttons, input fields, checkboxes, and so on) are collected in the
Form.elements[] array. Named elements, like named forms, can also be referenced directly by
name -- the element name is used as a property name of the Form object. Thus, to refer to a Text
object element named phone within a form named questionnaire, you might use the JavaScript
expression:

document.questionnaire.phone

See Also

Button, Checkbox, FileUpload, Hidden, Input, Password, Radio, Reset, Select, Submit, Text,
Textarea; Chapter 15; HTMLFormElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.elements[] the input elements of the form

Availability

JavaScript 1.0

Synopsis

form.elements[i]

form.elements.length

Description

form.elements[] is an array of the form input objects in form. The array has
elements.length items in it. These items may be of any of the form input element types:
Button, Checkbox, Hidden, Password, Radio, Reset, Select, Submit, Text, and Textarea. These
form input objects appear in the array in the same order that they appear in the HTML source
code for the form.

Usage

If an item in the form.elements[] array has been given a name with the name="name"
attribute of its HTML <input> tag, that item's name becomes a property of form, and this
property refers to the item. Thus, it is possible to refer to input objects by name instead of by
number:

form.name

Referring to elements by name is usually easier, so it is a good idea to specify the name attribute
for all form elements.

See Also

Button, Checkbox, Form, Hidden, Input, Password, Radio, Reset, Select, Submit, Text, Textarea

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.onreset the handler invoked when a form is reset

Availability

JavaScript 1.1

Synopsis

<form ... onreset="handler" ... >

form.onreset

Description

The onreset property of a Form object specifies an event handler function that is invoked when
the user clicks on a Reset button in the form or when Form.reset() is called.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onreset attribute of the HTML <form> tag. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than the
scope of the containing window.

In the Netscape 4 event model, the onreset handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

If the onreset handler returns false, the elements of the form are not reset.

Example

You could use the following event handler to ask the user to confirm that they really want to reset
the form:

<form ...

 onreset="return confirm('Really erase all entered data?')"

>

See Also

Form.onsubmit, Form.reset(); Chapter 19; Section , EventListener, and EventTarget in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.onsubmit invoked when a form is submitted

Availability

JavaScript 1.0

Synopsis

<form ... onsubmit="handler" ... >

form.onsubmit

Description

The onsubmit property of a Form object specifies an event handler function that is invoked when
the user submits a form by clicking on a Submit button in the form. Note that this event handler is
not invoked when the Form.submit() method is called.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onsubmit attribute of the HTML <form> tag. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than the
scope of the containing window.

In the Netscape 4 event model, the onsubmit handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

If the onsubmit handler returns false, the elements of the form are not submitted. If the
handler returns any other value or returns nothing, the form is submitted normally. Because the
onsubmit handler can cancel form submission, it is ideal for performing form data validation.

See Also

Form.onreset, Form.submit(); Chapter 19; Event, EventListener, and EventTarget in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.reset() reset the elements of a form

Availability

JavaScript 1.1

Synopsis

form.reset()

Description

The reset() method resets the specified form, restoring each element of the form to its default
value, exactly as if a Reset button had been pressed by the user. The form's onreset() event
handler is first invoked and may prevent the reset from occurring by returning the value false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.submit() submit a formJavaScript 1.0

Availability

Synopsis

form.submit()

Description

The submit() method submits the specified form, almost as if a Submit button had been
pressed by the user. The form is submitted as specified by the action, method, and encoding
properties of form (or the action, method, and enctype attributes of the <form> tag), and the
results are displayed in the window or frame specified by the target property or the target
attribute.

The one important difference between the submit() method and form submission by the user
is that the onsubmit() event handler is not invoked when submit() is called. If you use
onsubmit() to perform input validation, for example, you'll have to do that validation explicitly
before calling submit().

Usage

It is more common to use a Submit button that allows the user to submit the form than to call the
submit() method yourself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Form.target the window for form results

Availability

JavaScript 1.0;

Inherits from/Overrides

read-only in Internet Explorer 3

Synopsis

form.target

Description

target is a read/write string property of the Form object. It specifies the name of the frame or
window in which the results of the submission of form should be displayed. The initial value of
this property is specified by the target attribute of the <form> tag. If unset, the default is that
form submission results appear in the same window as the form.

Note that the value of target is the name of a frame or window, not the actual frame or window
itself. The name of a frame is specified by the name attribute of the <frame> tag. The name of a
window is specified when the window is created with a call to the Window.open() method. If
target specifies the name of a window that does not exist, the browser automatically opens a
new window to display the results of form submission, and any future forms with the same
target name use the same newly created window.

Four special target names are supported. The target named "_blank" specifies that a new,
empty browser window should be created and used to display the results of the form submission.
The target "_self" is the default; it specifies that the form submission results should be
displayed in the same frame or window as the form itself. The target "_parent" specifies that
the results should be displayed in the parent frame of the frame that contains the form. Finally, the
"_top" target specifies that the results should be displayed in the topmost frame -- in other
words, all frames should be removed, and the results should occupy the entire browser window.

You can set this property in IE 3, but doing so has no effect on the actual target of the form.

See Also

Link.target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Frame a type of Window object

Availability

JavaScript 1.0

Synopsis

window.frames[i]

window.frames.length

frames[i]

frames.length

Description

Though the Frame object is sometimes referred to, there is, strictly speaking, no such object. All
frames within a browser window are instances of the Window object, and they contain the same
properties and support the same methods and event handlers as the Window object. See the
Window object and its properties, methods, and event handlers for details.

There are a few practical differences between Window objects that represent top-level browser
windows and those that represent frames within a browser window, however:

When the defaultStatus property is set for a frame, the specified status message is
visible only when the mouse is within that frame.

The top and parent properties of a top-level browser window always refer to the top-level
window itself. These properties are really useful only for frames.

The close() method is not useful for Window objects that are frames.

See Also

Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getClass() return the JavaClass of a JavaObject

Availability

Netscape 3 LiveConnect

Synopsis

getClass(javaobj)

Arguments

javaobj

A JavaObject object.

Returns

The JavaClass object of javaobj.

Description

getClass() is a function that takes a JavaObject object (javaobj) as an argument. It returns
the JavaClass object of that JavaObject. That is, it returns the JavaClass object that represents
the Java class of the Java object represented by the specified JavaObject.

Usage

Don't confuse the JavaScript getClass() function with the getClass method of all Java
objects. Similarly, don't confuse the JavaScript JavaClass object with the Java java.lang.Class
class.

Consider the Java Rectangle object created with the following line:

var r = new java.awt.Rectangle();

r is a JavaScript variable that holds a JavaObject object. Calling the JavaScript function
getClass() returns a JavaClass object that represents the java.awt.Rectangle class:

var c = getClass(r);

You can see this by comparing this JavaClass object to java.awt.Rectangle:

if (c == java.awt.Rectangle) ...

The Java getClass() method is invoked differently and performs an entirely different function:

c = r.getClass();

After executing the above line of code, c is a JavaObject that represents a java.lang.Class
object. This java.lang.Class object is a Java object that is a Java representation of the
java.awt.Rectangle class. See your Java documentation for details on what you can do with the
java.lang.Class class.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To summarize, you can see that the following expression always evaluates to true for any
JavaObject o:

(getClass(o.getClass()) == java.lang.Class)

See Also

JavaArray, JavaClass, JavaObject, JavaPackage, the java property of the Window object;
Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Hidden hidden data for client/server communication

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

Hidden inherits properties from Input and HTMLElement and defines or overrides the following:

value

A read/write string that specifies arbitrary data passed to the web server when the form
containing the Hidden object is submitted. The initial value of value is specified by the value
attribute of the <input> tag that defines the Hidden object.

HTML Syntax

A Hidden element is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="hidden" // Specifies that this is a Hidden element

 [name="name"] // A name you can use later to refer to this element

 // Specifies the name property

 [value="value"] // The value transmitted when the form is submitted

 // Specifies the initial value of the value property

 >

 ...

</form>

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Hidden element is an invisible form element that allows arbitrary data to be transmitted to the
server when the form is submitted. You can use a Hidden element when you want to transmit
information other than the user's input data to the server.

When an HTML document is generated on the fly by a server, another use of Hidden form elements
is to transmit data from the server to the client for later processing by JavaScript on the user's side.
For example, the server might transmit raw data to the client in a compact, machine-readable form by
specifying the data in the value attribute of a Hidden element or elements. On the client side, a
JavaScript program (transmitted along with the data or in another frame) could read the value
property of the Hidden element or elements and process, format, and display that data in a less
compact, human-readable (and perhaps user-configurable) format.

Hidden elements can also be useful for communication between CGI scripts, even without the
intervention of JavaScript on the client side. In this usage, one CGI script generates a dynamic HTML
page containing hidden data, which is then submitted to a second CGI script. This hidden data can
communicate state information, such as the results of the submission of a previous form.

Cookies can also be used to transmit data from client to server. An important difference between
Hidden form elements and cookies, however, is that cookies are persistent on the client side.

See Also

Document.cookie, Form, HTMLElement, Input; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

History the URL history of the browser

Availability

JavaScript 1.0

Synopsis

window.history

frame.history

history

Properties

length

This numeric property specifies the number of URLs in the browser's history list. Since
there is no way to determine the index of the currently displayed document within this list,
knowing the size of this list is not particularly helpful.

Methods

back()

Goes backward to a previously visited URL.

forward()

Goes forward to a previously visited URL.

go()

Goes to a previously visited URL.

Description

The History object represents the browsing history of a window -- it maintains a list of recently
visited web pages. For security and privacy reasons, however, the contents of this list are not
accessible to scripts. Although scripts cannot access the URLs represented by the History object,
they can use the length property to determine the number of URLs in the list and the back(),
forward(), and go() methods to cause the browser to revisit any of the URLs in the array.

Example

The following line performs the same action as clicking a browser's Back button:

history.back();

The following performs the same action as clicking the Back button twice:

history.go(-2);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

history.go(-2);

See Also

The history property of the Window object, Location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

History.back() return to the previous URL

Availability

JavaScript 1.0

Synopsis

history.back()

Description

back() causes the window or frame to which the History object belongs to revisit the URL (if
any) that was visited immediately before the current one. Calling this method has the same effect
as clicking on the browser's Back button. It is also equivalent to:

history.go(-1);

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

History.forward() visit the next URL

Availability

JavaScript 1.0

Synopsis

history.forward()

Description

forward() causes the window or frame to which the History object belongs to revisit the URL
(if any) that was visited immediately after the current one. Calling this method has the same effect
as clicking on the browser's Forward button. It is also equivalent to:

history.go(1);

Note that if the user has not used the Back button or the Go menu to move backward through the
history, and if JavaScript has not invoked the History.back() or History.go() methods,
the forward() method has no effect because the browser is already at the end of its list of
URLs, and there is no URL to go forward to.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

History.go() revisit a URL

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

history.go(relative_position)

history.go(target_string)

Arguments

relative_position

The relative position in the History list of the URL to be visited. In IE 3, this argument must
be 1, 0, or -1.

target_string

A substring of the URL to be visited. This version of the go() method was added in
JavaScript 1.1.

Description

The first form of the History.go() method takes an integer argument and causes the browser
to visit the URL that is the specified number of positions distant in the history list maintained by
the History object. Positive arguments move the browser forward through the list, and negative
arguments move it backward. Thus, calling history.go(-1) is equivalent to calling
history.back() and produces the same effect as clicking on the Back button. Similarly,
history.go(3) revisits the same URL that would be visited by calling history.forward()
three times. Calling go() with an argument of 0 causes the current page to be reloaded
(although in Netscape 3, the Location.reload() provides a better way of doing this). This
form of the method is buggy in multiframe documents in Netscape 3, and in Internet Explorer it
can be called only with the values 1, 0, and -1.

The second form of the History.go() method was implemented in JavaScript 1.1. It takes a
string argument and causes the browser to revisit the first (i.e., most recently visited) URL that
contains the specified string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement the superclass of all HTML elements

Availability

JavaScript 1.2

Synopsis

HTMLElement is the superclass of all classes that represent HTML elements. Therefore,
HTMLElement objects are used in many contexts in client-side JavaScript and are available in all
of the following ways:

document.images[i]

document.links[i]

document.anchors[i]

document.forms[i]

document.forms[i].elements[j]

document.elementName

document.formName.elementName

document.all[i]

Properties

all[] [IE 4]

The complete list of elements contained within this element, in source order. This property
behaves exactly like the Document.all[] property. See the Document.all[] reference
page.

children[] [IE 4]

The elements that are direct children of this element.

className [IE 4, Netscape 6]

A read/write string that specifies the value of the class attribute of an element. This
property is used in conjunction with Cascading Style Sheets.

document [IE 4]

A reference to the containing Document object.

id [IE 4, Netscape 6]

A read/write string that specifies the value of the id attribute of an element. This property is
used to assign a unique name to an element.

innerHTML [IE 4, Netscape 6]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

innerHTML [IE 4, Netscape 6]

A read/write string that specifies the HTML text that is contained within the element, not
including the opening and closing tags of the element itself. Setting this property replaces
the content of the element with the specified HTML text. Note that you cannot set this
property while the document is loading.

innerText [IE 4]

A read/write string that specifies the plain text contained within the element, not including
the opening and closing tags of the element itself. Setting this property replaces the content
of the element with unparsed plain text. Note that you cannot set this property while the
document is loading.

lang [IE 4, Netscape 6]

A read/write string that specifies the value of the lang HTML attribute of the element.

offsetHeight [IE 4]

The height, in pixels, of the element and all its content.

offsetLeft [IE 4]

The X-coordinate of the element relative to the offsetParent container element.

offsetParent [IE 4]

Specifies the container element that defines the coordinate system in which offsetLeft
and offsetTop are measured. For most elements, offsetParent is the Document
object that contains them. However, if an element has a dynamically positioned container,
the dynamically positioned element is the offsetParent. Similarly, table cells are
positioned relative to the row in which they are contained.

offsetTop [IE 4]

The Y-coordinate of the element, relative to the offsetParent container element.

offsetWidth [IE 4]

The width, in pixels, of the element and all its content.

outerHTML [IE 4]

A read/write property that specifies the HTML text of an element, including its start and end
tags. Setting this property to a string of HTML text completely replaces element and its
contents. Note that you cannot set this property while the document is loading.

outerText [IE 4]

A read/write property that specifies the plain text of an element, including its start and end
tags. Setting this property completely replaces element and its contents with the specified
plain text. Note that you cannot set this property while the document is loading.

parentElement [IE 4]

The element that is the direct parent of this element. This property is read-only.

sourceIndex [IE 4]

The index of the element in the Document.all[] array of the document that contains it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

style [IE 4, Netscape 6]

The inline CSS style attributes for this element. Setting properties of this Style object
changes the display style of the element. See Chapter 18.

tagName [IE 4, Netscape 6]

A read-only string that specifies the name of the HTML tag that defined element.

title [IE 4, Netscape 6]

A read/write string that specifies the value of the title attribute of the HTML tag that
defined element. Most browsers use this string as a "tool tip" for the element.

Methods

contains()

Determines whether the element contains a specified element.

getAttribute()

Gets the value of a named attribute.

handleEvent()

Passes an Event object to the appropriate event handler.

insertAdjacentHTML()

Inserts HTML text into the document near this element.

insertAdjacentText()

Inserts plain text into the document near this element.

removeAttribute()

Deletes an attribute and its value from the element.

scrollIntoView()

Scrolls the document so the element is visible at the top or bottom of the window.

setAttribute()

Sets the value of an attribute of the element.

Event Handlers

onclick

Invoked when the user clicks on the element.

ondblclick

Invoked when the user double-clicks on the element.

onhelp

Invoked when the user requests help. IE 4 only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onkeydown

Invoked when the user presses a key.

onkeypress

Invoked when the user presses and releases a key.

onkeyup

Invoked when the user releases a key.

onmousedown

Invoked when the user presses a mouse button.

onmousemove

Invoked when the user moves the mouse.

onmouseout

Invoked when the user moves the mouse off the element.

onmouseover

Invoked when the user moves the mouse over an element.

onmouseup

Invoked when the user releases a mouse button.

Description

HTMLElement is the superclass of all JavaScript classes that represent HTML elements: Anchor,
Form, Image, Input, Link, and so on. HTMLElement defines event handlers that are implemented
by all elements in both IE 4 and Netscape 4. Because The IE 4 document object model exposes
all HTML elements in a document, it defines quite a few properties and methods for those
elements. Netscape 4 implements none of these IE properties and methods (except
handleEvent(), which is Netscape-specific), but Netscape 6 implements those that have been
standardized by the W3C DOM. See the Chapter 25 reference section for complete information
on the standard properties and methods of HTML elements.

See Also

Anchor, Form, Image, Input, Link; Chapter 17; Chapter 19; Element, HTMLElement, and Node in
the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.contains() whether one element is contained in another

Availability

Internet Explorer 4

Synopsis

element.contains(target)

Arguments

target

An HTMLElement object.

Returns

true if element contains target; false if it does not.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.getAttribute() get an attribute value

Availability

Internet Explorer 4, Netscape 6

Synopsis

element.getAttribute(name)

Arguments

name

The name of the attribute.

Returns

The value of the named attribute of element or null if element does not have an attribute
named name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.handleEvent() see Window.handleEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.insertAdjacentHTML(
)

insert HTML text around an
element

Availability

Internet Explorer 4

Synopsis

element.insertAdjacentHTML(where, text)

Arguments

where

A string specifying where the text is to be inserted. The value "BeforeBegin" specifies that
text is to be inserted before the start tag of element. "AfterBegin" specifies that text is
to be inserted immediately after the start tag of element. "BeforeEnd" specifies that text
is to be inserted immediately before the end tag of element. "AfterEnd" specifies that
text is to be inserted immediately after the end tag of element.

text

The HTML text to insert.

Description

insertAdjacentHTML() inserts the HTML text at a position within or next to element, as
specified by the argument where.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.insertAdjacentText(
)

insert plain text before or after an
element

Availability

Internet Explorer 4

Synopsis

element.insertAdjacentText(where, text)

Arguments

where

A string that specifies where the text is to be inserted. The value "BeforeBegin" specifies
that text is to be inserted before the start tag of element. "AfterBegin" specifies that
text is to be inserted immediately after the start tag of element. "BeforeEnd" specifies
that text is to be inserted immediately before the end tag of element. "AfterEnd"
specifies that text is to be inserted immediately after the end tag of element.

text

The plain text to insert.

Description

insertAdjacentText() inserts the plain text text at a position within or next to element,
as specified by the argument where.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onclick the handler invoked when the user clicks on an
element

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onclick="handler" ... >

element.onclick

Description

The onclick property of an HTMLElement object specifies an event handler function that is
invoked when the user clicks on the element. Note that onclick is different than
onmousedown. A click event does not occur unless a mousedown event and the subsequent
mouseup event both occur over the same element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onclick attribute of the HTML tag that defined the object. When an event handler function is
defined by an HTML attribute, it is executed in the scope of element rather than in the scope of
the containing window.

In the Netscape 4 event model, the onclick handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

In Netscape 4, the Event.which property specifies which mouse button was pressed. In IE 4,
the Event.button property specifies the button number.

See Also

Event, Input.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.ondblclick the handler invoked when the user double-clicks
on an element

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element ondblclick="handler" ... >

element.ondblclick

Description

The ondblclick property of an HTMLElement object specifies an event handler function that is
invoked when the user double-clicks on the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the ondblclick attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the ondblclick handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

Event; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onhelp the handler invoked when the user presses F1

Availability

Internet Explorer 4

Synopsis

<element onhelp="handler" ... >

element.onhelp

Description

The onhelp property of element specifies an event handler function that is invoked when the
user presses the F1 key while element has keyboard focus.

The initial value of this property is a function that contains the JavaScript statements specified by
the onhelp attribute of the HTML tag that defined the element. When an event handler function
is defined by an HTML attribute, it is executed in the scope of element rather than in the scope
of the containing window.

After the onhelp handler function is invoked, Internet Explorer 4 displays the built-in help
window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onkeydown the handler invoked when the user presses a key

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onkeydown="handler" ... >

element.onkeydown

Description

The onkeydown property of an HTMLElement object specifies an event handler function that is
invoked when the user presses a key over the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onkeydown attribute of the HTML tag that defined the object. When an event handler function
is defined by an HTML attribute, it is executed in the scope of element rather than in the scope
of the containing window.

In the Netscape 4 event model, the onkeydown handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

The character code of the key pressed is contained in the which property of the Event object in
Netscape and in the keyCode property of the Event object in IE. You can convert this keycode to
a string with String.fromCharCode(). The modifier keys in effect can be determined from
the Event.modifiers property in Netscape or with Event.shiftKey() and related methods
in IE.

In the Netscape event model, you can cancel processing of the keystroke by returning false
from this handler. In the IE event model, you cancel processing by setting Event.returnValue
to false. In IE, this handler may return an alternate keycode that is used in place of the key
actually pressed by the user.

You can often use the onkeypress event handler instead of the onkeydown and onkeyup
handlers.

See Also

Event, HTMLElement.onkeypress; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onkeypress the handler invoked when the user presses a key

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onkeypress="handler" ... >

element.onkeypress

Description

The onkeypress property of an HTMLElement object specifies an event handler function that is
invoked when the user presses a key over the element. A keypress event is generated after a
key down event and before the corresponding key up event. The keypress and key down events
are similar. Unless you care about receiving individual key up events, you should use
onkeypress instead of onkeydown.

The initial value of this property is a function that contains the JavaScript statements specified by
the onkeypress attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onkeypress handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

The character code of the key pressed is contained in the which property of the Event object in
Netscape and in the keyCode property of the Event object in IE. You can convert this keycode to
a string with String.fromCharCode(). The modifier keys in effect can be determined from
the Event.modifiers property in Netscape or with Event.shiftKey() and related methods
in IE.

In Netscape, you can cancel processing of the keystroke by returning false from this handler. In
IE, you cancel processing by setting Event.returnValue to false. In IE, this handler may
return an alternate keycode that is used in place of the key actually pressed by the user.

See Also

Event; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onkeyup the handler invoked when the user releases a key

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onkeyup=" handler" ... >

element.onkeyup

Description

The onkeyup property of an HTMLElement object specifies an event handler function that is
invoked when the user releases a key over the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onkeyup attribute of the HTML tag that defined the object. When an event handler function is
defined by an HTML attribute, it is executed in the scope of element rather than in the scope of
the containing window.

In the Netscape 4 event model, the onkeyup handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

Event, HTMLElement.onkeydown; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onmousedown the handler invoked when the user presses a
mouse button

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onmousedown="handler" ... >

element.onmousedown

Description

The onmousedown property of an HTMLElement object specifies an event handler function that is
invoked when the user presses a mouse button over element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmousedown attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onmousedown handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

In Netscape, the Event.which property specifies which mouse button was pressed. In IE, the
Event.button property specifies the button number.

See Also

Event, HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the
DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onmousemove the handler invoked when the mouse moves
within an element

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onmousemove="handler" ... >

element.onmousemove

Description

The onmousemove property of an HTMLElement object specifies an event handler function that is
invoked when the user moves the mouse pointer within the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmousemove attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onmousemove handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

If you define an onmousemove event handler, mouse motion events are generated and reported
in huge quantities when the mouse is moved within element. Keep this in mind when writing the
function to be invoked by the event handler.

In Netscape 4, you cannot define this event handler on individual elements; instead, you must
explicitly register your interest in mouse motion events by capturing them with the
captureEvents() method of a Window, Document, or Layer object.

See Also

Event, Window.captureEvents(); Chapter 19; EventListener, EventTarget, and MouseEvent in the
DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onmouseout the handler invoked when mouse moves out of
an element

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onmouseout="handler" ... >

element.onmouseout

Description

The onmouseout property of an HTMLElement object specifies an event handler function that is
invoked when the user moves the mouse pointer out of the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmouseout attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onmouseout handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

Event, Link.onmouseout; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onmouseover the handler invoked when the mouse moves
over an element

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onmouseover="handler" ... >

element.onmouseover

Description

The onmouseover property of an HTMLElement object specifies an event handler function that is
invoked when the user moves the mouse pointer over the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmouseover attribute of the HTML tag that defined the object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In Netscape 4, the onmouseover handler function is passed an Event object as an argument. In
IE 4, no argument is passed, but the applicable Event object is available as the event property of
the Window object that contains the element.

See Also

Event, Link.onmouseover; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.onmouseup the handler invoked when the user releases a
mouse button

Availability

JavaScript 1.2; HTML 4.0

Synopsis

<element onmouseup="handler" ... >

element.onmouseup

Description

The onmouseup property of an HTMLElement object specifies an event handler function that is
invoked when the user releases a mouse button over the element.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmouseup attribute of the HTML tag that defined the object. When an event handler function
is defined by an HTML attribute, it is executed in the scope of element rather than in the scope
of the containing window.

In the Netscape 4 event model, the onmouseup handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

In Netscape 4, the Event.which property specifies which mouse button was pressed. In IE, the
Event.button property specifies the button number.

See Also

Event, HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the
DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.removeAttribute() delete an attribute

Availability

Internet Explorer 4, Netscape 6

Synopsis

element.removeAttribute(name)

Arguments

name

The name of the attribute to be deleted.

Returns

true on success; false on failure.

Description

removeAttribute() deletes the attribute name from element. If element does not have an
attribute named name, this method returns false.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.scrollIntoView() make an element visible

Availability

Internet Explorer 4

Synopsis

element.scrollIntoView(top)

Arguments

top

An optional boolean argument that specifies whether the element should be scrolled to the
top or bottom of the screen. If true or omitted, element appears at the top of the screen.
If false, element appears at the bottom of the screen.

Description

scrollIntoView() scrolls the document containing element so the top of element is
aligned with the top of the display area or the bottom of element is aligned with the bottom of the
display area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement.setAttribute() set the value of an attribute

Availability

Internet Explorer 4, Netscape 6

Synopsis

element.setAttribute(name, value)

Arguments

name

The name of the attribute to set.

value

The value to set it to.

Description

setAttribute() sets the attribute name of element to value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image an image in an HTML document

Availability

JavaScript 1.1

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

document.images[i]

document.images.length

document.image-name

Constructor

new Image(width, height)

Arguments

width, height

An optionally specified width and height for the image.

Properties

Image inherits properties from HTMLElement and defines the following properties, most of which
correspond to the HTML attributes of the tag. In JavaScript 1.1 and later, the src and
lowsrc properties are read/write and may be set to change the displayed image. In browsers that
do not allow document reflow, such as IE 3 and Netscape 4, the other properties are read-only.

border

An integer that specifies the width, in pixels, of the border around an image. Its value is set
by the border attribute. Images have borders only when they are within hyperlinks.

complete

A read-only boolean value that specifies whether an image is completely loaded or, more
accurately, whether the browser has completed its attempt to load the image. If an error
occurs during loading, or if the load is aborted, the complete property is still set to true.

height

An integer that specifies the height, in pixels, of the image. Its value is set by the height
attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hspace

An integer that specifies the amount of extra horizontal space, in pixels, inserted on the left
and right of the image. Its value is set by the hspace attribute.

lowsrc

A read/write string that specifies the URL of an alternate image (usually a smaller one) to
display when the user's browser is running on a low-resolution monitor. The initial value is
specified by the lowsrc attribute of the tag.

Setting this property has no immediate effect. If the src property is set, however, a new
image is loaded, and on low-resolution systems, the current value of the lowsrc property
is used instead of the newly updated value of src.

name

A string value, specified by the HTML name attribute, that specifies the name of the image.
When an image is given a name with the name attribute, a reference to the image is placed
in the image-name property of the document in addition to being placed in the
document.images[] array.

src

A read/write string that specifies the URL of the image to be displayed by the browser. The
initial value of this property is specified by the src attribute of the tag. When you set
this property to the URL of a new image, the browser loads and displays that new image
(or, on low-resolution systems, the image specified by the lowsrc property). This is useful
for updating the graphical appearance of your web pages in response to user actions and
can also be used to perform simple animation.

vspace

An integer that specifies the amount of extra vertical space, in pixels, inserted above and
below the image. Its value is set by the vspace attribute.

width

An integer that specifies the width, in pixels, of the image. Its value is set by the width
attribute.

Event Handlers

Image inherits event handlers from HTMLElement and defines the following:

onabort

Invoked if the user aborts the download of an image.

onerror

Invoked if an error occurs while downloading the image.

onload

Invoked when the image successfully finishes loading.

HTML Syntax

The Image object is created with a standard HTML tag. Some attributes have been

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Image object is created with a standard HTML tag. Some attributes have been
omitted from the following syntax because they are not used by or accessible from JavaScript:

<img src="url" // The image to display

 width="pixels" // The width of the image

 height="pixels" // The height of the image

 [name="image_name"] // A property name for the image

 [lowsrc="url"] // Alternate low-resolution image

 [border="pixels"] // Width of image border

 [hspace="pixels"] // Extra horizontal space around image

 [vspace="pixels"] // Extra vertical space around image

 [onload="handler"] // Invoked when image is fully loaded

 [onerror="handler"] // Invoked if error in loading

 [onabort="handler"] // Invoked if user aborts load

>

Description

The Image objects in the document.images[] array represent the images embedded in an
HTML document using the tag. The src property is the most interesting one; when you
set this property, the browser loads and displays the image specified by the new value.

You can create Image objects dynamically in your JavaScript code using the Image()
constructor function. Note that this constructor method does not have an argument to specify the
image to be loaded. As with images created from HTML, you tell the browser to load an image by
setting the src property of any images you create explicitly. There is no way to display an Image
object in the web browser. All you can do is force the Image object to download an image by
setting the src property. This is useful, however, because it loads an image into the browser's
cache. Later, if that same image URL is specified for one of the images in the images[] array, it
is preloaded and displays quickly. You can do this with the following lines:

document.images[2].src = preloaded_image.src;

document.toggle_image.src = toggle_off.src;

Usage

Setting the src property of an Image object is a way to implement simple animations in your web
pages. It is also an excellent technique for changing the graphics on a page as the user interacts
with the page. For example, you can create your own Submit button using an image and a
hypertext link. The button will start out with a disabled graphic and remain that way until the user
correctly enters all the required information into the form, at which point the graphic changes, and
the user is able to submit the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image.onabort the handler invoked when the user aborts image loading

Availability

JavaScript 1.1

Synopsis

image.onabort

Description

The onabort property of an Image object specifies an event handler function that is invoked
when the user aborts the loading of an image (for example, by clicking the Stop button).

The initial value of this property is a function that contains the JavaScript statements specified by
the onabort attribute of the tag that defined the Image object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onabort handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image.onerror the handler invoked when an error occurs during image
loading

Availability

JavaScript 1.1

Synopsis

image.onerror

Description

The onerror property of an Image object specifies an event handler function that is invoked
when an error occurs during the loading of an image.

The initial value of this property is a function that contains the JavaScript statements specified by
the onerror attribute of the tag that defined the Image object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onerror handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Image.onload the handler invoked when an image finishes loading

Availability

JavaScript 1.1

Synopsis

image.onload

Description

The onload property of an Image object specifies an event handler function that is invoked when
an image loads successfully.

The initial value of this property is a function that contains the JavaScript statements specified by
the onload attribute of the tag that defined the Image object. When an event handler
function is defined by an HTML attribute, it is executed in the scope of element rather than in the
scope of the containing window.

In the Netscape 4 event model, the onload handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

Chapter 19; Event, EventListener, and EventTarget in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input an input element in an HTML form

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

form.elements[i]

form.name

Properties

Input inherits properties from HTMLElement and defines or overrides the following:

checked

A read/write boolean that specifies whether a Checkbox or Radio form element is currently
checked. You can set the state of these button elements by setting the value of this
property. This property is not used by other form elements.

defaultChecked

A read-only boolean value that specifies whether a Checkbox or Radio element is checked
by default. This property is used to restore the Checkbox or Radio element to its default
value when the form is reset and has no meaning for other form elements.
defaultChecked corresponds to the checked attribute in the HTML <input> tag that
created the form element. If checked was present, defaultChecked is true. Otherwise,
defaultChecked is false.

defaultValue

Specifies the initial text that appears in the form element and the value that is restored to
that element when the form is reset. This property is used only by the Text, Textarea, and
Password elements. For security reasons, it is not used by the FileUpload element. For
Checkbox and Radio elements, the equivalent property is defaultChecked.

form

A read-only reference to the Form object that contains the element. The form property
allows the event handlers of one form element to easily refer to sibling elements in the
same form. When an event handler is invoked, the this keyword refers to the form
element for which it was invoked. Thus, an event handler can use the expression
this.form to refer to the form that contains it. From there, it can refer to sibling elements
by name or use the elements[] array of the Form object to refer to them by number.

length

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

length

For the Select form element, this property specifies the number of options or choices (each
represented by an Option object) that are contained within the options[] array of the
element. See the Select reference page.

name

A read-only string, specified by the HTML name attribute, that specifies the name of this
element. This name may be used to refer to the element, as shown in the preceding
Section section. See the Input.name reference page.

options[]

For the Select form element, this array contains Option objects that represent the options
or choices displayed by the Select object. The number of elements in the array is specified
by the length property of the Select element. See the Input.name reference page.

selectedIndex

For the Select form element, this integer specifies which option displayed by the Select
object is currently selected. In JavaScript 1.1, this property is read/write. In JavaScript 1.0,
it is read-only. See the Input.name reference page.

type [JavaScript 1.1]

A read-only string that specifies the type of the form element. See the Input.type reference
page.

value

A string that specifies the value displayed by the element and/or to be sent to the server for
this element when the form that contains it is submitted. See the Input.value reference
page.

Methods

Input inherits methods from HTMLElement and defines or overrides the following:

blur()

Removes keyboard focus from the element.

click()

Simulates a mouse-click on the form element.

focus()

Gives keyboard focus to the element.

select()

For form elements that display editable text, selects the text that appears in the element.

Event Handlers

Input inherits event handlers from HTMLElement and defines or overrides the following:

onblur

Invoked when the user takes keyboard focus away from the element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onchange

For form elements that are not buttons, this event handler is invoked when the user enters
or selects a new value.

onclick

For form elements that are buttons, this event handler is invoked when the user clicks or
selects the button.

onfocus

Invoked when the user gives keyboard focus to the element.

Description

Form elements are stored in the elements[] array of the Form object. The contents of this array
are Input objects, which represent the individual buttons, input fields, and other controls that
appear within the form. Many types of input elements are created with the <input> tag; others
are created with the <select> and <option> tags and the <textarea> tag. The various form
input elements share quite a few properties, methods, and event handlers, which are described
on this reference page. Specific behaviors for specific types of form elements are described on
their own pages.

The Input object defines many shared properties, methods, and event handlers, but not all of
them are shared by all types of form elements. For example, the Button object triggers the
onclick event handler but not the onchange handler, while the Text object triggers onchange
but not onclick. The following figure shows all of the form elements and the properties
associated with them.

There are two broad categories of form elements. The first is the buttons: Button, Checkbox,
Radio, Reset, and Submit. These elements have an onclick event handler but not an
onchange handler. Similarly, they respond to the click() method but not to the select()
method. The second category contains those elements that display text: Text, Textarea,
Password, and FileUpload. These elements have an onchange event handler rather than an
onclick handler, and they respond to the select() method but not to the click() method.

The Select element is a special case. It is created with the <select> tag and is less like the
<input> elements than the other form elements. Although the Select element is technically

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<input> elements than the other form elements. Although the Select element is technically
represented by a different object type, it is still convenient to consider it an Input object.

See Also

Button, Checkbox, FileUpload, Form, Hidden, Password, Radio, Reset, Select, Submit, Text,
Textarea; Chapter 15; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.blur() remove keyboard focus from a form element

Availability

JavaScript 1.0

Synopsis

input.blur()

Description

The blur() method of a form element removes keyboard focus from that element without
invoking the onblur event handler; it is essentially the opposite of the focus() method. The
blur() method does not transfer keyboard focus anywhere, however, so the only time that it is
actually useful to call this method right before you transfer keyboard focus elsewhere with the
focus() method, when you don't want to trigger the onblur event handler. That is, by
removing focus explicitly from the element, you won't be notified when it is removed implicitly by a
focus() call on another element.

All form elements other than Hidden support the blur() method. Unfortunately, not all
platforms support keyboard navigation equally well. In Netscape 2 and 3 for Unix platforms, the
blur() method is functional only for those form elements that display text: Text, Textarea,
Password, and FileUpload.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.click() simulate a mouse-click on a form element

Availability

JavaScript 1.0

Synopsis

input.click()

Description

The click() method of a form element simulates a mouse-click on the form element but does
not invoke the onclick event handler of the element.

The click() method is not often useful. Because it does not invoke the onclick event
handler, it is not useful to call this method on Button elements -- they don't have any behavior
other than that defined by the onclick handler. Calling click() on a Submit or Reset element
submits or resets a form, but this can be more directly achieved with the submit() and reset(
) method of the Form object itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.focus() give keyboard focus to a form element

Availability

JavaScript 1.0

Synopsis

input.focus()

Description

The focus() method of a form element transfers keyboard focus to that element without calling
the onfocus event handler. That is, it makes the element active with respect to keyboard
navigation and keyboard input. Thus, if you call focus() for a Text element, any text the user
types appears in that text element. Or, if you call focus() for a Button element, the user can
invoke that button from the keyboard.

All form elements except the Hidden element support the focus() method. Unfortunately, not
all platforms support keyboard navigation equally well. In Unix versions of Netscape, focus() is
functional only for those form elements that display text: Text, Textarea, Password, and
FileUpload.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.name the name of a form element

Availability

JavaScript 1.0

Synopsis

input.name

Description

name is a read-only string property of every form element. The value of this property is set by the
name attributes of the HTML <input> tag that defines the form element.

The name of a form element is used for two purposes. First, it is used when the form is submitted.
Data for each element in the form is usually submitted in the format:

name=value

where name and value are encoded as necessary for transmission. If a name is not specified for
a form element, the data for that element cannot be submitted to a web server.

The second use of the name property is to refer to a form element in JavaScript code. The name
of an element becomes a property of the form that contains the element. The value of this
property is a reference to the element. For example, if address is a form that contains a text
input element with the name zip, address.zip refers to that text input element.

With Radio and Checkbox form elements, it is common to define more than one related object,
each of which have the same name property. In this case, data is submitted to the server with this
format:

name=value1,value2,...,valuen

Similarly, in JavaScript, each of the elements that shares a name becomes an element of an
array with that name. Thus, if four Checkbox objects in the form order share the name options,
they are available in JavaScript as elements of the array order.options[].

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.onblur the handler invoked when a form element loses focus

Availability

JavaScript 1.0

Synopsis

<input type="type"onblur="handler">

input.onblur

Description

The onblur property of an Input object specifies an event handler function that is invoked when
the user transfers keyboard focus away from that input element. Calling blur() to remove
focus from an element does not invoke onblur for that object. Note, however, that calling
focus() to transfer focus to some other element causes the onblur event handler to be
invoked for whichever element currently has the focus.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onblur attribute of the HTML tag that defined the object. When an
event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

In the Netscape 4 event model, the onblur handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

The onblur event handler is available for all form elements except the Hidden element. In
Netscape on Unix platforms, however, it is invoked only for the text-entry elements: Text,
Textarea, Password, and FileUpload. Note that in JavaScript 1.1, the Window object also defines
an onblur event handler.

See Also

Window.onblur; Chapter 19; Event, EventListener, and EventTarget in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.onchange the handler invoked when a form element's value changes

Availability

JavaScript 1.0

Synopsis

<input type="type"onchange="handler">

input.onchange

Description

The onchange property of an Input object specifies an event handler function that is invoked
when the user changes the value displayed by a form element. Such a change may be an edit to
the text displayed in Text, Textarea, Password, or FileUpload elements, or the selection or
deselection of an option in a Select element. Note that this event handler is only invoked when the
user makes such a change -- it is not invoked if a JavaScript program changes the value
displayed by an element.

Also note that the onchange handler is not invoked every time the user enters or deletes a
character in a text-entry form element. onchange is not intended for that type of character-by-
character event handling. Instead, onchange is invoked when the user's edit is complete. The
browser assumes that the edit is complete when keyboard focus is moved from the current
element to some other element -- for example, when the user clicks on the next element in the
form. See the HTMLElement.onkeypress reference page for character-by-character event
notification.

The onchange event handler is not used by the Hidden element or by any of the button
elements. Those elements -- Button, Checkbox, Radio, Reset, and Submit -- use the onclick
event handler instead.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onchange attribute of the HTML tag that defined the object. When an
event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

In the Netscape 4 event model, the onchange handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

See Also

HTMLElement.onkeypress; Chapter 19; Event, EventListener, and EventTarget in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.onclick the handler invoked when a form element is clicked

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

<input type="type"onclick="handler">

input.onclick

Description

The onclick property of an Input object specifies an event handler function that is invoked when
the user clicks on the input element. It is not invoked when the click() method is called for the
element.

Only form elements that are buttons invoke the onclick event handler. These are the Button,
Checkbox, Radio, Reset, and Submit elements. Other form elements use the onchange event
handler instead of onclick.

The initial value of the onclick property is a function containing the semicolon-separated
JavaScript statements specified by the onclick attribute of the HTML tag that defined the object.
When an event handler function is defined by an HTML attribute, it is executed in the scope of
element rather than in the scope of the containing window.

In the Netscape 4 event model, the onclick handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

Note that the Reset and Submit elements perform a default action when clicked: they reset and
submit, respectively, the form that contains them. You can use the onclick event handlers of
each of these elements to perform actions in addition to these default actions. In JavaScript 1.1,
you can also prevent these default actions by returning false. That is, if the onclick handler of
a Reset button returns false, the form is not reset, and if the onclick handler of a Submit
button returns false, the form is not submitted. Note that you do similar things with the
onsubmit and onreset event handlers of the Form object itself.

Finally, note that the Link object also defines an onclick event handler.

See Also

Link.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.onfocus the handler invoked when a form element gains focus

Availability

JavaScript 1.0

Synopsis

<input type="type"onfocus="handler">

input.onfocus

Description

The onfocus property of an Input object specifies an event handler function that is invoked when
the user transfers keyboard focus to that input element. Calling focus() to set focus to an
element does not invoke onfocus for that object.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onfocus attribute of the HTML tag that defined the object. When an
event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

In the Netscape 4 event model, the onfocus handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

The onfocus event handler is available for all form elements except the Hidden element. In
Netscape on Unix platforms, however, it is invoked only for the text-entry elements: Text,
Textarea, Password, and FileUpload. Note that in JavaScript 1.1, the Window object also defines
an onfocus event handler.

See Also

Window.onfocus; Chapter 19; Event, EventListener, and EventTarget in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.select() select the text in a form element

Availability

JavaScript 1.0

Synopsis

input.select()

Description

The select() method selects the text displayed in a Text, Textarea, Password, or FileUpload
element. The effects of selecting text may vary from platform to platform, but typically, invoking
this method produces the same result as the user dragging the mouse across all the text in the
specified Text object. On most platforms, this produces the following effects:

The text is highlighted, often displayed with colors reversed.

If the text remains selected the next time the user types a character, the selected text is
deleted and replaced with the newly typed character.

On some platforms, the text becomes available for cut-and-paste.

The user can usually deselect text by clicking in the Text object or by moving the cursor. Once
deselected, the user can add and delete individual characters without replacing the entire text
value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.type the type of a form element

Availability

JavaScript 1.1

Synopsis

input.type

Description

type is a read-only string property of all form elements that specifies the type of the form
element. The value of this property for each possible form element is given in the following table.

Object type HTML tag type property
Button <input type="button"> "button"
Checkbox <input type="checkbox"> "checkbox"
FileUpload <input type="file"> "file"
Hidden <input type="hidden"> "hidden"
Password <input type="password"> "password"
Radio <input type="radio"> "radio"
Reset <input type="reset"> "reset"
Select <select> "select-one"
Select <select multiple> "select-multiple"
Submit <input type="submit"> "submit"
Text <input type="text"> "text"
Textarea <textarea> "textarea"

Note that the Select element has two possible type values, depending on whether it allows single
or multiple selection. Also note that unlike other input element properties, type is not available in
JavaScript 1.0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Input.value the value displayed or submitted by a form element

Availability

Netscape 2; buggy in Internet Explorer 3

Synopsis

input.value

Description

value is a read/write string property of all form elements that specifies the value displayed by the
form element and/or submitted for the element when the form is submitted. The value property
of the Text element, for example, is the user's input, which is also the value submitted with the
form. For the Checkbox object, on the other hand, the value property specifies a string that is not
displayed but is submitted with the form if the Checkbox element is checked when the form is
submitted.

The initial value of the value property is specified by the value attribute of the HTML tag that
defines the form element.

For Button, Submit, and Reset objects, the value property specifies the text that appears within
the button. On some platforms, changing the value property of these elements actually changes
the text displayed by the buttons onscreen. This does not work on all platforms, however, and is
not an advisable technique. Changing the label of a button may change the size of the button,
causing it to overlap and obscure other portions of the document.

The Select element has a value property, like all form elements, but does not use it. Instead, the
value submitted by this element is specified by the value property of the Option objects it
contains.

For security reasons, the value property of the FileUpload element is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaArray JavaScript representation of a Java array

Availability

Netscape 3 LiveConnect

Synopsis

javaarray.length // The length of the array

javaarray[index] // Read or write an array element

Properties

length

A read-only integer that specifies the number of elements in the Java array represented by
the JavaArray object.

Description

The JavaArray object is a JavaScript representation of a Java array that allows JavaScript code to
read and write the elements of the array using familiar JavaScript array syntax. In addition, the
JavaArray object has a length field that specifies the number of elements in the Java array.

When reading and writing values from array elements, data conversion between JavaScript and
Java representations is automatically handled by the system. See Chapter 22 for full details.

Usage

Note that Java arrays differ from JavaScript arrays in a couple of important aspects. First, Java
arrays have a fixed length that is specified when they are created. For this reason, the JavaArray
length field is read-only. The second difference is that Java arrays are typed (i.e., their elements
must all be of the same type of data). Attempting to set an array element to a value of the wrong
type results in a JavaScript error or exception.

Example

java.awt.Polygon is a JavaClass object. We can create a JavaObject representing an
instance of the class like this:

p = new java.awt.Polygon();

The object p has properties xpoints and ypoints, which are JavaArray objects representing
Java arrays of integers. We can initialize the contents of these arrays with JavaScript code like
the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

for(int i = 0; i < p.xpoints.length; i++)

 p.xpoints[i] = Math.round(Math.random()*100);

for(int i = 0; i < p.ypoints.length; i++)

 p.ypoints[i] = Math.round(Math.random()*100);

See Also

getClass(), JavaClass, JavaObject, JavaPackage, the java property of the Window object;
Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaClass JavaScript representation of a Java class

Availability

Netscape 3 LiveConnect

Synopsis

javaclass.static_member // Read or write a static Java field or method

new javaclass(...) // Create a new Java object

Properties

Each JavaClass object contains properties that have the same names as the public static fields
and methods of the Java class it represents. These properties allow you to read and write the
static fields of the class and invoke the static methods of the class. Each JavaClass object has
different properties; you can use a for/in loop to enumerate them for any given JavaClass
object.

Description

The JavaClass object is a JavaScript representation of a Java class. The properties of a
JavaClass object represent the public static fields and methods (sometimes called class fields
and class methods) of the represented class. Note that the JavaClass object does not have
properties representing the instance fields of a Java class -- individual instances of a Java class
are represented by the JavaObject object.

The JavaClass object implements the LiveConnect functionality that allows JavaScript programs
to read and write the static variables of Java classes using normal JavaScript syntax. It also
provides the functionality that allows JavaScript to invoke the static methods of a Java class.

In addition to allowing JavaScript to read and write Java variable and method values, the
JavaClass object allows JavaScript programs to create Java objects (represented by a
JavaObject object) by using the new keyword and invoking the constructor method of a
JavaClass.

The data conversion required for communication between JavaScript and Java through the
JavaClass object is handled automatically by LiveConnect. See Chapter 22 for full details.

Usage

Bear in mind that Java is a typed language. This means that each of the fields of an object has a
specific data type that is set to values of only that type. Attempting to set a field to a value that is
not of the correct type results in a JavaScript error or exception. Attempting to invoke a method
with arguments of the wrong type also causes an error or exception.

Example

java.lang.System is a JavaClass object that represents the java.lang.System class in Java.
You can read a static field of this class with code like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

var java_console = java.lang.System.out;

You can invoke a static method of this class with a line like this one:

var version = java.lang.System.getProperty("java.version");

Finally, the JavaClass object also allows you to create new Java objects:

var java_date = new java.lang.Date();

See Also

getClass(), JavaArray, JavaObject, JavaPackage, the java property of the Window object;
Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaObject JavaScript representation of a Java object

Availability

Netscape 3 LiveConnect

Synopsis

javaobject.member // Read or write an instance field or method

Properties

Each JavaObject object contains properties that have the same names as the public instance
fields and methods (but not the static or class fields and methods) of the Java object it represents.
These properties allow you to read and write the value of public fields and invoke the public
methods. The properties of a given JavaObject object obviously depend on the type of Java
object it represents. You can use the for/in loop to enumerate the properties of any given
JavaObject.

Description

The JavaObject object is a JavaScript representation of a Java object. The properties of a
JavaObject object represent the public instance fields and public instance methods defined for the
Java object. (The class or static fields and methods of the object are represented by the
JavaClass object.)

The JavaObject object implements the LiveConnect functionality that allows JavaScript programs
to read and write the public instance fields of a Java object using normal JavaScript syntax. It also
provides the functionality that allows JavaScript to invoke the methods of a Java object. Data
conversion between JavaScript and Java representations is handled automatically by
LiveConnect. See Chapter 22 for full details.

Usage

Bear in mind that Java is a typed language. This means that each of the fields of an object has a
specific data type, and you can set it only to values of that type. For example, the width field of a
java.awt.Rectangle object is an integer field, and attempting to set it to a string causes a
JavaScript error or exception.

Example

java.awt.Rectangle is a JavaClass that represents the java.awt.Rectangle class. We can
create a JavaObject that represents an instance of this class like this:

var r = new java.awt.Rectangle(0,0,4,5);

We can then read the public instance variables of this JavaObject r with code like this:

var perimeter = 2*r.width + 2*r.height;

We can also set the value of public instance variables of r using JavaScript syntax:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

We can also set the value of public instance variables of r using JavaScript syntax:

r.width = perimeter/4;

r.height = perimeter/4;

See Also

getClass(), JavaArray, JavaClass, JavaPackage, the java property of the Window object;
Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JavaPackage JavaScript representation of a Java package

Availability

Netscape 3 LiveConnect

Synopsis

package.package_name // Refers to another JavaPackage

package.class_name // Refers to a JavaClass object

Properties

The properties of a JavaPackage object are the names of the JavaPackage objects and
JavaClass objects that it contains. These properties are different for each individual
JavaPackage. Note that it is not possible to use the JavaScript for/in loop to iterate over the list
of property names of a Package object. Consult a Java reference manual to determine the
packages and classes contained within any given package.

Description

The JavaPackage object is a JavaScript representation of a Java package. A package in Java is
a collection of related classes. In JavaScript, a JavaPackage can contain classes (represented by
the JavaClass object) and other JavaPackage objects.

The Window object has properties java, netscape, and sun that represent the java.*,
netscape.*, and sun.* package hierarchies. These JavaPackage objects define properties that
refer to other JavaPackage objects. For example, java.lang and java.net refer to the
java.lang and java.net packages. The java.awt JavaPackage contains properties named Frame
and Button, which are both references to JavaClass objects and represent the classes
java.awt.Frame and java.awt.Button.

The Window object also defines a property named Packages, which is the root JavaPackage
whose properties refer to the roots of all known package hierarchies. For example, the expression
Packages.java.awt is the same as java.awt.

It is not possible to use the for/in loop to determine the names of the packages and classes
contained within a JavaPackage. You must have this information in advance. You can find it in
any Java reference manual or by examining the Java class hierarchy.

See Chapter 22 for further details on working with Java packages, classes, and objects.

See Also

JavaArray, JavaClass, JavaObject; the java, netscape, sun, and Packages properties of the
Window object; Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject Java representation of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public final class netscape.javascript.JSObject extends Object

Methods

call()

Invokes a method of the JavaScript object.

eval()

Evaluates a string of JavaScript code in the context of the JavaScript object.

getMember()

Gets the value of a property of the JavaScript object.

getSlot()

Gets the value of an array element of the JavaScript object.

getWindow()

Gets a "root" JSObject that represents the JavaScript Window object of the web browser.

removeMember()

Deletes a property from the JavaScript object.

setMember()

Sets the value of a property of the JavaScript object.

setSlot()

Sets the value of an array element of the JavaScript object.

toString()

Invokes the JavaScript toString() method of the JavaScript object and returns its
result.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The JSObject is a Java class, not a JavaScript object; it cannot be used in your JavaScript
programs. Instead, the JSObject is used by Java applets that wish to communicate with
JavaScript by reading and writing JavaScript properties and array elements, invoking JavaScript
methods, and evaluating and executing arbitrary strings of JavaScript code. Obviously, since
JSObject is a Java class, you must understand Java programming in order to use it.

Full details on programming with the JSObject can be found in Chapter 22.

See Also

Chapter 22

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.call() invoke a method of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public Object call(String methodName, Object args[])

Arguments

methodName

The name of the JavaScript method to be invoked.

args[]

An array of Java objects to be passed as arguments to the method.

Returns

A Java object that represents the return value of the JavaScript method.

Description

The call() method of the Java JSObject class invokes a named method of the JavaScript
object represented by the JSObject. Arguments are passed to the method as an array of Java
objects, and the return value of the JavaScript method is returned as a Java object.

Chapter 22 describes the data conversion of the method arguments from Java objects to
JavaScript values and the method return value from a JavaScript value to a Java object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.eval() evaluate a string of JavaScript code

Availability

Netscape 3, Internet Explorer 4

Synopsis

public Object eval(String s)

Arguments

s

A string that contains arbitrary JavaScript statements separated by semicolons.

Returns

The JavaScript value of the last expression evaluated in s, converted to a Java object.

Description

The eval() method of the Java JSObject class evaluates the JavaScript code contained in the
string s in the context of the JavaScript object specified by the JSObject. The behavior of the
eval() method of the Java JSObject class is much like that of the JavaScript global eval()
function.

The argument s may contain any number of JavaScript statements separated by semicolons;
these statements are executed in the order in which they appear. The return value of eval() is
the value of the last statement or expression evaluated in s.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.getMember() read a property of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public Object getMember(String name)

Arguments

name

The name of the property to be read.

Returns

A Java object that contains the value of the named property of the specified JSObject.

Description

The getMember() method of the Java JSObject class reads and returns to Java the value of a
named property of a JavaScript object. The return value may be another JSObject object or a
Double, Boolean, or String object, but it is returned as a generic Object, which you must cast as
necessary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.getSlot() read an array element of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public Object getSlot(int index)

Arguments

index

The index of the array element to be read.

Returns

The value of the array element at the specified index of a JavaScript object.

Description

The getSlot() method of the Java JSObject class reads and returns to Java the value of an
array element at the specified index of a JavaScript object. The return value may be another
JSObject object or a Double, Boolean, or String object, but it is returned as a generic Object,
which you must cast as necessary.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.getWindow() return initial JSObject for browser window

Availability

Netscape 3, Internet Explorer 4

Synopsis

public static JSObject getWindow(java.applet.Applet applet)

Arguments

applet

An Applet object running in the web browser window for which a JSObject is to be obtained.

Returns

A JSObject that represents the JavaScript Window object for the web browser window that
contains the specified applet.

Description

The getWindow() method is the first JSObject method that any Java applet calls. JSObject
does not define a constructor, and the static getWindow() method provides the only way to
obtain an initial "root" JSObject from which other JSObjects may be obtained.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.removeMember() delete a property of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public void removeMember(String name)

Arguments

name

The name of the property to be deleted from the JSObject.

Description

The removeMember() method of the Java JSObject class deletes a named property from the
JavaScript object represented by the JSObject.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.setMember() set a property of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public void setMember(String name, Object value)

Arguments

name

The name of the property to be set in the JSObject.

value

The value to which the named property should be set.

Description

The setMember() method of the Java JSObject class sets the value of a named property of a
JavaScript object from Java. The specified value may be any Java Object. Primitive Java values
may not be passed to this method. In JavaScript, the specified value is accessible as a
JavaObject object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.setSlot() set an array element of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public void setSlot(int index, Object value)

Arguments

index

The index of the array element to be set in the JSObject.

value

The value to which the specified array element should be set.

Description

The setSlot() method of the Java JSObject class sets the value of a numbered array element
of a JavaScript object from Java. The specified value may be any Java Object. Primitive Java
values may not be passed to this method. In JavaScript, the specified value is accessible as a
JavaObject object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

JSObject.toString() return the string value of a JavaScript object

Availability

Netscape 3, Internet Explorer 4

Synopsis

public String toString()

Returns

The string returned by invoking the toString() method of the JavaScript object represented
by the specified Java JSObject.

Description

The toString() method of the Java JSObject class invokes the JavaScript toString()
method of the JavaScript object represented by a JSObject and returns the result of that method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer an independent layer in a DHTML document

Availability

Netscape 4 only; discontinued in Netscape 6

Synopsis

document.layers[i]

Constructor

new Layer(width, parent)

Arguments

width

The width of the new layer, in pixels.

parent

The Layer or Window that should be the parent of this newly created layer. This argument is
optional; if omitted, the new layer is a child of the current window.

Notes

The Layer() constructor creates a new Layer object and returns it. You can set its size,
position, and other attributes with the various Layer properties and methods described in the
following lists. In particular, you must set the hidden property to false to make the new layer
visible. See the src property and load() methods in particular for ways to set the content of a
layer. Alternatively, you can dynamically generate content for the layer by writing to its document
property.

Note that you can only call the Layer() constructor once the current document and all of its
layers have finished loading.

Properties

above

A read-only property that refers to the Layer object immediately above layer in the stacking
order. If there is no such layer, above is null.

background

An Image object that specifies the image displayed in the background of the layer. The initial
value of this property is specified by the background attribute of the <layer> tag. You can
change the image displayed in the background of the layer by setting the background.src
property. If set to null, no image is displayed, and the background color (specified by
bgColor) is displayed instead.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

below

A read-only property that refers to the Layer object immediately below layer in the stacking
order. If there is no such layer, below is null.

bgColor

A read/write string property that specifies the background color of layer. The initial value of
this property is specified by the bgcolor attribute of the <layer> tag. Note that
layer.background takes precedence over layer.bgColor, so the color specified by
this property appears only if the background.src property of layer is null.

clip.bottom

The Y-coordinate of the bottom edge of the layer's clipping area, relative to layer.top.

clip.height

The height of the layer's clipping area. Setting this property also sets the value of
layer.clip.bottom.

clip.left

Specifies the X-coordinate of the left edge of the layer's clipping area. This value is relative
to layer.left.

clip.right

Specifies the X-coordinate of the right edge of the layer's clipping area. This value is relative
to layer.left.

clip.top

Specifies the Y-coordinate of the top edge of the layer's clipping area. This value is relative
to layer.top.

clip.width

Specifies the width of the layer's clipping area. Setting this property also sets the value of
layer.clip.right.

document

A read-only reference to the Document object contained within that layer.

hidden

Specifies whether a layer is hidden (true) or visible (false). Setting this property to true
hides the layer, and setting it to false makes the layer visible.

layers[]

An array that contains any child Layer objects of this layer. It is the same as the
document.layers[] array of a layer.

left

A read/write integer that specifies the X-coordinate, relative to the containing layer or
document, of this layer. Setting this property moves the layer to the left or right. left is a
synonym for x.

name

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

name

A read/write string that specifies the name of a layer. The initial value of this property is
specified by the name or id attributes of the HTML tag used to create the layer and is also
used as the name of the Document property that refers to the Layer object.

pageX, pageY

Read/write integers that specify the X- and Y-coordinates of this layer relative to the top-
level document. Note that these coordinates are relative to the top-level page, not relative to
any containing layer.

parentLayer

A read-only reference to the Layer or Window object that contains (is the parent of) this
layer.

siblingAbove, siblingBelow

Refer to the sibling Layer object (i.e., a child of the same parent Layer) immediately above
or below this layer in the stacking order. If there is no such layer, these properties are null.

src

A read/write string that specifies the URL, if any, of the contents of a layer. Setting this
property to a new URL causes the browser to read the contents of that URL and display
them in the layer. Note, however, that this does not work while the current document is
being parsed. For this reason, you should not set src in a top-level script; instead, set it in
an event handler or a function called from an event handler.

top

A read/write integer that specifies the Y-coordinate of this layer relative to the containing
layer or document. Setting this property moves the layer up or down. top is a synonym for
y.

visibility

A read/write string that specifies the visibility of the layer. There are three possible legal
values: "show" specifies that the layer should be visible; "hide" specifies that the layer
should not be visible; "inherit" specifies that the layer should inherit the visibility of its
parent layer.

window

Refers to the Window object that contains the layer, regardless of how deeply nested the
layer is within other layers.

x, y

The X- and Y-coordinates of the layer, relative to the containing layer or document. Setting
these properties move the layer. x is a synonym for the left property, and y is a synonym
for the top property.

zIndex

Specifies the position of the layer in the z-order, or stacking order, of layers. When two
layers overlap, the one with the higher zIndex appears on top and obscures the one with
the lower zIndex. If two sibling layers have the same zIndex, the one that appears later in
the layers[] array of the containing document is displayed later and overlaps any that
appear earlier.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

zIndex is a read/write property. Setting this property changes the stacking order and redisplays
the layers in the new order. Setting this property may reorder the layers[] array of the containing
document.

Methods

captureEvents()

Specifies event types to be captured.

handleEvent()

Dispatches an event to the appropriate handler.

load()

Loads a new URL and resize.

moveAbove()

Moves this layer above another.

moveBelow()

Moves this layer below another.

moveBy()

Moves the layer to a relative position.

moveTo()

Moves the layer to a position relative to its containing layer.

moveToAbsolute()

Moves the layer to a position relative to the page.

offset()

A synonym for moveBy().

releaseEvents()

Stops capturing specified event types.

resizeBy()

Resizes the layer by the specified amounts.

resizeTo()

Resizes the layer to the specified size.

routeEvent()

Routes an event to the next interested handler.

HTML Syntax

A Layer object can be created with the Netscape-specific <layer> tag in HTML:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Layer object can be created with the Netscape-specific <layer> tag in HTML:

<layer

 [id="layername"] // Layer name

 [left="x"] // Position relative to containing layer

 [top="y"]

 [pagex="x"] // Position relative to top-level document

 [pagey="y"]

 [width="w"] // Size of layer

 [height="h"]

 [src="url"] // URL of layer contents

 [clip="x,y,w,h"] // Clipping rectangle for layer

 [clip="w,h"] // Alternate syntax: x,y default to 0

 [zindex="z"] // Stacking order

 [above="layername"] // Alternative ways of specifying stacking

 [below="layername"]

 [visibility="vis"] // "show", "hide", or "inherit"

 [bgcolor="color"] // Background color of layer

 [background="url"] // Background image of layer

 [onmouseover="handler"] // Invoked when mouse enters layer

 [onmouseout="handler"] // Invoked when mouse leaves layer

 [onfocus="handler"] // Invoked when layer gets focus

 [onblur="handler"] // Invoked when layer loses focus

 [onload="handler"] // Invoked when layer's contents are loaded

>

Description

The Layer object is Netscape 4's technique for supporting dynamically positionable HTML
elements. Note, however, that the Layer object was never standardized and is no longer supported
in Netscape 6. A Layer object can be created in three ways: with the <layer> tag; with the
Layer() constructor; or, most portably, with CSS style attributes on HTML elements, as
explained in Chapter 18.

See Also

Window; Chapter 18

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.captureEvents() see Window.captureEvents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.handleEvent() see Window.handleEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.load() change layer contents and width

Availability

Netscape 4 only

Synopsis

layer.load(src, width)

Arguments

src

A string that specifies the URL of the document to be loaded into layer.

width

An integer that specifies a new width, in pixels, for layer.

Description

load() loads a new document into layer and specifies a width at which the lines of that
document are wrapped.

Note, however, that load() does not work while the current document is being parsed. For this
reason, you should not call load() in a top-level script; instead, call it in an event handler or a
function called from an event handler.

See Also

The src property of the Layer object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.moveAbove() move one layer above another Netscape 4 only

Synopsis

layer.moveAbove(target)

Arguments

target

The reference Layer object above which layer is to be placed.

Description

moveAbove() changes the stacking order so layer appears on top of target. layer
becomes a sibling of target if it is not one already. layer is given the same zIndex as
target and is placed after target in the layers[] array of the containing document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.moveBelow() move one layer below another Netscape 4 only

Synopsis

layer.moveBelow(target)

Arguments

target

The reference Layer object below which layer is to be placed.

Description

moveBelow() changes the stacking order so layer appears beneath target. layer
becomes a sibling of target if it is not one already. layer is given the same zIndex as
target and is placed before target in the layers[] array of the containing document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.moveBy() move a Layer to a relative position Netscape 4 only

Synopsis

layer.moveBy(dx, dy)

Arguments

dx

The number of pixels to move the layer to the right (may be negative).

dy

The number of pixels to move the layer down (may be negative).

Description

moveBy() moves layer dx pixels to the right and dy pixels down from its current position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.moveTo() move a Layer Netscape 4 only

Synopsis

layer.moveTo(x, y)

Arguments

x

The desired X-coordinate of the layer.

y

The desired Y-coordinate of the layer.

Description

moveTo() moves the upper-left corner of layer to the coordinates specified by x and y. Note
that these coordinates are expressed relative to the containing layer or document.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.moveToAbsolute() move a Layer to page coordinates

Availability

Netscape 4 only

Synopsis

layer.moveToAbsolute(x, y)

Arguments

x

The desired X-coordinate of the layer.

y

The desired Y-coordinate of the layer.

Description

moveToAbsolute() moves the upper-left corner of layer to the document coordinates
specified by x and y. Note that these coordinates are expressed relative to the page or top-level
document, not relative to any containing layers.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.offset() move a Layer to a relative position

Availability

Netscape 4 only; deprecated

Synopsis

layer.offset(dx, dy)

Arguments

dx

The number of pixels to move the layer to the right (may be negative).

dy

The number of pixels to move the layer down (may be negative).

Description

offset() moves a layer relative to its current position. offset() is deprecated in favor of
moveBy().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.releaseEvents() see Window.releaseEvents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.resizeBy() resize a Layer by a relative amount

Availability

Netscape 4 only

Synopsis

layer.resizeBy(dw, dh)

Arguments

dw

The number of pixels by which to increase the width of the window (may be negative).

dh

The number of pixels by which to increase the height of the window (may be negative).

Description

resizeBy() resizes layer by incrementing its clip.width and clip.height properties by
dw and dh. It does not cause the contents of the layer to be reformatted, so making a layer
smaller may clip the layer's contents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.resizeTo() resize a Layer Netscape 4 only

Synopsis

layer.resizeTo(width, height)

Arguments

width

The desired width of the layer.

height

The desired height of the layer.

Description

resizeTo() resizes layer by setting its clip.width and clip.height properties to
width and height. It does not cause the contents of the layer to be reformatted, so making a
layer smaller may clip the layer's contents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Layer.routeEvent() see Window.routeEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Link a hypertext link

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

document.links[]

document.links.length

Properties

Link inherits properties from HTMLElement and defines the following properties. Many of the properties
represent portions of a URL. For each of these properties, the example given is a portion of the following
(fictitious) URL:

http://www.oreilly.com:1234/catalog/search.html?q=JavaScript&m=10#results

hash

A read/write string property that specifies the anchor portion of the Link's URL, including the leading
hash (#) mark. For example: "#result". This anchor portion of a URL refers to a named position within
the document referenced by the Link. In HTML files, positions are named with anchors created with
the tag.

host

A read/write string property that specifies the hostname and port portions of a Link's URL. For
example, "www.oreilly.com:1234".

hostname

A read/write string property that specifies the hostname portion of a Link's URL. For example
"www.oreilly.com".

href

A read/write string property that specifies the complete text of the Link's URL, unlike other Link URL
properties that specify only portions of the URL.

pathname

A read/write string property that specifies the pathname portion of a Link's URL. For example
"/catalog/search.html".

port

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

port

A read/write string (not a number) property that specifies the port portion of a Link's URL. For
example "1234".

protocol

A read/write string property that specifies the protocol portion of a Link's URL, including the trailing
colon. For example, "http:".

search

A read/write string property that specifies the query portion of a Link's URL, including the leading
question mark. For example, "?q=JavaScript&m=10".

target

A read/write string property that specifies the name of a Window object (i.e., a frame or a top-level
browser window) in which the linked document should be displayed. See the Link.target reference
page for details.

text [Netscape 4]

Specifies the plain text, if any, between the <a> and tags of a link. Note that this property works
correctly only if there are no intervening HTML tags between the <a> and tags. If there are
other HTML tags, the text property may contain only a portion of the link text.
HTMLElement.innerText provides the IE 4 equivalent of this Netscape-specific property.

Methods

Link inherits the methods of HTMLElement.

Event Handlers

Link inherits the event handlers of HTMLElement and defines special behavior for the following:

onclick

Invoked when the user clicks on the link. In JavaScript 1.1, this event handler may prevent the link
from being followed by returning false. On Windows platforms in Netscape 3, this event handler
does not work for links created with the <area> tag.

onmouseout

Invoked when the user moves the mouse off the link. Available in JavaScript 1.1 and later.

onmouseover

Invoked when the user moves the mouse over the link. The status property of the current window
may be set here. May return true to tell the browser not to display the URL of the link.

HTML Syntax

A Link object is created with standard <a> and tags. The href attribute is required for all Link
If the name attribute is also specified, an Anchor object is also created:

<a href="url" // The destination of the link

 [name="anchor_tag"] // Creates an Anchor object

 [target="window_name"] // Where the new document should be displayed

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [target="window_name"] // Where the new document should be displayed

 [onclick="handler"] // Invoked when link is clicked

 [onmouseover="handler"] // Invoked when mouse is over link

 [onmouseout="handler"] // Invoked when mouse leaves link

>

link text or image // The visible part of the link

In JavaScript 1.1 and later, a Link object is also created by each <area> tag within a client-side image map.
This is also standard HTML:

<map name="map_name">

 <area shape="area_shape"

 coords="coordinates"

 href="url" // The destination of the link

 [target="window_name"] // Where the new document should be displayed

 [onclick="handler"] // Invoked when area is clicked

 [onmouseover="handler"] // Invoked when mouse is over area

 [onmouseout="handler"] // Invoked when mouse leaves area

>

 ...

</map>

Description

The Link object represents a hypertext link or a clickable area of a client-side image map in an HTML
document. All links created with the <a> and <area> tags are represented by Link objects and stored in the
links[] array of the Document object. Note that links created by both the <a> and <area> tags are stored
in the same array -- there is no distinction between them.

The destination of a hypertext link is a URL, of course, and many of the properties of the Link object specify
the contents of that URL. The Link object is similar to the Location object, which also has a full set of URL
properties. In the case of the Location object, these properties describe the URL of the currently displayed
document.

In addition to its properties, the Link object has three event handlers. The onmouseover(), onclick(
and onmouseout() event handlers specify code to be executed when the mouse passes over the
hypertext link, clicks on it, and moves off or out of the link's region of the screen.

See Also

Anchor, Location; HTMLAnchorElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Link.onclick the handler invoked when a Link is clicked

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

<a ... onclick="handler" ... >

<area ... onclick="handler" ... >

link.onclick

Description

The onclick property of a Link object specifies an event handler function that is invoked when
the user clicks on the link. The initial value of this property is a function that contains the
JavaScript statements specified by the onclick attribute of the <a> or <area> tag that defined
the Link object. When an event handler function is defined in this way by an HTML attribute, it is
executed in the scope of element rather than in the scope of the containing window.

The onclick event handler is invoked before the browser follows the clicked hypertext link. This
allows you to dynamically set href, target, and other properties of the link (using the this
keyword to refer to the clicked link). You may also use the methods Window.alert(),
Window.confirm(), and Window.prompt() from this event handler.

In JavaScript 1.1, you may prevent the browser from following the link by returning false. If you
return true, any other value, or nothing, the browser follows the link as soon as onclick
returns. You might stop the browser from following a link if you use the Window.confirm()
method to ask the user if he really wants to follow the link and the user chooses the Cancel
button, for example. In general, if you want a link that performs some action but does not cause a
new URL to be displayed, it is better to use the onclick event handler of a Button object instead
of the onclick handler of a Link object.

Note that while the onclick event handler returns false to tell the browser not to perform its
default action (following a link), the onmouseover event handler must return true to tell the
browser not to take its default action (displaying the URL of the link). This incompatibility exists for
historical reasons. The standard for Form and form element event handlers is to return false to
prevent the browser from performing a default action.

In the Netscape 4 event model, the onclick handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the hypertext link.

Bugs

In Netscape 3, the onclick event handler of the <area> does not work on Windows platforms.
A workaround is to specify a javascript: URL as the value of the href attribute of the <area>
tag.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Link.onmouseout the handler invoked when the mouse leaves a link

Availability

JavaScript 1.1

Synopsis

<a ... onmouseout="handler" ... >

<area ... onmouseout="handler" ...

> link.onmouseout

Description

The onmouseout property of a Link object specifies an event handler function that is invoked
when the user moves the mouse off a hypertext link. The initial value of this property is a function
that contains the JavaScript statements specified by the onmouseout attribute of the <a> or
<area> tag that defined the Link object. When an event handler function is defined in this way by
an HTML attribute, it is executed in the scope of element rather than in the scope of the
containing window.

In the Netscape 4 event model, the onmouseout handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the hypertext link.

See Also

Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Link.onmouseover the handler invoked when the mouse goes over a link

Availability

JavaScript 1.0

Synopsis

<a ... onmouseover="handler" ... >

<area ... onmouseover="handler" ...

> link.onmouseover

Description

The onmouseover property of a Link object specifies an event handler function that is invoked
when the user moves the mouse over a hypertext link. The initial value of this property is a
function that contains the JavaScript statements specified by the onmouseover attribute of the
<a> or <area> tag that defined the Link object. When an event handler function is defined in this
way by an HTML attribute, it is executed in the scope of element rather than in the scope of the
containing window.

By default, the browser displays the URL that a hypertext link refers to in the status line whenever
the mouse goes over the link. The onmouseover event handler is invoked before the URL is
displayed. If the handler returns true, the browser does not display the URL. Thus, an event
handler function that returns true can display a custom message in the status line by setting the
Window.status property to any desired value.

Note that while this event handler returns true to tell the browser not to perform its default action
(displaying the URL of a link), the onclick event handler of the Link object must return false to
tell the browser not to take its default action (following the link). This incompatibility exists for
historical reasons. The standard for Form and form element event handlers is to return false to
prevent the browser from performing a default action.

In the Netscape 4 event model, the onmouseover handler function is passed an Event object as
an argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the hypertext link.

See Also

Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Link.target the target window of a hypertext link

Availability

JavaScript 1.0

Synopsis

link.target

Description

target is a read/write string property of the Link object. It specifies the name of the frame or
window in which the URL referred to by the Link object should be displayed. The initial value of
this property is specified by the target attribute of the <a> tag that creates the Link object. If this
attribute is unset, the default is that the window containing the link is used, so following a
hypertext link overwrites the document that contains the link.

Note that the value of target is the name of a frame or window, not an actual JavaScript
reference to the frame or window itself. The name of a frame is specified by the name attribute of
the <frame> tag. The name of a window is specified when the window is created with a call to the
Window.open() method. If target specifies the name of a window that does not exist, the
browser automatically opens a new window to display the URL, and any future links with the same
target name use that freshly created window.

Four special target names are supported. The target named "_blank" specifies that a new,
empty browser window should be created and used to display the new URL. The target "_self"
is the default; it specifies that the new URL should be displayed in the same frame or window as
the link. The target "_parent" specifies that the results should be displayed in the parent frame
of the frame that contains the link. Finally, the "_top" target specifies that the new URL should
be displayed in the topmost frame -- in other words, all frames should be removed, and the new
URL should occupy the entire browser window.

See Also

Form.target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Location represents and controls browser location

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

location

window.location

Properties

The properties of a Location object refer to the various portions of the current document's URL. In
each of the following property descriptions, the example given is a portion of this (fictitious) URL:

http://www.oreilly.com:1234/catalog/search.html?q=JavaScript&m=10#results

hash

A read/write string property that specifies the anchor portion of the URL, including the
leading hash (#) mark. For example: "#result". This portion of the document URL specifies
the name of an anchor within the document.

host

A read/write string property that specifies the hostname and port portions of the URL. For
example, "www.oreilly.com:1234".

hostname

A read/write string property that specifies the hostname portion of a URL. For example
"www.oreilly.com".

href

A read/write string property that specifies the complete text of the document's URL, unlike
other Location properties which specify only portions of the URL. Setting this property to a
new URL causes the browser to read and display the contents of the new URL.

pathname

A read/write string property that specifies the pathname portion of a URL. For example
"/catalog/search.html".

port

A read/write string (not a number) property that specifies the port portion of a URL. For
example "1234".

protocol

A read/write string property that specifies the protocol portion of a URL, including the trailing
colon. For example, "http:".

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

search

A read/write string property that specifies the query portion of a URL, including the leading
question mark. For example, "?q=JavaScript&m=10".

Methods

reload()

Reloads the current document from the cache or the server. This method was added in
JavaScript 1.1.

replace()

Replaces the current document with a new one without generating a new entry in the
browser's session history. This method was added in JavaScript 1.1.

Description

The Location object is stored in the location property of the Window object and represents the
web address (the "location") of the document currently displayed in that window. The href
property contains the complete URL of that document, and the other properties of the Location
object each describe a portion of that URL. These properties are much like the URL properties of
the Link object.

While the Link object represents a hyperlink in a document, the Location object represents the
URL, or location, currently displayed by the browser. But the Location object does more than that:
it also controls the location displayed by the browser. If you assign a string containing a URL to the
Location object or to its href property, the web browser responds by loading the newly specified
URL and displaying the document it refers to.

Instead of setting location or location.href to replace the current URL with a completely
new one, you can also modify just a portion of the current URL by assigning strings to the other
properties of the Location object. This creates a new URL with one new portion, which the browser
loads and displays. For example, if you set the hash property of the Location object, you can
cause the browser to move to a named location within the current document. Similarly, if you set
the search property, you can cause the browser to reload the current URL with a new query string
appended. If the URL refers to a server-side program, the document resulting from the new query
string may be quite different from the original document.

In addition to its URL properties, the Location object also defines two methods. The reload()
method reloads the current document, and the replace() method loads a new document
without creating a new history entry for it -- the new document replaces the current one in the
browser's history list.

See Also

Link, the location property of the Window object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Location.reload() reload the current document

Availability

JavaScript 1.1

Synopsis

location.reload()

location.reload(force)

Arguments

force

A boolean argument that specifies whether the document should be reloaded, even if the
server reports that it has not been modified since it was last loaded. If this argument is
omitted, or if it is false, the method reloads the full page only if it has changed since last
loaded.

Description

The reload() method of the Location object reloads the document that is currently displayed in
the window of the Location object. When called with no arguments or with the argument false, it
uses the If-Modified-Since HTTP header to determine whether the document has changed
on the web server. If the document has changed, reload reloads the document from the server,
and if not, it reloads the document from the cache. This is the same action that occurs when the
user clicks on the browser's Reload button.

When reload() is called with the argument true, it always bypasses the cache and reloads
the document from the server, regardless of the last-modified time of the document. This is the
same action that occurs when the user Shift-clicks on the browser's Reload button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Location.replace() replace one displayed document with another

Availability

JavaScript 1.1

Synopsis

location.replace(url)

Arguments

url

A string that specifies the URL of the new document that is to replace the current one.

Description

The replace() method of the Location object loads and displays a new document. Loading a
document in this way is different from simply setting location or location.href in one
important respect: the replace() method does not generate a new entry in the History object.
When you use replace(), the new URL overwrites the current entry in the History object. After
calling replace(), the browser's Back button does not return you to the previous URL; it
returns you to the URL before that one.

Usage

When you are working with multiple frames and/or JavaScript-generated documents, you
sometimes end up with quite a few temporary documents. If there are more than just a few of
these documents, backing out of your web site with the Back button can be annoying. If you use
the replace() method to load these documents, however, you can prevent this problem.

See Also

History

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MimeType represents a MIME data type

Availability

Netscape 3

Synopsis

navigator.mimeTypes[i]

navigator.mimeTypes["type"]

navigator.mimeTypes.length

Properties

description

A read/only string that provides a human-readable description (in English) of the data type
described by the MimeType. This description is more explicit and understandable than the
name property.

enabledPlugin

A read-only reference to a Plugin object that represents the installed and enabled plugin
that handles the specified MIME type. If the MIME type is not handled by any plugins, the
value of this property is null.

The navigator.mimeType[] array tells you whether a given MIME type is supported by the
browser. The enabledPlugin property of the MimeType object, however, tells you whether a
particular supported type is supported with a plugin (MIME types can also be supported with
helper applications, or directly by the browser). If a MIME type is supported by a plugin, data of
that type can be embedded in a web page with the <embed> tag.

suffixes

A read-only string that contains a comma-separated list of filename suffixes (not including
the "." character) that are commonly used with files of the specified MIME type. For
example, the suffixes for the text/html MIME type are "html, htm".

type

A read-only string that specifies the name of the MIME type. This is a unique string such as
"text/html" or "image/jpeg" that distinguishes this MIME type from all others. It describes the
general type of data and the data format used. The value of the type property can also be
used as an index to access the elements of the navigator.mimeTypes[] array.

Description

The MimeType object represents a MIME type (i.e., a data format) supported by Netscape. The
format may be supported directly by the browser or through an external helper application or a
plugin for embedded data.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Usage

The navigator.mimeTypes[] array may be indexed numerically or with the name of the
desired MIME type (which is the value of the type property). To check which MIME types are
supported by Netscape, you can loop through each element in the array numerically. Or, if you
just want to check whether a specific type is supported, you can write code like the following:

var show_movie = (navigator.mimeTypes["video/mpeg"] != null);

See Also

Navigator, Plugin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigator information about the browser in use

Availability

JavaScript 1.0; enhanced in JavaScript 1.1 and 1.2

Synopsis

navigator

Properties

appCodeName

A read-only string that specifies the code name of the browser. In all Netscape browsers,
this is "Mozilla". For compatibility, this property is "Mozilla" in Microsoft browsers as well.

appName

A read-only string property that specifies the name of the browser. For Netscape, the value
of this property is "Netscape". In IE, the value of this property is "Microsoft Internet
Explorer".

appVersion

A read-only string that specifies version and platform information for the browser. The first
part of this string is a version number. Pass the string to parseInt() to obtain only the
major version number or to parseFloat() to obtain the major and minor version
numbers as a floating-point value. The remainder of the string value of this property
provides other details about the browser version, including the operating system it is
running on. Unfortunately, however, the format of this information varies widely from
browser to browser.

cookieEnabled[IE 4, Netscape6]

A read-only boolean that is true if the browser has cookies enabled and false if they are
disabled.

language [Netscape 4]

A read-only string that specifies the default language of the browser version. The value of
this property is either a standard two-letter language code, such as "en" for English or "fr"
for French, or a five-letter string that indicates a language and a regional variant, such as
"fr_CA" for French, as spoken in Canada. Note that IE 4 provides two different language-
related properties.

mimeTypes[] [Netscape 3]

An array of MimeType objects, each of which represents one of the MIME types (e.g.,
"text/html" and "image/gif") supported by the browser. The mimeTypes[] array is defined
by IE 4 but is always empty because IE 4 does not support the MimeType object.

platform [JavaScript 1.2]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

platform [JavaScript 1.2]

A read-only string that specifies the operating system and/or hardware platform on which
the browser is running. Although there is no standard set of values for this property, some
typical values are "Win32", "MacPPC", and "Linux i586".

plugins[] [Netscape 3]

An array of Plugin objects, each of which represents one plugin that was installed with the
browser. The Plugin object provides information about the plugin, including a list of MIME
types it supports. A plugin is the Netscape name for a software package that is invoked by
the browser to display specific data types within the browser window.

The plugins[] array is defined by IE 4 but is always empty because IE 4 does not
support plugins or the Plugin object.

systemLanguage [IE 4]

A read-only string that specifies the default language of the operating system using the
same standard codes used by the Netscape-specific language property.

userAgent

A read-only string that specifies the value the browser uses for the user-agent header in
HTTP requests. Typically, this is the value of navigator.appCodeName followed by a
slash and the value of navigator.appVersion. For example:

Mozilla/4.0 (compatible; MSIE 4.01; Windows 95)

userLanguage [IE 4]

A read-only string that specifies the user's preferred language using the same standard
codes used by the Netscape-specific language property.

Functions

navigator.javaEnabled()

Tests whether Java is supported and enabled in the current browser. Added in JavaScript
1.1.

navigator.plugins.refresh()

Checks for newly installed plugins, enters them in the plugins[] array, and optionally
reloads documents using those plugins. Added in Netscape 3.

Description

The Navigator object contains properties that describe the web browser in use. You can use its
properties to perform platform-specific customization. The name of this object obviously refers to
the Netscape Navigator browser, but other browsers that implement JavaScript support this object
as well.

There is only a single instance of the Navigator object, which you can reference through the
navigator property of any Window object. Because of the implicit window reference, you can
always refer to the Navigator object simply as navigator.

See Also

MimeType, Plugin

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigator.javaEnabled() test whether Java is available

Availability

JavaScript 1.1

Synopsis

navigator.javaEnabled()

Returns

true if Java is supported by and enabled on the current browser; false otherwise.

Description

You can use navigator.javaEnabled() to check whether the current browser supports
Java and can therefore display applets.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Navigator.plugins.refresh() make newly installed plugins available

Availability

Netscape 3

Synopsis

navigator.plugins.refresh([reload])

Arguments

reload

An optional boolean argument that, if true, specifies that refresh() should reload any
pages that contain <embed> tags and use plugins. Defaults to false if omitted.

Description

The refresh() method causes Netscape to check whether any new plugins have been
installed. If so, the plugins[] array is updated ("refreshed") to include the newly installed
plugins. If the reload argument is specified and is true, Netscape also reloads any currently
displayed documents that contain <embed> tags and use plugins.

Note the unusual synopsis for this method. refresh() is a method of the plugins[] array,
not of the Navigator object. For almost all purposes, however, it is simpler to consider it a method
of the Navigator object, which is why it is grouped here with the methods and properties of that
object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Option an option in a Select box

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from HTMLElement

Synopsis

select.options[i]

Constructor

In JavaScript 1.1, Option objects can be dynamically created with the Option() constructor, as follows:

new Option(text, value, defaultSelected, selected)

Arguments

text

An optional string argument that specifies the text property of the Option object.

value

An optional string argument that specifies the value property of the Option object.

defaultSelected

An optional boolean argument that specifies the defaultSelected property of the Option object.

selected

An optional boolean argument that specifies the selected property of the Option object.

Properties

Option inherits the properties of HTMLElement and defines the following:

defaultSelected

A boolean that specifies whether the option is initially selected when the Select object that contains it is
created. This value is used to restore a Select object to its initial state when the containing form
reset. The initial value of this property is specified by the selected attribute of the <option>

index

A read-only integer that specifies the position or index of the option within the options[] array of the
Select object that contains it. The first Option object in the array has its index property set to 0. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select object that contains it. The first Option object in the array has its index property set to 0. The
second Option has an index of 1, and so on.

selected

A read/write boolean value that specifies whether an option is currently selected. You can use this
property to test whether a given option is selected and to select (by setting it to true) or deselect (by
setting it to false) a given option. Note that when you select or deselect an option in this way the
Select.onchange() event handler is not invoked.

text

A string that specifies the text for the option that appears to the user. The initial value of this property is
whatever plain text (without HTML tags) appears after the <option> tag and before the next
<option>, </option>, or </select> tag.

In JavaScript 1.0, the text property is read-only. In JavaScript 1.1, it is read/write. By setting a new value for
this property, you can change the text that appears for the option within its Select object. Note that if you plan
to set this property in a browser that cannot reflow document content, you should ensure that changing the
option label does not make the Select object wider. If the object must become wider, ensure that no
information to the right of the Select object becomes obscured when it grows.

value

A read/write string that specifies the text passed to the web server if the option is selected when the
form is submitted. The initial value of value is specified by the value attribute of the <option>
the form is designed to be submitted to a server (as opposed to simply being used by JavaScript
client side), each Option object within a Select object should have a distinct value.

HTML Syntax

An Option object is created by an <option> tag within a <select>, which is within a <form>. Multiple
<option> tags typically appear within the <select>:

<form ...>

 <select ...>

 <option

 [value="value"] // The value returned when the form is submitted

 [selected] > // Specifies whether this option is initially selected

 plain_text_label // The text to display for this option

 [</option>]

 ...

 </select>

 ...

</form>

Description

The Option object describes a single option displayed within a Select object. The properties of this object
specify whether it is selected by default, whether it is currently selected, the position it has in the options[]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specify whether it is selected by default, whether it is currently selected, the position it has in the options[]
array of its containing Select object, the text it displays, and the value it passes to the server if it is selected
when the containing form is submitted.

Note that although the text displayed by this option is specified outside of the <option> tag, it must be
unformatted text without any HTML tags so it can be properly displayed in list boxes and drop-down menus
that do not support HTML formatting.

In JavaScript 1.1, you can dynamically create new Option objects for display in a Select object with the
Option() constructor. Once a new Option object is created, it can be appended to the list of options in a
Select object s by assigning it to:

s.options[options.length]

See the Select.options[] reference page for details.

See Also

Select, Select.options[]; HTMLOptionElement and HTMLSelectElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Password a text input field for sensitive data

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

Password inherits properties from Input and HTMLElement and defines or overrides the following:

value

A read/write string that specifies the password entered by the user. It is the value sent over the Net when
the form is submitted. The initial value of this property is specified by the value attribute of the
element that defined the Password object. Note that because of the sensitive nature of password input,
security restrictions may protect the value property. In some browsers, the string returned when querying
this property may not match the text entered by the user, and setting the property may have no effect on
either the displayed value or the value submitted upon form submission.

Methods

Password inherits methods from Input and HTMLElement.

Event Handlers

Password inherits event handlers from Input and HTMLElement.

HTML Syntax

A Password element is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="password" // Specifies that this is a Password element

 [name="name"] // A name you can use later to refer to this element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [name="name"] // A name you can use later to refer to this element

 // Specifies the name property

 [value="default"] // The default value transmitted when the form is submitted

 [size="integer"] // How many characters wide the element is

 >

 ...

</form>

Description

The Password element is a text input field intended for input of sensitive data, such as passwords. As the user
types characters, only asterisks appear. This prevents bystanders from reading the input value over the user's
shoulder. As a further security precaution, there are limitations on how JavaScript can read and write the
property of a Password element. See the Text and Input reference pages for more information.

See Also

Input, Text; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Plugin describes an installed plugin

Availability

Netscape 3

Synopsis

navigator.plugins[i]

navigator.plugins['name']

Properties

description

A read-only string that contains a human-readable description of the specified plugin. The text
of this description is provided by the creators of the plugin and may contain vendor and
version information as well as a brief description of the plugin's function.

filename

A read-only string that specifies the name of the file on disk that contains the plugin program
itself. This name may vary from platform to platform. The name property is more useful than
filename for identifying a plugin.

length

Each Plugin object contains MimeType array elements that specify the data formats
supported by the plugin. As with all arrays, the length property specifies the number of
elements in the array.

name

The name property of a Plugin object is a read-only string that specifies the name of the
plugin. Each plugin should have a name that uniquely identifies it. The name of a plugin can
be used as an index into the navigator.plugins[] array. You can use this fact to
determine easily whether a particular named plugin is installed in the current browser:

var sw_installed = (navigator.plugins["Shockwave"] != null);

Elements

The array elements of the Plugin object are MimeType objects that specify the data formats
supported by the plugin.

Description

A plugin is a software module that can be invoked by Netscape to display specialized types of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A plugin is a software module that can be invoked by Netscape to display specialized types of
embedded data within the browser window. In Netscape 3, plugins are represented by the Plugin
object. This object is somewhat unusual in that it has both regular object properties and array
elements. The properties of the Plugin object provide various pieces of information about the plugin,
and its array elements are MimeType objects that specify the embedded data formats that the plugin
supports.

Plugin objects are obtained from the plugins[] array of the Navigator object.
navigator.plugins[] may be indexed numerically when you want to loop through the complete
list of installed plugins, looking for one that meets your needs (for example, one that supports the
MIME type of the data you want to embed in your web page). This array can also be indexed by
plugin name, however. That is, if you want to check whether a specific plugin is installed in the
user's browser, you might use code like this:

document.write(navigator.plugins("Shockwave") ?

 "<embed src="movie.dir' height=100 width=100>" :

 "You don't have the Shockwave plugin!");

The name used as an array index with this technique is the same name that appears as the value of
the name property of the Plugin.

Don't confuse the fact that Plugin objects are stored in an array of the Navigator object with the fact
that each Plugin object is itself an array of MimeType objects. Because there are two arrays
involved, you may end up with code that looks like this:

navigator.plugins[i][j] // The jth MIME type of the ith plugin

navigator.plugins["LiveAudio"][0] // First MIME type of LiveAudio plugin

Finally, note that while the array elements of a Plugin object specify the MIME types supported by
that plugin, you can also determine which plugin supports a given MIME type with the
enabledPlugin property of the MimeType object.

See Also

Navigator, MimeType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Radio a graphical radio button

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

The Radio button element is usually used in groups of mutually exclusive options that have the same name. To
reference one Radio element within a group, use this syntax:

form.radio_name[j]

form.radio_name.length

Properties

Radio inherits properties from Input and HTMLElement and defines or overrides the following:

checked

A read/write boolean that is true if the radio button is checked or false otherwise. If you set
to true, the radio button is selected, and the previously selected button is deselected. Note, however,
that setting the checked property of a radio button to false has no effect, because at least one button
must always be selected; you cannot deselect a radio button except by selecting some other button.
Note also that setting the checked property does not cause the Radio button element's onclick
handler to be invoked. If you want to invoke that event handler, you must do so explicitly.

defaultChecked

A boolean property that is true if the radio button is initially selected, but only if the checked
appears in the button's HTML <input> tag. If this tag does not appear, the radio button is initially
deselected, and defaultChecked is false.

value

A read/write string that specifies the text passed to the web server if the radio button is checked when
the form is submitted. The initial value of this property is specified by the value attribute of the button's
<input> tag. If the form is designed to be submitted to a server (as opposed to simply being used by
JavaScript on the client side), each radio button in a group should have a distinct value. Note that the
value field does not specify whether the radio button is currently selected; the checked property
specifies the current state of the Radio object.

Methods

Radio inherits methods from Input and HTMLElement.

Event Handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Radio inherits event handlers from Input and HTMLElement and defines or overrides the following:

onclick

Invoked when the radio button is clicked.

HTML Syntax

A Radio element is created with a standard HTML <input> tag. Radio elements are created in groups by
specifying multiple <input> tags that have the same name attribute:

<form>

 ...

 <input

 type="radio" // Specifies that this is a radio button

 [name="name"] // A name you can use later to refer to this button

 // or to the group of buttons with this name

 // Specifies the name property

 [value="value"] // The value returned when this button is selected

 // Specifies the value property

 [checked] // Specifies that the button is initially checked

 // Specifies the defaultChecked property

 [onclick="handler"] // JavaScript statements to be executed when the button

 // is clicked

 >

label // The HTML text that should appear next to the button

 ...

</form>

Description

The Radio element represents a single graphical radio button in an HTML form. A radio button is one button in
a group of buttons that represents mutually exclusive choices. When one button is selected, the previously
selected button is deselected. The onclick event handler allows you to specify JavaScript code to be
executed when the button is selected.

You can examine the checked property to determine the state of the button and set this property to select or
deselect the button. Note that setting checked changes the graphical appearance of the button but does not
invoke the onclick event handler. The initial value of the checked property and the value of the
defaultChecked property are determined by the checked attribute. Only one Radio element in a
contain this attribute -- it sets the checked and defaultChecked properties true for that element and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contain this attribute -- it sets the checked and defaultChecked properties true for that element and
false for all other radio buttons in the group. If none of the elements has the checked attribute, the first one
in the group is checked (and defaultChecked) by default.

Note that the text that appears next to a radio button is not part of the Radio element itself and must be
specified externally to the Radio's HTML <input> tag.

Radio elements are used in groups of mutually exclusive options. A mutually exclusive group is defined as the
set of all Radio elements within a form that have the same name. If the shared name of a group of Radio
elements in form f is opts, f.opts is an array of Radio elements, and f.opts.length is the number of
elements in the array.

You can set the value attribute or the value property of a Radio element to specify the string that is passed
to the server if the Radio element is checked when the form is submitted. Each Radio element in a group
should specify a distinct value so a script on the server can determine which one was checked when the form
was submitted.

Usage

Radio elements can present the user with a list of multiple mutually-exclusive options. Use the Checkbox
element to present a single option or a list of options that are not mutually exclusive.

See Also

Checkbox, Form, Input; HTMLInputElement in DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Radio.onclick the handler invoked when a radio button is selected

Availability

JavaScript 1.0

Synopsis

<input type="radio" onclick="handler"... >

radio.onclick

Description

The onclick property of a Radio object refers to an event handler function that is invoked when
the user clicks on the checkbox. See the HTMLElement.onclick reference page for complete
details. Note, however, that Radio.onclick has been supported since JavaScript 1.0, unlike
the generalized HTMLElement.onclick handler.

See Also

HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and MouseEvent in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset a button to reset a form's values

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

Reset inherits properties from Input and HTMLElement and defines or overrides the following:

value

A string that specifies the text that appears within the Reset button. It is specified by the value
of the <input> tag that created the button. If no value attribute is specified, the default value
"Reset" (or the equivalent in the browser's default language). In browsers that cannot reflow document
content, this property may be read-only.

Methods

Reset inherits the methods of Input and HTMLElement.

Event Handlers

Reset inherits the event handlers of Input and HTMLElement and defines or overrides the following:

onclick

Invoked when the Reset button is clicked.

HTML Syntax

A Reset element is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="reset" // Specifies that this is a Reset button

 [value="label"] // The text that is to appear within the button

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 [value="label"] // The text that is to appear within the button

 // Specifies the value property

 [name="name"] // A name you can use later to refer to the button

 // Specifies the name property

 [onclick="handler"] // JavaScript statements to be executed when the button

 // is clicked

 >

 ...

</form>

Reset objects can also be created with the HTML 4 <button> tag:

<button id="name"

 type="reset"

 onclick="handler">

label

</button>

Description

The Reset element has the same properties and methods as the Button element but has a more specialized
purpose. When a Reset element is clicked, the values of all input elements in the form that contains
to their initial default values. (For most elements, this means to the value specified by the HTML value
attribute.) If no initial value was specified, a click on the Reset button clears any user input from those
elements.

Usage

If no value attribute is specified for a Reset element, it is labeled "Reset". In some forms, it may be
label the button "Clear Form" or "Defaults".

In JavaScript 1.1, you can simulate the action of a Reset button with the reset() method of the Form object.
Also in JavaScript 1.1, the onreset event handler of the Form object is invoked before the form is reset. This
event handler can cancel the reset by returning false.

See Also

Button, Form, HTMLElement, Input; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Reset.onclick the handler invoked when a Reset button is clicked

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

<input type="reset" onclick="handler" ... >

reset.onclick

Description

The onclick property of a Reset object refers to an event handler function that is invoked when
the user clicks on the Reset button. See the HTMLElement.onclick reference page for complete
details. Note, however, that Reset.onclick has been supported since JavaScript 1.0, unlike
the generalized HTMLElement.onclick handler.

The Reset button has the special function of resetting all form elements to their default value. The
onclick event handler may add any additional functionality to the Reset button. In JavaScript
1.1, the onclick handler may return false to prevent the Reset object from resetting the form.
(For example, the onclick handler could use confirm() to ask the user to confirm the reset
and return false if it was not confirmed.)

See Also

Form.onreset, Form.reset(), HTMLElement.onclick; Chapter 19; EventListener, EventTarget, and
MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Screen provides information about the display

Availability

JavaScript 1.2

Synopsis

screen

Properties

availHeight

Specifies the available height, in pixels, of the screen on which the web browser is
displayed. On operating systems such as Windows, this available height does not include
vertical space allocated to semipermanent features, such as the task bar at the bottom of
the screen.

availLeft [Netscape 4]

Specifies the leftmost X-coordinate that is not allocated to a semipermanent display
feature, such as an application shortcut bar or the Windows 95 task bar.

availTop [Netscape 4]

Specifies the topmost Y-coordinate that is not allocated to a semipermanent display
feature, such as an application shortcut bar or the Windows 95 task bar.

availWidth

Specifies the available width, in pixels, of the screen on which the web browser is
displayed. On operating systems such as Windows, this available width does not include
horizontal space allocated to semipermanent features, such as application shortcut bars.

colorDepth

Specifies the base-2 logarithm of the number of colors allocated by the web browser and
available for displaying images. For example, if a browser preallocates 128 colors,
screen.colorDepth would be 7. On systems that do not allocate color palettes, this
value is the same as the number of bits-per-pixel for the screen.

In IE 4, colorDepth specifies the color depth of the screen in bits-per-pixel, rather than the
depth of a preallocated color palette. The screen.pixelDepth property provides this value in
Netscape.

height

Specifies the total height, in pixels, of the screen on which the web browser is displayed.
See also availHeight.

pixelDepth [Netscape 4]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pixelDepth [Netscape 4]

Specifies the color depth, in bits-per-pixel, of the screen on which the web browser is
displayed. Contrast with colorDepth.

width

Specifies the total width, in pixels, of the screen on which the web browser is displayed.
See also availWidth.

Description

The screen property of every Window refers to a Screen object. The static properties of this
global object contain information about the screen on which the browser is displayed. JavaScript
programs can use this information to optimize their output to match the user's display capabilities.
For example, a program can choose between large and small images based on the display size
and between 16-bit color images and 8-bit color images based on the screen's color depth. A
JavaScript program can also use the information about the size of the screen to center new
browser windows on the screen.

See Also

The screen property of the Window object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select a graphical selection list

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.element_name

form.elements[i]

Properties

Select inherits properties from Input and HTMLElement and defines or overrides the following:

length

A read-only integer that specifies the number of elements in the options[] array. The value of this
property is the same as options.length.

options

An array of Option objects, each of which describes one of the options displayed within the Select
element. See the Select.options[] reference page for details about this array, including techniques for
modifying the options displayed by the Select object.

selectedIndex

An integer that specifies the index of the selected option within the Select object. If no option is
selected, selectedIndex is -1. If more than one option is selected, selectedIndex specifies the
index of the first one only.

In JavaScript 1.0, selectedIndex is a read-only property. In JavaScript 1.1, it is read/write. Setting the
value of this property selects the specified option and deselects all other options, even if the Select object
has the multiple attribute specified. When you're doing list-box selection (instead of drop-down menu
selection), you can deselect all options by setting selectedIndex to -1. Note that changing the selection in
this way does not trigger the onchange() event handler.

type [JavaScript 1.1]

A read-only string property shared by all form elements; it specifies the type of the element. The
Select object is unusual in that there are two possible values for the type property. If the Select
object allows only a single selection (i.e., if the multiple attribute does not appear in the object's
HTML definition), the value of the type property is "select-one". If the multiple attribute does
appear, the value of the type attribute is "select-multiple". See also the Input.type reference page.

Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select inherits the methods of Input and HTMLElement.

Event Handlers

Select inherits event handlers from Input and HTMLElement and defines or overrides the following:

onchange

Invoked when the user selects or deselects an item.

HTML Syntax

A Select element is created with a standard HTML <select> tag. Options to appear within the Select
element are created with the <option> tag:

<form>

 ...

<select

 name="name" // A name that identifies this element; specifies name property

 [size="integer"] // Number of visible options in Select element

 [multiple] // Multiple options may be selected, if present

 [onchange="handler"] // Invoked when the selection changes

>

<option value="value1" [selected]> option_label1

<option value="value2" [selected]> option_label2

// Other options here

</select>

 ...

</form>

Description

The Select element represents a graphical list of choices for the user. If the multiple attribute is present in
the HTML definition of the element, the user may select any number of options from the list. If that attribute
is not present, the user may select only one option, and options have a radio button behavior -- selecting
one deselects whichever was previously selected.

The options in a Select element may be displayed in two distinct ways. If the size attribute has a value
greater than 1, or if the multiple attribute is present, they are displayed in a list box which is size
high in the browser window. If size is smaller than the number of options, the list box includes a scrollbar
so all the options are accessible. On the other hand, if size is specified as 1 and multiple is not

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

so all the options are accessible. On the other hand, if size is specified as 1 and multiple is not
specified, the currently selected option is displayed on a single line, and the list of other options is made
available through a drop-down menu. The first presentation style displays the options clearly but requires
more space in the browser window. The second style requires minimal space but does not display
alternative options as explicitly.

The options[] property of the Select element is the most interesting. This is the array of Option objects
that describe the choices presented by the Select element. The length property specifies the length of this
array (as does options.length). See the documentation of the Option object for details.

In JavaScript 1.1, the options displayed by the Select element may be dynamically modified. You can
change the text displayed by an Option object simply by setting its text property. You can change the
number of options displayed by the Select element by setting the options.length property. And you can
create new options for display with the Option() constructor function. See the Select.options[] and
reference pages for details.

Note that the Select object is a kind of Input object and inherits from Input, despite the fact that Select
objects are not created with HTML <input> tags.

See Also

Form, HTMLElement, Input, Option; HTMLSelectElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select.onchange the handler invoked when the selection changes

Availability

JavaScript 1.0

Synopsis

<select ... onchange="handler" ... >

select.onchange

Description

The onchange property of a Select object refers to an event handler function that is invoked
when the user selects or deselects an option. See the Input.onchange reference page for further
details on this event handler.

See Also

Input.onchange, Option; Chapter 19; Event, EventListener, and EventTarget in the DOM
reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Select.options[] the choices in a Select object

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

select.options[i]

select.options.length

Description

The options[] property contains an array of Option objects, each of which describes one of the
selection options presented within the Select object select. The options.length property
specifies the number of elements in the array, as does the select.length property. See the
Option object for further details.

In JavaScript 1.1, you can modify the options displayed in a Select object in any of the following
ways:

If you set options.length to 0, all options in the Select object are cleared.

If you set options.length to a value less than the current value, the number of options
in the Select object is decreased, and those at the end of the array disappear.

If you set an element in the options[] array to null, that option is removed from the
Select object, and the elements above it in the array are moved down, changing their
indices to occupy the new space in the array.

If you create a new Option object with the Option() constructor (see the "Option"
reference entry), you can add that option to the end of list of options in the Select object by
assigning the newly created option to a position at the end of the options[] array. To do
this, set options[options.length].

See Also

Option

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Style Cascading Style Sheet attributes

Availability

Internet Explorer 4, Netscape 6

Synopsis

htmlElement.style

Properties

The Style object has properties corresponding to each of the CSS attributes supported by the
browser.

Description

The properties of the Style object correspond directly to the CSS attributes supported by the
browser. For compatibility with JavaScript syntax, however, hyphenated CSS attribute names are
written with mixed capitalization with the hyphen removed. So, for example, the CSS color
attribute is represented by the color property of the Style object, while the CSS background-
color attribute is represented by the backgroundColor property of the Style object. See
Chapter 18 for more information about element styles.

See Also

HTMLElement.style; Chapter 18; CSSStyleDeclaration and CSS2Properties in the DOM reference
section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Submit a button to submit a form

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

form.elements['name']

Properties

Submit inherits properties from Input and HTMLElement and defines or overrides the following:

value

A read-only string that specifies the text that appears within the Submit button. It is specified by
value attribute of the <input> tag that created the button. If no value attribute is specified, the default
value is "Submit Query" or some similar string in the browser's default language. In browsers that
cannot reflow document content, this property may be read-only.

Methods

Submit inherits methods from Input and HTMLElement.

Event Handlers

Submit inherits event handlers from Input and HTMLElement and defines or overrides the following:

onclick

Invoked when the Submit button is clicked.

HTML Syntax

A Submit object is created with a standard HTML <input> tag:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Submit object is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="submit" // Specifies that this is a Submit button

 [value="label"] // The text that is to appear within the button

 // Specifies the value property

 [name="name"] // A name you can use later to refer to the button

 // Specifies the name property

 [onclick="handler"] // JavaScript statements to be executed when the button

 // is clicked

 >

 ...

</form>

Submit objects can also be created with the HTML 4 <button> tag:

<button id="name"

 type="submit"

 value="value"

 onclick="handler">label

</button>

Description

The Submit element has the same properties and methods as the Button object but has a more specialized
purpose. When a Submit button is clicked, it submits the data in the form that contains the button to the server
specified by the form's action attribute and loads the resulting HTML page sent back by that server. In
JavaScript 1.1, the exception is that the form is not submitted if either the Submit.onclick or
Form.onsubmit event handler returns false.

Note that in JavaScript 1.1 the Form.submit() method provides an alternative way to submit a form.

If no value attribute is specified for a Submit object, it is typically labeled "Submit Query". In some forms, it may
make more sense to label the button "Submit", "Done", or "Send".

See Also

Button, Form.onsubmit, Form.submit(), HTMLElement, Input; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Submit.onclick invoked when a Submit button is clicked

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

<input type="submit" onclick="handler" ... >

submit.onclick

Description

The onclick property of a Submit object refers to an event handler function that is invoked when
the user clicks on the Submit button. See the HTMLElement.onclick reference page for complete
details. Note, however, that Submit.onclick has been supported since JavaScript 1.0, unlike
the generalized HTMLElement.onclick handler.

The Submit button has the special function of submitting the form to a server. The onclick
event handler may add any additional functionality to the Submit button. In JavaScript 1.1 the
onclick handler may return false to prevent the Submit object from submitting the form. (For
example, the onclick handler could perform form validation and return false if required fields
in the form are not filled in.)

See Also

Form.onsubmit, Form.submit(), HTMLElement.onclick; Chapter 19; EventListener, EventTarget,
and MouseEvent in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text a graphical text input field

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

Text inherits properties from Input and HTMLElement and defines or overrides the following:

value

A read/write string that specifies the text displayed in the text input field. This text may have been
by the user, or it may be a default value specified by the document or by a script. The initial value of this
property is specified by the value attribute of the <input> tag that defines the Text object. When the user
types characters into the Text object, the value property is updated to match the user's input. If you set
the value property explicitly, the string you specify is displayed in the Text object. This property also
specifies the string that is sent to the server when the form is submitted.

Methods

Text inherits the methods of Input and HTMLElement.

Event Handlers

Text inherits the event handlers of Input and HTMLElement and defines or overrides the following:

onchange

Invoked when the user changes the value in the Text element and moves the keyboard focus elsewhere.
This event handler is not invoked for every keystroke in the Text element, but only when the user
completes an edit.

HTML Syntax

A Text element is created with a standard HTML <input> tag:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Text element is created with a standard HTML <input> tag:

<form>

 ...

 <input

 type="text" // Specifies that this is a Text element

 [name="name"] // A name you can use later to refer to this element

 // Specifies the name property

 [value="default"] // Default value transmitted when the form is submitted

 // Specifies the defaultValue property

 [size="integer"] // How many characters wide the element is

 [maxlength="integer"] // Maximum allowed number of input characters

 [onchange="handler"] // The onchange() event handler

 >

 ...

</form>

Description

The Text element represents a text input field in a form. The size attribute specifies the width, in characters,
the input field as it appears on the screen, and the maxlength attribute specifies the maximum number
characters the user is allowed to enter.

Besides these HTML attributes, value is the main property of interest for the Text element. You can read this
property to obtain the user's input or set it to display arbitrary (unformatted) text in the input field.

Usage

Use the Password element instead of the Text element when the value you are asking the user to enter is
sensitive information, such as a password that should not be displayed openly on the screen. Use a
element to allow the user to enter multiple lines of text.

When a form contains only one Text or Password element, the form is automatically submitted if the user strikes
the Return key in that Text or Password element. In many forms, this is a useful shortcut. In some, however, it
can be confusing if the user strikes Return and submits the form before entering input into other form elements,
such as Checkboxes and Radio buttons. You can sometimes minimize this confusion by placing Text elements
with their default submission action at the bottom of the form.

See Also

Form, Input, Password, Textarea; HTMLInputElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text.onchange the handler invoked when input value changes

Availability

JavaScript 1.0

Synopsis

<input type="text" onchange="handler" ... >

text.onchange

Description

The onchange property of a Text element refers to an event handler function that is invoked
when the user changes the value in the input field and then "commits" those changes by moving
keyboard focus (i.e., by clicking the mouse elsewhere or pressing Tab or Return).

Note that the onchange event handler is not invoked when the value property of a Text object is
set by JavaScript. Also note that this handler is intended to process a complete change to the
input value, and therefore it is not invoked on a keystroke-by-keystroke basis. See the
HTMLElement.onkeypress reference page for information on receiving notification of every key
press event.

See Input.onchange for complete details about the onchange event handler.

See Also

HTMLElement.onkeypress, Input.onchange; Chapter 19; Event, EventListener, and EventTarget
in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Textarea a multiline text input area

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Inherits from/Overrides

Inherits from Input, HTMLElement

Synopsis

form.name

form.elements[i]

Properties

Textarea inherits the properties of Input and HTMLElement and defines or overrides the following:

value

A read/write string property. The initial value of this property is the same as the defaultValue
property: the plain text (i.e., without any HTML tags) that appears between the <textarea> and
</textarea> tags. When the user types characters into the Textarea object, the value property is
updated to match the user's input. If you set the value property explicitly, the string you specify
displayed in the Textarea object. This value property contains the string that is sent to the server
when the form is submitted.

Methods

Textarea inherits the methods of Input and HTMLElement.

Event Handlers

Textarea inherits the event handlers of Input and HTMLElement and defines or overrides the following:

onchange

Invoked when the user changes the value in the Textarea element and moves the keyboard focus
elsewhere. This event handler is not invoked for every keystroke in the Textarea element, but only
when the user completes an edit.

HTML Syntax

A Textarea element is created with standard HTML <textarea> and </textarea> tags:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A Textarea element is created with standard HTML <textarea> and </textarea> tags:

<form>

 ...

 <textarea

 [name="name"] // A name that can be used to refer to this element

 [rows="integer"] // How many lines tall the element is

 [cols="integer"] // How many characters wide the element is

 [onchange="handler"] // The onchange() event handler

 >

 plain_text // The initial text; specifies defaultValue

 </textarea>

 ...

</form>

Description

The Textarea element represents a text input field in a form. The name attribute specifies a name for the
element. This is mandatory if the form is to be submitted, and it also provides a convenient way to refer to
the Textarea element from JavaScript code. The cols attribute specifies the width, in characters, of the
element as it appears on the screen, and the rows attribute specifies the height, in lines of text, of the
element. The wrap attribute specifies how long lines should be handled: the value off specifies that they
should be left as-is, the value virtual specifies that they should be displayed with line breaks but
transmitted without them, and the value physical specifies that they should be displayed and transmitted
with line breaks inserted.

In addition to these HTML attributes, value is the main property of interest for the Textarea element. You
can read this property to obtain the user's input or set it to display arbitrary (unformatted) text in the
Textarea. The initial value of the value property (and the permanent value of the defaultValue
property) is the text that appears between the <textarea> and </textarea> tags.

Note that the Textarea object is a kind of Input object and inherits from Input, despite the fact that Textarea
objects are not created with HTML <input> tags.

Usage

If you need only a single line of input text, use the Text element. If the text to be input is sensitive
information, such as a password, use the Password element.

See Also

Form, HTMLElement, Input, Password, Text; HTMLTextAreaElement in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Textarea.onchange the handler invoked when input value changes

Availability

JavaScript 1.0

Synopsis

<textarea onchange="handler" ... >... </textarea>

textarea.onchange

Description

The onchange property of a Textarea element refers to an event handler function that is invoked
when the user changes the value in the text area and then "commits" those changes by moving
keyboard focus elsewhere.

Note that the onchange event handler is not invoked when the value property of a Text object is
set by JavaScript. Also note that this handler is intended to process a complete change to the
input value, and therefore it is not invoked on a keystroke-by-keystroke basis. See the
HTMLElement.onkeypress reference page for information on receiving notification of every key
press event.

See Input.onchange for complete details about the onchange event handler.

See Also

HTMLElement.onkeypress, Input.onchange; Chapter 19; Event, EventListener, and EventTarget
in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

URL see Link, Location, or Document.URL

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window a web browser window or frame

Availability

JavaScript 1.0; enhanced in JavaScript 1.1 and 1.2

Synopsis

self window window.frames[i]

Properties

The Window object defines the following properties. Nonportable, browser-specific properties are
listed separately after this list.

closed

A read-only boolean value that specifies whether the window has been closed. When a
browser window closes, the Window object that represents it does not simply disappear.
The Window object continues to exist, but its closed property is set to true.

defaultStatus

A read/write string that specifies the default message that appears in the status line. See
the Window.defaultStatus reference page.

document

A read-only reference to the Document object that describes the document contained in
this window or frame. See the Document object for details.

frames[]

An array of Window objects, one for each frame contained within the this window. The
frames.length property contains the number of elements in the frames[] array. Note
that frames referenced by the frames[] array may themselves contain frames and may
have a frames[] array of their own.

history

A read-only reference to the History object of this window or frame. See the History object
for details.

length

The number of frames contained in this window or frame. length also specifies the
number of elements in the frames[] array.

location

The Location object for this window or frame. This object specifies the URL of the currently
loaded document. Setting this property to a new URL string causes the browser to load and
display the contents of that URL. See the Location object for further details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Math

A reference to an object holding various mathematical functions and constants. See the
Math object for details.

name

A string that contains the name of the window. The name is optionally specified when the
window is created with the open() method. Read-only in JavaScript 1.0; read/write in
JavaScript 1.1. See the Window.name reference page.

navigator

A read-only reference to the Navigator object, which provides version and configuration
information about the web browser. See the Navigator object for details.

opener [JavaScript 1.1]

A read/write reference to the Window object that contained the script that called open()
to open this top-level browser window. This property is valid only for Window objects that
represent top-level windows, not those that represent frames. The opener property is
useful so that a newly created window can refer to variables and functions defined in the
window that created it.

parent

A read-only reference to the Window object that contains this window or frame. If this
window is a top-level window, parent refers to the window itself. If this window is a frame,
the parent property refers to the window or frame that contains it.

screen [JavaScript 1.2]

The Screen object that is shared by all windows in a browser. This Screen object contains
properties that specify information about the screen: the number of available pixels and the
number of available colors. See the Screen object for details.

self

A read-only reference to this window itself. This is a synonym for the window property.

status

A read/write string that specifies the current contents of the browser's status line. See the
Window.status reference page for details.

top

A read-only reference to the top-level window that contains this window. If this window is a
top-level window itself, the top property simply contains a reference to the window itself. If
this window is a frame, the top property refers to the top-level window that contains the
frame. Contrast with the parent property.

window

The window property is identical to the self property; it contains a reference to this
window.

Netscape Properties

innerHeight, innerWidth [Netscape 4]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

innerHeight, innerWidth [Netscape 4]

Read/write properties that specify the height and width, in pixels, of the document display
area of this window. These dimensions do not include the height of the menu bar, toolbars,
scrollbars, and so on. As a security restriction, you are not allowed to set either of these
properties to less than 100 pixels.

java [Netscape 3]

A reference to the JavaPackage object that is the top of the package name hierarchy for
the core java.* packages that comprise the Java language. See the JavaPackage
reference page.

locationbar.visible [Netscape 4]

A read-only boolean that specifies whether the window displays a location bar. See window
features in the Window.open() reference page.

menubar.visible [Netscape 4]

A read-only boolean that specifies whether the window displays a menu bar. See window
features in the Window.open() reference page.

netscape [Netscape 3]

A reference to the JavaPackage object which is the top of the Java package name
hierarchy for the netscape.* Java packages from Netscape. See the JavaPackage
reference page.

outerHeight, outerWidth [Netscape 4]

Read/write integers that specify the total height and width, in pixels, of the window. These
dimensions include the height and width of the menu bar, toolbars, scrollbars, window
borders, and so on.

Packages [Netscape 3]

A reference to a JavaPackage object that represents the top of the Java package name
hierarchy. For example, use Packages.java.lang to refer to the java.lang package. See
the JavaPackage reference page.

pageXOffset, pageYOffset [Netscape 4]

Read-only integers that specify the number of pixels that the current document has been
scrolled to the right (pageXOffset) and down (pageYOffset).

personalbar.visible [Netscape 4]

A read-only boolean that specifies whether this window displays a "personal bar" of
bookmarks. See window features in the Window.open() reference page.

screenX, screenY [Netscape 4]

Read-only integers that specify the X- and Y-coordinates of the upper-left corner of the
window on the screen. If this window is a frame, these properties specify the X- and Y-
coordinates of the top-level window that contains the frame.

scrollbars.visible [Netscape 4]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

scrollbars.visible [Netscape 4]

A read-only boolean that specifies whether the scroll bars are visible in this window, or
would be visible if the document was long enough or wide enough to require them. What
this property really specifies is whether scrolling is enabled in this window. See window
features in the Window.open() reference page.

statusbar.visible [Netscape 4]

A read-only boolean that specifies whether this window has a status line. See window
features in the Window.open() reference page.

sun [Netscape 3]

A reference to the JavaPackage object which is the top of the Java package name
hierarchy for the sun.* Java packages from Sun Microsystems. See the JavaPackage
reference page.

toolbar.visible [Netscape 4]

A read-only boolean that specifies whether this window displays a toolbar. See window
features in the Window.open() reference page.

Internet Explorer Properties

clientInformation [IE 4]

An IE-specific synonym for the navigator property. Both refer to a Navigator object.
Despite the fact that clientInformation has a better name and is less Netscape-
specific than navigator, it is not supported by Netscape and is therefore not portable.

event [IE 4]

An Event object that contains the details of the most recent event to occur within window.
In the Netscape 4 event model and the DOM standard event model, an Event object
describing the event is passed as an argument to every event handler. In the IE event
model, however, no Event object is passed, and event handlers must obtain information
about the event from the event property of the Window object.

Methods

The Window object has the following portable methods. Nonportable, browser-specific methods
are listed separately after this list.

alert()

Displays a simple message in a dialog box.

blur()

Takes keyboard focus from the top-level browser window; this sends the window to the
background on most platforms.

clearInterval()

Cancels periodic execution of code.

clearTimeout()

Cancels a pending timeout operation.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

close()

Closes a window.

confirm()

Asks a yes-or-no question with a dialog box.

focus()

Gives the top-level browser window keyboard focus; this brings the window to the front on
most platforms.

moveBy()

Moves the window by a relative amount.

moveTo()

Moves the window to an absolute position.

open()

Creates and opens a new window.

print()

Simulates a click on the browser's Print button. IE 5 and Netscape 4 only.

prompt()

Asks for simple string input with a dialog box.

resizeBy()

Resizes the window by a specified amount.

resizeTo()

Resizes the window to a specified size.

scroll()

Scrolls the document displayed in the window.

scrollBy

Scrolls the window by a specified amount.

scrollTo()

Scrolls the window to a specified position.

setInterval()

Executes code at periodic intervals.

setTimeout()

Executes code after a specified amount of time elapses.

Netscape Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

back()

Behaves as if the user clicked the Back button.

captureEvents()

Specifies event types to be routed directly to the window.

forward()

Simulates a click on the browser's Forward button.

handleEvent()

Invokes the appropriate event handler for a given Event object.

home()

Displays the browser's home page.

releaseEvents()

Specifies types of events that will no longer be captured.

routeEvent()

Passes an Event to the appropriate handler of the next interested object.

stop()

Simulates a click on the browser's Stop button.

Internet Explorer Methods

navigate()

Loads and displays the specified URL.

Event Handlers

onblur

Invoked when the window loses focus.

onerror

Invoked when a JavaScript error occurs.

onfocus

Invoked when the window gains focus.

onload

Invoked when the document (or frameset) is fully loaded.

onmove

Invoked when the window is moved. Netscape 4 only.

onresize

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onresize

Invoked when the window is resized.

onunload

Invoked when the browser leaves the current document or frameset.

Description

The Window object represents a browser window or frame. It is documented in detail in Chapter
13. In client-side JavaScript, the Window serves as the "global object," and all expressions are
evaluated in the context of the current Window object. This means that no special syntax is
required to refer to the current window, and you can use the properties of that window object as if
they were global variables. For example, you can write document rather than
window.document. Similarly, you can use the methods of the current window object as if they
were functions: e.g., alert() instead of window.alert().

The Window object does have window and self properties that refer to the window object itself.
You can use these to make the current window reference explicit rather than implicit. In addition
to these two properties, the parent and top properties and the frames[] array refer to other
Window objects related to the current one.

To refer to a frame within a window, use:

frames[i] or self.frames[i] // Frames of current window

window.frames[i] // Frames of specified window

To refer to the parent window (or frame) of a frame, use:

parent or self.parent // Parent of current window

window.parent // Parent of specified window

To refer to the top-level browser window from any frame contained within it, use:

top or self.top // Top window of current frame

window.top // Top window of specified frame

New top-level browser windows are created with the Window.open() method. When you call
this method, save the return value of the open() call in a variable and use that variable to
reference the new window. In JavaScript 1.1, the opener property of the new window is a
reference to the window that opened it.

In general, the methods of the Window object manipulate the browser window or frame in some
way. The alert(), confirm(), and prompt() methods are notable: they interact with the
user through simple dialog boxes.

See Chapter 13 for an in-depth overview of the Window object, and see the individual reference
pages for complete details on all the Window properties, methods, and event handlers.

See Also

Document; Chapter 13; AbstractView in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.alert() display a message in a dialog box

Availability

JavaScript 1.0

Synopsis

window.alert(message)

Arguments

message

The plain-text (not HTML) string to display in a dialog box popped up over window.

Description

The alert() method displays the specified message to the user in a dialog box. The dialog
box contains an OK button that the user can click to dismiss the dialog box.

On Windows platforms, the dialog box displayed by alert() is modal, and JavaScript
execution pauses until the user dismisses it. In Netscape 4 on Unix platforms, however, the
alert() dialog box is nonmodal, and execution continues uninterrupted.

Usage

Perhaps the most common use of the alert() method is to display error messages when the
user's input to some form element is invalid in some way. The alert dialog box can inform the user
of the problem and explain what needs to be corrected to avoid the problem in the future.

The appearance of the alert() dialog box is platform-dependent, but it generally contains
graphics that indicate an error, warning, or alert message of some kind. While alert() can
display any desired message, the alert graphics of the dialog box mean that this method is not
appropriate for simple informational messages like "Welcome to my home page" or "You are the
177th visitor this week!"

Note that the message displayed in the dialog box is a string of plain text, not formatted HTML.
You can use the newline character "\n" in your strings to break your message across multiple
lines. You can also do some rudimentary formatting using spaces and can approximate horizontal
rules with underscore characters, but the results depend greatly on the font used in the dialog
box, and thus are system-dependent.

See Also

Window.confirm(), Window.prompt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.back() go back to previous document

Availability

Netscape 4

Synopsis

window.back()

Description

Calling back() makes the browser display the document previously displayed in window,
exactly as if the user had clicked on the window's Back button.

Note that for framed documents, there may be differences between the behavior of
Window.back() and History.back().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.blur() remove keyboard focus from a top-level window

Availability

JavaScript 1.1

Synopsis

window.blur()

Description

The blur() method removes keyboard focus from the top-level browser window specified by
the Window object. If the Window object is a frame, keyboard focus is given to the top-level
window that contains that frame. On most platforms, a top-level window is sent to the background
(i.e., to the bottom of the window stack) when keyboard focus is taken from it.

See Also

Window.focus()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.captureEvents() specify event types to be captured Netscape 4

Availability

Synopsis

window.captureEvents(eventmask)

document.captureEvents(eventmask)

layer.captureEvents(eventmask)

Arguments

eventmask

An integer that specifies the type of events that the window, document, or layer should
capture. This value should be one of the static event type constants defined by the Event
class, or it should be a group of event type constants combined with the bitwise-OR (|) or
addition operators.

Description

captureEvents() is a method of the Window, Document, and Layer classes. Its purpose is
the same for all three: in the Netscape 4 event model, captureEvents() specifies that all
events of a given type or types occurring within the specified window, document, or layer
should be passed to the window, document, or layer instead of to the object on which they
actually occurred.

The type of the events to be captured is specified by eventmask, a bitmask comprised of static
constants defined by the Event class. See the "Event.TYPE" reference page for a full list of these
bitmask constants.

See Also

Event, Window.handleEvent(), Window.releaseEvents(), Window.routeEvent(); Chapter 19;
EventTarget.addEventListener() in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.clearInterval() stop periodically executing code

Availability

JavaScript 1.2

Synopsis

window.clearInterval(intervalId)

Arguments

intervalId

The value returned by the corresponding call to setInterval().

Description

clearInterval() stops the repeated execution of code that was started by a call to
setInterval(). intervalId must be the value that was returned by a call to
setInterval().

See Also

Window.setInterval()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.clearTimeout() cancel deferred execution

Availability

JavaScript 1.0

Synopsis

window.clearTimeout(timeoutId)

Arguments

timeoutId

A value returned by setTimeout() that identifies the timeout to be canceled.

Description

clearTimeout() cancels the execution of code that has been deferred with the
setTimeout() method. The timeoutId argument is a value returned by the call to
setTimeout() and identifies which (of possibly more than one) block of deferred code to
cancel.

See Also

Window.setTimeout()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.close() close a browser window

Availability

JavaScript 1.0

Synopsis

window.close()

Description

The close() method closes the top-level browser window specified by window. A window can
close itself by calling self.close() or simply close().

In JavaScript 1.1, only windows opened by JavaScript can be closed by JavaScript. This prevents
malicious scripts from causing the user's browser to exit.

There is no meaningful way to close a frame within a window. Thus, the close() method
should be invoked only for Window objects that represent top-level browser windows, not for
those that represent frames.

See Also

Window.open(), the closed and opener properties of Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.confirm() ask a yes-or-no question

Availability

JavaScript 1.0

Synopsis

window.confirm(question)

Arguments

question

The plain text (not HTML) string to be displayed in the dialog box. It should generally
express a question you want the user to answer.

Returns

true if the user clicks the OK button; false if the user clicks the Cancel button.

Description

The confirm() method displays the specified question in a dialog box that pops up over
window. The appearance of the dialog box is platform-dependent, but it generally contains
graphics that indicate that the user is being asked a question. The dialog box contains OK and
Cancel buttons that the user can use to answer the question. If the user clicks the OK button,
confirm() returns true. If the user clicks Cancel, confirm() returns false.

The dialog box that is displayed by the confirm() method is modal -- that is, it blocks all user
input to the main browser window until the user dismisses the dialog box by clicking on the OK or
Cancel buttons. Since this method returns a value depending on the user's response to the dialog
box, JavaScript execution pauses in the call to confirm(), and subsequent statements are not
executed until the user responds to the dialog box.

Usage

Note that the question displayed in the dialog box is a string of plain text, not formatted HTML.
You can use the newline character, "\n", in your strings to break your question across multiple
lines. You can also do some rudimentary formatting using spaces and can approximate horizontal
rules with underscore characters, but the results depend greatly on the font used in the dialog box
and thus are system-dependent.

Also, there is no way to change the labels that appear in the buttons of the dialog box (to make
them read Yes and No, for example). Therefore, you should take care to phrase your question or
message in such a way that OK and Cancel are suitable responses.

See Also

Window.alert(), Window.prompt()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.defaultStatus the default status line text

Availability

JavaScript 1.0

Synopsis

window.defaultStatus

Description

defaultStatus is a read/write string property that specifies the default text that will appear in
the window's status line. Web browsers typically use the status line to display the browser's
progress while loading a file and to display the destination of hypertext links that the mouse is
over. While it is not displaying any of these transient messages, the status line is, by default,
blank. However, you can set the defaultStatus property to specify a default message to be
displayed when the status line is not otherwise in use, and you can read the defaultStatus
property to determine what the default message is. The text you specify may be temporarily
overwritten with other messages, such as those that are displayed when the user moves the
mouse over a hypertext link, but the defaultStatus message is always redisplayed when the
transient message is erased.

If you set defaultStatus for a Window object that is a frame, the message you specify is
visible whenever the mouse is within that frame (regardless of whether that frame has focus).
When you specify defaultStatus for a top-level window that contains no frames, your
message is always visible when the window is visible. If you specify defaultStatus for a top-
level window that contains frames, your message is visible only when the mouse is over the
borders that separate the frames. Thus, in order to guarantee visibility of a message in a framed
document, you should set defaultStatus for all frames in the document.

Usage

defaultStatus is used to display semipermanent messages in the status line. To display
transient messages, use the status property.

See Also

Window.status

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.focus() give keyboard focus to a top-level window

Availability

JavaScript 1.1

Synopsis

window.focus()

Description

The focus() method gives keyboard focus to the top-level browser window specified by the
Window object. If the Window object is a frame, keyboard focus is given to the frame and to the
top-level window that contains that frame.

On most platforms, a top-level window is brought forward to the top of the window stack when it is
given focus.

See Also

Window.blur()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.forward() go forward to next document

Availability

Netscape 4

Synopsis

window.forward()

Description

Calling forward() makes the browser display the next document in window, exactly as if the
user had clicked on the window's Forward button.

Note that for framed documents, there may be differences between the behavior of
Window.forward() and History.forward().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.handleEvent() pass an event to the appropriate handler

Availability

Netscape 4

Synopsis

window.handleEvent(event)

document.handleEvent(event)

layer.handleEvent(event)

htmlElement.handleEvent(event)

Arguments

event

An Event object to be handled.

Returns

Whatever value is returned by the event handler that is invoked to handle event.

Description

handleEvent() is a method of the Window, Document, and Layer classes and of all HTML
elements that support event handlers. When invoked on any object o, handleEvent()
determines the type of its event argument and passes that Event object to the appropriate
handler of o.

See Also

Window.routeEvent(); Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.home() display the home page

Availability

Netscape 4

Synopsis

window.home()

Description

Calling home() makes the browser display its own configured home page, as if the user had
clicked the browser's Home button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.moveBy() move a window to a relative position

Availability

JavaScript 1.2

Synopsis

window.moveBy(dx, dy)

Arguments

dx

The number of pixels to move the window to the right.

dy

The number of pixels to move the window down.

Description

moveBy() moves the window to the relative position specified by dx and dy. For security
reasons, browsers may restrict scripts so they cannot move a window off the screen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.moveTo() move a window to an absolute position

Availability

JavaScript 1.2

Synopsis

window.moveTo(x, y)

Arguments

x

The X-coordinate of the new window position.

y

The Y-coordinate of the new window position.

Description

moveTo() moves the window so its upper-left corner is at the position specified by x and y. For
security resasons, browsers may restrict this method so it cannot move a window offscreen.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.name the name of a window

Availability

JavaScript 1.0; read/write in JavaScript 1.1

Synopsis

window.name

Description

The name property is a string that specifies the name of window. This property is read-only in
JavaScript 1.0 and read/write in JavaScript 1.1. The name of a top-level window is initially
specified by the name argument of the Window.open() method. The name of a frame is initially
specified by the name attribute of the <frame> HTML tag.

The name of a top-level window or frame may be used as the value of a target attribute of an
<a> or <form> tag. Using the target attribute in this way specifies that the hyperlinked
document or the results of form submission should be displayed in the named window.

The initial window opened by the browser and any windows opened with the New Web Browser
menu item initially have no name (i.e., name == ""), so these windows cannot be addressed
with a target attribute from a separate top-level window. In JavaScript 1.1, you can set the
name attribute to remedy this situation.

See Also

Form.target, Link.target

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.navigate() load a new URL

Availability

Internet Explorer 3

Synopsis

window.navigate(url)

Arguments

url

A string that specifies the URL to be loaded and displayed.

Description

The Window.navigate() method of Internet Explorer loads the specified url into the
specified window ("navigates to" the url).

navigate() is not supported by Netscape. The same function can be accomplished both in
Netscape and IE by assigning the desired url to the location property of the desired window.

See Also

Location, the location property of the Window object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onblur the handler invoked when the window loses keyboard focus

Availability

JavaScript 1.1

Synopsis

<body onblur="handler" ... >

<frameset onblur="handler" ... >

window.onblur

Description

The onblur property of a Window specifies an event handler function that is invoked when the
window loses keyboard focus.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onblur attribute of the <body> or <frameset> tags.

In the Netscape 4 event model, the onblur handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

Usage

If your web page has animation, you can use the onblur() event handler to stop the animation
when the window doesn't have the input focus. In theory, if the window doesn't have the focus, the
user probably can't see it or isn't paying attention to it.

See Also

Window.blur(), Window.focus(), Window.onfocus; Chapter 19; Event, EventListener, and
EventTarget in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onerror the handler invoked when a JavaScript error occurs

Availability

JavaScript 1.1; buggy in Netscape 6/6.1

Synopsis

You register an onerror event handler like this:

window.onerror=handler-func

The browser invokes the handler like this:

window.onerror(message, url, line)

Arguments

message

A string that specifies the error message for the error that occurred.

url

A string that specifies the URL of the document in which the error occurred.

line

A number that specifies the line number at which the error occurred.

Returns

true if the handler has handled the error and JavaScript should take no further action; false if
JavaScript should post the default error message dialog box for this error.

Description

The onerror property of the Window object specifies an error handler function that is invoked
when a JavaScript error occurs in code executing in that window. By default, JavaScript displays
an error dialog box when an error occurs. You can customize error handling by providing your
own onerror event handler.

You define an onerror event handler for a window by setting the onerror property of a Window
object to an appropriate function. Note that unlike other event handlers in JavaScript, the
onerror handler cannot be defined in an HTML tag.

When the onerror handler is invoked, it is passed three arguments: a string specifying the error
message, a string specifying the URL of the document in which the error occurred, and a number
that specifies the line number at which the error occurred. An error handling function may do
anything it wants with these arguments: it may display its own error dialog box or log the error in
some way, for example. When the error handling function is done, it should return true if it has
completely handled the error and wants JavaScript to take no further action or false if it has

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

completely handled the error and wants JavaScript to take no further action or false if it has
merely noted or logged the error in some fashion and still wants JavaScript to display the error
message in its default dialog box.

Note that while this event handler returns true to tell the browser to take no further action, most
Form and form element event handlers return false to prevent the browser from performing
some action, such as submitting a form. This inconsistency can be confusing.

You can turn off error handling entirely for a window by setting the onerror property of the
window to a function that returns true and does nothing else. You can restore the default error-
handling behavior (the dialog box) by setting onerror to a function that returns false and does
nothing else.

Bugs

This event handler is correctly triggered by errors in Netscape 6 and Netscape 6.1, but the values
passed as the message, URL, and line number arguments are incorrect, so although you can use
it to detect the occurrence of an error, you cannot use it to obtain any useful information about the
error.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onfocus the handler invoked when a window is given focus

Availability

JavaScript 1.1

Synopsis

<body onfocus="handler" ... >

<frameset onfocus="handler" ... >

window.onfocus

Description

The onfocus property of a Window specifies an event handler function that is invoked when the
window is given keyboard focus.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onfocus attribute of the <body> or <frameset> tags.

In the Netscape 4 event model, the onfocus handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

Usage

If your web page has animation, you can use the onfocus event handler to start the animation
and the onblur handler to stop it, so it runs only when the user is paying attention to the window.

See Also

Window.blur(), Window.focus(), Window.onblur; Chapter 19; Event, EventListener, and
EventTarget in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onload the handler invoked when a document finishes loading

Availability

JavaScript 1.0

Synopsis

<body onload="handler" ... > <frameset onload="handler" ... > window.onload

Description

The onload property of a Window specifies an event handler function that is invoked when a
document or frameset is completely loaded into its window or frame.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onload attribute of the <body> or <frameset> tags.

When the onload event handler is invoked, you can be certain that the document has fully
loaded, and therefore that all scripts within the document have executed, all functions within
scripts are defined, and all forms and other document elements have been parsed and are
available through the Document object.

Usage

If any of your document's event handlers depend on the document being fully loaded, you should
check that it is loaded before executing those handlers. If the network connection were to stall out
after a button appeared in the document but before the parts of the document that the button
relied on were loaded, the user would get unintended behavior or an error message after clicking
the button. One good way to verify that the document is loaded is to use the onload handler to
set a variable -- loaded, for example -- to true and to check the value of this variable before
doing anything that depends on the complete document being loaded.

See Also

Window.onunload; Chapter 19; Event, EventListener, and EventTarget in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onmove the handler invoked when a window is moved

Availability

Netscape 4; not supported on Netscape 4 Unix platforms

Synopsis

<body onmove="handler" ... >

<frameset onmove="handler" ... >

window.onmove

Description

The onmove property of the Window object specifies an event handler function that is invoked
when the user moves a top-level window to a new position on the screen.

The initial value of this property is a function that contains the JavaScript statements specified by
the onmove attribute of the HTML <body> or <frameset> tag that defined the window. When an
event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

The onmove handler function is passed an Event object as an argument. The properties of this
object contain information about the new position of the window.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onresize the handler invoked when a window is resized

Availability

JavaScript 1.2

Synopsis

<body onresize="handler" ... >

<frameset onresize="handler" ... >

window.onresize

Description

The onresize property of the Window object specifies an event handler function that is invoked
when the user changes the size of the window or frame.

The initial value of this property is a function that contains the JavaScript statements specified by
the onresize attribute of the HTML <body> or <frameset> tag that defined the window. When
an event handler function is defined by an HTML attribute, it is executed in the scope of element
rather than in the scope of the containing window.

In the Netscape 4 event model, the onresize handler function is passed an Event object as an
argument. In the IE event model, no argument is passed, but the applicable Event object is
available as the event property of the Window object that contains the element.

In Netscape, the new size of the window is available from the width and height properties of
the Event object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.onunload the handler invoked when the browser leaves a page

Availability

JavaScript 1.0

Synopsis

<body onunload="handler" ... >

<frameset onunload="handler" ... >

window.onunload

Description

The onunload property of a Window specifies an event handler function that is invoked when the
browser "unloads" a document or frameset in preparation for loading a new one.

The initial value of this property is a function that contains the semicolon-separated JavaScript
statements specified by the onunload attribute of the <body> or <frameset> tags. The
onunload event handler provides the opportunity to perform any necessary cleanup of the
browser state before a new document is loaded.

When the browser leaves a site using frames, the onunload handler of the frameset is invoked
before the onunload handler for each of the frames. This is the reverse of the order in which the
onload event handler is invoked.

The onunload() handler is invoked when the user has instructed the browser to leave the
current page and move somewhere else. Therefore, it is usually inappropriate to delay the loading
of the desired new page by popping up dialog boxes (with Window.confirm() or
Window.prompt(), for example) from an onunload event handler.

See Also

Window.onload; Chapter 19; Event, EventListener, and EventTarget in the DOM reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.open() open a new browser window or locate a named window

Availability

JavaScript 1.0; enhanced in JavaScript 1.1

Synopsis

window.open(url, name, features, replace)

Arguments

url

An optional string that specifies the URL to be displayed in the new window. If this
argument is omitted, or if the empty string is specified, the new window does not display a
document.

name

An optional string of alphanumeric and underscore characters that specifies a name for the
new window. This name can be used as the value of the target attribute of <a> and
<form> HTML tags. If this argument names a window that already exists, the open()
method does not create a new window, but simply returns a reference to the named
window. In this case, the features argument is ignored.

features

A string that specifies which features of a standard browser window are to appear in the
new window. The format of this string is specified in the "Window Features" section. This
argument is optional; if it is not specified, the new window has all the standard features.

replace

An optional boolean argument that specifies whether the URL loaded into the new page
should create a new entry in the window's browsing history or replace the current entry in
the browsing history. If this argument is true, no new history entry is created. This
argument was added in JavaScript 1.1. Note that it doesn't make much sense to use this
argument for newly created windows; it is intended for use when changing the contents of
an existing window.

Returns

A reference to a Window object, which may be a newly created or an already existing one,
depending on the name argument.

Description

The open() method looks up an existing window or opens a new browser window. If the name
argument specifies the name of an existing window, a reference to that window is returned. The
returned window displays the URL specified by url, but the features argument is ignored. This
is the only way in JavaScript to obtain a reference to a window which is known only by name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If the name argument is not specified, or if no window with that name already exists, the open()
method creates a new browser window. The created window displays the URL specified by url
and has the name specified by name and the size and controls specified by features (the
format of this argument is described in the next section). If url is the empty string, open()
opens a blank window.

The name argument specifies a name for the new window. This name may contain only
alphanumeric characters and the underscore character. It may be used as the value of the
target attribute of an <a> or <form> tag in HTML to force documents to be displayed in the
window.

In JavaScript 1.1, when you use Window.open() to load a new document into a named
window, you can pass the replace argument to specify whether the new document has its own
entry in the window's browsing history or whether it replaces the history entry of the current
document. If replace is true, the new document replaces the old. If this argument is false or
is not specified, the new document has its own entry in the Window's browsing history. This
argument provides functionality much like that of the Location.replace() method.

Don't confuse Window.open() with Document.open() -- the two methods perform very
different functions. For clarity in your code, you may want to use Window.open() instead of
open(). In event handlers defined as HTML attributes, open() is usually interpreted as
Document.open(), so in this case, you must use Window.open().

Window Features

The features argument is a comma-separated list of features that will appear in the window. If
this optional argument is empty or not specified, all features are present in the window. On the
other hand, if features specifies any one feature, any features that do not appear in the list do
not appear in the window. The string should not contain any spaces or other whitespace. Each
element in the list has the format:

feature[=value]

For most features, the value is yes or no. For these features, the equals sign and the value
may be omitted -- if the feature appears, yes is assumed, and if it doesn't, no is assumed. For the
width and height features, value is required and must specify a size in pixels.

The available features and their meanings are:

channelmode

Specifies whether the window should appear in channel mode. IE 4 only.

dependent

If set to "no", specifies that the new window should not be a dependent child of the current
window. Netscape 4 only.

directories

Directory buttons, such as "What's New" and "What's Cool". Netscape only.

fullscreen

Specifies whether the window should appear in full-screen mode. IE 4 only.

height

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

height

Specifies the height, in pixels, of the window's document display area.

innerHeight

Specifies the height, in pixels, of the window's document display area. Netscape 4 only.

innerWidth

Specifies the width, in pixels, of the window's document display area. Netscape 4 only.

left

The X-coordinate, in pixels, of the window. IE 4 only. In Netscape, use screenX.

location

The input field for entering URLs directly into the browser.

menubar

The menu bar.

outerHeight

Specifies the total height, in pixels, of the window. Netscape 4 only.

innerWidth

Specifies the total width, in pixels, of the window. Netscape 4 only.

resizable

If this feature is not present or is set to no, the window does not have resize handles
around its border. (Depending on the platform, the user may still have ways to resize the
window.) Note that a common bug is to misspell this feature as "resizeable," with an extra
"e."

screenX

The X-coordinate, in pixels, of the window. Netscape 4 only. Use left in IE 4.

screenY

The Y-coordinate, in pixels, of the window. Netscape 4 only. Use top in IE 4.

scrollbars

Enables horizontal and vertical scrollbars when they are necessary.

status

The status line.

toolbar

The browser toolbar, with Back and Forward buttons, etc.

top

The Y-coordinate, in pixels, of the window. IE 4 only. Use screenY in Netscape.

width

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

width

Specifies the width, in pixels, of the window's document display area.

See Also

Location.replace(), Window.close(), the closed and opener properties of Window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.print() print the document

Availability

Netscape 4, Internet Explorer 5

Synopsis

window.print()

Description

Calling print() prints the current document, exactly as if the user had clicked the browser's
Print button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.prompt() get string input in a dialog box

Availability

JavaScript 1.0

Synopsis

window.prompt(message, default)

Arguments

message

The plain-text (not HTML) string to be displayed in the dialog box. It should ask the user to
enter the information you want.

default

A string that is displayed as the default input in the dialog box. Pass the empty string ("")
to make prompt() display an empty input box.

Returns

The string entered by the user, the empty string if the user did not enter a string, or null if the
user clicked Cancel.

Description

The prompt() method displays the specified message in a dialog box that also contains a text
input field and OK, Clear, and Cancel buttons. Platform-dependent graphics in the dialog box
help indicate to the user that her input is desired.

If the user clicks the Cancel button, prompt() returns null. If the user clicks the Clear button,
prompt() erases any current text in the input field. If the user clicks the OK button, prompt()
returns the value currently displayed in the input field.

The dialog box that is displayed by the prompt() method is modal -- that is, it blocks all user
input to the main browser window until the user dismisses the dialog box by clicking on the OK or
Cancel buttons. Since this method returns a value depending on the user's response to the dialog
box, JavaScript execution pauses in the call to prompt(), and subsequent statements are not
executed until the user responds to the dialog box.

See Also

Window.alert(), Window.confirm()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.releaseEvents() stop capturing events

Availability

Netscape 4

Synopsis

window.releaseEvents(eventmask)

document.releaseEvents(eventmask)

layer.releaseEvents(eventmask)

Arguments

eventmask

An integer that specifies the type of events that the window, document, or layer should stop
capturing. This value should be one of the static event type constants defined by the Event
class, or it should be a group of event type constants combined with the bitwise-OR (|) or
addition operator.

Description

The releaseEvents() method of the Window, Document, and Layer objects performs the
opposite action of the captureEvents() method of those classes. In the Netscape 4 event
model, releaseEvents() specifies that the window, document, or layer should no longer
capture events of the types specified by eventmask. See the "Event.TYPE" reference page for a
list of the constants that can be used in the eventmask argument.

See Also

Event, Window.captureEvents(), Window.handleEvent(), Window.routeEvent(); Chapter 19;
EventTarget.removeEventListener() in the DOM reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.resizeBy() resize a window by a relative amount

Availability

JavaScript 1.2

Synopsis

window.resizeBy(dw, dh)

Arguments

dw

The number of pixels by which to increase the width of the window.

dh

The number of pixels by which to increase the height of the window.

Description

resizeBy() resizes window by the relative amounts specified by dh and dw. For security
reasons, the browser may restrict this method so it makes either the width or height of the window
less than 100 pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.resizeTo() resize a window

Availability

JavaScript 1.2

Synopsis

window.resizeTo(width, height)

Arguments

width

The desired width for the window.

height

The desired height for the window.

Description

resizeTo() resizes window so it is width pixels wide and height pixels high. For security
reasons, the browser may restrict this method so that neither width nor height is smaller than
100 pixels.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.routeEvent() pass a captured event to the next handler

Availability

Netscape 4

Synopsis

window.routeEvent(event)

document.routeEvent(event)

layer.routeEvent(event)

Arguments

event

The captured Event object to be routed to the next event handler.

Returns

Whatever value was returned by the handler to which the event was routed.

Description

routeEvent() is a method of the Window, Document, and Layer classes, and it behaves the
same for all three. When a captured Event object, event, is passed to an event handler of
window, document, or layer, that handler may choose to pass the event on to the next
interested event handler, if any. If the window, document, or layer contains some other window
(frame), document, or layer that has also used captureEvents() to register interest in events
of that type, the event is routed to the appropriate handler on that window, document, or layer
object.

On the other hand, if there is no containing window, document, or layer object that has expressed
interest in the event, routeEvent() passes the event object to the appropriate event handler
of the object on which the event originated. The combination of captureEvents() and
routeEvent() forms the basis of the "trickle-down" event model of Netscape 4.

See Also

Window.captureEvents(), Window.handleEvent(), Window.releaseEvents(); Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.scroll() scroll a document in a window

Availability

JavaScript 1.1; deprecated in JavaScript 1.2

Synopsis

window.scroll(x, y)

Arguments

x

The X-coordinate to scroll to.

y

The Y-coordinate to scroll to.

Description

The scroll() method moves the window's document within the window so the specified x-
and y-coordinates of the document appear in the upper-left corner of the window.

The X-coordinate increases to the right, and the Y-coordinate increases down the page. Thus,
scroll(0,0) always places the top-left corner of the document in the top-left corner of the
window.

In JavaScript 1.2, the scrollTo() and scrollBy() methods are preferred over scroll(
).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.scrollBy() scroll the document by a relative amount

Availability

JavaScript 1.2

Synopsis

window.scrollBy(dx, dy)

Arguments

dx

The number of pixels by which to scroll the document to the right.

dy

The number of pixels by which to scroll the document down.

Description

scrollBy() scrolls the document displayed in window by the relative amounts specified by dx
and dy.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.scrollTo() scroll the document

Availability

JavaScript 1.2

Synopsis

window.scrollTo(x, y)

Arguments

x

The document X-coordinate that is to appear at the left edge of the window's document
display area.

y

The document Y-coordinate that is to appear at the top of the window's document display
area.

Description

scrollTo() scrolls the document displayed within window so the point in the document
specified by the x- and y-coordinates is displayed in the upper-left corner, if possible.

scrollTo() is preferred over the JavaScript 1.1 Window.scroll() method, which does the
same thing but has an inadequately descriptive name.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.setInterval() periodically execute specified code

Availability

JavaScript 1.2; IE 4 supports only one of the two forms

Synopsis

window.setInterval(code, interval)

window.setInterval(func, interval,args...)

Arguments

code

A string of JavaScript code to be periodically executed. If this string contains multiple
statements, they must be separated from each other by semicolons.

func

A JavaScript function to be periodically executed. This form of the method is not available
in IE 4.

interval

An integer that specifies the interval, in milliseconds, between invocations of code or func.

args...

Any number of arbitrary values to be passed as arguments to each invocation of func.

Returns

A value that can be passed to Window.clearInterval() to cancel the periodic execution of
code or func.

Description

setInterval() repeatedly executes the JavaScript statements specified in the string code, at
intervals of interval milliseconds.

In Netscape 4, but not IE 4, a function may be passed as the first argument instead of a string. In
this form of setInterval(), the specified function, func, is repeatedly invoked, at intervals of
interval milliseconds. Any additional argument values, args, passed to setInterval() are
passed as arguments to each invocation of func().

In both forms, the setInterval() method returns a value that can later be passed to
Window.clearInterval() to stop code or func from being repeatedly executed.

setInterval() is related to setTimeout(). Use setTimeout() when you want to defer
the execution of code but do not want it to be repeatedly executed.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Window.clearInterval(), Window.setTimeout()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.setTimeout() defer execution of code

Availability

JavaScript 1.0

Synopsis

window.setTimeout(code, delay)

Arguments

code

A string that contains the JavaScript code to be executed after the delay has elapsed.

delay

The amount of time, in milliseconds, before the JavaScript statements in the string code
should be executed.

Returns

An opaque value ("timeout id") that can be passed to the clearTimeout() method to cancel
the execution of code.

Description

The setTimeout() method defers the execution of the JavaScript statements in the string
code for delay milliseconds. Once the specified number of milliseconds has elapsed, the
statements in code are executed normally. Note that they are executed only once. To execute
code repeatedly, code must itself contain a call to setTimeout() to register itself to be
executed again. In JavaScript 1.2, you can use Window.setInterval() to register code that
is executed at periodic intervals.

The statements in the string code are executed in the context of window; i.e., window is the
current window for those statements. If more than one statement appears in code, the
statements must be separated by semicolons.

See Also

Window.clearTimeout(), Window.setInterval()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.status specify a transient status-line message

Availability

JavaScript 1.0

Synopsis

window.status

Description

status is a read/write string property that specifies a transient message to appear in the
window's status line. The message generally appears only for a limited amount of time -- until it is
overwritten by another message or until the user moves the mouse to some other area of the
window, for example. When a message specified with status is erased, the status line returns to
its default blank state or to the default message specified by the defaultStatus property.

Although only top-level windows have status lines, you can also set the status property of
frames. Doing so displays the specified message in the top-level window's status line. Transient
messages set by frames are visible regardless of which frame currently has focus or which frame
the mouse is currently in. This behavior differs from that of the defaultStatus property.

Usage

status is used to display transient messages in the status line. To display semipermanent
messages, use the defaultStatus property.

In general, setting the status property is useful only from event handlers and in code fragments
deferred with the Window.setTimeout() method. If you set status directly from a script, the
message is not visible to the user. It is not displayed right away, and when it is displayed, it is
likely to be immediately overwritten by a browser message such as "Document: done".

If you want to set the status property in the onmouseover event handler of a hypertext link, you
must return true from that event handler because when the mouse goes over a link, the default
action is to display the URL of that link, thereby overwriting any status message set by the event
handler. By returning true from the event handler, you cancel this default action and leave your
own status message displayed (until the mouse moves off the link).

See Also

Window.defaultStatus

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Window.stop() stop loading the document

Availability

Netscape 4

Synopsis

window.stop()

Description

Calling stop() stops the browser from loading the current document, exactly as if the user had
clicked the browser's Stop button.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part V: W3C DOM Reference
This part of the book is a complete reference to all of the objects, properties,
functions, methods, and event handlers in the JavaScript implementation of the W3C
DOM. The first few pages of this part explain how to use this reference material.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 25. W3C DOM Reference
This part of the book is a reference section that documents the interfaces, methods, and
properties defined by the W3C Level 1 and Level 2 DOM standards. Intermediate and advanced
programmers who are writing for the newest generation of standards-compliant web browsers will
use this reference section, in conjunction with the core and client-side JavaScript references in
Part III and Part IV. The introduction and sample reference page explain how to use and get the
most out of this reference section. There are significant differences between this reference
section and the other two, and you should read this introduction carefully so you can fully
understand the reference information it contains.

Like the core and client-side references, this reference section is arranged alphabetically. The
reference pages for the methods and properties of DOM interfaces are alphabetized by their full
names, which include the names of the interfaces that define them. For example, if you want to
read about the appendChild() method of the Node interface, you would look under
"Node.appendChild," not just "appendChild."

To save space in this enlarged fourth edition of the book, properties in this reference section do
not have reference pages of their own (all interfaces and methods do have their own reference
pages, however). Instead, each property is completely documented in the reference page for the
interface that defines it. For example, you can read about the tagName property of the Element
interface in the "Element" reference page.

Sometimes you may find that you don't know the name of the interface that defines the method or
property you want to look up, or you may not be sure which of the three reference sections to look
up a class or interface in. Part VI of this book is a special index designed to help with these
situations. Look up the name of a class, interface, method, or property, and it will tell you which
reference section to look in and which class to look under in that section. For example, if you look
up "Document," it will tell you that both the client-side and DOM reference sections have entries
under that name. And if you look up the name "firstChild," it will tell you that firstChild is a
property of Node, which you can read about in this DOM reference section.

Once you've found the reference page you're looking for, you shouldn't have much difficulty
finding the information you need. Because the DOM standard is intended to work with languages
other than JavaScript, however, it was written with typed languages (such as Java and C++) in
mind. Although JavaScript is an untyped language, the property and method type information
defined by the standard is still quite useful and is included in the reference pages in this section.
This means that method and property synopses in this section use a syntax that is more like Java
than like JavaScript. What follows is a sample reference page titled "Sample Entry" that
demonstrates the structure of each reference page and explains how to interpret the information
presented in each section. Even if you are already well familiar with the third edition of this book,
take the time to read this page before diving into the DOM reference section.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Sample Entry how to read DOM reference pages

Availability

Availability

Inherits from/Overrides

Inherits from

Title and Short Description

Every reference entry begins with a four-part title block like that above. The entries are
alphabetized by title. The short description, shown below the title, gives you a quick summary of
the item documented in the entry; it can help you quickly decide if you're interested in reading the
rest of the page.

Availability

The availability information is shown in the upper-right corner of the title block. This information
tells you what level and what module of the DOM standard defines the interface or method. Since
properties do not have their own reference pages, they do not have availability information. If the
availability of a property is different from the availability of the interface that defines it, this fact is
noted in the description of the property.

Inherits from

DOM interfaces can inherit properties and methods from other interfaces. If a DOM interface
inherits from another interface, the inheritance hierarchy is shown in the lower-right corner of the
title block. For example, the "Inherits from" information for the HTMLElement interface looks like
this:

Node Element HTMLElement

This indicates that HTMLElement inherits from the Element interface, which in turn inherits from
the Node interface. When you see this section, you may also want to look up the other listed
interfaces.

Subinterfaces

This section contains the opposite of the "Inherits from" information: it lists any interfaces that
inherit from this one. For example, the "Subinterfaces" section of the reference page for the
Element interface specifies that HTMLElement is a subinterface of Element and inherits Element's
methods and properties.

Also Implements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The modular structure of the DOM standard means that some interfaces have been broken into
multiple separate interfaces, so that implementations have to implement only the interfaces that
are part of the modules they support. It is common for an object that implements one interface
(such as Document) to also implement several other simple interfaces (such as DocumentCSS,
DocumentEvent, and DocumentViews) that provide functionality specific to other modules. When
an interface has minor interfaces that are intended to be implemented along with it, those minor
interfaces are listed in this section.

Constants

Some DOM interfaces define a set of constants that serve as the values for a property or as the
arguments to a method of that interface. The Node interface, for example, defines important
constants to serve as the set of legal values for the nodeType property of all Document nodes.
When an interface defines constants, they are listed and documented in this section. The listings
include the type, the name, and the value (in that order) of each constant. See the Section section
for a discussion of the syntax used in these listings. Note that constants are static properties of
the interface itself, not of instances of that interface.

Properties

If the reference page documents an interface, this section lists and documents the properties
defined by that interface. Each entry in the list specifies the name and type of the property and
may also include other keywords that provide additional information about the property. Note that
in this Java-style syntax, the name of the property comes last, and all the information that
precedes the name provides type and other information about the property. For example, the
HTMLTableElement and HTMLTableCellElement interfaces define properties that include the
following:

HTMLTableCaptionElement caption

The caption property. It refers to an object of type HTMLTableCaptionElement.

readonly HTMLCollection rows

The rows property. It refers to an HTMLCollection object and is read-only: you can query
the value of the property, but you cannot set it.

deprecated String align

The align property. It is a string, but it is deprecated and its use is discouraged.

readonly long cellIndex

The cellIndex property. It is a long integer value (see the Section section) and is read-
only.

Methods

If the reference page documents an interface, this section lists the names of the interface's
methods and provides a short description of each. Full documentation for each method is found in
a separate reference page.

Synopsis

If the reference page documents a method, this section presents the method signature or
synopsis. This section uses a Java-style syntax to specify (in order):

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The type of the method return value, or void if the method does not return anything.

The name of the method.

The type and name (in that order) of each argument of the method. These are presented
as a comma-separated list of argument types and names within parentheses. If the method
does not take any arguments, you simply see the parentheses: ().

The types of exceptions, if any, that the method can throw.

For example, the "Synopsis" section of the Node.insertBefore() method looks like this:

Node insertBefore(Node newChild,

 Node refChild)

 throws DOMException;

You can glean the following information from this synopsis: the name of the method is
"insertBefore"; it returns a Node object; the first argument is a Node object and specifies the
"newChild" (presumably the one to be inserted); the second argument is also a Node object and
specifies the "refChild" (presumably the node before which the other is inserted); and the method
may, in some circumstances, throw an exception of type DOMException.

The subsections that follow the synopsis provide additional information about the arguments,
return value, and exceptions of the method. See also the Section section for more information
about the Java-style syntax used here to specify the types of method arguments.

Arguments

If a method has arguments, the "Synopsis" section is followed by an "Arguments" subsection that
lists the names of the arguments and describes each one. Note that argument names are listed in
italics, to indicate that they are not to be typed literally but instead represent some other value
or JavaScript expression. To continue with the previous example, the "Arguments" section of
Node.insertBefore() looks like this:

newChild

The node to be inserted into the tree. If it is a DocumentFragment, its children are inserted
instead.

refChild

The child of this node before which newChild is to be inserted. If this argument is null,
newChild is inserted as the last child of this node.

Returns

The "Synopsis" section specifies the data type of the method's return value, and the "Returns"
subsection provides additional information. If the method has no return value (i.e., if it is listed in
the "Synopsis" section as returning void), this section is omitted.

Throws

This section explains the kinds of exceptions the method can throw and under what
circumstances it throws them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOM Types

DOM reference pages use a Java-style syntax for specifying the types of constants, properties,
method return values, and method arguments. This section provides more information about that
syntax. Note that the reference pages themselves do not have "DOM Types" sections!

The general syntax is:

modifiers type name

The name of the constant, property, method, or method argument always comes last and is
preceded by type and other information. The modifiers used in this reference section (note that
these are not actually legal Java modifiers) are:

readonly

Specifies that a property value can be queried but cannot be set.

deprecated

Specifies that a property is deprecated and its use should be avoided.

unsigned

Specifies that a numeric constant, property, return value, or method argument is unsigned;
i.e., it may be zero or positive, but may not be negative.

The types of DOM constants, properties, method return values, and method arguments do not
always correspond directly to the types supported by JavaScript. For example, some properties
have a type of short which specifies a 16-bit integer. Although JavaScript only has a single
numeric type, this reference section uses the DOM type simply because it provides more
information about what range of numbers are legal. The DOM types you will encounter in this
reference section are:

String

A core JavaScript String object.

Date

A core JavaScript Date object (this is not commonly used).

boolean

A boolean value: true or false.

short

A short (16-bit) integer. This type may have the unsigned modifier applied to it.

long

A long (64-bit) integer. This type may have the unsigned modifier applied to it.

float

A floating-point number. This type may not have the unsigned modifier applied to it.

void

This type is used for method return values only; it indicates that the method does not return
any value.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Any other type

Any other types you see in this reference section are names of other DOM interfaces (for
example, Document, DOMImplementation, Element, HTMLTableElement, and Node).

Description

Most reference pages contain a "Description" section, which is the basic description of the
interface or method that is being documented. This is the heart of the reference page. If you are
learning about an interface or method for the first time, you may want to skip directly to this
section and then go back and look at previous sections such as "Synopsis," "Properties," and
"Methods." If you are already familiar with an interface or method, you probably won't need to
read this section and instead will just want to quickly look up some specific bit of information (such
as the name of a property or the type of an argument from the "Properties" or "Arguments"
sections).

In some pages, this section is no more than a short paragraph. In others, it may occupy a page or
more. For some simple methods, the "Arguments," "Returns," and "Throws" sections document
the method sufficiently by themselves, so the "Description" section is omitted.

Example

Reference pages for some commonly used interfaces and methods include an example in this
section to illustrate typical usage of the interface or method. Most pages do not contain examples,
however -- you'll find those in first half of this book.

See Also

Most reference pages conclude with cross-references to related reference pages that may be of
interest. Most of these cross-references are to other reference pages in this DOM reference
section. Some are to individual property descriptions contained within an interface reference
page, however, and others are to related reference pages in the client-side reference section or to
chapters in the first two parts of the book.

Reference pages that document interfaces (but not those that document methods) may have
additional paragraphs at the end of the "See Also" section. These are cross-references that show
how the interface is used. A "Type of" paragraph lists properties whose values are objects that
implement the interface. A "Passed to" paragraph lists methods that take an argument that
implements the interface. A "Returned by" paragraph lists methods that return an object that
implements the interface. These cross-references show how you can obtain an object of this
interface and what you can do with it once you have obtained it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AbstractView a window displaying a document

Availability

DOM Level 2 Views

Also Implements

ViewCSS

If the DOM implementation supports the CSS module, any object that implements the
AbstractView interface also implements the ViewCSS interface. For convenience, the
method defined by the ViewCSS interface is listed under "Methods."

Properties

readonly Document document

The Document object that is displayed by this View object. This Document object also
implements the DocumentView interface.

Methods

getComputedStyle() [DOM Level 2 CSS]

This ViewCSS method returns a read-only CSSStyleDeclaration that represents the
computed style information for a specific document element.

Description

In the DOM, a view is an object that displays a document in some way. The Window object of
client-side JavaScript is such a view. This AbstractView interface is a very preliminary step toward
standardizing some of the properties and methods of the Window object. It simply specifies that
all View objects have a property named document that refers to the document they display. In
addition, if an implementation supports CSS style sheets, all View objects also implement the
ViewCSS interface and define a getComputedStyle() method for determining how an
element is actually rendered in the view.

The document property gives every view a reference to the document it displays. The reverse is
true also: every document has a reference to the view that displays it. If a DOM implementation
supports the View module, the object that implements the Document interface also implements
the DocumentView interface. This DocumentView interface defines a defaultView property that
refers to the window in which the document is displayed.

This interface has the word "Abstract" in its name to emphasize the fact that it is merely the
beginning of a standardized window interface. In order to be useful, future levels of the DOM
standard will have to introduce a new interface that extends AbstractView and adds other
properties or methods.

See Also

Document.defaultView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type of

Document.defaultView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

AbstractView.getComputedStyle(
)

retrieve the CSS styles used to render an
element

Availability

DOM Level 2 CSS

Synopsis

CSSStyleDeclaration getComputedStyle(Element elt,

 String pseudoElt);

Arguments

elt

The document element whose style information is desired.

pseudoElt

The CSS pseudoelement, or null if there is none.

Returns

A read-only CSSStyleDeclaration object (which typically also implements the CSS2Properties
interface) that specifies the style information used to render the specified element in this view.
Any length values queried from this object are always absolute or pixel values, not relative or
percentage values.

Description

An element in a document may obtain style information from an inline style attribute and from
any number of style sheets in the style-sheet "cascade." Before the element can actually be
displayed in a view, its style must be "computed" by extracting style information from the
appropriate parts of the cascade.

This method allows access to those computed styles. By contrast, the style property of an
element gives you access only to the inline styles of an element and tells you nothing about style-
sheet attributes that apply to the element. Note that this method also provides a way to determine
the actual pixel coordinates at which an element is rendered in this view.

getComputedStyle() is actually defined by the ViewCSS interface. In any DOM
implementation that supports the View and CSS modules, any object that implements
AbstractView always implements ViewCSS also. So, for simplicity, this method has been listed
with AbstractView.

In Internet Explorer, similar functionality is available through the nonstandard currentStyle
property of each HTMLElement object.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSS2Properties, CSSStyleDeclaration, HTMLElement.style

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attr an attribute of a document element

Availability

DOM Level 1 Core

Inherits from/Overrides

Node Attr

Properties

readonly String name

The name of the attribute.

readonly Element ownerElement [DOM Level 2]

The Element object that contains this attribute, or null if the Attr object is not currently
associated with any Element.

readonly boolean specified

true if the attribute was explicitly specified in the document source or set by a script.
false if the attribute was not explicitly specified but a default value is specified in the
document's DTD.

String value

The value of the attribute. When reading this property, the attribute value is returned as a
string. When you set this property to a string, it automatically creates a Text node that
contains the same text and makes that Text node the sole child of the Attr object.

Description

An Attr object represents an attribute of an Element node. Attr objects are associated with
Element nodes but are not directly part of the document tree (and have a null parentNode
property). You can obtain an Attr object through the attributes property of the Node interface
or by calling the getAttributeNode() method of the Element interface.

Attr objects are nodes, and the value of an Attr is represented by the child nodes of the Attr node.
In HTML documents, this is simply a single Text node. In XML documents, however, Attr nodes
may have both Text and EntityReference children. The value property provides a shortcut for
reading and writing the value of an attribute as a String.

In most cases, the easiest way to work with element attributes is with the getAttribute() and
setAttribute() methods of the Element interface. These methods use strings for attribute
names and values and avoid the use of Attr nodes altogether.

See Also

Element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed to

Element.removeAttributeNode(), Element.setAttributeNode(), Element.setAttributeNodeNS()

Returned by

Document.createAttribute(), Document.createAttributeNS(), Element.getAttributeNode(),
Element.getAttributeNodeNS(), Element.removeAttributeNode(), Element.setAttributeNode(),
Element.setAttributeNodeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDATASection a CDATA section in an XML document

Availability

DOM Level 1 XML

Inherits from/Overrides

Node CharacterData Text CDATASection

Description

This infrequently used interface represents a CDATA section in an XML document. Programmers
working with HTML documents never encounter nodes of this type and do not need to use this
interface.

CDATASection is a subinterface of Text and does not define any properties or methods of its
own. The textual content of the CDATA section is available through the nodeValue property
inherited from Node or through the data property inherited from CharacterData. Although
CDATASection nodes can often be treated in the same way as Text nodes, note that the
Node.normalize() method does not merge adjacent CDATA sections.

See Also

CharacterData, Text

Returned by

Document.createCDATASection()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData common functionality for Text and Comment nodes

Availability

DOM Level 1 Core

Inherits from/Overrides

Node CharacterData

Subinterfaces

Comment, Text

Properties

String data

The text contained by this node.

readonly unsigned long length

The number of characters contained by this node.

Methods

appendData()

Appends the specified string to the text contained by this node.

deleteData()

Deletes text from this node, starting with the character at the specified offset and continuing
for the specified number of characters.

insertData()

Inserts the specified string into the text of this node at the specified character offset.

replaceData()

Replaces the characters starting at the specified character offset and continuing for the
specified number of characters with the specified string.

substringData()

Returns a copy of the text starting at the specified character offset and continuing for the
specified number of characters.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData is the superinterface for Text and Comment nodes. Documents never contain
CharacterData nodes; they contain only Text and Comment nodes. Since both of these node
types have similar functionality, however, that functionality has been defined here so that both
Text and Comment can inherit it.

See Also

Comment, Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData.appendData() append a string to a Text or Comment node

Availability

DOM Level 1 Core

Synopsis

void appendData(String arg)

 throws DOMException;

Arguments

arg

The string to be appended to the Text or Comment node.

Throws

This method throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if
called on a node that is read-only.

Description

This method appends the string arg to the end of the data property for this node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData.deleteData(
)

delete characters from a Text or Comment
node

Availability

DOM Level 1 Core

Synopsis

void deleteData(unsigned long offset,

 unsigned long count)

 throws DOMException;

Arguments

offset

The position of the first character to be deleted.

count

The number of characters to be deleted.

Throws

This method may throw a DOMException with one of the following code values:

INDEX_SIZE_ERR

The offset or count argument is negative, or offset is greater than the length of the
Text or Comment node.

NO_MODIFICATION_ALLOWED_ERR

The node is read-only and may not be modified.

Description

This method deletes characters from this Text or Comment node, starting with the character at
the position offset and continuing for count characters. If offset plus count is greater than
the number of characters in the Text or Comment node, all characters from offset to the end of
the string are deleted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData.insertData() insert a string into a Text or Comment node

Availability

DOM Level 1 Core

Synopsis

void insertData(unsigned long offset,

 String arg)

 throws DOMException;

Arguments

offset

The character position within the Text or Comment node at which the string is to be
inserted.

arg

The string to insert.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

INDEX_SIZE_ERR

offset is negative or greater than the length of the Text or Comment node.

NO_MODIFICATION_ALLOWED_ERR

The node is read-only and may not be modified.

Description

This method inserts the specified string arg into the text of a Text or Comment node at the
specified position offset.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData.replaceData(
)

replace characters of a Text or Comment node
with a string

Availability

DOM Level 1 Core

Synopsis

void replaceData(unsigned long offset,

 unsigned long count, String arg)

 throws DOMException;

Arguments

offset

The character position within the Text or Comment node at which the replacement is to
begin.

count

The number of characters to be replaced.

arg

The string that replaces the characters specified by offset and count.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

INDEX_SIZE_ERR

offset is negative or greater than the length of the Text or Comment node, or count is
negative.

NO_MODIFICATION_ALLOWED_ERR

The node is read-only and may not be modified.

Description

This method replaces count characters starting at position offset with the contents of the
string arg. If the sum of offset and count is greater than the length of the Text or Comment
node, all characters from offset on are replaced.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CharacterData.substringData(
)

extract a substring from a Text or Comment
node

Availability

DOM Level 1 Core

Synopsis

String substringData(unsigned long offset,

 unsigned long count)

 throws DOMException;

Arguments

offset

The position of the first character to be returned.

count

The number of characters in the substring to be returned.

Returns

A string that consists of count characters of the Text or Comment node starting with the
character at position offset.

Throws

This method may throw a DOMException with one of the following code values:

INDEX_SIZE_ERR

offset is negative or greater than the length of the Text or Comment node, or count is
negative.

DOMSTRING_SIZE_ERR

The specified range of text is too long to fit into a string in the browser's JavaScript
implementation.

Description

This method extracts the substring that starts at position offset and continues for count
characters from the text of a Text or Comment node. This method is useful only when the amount
of text contained by the node is larger than the maximum number of characters that can fit in a
string in a browser's JavaScript implementation. In this case, a JavaScript program cannot use
the data property of the Text or Comment node directly and must instead work with shorter

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the data property of the Text or Comment node directly and must instead work with shorter
substrings of the node's text. This situation is unlikely to arise in practice.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Comment an HTML or XML comment

Availability

DOM Level 1 Core

Inherits from/Overrides

Node CharacterData Comment

Description

A Comment node represents a comment in an HTML or XML document. The content of the
comment (i.e., the text between <!-- and -->) is available through the data property inherited
from the CharacterData interface or through the nodeValue property inherited from the Node
interface. This content may be manipulated using the various methods inherited from
CharacterData.

See Also

CharacterData

Returned by

Document.createComment()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Counter a CSS counter() or counters() specification

Availability

DOM Level 2 CSS

Properties

readonly String identifier

The name of the counter.

readonly String listStyle

The list style for the counter.

readonly String separator

The separator string for nested counters.

Description

This interface represents a CSS counter() or counters() value. Consult a CSS reference
for more information.

See Also

Returned by

CSSPrimitiveValue.getCounterValue()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSS2Properties convenience properties for all CSS2 attributes

Availability

DOM Level 2 CSS2

Properties

This interface defines a large number of properties: one property for each CSS attribute defined by
the CSS2 specification. The property names correspond closely to the CSS attribute names, with
minor changes required to avoid syntax errors in JavaScript. Multiword attributes that contain
hyphens, such as "font-family," are written without hyphens in JavaScript, and each word after the
first is capitalized: fontFamily. Also, the "float" attribute conflicts with the reserved word float,
so it translates to the property cssFloat.

The complete set of properties is listed in the following table. Since the properties correspond
directly to CSS attributes, no individual documentation is given for each property. See a CSS
reference, such as Cascading Style Sheets: The Definitive Guide, by Eric A. Meyer (O'Reilly), for the
meaning and legal values of each. All of the properties are strings. Setting any of these properties
may throw the same exceptions, for the same reasons as a call to
CSSStyleDeclaration.setProperty().

azimuth background backgroundAttachment backgroundColor
backgroundImage backgroundPosition backgroundRepeat border
borderBottom borderBottomColor borderBottomStyle borderBottomWidth
borderCollapse borderColor borderLeft borderLeftColor
borderLeftStyle borderLeftWidth borderRight borderRightColor
borderRightStyle borderRightWidth borderSpacing borderStyle
borderTop borderTopColor borderTopStyle borderTopWidth
borderWidth bottom captionSide clear
clip color content counterIncrement
counterReset cssFloat cue cueAfter
cueBefore cursor direction display
elevation emptyCells font fontFamily
fontSize fontSizeAdjust fontStretch fontStyle
fontVariant fontWeight height left
letterSpacing lineHeight listStyle listStyleImage
listStylePosition listStyleType margin marginBottom
marginLeft marginRight marginTop markerOffset
marks maxHeight maxWidth minHeight
minWidth orphans outline outlineColor
outlineStyle outlineWidth overflow padding
paddingBottom paddingLeft paddingRight paddingTop
page pageBreakAfter pageBreakBefore pageBreakInside
pause pauseAfter pauseBefore pitch
pitchRange playDuring position quotes
richness right size speak
speakHeader speakNumeral speakPunctuation speechRate

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

stress tableLayout textAlign textDecoration
textIndent textShadow textTransform top
unicodeBidi verticalAlign visibility voiceFamily
volume whiteSpace widows width
wordSpacing zIndex

Description

This interface defines one property for each CSS attribute defined by the CSS2 specification. If the
DOM implementation supports this interface (which is part of the "CSS2" feature), all
CSSStyleDeclaration objects also implement CSS2Properties. Reading one of the properties
defined by this interface is equivalent to calling getPropertyValue() for the corresponding CSS
attribute, and setting the value of one of these properties is equivalent to calling setProperty()
for the corresponding attribute. The properties defined by CSS2Properties include properties that
correspond to CSS shortcut attributes, and CSS2Properties handles these shortcut properties
correctly.

See Also

CSSStyleDeclaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSCharsetRule an @charset rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSCharsetRule

Properties

String encoding

The character encoding specified by the @charset rule. If you set this property to an illegal
value, a DOMException with a code of SYNTAX_ERR is thrown. If the rule or style sheet is
read-only, an attempt to set this property throws a DOMException with a code of
NO_MODIFICATION_ALLOWED_ERR.

Description

This interface represents an @charset rule in a CSS style sheet. Consult a CSS reference for
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSFontFaceRule an @font-face rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSFontFaceRule

Properties

readonly CSSStyleDeclaration style

The set of styles for this rule.

Description

This interface represents an @font-face rule in a CSS style sheet. Consult a CSS reference for
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSImportRule an @import rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSImportRule

Properties

readonly String href

The URL of the imported style sheet. The value of this property does not include the "url()"
delimiter around the URL value.

readonly MediaList media

A list of media types to which the imported style sheet applies.

readonly CSSStyleSheet styleSheet

The CSSStyleSheet object that represents the imported style sheet, or null if the style
sheet has not yet been loaded or if the style sheet was not loaded because, for example,
the media type did not apply.

Description

This interface represents an @import rule in a CSS style sheet. The styleSheet property
represents the imported style sheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSMediaRule an @media rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSMediaRule

Properties

readonly CSSRuleList cssRules

An array (technically, a CSSRuleList) of all the rules nested within this @media rule block.

readonly MediaList media

The list of media types to which the nested rules apply.

Methods

deleteRule()

Deletes the nested rule at the specified position.

insertRule()

Inserts a new rule at the specified position within this @media rule block.

Description

This interface represents an @media rule, and all of its nested rules, in a CSS style sheet. It
defines methods that allow you to insert and delete nested rules. Consult a CSS reference for
details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSMediaRule.deleteRule() delete a rule in an @media block

Availability

DOM Level 2 CSS

Synopsis

void deleteRule(unsigned long index)

 throws DOMException;

Arguments

index

The position within the @media rule block of the rule to be deleted.

Throws

This method throws a DOMException with one of the following code values in the following
circumstances:

INDEX_SIZE_ERR

index is negative or is greater than or equal to the number of rules in cssRules.

NO_MODIFICATION_ALLOWED_ERR

The rule is read-only.

Description

This method deletes the rule at the specified position in the cssRules array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSMediaRule.insertRule() insert a new rule into an @media block

Availability

DOM Level 2 CSS

Synopsis

unsigned long insertRule(String rule,

 unsigned long index)

 throws DOMException;

Arguments

rule

The complete, parseable CSS string representation of the rule to be added.

index

The position at which the new rule is to be inserted into the cssRules array, or the
cssRules.length to append the new rule at the end of the array.

Returns

The value of the index argument.

Throws

This method throws a DOMException with one of the following code values in the following
circumstances:

HIERARCHY_REQUEST_ERR

CSS syntax does not allow the specified rule at the specified position.

INDEX_SIZE_ERR

index is negative or greater than cssRules.length.

NO_MODIFICATION_ALLOWED_ERR

This @media rule and its cssRules array are read-only.

SYNTAX_ERR

The specified rule contains a syntax error.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method inserts the specified rule into the cssRules array at the specified index.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPageRule an @page rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSPageRule

Properties

String selectorText

The page selector text for this rule. Setting this property to an illegal value throws a
DOMException with a code of SYNTAX_ERR. Setting this property when the rule is read-
only throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR.

readonly CSSStyleDeclaration style

The set of styles for this rule.

Description

This interface represents an @page rule in a CSS style sheet, which is typically used to specify
the page layout for printing. Consult a CSS reference for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue a single CSS style value

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSValue CSSPrimitiveValue

Constants

The following constants are the legal values for the primitiveType property. They specify the
type of the value and, for numeric values, the units in which the value is represented.

unsigned short CSS_UNKNOWN = 0

The value is not recognized, and the implementation does not know how to parse it. The
textual representation of the value is available through the cssText property.

unsigned short CSS_NUMBER = 1

A unitless number. Query with getFloatValue().

unsigned short CSS_PERCENTAGE = 2

A percentage. Query with getFloatValue().

unsigned short CSS_EMS = 3

A relative length measured in ems (the height of the current font). Query with
getFloatValue().

unsigned short CSS_EXS = 4

A relative length measured in exs (the "x-height" of the current font). Query with
getFloatValue().

unsigned short CSS_PX = 5

A length measured in pixels. Query with getFloatValue(). Pixel lengths are relative
measurements, in the sense that their size depends on the display resolution, and they
cannot be converted to inches, millimeters, points, or other absolute lengths. However,
pixels are also one of the most commonly used units, and they are treated as absolute
values for the purposes of AbstractView.getComputedStyle(), for example.

unsigned short CSS_CM = 6

An absolute length measured in centimeters. Query with getFloatValue().

unsigned short CSS_MM = 7

An absolute length measured in millimeters. Query with getFloatValue().

unsigned short CSS_IN = 8

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned short CSS_IN = 8

An absolute length measured in inches. Query with getFloatValue().

unsigned short CSS_PT = 9

An absolute length measured in points (1/72 of an inch). Query with getFloatValue().

unsigned short CSS_PC = 10

An absolute length measured in picas (12 points). Query with getFloatValue().

unsigned short CSS_DEG = 11

An angle measured in degrees. Query with getFloatValue().

unsigned short CSS_RAD = 12

An angle measured in radians. Query with getFloatValue().

unsigned short CSS_GRAD = 13

An angle measured in grads. Query with getFloatValue().

unsigned short CSS_MS = 14

A time measured in milliseconds. Query with getFloatValue().

unsigned short CSS_S = 15

A time measured in seconds. Query with getFloatValue().

unsigned short CSS_HZ = 16

A frequency measured in hertz. Query with getFloatValue().

unsigned short CSS_KHZ = 17

A frequency measured in kilohertz. Query with getFloatValue().

unsigned short CSS_DIMENSION = 18

A unitless dimension. Query with getFloatValue().

unsigned short CSS_STRING = 19

A string. Query with getStringValue().

unsigned short CSS_URI = 20

A URI. Query with getStringValue().

unsigned short CSS_IDENT = 21

An identifier. Query with getStringValue().

unsigned short CSS_ATTR = 22

An attribute function. Query with getStringValue().

unsigned short CSS_COUNTER = 23

A counter. Query with getCounterValue().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A counter. Query with getCounterValue().

unsigned short CSS_RECT = 24

A rectangle. Query with getRectValue().

unsigned short CSS_RGBCOLOR = 25

A color. Query with getRGBColorValue().

Properties

readonly unsigned short primitiveType

The type of this value. This property holds one of the constants defined in the previous
section.

Methods

getCounterValue()

For values of type CSS_COUNTER, returns the Counter object that represents the value.

getFloatValue()

Returns a numeric value, converting it, if necessary, to the specified units.

getRectValue()

For values of type CSS_RECT, returns the Rect object that represents the value.

getRGBColorValue()

For values of type CSS_RGBCOLOR, returns the RGBColor object that represents the value.

getStringValue()

Returns the value as a string.

setFloatValue()

Sets a numeric value to the specified number of the specified units.

setStringValue()

Sets a string value to the specified string of the specified type.

Description

This subinterface of CSSValue represents a single CSS value. Contrast it with the CSSValueList
interface, which represents a list of CSS values. The word "primitive" in the name of this interface
is misleading; this interface can represent some complex types of CSS values, such as counters,
rectangles, and colors.

The primitiveType property holds one of the previously defined constants and specifies the
type of the value. The various methods defined by this interface allow you to query values of
various types and also to set numeric and string values.

See Also

Counter, CSSValue, CSSValueList, Rect, RGBColor

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type of

RGBColor.blue, RGBColor.green, RGBColor.red, Rect.bottom, Rect.left, Rect.right, Rect.top

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.getCounterValue() return a Counter value

Availability

DOM Level 2 CSS

Synopsis

Counter getCounterValue()

 throws DOMException;

Returns

The Counter object that represents the value of this CSSPrimitiveValue.

Throws

This method throws a DOMException with a code of INVALID_ACCESS_ERR if the
primitiveType property is not CSS_COUNTER.

Description

This method returns a Counter object that represents a CSS counter. There is no corresponding
setCounterValue(), but you can modify the value by setting the properties of the returned
Counter object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.getFloatValue(
)

get a numeric value, possibly
converting units

Availability

DOM Level 2 CSS

Synopsis

float getFloatValue(unsigned short unitType)

 throws DOMException;

Arguments

unitType

One of the CSSPrimitiveValue type constants that specifies the desired units for the
returned value.

Returns

The floating-point numeric value of this CSSPrimitiveValue, expressed in the specified units.

Throws

This method throws a DOMException with a code of INVALID_ACCESS_ERR if this
CSSPrimitiveValue holds a non-numeric value, or if the value cannot be converted to the
requested type of units. (See the next section for more about unit conversion.)

Description

For CSSPrimitiveValue objects that hold numeric values, this method converts those values to the
specified units and returns the converted values.

Only certain types of unit conversions are allowed. Lengths may be converted to lengths, angles
to angles, times to times, and frequencies to frequencies. Obviously, however, a length measured
in millimeters cannot be converted to a frequency measured in kilohertz. Also, not all lengths can
be converted. Relative lengths (lengths measured in ems, exs, or pixels) can be converted to
other relative lengths but cannot be converted to absolute lengths. Similarly, absolute lengths
cannot be converted to relative lengths. Finally, percentage values cannot be converted to any
other unit type, except for color percentage values, which express a percentage of 255 and can
be converted to the CSS_NUMBER type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.getRectValue() return a Rect value

Availability

DOM Level 2 CSS

Synopsis

Rect getRectValue()

 throws DOMException;

Returns

The Rect object that represents the value of this CSSPrimitiveValue.

Throws

This method throws a DOMException with a code of INVALID_ACCESS_ERR if the
primitiveType property is not CSS_RECT.

Description

This method returns a Rect object that represents a CSS rectangle. There is no corresponding
setRectValue() method, but you can modify the value by setting the properties of the
returned Rect object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.getRGBColorValue() get the RGBColor value

Availability

DOM Level 2 CSS

Synopsis

RGBColor getRGBColorValue()

 throws DOMException;

Returns

The RGBColor object that represents the value of this CSSPrimitiveValue.

Throws

This method throws a DOMException with a code of INVALID_ACCESS_ERR if the
primitiveType property is not CSS_RGBCOLOR.

Description

This method returns an RGBColor object that represents a color. There is no corresponding
setRGBColorValue() method, but you can modify the value by setting the properties of the
returned RGBColor object.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.getStringValue() query a CSS string value

Availability

DOM Level 2 CSS

Synopsis

String getStringValue()

 throws DOMException;

Returns

The string value of this CSSPrimitiveValue.

Throws

This method throws a DOMException with a code of INVALID_ACCESS_ERR if the
primitiveType property is not CSS_STRING, CSS_URI, CSS_IDENT, or CSS_ATTR.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.setFloatValue() set the numeric value

Availability

DOM Level 2 CSS

Synopsis

void setFloatValue(unsigned short unitType,

 float floatValue)

 throws DOMException;

Arguments

unitType

One of the CSSPrimitiveValue constants that specifies the numeric type units for this value.

floatValue

The new value (measured in unitType units).

Throws

This method throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if the
CSS attribute with which this value is associated is read-only. It throws a DOMException with a
code of INVALID_ACCESS_ERR if that CSS attribute does not allow numeric values or does not
allow values with the specified unitType.

Description

This method specifies the unit type and numeric value for this CSSPrimitiveValue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSPrimitiveValue.setStringValue() set the string value

Availability

DOM Level 2 CSS

Synopsis

void setStringValue(unsigned short stringType,

 String stringValue)

 throws DOMException;

Arguments

stringType

The type of the string being set. This must be one of the CSSPrimitiveValue constants
CSS_STRING, CSS_URI, CSS_IDENT, or CSS_ATTR.

stringValue

The new string value to be set.

Throws

This method throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if the
CSS attribute with which this value is associated is read-only. It throws a DOMException with a
code of INVALID_ACCESS_ERR if that CSS attribute does not allow string values or does not
allow values with the specified stringType.

Description

This method sets the string value and string type for this CSSPrimitiveValue.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSRule a rule in a CSS style sheet

Availability

DOM Level 2 CSS

Subinterfaces

CSSCharsetRule, CSSFontFaceRule, CSSImportRule, CSSMediaRule, CSSPageRule,
CSSStyleRule, CSSUnknownRule

Constants

These constants represent the various types of rules that may appear in a CSS style sheet. They
are the legal values of the type property, and they specify which of the above subinterfaces this
object implements.

unsigned short UNKNOWN_RULE = 0; // CSSUnknownRule

unsigned short STYLE_RULE = 1; // CSSStyleRule

unsigned short CHARSET_RULE = 2; // CSSCharsetRule

unsigned short IMPORT_RULE = 3; // CSSImportRule

unsigned short MEDIA_RULE = 4; // CSSMediaRule

unsigned short FONT_FACE_RULE = 5; // CSSFontFaceRule

unsigned short PAGE_RULE = 6; // CSSPageRule

Properties

String cssText

The textual representation of the rule. If you set this property, it may throw a
DOMException with one of the following code values for one of the following reasons:

HIERARCHY_REQUEST_ERR

The specified rule is not legal at this location in the style sheet.

INVALID_MODIFICATION_ERR

The new value of the property is a rule of a different type than the original value.

NO_MODIFICATION_ALLOWED_ERR

The rule or the style sheet that contains it is read-only.

SYNTAX_ERR

The specified string is not legal CSS syntax.

readonly CSSRule parentRule

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readonly CSSRule parentRule

The containing rule of this rule, or null if this rule does not have a parent. An example of a
CSS rule with a parent is a style rule within an @media rule.

readonly CSSStyleSheet parentStyleSheet

The CSSStyleSheet object that contains this rule.

readonly unsigned short type

The type of CSS rule this object represents. The legal values for this property are the
previously listed constants. This CSSRule interface is never implemented directly, and the
value of this property specifies which more specific subinterface is implemented by this
object.

Description

This interface defines properties that are common to all types of rules in CSS style sheets. No
object directly implements this interface; instead, they implement one of the more specific
subinterfaces listed earlier. The most important subinterface is probably CSSStyleRule, which
describes a CSS rule that defines a document style.

See Also

CSSStyleRule

Type of

CSSRule.parentRule, CSSStyleDeclaration.parentRule, CSSStyleSheet.ownerRule

Returned by

CSSRuleList.item()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSRuleList an array of CSSRule objects

Availability

DOM Level 2 CSS

Properties

readonly unsigned long length

The number of CSSRule objects in this CSSRuleList array.

Methods

item()

Returns the CSSRule object at the specified position. Instead of explicitly calling this
method, JavaScript allows you to simply treat the CSSRuleList object as an array and to
index it using standard square-bracket array notation. If the specified index is too large, this
method returns null.

Description

This interface defines a read-only ordered list (i.e., an array) of CSSRule objects. The length
property specifies the number of rules in the list, and the item() method allows you to retrieve
the rule at a specified position. In JavaScript, CSSRuleList objects behave like JavaScript arrays,
and you can query an element from the list using square-bracket array notation instead of calling
the item() method. (Note, however, that you cannot assign new nodes into a CSSRuleList
using square brackets.)

See Also

Type of

CSSMediaRule.cssRules, CSSStyleSheet.cssRules

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSRuleList.item() get the CSSRule at the specified position

Availability

DOM Level 2 CSS

Synopsis

CSSRule item(unsigned long index);

Arguments

index

The position of the rule to retrieve.

Returns

The CSSRule object at the specified position, or null if index is not a valid position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration a set of CSS style attributes and their values

Availability

DOM Level 2 CSS

Also Implements

If the implementation supports the "CSS2" feature in addition to the "CSS" feature (as most web
browsers do), all objects that implement this interface also implement the CSS2Properties
interface. CSS2Properties provides commonly used shortcut properties for setting and querying
the values of CSS attributes. See CSS2Properties for details.

Properties

String cssText

The textual representation of the style attributes and their values. This property consists of
the complete text of the style rule, minus the element selector and the curly braces that
surround the attributes and values. Setting this property to an illegal value throws a
DOMException with a code of SYNTAX_ERR. Setting it for a read-only style sheet or rule
throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR.

readonly unsigned long length

The number of style attributes in this style declaration.

readonly CSSRule parentRule

The CSSRule object that contains this CSSStyleDeclaration, or null if this style
declaration is not part of a CSS rule (such as for CSSStyleDeclaration objects that
represent inline HTML style attributes).

Methods

getPropertyCSSValue()

Returns a CSSValue object that represents the value of the named CSS attribute, or null
if that attribute is not explicitly set in this style declaration block or if the named style is a
"shortcut" attribute.

getPropertyPriority()

Returns the string "important" if the named CSS attribute is explicitly set in this declaration
block and has the !important priority qualifier specified. If the attribute is not specified, or
has no priority, returns the empty string.

getPropertyValue()

Returns the value of the named CSS attribute as a string. Returns the empty string if the
attribute is not specified in this declaration block.

item()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

item()

Returns the name of the CSS attribute at the specified position in this style declaration
block. In JavaScript, the CSSStyleDeclaration object can be treated as an array and
indexed using square brackets instead. See also the length property.

removeProperty()

Deletes a named CSS attribute from this declaration block.

setProperty()

Sets a named CSS attribute to the specified string value and priority for this declaration
block.

Description

This attribute represents a CSS style declaration block: a set of CSS attributes and their values,
separated from each other by semicolons. The style declaration block is the portion of a style rule
within curly braces in a CSS style sheet. The value of the HTML style attribute also constitutes
a style declaration block.

The item() method and the length property allow you to loop through the names of all CSS
attributes specified in this declaration block. In JavaScript, you can also simply treat the
CSSStyleDeclaration object as an array and index it using square-bracket notation instead of
calling the item() method explicitly. Once you have the names of the CSS attributes specified
in this declaration, you can use other methods of this interface to query the values of those
attributes. getPropertyValue() returns the value as a string, and getPropertyCSSValue(
) returns the attribute value as a CSSValue object. (Note that the DOM API refers to CSS style
attributes as "properties." I use the term "attributes" here to avoid confusing them with JavaScript
object properties.)

In most web browsers, every object that implements CSSStyleDeclaration also implements the
CSS2Properties interface, which defines an object property for each CSS attribute defined by the
CSS2 specification. You can read and write the values of these convenience properties instead of
calling getPropertyValue() and setProperty().

See Also

CSS2Properties

Type of

CSSFontFaceRule.style, CSSPageRule.style, CSSStyleRule.style, HTMLElement.style

Returned by

Document.getOverrideStyle(), AbstractView.getComputedStyle()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.getPropertyCSSValue(
)

return a CSS attribute value
as an object

Availability

DOM Level 2 CSS

Synopsis

CSSValue getPropertyCSSValue(String propertyName);

Arguments

propertyName

The name of the desired CSS attribute.

Returns

A CSSValue object that represents the value of the named attribute if it is explicitly specified in
this style declaration, or null if the named attribute is not specified. This method also returns
null if propertyName specifies a CSS shorthand attribute, since shorthand attributes specify
more than one value and cannot be represented with CSSValue objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.getPropertyPriority(
)

get the priority of a CSS
attribute

Availability

DOM Level 2 CSS

Synopsis

String getPropertyPriority(String propertyName);

Arguments

propertyName

The name of the CSS attribute.

Returns

The string "important" if the named CSS attribute is explicitly specified in this declaration block
and has the !important priority modifier. Returns the empty string otherwise.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.getPropertyValue(
)

get the value of a CSS attribute as
a string

Availability

DOM Level 2 CSS

Synopsis

String getPropertyValue(String propertyName);

Arguments

propertyName

The name of the CSS attribute whose value is desired.

Returns

The string value of the named CSS attribute, or the empty string if that attribute is not explicitly set
in this declaration block.

Description

This method returns the value of the named CSS attribute as a string. Unlike
getPropertyCSSValue(), this method works with shortcut attributes as well as regular
attributes. See also the various convenience properties of the CSS2Properties interface.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.item(
)

get the CSS attribute name at the specified
position

Availability

DOM Level 2 CSS

Synopsis

String item(unsigned long index);

Arguments

index

The position of the desired CSS attribute name.

Returns

The name of the CSS attribute at index, or the empty string if index is negative or greater than
or equal to the length property.

Description

The CSSStyleDeclaration interface represents a collection of CSS style attributes and their
values. This method allows you to query the name of the CSS attribute by position and, in
conjunction with the length property, allows you to iterate through the set of CSS attributes
specified in this style declaration. Note that the order of CSS attributes as returned by this method
does not necessarily correspond to the order in which they appear in the document or style sheet
source.

As an alternative to this item() method, JavaScript allows you to simply treat a
CSSStyleDeclaration object as an array of CSS attribute names and use standard square-bracket
array syntax to obtain the attribute name at a specified position.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.removeProperty() delete a CSS attribute specification

Availability

DOM Level 2 CSS

Synopsis

String removeProperty(String propertyName)

 throws DOMException;

Arguments

propertyName

The name of the CSS attribute to be deleted.

Returns

The value of the named CSS attribute as a string, or the empty string if the named attribute is not
explicitly specified in this style declaration.

Throws

If this style declaration is read-only, this method throws a DOMException with a code of
NO_MODIFICATION_ALLOWED_ERR.

Description

This method deletes a named attribute from this style declaration block and returns the value of
the attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleDeclaration.setProperty() set a CSS style attribute

Availability

DOM Level 2 CSS

Synopsis

void setProperty(String propertyName,

 String value,

 String priority)

 throws DOMException;

Arguments

propertyName

The name of the CSS attribute to set.

value

The new value of the attribute, as a string.

priority

The new priority of the attribute. This argument should be "important" if the attribute
specification is !important; otherwise, it should be the empty string.

Throws

This method throws a DOMException with a code of SYNTAX_ERR if the specified value
argument is malformed. It throws a DOMException with a code of
NO_MODIFICATION_ALLOWED_ERR if the style declaration or the attribute being set is read-only.

Description

This method adds the named CSS attribute with its value and priority to this style declaration, or,
if the declaration already contains a value for the named attribute, it simply sets the value and
priority for that existing attribute.

Using setProperty() to add a new CSS attribute to a style declaration may insert the new
attribute at any position and may, in fact, totally shuffle the order of all existing attributes.
Therefore, you should not use setProperty() while you are iterating through the set of
attribute names with the item() method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleRule a style rule in a CSS style sheet

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSRule CSSStyleRule

Properties

String selectorText

The selector text that specifies the document elements this style rule applies to. Setting this
property raises a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if the
rule is read-only, or a code of SYNTAX_ERR if the new value does not follow CSS syntax
rules.

readonly CSSStyleDeclaration style

The style values that should be applied to elements specified by selectorText.

Description

This interface represents a style rule in a CSS style sheet. Style rules are the most common and
important kinds of rules in style sheets: they specify style information that is to be applied to a
specific set of document elements. selectorText is the string representation of the element
selector for this rule, and style is a CSSStyleDeclaration object that represents the set of style
names and values to apply to the selected elements.

See Also

CSSStyleDeclaration

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleSheet a CSS style sheet

Availability

DOM Level 2

Inherits from/Overrides

CSS StyleSheet CSSStyleSheet

Properties

readonly CSSRuleList cssRules

An array (technically, a CSSRuleList) of the CSSRule objects that comprise the style sheet.
This includes all at-rules in addition to the actual style rules.

readonly CSSRule ownerRule

If this style sheet was imported by an @import rule in another style sheet, this property
holds the CSSImportRule object that represents that @import rule. Otherwise, it is null.
When this property is non-null, the inherited ownerNode property is null.

Methods

deleteRule()

Deletes the rule at the specified position.

insertRule()

Inserts a new rule at the specified position.

Description

This interface represents a CSS style sheet. The cssRules property lists the rules contained in
the style sheet, and the insertRule() and deleteRule() methods allow you to add and
delete rules from that list.

See Also

StyleSheet

Type of

CSSImportRule.styleSheet, CSSRule.parentStyleSheet

Returned by

DOMImplementation.createCSSStyleSheet()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleSheet.deleteRule() delete a rule from a style sheet

Availability

DOM Level 2 CSS

Synopsis

void deleteRule(unsigned long index)

 throws DOMException;

Arguments

index

The index within the cssRules array of the rule to be deleted.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is negative or
greater than or equal to cssRules.length. It throws a DOMException with a code of
NO_MODIFICATION_ALLOWED_ERR if this style sheet is read-only.

Description

This method deletes the rule at the specified index from the cssRules array.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSStyleSheet.insertRule() insert a rule into a style sheet

Availability

DOM Level 2 CSS

Synopsis

unsigned long insertRule(String rule,

 unsigned long index)

 throws DOMException;

Arguments

rule

The complete, parseable text representation of the rule to be added to the style sheet. For
style rules, this includes both the element selector and the style information.

index

The position in the cssRules array at which the rule is to be inserted or appended.

Returns

The value of the index argument.

Throws

This method throws a DOMException with one of the following code values in the following
circumstances:

HIERARCHY_REQUEST_ERR

CSS syntax does not allow the specified rule at the specified location.

INDEX_SIZE_ERR

index is negative or greater then cssRules.length.

NO_MODIFICATION_ALLOWED_ERR

The style sheet is read-only.

SYNTAX_ERR

The specified rule text contains a syntax error.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method inserts (or appends) a new CSS rule at the specified index of the cssRules array
of this style sheet.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSUnknownRule an unrecognized rule in a CSS style sheet

Availability

DOM Level 2

Inherits from/Overrides

CSS CSSRule CSSUnknownRule

Description

This interface represents a rule in a CSS style sheet that the browser did not recognize and could
not parse (typically because it is defined by a version of the CSS standard that the browser does
not support). Note that this interface does not define any properties or methods of its own. The
text of the unrecognized rule is available through the inherited cssText property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSValue the value of a CSS style attribute

Availability

DOM Level 2 CSS

Subinterfaces

CSSPrimitiveValue, CSSValueList

Constants

The following constants specify the valid values for the cssValueType property:

unsigned short CSS_INHERIT = 0

This constant represents the special value "inherit", which means that the actual value of
the CSS style attribute is inherited. The cssText property is "inherit" in this case.

unsigned short CSS_PRIMITIVE_VALUE = 1

The value is a primitive value. This CSSValue object also implements the more specific
CSSPrimitiveValue subinterface.

unsigned short CSS_VALUE_LIST = 2

The value is a compound value consisting of a list of values. This CSSValue object also
implements the more specific CSSValueList subinterface and behaves as an array of
CSSValue objects.

unsigned short CSS_CUSTOM = 3

This constant is defined to allow extensions to the CSS object model. It specifies that this
CSSValue represents a value of some type that is not defined by the CSS or DOM
standards. If you are working with an implementation that supports such extensions, the
CSSValue object may also implement some other interface (such as the SVGColor
interface defined by the Scalable Vector Graphics standard) that you can use.

Properties

String cssText

The textual representation of the value. Setting this property may throw a DOMException. A
code of SYNTAX_ERR indicates that the new value does not follow legal CSS syntax. A
code of INVALID_MODIFICATION_ERR specifies that you tried to set a value of a
different type than the original value. A code of NO_MODIFICATION_ALLOWED_ERR
indicates that the value is read-only.

readonly unsigned short cssValueType

The kind of value this object represents. The four legal values of this property are defined
by the previously listed constants.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This interface represents the value of a CSS attribute. The cssText property gives the value in
textual form. If the cssValueType property is CSSValue.CSS_PRIMITIVE_VALUE, this
CSSValue object also implements the more specific CSSPrimitiveValue interface. If
cssValueType is CSSValue.CSS_VALUE_LIST, this CSSValue represents a list of values and
also implements the CSSValueList interface.

See Also

CSSPrimitiveValue, CSSValueList

Returned by

CSSStyleDeclaration.getPropertyCSSValue(), CSSValueList.item()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSValueList a CSSValue that holds an array of CSSValue objects

Availability

DOM Level 2 CSS

Inherits from/Overrides

CSSValue CSSValueList

Properties

readonly unsigned long length

The number of CSSValue objects in this array.

Methods

item()

Returns the CSSValue object at the specified position in the array, or null if the specified
position is negative or if it is greater than or equal to length.

Description

This interface represents an array of CSSValue objects and is itself a type of CSSValue. The
item() method can be used to retrieve the CSSValue object at a specified position, but in
JavaScript, it is easier to simply index the array using standard square-bracket notation.

The order of CSSValue objects in a CSSValueList array is the order in which they appear in the
CSS style declaration. Some CSS attributes whose value is a CSSValueList may also have the
value none. This special value translates into a CSSValueList object with a length of 0.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSSValueList.item() get the CSSValue at the specified position

Availability

DOM Level 2 CSS

Synopsis

CSSValue item(unsigned long index);

Arguments

index

The position of the desired CSSValue.

Returns

The CSSValue object at the specified position in this CSSValueList, or null if index is negative
or is greater than or equal to length.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document an HTML or XML document

Availability

DOM Level 1 Core

Inherits from/Overrides

Node Document

Subinterfaces

HTMLDocument

Also Implements

DocumentCSS

If the implementation supports the CSS module, the object that implements this Document
interface also implements the DocumentCSS interface and its getOverrideStyle()
method.

DocumentEvent

If the implementation supports the Events module, the object that implements this
Document interface also implements the DocumentEvent interface and its createEvent(
) method.

DocumentRange

If the implementation supports the Range module, the object that implements this
Document interface also implements the DocumentRange interface and its createRange(
) method.

DocumentStyle

If the implementation supports the StyleSheets module, the object that implements this
Document interface also implements the DocumentStyle interface and its styleSheets
property.

DocumentTraversal

If the implementation supports the Traversal module, the object that implements this
Document interface also implements the DocumentTraversal interface and its
createNodeIterator() and createTreeWalker() methods.

DocumentView

If the implementation supports the Views module, the object that implements this
Document interface also implements the DocumentView interface and its defaultView
property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Because these interfaces define commonly implemented additions to the Document interface,
their properties and methods are listed and documented here, as if they were directly part of the
Document interface.

Properties

readonly AbstractView defaultView [DOM Level 2 Views]

The default view of this document. In a web-browser environment, this property specifies
the Window object (which implements the AbstractView interface) in which the document is
displayed.

Note that this property is technically part of the DocumentView interface; it is defined by the
Document object only in implementations that support the Views module.

readonly DocumentType doctype

For XML documents with a <!DOCTYPE> declaration, specifies a DocumentType node that
represents the document's DTD. For HTML documents and for XML documents with no
<!DOCTYPE>, this property is null. Note that the property is read-only, and the node to
which it refers is also read-only.

readonly Element documentElement

A reference to the root element of the document. For HTML documents, this property is
always the Element object representing the <html> tag. This root element is also available
through the childNodes[] array inherited from Node.

readonly DOMImplementation implementation

The DOMImplementation object that represents the implementation that created this
document.

readonly StyleSheetList styleSheets [DOM Level 2 StyleSheets]

A collection of objects representing all style sheets embedded in or linked into a document.
In HTML documents, this includes style sheets defined with <link> and <style> tags.

Note that this property is technically part of the DocumentStyle interface; it is defined by the
Document object only in implementations that support the StyleSheets module.

Methods

createAttribute()

Creates a new Attr node with the specified name.

createAttributeNS() [DOM Level 2]

Creates a new Attr node with the specified name and namespace.

createCDATASection()

Creates a new CDATASection node containing the specified text.

createComment()

Creates a new Comment node containing the specified string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createDocumentFragment()

Creates a new, empty DocumentFragment node.

createElement()

Creates a new Element node with the specified tag name.

createElementNS() [DOM Level 2]

Creates a new Element node with the specified tag name and namespace.

createEntityReference()

Creates a new EntityReference node that refers to an entity with the specified name. If the
DocumentType object for this document defines an Entity with that name, the newly created
EntityReference node is given the same read-only children that the Entity node has.

createEvent() [DOM Level 2 Events]

Creates a new synthetic Event object of the named type. Technically, this method is
defined by the DocumentEvent interface; it is implemented by the Document object only in
implementations that support the Events module.

createNodeIterator() [DOM Level 2 Traversal]

Creates a NodeIterator object. This method is technically part of the DocumentTraversal
interface; it is implemented by the Document object only in implementations that support
the Traversal module.

createProcessingInstruction()

Creates a new ProcessingInstruction node with the specified target and data string.

createRange() [DOM Level 2 Range]

Creates a new Range object. This method is technically part of the DocumentRange
interface; it is implemented by the Document object only in implementations that support
the Range module.

createTextNode()

Creates a new Text node to represent the specified text.

createTreeWalker() [DOM Level 2 Traversal]

Creates a TreeWalker object. This method is technically part of the DocumentTraversal
interface; it is implemented by the Document object only in implementations that support
the Traversal module.

getElementById() [DOM Level 2]

Returns a descendant Element of this document that has the specified value for its id
attribute, or null if no such Element exists in the document.

getElementsByTagName()

Returns an array (technically a NodeList) of all Element nodes in this document that have
the specified tag name. The Element nodes appear in the returned array in the order in
which they appear in the document source.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getElementsByTagNameNS() [DOM Level 2]

Returns an array of all Element nodes that have the specified tag name and namespace.

getOverrideStyle() [DOM Level 2 CSS]

Gets the CSS override style information for the specified Element (and an optional named
pseudoelement). This method is technically part of the DocumentCSS interface; it is
implemented by the Document object only in implementations that support the CSS
module.

importNode() [DOM Level 2]

Makes a copy of a node from some other document that is suitable for insertion into this
document.

Description

The Document interface is the root node of a document tree. A Document node may have
multiple children, but only one of those children may be an Element node: it is the root element of
the document. The root element is most easily accessed through the documentElement
property. The doctype and implementation properties provide access to the DocumentType
object (if any) and the DOMImplementation object for this document.

Most of the methods defined by the Document interface are "factory methods" that are used to
create various types of nodes that can be inserted into this document. The notable exceptions are
getElementById() and getElementsByTagName(), which are quite useful for finding a
specific Element or a set of related Element nodes within the document tree.

Contrast this Document object to the Document object documented in the client-side reference
section of this book. The Level 0 properties and methods of that client-side Document object are
formally defined by the DOM standard in the HTMLDocument interface. See HTMLDocument in
this reference section for the DOM equivalent of the traditional client-side JavaScript Document
object.

The Document interface is defined by the Core module of the DOM Level 2 specification. A
number of the other modules define "add-on" interfaces that are intended to be implemented by
the same object that implements the Document interface. For example, if an implementation
supports the CSS module, the object that implements this interface also implements the
DocumentCSS interface. In JavaScript, the properties and methods of these add-on interfaces
can be used as if they were defined by Document, and for that reason, those methods and
properties are listed here. See the earlier Section section for a full list of the add-on interfaces for
Document.

See Also

HTMLDocument

Type of

AbstractView.document, HTMLFrameElement.contentDocument,
HTMLIFrameElement.contentDocument, HTMLObjectElement.contentDocument,
Node.ownerDocument

Returned by

DOMImplementation.createDocument()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createAttribute() create a new Attr node

Availability

DOM Level 1 Core

Synopsis

Attr createAttribute(String name)

 throws DOMException;

Arguments

name

The name for the newly created attribute.

Returns

A newly created Attr node with its nodeName property set to name.

Throws

This method throws a DOMException with a code of INVALID_CHARACTER_ERR if name
contains an illegal character.

See Also

Attr, Element.setAttribute(), Element.setAttributeNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createAttributeNS() create an Attr with a name and namespace

Availability

DOM Level 2 Core

Synopsis

Attr createAttributeNS(String namespaceURI,

 String qualifiedName)

 throws DOMException;

Arguments

namespaceURI

The unique identifier of the namespace for the Attr, or null for no namespace.

qualifiedName

The qualified name of the attribute, which should include a namespace prefix, a colon, and
a local name.

Returns

A newly created Attr node with the specified name and namespace.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

INVALID_CHARACTER_ERR

qualifiedName contains an illegal character.

NAMESPACE_ERR

qualifiedName is malformed, or there is a mismatch between qualifiedName and
namespaceURI.

NOT_SUPPORTED_ERR

The implementation does not support XML documents and therefore does not implement
this method.

Description

createAttributeNS() is just like createAttribute() except that the created Attr node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createAttributeNS() is just like createAttribute() except that the created Attr node
has a name and namespace instead of just a name. This method is useful only with XML
documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createCDATASection() create a new CDATASection node

Availability

DOM Level 1 Core

Synopsis

CDATASection createCDATASection(Stringdata)

 throws DOMException;

Arguments

data

The text of the CDATASection to create.

Returns

A newly created CDATASection node, with the specified data as its contents.

Throws

If the document is an HTML document, this method throws a DOMException with a code of
NOT_SUPPORTED_ERR because HTML documents do not allow CDATASection nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createComment(
)

create a new Comment node DOM Level 1
Core

Availability

Synopsis

Comment createComment(String data);

Arguments

data

The text of the Comment node to create.

Returns

A newly created Comment node, with the specified data as its text.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createDocumentFragment(
)

create a new, empty
DocumentFragment node

Availability

DOM Level 1 Core

Synopsis

DocumentFragment createDocumentFragment();

Returns

A newly created DocumentFragment node with no children.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createElement() create a new Element node

Availability

DOM Level 1 Core

Synopsis

Element createElement(String tagName)

 throws DOMException;

Arguments

tagName

The tag name of the Element to be created. Since HTML tags are case-insensitive, you
may use any capitalization for HTML tag names. XML tag names are case-sensitive.

Returns

A newly created Element node with the specified tag name.

Throws

This method throws a DOMException with a code of INVALID_CHARACTER_ERR if tagName
contains an illegal character.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createElementNS(
)

create a new Element node using a
namespace

Availability

DOM Level 2 Core

Synopsis

Element createElementNS(String namespaceURI,

 String qualifiedName)

 throws DOMException;

Arguments

namespaceURI

The unique identifier for the namespace of the new Element, or null for no namespace.

qualifiedName

The qualified name of the new Element. This should include a namespace prefix, a colon,
and a local name.

Returns

A newly created Element node, with the specified tag name and namespace.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

INVALID_CHARACTER_ERR

qualifiedName contains an illegal character.

NAMESPACE_ERR

qualifiedName is malformed, or there is a mismatch between qualifiedName and
namespaceURI.

NOT_SUPPORTED_ERR

The implementation does not support XML documents and therefore does not implement
this method.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createElementNS() is just like createElement() except that the created Element node
has a name and namespace instead of just a name. This method is useful only with XML
documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createEntityReference() create a new EntityReference node

Availability

DOM Level 1 Core

Synopsis

EntityReference createEntityReference(String name)

 throws DOMException;

Arguments

name

The name of the referenced entity.

Returns

A new EntityReference node that references an entity with the specified name.

Throws

This method may throw a DOMException with one of the following code values:

INVALID_CHARACTER_ERR

The specified entity name contains an illegal character.

NOT_SUPPORTED_ERR

This is an HTML document and does not support entity references.

Description

This method creates and returns an EntityReference node that refers to an entity with the
specified name. Note that it always throws an exception if this is an HTML document, because
HTML does not allow entity references. If this document has a DocumentType node, and if that
DocumentType defines an Entity object with the specified name, the returned EntityReference has
the same children as the referenced Entity node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createEvent() create an Event object

Availability

DOM Level 2 Events

Synopsis

Event createEvent(String eventType)

 throws DOMException;

Arguments

eventType

The name of the event module for which an Event object is desired. See the Section
section for a list of valid event types.

Returns

A newly created Event object of the specified type.

Throws

This method throws a DOMException with a code of NOT_SUPPORTED_ERR if the implementation
does not support events of the requested type.

Description

This method creates a new event type of the type specified by the eventType argument. Note
that the value of this argument should not be the (singular) name of the event interface to be
created, but instead should be the (plural) name of the DOM module that defines that interface.
The following table shows the legal values for eventType and the event interface each value
creates.

eventType argument Event interface Initialization method
HTMLEvents Event initEvent()
MouseEvents MouseEvent initMouseEvent()
UIEvents UIEvent initUIEvent()
MutationEvents MutationEvent initMutationEvent()

After creating an Event object with this method, you must initialize the object with the initialization
method shown in the table. See the appropriate Event interface reference page for details about
the initialization method.

This method is actually defined not by the Document interface but by the DocumentEvent
interface. If an implementation supports the Events module, the Document object always
implements the DocumentEvent interface and supports this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Event, MouseEvent, MutationEvent, UIEvent

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createNodeIterator() create a NodeIterator for this document

Availability

DOM Level 2 Traversal

Synopsis

NodeIterator createNodeIterator(Node root,

 unsigned long whatToShow,

 NodeFilter filter,

 boolean entityReferenceExpansion)

 throws DOMException;

Arguments

root

The root of the subtree over which the NodeIterator is to iterate.

whatToShow

A bitmask of one or more NodeFilter flags that specify which types of nodes should be
returned by this NodeIterator.

filter

An optional node filter function for the NodeIterator, or null for no node filter.

entityReferenceExpansion

true if the NodeIterator should expand entity references in XML documents, or false
otherwise.

Returns

A newly created NodeIterator object.

Throws

This method throws a DOMException with a code of NOT_SUPPORTED_ERR if the root argument
is null.

Description

This method creates and returns a new NodeIterator object to iterate over the subtree rooted at
the root node, using the specified filters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the root node, using the specified filters.

This method is not actually part of the Document interface but is instead defined by the
DocumentTraversal interface. If an implementation supports the Traversal module, the Document
object always implements DocumentTraversal and defines this method.

See Also

Document.createTreeWalker(), NodeFilter, NodeIterator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createProcessingInstruction(
)

create a ProcessingInstruction
node

Availability

DOM Level 1 Core

Synopsis

ProcessingInstruction createProcessingInstruction(String target,

 String data)

 throws DOMException;

Arguments

target

The target of the processing instruction.

data

The content text of the processing instruction.

Returns

A newly created ProcessingInstruction node.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

INVALID_CHARACTER_ERR

The specified target contains an illegal character.

NOT_SUPPORTED_ERR

This is an HTML document and does not support processing instructions.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createRange() create a Range object

Availability

DOM Level 2 Range

Synopsis

Range createRange();

Returns

A newly created Range object with both boundary points set to the beginning of the document.

Description

This method creates a Range object that can be used to represent a region of this document or of
a DocumentFragment associated with this document.

Note that this method is actually defined not by the Document interface but by the
DocumentRange interface. If an implementation supports the Range module, the Document
object always implements DocumentRange and defines this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createTextNode() create a new Text node

Availability

DOM Level 1 Core

Synopsis

Text createTextNode(String data);

Arguments

data

The content of the Text node.

Returns

A newly created Text node that represents the specified data string.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.createTreeWalker() create a TreeWalker for this document

Availability

DOM Level 2 Traversal

Synopsis

TreeWalker createTreeWalker(Node root,

 unsigned long whatToShow,

 NodeFilter filter,

 boolean entityReferenceExpansion)

 throws DOMException;

Arguments

root

The root of the subtree over which this TreeWalker is to walk.

whatToShow

A bitmask of one or more NodeFilter flags that specify which types of nodes should be
returned by this TreeWalker.

filter

An optional node filter function for the TreeWalker, or null for no node filter.

entityReferenceExpansion

true if the TreeWalker should expand entity references in XML documents, or false
otherwise.

Returns

A newly created TreeWalker object.

Throws

This method throws a DOMException with a code of NOT_SUPPORTED_ERR if the root argument
is null.

Description

This method creates and returns a new TreeWalker object to traverse the subtree rooted at the
root node, using the specified filters.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

root node, using the specified filters.

This method is not actually part of the Document interface but is instead defined by the
DocumentTraversal interface. If an implementation supports the Traversal module, the Document
object always implements DocumentTraversal and defines this method.

See Also

Document.createNodeIterator(), NodeFilter, TreeWalker

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getElementById() find an element with the specified unique ID

Availability

DOM Level 2 Core; in DOM Level 1, defined by HTMLDocument

Synopsis

Element getElementById(String elementId);

Arguments

elementId

The value of the id attribute of the desired element.

Returns

The Element node that represents the document element with the specified id attribute, or null
if no such element is found.

Description

This method searches the document for an Element node with an id attribute whose value is
elementId, and returns that Element. If no such Element is found, it returns null. The value of
the id attribute is intended to be unique within a document, and if this method finds more than
one Element with the specified elementId, it may return one at random or it may return null.

In HTML documents, this method always searches for attributes named id. In XML documents,
however, it searches for any attribute whose type is id, regardless of what the attribute name is.
If XML attribute types are not known (because, for example, the XML parser could not locate the
document's DTD), this method always returns null.

This is an important and commonly used method since it provides a simple way to obtain the
Element object that represents a specific document element. Note that it provides functionality
similar to the nonstandard document.all[] array defined by Internet Explorer 4 and later.
Finally, note that the name of this method ends with "Id", not with "ID"; be careful not to misspell it.

See Also

Document.getElementsByTagName(), Element.getElementsByTagName(),
HTMLDocument.getElementsByName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getElementsByTagName(
)

return all Element nodes with the
specified name

Availability

DOM Level 1 Core

Synopsis

Node[] getElementsByTagName(String tagname);

Arguments

tagname

The tag name of the Element nodes to be returned, or the wildcard string "*" to return all Element
nodes in the document regardless of tag name. For HTML documents, tag names are compared
in a case-insensitive fashion.

Returns

A read-only array (technically, a NodeList) of all Element nodes in the document tree with the specified
tag name. The returned Element nodes are in the same order in which they appear in the document
source.

Description

This method returns a NodeList (which you can treat as a read-only array) that contains all Element
nodes from the document that have the specified tag name, in the order in which they appear in the
document source. The NodeList is "live"; i.e., its contents are automatically updated as necessary if
elements with the specified tag name are added to or removed from the document.

HTML documents are case-insensitive, and you can specify tagname using any capitalization; it
matches all tags with the same name in the document, regardless of how those tags are capitalized in
the document source. XML documents, on the other hand, are case-sensitive, and tagname matches
only tags with the same name and exactly the same capitalization in the document source.

Note that the Element interface defines a method by the same name that searches only a subtree of the
document. Also, the HTMLDocument interface defines getElementsByName(), which searches for
elements based on the value of their name attributes rather than their tag names.

Example

You can find and iterate through all <h1> tags in a document with code like the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can find and iterate through all <h1> tags in a document with code like the following:

var headings = document.getElementsByTagName("h1");

for(var i = 0; i < headings.length; i++) { // Loop through the returned tags

 var h = headings[i];

 // Now do something with the <h1> element in the h variable

}

See Also

Document.getElementById(), Element.getElementsByTagName(),
HTMLDocument.getElementsByName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getElementsByTagNameNS(
)

return all Element nodes with a
specified name and namespace

Availability

DOM Level 2 Core

Synopsis

Node[] getElementsByTagNameNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The unique identifier of the namespace of the desired elements, or "*" to match all
namespaces.

localName

The local name of the desired elements, or "*" to match any local name.

Returns

A read-only array (technically, a NodeList) of all Element nodes in the document tree that have
the specified namespace and local name.

Description

This method works just like getElementsByTagName() except that it searches for elements
by namespace and name. It is useful only with XML documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getOverrideStyle() get the override style for a specified element

Availability

DOM Level 2 CSS

Synopsis

CSSStyleDeclaration getOverrideStyle(Element elt,

 String pseudoElt);

Arguments

elt

The element for which the override style is desired.

pseudoElt

The pseudoelement of elt, or null if there is none.

Returns

A CSSStyleDeclaration object that represents the override style information for the specified
element and pseudoelement. The returned object typically also implements the more commonly
used CSS2Properties interfaces.

Description

This method returns a CSSStyleDeclaration object (which typically also implements
CSS2Properties) for a specified element and optional pseudoelement. You may make use of this
returned object to make changes to the displayed style of the specified element without disturbing
the inline style of that element and without modifying the style sheets of the document.
Conceptually, the returned value represents a style declaration within an "override" style sheet
that takes precedence over all other style sheets and inline styles (except for !important
declarations in the user style sheet).

Note that this method is defined not by the Document interface but by the DocumentCSS
interface. If an implementation supports the CSS module, the Document object always
implements DocumentCSS and defines this method.

See Also

CSSStyleDeclaration, CSS2Properties, AbstractView.getComputedStyle(), HTMLElement.style

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.importNode(
)

copy a node from another document for use in this
document

Availability

DOM Level 2 Core

Synopsis

Node importNode(Node importedNode,

 boolean deep)

 throws DOMException;

Arguments

importedNode

The node to be imported.

deep

If true, recursively copy all descendants of importedNode as well.

Returns

A copy of importedNode (and possibly all of its descendants) with its ownerDocument set to
this document.

Throws

This method throws a DOMException with a code of NOT_SUPPORTED_ERR if importedNode is
a Document or DocumentType node, since those types of nodes cannot be imported.

Description

This method is passed a node defined in another document and returns a copy of the node that is
suitable for insertion into this document. If deep is true, all descendants of the node are also
copied. The original node and its descendants are not modified in any way. The returned copy
has its ownerDocument property set to this document but has a parentNode of null since it
has not yet been inserted into the document. EventListener functions registered on the original
node or tree are not copied.

When an Element node is imported, only the attributes that are explicitly specified in the source
document are imported with it. When an Attr node is imported, its specified property is
automatically set to true.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.cloneNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentCSS see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentEvent see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentFragment adjacent nodes and their subtrees

Availability

DOM Level 1 Core

Inherits from/Overrides

Node DocumentFragment

Description

The DocumentFragment interface represents a portion -- or fragment -- of a document. More
specifically, it represents one or more adjacent Document nodes and all of the descendants of
each. DocumentFragment nodes are never part of a document tree, and the inherited
parentNode property is always null. DocumentFragment nodes exhibit a special behavior that
makes them quite useful, however: when a request is made to insert a DocumentFragment into a
document tree, it is not the DocumentFragment node itself that is inserted but each of the children
of the DocumentFragment instead. This makes DocumentFragment useful as a temporary
placeholder for nodes that you wish to insert, all at once, into a document. DocumentFragment is
also particularly useful for implementing document cut, copy, and paste operations, particularly
when combined with the Range interface.

You can create a new, empty DocumentFragment with
Document.createDocumentFragment(), or you can use Range.extractContents() or
Range.cloneContents() to obtain a DocumentFragment that contains a fragment of an
existing document.

See Also

Range

Returned by

Document.createDocumentFragment(), Range.cloneContents(), Range.extractContents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentRange see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentStyle see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentTraversal see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentType the DTD of an XML document

Availability

DOM Level 1 XML

Inherits from/Overrides

Node DocumentType

Properties

readonly NamedNodeMap entities

This NamedNodeMap is a list of Entity objects declared in the DTD and allows Entity
objects to be queried by name. Note that XML parameter entities are not included. This
NamedNodeMap is immutable -- its contents may not be altered.

readonly String internalSubset [DOM Level 2]

The internal subset of the DTD (i.e., the portion of the DTD that appears in the document
itself rather than in an external file). The delimiting square brackets of the internal subset
are not part of the returned value. If there is no internal subset, this property is null.

readonly String name

The name of the document type. This is the identifier that immediately follows <!DOCTYPE>
at the start of an XML document, and it is the same as the tag name of the document's root
element.

readonly NamedNodeMap notations

A NamedNodeMap that contains Notation objects representing all notations declared in the
DTD. It also allows Notation objects to be looked up by notation name. This
NamedNodeMap is immutable -- its contents may not be altered.

readonly String publicId [DOM Level 2]

The public identifier of the external subset of the DTD, or null if none was specified.

readonly String systemId [DOM Level 2]

The system identifier of the external subset of the DTD, or null if none was specified.

Description

This infrequently used interface represents the DTD of an XML document. Programmers working
exclusively with HTML documents never need to use this interface.

Because a DTD is not part of a document's content, DocumentType nodes never appear in the
document tree. If an XML document has a DTD, the DocumentType node for that DTD is
available through the doctype property of the Document node.

DocumentType nodes are immutable and may not be modified in any way.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Document, Entity, Notation

Type of

Document.doctype

Passed to

DOMImplementation.createDocument()

Returned by

DOMImplementation.createDocumentType()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DocumentView see Document

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMException signals exceptions or errors for core DOM objects

Availability

DOM Level 1 Core

Constants

The following constants define the legal values for the code property of a DOMException object.
Note that these constants are static properties of DOMException, not properties of individual
exception objects.

unsigned short INDEX_SIZE_ERR = 1

Indicates an out-of-bounds error for an array or string index.

unsigned short DOMSTRING_SIZE_ERR = 2

Indicates that a requested text is too big to fit into a string in the current JavaScript
implementation.

unsigned short HIERARCHY_REQUEST_ERR = 3

Indicates that an attempt was made to place a node somewhere illegal in the document
tree hierarchy.

unsigned short WRONG_DOCUMENT_ERR = 4

Indicates an attempt to use a node with a document that is different from the document that
created the node.

unsigned short INVALID_CHARACTER_ERR = 5

Indicates that an illegal character is used (in an element name, for example).

unsigned short NO_DATA_ALLOWED_ERR = 6

Not currently used.

unsigned short NO_MODIFICATION_ALLOWED_ERR = 7

Indicates that an attempt was made to modify a node that is read-only and does not allow
modifications. Entity, EntityReference, and Notation nodes, and all of their descendants,
are read-only.

unsigned short NOT_FOUND_ERR = 8

Indicates that a node was not found where it was expected.

unsigned short NOT_SUPPORTED_ERR = 9

Indicates that a method or property is not supported in the current DOM implementation.

unsigned short INUSE_ATTRIBUTE_ERR = 10

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned short INUSE_ATTRIBUTE_ERR = 10

Indicates that an attempt was made to associate an Attr with an Element when that Attr
node was already associated with a different Element node.

unsigned short INVALID_STATE_ERR = 11 [DOM Level 2]

Indicates an attempt to use an object that is not yet, or is no longer, in a state that allows
such use.

unsigned short SYNTAX_ERR = 12 [DOM Level 2]

Indicates that a specified string contains a syntax error. Commonly used with CSS property
specifications.

unsigned short INVALID_MODIFICATION_ERR = 13 [DOM Level 2]

Indicates an attempt to modify the type of a CSSRule or CSSValue object.

unsigned short NAMESPACE_ERR = 14 [DOM Level 2]

Indicates an error involving element or attribute namespaces.

unsigned short INVALID_ACCESS_ERR = 15 [DOM Level 2]

Indicates an attempt to access an object in a way that is not supported by the
implementation.

Properties

unsigned short code

An error code that provides some detail about what caused the exception. The legal values
(and their meanings) for this property are defined by the constants just listed.

Description

A DOMException object is thrown when a DOM method or property is used incorrectly or in an
inappropriate context. The value of the code property indicates the general type of exception that
occurred. Note that a DOMException may be thrown when reading or writing a property of an
object as well as when calling a method of an object.

The descriptions of object properties and methods in this reference include a list of exception
types they may throw. Note, however, that certain commonly thrown exceptions are omitted from
these lists. A DOMException with a code of NO_MODIFICATION_ALLOWED_ERR is thrown any
time an attempt is made to modify a read-only node, such as an Entity node or one of its
descendants. Thus, most methods and read/write properties of the Node interface (and of its
subinterfaces) may throw this exception. Because read-only nodes appear only in XML
documents and not in HTML documents, and because it applies so universally to the methods
and writable properties of Node objects, the NO_MODIFICATION_ALLOWED_ERR exception is
omitted from the descriptions of those methods and properties.

Similarly, many DOM methods and properties that return strings may throw a DOMException with
a code of DOMSTRING_SIZE_ERR, which indicates that the text to be returned is too long to be
represented as a string value in the underlying JavaScript implementation. Although this type of
exception may theoretically be thrown by many properties and methods, it is very rare in practice
and is omitted from the descriptions of those methods and properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Note that not all exceptions in the DOM are signaled with a DOMException. Exceptions having to
do with events and event handling cause an EventException object to be thrown, and exceptions
involving the DOM Range module cause a RangeException to be thrown.

See Also

EventException, RangeException

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation methods independent of any particular document

Availability

DOM Level 1 Core

Also Implements

DOMImplementationCSS, HTMLDOMImplementation

If a DOM implementation supports the HTML and CSS modules, the DOMImplementation
object also implements the DOMImplementationCSS and HTMLDOMImplementation
interfaces. For convenience, the methods of these trivial interfaces are listed here along
with the core DOMImplementation methods.

Methods

createCSSStyleSheet() [DOM Level 2 CSS]

This DOMImplementationCSS method creates a new CSSStyleSheet object.

createDocument() [DOM Level 2]

Creates a new Document object with a root element (the documentElement property of
the returned Document object) of the specified type.

createDocumentType() [DOM Level 2]

Creates a new DocumentType node.

createHTMLDocument() [DOM Level 2 HTML]

This HTMLDOMImplementation method creates a new HTMLDocument object and
populates it with <html>, <head>, <title>, and <body> elements.

hasFeature()

Checks whether the current implementation supports a specified version of a named
feature.

Description

The DOMImplementation interface and its HTMLDOMImplementation and
DOMImplementationCSS subinterfaces are placeholders for methods that are not specific to any
particular Document object but rather are "global" to an implementation of the DOM. You can
obtain a reference to the DOMImplementation object through the implementation property of
any Document object.

See Also

Type of

Document.implementation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation.createCSSStyleSheet() create a CSSStyleSheet object

Availability

DOM Level 2 CSS

Synopsis

CSSStyleSheet createCSSStyleSheet(String title,

 String media)

 throws DOMException;

Arguments

title

The title of the style sheet.

media

A comma-separated list of media types to which the style sheet should apply.

Returns

A CSSStyleSheet object.

Throws

A DOMException with a code of SYNTAX_ERR if the media argument is malformed.

Description

This method creates a new CSSStyleSheet object. Note, however, that as of Level 2, the DOM
standard does not yet define any way to associate a newly created CSSStyleSheet object with a
document.

createCSSStyleSheet() is defined not by the DOMImplementation interface but by its
DOMImplementationCSS subinterface. If an implementation supports the "CSS" feature, its
DOMImplementation object implements this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation.createDocument(
)

create a new Document and the
specified root element

Availability

DOM Level 2 Core

Synopsis

Document createDocument(String namespaceURI,

 String qualifiedName,

 DocumentType doctype)

 throws DOMException;

Arguments

namespaceURI

The unique identifier of the namespace of the root element to be created for the document,
or null for no namespace.

qualifiedName

The name of the root element to be created for this document. If namespaceURI is not
null, this name should include a namespace prefix and a colon.

doctype

The DocumentType object for the newly created Document, or null if none is desired.

Returns

A Document object with its documentElement property set to a root Element node of the
specified type.

Throws

This method may throw a DOMException with the following code values in the following
circumstances:

INVALID_CHARACTER_ERR

qualifiedName contains an illegal character.

NAMESPACE_ERR

qualifiedName is malformed, or there is a mismatch between qualifiedName and
namespaceURI.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

namespaceURI.

NOT_SUPPORTED_ERR

The current implementation does not support XML documents and has not implemented
this method.

WRONG_DOCUMENT_ERR

doctype is already in use for another document or was created by a different
DOMImplementation object.

Description

This method creates a new Document object and the specified root documentElement object for
that document. If the doctype argument is non-null, the ownerDocument property of this
DocumentType object is set to the newly created document.

This method is used to create XML documents and may not be supported by HTML-only
implementations. Use createHTMLDocument() to create a new HTML document.

See Also

DOMImplementation.createDocumentType(), DOMImplementation.createHTMLDocument()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation.createDocumentType() create a DocumentType node

Availability

DOM Level 2 Core

Synopsis

DocumentType createDocumentType(String qualifiedName,

 String publicId,

 String systemId)

 throws DOMException;

Arguments

qualifiedName

The name of the document type. If you are using XML namespaces, this may be a qualified
name that specifies a namespace prefix and a local name separated by a colon.

publicId

The public identifier of the document type, or null.

systemId

The system identifier of the document type, or null. This argument typically specifies the
local filename of a DTD file.

Returns

A new DocumentType object with an ownerDocument property of null.

Throws

This method may throw a DOMException with one of the following code values:

INVALID_CHARACTER_ERR

qualifiedName contains an illegal character.

NAMESPACE_ERR

qualifiedName is malformed.

NOT_SUPPORTED_ERR

The current implementation does not support XML documents and has not implemented
this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

This method creates a new DocumentType node. This method specifies only an external subset
of the document type. As of Level 2, the DOM standard does not provide any way for specifying
an internal subset, and the returned DocumentType does not define any Entity or Notation nodes.
This method is useful only with XML documents and may not be supported by HTML-only
implementations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation.createHTMLDocument(
)

create a skeletal HTML
document

Availability

DOM Level 2 HTML

Synopsis

HTMLDocument createHTMLDocument(String title);

Arguments

title

The title of the document. This text is used as the content of the <title> element of the
newly created document.

Returns

The new HTMLDocument object.

Description

This method creates a new HTMLDocument object with a skeletal document tree that includes the
specified title. The documentElement property of the returned object is an <html> element,
and this root element has <head> and <body> tags as its children. The <head> element in turn
has a <title> child, which has the specified title string as its child.

createHTMLDocument() is defined not by the DOMImplementation interface but by its
HTMLDOMImplementation subinterface. If an implementation supports the "HTML" feature, its
DOMImplementation object implements this method.

See Also

DOMImplementation.createDocument()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementation.hasFeature(
)

determine whether the implementation
supports a feature

Availability

DOM Level 1 Core

Synopsis

boolean hasFeature(String feature,

 String version);

Arguments

feature

The name of the feature for which support is being tested. The set of valid feature names
for the DOM Level 2 standard is listed in the upcoming table. Feature names are case-
insensitive.

version

The feature version number for which support is being tested, or null or the empty string
"" if support for any version of the feature is sufficient. In the Level 2 DOM specification,
supported version numbers are 1.0 and 2.0.

Returns

true if the implementation completely supports the specified version of the specified feature, or
false otherwise. If no version number is specified, the method returns true if the
implementation completely supports any version of the specified feature.

Description

The W3C DOM standard is modular, and implementations are not required to implement all
modules or features of the standard. This method is used to test whether a DOM implementation
supports a named module of the DOM specification. The availability information for each entry in
this DOM reference includes the name of the module. Note that although Internet Explorer 5 and
5.5 include partial support for the DOM Level 1 specification, this important method is not
supported before IE 6.

The complete set of module names that may be used as the feature argument are shown in the
following table.

Feature Description

Core
Node, Element, Document, Text, and the other fundamental interfaces required
by all DOM implementations are implemented. All conforming implementations
must support this module.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTML HTMLElement, HTMLDocument, and the other HTML-specific interfaces are
implemented.

XML Entity, EntityReference, ProcessingInstruction, Notation, and the other node
types that are useful only with XML documents are implemented.

StyleSheets Simple interfaces describing generic style sheets are implemented.
CSS Interfaces that are specific to CSS style sheets are implemented.
CSS2 The CSS2Properties interface is implemented.
Events The basic event-handling interfaces are implemented.
UIEvents The interfaces for user-interface events are implemented.
MouseEvents The interfaces for mouse events are implemented.
HTMLEvents The interfaces for HTML events are implemented.
MutationEvents The interfaces for document mutation events are implemented.
Range The interfaces for manipulating ranges of a document are implemented.
Traversal The interfaces for advanced document traversal are implemented.
Views The interfaces for document views are implemented.

Example

You might use this method in code like the following:

// Check whether the browser supports the DOM Level 2 Traversal API

if (document.implementation &&

 document.implementation.hasFeature &&

 document.implementation.hasFeature("Traversal", "2.0")) {

 // If so, use it here...

}

else {

 // If not, traverse the document some other way

}

See Also

Node.isSupported()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

DOMImplementationCSS see DOMImplementation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element an HTML or XML element

Availability

DOM Level 1 Core

Inherits from/Overrides

Node Element

Subinterfaces

HTMLElement

Properties

readonly String tagName

The tag name of the element. This is the string "P" for an HTML <p> element, for example.
For HTML documents, the tag name is returned in uppercase, regardless of its
capitalization in the document source. XML documents are case-sensitive, and the tag
name is returned exactly as it is written in the document source. This property has the
same value as the nodeName property of the Node interface.

Methods

getAttribute()

Returns the value of a named attribute as a string.

getAttributeNS() [DOM Level 2]

Returns the string value of an attribute specified by local name and namespace URI. Useful
only with XML documents that use namespaces.

getAttributeNode()

Returns the value of a named attribute as an Attr node.

getAttributeNodeNS() [DOM Level 2]

Returns the Attr value of an attribute specified by local name and namespace URI. Useful
only with XML documents that use namespaces.

getElementsByTagName()

Returns an array (technically, a NodeList) of all descendant Element nodes of this element
that have the specified tag name, in the order in which they appear in the document.

getElementsByTagNameNS() [DOM Level 2]

Like getElementsByTagName(), except that the element tag name is specified by local
name and namespace URI. Useful only with XML documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

hasAttribute() [DOM Level 2]

Returns true if this element has an attribute with the specified name, or false otherwise.
Note that this method returns true if the named attribute is explicitly specified in the
document source or if the document's DTD specifies a default value for the named
attribute.

hasAttributeNS() [DOM Level 2]

Like hasAttribute(), except that the attribute is specified by a combination of local
name and namespace URI. This method is useful only with XML documents that use
namespaces.

removeAttribute()

Deletes the named attribute from this element. Note, however, that this method deletes
only attributes that are explicitly specified in the document source for this element. If the
DTD specifies a default value for this attribute, that default becomes the new value of the
attribute.

removeAttributeNS() [DOM Level 2]

Like removeAttribute(), except that the attribute to be removed is specified by a
combination of local name and namespace URI. Useful only for XML documents that use
namespaces.

removeAttributeNode()

Removes the specified Attr node from the list of attributes for this element. Note that this
works only to remove attributes that are explicitly specified in the document source for this
attribute. If the DTD specifies a default value for the removed attribute, a new Attr node is
created to represent the default value of the attribute.

setAttribute()

Sets the named attribute to the specified string value. If an attribute with that name does
not already exist, a new attribute is added to the element.

setAttributeNS() [DOM Level 2]

Like setAttribute(), except that the attribute to be set is specified by the combination
of a local name and a namespace URI. Useful only with XML documents that use
namespaces.

setAttributeNode()

Adds the specified Attr node to the list of attributes for this element. If an attribute with the
same name already exists, its value is replaced.

setAttributeNodeNS() [DOM Level 2]

Like setAttributeNode(), but this method is suitable for use with nodes returned by
Document.createAttributeNS(). Useful only with XML documents that use
namespaces.

Description

The Element interface represents HTML or XML elements or tags. The tagName property
specifies the name of the element. The getElementsByTagName() method provides a

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

specifies the name of the element. The getElementsByTagName() method provides a
powerful way to locate element descendants of a given element that have a specified tag name.
The various other methods of this interface provide access to the attributes of the element. If you
give an element a unique identifier using the id attribute in your document source, you can then
easily locate the Element node that represents that document element with the useful
Document.getElementById() method. To create a new Element node for insertion into a
document, use Document.createElement().

In HTML documents (and many XML documents) all attributes have simple string values, and you
can use the simple methods getAttribute() and setAttribute() for any attribute
manipulation you need to do.

If you are working with XML documents that may contain entity references as part of attribute
values, you will have to work with Attr objects and their subtree of nodes. You can get and set the
Attr object for an attribute with getAttributeNode() and setAttributeNode(), or you
can iterate through the Attr nodes in the attributes[] array of the Node interface. If you are
working with an XML document that uses XML namespaces, you'll need to use the various
methods whose names end with "NS".

In the DOM Level 1 specification, the normalize() method was part of the Element interface.
In the Level 2 specification, normalize() is instead part of the Node interface. All Element
nodes inherit this method and can still use it.

See Also

HTMLElement, Node

Type of

Attr.ownerElement, Document.documentElement

Passed to

Document.getOverrideStyle(), AbstractView.getComputedStyle()

Returned by

Document.createElement(), Document.createElementNS(), Document.getElementById()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getAttribute() return the string value of a named attribute

Availability

DOM Level 1 Core

Synopsis

String getAttribute(String name);

Arguments

name

The name of the attribute whose value is to be returned.

Returns

The string value of the named attribute. If the attribute does not have a value specified in the
document and does not have a default value specified by the document type, the return value is
the empty string ("").

Description

getAttribute() returns the value of a named attribute of an element. In HTML documents,
attribute values are always strings, and this method returns the complete attribute value. Note that
the objects that represent HTML elements also implement the HTMLElement interface and one of
its tag-specific subinterfaces. Therefore, all standard attributes of standard HTML tags are also
available directly as properties of the Element object.

In XML documents, attribute values are not available directly as element properties and must be
looked up by calling a method. For many XML documents, getAttribute() is a suitable
method for doing this. Note, however that in XML attributes may contain entity references, and in
order to obtain complete details about such attributes, you must use getAttributeNode() to
obtain the Attr node whose subtree represents the complete attribute value. The Attr nodes for an
element are also available in an attributes[] array inherited from the Node interface. For
XML documents that use namespaces, you may need to use getAttributeNS() or
getAttributeNodeNS().

Example

The following code illustrates two different ways of obtaining an attribute value for an HTML
 element:

// Get all images in the document

var images = document.body.getElementsByTagName("IMG");

// Get the SRC attribute of the first one

var src0 = images[0].getAttribute("SRC");

// Get the SRC attribute of the second simply by reading the property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Get the SRC attribute of the second simply by reading the property

var src1 = images[1].src;

See Also

Element.getAttributeNode(), Node.attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getAttributeNode() return the Attr node for the named attribute

Availability

DOM Level 1 Core

Synopsis

Attr getAttributeNode(String name);

Arguments

name

The name of the desired attribute.

Returns

An Attr node whose descendants represent the value of the named attribute, or null if this
element has no such attribute.

Description

getAttributeNode() returns an Attr node that represents the value of a named attribute.
Note that this Attr node can also be obtained through the attributes property inherited from
the Node interface.

The attribute value is represented by the descendants of the Attr nodes. In HTML documents, an
Attr node has a single Text node child, and it is always easier to query an attribute value by calling
getAttribute(), which returns the value as a string. getAttributeNode() is necessary
only when you are working with XML documents that contain entity references in their attribute
values.

See Also

Element.getAttribute(), Element.getAttributeNodeNS(), Node.attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getAttributeNodeNS(
)

return the Attr node for an attribute with a
namespace

Availability

DOM Level 2 Core

Synopsis

Attr getAttributeNodeNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The URI that uniquely identifies the namespace of this attribute, or null for no
namespace.

localName

The identifier that specifies the name of the attribute within its namespace.

Returns

The Attr node whose descendants represent the value of the specified attribute, or null if this
element has no such attribute.

Description

This method works like getAttributeNode(), except that the attribute is specified by the
combination of a namespace URI and a local name defined within that namespace. This method
is useful only with XML documents that use namespaces.

See Also

Element.getAttributeNode(), Element.getAttributeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getAttributeNS(
)

get the value of an attribute that uses
namespaces

Availability

DOM Level 2 Core

Synopsis

String getAttributeNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The URI that uniquely identifies the namespace of this attribute, or null for no
namespace.

localName

The identifier that specifies the name of the attribute within its namespace.

Returns

The string value of the named attribute. If the attribute is not explicitly specified in the document
and does not have a default value specified by the document type, this method returns the empty
string.

Description

This method works just like the getAttribute() method, except that the attribute is specified
by a combination of namespace URI and local name within that namespace. This method is
useful only with XML documents that use namespaces.

See Also

Element.getAttribute(), Element.getAttributeNodeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getElementsByTagName(
)

find descendant elements with a
specified tag name

Availability

DOM Level 1 Core

Synopsis

Node[] getElementsByTagName(String name);

Arguments

name

The tag name of the desired elements, or the value "*" to specify that all descendant
elements should be returned, regardless of their tag names.

Returns

An array (technically, a NodeList) of Element objects that are descendants of this element and
have the specified tag name.

Description

This method traverses all descendants of this element and returns an array (really a NodeList
object) of Element nodes representing all document elements with the specified tag name. The
elements in the returned array appear in the same order in which they appear in the source
document.

Note that the Document interface also has a getElementsByTagName() method that works
just like this one but that traverses the entire document, rather than just the descendants of a
single element. Do not confuse this method with HTMLDocument.getElementsByName(),
which searches for elements based on the value of their name attributes rather than by their tag
names.

Example

You can find all <div> tags in a document with code like the following:

var divisions = document.body.getElementsByTagName("div");

And you can find all <p> tags within the a <div> tag with code like this:

var paragraphs = divisions[0].getElementsByTagname("p");

See Also

Document.getElementById(), Document.getElementsByTagName(),
HTMLDocument.getElementsByName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.getElementsByTagNameNS(
)

return descendant elements with the
specified name and namespace

Availability

DOM Level 2 Core

Synopsis

Node[] getElementsByTagNameNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The URI that uniquely identifies the namespace of the element.

localName

The identifier that specifies the name of the element within its namespace.

Returns

An array (technically, a NodeList) of Element objects that are descendants of this element and
have the specified name and namespace.

Description

This method works like getElementsByTagName(), except that the tag name of the desired
elements is specified as a combination of a namespace URI and a local name defined within that
namespace. This method is useful only with XML documents that use namespaces.

See Also

Document.getElementsByTagNameNS(), Element.getElementsByTagName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.hasAttribute(
)

determine whether this element has a specified
attribute

Availability

DOM Level 2 Core

Synopsis

boolean hasAttribute(String name);

Arguments

name

The name of the desired attribute.

Returns

true if this element has a specified or default value for the named attribute, and false
otherwise.

Description

This method determines whether an element has an attribute with the specified name, but does
not return the value of that attribute. Note that hasAttribute() returns true if the named
attribute is explicitly specified in the document and also if the named attribute has a default value
specified by the document type.

See Also

Attr.specified, Element.getAttribute(), Element.setAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.hasAttributeNS(
)

determine whether this element has a specified
attribute

Availability

DOM Level 2 Core

Synopsis

boolean hasAttributeNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The unique namespace identifier for the attribute, or null for no namespace.

localName

The name of the attribute within the specified namespace.

Returns

true if this element has an explicitly specified value or a default value for the specified attribute;
false otherwise.

Description

This method works like hasAttribute(), except that the attribute to be checked for is
specified by namespace and name. This method is useful only with XML documents that use
namespaces.

See Also

Element.getAttributeNS(), Element.setAttributeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.removeAttribute() delete a named attribute of an element

Availability

DOM Level 1 Core

Synopsis

void removeAttribute(String name);

Arguments

name

The name of the attribute to be deleted.

Throws

This method may throw a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if
this element is read-only and does not allow its attributes to be removed.

Description

removeAttribute() deletes a named attribute from this element. If the named attribute has a
default value specified by the document type, subsequent calls to getAttribute() will return
that default value. Attempts to remove nonexistent attributes or attributes that are not specified
but have a default value are silently ignored.

See Also

Element.getAttribute(), Element.setAttribute(), Node.attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.removeAttributeNode() remove an Attr node from an element

Availability

DOM Level 1 Core

Synopsis

Attr removeAttributeNode(Attr oldAttr)

 throws DOMException;

Arguments

oldAttr

The Attr node to be removed from the element.

Returns

The Attr node that was removed.

Throws

This method may throw a DOMException with the following code values:

NO_MODIFICATION_ALLOWED_ERR

This element is read-only and does not allow attributes to be removed.

NOT_FOUND_ERR

oldAttr is not an attribute of this element.

Description

This method removes (and returns) an Attr node from the set of attributes of an element. If the
removed attribute has a default value specified by the DTD, a new Attr is added representing this
default value. If is often simpler to use removeAttribute() instead of this method.

See Also

Attr, Element.removeAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.removeAttributeNS(
)

delete an attribute specified by name and
namespace

Availability

DOM Level 2 Core

Synopsis

void removeAttributeNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The unique identifier of the namespace of the attribute, or null for no namespace.

localName

The name of the attribute within the specified namespace.

Throws

This method may throw a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if
this element is read-only and does not allow its attributes to be removed.

Description

removeAttributeNS() works just like removeAttribute(), except that the attribute to be
removed is specified by name and namespace instead of simply by name. This method is useful
only with XML documents that use namespaces.

See Also

Element.getAttributeNS(), Element.removeAttribute(), Element.setAttributeNS()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.setAttribute() create or change an attribute of an element

Availability

DOM Level 1 Core

Synopsis

void setAttribute(String name,

 String value)

 throws DOMException;

Arguments

name

The name of the attribute that is to be created or modified.

value

The string value of the attribute.

Throws

This method may throw a DOMException with the following code values:

INVALID_CHARACTER_ERR

The name argument contains a character that is not allowed in HTML or XML attribute
names.

NO_MODIFICATION_ALLOWED_ERR

This element is read-only and does not allow modifications to its attributes.

Description

This method sets the specified attribute to the specified value. If no attribute by that name already
exists, a new one is created. Note that Element objects that represent the tags of an HTML
document also implement the HTMLElement interface and (usually) one of its tag-specific
subinterfaces. As a shortcut, these interfaces define properties that correspond to the standard
HTML attributes for each tag, and it is usually easier to set an HTML attribute simply by setting
the appropriate property.

The value argument is a plain string. If you are working with an XML document and need to
include an entity reference in an attribute value, use setAttributeNode().

Example

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

// Set the TARGET attribute of all links in a document

var links = document.body.getElementsByTagName("A");

for(var i = 0; i < links.length; i++) {

 links[i].setAttribute("TARGET", "newwindow");

}

See Also

Element.getAttribute(), Element.removeAttribute(), Element.setAttributeNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.setAttributeNode() add a new Attr node to an Element

Availability

DOM Level 1 Core

Synopsis

Attr setAttributeNode(Attr newAttr)

 throws DOMException;

Arguments

newAttr

The Attr node that represents the attribute to be added or whose value is to be modified.

Returns

The Attr node that was replaced by newAttr, or null if no attribute was replaced.

Throws

This method may throw a DOMException with a code of the following values:

INUSE_ATTRIBUTE_ERR

newAttr is already a member of the attribute set of some other Element node.

NO_MODIFICATION_ALLOWED_ERR

The Element node is read-only and does not allow modifications to its attributes.

WRONG_DOCUMENT_ERR

newAttr has a different ownerDocument property than the Element on which it is being
set.

Description

This method adds a new Attr node to the set of attributes of an Element node. If an attribute with
the same name already exists for the Element, newAttr replaces that attribute, and the replaced
Attr node is returned. If no such attribute already exists, this method defines a new attribute for
the Element.

It is usually easier to use setAttribute() instead of setAttributeNode(). However, you
should use setAttributeNode() when you need to define an attribute whose value contains
an entity reference for an XML document.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Attr, Element.setAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.setAttributeNodeNS() add a namespace Attr node to an Element

Availability

DOM Level 2 Core

Synopsis

Attr setAttributeNodeNS(Attr newAttr)

 throws DOMException;

Arguments

newAttr

The Attr node that represents the attribute to be added or whose value is to be modified.

Returns

The Attr node that was replaced by newAttr, or null if no attribute was replaced.

Throws

This method throws exceptions for the same reasons as setAttributeNode(). It may also
throw a DOMException with a code of NOT_SUPPORTED_ERR to signal that the method is not
implemented because the current implementation does not support XML documents and
namespaces.

Description

This method works just like setAttributeNode(), except that it is designed for use with Attr
nodes that represent attributes specified by namespace and name.

This method is useful only with XML documents that use namespaces. It may be unimplemented
(i.e., throw a NOT_SUPPORTED_ERR) on browsers that do not support XML documents.

See Also

Attr, Element.setAttributeNS(), Element.setAttributeNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.setAttributeNS() create or change an attribute with a namespace

Availability

DOM Level 2 Core

Synopsis

void setAttributeNS(String namespaceURI,

 String qualifiedName,

 String value)

 throws DOMException;

Arguments

namespaceURI

The URI that uniquely identifies the namespace of the attribute to be set or created, or
null for no namespace.

qualifiedName

The name of the attribute, specified as a namespace prefix followed by a colon and a name
within the namespace.

value

The new value of the attribute.

Throws

This method may throw a DOMException with the following code values:

INVALID_CHARACTER_ERR

The qualifiedName argument contains a character that is not allowed in HTML or XML
attribute names.

NAMESPACE_ERR

qualifiedName is malformed, or there is a mismatch between the namespace prefix of
qualifiedName and the namespaceURI argument.

NO_MODIFICATION_ALLOWED_ERR

This element is read-only and does not allow modifications to its attributes.

NOT_SUPPORTED_ERR

The DOM implementation does not support XML documents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

This method is like setAttribute(), except that the attribute to be created or set is specified
by a namespace URI and a qualified name that consists of a namespace prefix, a colon, and a
local name within the namespace. In addition to letting you change the value of an attribute, this
method allows you to change the namespace prefix of an attribute.

This method is useful only with XML documents that use namespaces. It may be unimplemented
(i.e., throw a NOT_SUPPORTED_ERR) on browsers that do not support XML documents.

See Also

Element.setAttribute(), Element.setAttributeNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ElementCSSInlineStyle see HTMLElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Entity an entity in an XML DTD

Availability

DOM Level 1 XML

Inherits from/Overrides

Node Entity

Properties

readonly String notationName

The notation name (for unparsed entities), or null if there is none (for parsed entities).
See the notations property of DocumentType for a way to look up a Notation node by
name.

readonly String publicId

The public identifier for this entity, or null if none was specified.

readonly String systemId

The system identifier for this entity, or null if none was specified.

Description

This infrequently used interface represents an entity in an XML document type definition (DTD). It
is never used with HTML documents.

The name of the entity is specified by the nodeName property inherited from the Node interface.
The entity content is represented by the child nodes of the Entity node. Note that Entity nodes and
their children are not part of the document tree (and the parentNode property of an Entity is
always null). Instead, a document may contain one or more references to an entity; see
EntityReference for more information.

Entities are defined in the DTD of a document, either as part of an external DTD file or as part of
an "internal subset" that defines local entities specific to the current document. The
DocumentType interface has an entities property that allows Entity nodes to be looked up by
name. This is the only way to obtain a reference to an Entity node; because they are part of the
document type, Entity nodes never appear as part of the document itself.

Entity nodes and all of their descendants are read-only and cannot be edited or modified in any
way.

See Also

DocumentType, EntityReference, Notation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EntityReference a reference to an entity defined in an XML DTD

Availability

DOM Level 1 XML

Inherits from/Overrides

Node EntityReference

Description

This infrequently used interface represents a reference from an XML document to an entity
defined in the document's DTD. Character entities and predefined entities such as < are
always expanded in XML and HTML documents, and EntityReference nodes never appear in
HTML documents, so programmers working exclusively with HTML documents never need to use
this interface. Note also that some XML parsers expand all entity references. Documents created
by such parsers do not contain EntityReference nodes.

This interface defines no properties or methods of its own. The inherited nodeName property
specifies the name of the referenced entity. The entities property of the DocumentType
interface provides a way to look up the Entity object with that name. Note, however, that the
DocumentType may not contain an Entity node with the specified name (because, for example,
nonvalidating XML parsers are not required to parse the "external subset" of the DTD). In this
case, the EntityReference has no children. On the other hand, if the DocumentType does contain
an Entity node with the specified name, the child nodes of the EntityReference are copies of the
child nodes of the Entity node and represent the content of the entity. Like Entity nodes,
EntityReference nodes and their descendants are read-only and cannot be edited or modified.

See Also

DocumentType

Returned by

Document.createEntityReference()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event information about an event

Availability

DOM Level 2 Events

Subinterfaces

MutationEvent, UIEvent

Constants

These constants are the legal values of the eventPhase property; they represent the current
phase of event propagation for this event:

unsigned short CAPTURING_PHASE = 1

The event is in its capturing phase.

unsigned short AT_TARGET = 2

The event is being handled by its target node.

unsigned short BUBBLING_PHASE = 3

The event is bubbling.

Properties

readonly boolean bubbles

true if the event is of a type that bubbles (unless stopPropagation() is called);
false otherwise.

readonly boolean cancelable

true if the default action associated with the event can be canceled with
preventDefault(); false otherwise.

readonly EventTarget currentTarget

The Document node that is currently handling this event. During capturing and bubbling,
this is different from target. Note that all nodes implement the EventTarget interface, and
the currentTarget property may refer to any node; it is not restricted to Element nodes.

readonly unsigned short eventPhase

The current phase of event propagation. The three previous constants define the legal
values for this property.

readonly EventTarget target

The target node for this event; i.e., the node that generated the event. Note that this may
be any node; it is not restricted to Element nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readonly Date timeStamp

The date and time at which the event occurred (or, technically, at which the Event object
was created). Implementations are not required to provide valid time data in this field, and if
they do not, the getTime() method of this Date object should return 0. See the Date
object in the core reference section of this book.

readonly String type

The name of the event that this Event object represents. This is the name under which the
event handler was registered, or the name of the event handler property with the leading
"on" removed. For example, "click", "load", or "submit". See Table 19-3 in Chapter 19 for a
complete list of event types defined by the DOM standard.

Methods

initEvent()

Initializes the properties of a newly created Event object.

preventDefault()

Tells the web browser not to perform the default action associated with this event, if there is
one. If the event is not of a type that is cancelable, this method has no effect.

stopPropagation()

Stops the event from propagating any further through the capturing, target, or bubbling
phases of event propagation. After this method is called, any other event handlers for the
same event on the same node will be called, but the event will not be dispatched to any
other nodes.

Description

This interface represents an event that occurred on some node of the document and contains
details about the event. Various subinterfaces of Event define additional properties that provide
details pertinent to specific types of events.

Many event types use a more specific subinterface of Event to describe the event that has
occurred. However, the event types defined by the HTMLEvents module use the Event interface
directly. These event types are: "abort", "blur", "change", "error", "focus", "load", "reset", "resize",
"scroll", "select", "submit", and "unload".

See Also

EventListener, EventTarget, MouseEvent, UIEvent; Chapter 19

Passed to

EventTarget.dispatchEvent()

Returned by

Document.createEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event.initEvent() initialize the properties of a new Event

Availability

DOM Level 2 Events

Synopsis

void initEvent(String eventTypeArg,

 boolean canBubbleArg,

 boolean cancelableArg);

Arguments

eventTypeArg

The type of event. This may be one of the predefined event types, such as "load" or
"submit", or it may be a custom type of your own choosing. Names that begin with "DOM"
are reserved, however.

canBubbleArg

Whether the event will bubble.

cancelableArg

Whether the event may be canceled with preventDefault().

Description

This method initializes the type, bubbles, and cancelable properties of a synthetic Event
object created by Document.createEvent(). This method may be called on newly created
Event objects only before they have been dispatched with the EventTarget.dispatchEvent(
) method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event.preventDefault() cancel default action of an event

Availability

DOM Level 2 Events

Synopsis

void preventDefault();

Description

This method tells the web browser not to perform the default action (if any) associated with this
event. For example, if the type property is "submit", any event handler called during any phase of
event propagation can prevent the form submission by calling this method. Note that if the
cancelable property of an Event object is false, either there is no default action or there is a
default action that cannot be prevented. In either case, calling this method has no effect.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Event.stopPropagation() do not dispatch an event any further

Availability

DOM Level 2 Events

Synopsis

void stopPropagation();

Description

This method stops the propagation of an event and prevents it from being dispatched to any other
Document nodes. It may be called during any phase of event propagation. Note that this method
does not prevent other event handlers on the same Document node from being called, but it does
prevent the event from being dispatched to any other nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventException signals an event-specific exception or error

Availability

DOM Level 2 Events

Constants

The following constant defines the one legal value for the code property of an EventException
object. Note that this constant is a static property of EventException, not a property of individual
exception objects.

unsigned short UNSPECIFIED_EVENT_TYPE_ERR = 0

An Event object has a type property that is uninitialized, or is null or the empty string.

Properties

unsigned short code

An error code that provides some detail about what caused the exception. In the Level 2
DOM there is only one possible value for this field, defined by the constant above.

Description

An EventException is thrown by certain event-related methods to signal a problem of some sort.
(In the DOM Level 2 specification, an exception of this type is thrown only by
EventTarget.dispatchEvent()).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventListener an event handler function DOM Level 2 Events

Availability

Methods

handleEvent()

In languages such as Java that do not allow functions to be passed as arguments to other
functions, you define an event listener by defining a class that implements this interface
and includes an implementation for this handleEvent() method. When an event occurs,
the system calls this method and passes in an Event object that describes the event.

In JavaScript, however, you define an event handler simply by writing a function that accepts an
Event object as its argument. The name of the function does not matter, and the function itself is
used in place of an EventListener object. See the Section section.

Description

This interface defines the structure of an event listener or event handler. In languages such as
Java, an event listener is an object that defines a method named handleEvent() that takes an
Event object as its sole argument. In JavaScript, however, any function that expects a single
Event argument, or a function that expects no argument, can serve as an event listener.

Example

// This function is an event listener for a "submit" event

function submitHandler(e) {

 // Call a form-validation function defined elsewhere

 if (!validate(e.target))

 e.preventDefault(); // If validation fails, don't submit form

}

// We might register the event listener above like this

document.forms[0].addEventListener("submit", submitHandler, false);

See Also

Event, EventTarget; Chapter 19

Passed to

EventTarget.addEventListener(), EventTarget.removeEventListener()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventTarget event listener registration methods

Availability

DOM Level 2 Events

Methods

addEventListener()

Adds an event listener to the set of event listeners for this node.

dispatchEvent()

Dispatches a synthetic event to this node.

removeEventListener()

Removes an event listener from the set of listeners of this Document node.

Description

In DOM implementations that support events (i.e., those that support the "Events" feature), all
nodes in the document tree implement this interface and maintain a set or list of event listener
functions for each node. The addEventListener() and removeEventListener()
methods allow listener functions to be added and removed from this set.

See Also

Event, EventListener; Chapter 19

Type of

Event.currentTarget, Event.target, MouseEvent.relatedTarget

Passed to

MouseEvent.initMouseEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventTarget.addEventListener() register an event handler

Availability

DOM Level 2 Events

Synopsis

void addEventListener(String type,

 EventListener listener,

 boolean useCapture);

Arguments

type

The type of event for which the event listener is to be invoked. For example, "load", "click",
or "mousedown".

listener

The event listener function that will be invoked when an event of the specified type is
dispatched to this Document node.

useCapture

If true, the specified listener is to be invoked only during the capturing phase of event
propagation. The more common value of false means that the listener will not be
invoked during the capturing phase but instead will be invoked when this node is the actual
event target or when the event bubbles up to this node from its original target.

Description

This method adds the specified event listener function to the set of listeners registered on this
node to handle events of the specified type. If useCapture is true, the listener is registered as
a capturing event listener. If useCapture is false, it is registered as a normal event listener.

addEventListener() may be called multiple times to register multiple event handlers for the
same type of event on the same node. Note, however, that the DOM makes no guarantees about
the order in which multiple event handlers will be invoked.

If the same event listener function is registered twice on the same node with the same type and
useCapture arguments, the second registration is simply ignored. If a new event listener is
registered on this node while an event is being handled at this node, the new event listener is not
invoked for that event.

When a Document node is duplicated with Node.cloneNode() or Document.importNode(
), the event listeners registered for the original node are not copied.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Event, EventListener; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventTarget.dispatchEvent() dispatch a synthetic event to this node

Availability

DOM Level 2 Events

Synopsis

boolean dispatchEvent(Event evt)

 throws EventException;

Arguments

evt

The Event object to be dispatched.

Returns

false if the preventDefault() method of evt was called at any time during the propagation
of the event, or true otherwise.

Throws

This method throws an EventException with its code property set to
EventException.UNSPECIFIED_EVENT_TYPE_ERR if the Event object evt was not initialized
or if its type property was null or the empty string.

Description

This method dispatches a synthetic event created with Document.createEvent() and
initialized with the initialization method defined by the Event interface or one of its subinterfaces.
The node on which this method is called becomes the target of the event, but the event first
propagates down the document tree during the capturing phase, and then, if the bubbles
property of the event is true, it bubbles up the document tree after being handled at the event
target itself.

See Also

Document.createEvent(), Event.initEvent(), MouseEvent.initMouseEvent()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EventTarget.removeEventListener() delete an event listener

Availability

DOM Level 2 Events

Synopsis

v

oid removeEventListener(String type,

 EventListener listener,

 boolean useCapture);

Arguments

type

The type of event for which the event listener is to be deleted.

listener

The event listener function that is to be removed.

useCapture

true if a capturing event listener is to be removed; false if a normal event listener is to
be removed.

Description

This method removes the specified event listener function. The type and useCapture
arguments must be the same as they were in the corresponding call to addEventListener().
If no event listener is found that matches the specified arguments, this method does nothing.

Once an event listener function has been removed by this method, it will no longer be invoked for
the specified type of event on this node. This is true even if the event listener is removed by
another event listener registered for the same type of event on the same node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLAnchorElement a hyperlink or anchor in an HTML document

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLAnchorElement

Properties

This interface defines the properties in the following table, which correspond to the HTML
attributes of the <a> tag.

Property Attribute Description
String
accessKey accesskey Keyboard shortcut

String
charset charset Encoding of the destination document

String coords coords Used inside <map> elements
String href href URL of the hyperlink
String
hreflang hreflang Language of the linked document

String name name Name of the anchor
String rel rel Link type
String rev rev Reverse link type
String shape shape Used inside <map> elements
long tabIndex tabindex Link's position in tabbing order

String target target Name of the frame or window in which the destination document
is to be displayed

String type type Content type of the destination document

Methods

blur()

Takes keyboard focus away from the link.

focus()

Scrolls the document so the anchor or link is visible and gives keyboard focus to the link.

Description

This interface represents an <a> tag in an HTML document. href, name, and target are the
key properties, representing the most commonly used attributes of the tag.

HTMLAnchorElement objects can be obtained from the links and anchors HTMLCollection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLAnchorElement objects can be obtained from the links and anchors HTMLCollection
properties of the HTMLDocument interface.

Example

// Get the destination URL of first the hyperlink in the document

var url = document.links[0].href;

// Scroll the document so the anchor named "_bottom_" is visible

document.anchors['_bottom_'].focus();

See Also

Link and Anchor objects in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLAnchorElement.blur() take keyboard focus away from a hyperlink

Availability

DOM Level 1 HTML

Synopsis

void blur();

Description

For web browsers that allow hyperlinks to have the keyboard focus, this method takes keyboard
focus away from a hyperlink.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLAnchorElement.focus(
)

make a link or anchor visible and give it
keyboard focus

Availability

DOM Level 1 HTML

Synopsis

void focus();

Description

This method scrolls the document so the specified anchor or hyperlink is visible. If the element is
a hyperlink and the browser allows hyperlinks to have keyboard focus, this method also gives
keyboard focus to the element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLBodyElement the <body> of an HTML document

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLBodyElement

Properties

deprecated String aLink

The value of the alink attribute. Specifies the color of "active" links; that is, the color of a link when
the mouse has been pressed over it but has not yet been released.

deprecated String background

The value of the background attribute. Specifies the URL of an image to use as a background
texture for the document.

deprecated String bgColor

The value of the bgcolor attribute. Specifies the background color of the document.

deprecated String link

The value of the link attribute. Specifies the normal color of unvisited hyperlinks.

deprecated String text

The value of the text attribute. Specifies the foreground color (the color of text) for the document.

deprecated String vLink

The value of the vlink attribute. Specifies the normal color of "visited" hyperlinks that have already
been followed.

Description

The HTMLBodyElement interface represents the <body> tag of a document. All HTML documents have a
<body> tag, even if it does not explicitly appear in the document source. You can obtain the
HTMLBodyElement of a document through the body property of the HTMLDocument interface.

The properties of this object specify default colors and images for the document. Although these properties
represent the values of <body> attributes, the Level 0 DOM made these same values accessible through
properties (with different names) of the Document object. See the Document object in the client-side
reference section of this book for details.

Although these color and image properties belong more appropriately to the HTMLBodyElement interface
than they do to the Document object, note that they are all deprecated because the HTML 4 standard
deprecates the <body> attributes that they represent. The preferred way to specify colors and images for a
document is using CSS styles.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example

document.body.text = "#ff0000"; // Display text in bright red

document.fgColor = "#ff0000"; // Same thing using old DOM Level 0 API

document.body.style.color = "#ff0000"; // Same thing using CSS styles

See Also

Document object in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLCollection array of HTML elements accessible by position or name

Availability

DOM Level 1 HTML

Properties

readonly unsigned long length

The number of elements in the collection.

Methods

item()

Returns the element at the specified position in the collection. You can also simply specify the position
within array brackets instead of calling this method explicitly.

namedItem()

Returns the element from the collection that has the specified value for its id or name attribute,
if there is no such element. You may also place the element name within array brackets instead of
calling this method explicitly.

Description

An HTMLCollection is a collection of HTML elements with methods that allow you to retrieve the elements by
their position in the document or by their id or name attribute. In JavaScript, HTMLCollection objects behave
like read-only arrays, and you may use JavaScript square-bracket notation to index an HTMLCollection by
number or by name instead of calling the item() and namedItem() methods.

A number of the properties of the HTMLDocument interface (which standardizes the DOM Level 0 Document
object) are HTMLCollection objects, which provide convenient access to document elements such as
images, and links. The HTMLCollection object also provides a convenient way to traverse the elements of an
HTML form, the rows of an HTML table, the cells of a table row, and the areas of a client-side image map.

HTMLCollection objects are read-only: you cannot assign new elements to them, even when using JavaScript
array notation. They are "live," meaning that if the underlying document changes, those changes are
immediately visible through all HTMLCollection objects.

Example

var c = document.forms; // This is an HTMLCollection of form elements

var firstform = c[0]; // It can be used like a numeric array

var lastform = c[c.length-1]; // The length property gives the number of elements

var address = c["address"]; // It can be used like an associative array

var address = c.address; // JavaScript allows this notation, too

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

NodeList

Type of

HTMLDocument.anchors, HTMLDocument.applets, HTMLDocument.forms, HTMLDocument.images,
HTMLDocument.links, HTMLFormElement.elements, HTMLMapElement.areas, HTMLSelectElement.options,
HTMLTableElement.rows, HTMLTableElement.tBodies, HTMLTableRowElement.cells,
HTMLTableSectionElement.rows

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLCollection.item() get an element by position

Availability

DOM Level 1 HTML

Synopsis

Node item(unsigned long index);

Arguments

index

The position of the element to be returned. Elements appear in an HTMLCollection in the
same order in which they appear in the document source.

Returns

The element at the specified index, or null if index is less than zero or greater than or equal
to the length property.

Description

The item() method returns a numbered element from an HTMLCollection. In JavaScript, it is
easier to treat the HTMLCollection as an array and to index it using array notation.

Example

var c = document.images; // This is an HTMLCollection

var img0 = c.item(0); // You can use the item() method this way

var img1 = c[1]; // But this notation is easier and more common

See Also

NodeList.item()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLCollection.namedItem() get an element by name

Availability

DOM Level 1 HTML

Synopsis

Node namedItem(String name);

Arguments

name

The name of the element to be returned.

Returns

An element with the specified name, or null if no elements in the HTMLCollection have that name.

Description

This method finds and returns an element from the HTMLCollection that has the specified name. If any
element has an id attribute whose value is the specified name, that element is returned. If no such
element is found, an element whose name attribute has the specified value is returned. If no such
element exists, namedItem() returns null.

Note that any HTML element may be given an id attribute, but only certain HTML elements -- such as
forms, form elements, images, and anchors -- may have a name attribute.

In JavaScript, it is easier to treat the HTMLCollection as an associative array and to specify name
between square brackets using array notation.

Example

var forms = document.forms; // An HTMLCollection of forms

var address = forms.namedItem("address"); // Finds <form name="address">

var payment = forms["payment"] // Simpler syntax: finds <form name="payment">

var login = forms.login; // Also works: finds <form name="login">

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument the root of an HTML document tree

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Document HTMLDocument

Properties

readonly HTMLCollection anchors

An array (HTMLCollection) of all anchors in the document. For compatibility with The Level
0 DOM, this array contains only <a> elements that have a name attribute specified; it does
not include anchors created with an id attribute.

readonly HTMLCollection applets

An array (HTMLCollection) of all applets in a document. These include applets defined with
an <object> tag and all <applet> tags.

HTMLElement body

A convenience property that refers to the HTMLBodyElement that represents the <body>
tag of this document. For documents that define framesets, this property refers to the
outermost <frameset> tag.

String cookie

Allows cookies to be queried and set for this document. See Document.cookie in the client-
side reference section.

readonly String domain

The domain name of the server from which the document was loaded, or null if there is
none. Contrast with the read/write Document.domain property in the client-side reference
section.

readonly HTMLCollection forms

An array (HTMLCollection) of all HTMLFormElement objects in the document.

readonly HTMLCollection images

An array (HTMLCollection) of all tags in the document. Note that for compatibility
with the Level 0 DOM, images defined with an <object> tag are not included in this
collection.

readonly HTMLCollection links

An array (HTMLCollection) of all hyperlinks in the document. These include all <a> tags
that have an href attribute, and all <area> tags.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

that have an href attribute, and all <area> tags.

readonly String referrer

The URL of the document that linked to this document, or null if this document was not
accessed through a hyperlink.

String title

The contents of the <title> tag for this document.

readonly String URL

The URL of the document.

Methods

close()

Closes a document stream opened with the open() method, forcing any buffered output
to be displayed.

getElementById()

Returns the element with the specified id. In the Level 2 DOM, this method is inherited
from the Document interface.

getElementsByName()

Returns an array of nodes (a NodeList) of all elements in the document that have a
specified value for their name attribute.

open()

Opens a stream to which new document contents may be written. Note that this method
erases any current document content.

write()

Appends a string of HTML text to an open document.

writeln()

Appends a string of HTML text followed by a newline character to an open document.

Description

This interface extends Document and defines HTML-specific properties and methods that provide
compatibility with the DOM Level 0 Document object (see the Document object in the client-side
reference section). Note that HTMLDocument does not have all the properties of the Level 0
Document object. The properties that specify document colors and background images have
been renamed and moved to the HTMLBodyElement.

Finally, note that in the Level 1 DOM, HTMLDocument defines a method named
getElementById(). In the Level 2 DOM, this method has been moved to the Document
interface, and it is now inherited by HTMLDocument rather than defined by it. See the
Document.getElementById() entry in this reference section for details.

See Also

Document.getElementById(), HTMLBodyElement; Document object in the client-side reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getElementById(), HTMLBodyElement; Document object in the client-side reference
section

Returned by

HTMLDOMImplementation.createHTMLDocument()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.close() close an open document and display it

Availability

DOM Level 1 HTML

Synopsis

void close();

Description

This method closes a document stream that was opened with the open() method and forces
any buffered output to be displayed. See the Document.close() entry in the client-side reference
section for full details.

See Also

HTMLDocument.open(); Document.close() in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.getElementById() see Document.getElementById()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.getElementsByName(
)

find elements with the specified
name attribute

Availability

DOM Level 1 HTML

Synopsis

Node[] getElementsByName(String elementName);

Arguments

elementName

The desired value for the name attribute.

Returns

An array (really a NodeList) of elements that have a name attribute of the specified value. If no
such elements are found, the returned NodeList is empty and has a length of 0.

Description

This method searches an HTML document tree for Element nodes that have a name attribute of
the specified value and returns a NodeList (which you can treat as an array) containing all
matching elements. If there are no matching elements, a NodeList with length 0 is returned.

Do not confuse this method with the Document.getElementById() method, which finds a
single Element based on the unique value of an id attribute, or with the
Document.getElementsByTagName() method, which returns a NodeList of elements with
the specified tag name.

See Also

Document.getElementById(), Document.getElementsByTagName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.open() begin a new document, erasing the current one

Availability

DOM Level 1 HTML

Synopsis

void open();

Description

This method erases the current HTML document and begins a new one, which may be written to
with the write() and writeln() methods. After calling open() to begin a new document
and write() to specify document content, you must always remember to call close() to end
the document and force its content to be displayed.

This method should not be called by a script or event handler that is part of the document being
overwritten, since the script or handler will itself be overwritten.

See Document.open() in the client-side reference section, but note that this standardized version
of that method can be used only to create new HTML documents and does not accept the
optional mimetype argument that the Level version does.

Example

var w = window.open(""); // Open a new window

var d = w.document; // Get its HTMLDocument object

d.open(); // Open the document for writing

d.write("<h1>Hello world</h1>"); // Output some HTML to the document

d.close(); // End the document and display it

See Also

HTMLDocument.close(), HTMLDocument.write(); Document.open() in the client-side reference
section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.write() append HTML text to an open document

Availability

DOM Level 1 HTML

Synopsis

void write(String text);

Arguments

text

The HTML text to be appended to the document.

Description

This method appends the specified HTML text to the document, which must have been opened
with the open() method and must not yet have been closed with close().

See Document.write() in the client-side reference section for complete details, but note that this
standardized version of that Level 0 method accepts only a single string argument, not an
arbitrary number of arguments.

See Also

HTMLDocument.open(); Document.write() in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDocument.writeln(
)

append HTML text and a newline to an open
document

Availability

DOM Level 1 HTML

Synopsis

void writeln(String text);

Arguments

text

The HTML text to be appended to the document.

Description

This method is like HTMLDocument.write(), except that it follows the appended text with a
newline character, which can be useful when writing the content of a <pre> tag, for example.

See Also

Document.writeln() in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLDOMImplementation see DOMImplementation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement the base interface for all HTML elements

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement

Also Implements

ElementCSSInlineStyle

If the implementation supports CSS style sheets, all objects that implement this interface also
implement the ElementCSSInlineStyle interface. Because CSS support is quite common in web
browsers, the style property defined by that interface is included here for convenience.

Subinterfaces

HTMLAnchorElement HTMLAppletElement HTMLAreaElement

HTMLBRElement HTMLBaseElement HTMLBaseFontElement

HTMLBodyElement HTMLButtonElement HTMLDListElement

HTMLDirectoryElement HTMLDivElement HTMLFieldSetElement

HTMLFontElement HTMLFormElement HTMLFrameElement

HTMLFrameSetElement HTMLHRElement HTMLHeadElement

HTMLHeadingElement HTMLHtmlElement HTMLIFrameElement

HTMLImageElement HTMLInputElement HTMLIsIndexElement

HTMLLIElement HTMLLabelElement HTMLLegendElement

HTMLLinkElement HTMLMapElement HTMLMenuElement

HTMLMetaElement HTMLModElement HTMLOListElement

HTMLObjectElement HTMLOptGroupElement HTMLOptionElement

HTMLParagraphElement HTMLParamElement HTMLPreElement

HTMLQuoteElement HTMLScriptElement HTMLSelectElement

HTMLStyleElement HTMLTableCaptionElement HTMLTableCellElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableColElement HTMLTableElement HTMLTableRowElement

HTMLTableSectionElement HTMLTextAreaElement HTMLTitleElement

HTMLUListElement

Properties

readonly CSS2Properties style

The value of the style attribute that specifies inline CSS styles for this element. This property
is not actually defined directly by the HTMLElement interface; instead, it is defined by the
ElementCSSInlineStyle interface. If a browser supports CSS style sheets, all of its
HTMLElement objects implement ElementCSSInlineStyle and define this style property. The
value of this property is an object that implements the CSSStyleDeclaration interface and the
(more commonly used) CSS2Properties interface.

String className

The value of the class attribute of the element, which specifies the name of a CSS class.
Note that this property is not named "class" because that name is a reserved word in
JavaScript.

String dir

The value of the dir attribute of the element, which specifies the text direction for the
document.

String id

The value of the id attribute. No two elements within the same document should have the
same value for id.

String lang

The value of the lang attribute, which specifies the language code for the document.

String title

The value of the title attribute, which specifies descriptive text suitable for display in a
"tooltip" for the element.

Description

This interface defines properties that represent the attributes shared by all HTML elements. All HTML
elements implement this interface, and most implement a tag-specific subinterface that defines
properties for each of that tag's attributes. In addition to the properties listed here, see the
HTMLElement reference page in the client-side reference section for a list of DOM Level 0 event
handler properties that are supported by all HTML elements in a document.

Some HTML tags do not allow any attributes other than the universal attributes allowed on all HTML
tags and represented by the properties of HTMLElement. These tags do not have their own tag-
specific subinterface, and elements of this type in the document tree are represented by an
HTMLElement object. The tags without a tag-specific interface of their own are the following:

<abbr> <acronym> <address>
<bdo> <big> <center> <cite>
<code> <dd> <dfn> <dt>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<code> <dd> <dfn> <dt>
 <i> <kbd> <noframes>
<noscript> <s> <samp> <small>
 <strike> <sub>
<sup> <tt> <u> <var>

As you can see from the earlier "Subinterfaces" section, there are many HTML tags that do have tag-
specific subinterfaces. Typically, a tag named T has a tag-specific interface named HTMLTElement.
For example, the <head> tag is represented by the HTMLHeadElement interface. In a few cases, two
or more related tags share a single interface, as in the case of the <h1> through <h6> tags, which
are all represented by the HTMLHeadingElement interface.

Most of these tag-specific interfaces do nothing more than define a JavaScript property for each
attribute of the HTML tag. The JavaScript properties have the same names as the attributes and use
lowercase (e.g., id) or, when the attribute name consists of multiple words, mixed-case (e.g.,
className). When an HTML attribute name is a reserved word in Java or JavaScript, the property
name is changed slightly. For example, the class attribute of all HTML tags becomes the
className property of the HTMLElement interface because class is a reserved word. Similarly, the
for attribute of <label> and <script> tags becomes the htmlFor property of the
HTMLLabelElement and HTMLScriptElement interfaces because for is a reserved word. The
meanings of those properties that correspond directly to HTML attributes are defined by the HTML
specification, and documenting each one is beyond the scope of this book.

The following table lists all the HTML tags that have a corresponding subinterface of HTMLElement.
For each tag, the table lists the interface name and the names of the properties and methods it
defines. All properties are read/write strings unless otherwise specified. For properties that are not
read/write strings, the property type is specified in square brackets before the property name.
Because these interfaces and their properties map so directly to HTML elements and attributes, most
interfaces do not have reference pages of their own in this book, and you should consult an HTML
reference for details. The exceptions are interfaces that define methods and interfaces that represent
certain particularly important tags, such as the <body> tag. These interfaces are marked with a * in
the table, and you can look them up in this reference section for further details.

HTML tag DOM interface, properties, and methods
all tags HTMLElement*: id, title, lang, dir, className
<a> HTMLAnchorElement*: accessKey, charset, coords, href, hreflang, name

rel, rev, shape, [long] tabIndex, target, type, blur(), focus()
<applet> HTMLAppletElement**: align**, alt**, archive**, code**, codeBase**,

height**, hspace**, name**, object**, vspace**, width**

<area> HTMLAreaElement: accessKey, alt, coords, href, [boolean] noHref,
shape, [long] tabIndex, target

<base> HTMLBaseElement: href, target
<basefont> HTMLBaseFontElement**: color**, face**, size**
<blockquote>,
<q> HTMLQuoteElement: cite

<body> HTMLBodyElement*: aLink**, background**, bgColor**, link**, text**,
vLink**

 HTMLBRElement: clear**

<button> HTMLButtonElement: [readonly HTMLFormElement] form, accessKey,
[boolean] disabled, name, [long] tabIndex, [readonly] type, value

<caption> HTMLTableCaptionElement*: align**
<col>,
<colgroup> HTMLTableColElement*: align, ch, chOff, [long] span, vAlign, width

, <ins> HTMLModElement: cite, dateTime
<dir> HTMLDirectoryElement**: [boolean] compact**

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<dir> HTMLDirectoryElement**: [boolean] compact**
<div> HTMLDivElement: align**
<dl> HTMLDListElement: [boolean] compact**
<fieldset> HTMLFieldSetElement: [readonly HTMLFormElement] form
 HTMLFontElement**: color**, face**, size**

<form>
HTMLFormElement*: [readonly HTMLCollection] elements, [readonly
long] length, name, acceptCharset, action, enctype, method, target,
submit(), reset()

<frame>
HTMLFrameElement: frameBorder, longDesc, marginHeight,
marginWidth, name, [boolean] noResize, scrolling, src, [readonly
Document] contentDocument***

<frameset> HTMLFrameSetElement: cols, rows
<h1>, <h2>,
<h3>, <h4>,
<h5>, <h6>

HTMLHeadingElement: align**

<head> HTMLHeadElement: profile
<hr> HTMLHRElement: align**, [boolean] noShade**, size**, width**
<html> HTMLHtmlElement: version**

<iframe>
HTMLIFrameElement: align**, frameBorder, height, longDesc,
marginHeight, marginWidth, name, scrolling, src, width, [readonly
Document] contentDocument***

HTMLImageElement: align**, alt, [long] border**, [long] height,
[long] hspace**, [boolean] isMap, longDesc, name, src, useMap, [long]
vspace**, [long] width

<input>

HTMLInputElement*: defaultValue, [boolean] defaultChecked,
[readonly HTMLFormElement] form, accept, accessKey, align**, alt,
[boolean] checked, [boolean] disabled, [long] maxLength, name,
[boolean] readOnly, size, src, [long] tabIndex, type, useMap, value,
blur(), focus(), select(), click()

<ins> See
<isindex> HTMLIsIndexElement**: [readonly HTMLFormElement] form, prompt**

<label> HTMLLabelElement: [readonly HTMLFormElement] form, accessKey,
htmlFor

<legend> HTMLLegendElement: [readonly HTMLFormElement] form, accessKey,
align**

 HTMLLIElement: type**, [long] value**

<link> HTMLLinkElement: [boolean] disabled, charset, href, hreflang, media,
rel, rev, target, type

<map> HTMLMapElement: [readonly HTMLCollection of HTMLAreaElement]
areas, name

<menu> HTMLMenuElement**: [boolean] compact**
<meta> HTMLMetaElement: content, httpEquiv, name, scheme

<object>
HTMLObjectElement: code, align**, archive, border**, codeBase,
codeType, data, [boolean] declare, height, hspace**, name, standby,
[long] tabIndex, type, useMap, vspace**, width, [readonly Document]
contentDocument***

 HTMLOListElement: [boolean] compact**, [long] start**, type**
<optgroup> HTMLOptGroupElement: [boolean] disabled, label

<option>
HTMLOptionElement*: [readonly HTMLFormElement] form, [boolean]
defaultSelected, [readonly] text, [readonly long] index,
[boolean] disabled, label, [boolean] selected, value

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

<p> HTMLParagraphElement: align**
<param> HTMLParamElement: name, type, value, valueType
<pre> HTMLPreElement: [long] width**
<q> See <blockquote>
<script> HTMLScriptElement: text, htmlFor, event, charset, [boolean] defer,

src, type

<select>

HTMLSelectElement*: [readonly] type, [long] selectedIndex, value,
[readonly long] length, [readonly HTMLFormElement] form,
[readonly HTMLCollection of HTMLOptionElement] options,
[boolean] disabled, [boolean] multiple, name, [long] size, [long]
tabIndex, add(), remove(), blur(), focus()

<style> HTMLStyleElement: [boolean] disabled, media, type

<table>

HTMLTableElement*: [HTMLTableCaptionElement] caption,
[HTMLTableSectionElement] tHead, [HTMLTableSectionElement]
tFoot, [readonly HTMLCollection of HTMLTableRowElement] rows,
[readonly HTMLCollection of HTMLTableSectionElement] tBodies,
align**, bgColor**, border, cellPadding, cellSpacing, frame, rules,
summary, width, createTHead(), deleteTHead(), createTFoot(),
deleteTFoot(), createCaption(), deleteCaption(), insertRow()
deleteRow()

<tbody>,
<tfoot>,
<thead>

HTMLTableSectionElement*: align, ch, chOff, vAlign, [readonly
HTMLCollection of HTMLTableRowElement] rows, insertRow(),
deleteRow()

<td>, <th>
HTMLTableCellElement*: [readonly long] cellIndex, abbr, align, axis,
bgColor**, ch, chOff, [long] colSpan, headers, height**, [boolean]
noWrap**, [long] rowSpan, scope, vAlign, width**

<textarea>
HTMLTextAreaElement*: defaultValue, [readonly HTMLFormElement]
form, accessKey, [long] cols, [boolean] disabled, name, [boolean]
readOnly, [long] rows, [long] tabIndex, [readonly] type, value,
blur(), focus(), select()

<tfoot> See <tbody>
<th> See <td>
<thead> See <tbody>
<title> HTMLTitleElement: text

<tr>
HTMLTableRowElement*: [readonly long] rowIndex, [readonly long]
sectionRowIndex, [readonly HTMLCollection of
HTMLTableCellElement] cells, align, bgColor**, ch, chOff, vAlign,
insertCell(), deleteCell()

 HTMLUListElement: [boolean] compact**, type**

* Indicates interfaces documented in this book.

** Indicates deprecated elements and attributes.

*** Indicates attributes added in HTML DOM Level 2 working draft.

See Also

HTMLElement in the client-side reference section

Type of

HTMLDocument.body

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Passed to

HTMLSelectElement.add()

Returned by

HTMLTableElement.createCaption(), HTMLTableElement.createTFoot(),
HTMLTableElement.createTHead(), HTMLTableElement.insertRow(),
HTMLTableRowElement.insertCell(), HTMLTableSectionElement.insertRow()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLFormElement a <form> in an HTML document

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLFormElement

Properties

readonly HTMLCollection elements

An array (HTMLCollection) of all elements in the form.

readonly long length

The number of form elements in the form. This is the same value as elements.length.

In addition to the properties above, HTMLFormElement also defines the properties in the
following table, which correspond directly to HTML attributes.

Property Attribute Description
String
acceptCharset acceptcharset Character sets the server can accept

String action action URL of the form handler
String enctype enctype Encoding of the form
String method method HTTP method used for form submission
String name name Name of the form

String target target Frame or window name for form submission
results

Methods

reset()

Resets all form elements to their default values.

submit()

Submits the form.

Description

This interface represents a <form> element in an HTML document. The elements property is
an HTMLCollection that provides convenient access to all elements of the form. The submit()
and reset() methods allow a form to be submitted or reset under program control.

See the Form object in the client-side reference section for more details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

Form object in the client-side reference section

Type of

HTMLButtonElement.form, HTMLFieldSetElement.form, HTMLInputElement.form,
HTMLIsIndexElement.form, HTMLLabelElement.form, HTMLLegendElement.form,
HTMLObjectElement.form, HTMLOptionElement.form, HTMLSelectElement.form,
HTMLTextAreaElement.form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLFormElement.reset(
)

reset the elements of a form to their default
values

Availability

DOM Level 1 HTML

Synopsis

void reset();

Description

This method resets each of the elements of a form to its default value. The results of calling this
method are like the results of a user clicking on a Reset button, except that the onreset event
handler of the form is not invoked.

See Also

Form.reset() in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLFormElement.submit() submit a form

Availability

DOM Level 1 HTML

Synopsis

void submit();

Description

This method submits the values of the form elements to the form handler specified by the form's
action property. It submits a form in the same way that a user's clicking on a Submit button
does, except that the onsubmit event handler of the form is not triggered.

See Also

Form.submit() in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLInputElement an input element in an HTML form

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLInputElement

Properties

String accept

A comma-separated list of MIME types that specify the types of files that may be uploaded
when this is a FileUpload element. Mirrors the accept attribute.

String accessKey

The keyboard shortcut (which must be a single character) that a browser may use to
transfer keyboard focus to this input element. Mirrors the accesskey attribute.

deprecated String align

The vertical alignment of this element with respect to the surrounding text, or the left or
right float for the element. Mirrors the align attribute.

String alt

Alternate text to be displayed by browsers that cannot render this input element.
Particularly useful when type is image. Mirrors the alt attribute.

boolean checked

For Radio and Checkbox input elements, specifies whether the element is "checked" or
not. Setting this property changes the visual appearance of the input element. Mirrors the
checked attribute.

boolean defaultChecked

For Radio and Checkbox elements, holds the initial value of the checked attribute as it
appears in the document source. When the form is reset, the checked property is restored
to the value of this property. Changing the value of this property changes the value of the
checked property and the current checked state of the element.

String defaultValue

For Text, Password, and FileUpload elements, holds the initial value displayed by the
element. When the form is reset, the element is restored to this value. Changing the value
of this property also changes the value property and the currently displayed value.

boolean disabled

If true, the input element is disabled and is unavailable for user input. Mirrors the
disabled attribute.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

disabled attribute.

readonly HTMLFormElement form

The HTMLFormElement object representing the <form> element that contains this input
element, or null if the input element is not within a form.

long maxLength

For Text or Password elements, specifies the maximum number of characters that the user
will be allowed to enter. Note that this is not the same as the size property. Mirrors the
maxlength attribute.

String name

The name of the input element, as specified by the name attribute.

boolean readOnly

If true, and this is a Text or Password element, the user is not allowed to enter text into
the element. Mirrors the readonly attribute.

String size

For Text and Password elements, specifies the width of the element in characters. Mirrors
the size attribute. See also maxLength.

String src

For input elements with a type of image, specifies the URL of the image to be displayed.
Mirrors the src attribute.

long tabIndex

The position of this input element in the tabbing order. Mirrors the tabindex attribute.

String type

The type of the input element. The various types and their meanings are listed in the table
in the "Description" section. Mirrors the type attribute.

String useMap

For elements with a type of image, specifies the name of a <map> element that provides
a client-side image map for the element.

String value

The value that is passed to the server-side script when the form is submitted. For Text,
Password, and FileUpload elements, this property is the text contained by the input
element. For Button, Submit, and Reset elements, this is the text that appears in the
button. For security reasons, the value property of FileUpload elements may be read-only.
Similarly, the value returned by this property for Password elements may not contain the
user's actual input.

Methods

blur()

Takes keyboard focus away from the element.

click()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

click()

If this input element is a Button, a Checkbox, or a Radio, Submit, or Reset button, this
method simulates a mouse-click on the element.

focus()

Transfers keyboard focus to this input element.

select()

If this input element is a Text, Password, or FileUpload element, this method selects the
text displayed by the element. In many browsers, this means that when the user next enters
a character, the selected text will be deleted and replaced with the newly typed character.

Description

This interface represents an <input> element that defines an HTML input element (typically in
an HTML form). An HTMLInputElement can represent various types of input elements, depending
on the value of its type property. The allowed values for this property and their meanings are
shown in the following table.

Type Input element type
button Push button
checkbox Checkbox element
file FileUpload element
hidden Hidden element
image Graphical Submit button
password Masked-text entry field for passwords
radio Mutually exclusive Radio button
reset Reset button
text (default value) Single-line text entry field
submit Submit button

See Chapter 15 for more information about HTML forms and form elements. Note also that each
distinct type of form input element has its own reference page in the client-side reference section
of this book.

See Also

HTMLFormElement, HTMLOptionElement, HTMLSelectElement, HTMLTextAreaElement;
Chapter 15; the Input object in the client-side reference section, and also its subclasses (Button,
Checkbox, FileUpload, Hidden, Password, Radio, Reset, Submit, and Text)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLInputElement.blur() take keyboard focus away from this element

Availability

DOM Level 1 HTML

Synopsis

void blur();

Description

This method takes keyboard focus away from this form element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLInputElement.click() simulate a mouse-click on a form element

Availability

DOM Level 1 HTML

Synopsis

void click();

Description

This method simulates a mouse-click on a Button, Checkbox, Radio, Reset, or Submit form
element. It does not trigger the onclick event handler for the input element.

When called on Button elements, it may (or may not) produce the visual appearance of a button-
click, but it has no other effect since it does not trigger the onclick event handler for the button.
For Checkbox elements, it toggles the checked property. It makes unchecked Radio elements
become checked but leaves checked elements alone. When called on Reset and Submit
elements, the click() method causes the form to be reset or submitted.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLInputElement.focus() give keyboard focus to this element

Availability

DOM Level 1 HTML

Synopsis

void focus();

Description

This method transfers keyboard focus to this element so the user can interact with it without first
clicking on it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLInputElement.select() select the contents of a Text element

Availability

DOM Level 1 HTML

Synopsis

void select();

Description

This method selects any text displayed in Text, Password, and FileUpload elements. In most
browsers, this means that the user's next keystroke will replace the current text rather than being
appended to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLOptionElement an <option> in an HTML form

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLOptionElement

Properties

boolean defaultSelected

The initial value of the selected attribute of the <option> element. If the form is reset,
the selected property is reset to the value of this property. Setting this property also sets
the value of the selected property.

boolean disabled

If true, this option is disabled and the user is not allowed to select it. Mirrors the
disabled attribute.

readonly HTMLFormElement form

A reference to the <form> element that contains this element.

readonly long index

The position of this <option> element within the <select> element that contains it.

String label

The text to be displayed for the option. Mirrors the label attribute. If this property is not
specified, the plain-text content of the <option> element is used instead.

boolean selected

The current state of this option: if true, the option is selected. The initial value of this
property comes from the selected attribute.

readonly String text

The plain text contained within the <option> element. This text appears as the label for
the option.

String value

The value submitted with the form if this option is selected when form submission occurs.
Mirrors the value attribute.

Description

This interface describes an <option> element within a <select> element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This interface describes an <option> element within a <select> element.

See Also

HTMLFormElement, HTMLInputElement, HTMLSelectElement; Option and Select objects in the
client-side reference section; Chapter 15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLSelectElement a <select> element in an HTML form

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLSelectElement

Properties

boolean disabled

If true, the <select> element is disabled and the user may not interact with it. Mirrors
the disabled attribute.

readonly HTMLFormElement form

The <form> element that contains this one.

readonly long length

The number of <option> elements contained by this <select> element. Same as
options.length.

boolean multiple

If true, the <select> element allows multiple options to be selected. Otherwise, the
selections are mutually exclusive and only one may be selected at a time. Mirrors the
multiple attribute.

String name

The name of this form element. Mirrors the name attribute.

readonly HTMLCollection options

An array (HTMLCollection) of HTMLOptionElement objects that represent the <option>
elements contained in this <select> element, in the order in which they appear.

long selectedIndex

The position of the selected option in the options array. If no options are selected, this
property is -1. If multiple options are selected, this property returns the index of the first
selected option.

long size

The number of options to display at once. If this property is 1, the <select> element will
typically be displayed using a drop-down menu or list. If it is greater than 1, the <select>
is typically displayed using a fixed-size list control, with a scrollbar if necessary. Mirrors the
size attribute.

long tabIndex

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

long tabIndex

The position of this element in the tabbing order. Mirrors the tabindex attribute.

readonly String type

If multiple is true, this property is "select-multiple". Otherwise, it is "select-one".

Methods

add()

Inserts a new HTMLOptionElement into the options array, either by appending it at the
end of the array or by inserting it before another specified option.

blur()

Takes keyboard focus away.

focus()

Transfers keyboard focus to this element.

remove()

Removes the <option> element at the specified position.

Description

This interface represents a <select> element in an HTML form. The options property provides
convenient access to the set of <option> elements it contains, and the add() and remove(
) methods provide an easy way to modify the set of options.

See Also

HTMLFormElement, HTMLOptionElement; Option and Select objects in the client-side reference
section; Chapter 15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLSelectElement.add() insert an <option> element

Availability

DOM Level 1 HTML

Synopsis

void add(HTMLElement element,

 HTMLElement before)

 throws DOMException;

Arguments

element

The HTMLOptionElement to be added.

before

The element of the options array before which the new element should be added. If this
argument is null, element is appended at the end of the options array.

Throws

This method throws a DOMException with a code of NOT_FOUND_ERR if the before argument
specifies an object that is not a member of the options array.

Description

This method adds a new <option> element to this <select> element. element is an
HTMLOptionElement that represents the <option> element to be added. before specifies the
HTMLOptionElement before which element is to be added. If before is part of an OPTGROUP,
element is always inserted as part of that same group. If before is null, element becomes
the last child of the <select> element.

See Also

Select object in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLSelectElement.blur() take keyboard focus away from this element

Availability

DOM Level 1 HTML

Synopsis

void blur();

Description

This method takes keyboard focus away from this element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLSelectElement.focus() give keyboard focus to this element

Availability

DOM Level 1 HTML

Synopsis

void focus();

Description

This method transfers keyboard focus to this <select> element so the user can interact with it
using the keyboard instead of the mouse.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLSelectElement.remove() remove an <option>

Availability

DOM Level 1 HTML

Synopsis

void remove(long index);

Arguments

index

The position within the options array of the <option> element to be removed.

Description

This method removes the <option> element at the specified position in the options array. If
the specified index is less than zero or greater than or equal to the number of options, the
remove() method ignores it and does nothing.

See Also

Select object in the client-side reference section

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableCaptionElement a <caption> in an HTML table

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableCaptionElement

Properties

deprecated String align

The horizontal alignment of the caption with respect to the table. The value of the align
attribute. Deprecated in favor of CSS styles.

Description

A <caption> element in an HTML table.

See Also

Type of

HTMLTableElement.caption

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableCellElement a <td> or <th> cell in an HTML table

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableCellElement

Properties

readonly long cellIndex

The position of this cell within its row.

In addition to the cellIndex property, this interface defines the properties in the following table,
which correspond directly to the HTML attributes of the <td> and <th> elements.

Property Attribute Description
String abbr abbr See HTML specification
String align align Horizontal alignment of cell
String axis axis See HTML specification
deprecated String bgColor bgcolor Background color of cell
String ch char Alignment character
String chOff choff Alignment character offset
long colSpan colspan Columns spanned by cell
String headers headers id values for headers for this cell
deprecated String height height Cell height in pixels
deprecated boolean noWrap nowrap Don't word-wrap cell
long rowSpan rowspan Rows spanned by cell
String scope scope Scope of this header cell
String vAlign valign Vertical alignment of cell
deprecated String width width Cell width in pixels

Description

This interface represents <td> and <th> elements in HTML tables.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableColElement a <col> or <colgroup> in an HTML table

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableColElement

Properties

This interface defines the properties in the following table, each of which corresponds to an HTML
attribute of a <col> or <colgroup> element.

Property Attribute Description
String align align Default horizontal alignment
String ch char Default alignment character
String chOff choff Default alignment offset
long span span Number of columns represented by this element
String vAlign valign Default vertical alignment
String width width Width of the column(s)

Description

This interface represents a <col> or <colgroup> element in an HTML table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement a <table> in an HTML document

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableElement

Properties

HTMLTableCaptionElement caption

A reference to the <caption> element for the table, or null if there is none.

readonly HTMLCollection rows

An array (HTMLCollection) of HTMLTableRowElement objects that represent all the rows in
the table. This includes all rows defined within <thead>, <tfoot>, and <tbody> tags.

readonly HTMLCollection tBodies

An array (HTMLCollection) of HTMLTableSectionElement objects that represent all the
<tbody> sections in this table.

HTMLTableSectionElement tFoot

The <tfoot> element of the table, or null if there is none.

HTMLTableSectionElement tHead

The <thead> element of the table, or null if there is none.

In addition to the properties just listed, this interface defines the properties in the following table to
represent the HTML attributes of the <table> element.

Property Attribute Description
deprecated String align align Horizontal alignment of table in document
deprecated String bgColor bgcolor Table background color
String border border Width of border around table
String cellPadding cellpadding Space between cell contents and border
String cellSpacing cellspacing Space between cell borders
String frame frame Which table borders to draw
String rules rules Where to draw lines within the table
String summary summary Summary description of table
String width width Table width

Methods

createCaption()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createCaption()

Returns the existing <caption> for the table, or creates (and inserts) a new one if none
already exists.

createTFoot()

Returns the existing <tfoot> element for the table, or creates (and inserts) a new one if
none already exists.

createTHead()

Returns the existing <thead> element for the table, or creates (and inserts) a new one if
none already exists.

deleteCaption()

Deletes the <caption> element from the table, if it has one.

deleteRow()

Deletes the row at the specified position in the table.

deleteTFoot()

Deletes the <tfoot> element from the table, if it has one.

deleteTHead()

Deletes the <thead> element from the table, if one exists.

insertRow()

Inserts a new, empty <tr> element into the table at the specified position.

Description

This interface represents an HTML <table> element and defines a number of convenience
properties and methods for querying and modifying various sections of the table. These methods
and properties make it easier to work with tables, but they could also be duplicated with core
DOM methods.

See Also

HTMLTableCaptionElement, HTMLTableCellElement, HTMLTableColElement,
HTMLTableRowElement, HTMLTableSectionElement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.createCaption() get or create a <caption>

Availability

DOM Level 1 HTML

Synopsis

HTMLElement createCaption();

Returns

An HTMLTableCaptionElement object representing the <caption> element for this table. If the
table already has a caption, this method simply returns it. If the table does not have an existing
<caption>, this method creates a new (empty) one and inserts it into the table before returning
it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.createTFoot() get or create a <tfoot>

Availability

DOM Level 1 HTML

Synopsis

HTMLElement createTFoot();

Returns

An HTMLTableSectionElement representing the <tfoot> element for this table. If the table
already has a footer, this method simply returns it. If the table does not have an existing footer,
this method creates a new (empty) <tfoot> element and inserts it into the table before returning
it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.createTHead() get or create a <thead>

Availability

DOM Level 1 HTML

Synopsis

HTMLElement createTHead();

Returns

An HTMLTableSectionElement representing the <thead> element for this table. If the table
already has a header, this method simply returns it. If the table does not have an existing header,
this method creates a new (empty) <thead> element and inserts it into the table before returning
it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.deleteCaption() delete the <caption> of a table

Availability

DOM Level 1 HTML

Synopsis

void deleteCaption();

Description

If this table has a <caption> element, this method removes it from the document tree.
Otherwise, it does nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.deleteRow() delete a row of a table

Availability

DOM Level 1 HTML

Synopsis

void deleteRow(long index)

 throws DOMException;

Arguments

index

Specifies the position within the table of the row to be deleted.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or is greater than or equal to the number of rows in the table.

Description

This method deletes the row at the specified position from the table. Rows are numbered in the
order in which they appear in the document source. Rows in <thead> and <tfoot> sections are
numbered along with all other rows in the table.

See Also

HTMLTableSectionElement.deleteRow()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.deleteTFoot() delete the <tfoot> of a table

Availability

DOM Level 1 HTML

Synopsis

void deleteTFoot();

Description

If this table has a <tfoot> element, this method removes it from the document tree. If the table
has no footer, this method does nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.deleteTHead() delete the <thead> of a table

Availability

DOM Level 1 HTML

Synopsis

void deleteTHead();

Description

If this table has a <thead> element, this method deletes it; otherwise, it does nothing.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableElement.insertRow() add a new, empty row to the table

Availability

DOM Level 1 HTML

Synopsis

HTMLElement insertRow(long index)

 throws DOMException;

Arguments

index

The position at which the new row is to be inserted.

Returns

An HTMLTableRowElement that represents the newly inserted row.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or greater than the number of rows in the table.

Description

This method creates a new HTMLTableRowElement representing a <tr> tag and inserts it into
the table at the specified position.

The new row is inserted in the same section and immediately before the existing row at the
position specified by index. If index is equal to the number of rows in the table, the new row is
appended to the last section of the table. If the table is initially empty, the new row is inserted into
a new <tbody> section that is itself inserted into the table.

You can use the convenience method HTMLTableRowElement.insertCell() to add
content to the newly created row.

See Also

HTMLTableSectionElement.insertRow()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableRowElement a <tr> element in an HTML table

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableRowElement

Properties

readonly HTMLCollection cells

An array (HTMLCollection) of HTMLTableCellElement objects representing the cells in this
row.

readonly long rowIndex

The position of this row in the table.

readonly long sectionRowIndex

The position of this row within its section (i.e., within its <thead>, <tbody>, or <tfoot>
element).

In addition to the properties just listed, this interface also defines the properties in the following
table, which correspond to the HTML attributes of the <tr> element.

Property Attribute Description
String align align Default horizontal alignment of cells in this row
deprecated String bgColor bgcolor Background color of this row
String ch char Alignment character for cells in this row
String chOff choff Alignment character offset for cells in this row
String vAlign valign Default vertical alignment for cells in this row

Methods

deleteCell()

Deletes the specified cell from this row.

insertCell()

Inserts an empty <td> element into this row at the specified position.

Description

This interface represents a row in an HTML table.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableRowElement.deleteCell() delete a cell in a table row

Availability

DOM Level 1 HTML

Synopsis

void deleteCell(long index)

 throws DOMException;

Arguments

index

The position in the row of the cell to delete.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or is greater than or equal to the number of cells in the row.

Description

This method deletes the cell at the specified position in the table row.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableRowElement.insertCell(
)

insert a new, empty <td> element into
a table row

Availability

DOM Level 1 HTML

Synopsis

HTMLElement insertCell(long index)

 throws DOMException;

Arguments

index

The position at which the new cell is to be inserted.

Returns

An HTMLTableCellElement object that represents the newly created and inserted <td> element.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or is greater than the number of cells in the row.

Description

This method creates a new <td> element and inserts it into the row at the specified position. The
new cell is inserted immediately before the cell that is currently at the position specified by index.
If index is equal to the number of cells in the row, the new cell is appended at the end of the row.

Note that this convenience method inserts <td> data cells only. If you need to add a header cell
into a row, you must create and insert the <th> element using Document.createElement()
and Node.insertBefore() or related methods.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableSectionElement a header, footer, or body section of a table

Availability

DOM Level 1 HTML

Inherits from/Overrides

Node Element HTMLElement HTMLTableSectionElement

Properties

readonly HTMLCollection rows

An array (HTMLCollection) of HTMLTableRowElement objects representing the rows in this
section of the table.

In addition to the rows property, this interface defines the properties in the following table, which
represent the attributes of the underlying HTML element.

Property Attribute Description
String align align Default horizontal alignment of cells in this section of the table
String ch char Default alignment character for cells in this section
String chOff choff Default alignment offset for cells in this section
String vAlign valign Default vertical alignment for cells in this section

Methods

deleteRow()

Deletes the numbered row from this section.

insertRow()

Inserts an empty row into this section at the specified position.

Description

This interface represents a <tbody>, <thead>, or <tfoot> section of an HTML table.

See Also

Type of

HTMLTableElement.tFoot, HTMLTableElement.tHead

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableSectionElement.deleteRow(
)

delete a row within a table
section

Availability

DOM Level 1 HTML

Synopsis

void deleteRow(long index)

 throws DOMException;

Arguments

index

The position of the row within this section.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or is greater than or equal to the number of rows in this section.

Description

This method deletes the row at the specified position within this section. Note that for this method
index specifies a row's position within its section, not within the entire table.

See Also

HTMLTableElement.deleteRow()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTableSectionElement.insertRow(
)

insert a new, empty row into this
table section

Availability

DOM Level 1 HTML

Synopsis

HTMLElement insertRow(long index)

 throws DOMException;

Arguments

index

The position within the section at which the new row is to be inserted.

Returns

An HTMLTableRowElement that represents the newly created and inserted <tr> element.

Throws

This method throws a DOMException with a code of INDEX_SIZE_ERR if index is less than
zero or is greater than the number of rows in this section.

Description

This method creates a new <tr> element and inserts it into this table section at the specified
position. If index equals the number of rows currently in the section, the new row is appended at
the end of the section. Otherwise, the new row is inserted immediately before the row that is
currently at the position specified by index. Note that for this method, index specifies a row
position within a single table section, not within the entire table.

See Also

HTMLTableElement.insertRow()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTextAreaElement a <textarea> element in an HTML form DOM
Level 1 HTML

Availability

Inherits from/Overrides

Node Element HTMLElement HTMLTextAreaElement

Properties

String accessKey

A keyboard shortcut (a single character) that the web browser can use to transfer keyboard
focus to this element. Mirrors the accesskey attribute.

long cols

The width of this element in character columns. Mirrors the cols attribute.

String defaultValue

The initial content of the text area. When the form is reset, the text area is restored to this
value. Setting this property changes the displayed text in the text area.

boolean disabled

If true, this element is disabled and the user cannot interact with it. Mirrors the disabled
attribute.

readonly HTMLFormElement form

The HTMLFormElement that represents the <form> element containing this text area, or
null if this element is not inside a form.

String name

The name of this <textarea> element, as specified by the name attribute.

boolean readOnly

If true, this element is read-only and the user cannot edit any of the displayed text. Mirrors
the readonly attribute.

long rows

The height of the text area in text rows. Mirrors the rows attribute.

long tabIndex

The position of this element in the tabbing order. Mirrors the tabindex attribute.

readonly String type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The type of this element, for compatibility with HTMLInputElement objects. This property
always has the value "textarea".

String value

The text currently displayed in the text area.

Methods

blur()

Takes keyboard focus away from this element.

focus()

Transfers keyboard focus to this element.

select()

Selects the entire contents of the text area.

Description

This interface represents a <textarea> element that creates a multiline text-input field in an
HTML form. The initial contents of the text area are specified between the <textarea> and
</textarea> tags. The user may edit this value and query and set the text with the value
property (or by modifying the Text node child of this element).

See Also

HTMLFormElement, HTMLInputElement; Textarea in the client-side reference section; Chapter
15

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTextAreaElement.blur(
) take keyboard focus away from this element

Availability

DOM Level 1 HTML

Synopsis

void blur();

Description

This method takes keyboard focus away from this element.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTextAreaElement.focus() give keyboard focus to this element

Availability

DOM Level 1 HTML

Synopsis

void focus();

Description

This method transfers keyboard focus to this element so the user can edit the displayed text
without having to first click on the text area.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLTextAreaElement.select() select the text in this element

Availability

DOM Level 1 HTML

Synopsis

void select();

Description

This method selects all the text displayed by this <textarea> element. In most browsers, this
means that the text is highlighted and that new text entered by the user will replace the
highlighted text instead of being appended to it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LinkStyle a style sheet associated with a node

Availability

DOM Level 2 StyleSheets

Properties

readonly StyleSheet sheet

The StyleSheet object associated with this node.

Description

In DOM implementations that support the StyleSheets module, this interface is implemented by
any Document node that links to a style sheet or defines an inline style sheet. The sheet
property then provides a way to obtain the StyleSheet object associated with the node.

In HTML documents, the <style> and <link> elements implement this interface. Those
elements are represented by the HTMLStyleElement and HTMLLinkElement interfaces, which do
not have their own entries in this reference. See HTMLElement for more information about those
interfaces.

In XML documents, style sheets are included with a processing instruction. See
ProcessingInstruction for more information.

See Also

HTMLElement, ProcessingInstruction

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MediaList a style sheet's list of media types

Availability

DOM Level 2 StyleSheets

Properties

readonly unsigned long length

The length of the array; the number of media types in the list.

String mediaText

A comma-separated text representation of the complete media list. Setting this property
may throw a DOMException with a code of SYNTAX_ERR if the new value contains a
syntax err, or a code of NO_MODIFICATION_ALLOWED_EXCEPTION if the media list is
read-only.

Methods

appendMedium()

Adds a new media type to the end of the list.

deleteMedium()

Removes the specified media type from the list.

item()

Returns the media type at the specified position in the list, or null if the index is invalid. In
JavaScript, you can also treat the MediaList object as an array and index it using normal
square-bracket array notation instead of calling this method.

Description

This interface represents a list or array of media types for a style sheet. length specifies the
number of elements in the list, and item() allows a specific media type to be retrieved by
position. appendMedium() and deleteMedium() allow entries to be appended to and
deleted from the list. JavaScript allows a MediaList object to be treated as an array, and you can
use square-bracket notation instead of calling item().

The HTML 4 standard defines the following media types (they are case-sensitive, and must be
written in lowercase letters): screen, tty, tv, projection, handheld, print, braile,
aural, and all. The screen type is most relevant to documents being displayed in web
browsers on desktop or laptop computers. The print type is used for styles intended for printed
documents.

See Also

Type of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StyleSheet.media

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MediaList.appendMedium() add a new media type to the list

Availability

DOM Level 2 StyleSheets

Synopsis

void appendMedium(String newMedium)

 throws DOMException;

Arguments

newMedium

The name of the new media type to append. See the MediaList reference page for the set
of valid media type names.

Throws

This method may throw a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if
the media list is read-only, or INVALID_CHARACTER_ERR if the specified newMedium argument
contains illegal characters.

Description

This method appends the specified newMedium to the end of the MediaList. If the MediaList
already contains the specified media type, it is first removed from its current position and then
appended at the end of the list.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MediaList.deleteMedium() remove a media type from the list

Availability

DOM Level 2 StyleSheets

Availability

Synopsis

void deleteMedium(String oldMedium)

 throws DOMException;

Arguments

oldMedium

The name of the media type to remove from the list. See the MediaList reference page for
the set of valid media type names.

Throws

This method throws a DOMException with a code of NOT_FOUND_ERR if the list does not contain
the specified oldMedium media type, or NO_MODIFICATION_ALLOWED_ERR if the media list is
read-only.

Description

This method deletes the specified media type from this MediaList, or throws an exception if the list
does not contain the specified type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MediaList.item() index an array of media types

Availability

DOM Level 2 StyleSheets

Synopsis

String item(unsigned long index);

Arguments

index

The position of the desired media type within the array.

Returns

The media type (a string) at the specified position within the MediaList, or null if index is
negative or is greater than or equal to length. Note that in JavaScript, it is usually simpler to
treat a MediaList object as an array and index it using square-bracket array notation instead of
calling this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MouseEvent details about a mouse event

Availability

DOM Level 2 Events

Inherits from/Overrides

Event UIEvent MouseEvent

Properties

readonly boolean altKey

Whether the Alt key was held down when the event occurred. Defined for all types of
mouse events.

readonly unsigned short button

Which mouse button changed state during a mousedown, mouseup, or click event. A value
of 0 indicates the left button, a value of 2 indicates the right button, and a value of 1
indicates the middle mouse button. Note that this property is defined when a button
changes state; it is not used to report whether a button is held down during a mousemove
event, for example. Also, this property is not a bitmap: it cannot tell you if more than one
button is held down.

Netscape 6.0 and 6.01 use the values 1, 2, and 3 instead of 0, 1, and 2. This is fixed in
Netscape 6.1.

readonly long clientX, clientY

Numbers that specify the X and Y coordinates of the mouse pointer relative to the "client
area," or browser window. Note that these coordinates do not take document scrolling into
account; if an event occurs at the very top of the window, clientY is 0 regardless of how
far down the document has been scrolled. These properties are defined for all types of
mouse events.

readonly boolean ctrlKey

Whether the Ctrl key was held down when the event occurred. Defined for all types of
mouse events.

readonly boolean metaKey

Whether the Meta key was held down when the event occurred. Defined for all types of
mouse events.

readonly EventTarget relatedTarget

Refers to a node that is related to the target node of the event. For mouseover events, it
is the node the mouse left when it moved over the target. For mouseout events, it is the
node the mouse entered when leaving the target. relatedTarget is undefined for other
types of mouse events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readonly long screenX, screenY

Numbers that specify the X and Y coordinates of the mouse pointer relative to the upper-
left corner of the user's monitor. These properties are defined for all types of mouse events.

readonly boolean shiftKey

Whether the Shift key was held down when the event occurred. Defined for all types of
mouse events.

Methods

initMouseEvent()

Initializes the properties of a newly created MouseEvent object.

Description

This interface defines the type of Event object that is passed to events of types click, mousedown,
mousemove, mouseout, mouseover, and mouseup. Note that in addition to the properties listed
here, this interface also inherits the properties of the UIEvent and Event interfaces.

See Also

Event, UIEvent; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MouseEvent.initMouseEvent(
)

initialize the properties of a MouseEvent
object

Availability

DOM Level 2 Events

Synopsis

void initMouseEvent(String typeArg,

 boolean canBubbleArg,

 boolean cancelableArg,

 AbstractView viewArg,

 long detailArg,

 long screenXArg,

 long screenYArg,

 long clientXArg,

 long clientYArg,

 boolean ctrlKeyArg,

 boolean altKeyArg,

 boolean shiftKeyArg,

 boolean metaKeyArg,

 unsigned short buttonArg,

 EventTarget relatedTargetArg);

Arguments

The many arguments to this method specify the initial values of the properties of this MouseEvent
object, including the properties inherited from the Event and UIEvent interfaces. The name of
each argument clearly indicates the property for which it specifies the value, so they are not listed
individually here.

Description

This method initializes the various properties of a newly created MouseEvent object. It may be
called only on a MouseEvent object created with Document.createEvent() and only before
that MouseEvent is passed to EventTarget.dispatchEvent().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MutationEvent details about a document change

Availability

DOM Level 2 Events

Inherits from/Overrides

Event MutationEvent

Constants

The following constants represent the set of possible values for the attrChange property:

unsigned short MODIFICATION = 1

An Attr node was modified.

unsigned short ADDITION = 2

An Attr node was added.

unsigned short REMOVAL = 3

An Attr node was removed.

Properties

readonly unsigned short attrChange

How the attribute was changed, for DOMAttrModified events. The three possible values are
defined in the "Constants" section.

readonly String attrName

The name of the attribute that was changed for DOMAttrModified events.

readonly String newValue

The new value of the Attr node for DOMAttrModified events, or the new text value of a
Text, Comment, CDATASection, or ProcessingInstruction node for
DOMCharacterDataModified events.

readonly String prevValue

The previous value of an Attr node for DOMAttrModified events, or the previous value of a
Text, Comment, CDATASection, or ProcessingInstruction node for
DOMCharacterDataModified events.

readonly Node relatedNode

The relevant Attr node for DOMAttrModified events, or the parent of the node that was
inserted or removed for DOMNodeInserted and DOMNodeRemoved events.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Methods

initMutationEvent()

Initializes the properties of a newly created MutationEvent object.

Description

This interface defines the type of Event object that is passed to events of types listed here (note
that none of these event types are cancelable with Event.preventDefault()):

DOMAttrModified

Generated when an attribute of a document element is added, removed, or changed. The
target of the event is the element that contains the attribute, and the event bubbles up from
there.

DOMCharacterDataModified

Generated when the character data of a Text, Comment, CDATASection, or
ProcessingInstruction node changes. The event target is the node that changed, and the
event bubbles up from there.

DOMNodeInserted

Generated after a node is added as a child of another node. The target of the event is the
node that was inserted, and the event bubbles up the tree from there. The relatedNode
property specifies the new parent of the inserted node. This event is not generated for any
descendants of the inserted node.

DOMNodeInsertedIntoDocument

Generated after a node is inserted into the document tree, as well as for nodes that are
inserted directly into the tree and nodes that are indirectly inserted when an ancestor is
inserted. The target of this event is the node that is inserted. Because events of this type
may be targeted at every node in a subtree, they do not bubble.

DOMNodeRemoved

Generated immediately before a node is removed from its parent. The target of the event is
the node being removed, and the event bubbles up the document tree from there. The
relatedNode property holds the parent node from which the node is being removed.

DOMNodeRemovedFromDocument

Generated immediately before a node is removed from the document tree. Separate events
are generated for the node that is directly removed and for each of its descendant nodes.
The target of the event is the node that is about to be removed. Events of this type do not
bubble.

DOMSubtreeModified

Generated as a kind of summary event when a call to a DOM method causes multiple
mutation events to be fired. The target of this event is the most deeply nested common
ancestor of all changes that occurred in the document, and it bubbles up the document tree
from that point. If you are not interested in the details of the changes but merely want to be
notified which portions of the document have changed, you may prefer to register listeners
for this type of event.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MutationEvent.initMutationEvent(
)

initialize the properties of a new
MutationEvent

Availability

DOM Level 2 Events

Synopsis

void initMutationEvent(String typeArg,

 boolean canBubbleArg,

 boolean cancelableArg,

 Node relatedNodeArg,

 String prevValueArg,

 String newValueArg,

 String attrNameArg,

 unsigned short attrChangeArg);

Arguments

The various arguments to this method specify the initial values of the properties of this
MutationEvent object, including the properties inherited from the Event interface. The name of
each argument clearly indicates the property for which it specifies the value, so the arguments are
not listed individually here.

Description

This method initializes the various properties of a newly created MutationEvent object. It may be
called only on a MutationEvent object created with Document.createEvent() and only
before that MouseEvent is passed to EventTarget.dispatchEvent().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap a collection of nodes indexed by name or position

Availability

DOM Level 1 Core

Properties

readonly unsigned long length

The number of nodes in the array.

Methods

getNamedItem()

Looks up a named node.

getNamedItemNS() [DOM Level 2]

Looks up a node specified by namespace and name.

item()

Obtains the node at a specified position within the NamedNodeMap. In JavaScript, you can
also do this by using the node position as an array index.

removeNamedItem()

Deletes a named node from the NamedNodeMap.

removeNamedItemNS() [DOM Level 2]

Deletes a node specified by name and namespace from the NamedNodeMap.

setNamedItem()

Adds a new node to (or replaces an existing node in) the NamedNodeMap. The nodeName
property of the Node object is used as the name of the node.

setNamedItemNS() [DOM Level 2]

Adds a new node to (or replaces an existing node in) the NamedNodeMap. The
namespaceURI and localName properties of the Node object are used as the node
name.

Description

The NamedNodeMap interface defines a collection of nodes that may be looked up by their
nodeName property or, for nodes that use namespaces, by their namespaceURI or localName
properties.

The most notable use of the NamedNodeMap interface is the attributes property of the Node

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The most notable use of the NamedNodeMap interface is the attributes property of the Node
interface: a collection of Attr nodes that may be looked up by attribute name. Many of the
methods of NamedNodeMap are similar to the methods of Element for manipulating attributes.
Element attributes are usually most easily manipulated through the methods of the Element
interface, and the NamedNodeMap interface is not commonly used.

NamedNodeMap objects are "live," which means that they immediately reflect any changes to the
document tree. For example, if you obtain a NamedNodeMap that represents the attributes of an
element and then add a new attribute to that element, the new attribute is available through the
NamedNodeMap.

See Also

NodeList

Type of

DocumentType.entities, DocumentType.notations, Node.attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.getNamedItem() look up a node by name

Availability

DOM Level 1 Core

Synopsis

Node getNamedItem(String name);

Arguments

name

The value of the nodeName property of the node to look up.

Returns

The named node, or null if no node with that name was found.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.getNamedItemNS(
)

look up a node by name and
namespace

Availability

DOM Level 2 Core

Synopsis

Node getNamedItemNS(String namespaceURI,

 String localName);

Arguments

namespaceURI

The namespaceURI property of the desired node, or null for no namespace.

localName

The localName property of the local node.

Returns

The element of the NamedNodeMap that has the specified namespaceURI and localName
properties, or null if there is no such node.

Description

getNamedItemNS() looks up an element of a NamedNodeMap by namespace and local
name. It is useful only with XML documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.item() return an element of a NamedNodeMap by position

Availability

DOM Level 1 Core

Synopsis

Node item(unsigned long index);

Arguments

index

The position or index of the desired node.

Returns

The node at the specified position, or null if index is less than zero or greater than or equal to
the length of the NamedNodeMap.

Description

This method returns a numbered element of a NamedNodeMap. In JavaScript, NamedNodeMap
objects behave like read-only arrays, and you can use the node position as an array index within
square brackets instead of calling this method.

Although the NamedNodeMap interface allows you to iterate through its nodes by position, it does
not represent an ordered collection of nodes. Any changes made to the NamedNodeMap (such
as by removeNamedItem() or setNamedItem()) may result in a complete reordering of the
elements. Thus, you must not modify a NamedNodeMap while you are iterating through its
elements.

See Also

NodeList

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.removeNamedItem() delete a node specified by name

Availability

DOM Level 1 Core

Synopsis

Node removeNamedItem(String name)

 throws DOMException;

Arguments

name

The nodeName property of the node to be deleted.

Returns

The node that was removed.

Throws

This method throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if the
NamedNodeMap is read-only and does not allow deletions, or a code of NOT_FOUND_ERR if no
node with the specified name exists in the NamedNodeMap.

Description

Deletes a named node from a NamedNodeMap. Note that if the NamedNodeMap represents the
set of attributes for an Element, removing the Attr node for an attribute that was explicitly set in
the document may cause the removed Attr to be automatically replaced by a new Attr node
representing the default value (if any exists) of the attribute.

See Also

Element.removeAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.removeNamedItemNS(
)

delete a node specified by
namespace and name

Availability

DOM Level 2 Core

Synopsis

Node removeNamedItemNS(String namespaceURI,

 String localName)

 throws DOMException;

Arguments

namespaceURI

The namespaceURI property of the node to be removed, or null for no namespace.

localName

The localName property of the node to be removed.

Returns

The node that was removed.

Throws

This method throws exceptions for the same reason as removeNamedItem().

Description

This method works just like removeNamedItem(), except that the node to be removed is
specified by namespace and local name rather than just by name. This method is typically useful
only with XML documents that use namespaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.setNamedItem(
)

add a node to or replace a node in a
NamedNodeMap

Availability

DOM Level 1 Core

Synopsis

Node setNamedItem(Node arg)

 throws DOMException;

Arguments

arg

The node to be added to the NamedNodeMap.

Returns

The node that was replaced, or null if no node was replaced.

Throws

This method may throw a DOMException with one of the following code values:

HIERARCHY_REQUEST_ERR

arg is a node of a type that is not suitable for this NamedNodeMap (e.g., is not an Attr
node).

INUSE_ATTRIBUTE_ERR

arg is an Attr node that is already associated with an element.

NO_MODIFICATION_ALLOWED_ERR

The NamedNodeMap is read-only.

WRONG_DOCUMENT_ERR

arg has a different ownerDocument than the document from which the NamedNodeMap
was created.

Description

setNamedItem() adds the specified node to a NamedNodeMap and allows it to be looked up
using the value of the node's nodeName property. If the NamedNodeMap already contains a node
with that name, that node is replaced and becomes the return value of the method.

See Also

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Element.setAttribute()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NamedNodeMap.setNamedItemNS(
)

add a node to a NamedNodeMap using
namespaces

Availability

DOM Level 2 Core

Synopsis

Node setNamedItemNS(Node arg)

 throws DOMException;

Arguments

arg

The node to be added to the NamedNodeMap.

Returns

The node that was replaced, or null if no node was replaced.

Throws

This method throws exceptions for the same reasons as setNamedItem(). It may also throw a
DOMException with a code of NOT_SUPPORTED_ERR if it is called in an implementation that does
not support XML documents or XML namespaces.

Description

This method works like setNamedItem(), except that the node added to the NamedNodeMap
can later be looked up by its namespaceURI and localName properties instead of by its
nodeName property. This method is useful only with XML documents that use namespaces. Note
that this method may be unsupported (i.e., may throw an exception) in implementations that do
not support XML documents.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node a node in a document tree

Availability

DOM Level 1 Core

Subinterfaces

Attr, CharacterData, Document, DocumentFragment, DocumentType, Element, Entity, EntityReference,
Notation, ProcessingInstruction

Also Implements

EventTarget

If the DOM implementation supports the Events module, every node in the document tree also
implements the EventTarget interface and may have event listeners registered on it. The methods
defined by the EventTarget interface are not included here; see the "EventTarget" and EventListener
reference pages for details.

Constants

All Node objects implement one of the subinterfaces listed above. Every Node object has a nodeType
property that specifies which of the subinterfaces it implements. These constants are the legal values for
that property; their names are self-explanatory. Note that these are static properties of the Node()
constructor function; they are not properties of individual Node objects. Also note that they are not supported
by Internet Explorer 4, 5, or 6.

Node.ELEMENT_NODE = 1; // Element

Node.ATTRIBUTE_NODE = 2; // Attr

Node.TEXT_NODE = 3; // Text

Node.CDATA_SECTION_NODE = 4; // CDATASection

Node.ENTITY_REFERENCE_NODE = 5; // EntityReference

Node.ENTITY_NODE = 6; // Entity

Node.PROCESSING_INSTRUCTION_NODE = 7; // ProcessingInstruction

Node.COMMENT_NODE = 8; // Comment

Node.DOCUMENT_NODE = 9; // Document

Node.DOCUMENT_TYPE_NODE = 10; // DocumentType

Node.DOCUMENT_FRAGMENT_NODE = 11; // DocumentFragment

Node.NOTATION_NODE = 12; // Notation

Properties

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readonly NamedNodeMap attributes

If this node is an element, specifies the attributes of that element. attributes is a NamedNodeMap
object that allows attributes to be queried by name or by number and returns them in the form of Attr
objects. In practice, it is almost always easier to use the getAttribute() method of the Element
interface to obtain an attribute value as a string. Note that the returned NamedNodeMap object is
"live": any changes to the attributes of this element are immediately visible through it.

readonly Node[] childNodes

Contains the child nodes of the current node. This property should never be null: for nodes with no
children, childNodes is an array with length zero. This property is technically a NodeList object,
but it behaves just like an array of Node objects. Note that the returned NodeList object is "live": any
changes to this element's list of children are immediately visible through the NodeList.

readonly Node firstChild

The first child of this node, or null if the node has no children.

readonly Node lastChild

The last child of this node, or null if the node has no children.

readonly String localName [DOM Level 2]

In XML documents that use namespaces, specifies the local part of the element or attribute name.
This property is never used with HTML documents. See also the namespaceURI and prefix
properties.

readonly String namespaceURI [DOM Level 2]

In XML documents that use namespaces, specifies the URI of the namespace of an Element or
Attribute node. This property is never used with HTML documents. See also the localName and
prefix properties.

readonly Node nextSibling

The sibling node that immediately follows this one in the childNodes[] array of the parentNode
or null if there is no such node.

readonly String nodeName

The name of the node. For Element nodes, specifies the tag name of the element, which can also be
retrieved with the tagName property of the Element interface. For other types of nodes, the value
depends on the node type. See the upcoming table in the Section section for details.

readonly unsigned short nodeType

The type of the node; i.e., which subinterface the node implements. The legal values are defined by
the previously listed constants. Since those constants are not supported by Internet Explorer,
however, you may prefer to use hardcoded values instead of the constants. In HTML documents, the
common values for this property are 1 for Element nodes, 3 for Text nodes, 8 for Comment nodes,
and 9 for the single top-level Document node.

String nodeValue

The value of a node. For Text nodes, holds the text content. For other node types, the value depends
on the nodeType, as shown in the upcoming table.

readonly Document ownerDocument

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The Document object of which this node is a part. For Document nodes, this property is null

readonly Node parentNode

The parent node (or container node) of this node, or null if there is no parent. Note that Document
and Attr nodes never have parent nodes. Also, nodes that have been removed from the document or
are newly created and have not yet been inserted into the document tree have a parentNode
null.

String prefix [DOM Level 2]

For XML documents that use namespaces, specifies the namespace prefix of an Element or Attribute
node. This property is never used with HTML documents. See also the localName and
namespaceURL properties. Setting this property can cause an exception if the new value contains
illegal characters, is malformed, or does not match the namespaceURI property.

readonly Node previousSibling

The sibling node that immediately precedes this one in the childNodes[] array of the
parentNode, or null if there is no such node.

Methods

appendChild()

Adds a node to the document tree by appending it to the childNodes[] array of this node. If the
node is already in the document tree, it is removed and then reinserted at its new position.

cloneNode()

Makes a copy of this node, or of the node and all its descendants.

hasAttributes() [DOM Level 2]

Returns true if this node is an Element and has any attributes.

hasChildNodes()

Returns true if this node has any children.

insertBefore()

Inserts a node into the document tree immediately before the specified child of this node. If the node
being inserted is already in the tree, it is removed and reinserted at its new location.

isSupported() [DOM Level 2]

Returns true if the specified version number of a named feature is supported by this node.

normalize()

"Normalizes" all Text node descendants of this node by deleting empty Text nodes and merging
adjacent Text nodes.

removeChild()

Removes (and returns) the specified child node from the document tree.

replaceChild()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replaceChild()

Removes (and returns) the specified child node from the document tree, replacing it with another
node.

Description

All objects in a document tree (including the Document object itself) implement the Node interface, which
provides the fundamental properties and methods for traversing and manipulating the tree. The
parentNode property and childNodes[] array allow you to move up and down the document tree. You
can enumerate the children of a given node by looping through the elements of childNodes[] or by
the firstChild and nextSibling properties (or the lastChild and previousSibling properties, to
loop backward). The appendChild(), insertBefore(), removeChild(), and replaceChild()
methods allow you to modify the document tree by altering the children of a node.

Every object in a document tree implements both the Node interface and a more specialized interface, such
as Element or Text. The nodeType property specifies which subinterface a node implements. You can use
this property to test the type of a node before using properties or methods of the more specialized interface.
For example:

var n; // Holds the node we're working with

if (n.nodeType == 1) { // Or compare to the constant Node.ELEMENT_NODE

 var tagname = n.tagName; // If the node is an Element, this is the tag name

}

The nodeName and nodeValue properties specify additional information about a node, but their value
depends on nodeType, as shown in the following table. Note that subinterfaces typically define specialized
properties (such as the tagName property of Element nodes and the data property of Text nodes) for
obtaining this information.

nodeType nodeName nodeValue
ELEMENT_NODE The element's tag name null
ATTRIBUTE_NODE The attribute name The attribute value
TEXT_NODE #text The text of the node
CDATA_SECTION_NODE #cdata-section The text of the node
ENTITY_REFERENCE_NODE The name of the referenced entity null
ENTITY_NODE The entity name null
PROCESSING_INSTRUCTION_NODE The target of the PI The remainder of the PI
COMMENT_NODE #comment The text of the comment
DOCUMENT_NODE #document null
DOCUMENT_TYPE_NODE The document type name null
DOCUMENT_FRAGMENT_NODE #document-fragment null
NOTATION_NODE The notation name null

See Also

Document, Element, Text; Chapter 17

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.appendChild() insert a node as the last child of this node

Availability

DOM Level 1 Core

Synopsis

Node appendChild(Node newChild)

 throws DOMException;

Arguments

newChild

The node to be inserted into the document. If the node is a DocumentFragment, it is not
directly inserted, but each of its children are.

Returns

The node that was added.

Throws

This method may throw a DOMException with one of the following code values in the following
circumstances:

HIERARCHY_REQUEST_ERR

The node does not allow children, or it does not allow children of the specified type, or
newChild is an ancestor of this node (or is this node itself).

WRONG_DOCUMENT_ERR

The ownerDocument property of newChild is not the same as the ownerDocument property
of this node.

NO_MODIFICATION_ALLOWED_ERR

This node is read-only and does not allow children to be appended, or the node being
appended is already part of the document tree and its parent is read-only and does not allow
children to be removed.

Description

This method adds the node newChild to the document, inserting it as the last child of this node. If
newChild is already in the document tree, it is removed from the tree and then reinserted at its new
location. If newChild is a DocumentFragment node, it is not inserted itself; instead, all its children
are appended, in order, to the end of this node's childNodes[] array. Note that a node from (or
created by) one document cannot be inserted into a different document. That is, the
ownerDocument property of newChild must be the same as the ownerDocument property of this

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ownerDocument property of newChild must be the same as the ownerDocument property of this
node.

Example

The following function inserts a new paragraph at the end of the document:

function appendMessage(message) {

 var pElement = document.createElement("P");

 var messageNode = document.createTextNode(message);

 pElement.appendChild(messageNode); // Add text to paragraph

 document.body.appendChild(pElement); // Add paragraph to document body

}

See Also

Node.insertBefore(), Node.removeChild(), Node.replaceChild()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.cloneNode() duplicate a node and, optionally, all of its descendants

Availability

DOM Level 1 Core

Synopsis

Node cloneNode(boolean deep);

Arguments

deep

If this argument is true, cloneNode() recursively clones all descendants of this node.
Otherwise, it clones only this node.

Returns

A copy of this node.

Description

The cloneNode() method makes and returns a copy of the node on which it is called. If
passed the argument true, it recursively clones all descendants of the node as well. Otherwise, it
clones only the node and none of its children. The returned node is not part of the document tree,
and its parentNode property is null. When an Element node is cloned, all of its attributes are
also cloned. Note, however, that EventListener functions registered on a node are not cloned.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.hasAttributes() determine whether a node has attributes

Availability

DOM Level 2 Core

Synopsis

boolean hasAttributes();

Returns

true if this node has one or more attributes; false if it has none. Note that only Element nodes
can have attributes.

See Also

Element.getAttribute(), Element.hasAttribute(), Node.attributes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.hasChildNodes() determine whether a node has children

Availability

DOM Level 1 Core

Synopsis

boolean hasChildNodes();

Returns

true if this node has one or more children; false if it has none.

See Also

Node.childNodes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.insertBefore(
)

insert a node into the document tree before the specified
node

Availability

DOM Level 1 Core

Synopsis

Node insertBefore(Node newChild,

 Node refChild)

 throws DOMException;

Arguments

newChild

The node to be inserted into the tree. If it is a DocumentFragment, its children are inserted instead.

refChild

The child of this node before which newChild is to be inserted. If this argument is null,
newChild is inserted as the last child of this node.

Returns

The node that was inserted.

Throws

This method may throw a DOMException with the following code values:

HIERARCHY_REQUEST_ERR

This node does not support children, or it does not allow children of the specified type, or
newChild is an ancestor of this node (or is this node itself).

WRONG_DOCUMENT_ERR

The ownerDocument property of newChild and this node are different.

NO_MODIFICATION_ALLOWED_ERR

This node is read-only and does not allow insertions or the parent of newChild is read-only and
does not allow deletions.

NOT_FOUND_ERR

refChild is not a child of this node.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Description

This method inserts the node newChild into the document tree as a child of this node. The new node is
positioned within this node's childNodes[] array so that it comes immediately before the refChild
node. If refChild is null, newChild is inserted at the end of childNodes[], just as with the
appendChild() method. Note that it is illegal to call this method with a refChild that is not a child of
this node.

If newChild is already in the document tree, it is removed from the tree and then reinserted at its new
position. If newChild is a DocumentFragment node, it is not inserted itself; instead, each of its children is
inserted, in order, at the specified location.

Example

The following function inserts a new paragraph at the beginning of a document:

function insertMessage(message) {

 var paragraph = document.createElement("p"); // Create a <p> Element

 var text = document.createTextNode(message); // Create a Text node

 paragraph.appendChild(text); // Add text to the paragraph

 // Now insert the paragraph before the first child of the body

 document.body.insertBefore(paragraph, document.body.firstChild)

}

See Also

Node.appendChild(), Node.removeChild(), Node.replaceChild()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.isSupported() determine if a node supports a feature

Availability

DOM Level 2 Core

Synopsis

boolean isSupported(String feature,

 String version);

Arguments

feature

The name of the feature to test.

version

The version number of the feature to test, or the empty string to test for support of any
version of the feature.

Returns

true if the node supports the specified version of the specified feature, and false if it does not.

Description

The W3C DOM standard is modular, and implementations are not required to implement all
modules or features of the standard. This method tests whether the implementation of this node
supports the specified version of the named feature. See the Section reference page for a list of
values for the feature and version arguments.

See Also

DOMImplementation.hasFeature()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.normalize() merge adjacent Text nodes and remove empty ones

Availability

DOM Level 1 Core

Synopsis

void normalize();

Description

This method traverses all descendants of this node and "normalizes" the document by removing
any empty Text nodes and merging all adjacent Text nodes into a single node. This can
sometimes be useful to simplify the tree structure after node insertions or deletions.

See Also

Text

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.removeChild() remove (and return) the specified child of this node

Availability

DOM Level 1 Core

Synopsis

Node removeChild(Node oldChild)

 throws DOMException;

Arguments

oldChild

The child node to remove.

Returns

The node that was removed.

Throws

This method may throw a DOMException with the following code values in the following
circumstances:

NO_MODIFICATION_ALLOWED_ERR

This node is read-only and does not allow children to be removed.

NOT_FOUND_ERR

oldChild is not a child of this node.

Description

This method removes the specified child from the childNodes[] array of this node. It is an error
to call this method with a node that is not a child. removeChild() returns the oldChild node
after removing it. oldChild continues to be a valid node and may be reinserted into the
document later.

Example

You can delete the last child of the document body with this code:

document.body.removeChild(document.body.lastChild);

See Also

Node.appendChild(), Node.insertBefore(), Node.replaceChild()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Node.replaceChild() replace a child node with a new node

Availability

DOM Level 1 Core

Synopsis

Node replaceChild(Node newChild,

 Node oldChild)

 throws DOMException;

Arguments

newChild

The replacement node.

oldChild

The node to be replaced.

Returns

The node that was removed from the document and replaced.

Throws

This method may throw a DOMException with the following code values:

HIERARCHY_REQUEST_ERR

This node does not allow children, or does not allow children of the specified type, or newChild
is an ancestor of this node (or is this node itself).

WRONG_DOCUMENT_ERR

newChild and this node have different values for ownerDocument.

NO_MODIFICATION_ALLOWED_ERR

This node is read-only and does not allow replacement, or newChild is the child of a node that
does not allow removals.

NOT_FOUND_ERR

oldChild is not a child of this node.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method replaces one node of the document tree with another. oldChild is the node to be
replaced, and must be a child of this node. newChild is the node that takes its place in the
childNodes[] array of this node.

If newChild is already part of the document, it is first removed from the document before being
reinserted at its new position. If newChild is a DocumentFragment, it is not inserted itself; instead
each of its children is inserted, in order, at the position formerly occupied by oldChild.

Example

The following code replaces a node n with a element and then inserts the replaced node into the
 element, which reparents the node and makes it appear in bold:

// Get the first child node of the first paragraph in the document

var n = document.getElementsByTagName("p")[0].firstChild;

var b = document.createElement("b"); // Create a element

n.parentNode.replaceChild(b, n); // Replace the node with

b.appendChild(n); // Reinsert the node as a child of

See Also

Node.appendChild(), Node.insertBefore(), Node.removeChild()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeFilter a function to filter the nodes of a document tree

Availability

DOM Level 2 Traversal

Constants

The following three constants are the legal return values for node filter functions. Note that they are static
properties of the object named NodeFilter, not properties of individual node filter functions:

short FILTER_ACCEPT = 1

Accept this node. A NodeIterator or TreeWalker will return this node as part of its document traversal.

short FILTER_REJECT = 2

Reject this node. A NodeIterator or TreeWalker will behave as if this node does not exist. Furthermore,
this return value tells a TreeWalker to ignore all children of this node.

short FILTER_SKIP = 3

Skip this node. A NodeIterator or TreeWalker will not return this node, but it will recursively consider its
children as part of document traversal.

The following constants are bit flags that can be set in the whatToShow argument to the
createNodeIterator() and createTreeWalker() methods of the Document object. Each constant
corresponds to one of the types of Document nodes (see the "Node" reference page for a list of node
and specifies that a NodeIterator or TreeWalker should consider nodes of that type during its traversal of the
document. Multiple constants can be combined using the logical OR operator |. SHOW_ALL is a special value
with all bits set: it indicates that all nodes should be considered, regardless of their type.

unsigned long SHOW_ALL = 0xFFFFFFFF;

unsigned long SHOW_ELEMENT = 0x00000001;

unsigned long SHOW_ATTRIBUTE = 0x00000002;

unsigned long SHOW_TEXT = 0x00000004;

unsigned long SHOW_CDATA_SECTION = 0x00000008;

unsigned long SHOW_ENTITY_REFERENCE = 0x00000010;

unsigned long SHOW_ENTITY = 0x00000020;

unsigned long SHOW_PROCESSING_INSTRUCTION = 0x00000040;

unsigned long SHOW_COMMENT = 0x00000080;

unsigned long SHOW_DOCUMENT = 0x00000100;

unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

unsigned long SHOW_DOCUMENT_TYPE = 0x00000200;

unsigned long SHOW_DOCUMENT_FRAGMENT = 0x00000400;

unsigned long SHOW_NOTATION = 0x00000800;

Methods

acceptNode()

In languages such as Java that do not allow functions to be passed as arguments, you define a node
filter by defining a class that implements this interface and includes an implementation for this
The function is passed a node and must return one of the constants FILTER_ACCEPT,
FILTER_REJECT, or FILTER_SKIP. In JavaScript, however, you create a node filter simply by defining
a function (with any name) that accepts a node argument and returns one of the three filter constants.
See the following sections for details and an example.

Description

A node filter is an object that can examine a Document node and tell a NodeIterator or TreeWalker whether to
include the node in its document traversal. In JavaScript, a node filter is simply a function that takes a single
node argument and returns one of the three FILTER_ constants defined earlier. There is no NodeFilter
interface; there is simply an object named NodeFilter that has properties that define those constants. To use a
node filter, you pass it to the createNodeIterator() or createTreeWalker() method of the
Document object. Your node filter function will then be called to evaluate nodes when you use the resulting
NodeIterator or TreeWalker object to traverse the document.

Node filter functions should ideally be written so that they do not themselves alter the document tree and do
not throw any exceptions. Also, node filters are not allowed to base their filtering decisions on the history of
past invocations of those filters.

Example

You might define and use a node filter function as follows:

// Define a node filter that filters out everything but <h1> and <h2> elements

var myfilter = function(n) { // Filter node n

 if ((n.nodeName == "H1") || (n.nodeName == "H2"))

 return NodeFilter.FILTER_ACCEPT;

 else

 return NodeFilter.FILTER_SKIP;

}

// Now create a NodeIterator that uses the filter

var ni = document.createNodeIterator(document.body, // Traverse the document body

 NodeFilter.SHOW_ELEMENT, // Elements only

 myfilter, // Filter by tag name

 false); // No entity expansion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

See Also

NodeIterator, TreeWalker

Type of

NodeIterator.filter, TreeWalker.filter

Passed to

Document.createNodeIterator(), Document.createTreeWalker()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeIterator iterate through a filtered sequence of Document nodes

Availability

DOM Level 2 Traversal

Properties

readonly boolean expandEntityReferences

Whether this NodeIterator traverses the children of EntityReference nodes (in XML
documents). The value is specified as an argument to
Document.createNodeIterator() when the NodeIterator is first created.

readonly NodeFilter filter

The node filter function that was specified for this NodeIterator in the call to
Document.createNodeIterator().

readonly Node root

The root node at which the NodeIterator begins iterating. The value of this property is
specified in the call to Document.createNodeIterator().

readonly unsigned long whatToShow

A set of bit flags (see NodeFilter for a list of valid flags) that specifies what types of
Document nodes this NodeIterator will consider. If a bit is not set in this property, the
corresponding node type will always be ignored by this NodeIterator. Note that the value of
this property is specified in the call to Document.createNodeIterator().

Methods

detach()

"Detaches" this NodeIterator from its document so that the implementation no longer needs
to modify the NodeIterator when the document is modified. Call this method when you are
done using a NodeIterator. After detach() has been called, any calls to other
NodeIterator methods will cause exceptions.

nextNode()

Returns the next node in the filtered sequence of nodes represented by this NodeIterator,
or null if the NodeIterator has already returned the last node.

previousNode()

Returns the previous node in the filtered sequence of nodes represented by this
NodeIterator, or null if there is no previous node.

Description

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

A NodeIterator represents the sequence of Document nodes that results from traversing a
document subtree in document source order and filtering the nodes using a two-stage process.
Create a NodeIterator object with Document.createNodeIterator(). Use the nextNode(
) and previousNode() methods to iterate forward and backward through the sequence of
nodes. Call detach() when you are done with a NodeIterator, unless you are sure that the
NodeIterator will be garbage collected before the document is modified. Note that the properties
of this interface are all read-only copies of the arguments passed to
Document.createNodeIterator().

To be returned by the nextNode() or previousNode() methods, a node must pass two
filtration steps. First, the node type must be one of the types specified by the whatToShow
property. See NodeFilter for a list of constants that can be combined to specify the whatToShow
argument to Document.createNodeIterator(). Next, if the filter property is not null,
each node that passes the whatToShow test is passed to the filter function specified by the
filter property. If this function returns NodeFilter.FILTER_ACCEPT, the node is returned. If
it returns NodeFilter.FILTER_REJECT or NodeFilter.FILTER_SKIP, the NodeIterator
skips the node. Note that when a node is rejected by either of these filtration steps, it is only the
node itself that is rejected; the children of the node are not automatically rejected and are subject
to the same filtration steps.

NodeIterator objects remain valid even if the document tree they are traversing is modified. The
nextNode() and previousNode() methods return nodes based on the current state of the
document, not the state of the document that existed when the NodeIterator was created.

See Also

NodeFilter, TreeWalker; Chapter 17

Returned by

Document.createNodeIterator()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeIterator.detach() free a NodeIterator object

Availability

DOM Level 2 Traversal

Synopsis

void detach();

Description

DOM implementations keep track of all NodeIterator objects created for a document, because
they may need to modify the state of the NodeIterator when certain Document nodes are deleted.
When you are certain that a NodeIterator isn't needed anymore, call detach() to tell the
implementation that it no longer needs to keep track of it. Note, however, that once you call this
method any subsequent call to nextNode() or previousNode() will throw an exception.

Calling detach() is not required, but doing so may improve performance when the document is
being modified and the NodeIterator object is not immediately garbage collected.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeIterator.nextNode() iterate to the next node

Availability

DOM Level 2 Traversal

Synopsis

Node nextNode()

 throws DOMException;

Returns

The next node in the sequence of nodes represented by this NodeIterator, or null if the last node has
already been returned.

Throws

If this method is called after a call to detach(), it throws a DOMException with a code of
INVALID_STATE_ERR.

Description

This method iterates forward through the sequence of nodes represented by this NodeIterator. If this is
the first time it is called for a NodeIterator, it returns the first node in the sequence. Otherwise, it
returns the node that follows the one that was previously returned.

Example

// Create a NodeIterator to represent all elements in the document body

var ni = document.createNodeIterator(document.body, NodeFilter.SHOW_ELEMENT,

 null, false);

// Loop forward through all nodes in the iterator

for(var e = ni.nextNode(); e != null; e = ni.nextNode()) {

 // Do something with element e

}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeIterator.previousNode() iterate to the previous node

Availability

DOM Level 2 Traversal

Synopsis

Node previousNode()

 throws DOMException;

Returns

The previous node in the sequence of nodes represented by this NodeIterator, or null if there is
no previous node.

Throws

If this method is called after a call to detach(), it throws a DOMException with a code of
INVALID_STATE_ERR.

Description

This method iterates backward through the sequence of nodes represented by this NodeIterator.
It returns the node before the one that was most recently returned by previousNode() or
nextNode(). If there is no such node in the sequence, it returns null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeList a read-only array of nodes

Availability

DOM Level 1 Core

Properties

readonly unsigned long length

The number of nodes in the array.

Methods

item()

Returns the specified element of the array.

Description

The NodeList interface defines a read-only ordered list (i.e., an array) of Node objects. The
length property specifies how many nodes are in the list, and the item() method allows you
to obtain the node at a specified position in the list. The elements of a NodeList are always valid
Node objects: NodeLists never contain null elements.

In JavaScript, NodeList objects behave like JavaScript arrays, and you can query an element
from the list using square-bracket array notation instead of calling the item() method.
However, you cannot assign new nodes to a NodeList using square brackets. Since it is always
easier to think of a NodeList object as a read-only JavaScript array, this book uses the notation
Node[] (i.e., a Node array) instead of NodeList. See Element.getElementsByTagName(), for
example, which is listed as returning a Node[] instead of a NodeList object. Similarly, the
childNodes property of the Node object is technically a NodeList object, but the "Node"
reference page defines it as a Node[], and the property itself is usually referred to as "the
childNodes[] array."

Note that NodeList objects are "live": they are not static, but immediately reflect changes to the
document tree. For example, if you have a NodeList that represents the children of a specific
node and you then delete one of those children, the child will be removed from your NodeList. Be
careful when you are looping through the elements of a NodeList if the body of your loop makes
changes to the document tree (such as deleting nodes) that may affect the contents of the
NodeList!

See Also

NamedNodeMap

Type of

Node.childNodes

Returned by

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Document.getElementsByTagName(), Document.getElementsByTagNameNS(),
Element.getElementsByTagName(), Element.getElementsByTagNameNS(),
HTMLDocument.getElementsByName()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NodeList.item() get an element of a NodeList

Availability

DOM Level 1 Core

Synopsis

Node item(unsigned long index);

Arguments

index

The position (or index) of the desired node in the NodeList. The index of the first node in
the NodeList is 0, and the index of the last Node is length-1.

Returns

The node at the specified position in the NodeList, or null if index is less than zero or greater
than or equal to the length of the NodeList.

Description

This method returns the specified element of a NodeList. In JavaScript, you can use the square-
bracket array notation instead of calling item().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Notation a notation in an XML DTD

Availability

DOM Level 1 XML

Inherits from/Overrides

Node Notation

Properties

readonly String publicId

The public identifier of the notation, or null if none is specified.

readonly String systemId

The system identifier of the notation, or null if none is specified.

Description

This infrequently used interface represents a notation declaration in the document type definition
(DTD) of an XML document. In XML, notations are used to specify the format of an unparsed
entity or to formally declare a processing instruction target.

The name of the notation is specified by the inherited nodeName property. Because notations
appear in the DTD and not the document itself, Notation nodes are never part of the document
tree, and the parentNode property is always null. The notations property of the
DocumentType interface provides a way to look up Notation objects by notation name.

Notation objects are read-only and cannot be modified in any way.

See Also

DocumentType

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ProcessingInstruction a processing instruction in an XML document

Availability

DOM Level 1 XML

Inherits from/Overrides

Node ProcessingInstruction

Properties

String data

The content of the processing instruction (i.e., the first non-space character after the target
up to but not including the closing ?>).

readonly String target

The target of the processing instruction. This is the first identifier that follows the opening
<?; it specifies the "processor" for which the processing instruction is intended.

Description

This infrequently used interface represents a processing instruction (or PI) in an XML document.
Programmers working with HTML documents will never encounter a ProcessingInstruction node.

See Also

Returned by

Document.createProcessingInstruction()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range represents a contiguous range of a document

Availability

DOM Level 2 Range

Constants

These constants specify how the boundary points of two Range objects are to be compared. They
are the legal values for the how argument to the compareBoundaryPoints() method. See
the Range.compareBoundaryPoints() reference page.

unsigned short START_TO_START = 0

Compare the start of the specified range to the start of this range.

unsigned short START_TO_END = 1

Compare the start of the specified range to the end of this range.

unsigned short END_TO_END = 2

Compare the end of the specified range to the end of this range.

unsigned short END_TO_START = 3

Compare the end of the specified range to the start of this range.

Properties

The Range interface defines the following properties. Note that all of these properties are read-
only. You cannot change the start or end points of a range by setting properties; you must call
setEnd() or setStart() instead. Note also that after you call the detach() method of a
Range object, any subsequent attempt to read any of these properties throws a DOMException
with a code of INVALID_STATE_ERR.

readonly boolean collapsed

true if the start and the end of the range are at the same point in the document -- that is, if
the range is empty or "collapsed."

readonly Node commonAncestorContainer

The most deeply nested Document node that contains (i.e., is an ancestor of) both the
start and end points of the range.

readonly Node endContainer

The Document node that contains the end point of the range.

readonly long endOffset

The end point position within endContainer.

readonly Node startContainer

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

readonly Node startContainer

The Document node that contains the starting point of the range.

readonly long startOffset

The position of the range's starting point within startContainer.

Methods

The Range interface defines the following methods. Note that if you call detach() on a range,
any subsequent calls of any methods on that range throw a DOMException with a code of
INVALID_STATE_ERR. Because this exception is ubiquitous within this interface, it is not listed in
the reference pages for the individual Range methods.

cloneContents()

Returns a new DocumentFragment object that contains a copy of the region of the
document represented by this range.

cloneRange()

Creates a new Range object that represents the same region of the document as this one.

collapse()

Collapses this range so that one boundary point is the same as the other.

compareBoundaryPoints()

Compares a boundary point of the specified range to a boundary point of this range, and
returns -1, 0, or 1, depending on their order. Which points to compare is specified by the
first argument, which must be one of the previously defined constants.

deleteContents()

Deletes the region of the document represented by this range.

detach()

Tells the implementation that this range will no longer be used and that it can stop keeping
track of it. If you call this method for a range, subsequent method calls or property lookups
on that range throw a DOMException with a code of INVALID_STATE_ERR.

extractContents()

Deletes the region of the document represented by this range, but returns the contents of
that region as a DocumentFragment object. This method is like a combination of
cloneContents() and deleteContents().

insertNode()

Inserts the specified node into the document at the start point of the range.

selectNode()

Sets the boundary points of this range so that it contains the specified node and all of its
descendants.

selectNodeContents()

Sets the boundary points of this range so that it contains all the descendants of the
specified node but not the node itself.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setEnd()

Sets the end point of this range to the specified node and offset.

setEndAfter()

Sets the end point of this range to immediately after the specified node.

setEndBefore()

Sets the end point of this range to immediately before the specified node.

setStart()

Sets the start position of this range to the specified offset within the specified node.

setStartAfter()

Sets the start position of this range to immediately after the specified node.

setStartBefore()

Sets the start position of this range to immediately before the specified node.

surroundContents()

Inserts the specified node into the document at the start position of the range and then
reparents all the nodes within the range so that they become descendants of the newly
inserted node.

toString()

Returns the plain-text content of the document region described by this range.

Description

A Range object represents a contiguous range or region of a document, such as the region that
the user might select with a mouse drag in a web browser window. If an implementation supports
the Range module, the Document object defines a createRange() method that you can call to
create a new Range object. (Be careful, however: Internet Explorer defines an incompatible
Document.createRange() method that returns an object similar to, but not compatible with,
the Range interface.) The Range interface defines a number of methods for specifying a
"selected" region of a document and several more methods for implementing cut and paste-type
operations on the selected region.

A range has two boundary points: a start point and an end point. Each boundary point is specified
by a combination of a node and an offset within that node. The node is typically an Element,
Document, or Text node. For Element and Document nodes, the offset refers to the children of
that node. An offset of 0 specifies a boundary point before the first child of the node. An offset of 1
specifies a boundary point after the first child and before the second child. If the boundary node is
a Text node, however, the offset specifies a position between two characters of that text.

The properties of the Range interface provide a way to obtain boundary nodes and offsets of a
range. The methods of the interface provide a number of ways to set the boundaries of a range.
Note that the boundaries of a range may be set to nodes within a Document or a
DocumentFragment.

Once the boundary points of a range are defined, you can use deleteContents(),
extractContents(), cloneContents(), and insertNode() to implement cut-, copy-,
and paste-style operations.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

When a document is altered by insertion or deletion, all Range objects that represent portions of
that document are altered, if necessary, so that their boundary points remain valid and they
represent (as closely as possible) the same document content.

For further details, read the reference pages for each of the Range methods and see the
discussion of the Range API in Chapter 17.

See Also

Document.createRange(), DocumentFragment; Chapter 17

Passed to

Range.compareBoundaryPoints()

Returned by

Document.createRange(), Range.cloneRange()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.cloneContents() copy range contents into a DocumentFragment

Availability

DOM Level 2 Range

Synopsis

DocumentFragment cloneContents()

 throws DOMException;

Returns

A DocumentFragment object that contains a copy of the document content within this range.

Throws

If this range includes a DocumentType node, this method throws a DOMException with a code of
HIERARCHY_REQUEST_ERR.

Description

This method duplicates the contents of this range and returns the results in a DocumentFragment
object.

See Also

DocumentFragment, Range.deleteContents(), Range.extractContents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.cloneRange() make a copy of this range

Availability

DOM Level 2 Range

Synopsis

Range cloneRange();

Returns

A new Range object that has the same boundary points as this range.

See Also

Document.createRange()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.collapse() make one boundary point equal to the other

Availability

DOM Level 2 Range

Synopsis

void collapse(boolean toStart)

 throws DOMException;

Arguments

toStart

If this argument is true, the method sets the end point of the range to the same value as
the starting point. Otherwise, it sets the starting point to the same value as the end point.

Description

This method sets one boundary point of the range to be the same as the other point. The point to
be modified is specified by the toStart argument. After this method returns, the range is said to
be "collapsed": it represents a single point within a document and has no content. When a range
is collapsed like this, its collapsed property is true.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.compareBoundaryPoints() compare positions of two ranges

Availability

DOM Level 2 Range

Synopsis

short compareBoundaryPoints(unsigned short how,

 Range sourceRange)

 throws DOMException;

Arguments

how

Specifies how to perform the comparison (i.e., which boundary points to compare). Legal
values are the constants defined by the Range interface.

sourceRange

The range that is to be compared to this range.

Returns

-1 if the specified boundary point of this range is before the specified boundary point of
sourceRange, 0 if the two specified boundary points are the same, or 1 if the specified boundary
point of this range is after the specified boundary point of sourceRange.

Throws

If sourceRange represents a range of a different document than this range does, this method
throws a DOMException with a code of WRONG_DOCUMENT_ERR.

Description

This method compares a boundary point of this range to a boundary point of the specified
sourceRange and returns a value that specifies their relative order in the document source. The
how argument specifies which boundary points of each range are to be compared. The legal
values for this argument, and their meanings, are as follows:

Range.START_TO_START

Compare the start points of the two Range nodes.

Range.END_TO_END

Compare the end points of the two Range nodes.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.START_TO_END

Compare the start point of sourceRange to the end point of this range.

Range.END_TO_START

Compare the end point of sourceRange to the start point of this range.

The return value of this method is a number that specifies the relative position of this range to the
specified sourceRange. Therefore, you might expect the range constants for the how argument
to specify the boundary point for this range first and the boundary point for sourceRange
second. Counterintuitively, however, the Range.START_TO_END constant specifies a comparison
of the end point of this range with the start point of the specified sourceRange. Similarly, the
Range.END_TO_START constant specifies a comparison of the start point of this range with the
end point of the specified range.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.deleteContents() delete a region of the document

Availability

DOM Level 2 Range

Synopsis

void deleteContents()

 throws DOMException;

Throws

If any portion of the document that is represented by this range is read-only, this method throws a
DOMException with a code of NO_MODIFICATION_ALLOWED_ERR.

Description

This method deletes all document content represented by this range. When this method returns,
the range is collapsed with both boundary points at the same position. Note that the deletion may
result in adjacent Text nodes that can be merged with a call to Node.normalize().

See Range.cloneContents() for a way to copy document content and Range.extractContents()
for a way to copy and delete document content in a single operation.

See Also

Node.normalize(), Range.cloneContents(), Range.extractContents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.detach() free a Range object

Availability

DOM Level 2 Range

Synopsis

void detach()

 throws DOMException;

Throws

Like all Range methods, detach() throws a DOMException with a code of
INVALID_STATE_ERR if it is called on a Range object that has already been detached.

Description

DOM implementations keep track of all Range objects created for a document, because they may
need to change the range boundary points when the document is modified. When you are certain
that a Range object isn't needed any more, call the detach() method to tell the implementation
that it no longer needs to keep track of that range. Note that once this method has been called for
a Range object, any use of that Range will throw an exception. Calling detach() is not required
but may improve performance in some circumstances when the document is being modified and a
Range object is not subject to immediate garbage collection.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.extractContents(
)

delete document content and return it in a
DocumentFragment

Availability

DOM Level 2 Range

Synopsis

DocumentFragment extractContents()

 throws DOMException;

Returns

A DocumentFragment node that contains the contents of this range.

Throws

This method throws a DOMException with a code of NO_MODIFICATION_ALLOWED_ERR if any
part of the document content to be extracted is read-only, or a code of
HIERARCHY_REQUEST_ERR if the range contains a DocumentType node.

Description

This method deletes the specified range of a document and returns a DocumentFragment node
that contains the deleted content (or a copy of the deleted content). When this method returns,
the range is collapsed, and the document may contain adjacent Text nodes (which can be
merged with Node.normalize()).

See Also

DocumentFragment, Range.cloneContents(), Range.deleteContents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.insertNode() insert a node at the start of a range

Availability

DOM Level 2 Range

Synopsis

void insertNode(NodenewNode)

 throws RangeException,

 DOMException;

Arguments

newNode

The node to be inserted into the document.

Throws

This method throws a RangeException with a code of INVALID_NODE_TYPE_ERR if newNode is
an Attr, Document, Entity, or Notation node.

This method also throws a DOMException with one of the following code values under the
following conditions:

HIERARCHY_REQUEST_ERR

The node that contains the start of the range does not allow children, or it does not allow
children of the specified type, or newNode is an ancestor of that node.

NO_MODIFICATION_ALLOWED_ERR

The node that contains the start of the range, or any of its ancestors, is read-only.

WRONG_DOCUMENT_ERR

newNode is part of a different document than the range is.

Description

This method inserts the specified node (and all its descendants) into the document at the start
position of this range. When this method returns, this range includes the newly inserted node. If
newNode is already part of the document, it is removed from its current position and then
reinserted at the start of the range. If newNode is a DocumentFragment node, it is not inserted
itself, but all of its children are inserted, in order, at the start of the range.

If the node that contains the start of the range is a Text node, it is split into two adjacent nodes
before the insertion takes place. If newNode is a Text node, it is not merged with any adjacent
Text nodes after it is inserted. To merge adjacent nodes, call Node.normalize().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text nodes after it is inserted. To merge adjacent nodes, call Node.normalize().

See Also

DocumentFragment, Node.normalize()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.selectNode() set range boundaries to a node

Availability

DOM Level 2 Range

Synopsis

void selectNode(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node to be "selected" (i.e., the node that is to become the content of this range).

Throws

A RangeException with a code of INVALID_NODE_TYPE_ERR if refNode is an Attr, Document,
DocumentFragment, Entity, or Notation node, or if any ancestor of refNode is a DocumentType,
Entity, or Notation node.

A DOMException with a code of WRONG_DOCUMENT_ERR if refNode is part of a different
document than the one through which this range was created.

Description

This method sets the contents of this range to the specified refNode. That is, it "selects" the
node and its descendants.

See Also

Range.selectNodeContents()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.selectNodeContents() set range boundaries to the children of a node

Availability

DOM Level 2 Range

Synopsis

void selectNodeContents(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node whose children are to become the contents of this range.

Throws

A RangeException with a code of INVALID_NODE_TYPE_ERR if refNode or one of its ancestors
is a DocumentType, Entity, or Notation node.

A DOMException with a code of WRONG_DOCUMENT_ERR if refNode is part of a different
document than the one through which this range was created.

Description

This method sets the boundary points of this range so that the range contains the children of
refNode.

See Also

Range.selectNode()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setEnd() set the end point of a range

Availability

DOM Level 2 Range

Synopsis

void setEnd(Node refNode,

 long offset)

 throws RangeException,

 DOMException;

Arguments

refNode

The node that contains the new end point.

offset

The position of the end point within refNode.

Throws

A RangeException with a code of INVALID_NODE_TYPE_ERR if refNode or one of its ancestors
is a DocumentType, Entity, or Notation node.

A DOMException with a code of WRONG_DOCUMENT_ERR if refNode is part of a different
document than the one through which this range was created, or a code of INDEX_SIZE_ERR if
offset is negative or is greater than the number of children or characters in refNode.

Description

This method sets the end point of a range by specifying the values of the endContainer and
endOffset properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setEndAfter() end a range after a specified node

Availability

DOM Level 2 Range

Synopsis

void setEndAfter(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node after which the end point of the range is to be set.

Throws

A RangeException with a code of INVALID_NODE_TYPE_ERR if refNode is a Document,
DocumentFragment, Attr, Entity, or Notation node, or if the root container of refNode is not a
Document, DocumentFragment, or Attr node.

A DOMException with a code of WRONG_DOCUMENT_ERR if refNode is part of a different
document than the one through which this range was created.

Description

This method sets the end point of this range to fall immediately after the specified refNode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setEndBefore() end a range before the specified node

Availability

DOM Level 2 Range

Synopsis

void setEndBefore(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node before which the end point of the range is to be set.

Throws

This method throws the same exceptions in the same circumstances as Range.setEndAfter(
). See that method for details.

Description

This method sets the end point of this range to fall immediately before the specified refNode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setStart() set the start point of a range

Availability

DOM Level 2 Range

Synopsis

void setStart(Node refNode,

 long offset)

 throws RangeException, DOMException;

Arguments

refNode

The node that contains the new start point.

offset

The position of the new start point within refNode.

Throws

This method throws the same exceptions, for the same reasons, as Range.setEnd(). See that
method for details.

Description

This method sets the start point of this range by specifying the values of the startContainer
and startOffset properties.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setStartAfter() start a range after the specified node

Availability

DOM Level 2 Range

Synopsis

void setStartAfter(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node after which the start point of the range is to be set.

Throws

This method throws the same exceptions in the same circumstances as Range.setEndAfter(
). See that method for details.

Description

This method sets the starting point of this range to be immediately after the specified refNode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.setStartBefore() start a range before the specified node

Availability

DOM Level 2 Range

Synopsis

void setStartBefore(Node refNode)

 throws RangeException,

 DOMException;

Arguments

refNode

The node before which the start point of the range is to be set.

Throws

This method throws the same exceptions in the same circumstances as Range.setEndAfter(
). See that method for details.

Description

This method sets the starting point of this range to be immediately before the specified refNode.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.surroundContents(
) surround range contents with the specified node

Availability

DOM Level 2 Range

Synopsis

void surroundContents(Node newParent)

 throws RangeException,

 DOMException;

Arguments

newParent

The node that is to become the new parent of the contents of this range.

Throws

This method throws a DOMException or RangeException with one of the following code values in
the following circumstances:

DOMException.HIERARCHY_REQUEST_ERR

The container node of the start of the range does not allow children or does not allow
children of the type of newParent, or newParent is an ancestor of that container node.

DOMException.NO_MODIFICATION_ALLOWED_ERR

An ancestor of a boundary point of the range is read-only and does not allow insertions.

DOMException.WRONG_DOCUMENT_ERR

newParent and this range were created using different Document objects.

RangeException.BAD_BOUNDARYPOINTS_ERR

The range partially selects a node (other than a Text node), so the region of the document
it represents cannot be surrounded.

RangeException.INVALID_NODE_TYPE_ERR

newParent is a Document, DocumentFragment, DocumentType, Attr, Entity, or Notation
node.

Description

This method reparents the contents of this range to newParent and then inserts newParent into

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This method reparents the contents of this range to newParent and then inserts newParent into
the document at the start position of the range. It is useful to place a region of document content
within a or element, for example.

If newParent is already part of the document, it is first removed from the document and any
children it has are discarded. When this method returns, this range begins immediately before
newParent and ends immediately after it.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Range.toString() get range contents as a plain-text string

Availability

DOM Level 2 Range

Synopsis

String toString();

Returns

The contents of this range as a string of plain text without any markup.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RangeException signals a range-specific exception

Availability

DOM Level 2 Range

Constants

The following constants define the legal values for the code property of a RangeException object.
Note that these constants are static properties of RangeException, not properties of individual
exception objects.

unsigned short BAD_BOUNDARYPOINTS_ERR = 1

The boundary points of a range are not legal for the requested operation.

unsigned short INVALID_NODE_TYPE_ERR = 2

An attempt was made to set the container node of a range boundary point to an invalid
node or a node with an invalid ancestor.

Properties

unsigned short code

An error code that provides some detail about what caused the exception. The legal values
(and their meanings) for this property are defined by the constants just listed.

Description

A RangeException is thrown by certain methods of the Range interface to signal a problem of
some sort. Note that most exceptions thrown by Range methods are DOMException objects. A
RangeException is generated only when none of the existing DOMException error constants is
appropriate to describe the exception.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Rect a CSS rect() value

Availability

DOM Level 2 CSS

Properties

readonly CSSPrimitiveValue bottom

The bottom of the rectangle.

readonly CSSPrimitiveValue left

The left side of the rectangle.

readonly CSSPrimitiveValue right

The right side of the rectangle.

readonly CSSPrimitiveValue top

The top of the rectangle.

Description

This interface represents a CSS rect(top right bottom left) value, as used with the
CSS clip attribute, for example. Consult a CSS reference for details.

See Also

Returned by

CSSPrimitiveValue.getRectValue()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

RGBColor a CSS color value

Availability

DOM Level 2 CSS

Properties

readonly CSSPrimitiveValue blue

The blue component of the color.

readonly CSSPrimitiveValue green

The green component of the color.

readonly CSSPrimitiveValue red

The red component of the color.

Description

This interface represents a color specified in the RGB color space. The properties are
CSSPrimitiveValue objects that specify the values of the red, green, and blue components of the
color. Each CSSPrimitiveValue holds a number in the range 0-255 or a percentage in the range 0
-100%.

See Also

Returned by

CSSPrimitiveValue.getRGBColorValue()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StyleSheet a style sheet of any type

Availability

DOM Level 2 StyleSheets

Subinterfaces

CSSStyleSheet

Properties

boolean disabled

If true, the style sheet is disabled and is not applied to the document. If false, the style
sheet is enabled and is applied to the document (unless the media property specifies that
the style sheet should not be applied to documents of this type).

readonly String href

The URL of a style sheet that is linked into the document, or null for inline style sheets.

readonly MediaList media

A list of media types for which this style sheet should be applied. If no media information is
supplied for the style sheet, this property is a valid MediaList object that has a length of 0.

readonly Node ownerNode

The Document node that links the style sheet into the document, or the node that contains
an inline style sheet. In HTML documents, this property refers to a <link> or <style>
element. For style sheets that are included within other style sheets rather than directly in
the document, this property is null.

readonly StyleSheet parentStyleSheet

The style sheet that included this one, or null if this style sheet was included directly in the
document. See also "CSSStyleSheet.ownerRule."

readonly String title

The title of the style sheet, if one is specified. A title may be specified by the title
attribute of a <style> or <link> tag that is the ownerNode of this style sheet.

readonly String type

The type of this style sheet, as a MIME type. CSS style sheets have a type of "text/css".

Description

This interface represents a style sheet that is associated with this document. If this is a CSS style
sheet, the object that implements this StyleSheet interface also implements the CSSStyleSheet
subinterface and defines properties and methods that allow you to examine and set the CSS rules
that comprise the style sheet. See CSSStyleSheet for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

If a DOM implementation supports style sheets, you can obtain a complete list of the style sheets
associated with a document through the Document.styleSheets property. Furthermore, the
HTML <style> and <link> elements and XML style-sheet ProcessingInstruction nodes
implement the LinkStyle interface and provide a reference to the StyleSheet through a property
named sheet.

See Also

CSSStyleSheet, Document.styleSheets, LinkStyle

Type of

LinkStyle.sheet, StyleSheet.parentStyleSheet

Returned by

StyleSheetList.item()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StyleSheetList an array of style sheets

Availability

DOM Level 2 StyleSheets

Properties

readonly unsigned long length

The number of StyleSheet objects in the array.

Methods

item()

Returns the StyleSheet object at the specified position in the array, or null if the specified
position is negative or is greater than or equal to length.

Description

This interface defines an array of StyleSheet objects. length specifies the number of style
sheets in the array, and item() provides a way to retrieve the style sheet at a given position. In
JavaScript, you can treat a StyleSheetList object as a read-only array, and you can index it using
ordinary square-bracket array notation instead of calling the item() method.

See Also

Type of

DocumentStyle.styleSheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

StyleSheetList.item() index an array of style sheets

Availability

DOM Level 2 StyleSheets

Synopsis

StyleSheet item(unsigned long index);

Arguments

index

The position of the desired style sheet within the array.

Returns

The StyleSheet object at the specified position within the array, or null if index is negative or is
greater than or equal to length. Note that in JavaScript, it is usually simpler to treat a
StyleSheetList object as an array and index it using square-bracket array notation instead of
calling this method.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text a run of text in an HTML or XML document

Availability

DOM Level 1 Core

Inherits from/Overrides

Node CharacterData Text

Subinterfaces

CDATASection

Methods

splitText()

Splits this Text node into two at the specified character position and returns the new Text
node.

Description

A Text node represents a run of plain text in an HTML or XML document. Plain text appears
within HTML and XML elements and attributes, and Text nodes typically appear as children of
Element and Attr nodes. Text nodes inherit from CharacterData, and the textual content of a Text
node is available through the data property inherited from CharacterData or through the
nodeValue property inherited from Node. Text nodes may be manipulated using any of the
methods inherited from CharacterData or with the splitText() method defined by the Text
interface itself. Text nodes never have children.

See Node.normalize() for a way to remove empty Text nodes and merge adjacent Text nodes
from a subtree of a document.

See Also

CharacterData, Node.normalize()

Returned by

Document.createTextNode(), Text.splitText()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Text.splitText() split a Text node in two

Availability

DOM Level 1 Core

Synopsis

Text splitText(unsigned long offset)

 throws DOMException;

Arguments

offset

The character position at which to split the Text node.

Returns

The Text node that was split from this node.

Throws

This method may throw a DOMException with one of the following code values:

INDEX_SIZE_ERR

offset is negative or greater than the length of the Text or Comment node.

NO_MODIFICATION_ALLOWED_ERR

The node is read-only and may not be modified.

Description

This method splits a Text node in two at the specified offset. The original Text node is modified
so that it contains all text content up to, but not including, the character at position offset. A new
Text node is created to contain all the characters from (and including) the position offset to the
end of the string. This new Text node is the return value of the method. Additionally, if the original
Text node has a parentNode, the new node is inserted into this parent node immediately after
the original node.

The CDATASection interface inherits from Text, and this splitText() method can also be
used with CDATASection nodes, in which case the newly created node is a CDATASection rather
than a Text node.

See Also

Node.normalize()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker traverse a filtered document subtree

Availability

DOM Level 2 Traversal

Properties

Node currentNode

The current position of this TreeWalker and the node relative to which all of the TreeWalker
traversal methods operate. This is the node most recently returned by one of those traversal
methods or, if none of those methods have been called yet, it is the same as the root property.

Note that this is a read/write property, and you can set it to any valid Document node -- even one that is
not a descendant of the original root node or one that would be rejected by the filters used by this
TreeWalker. If you change the value of this property, the traversal methods operate relative to the new
node you specify. Attempting to set this property to null throws a DOMException with a code of
NOT_SUPPORTED_ERR.

readonly boolean expandEntityReferences

This read-only property specifies whether this TreeWalker object expands entity references it
encounters while traversing XML documents. The value of this property is set by the call to
Document.createTreeWalker().

readonly NodeFilter filter

The node filter function, if any, that was specified for this TreeWalker in the call to
Document.createTreeWalker(). If no node filter is in use, this property is null.

readonly Node root

This read-only property specifies the root node at which the TreeWalker begins traversal. It is
the initial value of the currentNode property and is specified in the call to
Document.createTreeWalker().

readonly unsigned long whatToShow

This read-only property is a set of bit flags (see NodeFilter for a list of valid flags) that specifies
the types of Document nodes this TreeWalker will consider. If a bit is not set in this property, the
corresponding node type will always be ignored by this TreeWalker. Note that the value of this
property is specified in the call to Document.createTreeWalker().

Methods

firstChild()

Returns the first child of the current node that is not filtered out, or null.

lastChild()

Returns the last child of the current node that is not filtered out, or null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Returns the last child of the current node that is not filtered out, or null.

nextNode()

Returns the next node (in document source order) that is not filtered out, or null.

nextSibling()

Returns the next sibling of the current node that is not filtered out, or null.

parentNode()

Returns the parent or nearest ancestor of the current node that is not filtered out, or null.

previousNode()

Returns the previous node (in document source order) that is not filtered out, or null.

previousSibling()

Returns the nearest previous sibling of the current node that is not filtered out, or null.

Description

A TreeWalker filters a specified document subtree and defines methods that allow programs to traverse
the filtered tree (which may have a significantly different structure than the original document tree).
Create a TreeWalker object with the createTreeWalker() method of the Document object. Once a
TreeWalker is created, you can use its firstChild() and nextSibling() methods to traverse
the filtered subtree it represents in the same way that you might use the firstChild and
nextSibling properties of the Node interface to traverse an unfiltered document tree.

A TreeWalker applies the same two filtration steps that a NodeIterator does. The various traversal
methods defined by TreeWalker will return only nodes that pass both filters. First, the node type must be
one of the types specified by the whatToShow property. See NodeFilter for a list of constants that can
be combined to specify the whatToShow argument to Document.createTreeWalker(). Second, if
the filter property is not null, each node that passes the whatToShow test is passed to the filter
function specified by the filter property. If this function returns NodeFilter.FILTER_ACCEPT, the
node is returned. If it returns NodeFilter.FILTER_REJECT, the node and all of its descendants are
skipped by the TreeWalker (this differs from NodeIterator filtration, in which descendants are never
automatically rejected). If the node filter function returns NodeFilter.FILTER_SKIP, the TreeWalker
ignores the node but does consider its descendants.

Unlike NodeIterators, TreeWalkers are not modified when the underlying document is modified. The
current node of a TreeWalker remains unchanged, even if that node is removed from the document.
(And, in this case, the TreeWalker can be used to traverse the tree of deleted nodes, if any, that
surround that current node.)

Example

// A NodeFilter that rejects tags and any element with a

// class="sidebar" attribute and any descendants of such an element

var filter = function(n) {

 if (n.nodeName == "FONT") return NodeFilter.FILTER_SKIP;

 if (n.nodeType == Node.ELEMENT_NODE && n.className == "sidebar")

 return NodeFilter.FILTER_REJECT;

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 return NodeFilter.FILTER_REJECT;

 return NodeFilter.FILTER_ACCEPT;

}

// Create a TreeWalker using the filter above

var tw = document.createTreeWalker(document.body, // Walk HTML document body

 // Consider all nodes except comments

 ~NodeFilter.SHOW_COMMENT,

 filter, // Use filter above

 false); // Don't expand entity references

// Here's a recursive function that traverses a document using a TreeWalker

function traverse(tw) {

 // Remember the current node

 var currentNode = tw.currentNode;

 // Loop through the children of the current node of the TreeWalker

 for(var c = tw.firstChild(); c != null; c = tw.nextSibling()) {

 process(c); // Do something to process the child

 traverse(tw); // And recursively process its children

 }

 // Put the TreeWalker back in the state we found it in

 tw.currentNode = currentNode;

}

See Also

NodeFilter, NodeIterator; Chapter 17

Returned by

Document.createTreeWalker()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.firstChild() return the first child that is not filtered out

Availability

DOM Level 2 Traversal

Synopsis

Node firstChild();

Returns

The first child of the current node that is not filtered out, or null if there is no such child.

Description

This method sets currentNode to the first child of the current node that is not filtered out and
returns that child. If there is no such child, it leaves currentNode unchanged and returns null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.lastChild() return the last child that is not filtered out

Availability

DOM Level 2 Traversal

Synopsis

Node lastChild();

Returns

The last child of the current node that is not filtered out, or null if there is no such child.

Description

This method sets currentNode to the last child of the current node that is not filtered out and
returns that child. If there is no such child, it leaves currentNode unchanged and returns null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.nextNode() return the next node that is not filtered out

Availability

DOM Level 2 Traversal

Synopsis

Node nextNode();

Returns

The node that follows the current node in the document source and is not filtered out, or null if
there is none.

Description

This method sets currentNode to the next node (in document source order) that is not filtered
out and returns that node. If there is no such node, or if the search for the next node takes the
TreeWalker outside of the root subtree, currentNode remains unchanged and the method
returns null.

Note that this method "flattens" the document tree structure and returns nodes in the order in
which they appear in the document source. Calling nextNode() may cause the current node to
move down, sideways, or up the document tree. This type of flattening traversal can also be
performed with NodeIterator.nextNode().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.nextSibling() return the next sibling that is not filtered out

Availability

DOM Level 2 Traversal

Synopsis

Node nextSibling();

Returns

The next sibling of the current node that is not filtered out, or null if there is no such sibling.

Description

This method sets currentNode to the next sibling of the current node that is not filtered out and
returns that sibling. If there is no such sibling, it leaves currentNode unchanged and returns
null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.parentNode(
)

return the nearest ancestor that is not filtered
out

Availability

DOM Level 2 Traversal

Synopsis

Node parentNode();

Returns

The nearest ancestor of the current node that is not filtered out, or null if there is no such
ancestor.

Description

This method sets currentNode to the nearest ancestor of the current node that is not filtered out
and returns that ancestor. If there is no such ancestor, it leaves currentNode unchanged and
returns null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.previousNode() return the previous node that is not filtered out

Availability

DOM Level 2 Traversal

Synopsis

Node previousNode();

Returns

The nearest node that precedes the current node in the document source and is not filtered out,
or null if there is none.

Description

This method sets currentNode to the previous node (in document source order) that is not
filtered out and returns that node. If there is no such node, or if the search for the previous node
takes the TreeWalker outside of the root subtree, currentNode remains unchanged and the
method returns null.

Note that this method "flattens" the document tree structure and returns nodes in the order in
which they appear in the document source. Calling previousNode() may cause the current
node to move down, sideways, or up the document tree. This type of flattening traversal can also
be performed with NodeIterator.previousNode().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

TreeWalker.previousSibling(
)

return the previous sibling that is not filtered
out

Availability

DOM Level 2 Traversal

Synopsis

Node previousSibling();

Returns

The previous sibling of the current node that is not filtered out, or null if there is no such sibling.

Description

This method sets currentNode to the closest previous sibling of the current node that is not
filtered out and returns that sibling. If there is no such sibling, it leaves currentNode unchanged
and returns null.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UIEvent details about user interface events

Availability

DOM Level 2 Events

Inherits from/Overrides

Event UIEvent

Subinterfaces

MouseEvent

Properties

readonly long detail

A numeric detail about the event. For click, mousedown, and mouseup events (see
"MouseEvent"), this field is the click count: 1 for a single-click, 2 for a double-click, 3 for a
triple-click, and so on. For DOMActivate events, this field is 1 for a normal activation or 2
for a "hyperactivation," such as a double-click or Shift-Enter combination.

readonly AbstractView view

The window (the "view") in which the event was generated.

Methods

initUIEvent()

Initializes the properties of a newly created UIEvent object, including the properties
inherited from the Event interface.

Description

The UIEvent interface is a subinterface of Event and defines the type of Event object passed to
events of type DOMFocusIn, DOMFocusOut, and DOMActivate. These event types are not
commonly used in web browsers, and what is more important about the UIEvent interface is that it
is the parent interface of MouseEvent.

See Also

Event, MouseEvent; Chapter 19

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

UIEvent.initUIEvent() initialize the properties of a UIEvent object

Availability

DOM Level 2 Events

Synopsis

void initUIEvent(String typeArg,

 boolean canBubbleArg,

 boolean cancelableArg,

 AbstractView viewArg,

 long detailArg);

Arguments

typeArg

The event type.

canBubbleArg

Whether the event will bubble.

cancelableArg

Whether the event may be canceled with preventDefault().

viewArg

The window in which the event occurred.

detailArg

The detail property for the event.

Description

This method initializes the view and detail properties of this UIEvent and also the type,
bubbles, and cancelable properties inherited from the Event interface. This method may be
called only on newly created UIEvent objects, before they have been passed to
EventTarget.dispatchEvent().

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ViewCSS see AbstractView

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Part VI: Class, Property, Method, and Event Handler
Index

This part of the book is an index to all of the classes, properties, methods, and event
handlers in JavaScript. You can use this index to help you find the reference material
for these items.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Chapter 26. Class, Property, Method, and Event Handler
Index
You can use the following index when you want to look up something in one of the reference
sections but don't know where to look. For example, if you want to look up a class or interface but
don't know which reference section documents it, you can look up the name of the class or
interface here: the index will tell you the reference section in which you'll find it. The notation "
[Core]" means the core JavaScript reference section, "[Client]" means the client-side reference
section, and "[DOM]" means the DOM reference section.

If you want to look up a method, property, or event handler but don't know what class defines it,
you can look up the method, property, or handler name in this index. It will tell you which class or
classes (in which reference sections) to look under.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.1 A

abbr: HTMLTableCellElement[DOM]

ABORT: Event[Client]

above: Layer[Client]

abs: Math[Core]

AbstractView: [DOM]

accept: HTMLInputElement[DOM]

acceptCharset: HTMLFormElement[DOM]

accessKey: HTMLAnchorElement[DOM], HTMLInputElement[DOM],
HTMLTextAreaElement[DOM]

acos: Math[Core]

action: Form[Client], HTMLFormElement[DOM]

add: HTMLSelectElement[DOM]

addEventListener: EventTarget[DOM]

ADDITION: MutationEvent[DOM]

alert: Window[Client]

align: HTMLInputElement[DOM], HTMLTableCaptionElement[DOM],
HTMLTableCellElement[DOM], HTMLTableColElement[DOM], HTMLTableElement[DOM],
HTMLTableRowElement[DOM], HTMLTableSectionElement[DOM]

aLink: HTMLBodyElement[DOM]

alinkColor: Document[Client]

all: Document[Client], HTMLElement[Client]

alt: HTMLInputElement[DOM]

altKey: MouseEvent[DOM]

Anchor: [Client]

anchors: Document[Client], HTMLDocument[DOM]

appCodeName: Navigator[Client]

appendChild: Node[DOM]

appendData: CharacterData[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

appendMedium: MediaList[DOM]

Applet: [Client]

applets: Document[Client], HTMLDocument[DOM]

apply: Function[Core]

appName: Navigator[Client]

appVersion: Navigator[Client]

Area: [Client]

Arguments: [Core]

arguments: [Core], Function[Core]

Array: [Core]

asin: Math[Core]

atan: Math[Core]

atan2: Math[Core]

Attr: [DOM]

attrChange: MutationEvent[DOM]

attributes: Node[DOM]

ATTRIBUTE_NODE: Node[DOM]

attrName: MutationEvent[DOM]

AT_TARGET: Event[DOM]

availHeight: Screen[Client]

availLeft: Screen[Client]

availTop: Screen[Client]

availWidth: Screen[Client]

axis: HTMLTableCellElement[DOM]

azimuth: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.2 B

back: History[Client], Window[Client]

background: CSS2Properties[DOM], HTMLBodyElement[DOM], Layer[Client]

backgroundAttachment: CSS2Properties[DOM]

backgroundColor: CSS2Properties[DOM]

backgroundImage: CSS2Properties[DOM]

backgroundPosition: CSS2Properties[DOM]

backgroundRepeat: CSS2Properties[DOM]

BAD_BOUNDARYPOINTS_ERR: RangeException[DOM]

below: Layer[Client]

bgColor: Document[Client], HTMLBodyElement[DOM], HTMLTableCellElement[DOM],
HTMLTableElement[DOM], HTMLTableRowElement[DOM], Layer[Client]

blue: RGBColor[DOM]

BLUR: Event[Client]

blur: HTMLAnchorElement[DOM], HTMLInputElement[DOM], HTMLSelectElement[DOM],
HTMLTextAreaElement[DOM], Input[Client], Window[Client]

body: HTMLDocument[DOM]

Boolean: [Core]

border: CSS2Properties[DOM], HTMLTableElement[DOM], Image[Client]

borderBottom: CSS2Properties[DOM]

borderBottomColor: CSS2Properties[DOM]

borderBottomStyle: CSS2Properties[DOM]

borderBottomWidth: CSS2Properties[DOM]

borderCollapse: CSS2Properties[DOM]

borderColor: CSS2Properties[DOM]

borderLeft: CSS2Properties[DOM]

borderLeftColor: CSS2Properties[DOM]

borderLeftStyle: CSS2Properties[DOM]

borderLeftWidth: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

borderRight: CSS2Properties[DOM]

borderRightColor: CSS2Properties[DOM]

borderRightStyle: CSS2Properties[DOM]

borderRightWidth: CSS2Properties[DOM]

borderSpacing: CSS2Properties[DOM]

borderStyle: CSS2Properties[DOM]

borderTop: CSS2Properties[DOM]

borderTopColor: CSS2Properties[DOM]

borderTopStyle: CSS2Properties[DOM]

borderTopWidth: CSS2Properties[DOM]

borderWidth: CSS2Properties[DOM]

bottom: CSS2Properties[DOM], Rect[DOM]

bubbles: Event[DOM]

BUBBLING_PHASE: Event[DOM]

Button: [Client]

button: MouseEvent[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.3 C

call: Function[Core], JSObject[Client]

callee: Arguments[Core]

caller: Function[Core]

cancelable: Event[DOM]

caption: HTMLTableElement[DOM]

captionSide: CSS2Properties[DOM]

captureEvents: Document[Client], Layer[Client], Window[Client]

CAPTURING_PHASE: Event[DOM]

CDATASection: [DOM]

CDATA_SECTION_NODE: Node[DOM]

ceil: Math[Core]

cellIndex: HTMLTableCellElement[DOM]

cellPadding: HTMLTableElement[DOM]

cells: HTMLTableRowElement[DOM]

cellSpacing: HTMLTableElement[DOM]

ch: HTMLTableCellElement[DOM], HTMLTableColElement[DOM],
HTMLTableRowElement[DOM], HTMLTableSectionElement[DOM]

CHANGE: Event[Client]

CharacterData: [DOM]

charAt: String[Core]

charCodeAt: String[Core]

charset: HTMLAnchorElement[DOM]

CHARSET_RULE: CSSRule[DOM]

Checkbox: [Client]

checked: Checkbox[Client], HTMLInputElement[DOM], Input[Client], Radio[Client]

childNodes: Node[DOM]

children: HTMLElement[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

chOff: HTMLTableCellElement[DOM], HTMLTableColElement[DOM],
HTMLTableRowElement[DOM], HTMLTableSectionElement[DOM]

className: HTMLElement[Client], HTMLElement[DOM]

clear: CSS2Properties[DOM], Document[Client]

clearInterval: Window[Client]

clearTimeout: Window[Client]

CLICK: Event[Client]

click: HTMLInputElement[DOM], Input[Client]

clientX: MouseEvent[DOM]

clientY: MouseEvent[DOM]

clip: CSS2Properties[DOM]

clip.bottom: Layer[Client]

clip.height: Layer[Client]

clip.left: Layer[Client]

clip.right: Layer[Client]

clip.top: Layer[Client]

clip.width: Layer[Client]

cloneContents: Range[DOM]

cloneNode: Node[DOM]

cloneRange: Range[DOM]

close: Document[Client], HTMLDocument[DOM], Window[Client]

closed: Window[Client]

collapse: Range[DOM]

collapsed: Range[DOM]

color: CSS2Properties[DOM]

colorDepth: Screen[Client]

cols: HTMLTextAreaElement[DOM]

colSpan: HTMLTableCellElement[DOM]

Comment: [DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

COMMENT_NODE: Node[DOM]

commonAncestorContainer: Range[DOM]

compareBoundaryPoints: Range[DOM]

complete: Image[Client]

concat: Array[Core], String[Core]

confirm: Window[Client]

constructor: Object[Core]

contains: HTMLElement[Client]

content: CSS2Properties[DOM]

cookie: Document[Client], HTMLDocument[DOM]

cookieEnabled: Navigator[Client]

coords: HTMLAnchorElement[DOM]

cos: Math[Core]

Counter: [DOM]

counterIncrement: CSS2Properties[DOM]

counterReset: CSS2Properties[DOM]

createAttribute: Document[DOM]

createAttributeNS: Document[DOM]

createCaption: HTMLTableElement[DOM]

createCDATASection: Document[DOM]

createComment: Document[DOM]

createCSSStyleSheet: DOMImplementation[DOM]

createDocument: DOMImplementation[DOM]

createDocumentFragment: Document[DOM]

createDocumentType: DOMImplementation[DOM]

createElement: Document[DOM]

createElementNS: Document[DOM]

createEntityReference: Document[DOM]

createEvent: Document[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createHTMLDocument: DOMImplementation[DOM]

createNodeIterator: Document[DOM]

createProcessingInstruction: Document[DOM]

createRange: Document[DOM]

createTextNode: Document[DOM]

createTFoot: HTMLTableElement[DOM]

createTHead: HTMLTableElement[DOM]

createTreeWalker: Document[DOM]

CSS2Properties: [DOM]

CSSCharsetRule: [DOM]

cssFloat: CSS2Properties[DOM]

CSSFontFaceRule: [DOM]

CSSImportRule: [DOM]

CSSMediaRule: [DOM]

CSSPageRule: [DOM]

CSSPrimitiveValue: [DOM]

CSSRule: [DOM]

CSSRuleList: [DOM]

cssRules: CSSMediaRule[DOM], CSSStyleSheet[DOM]

CSSStyleDeclaration: [DOM]

CSSStyleRule: [DOM]

CSSStyleSheet: [DOM]

cssText: CSSRule[DOM], CSSStyleDeclaration[DOM], CSSValue[DOM]

CSSUnknownRule: [DOM]

CSSValue: [DOM]

CSSValueList: [DOM]

cssValueType: CSSValue[DOM]

CSS_ATTR: CSSPrimitiveValue[DOM]

CSS_CM: CSSPrimitiveValue[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CSS_COUNTER: CSSPrimitiveValue[DOM]

CSS_CUSTOM: CSSValue[DOM]

CSS_DEG: CSSPrimitiveValue[DOM]

CSS_DIMENSION: CSSPrimitiveValue[DOM]

CSS_EMS: CSSPrimitiveValue[DOM]

CSS_EXS: CSSPrimitiveValue[DOM]

CSS_GRAD: CSSPrimitiveValue[DOM]

CSS_HZ: CSSPrimitiveValue[DOM]

CSS_IDENT: CSSPrimitiveValue[DOM]

CSS_IN: CSSPrimitiveValue[DOM]

CSS_INHERIT: CSSValue[DOM]

CSS_KHZ: CSSPrimitiveValue[DOM]

CSS_MM: CSSPrimitiveValue[DOM]

CSS_MS: CSSPrimitiveValue[DOM]

CSS_NUMBER: CSSPrimitiveValue[DOM]

CSS_PC: CSSPrimitiveValue[DOM]

CSS_PERCENTAGE: CSSPrimitiveValue[DOM]

CSS_PRIMITIVE_VALUE: CSSValue[DOM]

CSS_PT: CSSPrimitiveValue[DOM]

CSS_PX: CSSPrimitiveValue[DOM]

CSS_RAD: CSSPrimitiveValue[DOM]

CSS_RECT: CSSPrimitiveValue[DOM]

CSS_RGBCOLOR: CSSPrimitiveValue[DOM]

CSS_S: CSSPrimitiveValue[DOM]

CSS_STRING: CSSPrimitiveValue[DOM]

CSS_UNKNOWN: CSSPrimitiveValue[DOM]

CSS_URI: CSSPrimitiveValue[DOM]

CSS_VALUE_LIST: CSSValue[DOM]

ctrlKey: MouseEvent[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

cue: CSS2Properties[DOM]

cueAfter: CSS2Properties[DOM]

cueBefore: CSS2Properties[DOM]

currentNode: TreeWalker[DOM]

currentTarget: Event[DOM]

cursor: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.4 D

data: CharacterData[DOM], ProcessingInstruction[DOM]

Date: [Core]

DBLCLICK: Event[Client]

decodeURI: [Core]

decodeURIComponent: [Core]

defaultChecked: Checkbox[Client], HTMLInputElement[DOM], Input[Client], Radio[Client]

defaultSelected: HTMLOptionElement[DOM], Option[Client]

defaultStatus: Window[Client]

defaultValue: HTMLInputElement[DOM], HTMLTextAreaElement[DOM], Input[Client]

defaultView: Document[DOM]

deleteCaption: HTMLTableElement[DOM]

deleteCell: HTMLTableRowElement[DOM]

deleteContents: Range[DOM]

deleteData: CharacterData[DOM]

deleteMedium: MediaList[DOM]

deleteRow: HTMLTableElement[DOM], HTMLTableSectionElement[DOM]

deleteRule: CSSMediaRule[DOM], CSSStyleSheet[DOM]

deleteTFoot: HTMLTableElement[DOM]

deleteTHead: HTMLTableElement[DOM]

description: MimeType[Client], Plugin[Client]

detach: NodeIterator[DOM], Range[DOM]

detail: UIEvent[DOM]

dir: HTMLElement[DOM]

direction: CSS2Properties[DOM]

disabled: HTMLInputElement[DOM], HTMLOptionElement[DOM],
HTMLSelectElement[DOM], HTMLTextAreaElement[DOM], StyleSheet[DOM]

dispatchEvent: EventTarget[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

display: CSS2Properties[DOM]

doctype: Document[DOM]

Document: [Client], [DOM]

document: AbstractView[DOM], HTMLElement[Client], Layer[Client], Window[Client]

DocumentCSS: [DOM]

documentElement: Document[DOM]

DocumentEvent: [DOM]

DocumentFragment: [DOM]

DocumentRange: [DOM]

DocumentStyle: [DOM]

DocumentTraversal: [DOM]

DocumentType: [DOM]

DocumentView: [DOM]

DOCUMENT_FRAGMENT_NODE: Node[DOM]

DOCUMENT_NODE: Node[DOM]

DOCUMENT_TYPE_NODE: Node[DOM]

domain: Document[Client], HTMLDocument[DOM]

DOMException: [DOM]

DOMImplementation: [DOM]

DOMImplementationCSS: [DOM]

DOMSTRING_SIZE_ERR: DOMException[DOM]

DRAGDROP: Event[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.5 E

E: Math[Core]

Element: [Client], [DOM]

ElementCSSInlineStyle: [DOM]

elementFromPoint: Document[Client]

elements: Form[Client], HTMLFormElement[DOM]

ELEMENT_NODE: Node[DOM]

elevation: CSS2Properties[DOM]

embeds: Document[Client]

emptyCells: CSS2Properties[DOM]

enabledPlugin: MimeType[Client]

encodeURI: [Core]

encodeURIComponent: [Core]

encoding: CSSCharsetRule[DOM], Form[Client]

enctype: HTMLFormElement[DOM]

endContainer: Range[DOM]

endOffset: Range[DOM]

END_TO_END: Range[DOM]

END_TO_START: Range[DOM]

entities: DocumentType[DOM]

Entity: [DOM]

EntityReference: [DOM]

ENTITY_NODE: Node[DOM]

ENTITY_REFERENCE_NODE: Node[DOM]

Error: [Core]

ERROR: Event[Client]

escape: [Core]

eval: [Core], JSObject[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

EvalError: [Core]

Event: [Client], [DOM]

EventException: [DOM]

EventListener: [DOM]

eventPhase: Event[DOM]

EventTarget: [DOM]

exec: RegExp[Core]

exp: Math[Core]

expandEntityReferences: NodeIterator[DOM], TreeWalker[DOM]

extractContents: Range[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.6 F

fgColor: Document[Client]

filename: Plugin[Client]

FileUpload: [Client]

filter: NodeIterator[DOM], TreeWalker[DOM]

FILTER_ACCEPT: NodeFilter[DOM]

FILTER_REJECT: NodeFilter[DOM]

FILTER_SKIP: NodeFilter[DOM]

firstChild: Node[DOM], TreeWalker[DOM]

floor: Math[Core]

FOCUS: Event[Client]

focus: HTMLAnchorElement[DOM], HTMLInputElement[DOM],
HTMLSelectElement[DOM], HTMLTextAreaElement[DOM], Input[Client], Window[Client]

font: CSS2Properties[DOM]

fontFamily: CSS2Properties[DOM]

fontSize: CSS2Properties[DOM]

fontSizeAdjust: CSS2Properties[DOM]

fontStretch: CSS2Properties[DOM]

fontStyle: CSS2Properties[DOM]

fontVariant: CSS2Properties[DOM]

fontWeight: CSS2Properties[DOM]

FONT_FACE_RULE: CSSRule[DOM]

Form: [Client]

form: HTMLInputElement[DOM], HTMLOptionElement[DOM], HTMLSelectElement[DOM],
HTMLTextAreaElement[DOM], Input[Client]

forms: Document[Client], HTMLDocument[DOM]

forward: History[Client], Window[Client]

Frame: [Client]

frame: HTMLTableElement[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

frames: Window[Client]

fromCharCode: String[Core]

Function: [Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.7 G

getAttribute: Element[DOM], HTMLElement[Client]

getAttributeNode: Element[DOM]

getAttributeNodeNS: Element[DOM]

getAttributeNS: Element[DOM]

getClass: [Client]

getComputedStyle: AbstractView[DOM]

getCounterValue: CSSPrimitiveValue[DOM]

getDate: Date[Core]

getDay: Date[Core]

getElementById: Document[DOM], HTMLDocument[DOM]

getElementsByName: HTMLDocument[DOM]

getElementsByTagName: Document[DOM], Element[DOM]

getElementsByTagNameNS: Document[DOM], Element[DOM]

getFloatValue: CSSPrimitiveValue[DOM]

getFullYear: Date[Core]

getHours: Date[Core]

getMember: JSObject[Client]

getMilliseconds: Date[Core]

getMinutes: Date[Core]

getMonth: Date[Core]

getNamedItem: NamedNodeMap[DOM]

getNamedItemNS: NamedNodeMap[DOM]

getOverrideStyle: Document[DOM]

getPropertyCSSValue: CSSStyleDeclaration[DOM]

getPropertyPriority: CSSStyleDeclaration[DOM]

getPropertyValue: CSSStyleDeclaration[DOM]

getRectValue: CSSPrimitiveValue[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getRGBColorValue: CSSPrimitiveValue[DOM]

getSeconds: Date[Core]

getSelection: Document[Client]

getSlot: JSObject[Client]

getStringValue: CSSPrimitiveValue[DOM]

getTime: Date[Core]

getTimezoneOffset: Date[Core]

getUTCDate: Date[Core]

getUTCDay: Date[Core]

getUTCFullYear: Date[Core]

getUTCHours: Date[Core]

getUTCMilliseconds: empDate[Core]

getUTCMinute: Date[Core]

getUTCMonth: Date[Core]

getUTCSeconds: Date[Core]

GetWindow: JSObject[Client]

getYear: Date[Core]

Global: [Core]

global: RegExp[Core]

go: History[Client]

green: RGBColor[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.8 H

handleEvent: Document[Client], HTMLElement[Client], Layer[Client], Window[Client]

hasAttribute: Element[DOM]

hasAttributeNS: Element[DOM]

hasAttributes: Node[DOM]

hasChildNodes: Node[DOM]

hasFeature: DOMImplementation[DOM]

hash:Link[Client], Location[Client]

hasOwnProperty: Object[Core]

headers: HTMLTableCellElement[DOM]

height: CSS2Properties[DOM], HTMLTableCellElement[DOM], Image[Client],
Screen[Client]

Hidden: [Client]

hidden: Layer[Client]

HIERARCHY_REQUEST_ERR: DOMException[DOM]

History: [Client]

history:Window[Client]

home: Window[Client]

host: Link[Client], Location[Client]

hostname: Link[Client], Location[Client]

href: CSSImportRule[DOM], HTMLAnchorElement[DOM], Link[Client], Location[Client],
StyleSheet[DOM]

hreflang: HTMLAnchorElement[DOM]

hspace: Image[Client]

HTMLAnchorElement: [DOM]

HTMLBodyElement: [DOM]

HTMLCollection: [DOM]

HTMLDocument: [DOM]

HTMLDOMImplementation: [DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

HTMLElement: [Client], [DOM]

HTMLFormElement: [DOM]

HTMLInputElement: [DOM]

HTMLOptionElement: [DOM]

HTMLSelectElement: [DOM]

HTMLTableCaptionElement: [DOM]

HTMLTableCellElement: [DOM]

HTMLTableColElement: [DOM]

HTMLTableElement: [DOM]

HTMLTableRowElement: [DOM]

HTMLTableSectionElement: [DOM]

HTMLTextAreaElement: [DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.9 I

id: HTMLElement[Client], HTMLElement[DOM]

identifier: Counter[DOM]

ignoreCase: RegExp[Core]

Image: [Client]

images: Document[Client], HTMLDocument[DOM]

implementation: Document[DOM]

importNode: Document[DOM]

IMPORT_RULE: CSSRule[DOM]

index: HTMLOptionElement[DOM], Option[Client]

indexOf: String[Core]

INDEX_SIZE_ERR: DOMException[DOM]

Infinity: [Core]

initEvent: Event[DOM]

initMouseEvent: MouseEvent[DOM]

initMutationEvent: MutationEvent[DOM]

initUIEvent: UIEvent[DOM]

innerHTML: HTMLElement[Client]

innerText: HTMLElement[Client]

Input: [Client]

insertAdjacentHTML: HTMLElement[Client]

insertAdjacentText: HTMLElement[Client]

insertBefore: Node[DOM]

insertCell: HTMLTableRowElement[DOM]

insertData: CharacterData[DOM]

insertNode: Range[DOM]

insertRow: HTMLTableElement[DOM], HTMLTableSectionElement[DOM]

insertRule: CSSMediaRule[DOM], CSSStyleSheet[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

internalSubset: DocumentType[DOM]

INUSE_ATTRIBUTE_ERR: DOMException[DOM]

INVALID_ACCESS_ERR: DOMException[DOM]

INVALID_CHARACTER_ERR: DOMException[DOM]

INVALID_MODIFICATION_ERR: DOMException[DOM]

INVALID_NODE_TYPE_ERR: RangeException[DOM]

INVALID_STATE_ERR: DOMException[DOM]

isFinite: [Core]

isNaN: [Core]

isPrototypeOf: Object[Core]

isSupported: Node[DOM]

item: CSSRuleList[DOM], CSSStyleDeclaration[DOM],
CSSValueList[DOM],HTMLCollection[DOM], MediaList[DOM], NamedNodeMap[DOM],
NodeList[DOM], StyleSheetList[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.10 J

JavaArray: [Client]

JavaClass: [Client]

javaEnabled: Navigator[Client]

JavaObject: [Client]

JavaPackage: [Client]

join: Array[Core]

JSObject: [Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.11 K

KEYDOWN: Event[Client]

KEYPRESS: Event[Client]

KEYUP: Event[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.12 L

label: HTMLOptionElement[DOM]

lang: HTMLElement[Client], HTMLElement[DOM]

language: Navigator[Client]

lastChild: Node[DOM], TreeWalker[DOM]

lastIndex: RegExp[Core]

lastIndexOf: String[Core]

lastModified: Document[Client]

Layer: [Client]

layers: Layer[Client]

left: CSS2Properties[DOM], Layer[Client], Rect[DOM]

length: Arguments[Core], Array[Core], CharacterData[DOM], CSSRuleList[DOM],
CSSStyleDeclaration[DOM], CSSValueList[DOM], Form[Client], Function[Core],
History[Client], HTMLCollection[DOM], HTMLFormElement[DOM],
HTMLSelectElement[DOM], Input[Client], JavaArray[Client], MediaList[DOM],
NamedNodeMap[DOM], NodeList[DOM], Plugin[Client], Select[Client], String[Core],
StyleSheetList[DOM], Window[Client]

letterSpacing: CSS2Properties[DOM]

lineHeight: CSS2Properties[DOM]

Link: [Client]

link: HTMLBodyElement[DOM]

linkColor: Document[Client]

links: Document[Client], HTMLDocument[DOM]

LinkStyle: [DOM]

listStyle: Counter[DOM], CSS2Properties[DOM]

listStyleImage: CSS2Properties[DOM]

listStylePosition: CSS2Properties[DOM]

listStyleType: CSS2Properties[DOM]

LN10: Math[Core]

LN2: Math[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

LOAD: Event[Client]

load: Layer[Client]

localeCompare: String[Core]

localName: Node[DOM]

Location: [Client]

location: Document[Client], Window[Client]

log: Math[Core]

LOG10: Math[Core]

LOG2E: Math[Core]

e[Client]: lowsrc Image[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.13 M

margin: CSS2Properties[DOM]

marginBottom: CSS2Properties[DOM]

marginLeft: CSS2Properties[DOM]

marginRight: CSS2Properties[DOM]

marginTop: CSS2Properties[DOM]

markerOffset: CSS2Properties[DOM]

marks: CSS2Properties[DOM]

match: String[Core]

Math: [Core], Window[Client]

max: Math[Core]

MAX_VALUE: Number[Core]

maxHeight: CSS2Properties[DOM]

maxLength: HTMLInputElement[DOM]

maxWidth: CSS2Properties[DOM]

media: CSSImportRule[DOM], CSSMediaRule[DOM], StyleSheet[DOM]

MediaList: [DOM]

mediaText: MediaList[DOM]

MEDIA_RULE: CSSRule[DOM]

message: Error[Core]

metaKey: MouseEvent[DOM]

method: Form[Client], HTMLFormElement[DOM]

MimeType: [Client]

mimeTypes: Navigator[Client]

min: Math[Core]

MIN_VALUE: Number[Core]

minHeight: CSS2Properties[DOM]

minWidth: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

MODIFICATION: MutationEvent[DOM]

MOUSEDOWN: Event[Client]

MouseEvent: [DOM]

MOUSEMOVE: Event[Client]

MOUSEOUT: Event[Client]

MOUSEOVER: Event[Client]

MOUSEUP: Event[Client]

MOVE: Event[Client]

moveAbove: Layer[Client]

moveBelow: Layer[Client]

moveBy: Layer[Client], Window[Client]

moveTo: Layer[Client], Window[Client]

moveToAbsolute: Layer[Client]

multiple: HTMLSelectElement[DOM]

MutationEvent: [DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.14 N

name: Anchor[Client], Attr[DOM], DocumentType[DOM], Error[Core], Form[Client],
HTMLAnchorElement[DOM], HTMLFormElement[DOM], HTMLInputElement[DOM],
HTMLSelectElement[DOM], HTMLTextAreaElement[DOM], Image[Client], Input[Client],
Layer[Client], Plugin[Client], Window[Client]

namedItem: HTMLCollection[DOM]

NamedNodeMap: [DOM]

namespaceURI: Node[DOM]

NAMESPACE_ERR: DOMException[DOM]

NaN: [Core], Number[Core]

navigate: Window[Client]

Navigator: [Client]

navigator: Window[Client]

NEGATIVE_INFINITY: Number[Core]

newValue: MutationEvent[DOM]

nextNode: NodeIterator[DOM], TreeWalker[DOM]

nextSibling: Node[DOM], TreeWalker[DOM]

Node: [DOM]

NodeFilter: [DOM]

NodeIterator: [DOM]

NodeList: [DOM]

nodeName: Node[DOM]

nodeType: Node[DOM]

nodeValue: Node[DOM]

normalize: Node[DOM]

Notation: [DOM]

notationName: Entity[DOM]

notations: DocumentType[DOM]

NOTATION_NODE: Node[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

NOT_FOUND_ERR: DOMException[DOM]

NOT_SUPPORTED_ERR: DOMException[DOM]

noWrap: HTMLTableCellElement[DOM]

NO_DATA_ALLOWED_ERR: DOMException[DOM]

NO_MODIFICATION_ALLOWED_ERR: DOMException[DOM]

Number: [Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.15 O

Object: [Core]

offset: Layer[Client]

offsetHeight: HTMLElement[Client]

offsetLeft: HTMLElement[Client]

offsetParent: HTMLElement[Client]

offsetTop: HTMLElement[Client]

offsetWidth: HTMLElement[Client]

onabort: Image[Client]

onblur: Input[Client], Window[Client]

onchange: FileUpload[Client], Input[Client], Select[Client], Textarea[Client], Text[Client]

onclick: Button[Client], Checkbox[Client], HTMLElement[Client], Input[Client], Link[Client],
Radio[Client], Reset[Client], Submit[Client]

ondblclick: HTMLElement[Client]

onerror: Image[Client], Window[Client]

onfocus: Input[Client], Window[Client]

onhelp: HTMLElement[Client]

onkeydown: HTMLElement[Client]

onkeypress: HTMLElement[Client]

onkeyup: HTMLElement[Client]

onload: Image[Client], Window[Client]

onmousedown: HTMLElement[Client]

onmousemove: HTMLElement[Client]

onmouseout: HTMLElement[Client], Link[Client]

onmouseover: HTMLElement[Client], Link[Client]

onmouseup: HTMLElement[Client]

onmove: Window[Client]

onreset: Form[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onresize: Window[Client]

onsubmit: Form[Client]

onunload: Window[Client]

open: Document[Client], HTMLDocument[DOM], Window[Client]

opener: Window[Client]

Option: [Client]

options: HTMLSelectElement[DOM], Input[Client], Select[Client]

orphans: CSS2Properties[DOM]

outerHTML: HTMLElement[Client]

outerText: HTMLElement[Client]

outline: CSS2Properties[DOM]

outlineColor: CSS2Properties[DOM]

outlineStyle: CSS2Properties[DOM]

outlineWidth: CSS2Properties[DOM]

overflow: CSS2Properties[DOM]

ownerDocument: Node[DOM]

ownerElement: Attr[DOM]

ownerNode: StyleSheet[DOM]

ownerRule: CSSStyleSheet[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.16 P

padding: CSS2Properties[DOM]

paddingBottom: CSS2Properties[DOM]

paddingLeft: CSS2Properties[DOM]

paddingRight: CSS2Properties[DOM]

paddingTop: CSS2Properties[DOM]

page: CSS2Properties[DOM]

pageBreakAfter: CSS2Properties[DOM]

pageBreakBefore: CSS2Properties[DOM]

pageBreakInside: CSS2Properties[DOM]

pageX: Layer[Client]

pageY: Layer[Client]

PAGE_RULE: CSSRule[DOM]

parent: Window[Client]

parentElement: HTMLElement[Client]

parentLayer: Layer[Client]

parentNode: Node[DOM], TreeWalker[DOM]

parentRule: CSSRule[DOM], CSSStyleDeclaration[DOM]

parentStyleSheet: CSSRule[DOM], StyleSheet[DOM]

parse: Date[Core]

parseFloat: [Core]

parseInt: [Core]

Password: [Client]

pathname: Link[Client], Location[Client]

pause: CSS2Properties[DOM]

pauseAfter: CSS2Properties[DOM]

pauseBefore: CSS2Properties[DOM]

PI: Math[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

pitch: CSS2Properties[DOM]

pitchRange: CSS2Properties[DOM]

pixelDepth: Screen[Client]

platform: Navigator[Client]

playDuring: CSS2Properties[DOM]

Plugin: [Client]

plugins: Document[Client], Navigator[Client]

plugins.refresh: Navigator[Client]

pop: Array[Core]

port: Link[Client], Location[Client]

position: CSS2Properties[DOM]

POSITIVE_INFINITY: Number[Core]

pow: Math[Core]

prefix: Node[DOM]

preventDefault: Event[DOM]

previousNode: NodeIterator[DOM], TreeWalker[DOM]

previousSibling: Node[DOM], TreeWalker[DOM]

prevValue: MutationEvent[DOM]

primitiveType: CSSPrimitiveValue[DOM]

print: Window[Client]

ProcessingInstruction: [DOM]

PROCESSING_INSTRUCTION_NODE: Node[DOM]

prompt: Window[Client]

propertyIsEnumerable: Object[Core]

protocol: Link[Client], Location[Client]

prototype: Function[Core]

publicId: DocumentType[DOM], Entity[DOM], Notation[DOM]

push: Array[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.17 Q

quotes: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.18 R

Radio: [Client]

random: Math[Core]

Range: [DOM]

RangeError: [Core]

RangeException: [DOM]

readOnly: HTMLInputElement[DOM], HTMLTextAreaElement[DOM]

Rect: [DOM]

red: RGBColor[DOM]

ReferenceError: [Core]

referrer: Document[Client], HTMLDocument[DOM]

RegExp: [Core]

rel: HTMLAnchorElement[DOM]

relatedNode: MutationEvent[DOM]

relatedTarget: MouseEvent[DOM]

releaseEvents: Document[Client], Layer[Client], Window[Client]

reload: Location[Client]

REMOVAL: MutationEvent[DOM]

remove: HTMLSelectElement[DOM]

removeAttribute: Element[DOM], HTMLElement[Client]

removeAttributeNode: Element[DOM]

removeAttributeNS: Element[DOM]

removeChild: Node[DOM]

removeEventListener: EventTarget[DOM]

removeMember: JSObject[Client]

removeNamedItem: NamedNodeMap[DOM]

removeNamedItemNS: NamedNodeMap[DOM]

removeProperty: CSSStyleDeclaration[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

replace: Location[Client], String[Core]

replaceChild: Node[DOM]

replaceData: CharacterData[DOM]

Reset: [Client]

RESET: Event[Client]

reset: Form[Client], HTMLFormElement[DOM]

RESIZE: Event[Client]

ResizeBy: Layer[Client], Window[Client]

resizeTo: Layer[Client], Window[Client]

rev: HTMLAnchorElement[DOM]

reverse: Array[Core]

RGBColor: [DOM]

richness: CSS2Properties[DOM]

right: CSS2Properties[DOM], Rect[DOM]

root: NodeIterator[DOM], TreeWalker[DOM]

round: Math[Core]

routeEvent: Document[Client], Layer[Client], Window[Client]

rowIndex: HTMLTableRowElement[DOM]

rows: HTMLTableElement[DOM], HTMLTableSectionElement[DOM],
HTMLTextAreaElement[DOM]

rowSpan: HTMLTableCellElement[DOM]

rules: HTMLTableElement[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.19 S

scope: HTMLTableCellElement[DOM]

Screen: [Client]

screen: Window[Client]

screenX: MouseEvent[DOM]

screenY: MouseEvent[DOM]

scroll: Window[Client]

scrollBy: Window[Client]

scrollIntoView: HTMLElement[Client]

scrollTo: Window[Client]

search: Link[Client], Location[Client], String[Core]

sectionRowIndex: HTMLTableRowElement[DOM]

Select: [Client]

SELECT: Event[Client]

select: HTMLInputElement[DOM], HTMLTextAreaElement[DOM], Input[Client]

selected: HTMLOptionElement[DOM], Option[Client]

selectedIndex: HTMLSelectElement[DOM], Input[Client], Select[Client]

selectNode: Range[DOM]

selectNodeContents: Range[DOM]

selectorText: CSSPageRule[DOM], CSSStyleRule[DOM]

self: Window[Client]

separator: Counter[DOM]

setAttribute: Element[DOM], HTMLElement[Client]

setAttributeNode: Element[DOM]

setAttributeNodeNS: Element[DOM]

setAttributeNS: Element[DOM]

setDate: Date[Core]

setEnd: Range[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setEndAfter: Range[DOM]

setEndBefore: Range[DOM]

setFloatValue: CSSPrimitiveValue[DOM]

setFullYear: Date[Core]

setHours: Date[Core]

setInterval: Window[Client]

setMember: JSObject[Client]

setMilliseconds: Date[Core]

setMinutes: Date[Core]

setMonth: Date[Core]

setNamedItem: NamedNodeMap[DOM]

setNamedItemNS: NamedNodeMap[DOM]

setProperty: CSSStyleDeclaration[DOM]

setSeconds: Date[Core]

setSlot: JSObject[Client]

setStart: Range[DOM]

setStartAfter: Range[DOM]

setStartBefore: Range[DOM]

setStringValue: CSSPrimitiveValue[DOM]

setTime: Date[Core]

setTimeout: Window[Client]

setUTCDate: Date[Core]

setUTCFullYear: Date[Core]

setUTCHours: Date[Core]

setUTCMilliseconds: Date[Core]

setUTCMinutes: Date[Core]

setUTCMonth: Date[Core]

setUTCSeconds: Date[Core]

setYear: Date[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

shape: HTMLAnchorElement[DOM]

sheet: LinkStyle[DOM]

shift: Array[Core]

shiftKey: MouseEvent[DOM]

SHOW_ALL: NodeFilter[DOM]

SHOW_ATTRIBUTE: NodeFilter[DOM]

SHOW_CDATA_SECTION: NodeFilter[DOM]

SHOW_COMMENT: NodeFilter[DOM]

SHOW_DOCUMENT: NodeFilter[DOM]

SHOW_DOCUMENT_FRAGMENT: NodeFilter[DOM]

SHOW_DOCUMENT_TYPE: NodeFilter[DOM]

SHOW_ELEMENT: NodeFilter[DOM]

SHOW_ENTITY: NodeFilter[DOM]

SHOW_ENTITY_REFERENCE: NodeFilter[DOM]

SHOW_NOTATION: NodeFilter[DOM]

SHOW_PROCESSING_INSTRUCTION: NodeFilter[DOM]

SHOW_TEXT: NodeFilter[DOM]

siblingAbove: Layer[Client]

siblingBelow: Layer[Client]

sin: Math[Core]

size: CSS2Properties[DOM], HTMLInputElement[DOM], HTMLSelectElement[DOM]

slice: Array[Core], String[Core]

sort: Array[Core]

source: RegExp[Core]

sourceIndex: HTMLElement[Client]

span: HTMLTableColElement[DOM]

speak: CSS2Properties[DOM]

speakHeader: CSS2Properties[DOM]

speakNumeral: CSS2Properties[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

speakPunctuation: CSS2Properties[DOM]

specified: Attr[DOM]

speechRate: CSS2Properties[DOM]

splice: Array[Core]

split: String[Core]

splitText: Text[DOM]

sqrt: Math[Core]

SQRT1_2: Math[Core]

SQRT2: Math[Core]

src: HTMLInputElement[DOM], Image[Client], Layer[Client]

startContainer: Range[DOM]

startOffset: Range[DOM]

START_TO_END: Range[DOM]

START_TO_START: Range[DOM]

status: Window[Client]

stop: Window[Client]

stopPropagation: Event[DOM]

stress: CSS2Properties[DOM]

String: [Core]

Style: [Client]

style: CSSFontFaceRule[DOM], CSSPageRule[DOM],CSSStyleRule[DOM],
HTMLElement[Client], HTMLElement[DOM]

styleSheet: CSSImportRule[DOM]

StyleSheet: [DOM]

StyleSheetList: [DOM]

styleSheets: Document[DOM]

STYLE_RULE: CSSRule[DOM]

Submit: [Client]

SUBMIT: Event[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

submit: Form[Client], HTMLFormElement[DOM]

substr: String[Core]

substring: String[Core]

substringData: CharacterData[DOM]

suffixes: MimeType[Client]

summary: HTMLTableElement[DOM]

surroundContents: Range[DOM]

SyntaxError: [Core]

SYNTAX_ERR: DOMException[DOM]

systemId: DocumentType[DOM], Entity[DOM], Notation[DOM]

systemLanguage: Navigator[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.20 T

tabIndex: HTMLAnchorElement[DOM], HTMLInputElement[DOM],
HTMLSelectElement[DOM], HTMLTextAreaElement[DOM]

tableLayout: CSS2Properties[DOM]

tagName: Element[DOM], HTMLElement[Client]

tan: Math[Core]

target: Event[DOM], Form[Client], HTMLAnchorElement[DOM], HTMLFormElement[DOM],
Link[Client], ProcessingInstruction[DOM]

tBodies: HTMLTableElement[DOM]

test: RegExp[Core]

Text: [Client], [DOM]

text: Anchor[Client], HTMLBodyElement[DOM], HTMLOptionElement[DOM], Link[Client],
Option[Client]

textAlign: CSS2Properties[DOM]

Textarea: [Client]

textDecoration: CSS2Properties[DOM]

textIndent: CSS2Properties[DOM]

textShadow: CSS2Properties[DOM]

textTransform: CSS2Properties[DOM]

TEXT_NODE: Node[DOM]

tFoot: HTMLTableElement[DOM]

tHead: HTMLTableElement[DOM]

timeStamp: Event[DOM]

title: Document[Client], HTMLDocument[DOM], HTMLElement[Client],
HTMLElement[DOM], StyleSheet[DOM]

toDateString: Date[Core]

toExponential: Number[Core]

toFixed: Number[Core]

toGMTString: Date[Core]

toLocaleDateString: Date[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

toLocaleLowerCase: String[Core]

toLocaleString: Array[Core], Date[Core], Number[Core], Object[Core]

toLocaleTimeString: Date[Core]

toLocaleUpperCase: String[Core]

toLowerCase: String[Core]

top: CSS2Properties[DOM], Layer[Client], Rect[DOM], Window[Client]

toPrecision: Number[Core]

toString: Array[Core], Boolean[Core], Date[Core], Error[Core], Function[Core],
JSObject[Client], Number[Core], Object[Core], Range[DOM], RegExp[Core], String[Core]

toTimeString: Date[Core]

toUpperCase: String[Core]

toUTCString: Date[Core]

TreeWalker: [DOM]

type: CSSRule[DOM], Event[DOM], HTMLAnchorElement[DOM],
HTMLInputElement[DOM], HTMLSelectElement[DOM], HTMLTextAreaElement[DOM],
Input[Client], MimeType[Client], Select[Client], StyleSheet[DOM]

TypeError: [Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.21 U

UIEvent: [DOM]

undefined: [Core]

unescape: [Core]

unicodeBidi: CSS2Properties[DOM]

UNKNOWN_RULE: CSSRule[DOM]

UNLOAD: Event[Client]

unshift: Array[Core]

URIError: [Core]

URL: [Client], Document[Client], HTMLDocument[DOM]

useMap: HTMLInputElement[DOM]

userAgent: Navigator[Client]

userLanguage: Navigator[Client]

UTC: Date[Core]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.22 V

vAlign: HTMLTableCellElement[DOM], HTMLTableColElement[DOM],
HTMLTableRowElement[DOM], HTMLTableSectionElement[DOM]

value: Attr[DOM], Button[Client], Checkbox[Client], FileUpload[Client], Hidden[Client],
HTMLInputElement[DOM], HTMLOptionElement[DOM], HTMLSelectElement[DOM],
HTMLTextAreaElement[DOM], Input[Client], Option[Client], Password[Client], Radio[Client],
Reset[Client], Submit[Client], Text[Client], Textarea[Client]

valueOf: Boolean[Core], Date[Core], Number[Core], Object[Core], String[Core]

verticalAlign: CSS2Properties[DOM]

view: UIEvent[DOM]

ViewCSS: [DOM]

visibility: CSS2Properties[DOM], Layer[Client]

vLink: HTMLBodyElement[DOM]

vlinkColor: Document[Client]

voiceFamily: CSS2Properties[DOM]

volume: CSS2Properties[DOM]

vspace: Image[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.23 W

whatToShow: NodeIterator[DOM], TreeWalker[DOM]

whiteSpace: CSS2Properties[DOM]

widows: CSS2Properties[DOM]

width: CSS2Properties[DOM], HTMLTableCellElement[DOM],
HTMLTableColElement[DOM], HTMLTableElement[DOM], Image[Client], Screen[Client]

Window: [Client]

window: Layer[Client], Window[Client]

wordSpacing: CSS2Properties[DOM]

write: Document[Client], HTMLDocument[DOM]

writeln: Document[Client], HTMLDocument[DOM]

WRONG_DOCUMENT_ERR: DOMException[DOM]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.24 X

x: Layer[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.25 Y

y: Layer[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

26.26 Z

zIndex: CSS2Properties[DOM], Layer[Client]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical topics,
breathing personality and life into potentially dry subjects.

The animal on the cover of JavaScript: The Definitive Guide, Fourth Edition is a Javan rhinoceros.
All five species of rhinoceros are distinguished by their large size, thick armor-like skin, three-toed
feet, and single or double snout horn. The Javan rhinoceros, along with the Sumatran rhinoceros,
is one of two forest-dwelling species. The Javan rhinoceros is similar in appearance to the Indian
rhinoceros, but smaller and with certain distinguishing characteristics (primarily skin texture).

Rhinoceroses are often depicted standing up to their snouts in water or mud. In fact, they can
frequently be found just like that. When not resting in a river, rhinos will dig deep pits in which to
wallow. Both of these resting places provide a couple of advantages. First, they give the animal
relief from the tropical heat and protection from blood-sucking flies. (The mud that the wallow
leaves on the skin of the rhinoceros provides some protection from flies, also.) Second, mud
wallows and river water help support the considerable weight of these huge animals, thereby
relieving the strain on their legs and backs.

Folklore has long held that the horn of the rhinoceros possesses magical and aphrodisiacal
powers and that humans who gain possession of the horns will gain those powers, also. This is
one of the reasons why rhinos are a prime target of poachers. All species of rhinoceros are in
danger, and the Javan rhino population is the most precarious. Fewer than 100 of these animals
are still living. At one time Javan rhinos could be found throughout southeastern Asia, but they
are now believed to exist only in Indonesia and Vietnam.

Rachel Wheeler was the production editor for JavaScript: The Definitive Guide, Fourth Edition,
and Leanne Soylemez and Jane Ellin were the copyeditors. Rachel Wheeler, Sheryl Avruch, and
Matt Hutchinson were the proofreaders. Mary Brady, Claire Cloutier, Tatiana Apandi Diaz, and
Ann Schirmer provided quality control. Maureen Dempsey, Derek Di Matteo, Darren Kelly, Edie
Shapiro, and Sarah Sherman provided production assistance. Ellen Troutman-Zaig wrote the
index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century engraving
from the Dover Pictorial Archive. Emma Colby produced the cover layout with Quark XPress
4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. Neil Walls converted the files from XML to FrameMaker
5.5.6. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The illustrations that appeared in earlier editions
of this book were created in Macromedia Freehand 5.0 by Chris Reilley. For this fourth edition,
Robert Romano created and updated figures using Macromedia Freehand 9 and Adobe
Photoshop 6. This colophon was written by Clairemarie Fisher O'Leary.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! (exclamation point)
 ! (NOT) operator
 != (inequality) operator
 Netscape 4, JavaScript 1.2 implementation
 strings, comparing
 !== (non-identity) operator
 Netscape 4, JavaScript 1.2 implementation
 logical NOT operator
" (quotes, double) in strings
$ (dollar sign)
 anchor character (regular expressions)
 in identifiers
 pattern matching, end of line or string 2nd
 regular expession string matches
% (modulo) operator 2nd
& (ampersand)
 & (bitwise AND) operator
 && (logical AND operator)
 &= (assignment) operator
> (greater than) operator
 object data type conversion
 strings, comparing
>> (shift right with sign) operator 2nd
>>> (shift right zero fill) operator 2nd
>= (greater than or equal) operator
 object data type conversion
 strings, comparing
< (less than) operator
 object data type conversion
 strings, comparing
<< (shift left) operator
<= (less than or equal) operator
 object data type conversion
 strings, comparing
' (apostrophe), escaping in single-quoted strings
' (quotes, single) in strings
() (parentheses)
 function call operator 2nd 3rd
 in functions
 functions as event handler properties
 in if statements
 invoking functions 2nd
 operator evaluation order, specifying
 in regular expressions 2nd
* (asterisk)
 *= (assignment) operator
 multiplication operator 2nd 3rd
 quantifier, in regular expressions
+ (plus sign)
 + (unary plus) operator
 ++ (increment) operator 2nd 3rd
 loop variables, incrementing
 positioning in code
 += (assignment) operator
 appending text to innerHTML property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 addition operator 2nd
 converting objects in string or numeric context
 operands, data types of
 quantifier, in regular expressions
 string concatenation operator 2nd 3rd 4th 5th 6th 7th
, (comma) operator 2nd
 combining multiple expressions in loops
- (hyphen), indicating range of characters in character class
- (minus sign)
 -- (decrement) operator 2nd
 loop variables, decrementing
 positioning in code
 -= (assignment) operator
 -Infinity
 subtraction operator
 unary negation operator
. (dot)
 . operator 2nd 3rd 4th
 regular expression character classes
.js files
/ (forward slash)
 / (division) operator
 /* and */, in comments
 //, in comments 2nd 3rd
 in regular expressions 2nd
; (semicolon)
 automatic insertion in JavaScript
 do loop, terminating with
 empty statements
 JavaScript and CSS
 omitting between JavaScript statements
 separating statements with 2nd 3rd
= (equal sign)
 = (assignment) operator
 precedence of
 == (equality) operator
 Netscape 4, JavaScript 1.2 implementation 2nd
 null and undefined value, comparing
 rules for determining equality
 strings, comparing
 === (identity) operator
 case expressions, testing for identity
 distinguishing null and undefined values
 Netscape 4, JavaScript 1.2 implementation
 rules for determining identical values
? (question mark)
 ?\: (conditional) operator
 embedding arguments in URLs
 in regular expressions
 quantifier, in regular expressions
 regex extensions
 ?!
 ?=
@ ("at-rules"), CSS style sheets
[] (brackets)
 accessing array elements 2nd 3rd
 in arrays of arrays
 accessing object properties 2nd 3rd
 regular expression character classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

\: (colon), in labels
\\\\ (backslash)
 \\\\n in regular expressions
 escape sequences in string literals
 escape sequences, string literals and regular expressions
 literal characters in regular expressions
\\\\b
 backspace character, in regular expression character classes
 word boundary assertion
\\\\B (non-word boundary) metacharacter
\\\\n (newline)
\\\\W (non-word) metacharacter
\\\\w (word) metacharacter
\\S (non-Unicode whitespace characters)
\\s (space) metacharacter
\\w (ASCII word character)
\\W (non-ASCII word character)
^ (caret)
 beginning of line or string, matching
 negating character class elements
 XOR (exclusive or) operator
_ (underscore), in identifiers
{} (curly braces)
 delimiting statement blocks 2nd
 in object literals
 in regular expressions
| (vertical bar)
 (bitwise OR) operator
 | (bitwise OR) operator
 || (logical OR) operator
 alternation in regular expressions 2nd
~ (tilde), bitwise NOT operator 2nd
16-bit integers
32-bit integers 2nd
64-bit floating-point format (numbers)
64-bit integers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tags
 displaying images with
 href attribute
 HTMLAnchorElement and
 Link object, creating
 links[] array and
 onmouseover, onmouseout event handlers 2nd
 onmouseover attribute
 target attribute
about\: protocol specifier
above property
abs() function
absolute positioning, elements
AbstractView object 2nd
accept property
acceptNode() method
access operators
accessKey property 2nd
acos() function
action attribute, javascript\: URL as value of
action property 2nd
ActionScript (scripting language)
activeElement property
ActiveX controls
 Applet object and
 displaying embedded data in Internet Explorer
 Java objects, treating as
 security problems with
add() method
addEventListener() method 2nd
 mixing original event model and DOM Level 2
 passing function references directly to
 this (keyword) and
addition
 + (plus) operator
 ++ (increment) operator
addition and assignment (+=) operator
alert() method 2nd 3rd 4th 5th
 debugging messages, displaying
 displaying HTML output with
align property 2nd
aLink property
alinkColor property 2nd 3rd
all[] property
 Document object 2nd
 HTMLElement object
alphabetical order
 sorting arrays in
alt property
alternation in regular expressions
altKey property
 IE Event 2nd
 MouseEvent object
ancestors of nodes
Anchor object 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

anchors
 anchors property
 regular expression
 summary of
 tags
anchors[] property
 Anchor object
 Document object 2nd 3rd 4th
AND (&&) operator
and (&) operator
animateCSS() function
animations
 DHTML
 color-changing
 cross-browser animation script
 moving Button object in circle
 frame color
 image replacement
 automatically starting with onload event handler
 implementing ToggleButton with
 status bar
anonymous functions 2nd
apostrophe ('), in single-quoted strings
appCodeName property 2nd
appendChild() method 2nd 3rd 4th
appendData() method 2nd
appending text (within Text node)
appendMedium() method
Applet object
 name attribute and
tags
 applets[] array and
applets
 JavaScript interaction with
 mayscript attribute
 JSObjects, using in 2nd
 scripting
applets[] property 2nd 3rd 4th 5th 6th
apply() method 2nd
 Function object
appName property 2nd 3rd
appVersion property 2nd
tags 2nd
 onmouseover and onmouseout event handlers
area() method
Arguments object 2nd
 callee property
 length property
arguments, function 2nd
 verifying number of
arguments[] property
 Arguments object
 Function object
arithmetic operators 2nd 3rd
array elements (JavaScript objects), setting from Java
array literals 2nd
Array object
 constructor for
Array() constructor function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 invoking
arrays 2nd 3rd 4th
 accessing elements of
 arguments[]
 of arrays 2nd
 associative 2nd
 comparing by reference
 converting to numbers
 creating 2nd
 DOM objects behaving as
 elements of
 adding new
 creating arrays
 length, specifying 2nd
 reading and writing
 functions, assigning to elements
 indexing (regular vs. associative)
 Java, converting to JavaScript
 JavaArray class 2nd 3rd
 looping through elements
 methods
 concat() 2nd
 join() 2nd
 pop()
 push() 2nd
 reverse() 2nd
 shift() 2nd
 slice()
 sort()
 splice() 2nd 3rd
 toLocaleString() 2nd
 toString() 2nd 3rd
 unshift() 2nd
 objects vs.
 operators for
 passing by reference to functions
 as reference types
 string regular expression matching
ASCII character encoding
asin() function
assignment operators
 lvalues and
assignment statements
associative arrays 2nd 3rd
 functions, storing in
 indexing
 objects as
associativity, operator 2nd
asterisk [See *, under Symbols]
atan() function
atan2() function
attachEvent() method
Attr object 2nd
attrChange property
attributes
 cookie
 CSS style
 CSS2Properties corresponding to
 DOM object types representing

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 modifying HTML elements with
 Style object and
 deleting from element
 DOM elements
 event handler
 HTML [See also HTML attributes]
 DOM elements representing
 names, conflicts with JavaScript keywords
attributes[] property 2nd
attrName property
availHeight property 2nd
availLeft property
availTop property
availWidth property 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tags, reparenting node to
Back button
back() method
 History object 2nd
 Window object
background property 2nd
backslash (\\\\) [See \\\\, under Symbols]
backspace character
bar charts, dynamic (example)
base-10 integers
base-16 (hexadecimal) integers
base-8 (octal) integers
beginDrag() function (example)
 Netscape 4 event model
below property
bgcolor attribute
bgColor property
 Document object 2nd 3rd
 platform incompatibilities, workarounds
 Layer object
binary numbers 2nd
binary operators
bit shift operators
bitmask constants, Event object (Netscape 4)
bitwise operators
blocks, statement
 block-level variable scope
blue property
blur() method
 HTMLAnchorElement object
 HTMLInputElement object 2nd
 HTMLSelectElement object
 HTMLTextAreaElement
 Input object
 Window object 2nd 3rd
body property 2nd
tags
 alink, link, and vlink attributes of
 document colors, setting as attributes
 Document property values from attributes of
 event handlers, defining in
boldface, text within node or its descendants
bookmarks
 javascript\: URLs in
 personal bar of, displaying in window
 privacy of lists
 script for
boolean data type 2nd 3rd
 Boolean object
 comparing by value
 logical operators
 true and false values, converting
Boolean object
Boolean(), calling as function
booleanValue() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

border attribute
border property 2nd
bottom attribute 2nd
bottom property
braces [See {}, under Symbols]
brackets [See , under Symbols]
break statements
 automatic semicolons and 2nd
 in switch statements
breaking cyclical references
browsers [See also Internet Explorer; Mozilla; Netscape]2nd
 bgColor property, setting
 browsing history 2nd
 client-side JavaScript 2nd
 features listing by browser
 compatibility issues
 avoiding
 coding for platform incompatibilities
 failing to resolve
 feature testing
 ignoring incompatibilities
 JavaScript version support, detecting
 language version incompatibility, notifying users of
 non-JavaScript browsers
 server-side scripts, determining browser from
 controlling
 cookies [See also cookies]
 storage limitations
 cross-browser DHTML animation script
 CSS versions, support for
 default actions associated with events
 preventing
 default style sheet, overriding
 DOM standard, conformance to
 DOM Traversal API, support for
 executing JavaScript programs
 fourth-generation, DHTML in
 home page, displaying
 JavaScript in URLs
 Mozilla
 Navigator objects 2nd 3rd
 determining vendor and version
 programming environment
 event-driven model
 object hierarchy and DOM
 window as global execution context
 recent developments in
 security issues
 window, controlling with JavaScript
bubbles property 2nd
bubbling, event propagation
 Event object, DOM Level 2
 IE event model 2nd
built-in elements
built-in functions
 constructor
Button object 2nd 3rd
 event handlers
button property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 IE Event object 2nd
 MouseEvent object
tags
 Reset objects, creating
 Submit objects, creating
buttons
 Button form element
 converting paragraphs to uppercase
 DHTML animation
 radio
 Reset
 reversing document nodes
 Submit
 toggle
by reference
 comparing objects, arrays, and functions
 copying and passing string
 copying, passing, and comparing object
 passing, different meanings of
 reference types, manipulating
 summary of
by value
 comparing numbers, strings, and boolean values
 comparing strings
 passing references by
 primitive types, manipulating
 summary of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C/C++
 boolean data type, C vs. JavaScript
 C language version, JavaScript interpreter
 char data type
 comments, support in JavaScript
 delete operator in C++, JavaScript vs.
 double data type
 Java Script vs.
 null value, JavaScript vs.
 pointers
 switch statements
caching
 JavaScript code
 off-screen images and
calculate() function
call objects 2nd
call() method
 Function object
 JSObject object 2nd
callee property 2nd 3rd
caller property
cancelable property 2nd
cancelBubble property (IE Event) 2nd 3rd
capitalization [See case]
caption property
captions, HTML tables 2nd
 deleting
captureEvents() method 2nd
capturing, event propagation
 addEventListener() method and
 dragging document elements (DOM Level 2)
 Event object, DOM Level 2
 nested functions and
 Netscape 4 event model
 security restrictions on
caret [See ^, under Symbols]
carriage returns
Cascading Style Sheets [See CSS]
case
 alphabetical sorting and
 event handler attributes, HTML and XHTML
 insensitivity to
 alphabetical sorting, array of strings
 HMTL tags
 in pattern matching 2nd 3rd 4th
 lowercase, converting strings to 2nd
 reversing in a document
 sensitivity to
 in JavaScript
 JavaScript naming conventions
 JavaScript properties
 in string comparisons
 uppercase, converting strings to 2nd
case label (switch statement)
catch clause (try/catch/finally statement)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

CDATASection object 2nd
ceil() function
cellIndex property
cells property
cells, HTML tables
 deleting
 inserting
char data type
 Java, in JavaScript
character classes (in regular expressions)
character codes, converting to strings
character encoding
 decoding 2nd
 encoding for URIs
 hexadecimal escape sequences
 string containing, creating
 URI components
character sets
 charset property (Document)
 defaultCharset property (Document)
CharacterData object 2nd
characters
 converting between JavaScript and Java
 finding in strings
 in regular expressions
charAt() method 2nd
charCodeAt() method
check() function
Checkbox object 2nd 3rd 4th 5th 6th
checked property
 Checkbox object 2nd
 Input object
 Radio object 2nd
child nodes 2nd
 changing parent node
 of DocumentFragment
childNodes property 2nd 3rd
children[] property
 Document object 2nd
 HTMLElement object 2nd
class methods
class of elements, applying CSS style rules to
class properties
classes
 built-in, prototypes and
 error
 hierarchy of
 HTML elements
 instances of
 Java
 creating instances with new operator
 JavaClass object 2nd
 JavaObject object
 JSObject class
 using directly from JavaScript
 members of
 class methods
 class properties
 instance methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 instance properties
 object 2nd
 converting to strings
 defining (complex number class)
 defining constructors for
 prototypes and inheritance
 wrapper, for primitive data types
className property 2nd 3rd 4th
CLASSPATH variable
clear() method
clearInterval() method 2nd 3rd
clearTimeout() method 2nd 3rd
click events [See also event handlers; Event object; events]
 initializing
click() method
 HTMLInputElement object
clicking on input elements
client sniffers 2nd
client-side JavaScript 2nd 3rd 4th
 browser environment
 event-driven programming
 object hierarchy and DOM
 window as global execution context
 capabilities of
 browser behavior, controlling
 client state information
 document appearance and content
 interacting with HTML forms
 interacting with user
 limitations
 case insensitivity in objects and properties
 DOM, combining with scripting of JavaScript interpreter
 embedded in browsers
 embedding in HTML documents
 event handlers
 src attribute, tag
 tags
 URLs
 executable web page content
 features listing by browser
 global variables and functions defined by
 interacting windows
 security
 restrictions on
 W3C DOM API vs.
 writing scripts
clientInformation property 2nd
clientX, clientY properties
 IE Event object 2nd
 MouseEvent object 2nd
clip attribute
clipping area, layers
cloneContents() method 2nd
cloneNode() method
cloneRange() method
close() method
 Document object 2nd
 creating new documents
 dynamic document generation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 HTMLDocument object
 Window object 2nd 3rd 4th
 security restrictions and
closed property 2nd 3rd
closure
code
 caching
 defensive coding for platform incompatibilities
 indenting 2nd 3rd
code property
collapse() method
collapsed property
collection, HTML elements
color-changing animation
colorDepth property 2nd
colors
 background and foreground, document
 Document object properties for
 for browser screens
 frames with color animation
 links
 active
 unvisited
 visited, in document
 RGBColor object 2nd
cols property
columns, HTML tables
comma (,) operator
 combining multiple expressions in loops
Comment object 2nd
comments 2nd 3rd
 Comment node, creating
 HTML
 hiding scripts in
 JavaScript code
 mixing with HTML
commonAncestorContainer property
compareBoundaryPoints() method
comparing
 boolean values returned by
 by reference 2nd
 by value 2nd
 by reference vs.
 strings
 equality and identity operators
 string literals
comparison functions, for array sorting
comparison operators
 data types of operands and returns
 object data type conversion
compatibility
 browsers, non-JavaScript
 language versions (JavaScript)
 language attribute ()
 loading new (compatible) page
 suppressing version-related errors
 testing version explicitly
 platform and browser
 avoiding browser incompatibilities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 failing to resolve incompatibilities
 feature testing
 ignoring incompatibilities
 platform incompatibilities, defensive coding for
 platform-specific workarounds
 server-side scripts
compiling applets with JSObjects
complete property 2nd
complex number class, defining
compound statements 2nd
 break, continue, return, or throw statement in
computation
 displaying Fibonacci numbers
 loan payments (example program)
computed styles 2nd
concat() method
 Array object 2nd
 String object
concatenating strings
 + operator 2nd 3rd
 array elements converted to
conditional operators
 ?\:
 associativity of
conditional statements
configuring security policy
confirm() method 2nd 3rd
constants 2nd
 code property values (DOMException)
 constant expressions
 defined by DOM interfaces
 defining with prototype properties
 e
 Event object (bitmask)
 eventPhase property values
 Infinity, NaN, and Number
 ln10
 ln2
 log10e
 log2e
 numeric
 MAX_VALUE
 MIN_VALUE
 NaN (not-a-number)
 NEGATIVE_INFINITY
 pi
 primitiveType property values 2nd
 SQRT1_2
 SQRT2
constructor functions 2nd 3rd 4th 5th 6th 7th
 Date()
 Function(), function literals vs.
 invoking with new operator
 methods, defining in
 multiple frames/windows and
 predefined vs. user-defined in multiple windows
 prototype objects, defining
 prototype property 2nd
constructor property 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

contains() method
continue statements
 in do/while loop, bug in 2nd
 semicolons in
converting
 data types
 automatic conversions, JavaScript
 explicit conversions
 Java to JavaScript
 JavaObject objects to JavaScript primitive types
 manipulating Java types from JavaScript
 numbers to strings
 objects to primitive values
 strings to numbers
 dates and times
 objects to string literals
 variables
cookie property 2nd 3rd 4th 5th 6th
 parsing
cookieEnabled property
cookies 2nd
 deleting
 domain attribute 2nd
 example of
 expires attribute
 path attribute 2nd
 reading
 secure attribute 2nd
 specification, original (web site)
 storing
 limitations, browser and server
 visibility of
coordinates
 mouse pointer 2nd
 pixel (where event occurred)
copying
 by reference 2nd
 strings
 by value 2nd
 by reference vs.
cos() function
cosine (arc)
countCharacters() function
Counter object 2nd
counter that controls a loop, incrementing
counter variable
counting references (garbage collection)
countTags() function
createAttribute() method
createAttributeNS() method
createCaption() method
createCDATASection() method
createComment() method
createCSSStyleSheet() method 2nd
createDocument() method 2nd
createDocumentFragment() method
createDocumentType() method
createElement() method 2nd
createElementNS() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

createEntityReference() method
createEvent() method 2nd
createHTMLDocument() method
createNodeIterator() method 2nd
createProcessingInstruction() method
createRange() method 2nd
createTextNode() method 2nd 3rd
createTFoot() method
createTHead() method
createTreeWalker() method 2nd
creator property
CSS (Cascading Style Sheets) 2nd
 defining and using (example)
 DOM APIs for
 CSSStyleDeclaration object
 DOMImplementation object
 override styles
 traversing style sheets
 element display and visibility
 partial visibility
 element positioning
 example
 position attribute
 specifying position and size
 z-index attribute (stacking order)
 JavaScript, manipulating styles with
 DHTML animations
 dynamic bar charts (example)
 naming CSS attributes in JavaScript
 Netscape 4 Layer API
 style attributes
 Style object and
 style properties, Layer property equivalents
 style rules
 applying to documents
 determining precedence of
 style sheets, associating with documents
 versions of
CSS2Properties object 2nd 3rd
 property names, CSS attributes vs.
 style properties, working with
CSSCharsetRule object
CSSFontFaceRule object
CSSImportRule object
CSSMediaRule object
CSSPageRule object
CSSPrimitiveValue object 2nd
CSSRule object 2nd
CSSRuleList object
cssRules[] property 2nd 3rd
CSSStyleDeclaration object 2nd 3rd
CSSStyleRule object 2nd
CSSStyleSheet object 2nd
 creating
cssText property 2nd 3rd
CSSUnknownRule object
CSSValue object 2nd
CSSValueList object 2nd
cssValueType property 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ctrlKey property
 IE Event 2nd
 MouseEvent object
curly braces [See {}, under Symbols]
currentNode property
currentStyle property (IE 5 and later)
currentTarget property 2nd 3rd
cyclical references

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

\\\\d (digits, ASCII)
\\\\D (digits (ASCII), any character other than)
data property 2nd
data types 2nd
 arrays 2nd
 JavaArray class
 boolean
 converting
 automatic conversions
 explicit conversions
 Java to JavaScript
 numbers to strings
 objects to primitive values
 strings to numbers
 DOM
 floating-point 2nd
 functions as
 functions vs.
 Java 2nd
 JavaClass class
 JavaScript
 boolean
 Date objects
 numbers
 Object class
 strings
 LiveConnect
 Java to JavaScript conversion
 manipulating by value and by reference
 object [See also objects]
 null values
 object operands, converting to strings or numbers
 Object, Array, and Function
 of operands
 operators and
 primitive
 converting objects to
 reference types vs.
 wrapper objects
 strings
 property names
 TypeError exceptions
 typeof operator
date and time
Date object 2nd 3rd 4th 5th
 + operator, string concatenation with
 converting to primitive data type
 copying, passing, and comparing by reference
 localized values for
 methods, listing of
 Netscape 2, bugs in
dates and times
 cookie expiration date, setting
 current and last modified date, adding to HTML document
 last modification to document 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 time zones
days
 day of month, local time 2nd
 day of month, UTC time
 day of week, local time
 day of week, UTC time
deallocating memory
debug() function
debugging
 displaying messages in dialog box
 for/in loop, using
 outputting plain-text debugging messages
decimal places, specifying in number-to-string conversion
declaring [See also defining]
 array elements
 loop counter variable
 variables
 var statement
decodeURI() function
decodeURIComponent() function
decrement (--) operator 2nd
decrementing loop variables
default\: label (switch statement) 2nd
defaultCharset property
defaultChecked property
 Checkbox object 2nd
 Input object
 Radio object 2nd
defaultSelected property 2nd
defaultStatus property 2nd 3rd 4th
 displaying welcome message
defaultValue property 2nd 3rd
defaultView property
defensive coding
defer attribute
defining
 event handlers
 functions 2nd 3rd 4th 5th
 custom properties
 with function literals
 with Function() constructor
 Function() constructor vs. function literals
 problems using with statement
 scope
 methods
 object properties
 regular expressions
 alternation, grouping, and references
 character classes
 flags
 literal characters in
 match position, specifying
 repetition
delaying code execution 2nd
delete operator 2nd 3rd
deleteCaption() method
deleteCell() method
deleteContents() method 2nd
deleteData() method 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

deleteMedium() method
deleteRow() method 2nd
deleteRule() method
 CSSMediaRule object
 CSSStyleSheet object 2nd
deleteTFoot() method
deleteTHead() method
deleting
 array elements
 pop() 2nd
 shift() 2nd
 splice() 2nd
 cookies
 Document object
 object properties
 Option objects
 text within a Text node
 variables
descendant nodes
 reversing
description property
 MimeType object
 Plugin object
detach() method
 NodeIterator object
 Range object
detachEvent() method
detail property 2nd
DHTML (Dynamic HTML) 2nd 3rd
 animations using CSS and JavaScript
 cross-browser animation script
 CSS position attribute and
 feature testing for effects supported
 Internet Explorer 4
 Netscape 4, using in
dialog boxes 2nd 3rd
 confirmation
 debugging messages, displaying
 displaying HTML output in
 dynamically creating
 prompting messages
 Window object methods for 2nd
digital signatures
digits
 ASCII, regular expression character classes
 in identifier names
dir property 2nd
disabled property 2nd 3rd 4th 5th
dispatchEvent() method 2nd
display attribute
display_time_in_status_line() function (example)
displayNextFrame() function
distance() function
tags
 inserting debugging messages
 onmousedown attribute
division
 % (modulo) operator
 / (division) operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

do/while loops
 continue statements in
doctype property
tags, standards information in
Document object 2nd 3rd 4th 5th
 Anchor objects and
 anchors 2nd
 navigation window listing all anchors
 appearance and content, controlling
 applets
 capturing events (Netscape 4)
 color properties
 creating
 domain property
 dynamically generated documents
 embedded data
 event handlers and
 forms
 images
 event handlers
 image replacement, implementing ToggleButton with
 Internet Explorer properties
 last modified date
 links
 event handlers
 web crawlers and
 methods
 Netscape
 naming
 opening non-HTML documents
 properties
 Netscape
 registering event handlers on
 standards and
 write() method
document object model [See DOM]
document property
 Document object
 HTMLElement object
 Layer object 2nd
 Window object 2nd 3rd 4th
documentElement property 2nd
DocumentFragment object 2nd
documents
 currently displayed, reloading
 currently displayed, web address of
 loading and displaying new
DocumentType object
 creating
DOM (Document Object Model) 2nd 3rd 4th 5th
 browsers, defining
 conformance to standard
 Internet Explorer
 test suites for
 CSS style sheets, APIs for
 CSS2Properties object
 CSSStyleDeclaration object
 DOMImplementation object
 override styles

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 traversing style sheets
 DOMException object
 event handling (Level 2)
 dragging document elements (example)
 event interfaces and event details
 event modules and event types
 event propagation
 mixing with original event model
 registering event handler functions
 registering objects as event handlers
 synthesizing events
 EventException object
 features testing for conformance to
 HTML API
 adding content to documents
 class hierarchy
 DocumentFragment objects
 dynamically created table of contents
 finding specific document elements
 modifying a document
 naming conventions
 traversing a document
 interfaces, language-independent
 Internet Explorer 4, compatibility with
 modifying documents
 levels and features
 Netscape 4, compatibility with
 original event model, not supported
 Range API
 manipulating ranges
 start and end positions for ranges
 Traversal API
 filtering
 NodeIterator and TreeWalker
 tree structure
 Node objects
 W3C standard
 browser support 2nd
 color properties (Document), deprecation of
 versions (levels)
 XML documents, working with
domain attribute (cookie) 2nd
domain property 2nd 3rd 4th 5th
DOMException object
DOMImplementation object 2nd 3rd
dot [See ., under Symbols]
double data type (C/C++)
Double type (Java), in JavaScript
doubleValue() method 2nd
dragging
 DOM Level 2 event model (example)
 IE event model (example)
 Netscape 4 event model (example)
dynamic bar charts (example)
dynamic document generation 2nd
Dynamic HTML [See DHTML]2nd [See DHTML]
dynamically modifying hypertext link destinations

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

E constant (Math object)
e or E (exponential) notation
ECMA-262 standard (JavaScript language)
 versions
ECMAScript
 character sets in
 escape sequences
 expressions serving as array and object literals
 Netscape 4, incompatibilities with
 v1, Unicode characters in string literals
 v3
 array literals
 global variables and functions, listed
 identifiers, rules for
 object literal syntax
 reserved words, listed
 throw statement and Error class
Element object 2nd 3rd
elementFromPoint() method 2nd
elements
 array
 accessing
 adding new
 assigning functions to
 creating arrays
 length, specifying
 methods for manipulating
 reading and writing
 undefined
 DOM
 attributes
 setting attribute values on
 finding in document
 IE 4 and DOM
 form 2nd
 defining
 scripting
 HTML
 event handler attributes
 event handler function, assigning to
 JavaScript access to
 JavaScript objects corresponding to
 id attribute, applying style rules to specific
 positioning with CSS
 stacking order
elements property
elements[] property 2nd 3rd 4th 5th
 fieldsets and
else if statements
else statements
tags 2nd
embedded data, displaying
embedded images
embedded scripting languages
embedding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 JavaScript in HTML tags 2nd
 unnamed functions as literal data values in programs
embeds[] property 2nd
embolden() function
empty arrays
empty statements
enabledPlugin property
encodeURI() function
encodeURIComponent() function
encoding property 2nd 3rd
endContainer property
endOffset property
endsWith() method
entities property
Entity object
EntityReference object
enumerable object properties 2nd
enumerating object properties 2nd 3rd
environment variables, browser
equality operators
 Netscape, problems with
 rules for determining equality
error handlers
error messages, displaying with alert()
Error object 2nd 3rd
errors [See also exceptions]
 classes representing
 EvalError object
 failing gracefully
 input, checking for
 Java method arguments and types
 language version, suppressing
 onerror event handler 2nd 3rd
 RangeError object
 ReferenceError object
 SyntaxError object
 TypeError object
 URIError object
escape sequences 2nd
 listed
escape() function 2nd
eval() method
 JSObject object 2nd 3rd
 string values and String objects, handling
EvalError object
evaluating expressions
event attribute (tag, IE)
event handlers 2nd 3rd 4th 5th
 as HTML attributes
 Button object
 Document objects and
 defining event handlers
 writing to document in another frame/window
 for errors
 executing
 form elements 2nd
 JavaScript code for
 function, assigning to many elements
 functions, invoking directly

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 handleEvent() method and
 HTMLElement object 2nd
 image
 Image object
 Input object
 javascript\: URL as
 Link object 2nd 3rd
 onsubmit and onreset
 as properties
 registering
 functions
 IE event model
 mixing original event model and DOM Level 2
 objects as
 return values
 scope of 2nd
 HTML attributes and
 this keyword and
 Window object 2nd
event handling models
 DOM Level 2
 Internet Explorer
 Netscape 4
event keyword
Event object 2nd 3rd 4th
 bitmask constants
 currentTarget property
 Internet Explorer properties
 security restrictions on setting properties
Event object (IE)
 as global variable
Event object (Netscape)
event propagation
 bubbling 2nd
 capturing
 nested functions and
 Netscape 4 event model
 security restrictions on
 DOM Level 2 2nd
event property
 Window object
event target
event-driven programming
EventException object
EventListener object 2nd
eventPhase property 2nd
events
 captureEvents() method
 createEvent() method
 default actions by browser in response to
 event handling and
 event types and
 DOM modules for
 registering handler for type
 MutationEvent object
 releaseEvents() method
 routeEvent() method
 UIEvent object
EventTarget object 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

examples from this book, web site for
exception handling, try/catch/finally statement
exceptions
 DOMException
 EventException
 RangeException
 throwing
exclusive or (XOR) operator
exec() method 2nd
executable content, web page
executing JavaScript programs
 event handlers
 functions
 JavaScript URLs
 scripts
 Window and variable lifetime
execution
 deferring for script
 delaying for JavaScript code
 repeating periodically for JavaScript code
execution contexts 2nd
existence of objects, testing for
exiting loops
exp() function
expandEntityReferences property 2nd
expando property
expires attribute (cookie)
 setting
exponential notation 2nd
 number to string conversions
exponents, pow() function
expressions
 in array literal elements
 case, evaluating
 combining with comma (,) operator
 literal vs. variable values
 operators and
 data types of operands
 operator associativity
 operator precedence
 return statements and
 statements
 as values in object literals
extractContents() method 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

factorial() function
factorial() method
factory methods for creating objects (DOM)
failing gracefully
 browser and platform incompatibilities
 language version incompatibility
false (keyword)
feature testing
 for browsers
features
 DOM standard, testing support for 2nd
 security restrictions on
 same-origin policy
 Window object
fgColor property 2nd 3rd
Fibonacci numbers
fields (applet), accessing from JavaScript
tags
file\: URL
filename property
filename suffixes for MIME type
files
 JavaScript
 reading/writing
FileUpload object 2nd 3rd
 security restrictions
filter property 2nd
filtering
 filter change events
 NodeFilter object
 NodeIterator and TreeWalker
finally block (try/catch/finally statement)
finite numbers, testing for
first character in string, finding
first in, last out stack, implementing with array
firstChild property 2nd 3rd 4th
firstChild() method
fixed positioning, elements
flags, regular expression 2nd
Flash, ActionScript language
flattening array arguments
 concat()
 splice(), inserting arrays without
float data type
float keyword
floating-point data type 2nd
 floating-point literals
 JavaScript and
 parsing, string to number conversion
 rounding down to closest integer
floor() function
focus
 changing
 onfocus and onblur event handlers
 removing from element

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 transferring away from input element
 transferring to input element
 window losing
 window receiving
focus() method
 HTMLAnchorElement object
 HTMLInputElement object 2nd
 HTMLSelectElement object
 HTMLTextAreaElement
 Input object
 Window object 2nd 3rd
font family, determining for element
footers, HTML tables
for attribute (tag, IE)
for loops
 continue statements in
 labeled
 var statement in
for/in loops 2nd
 [] operator, using to print object property values
 associative arrays, using with
 continue statements in
 enumerable object properties 2nd
 enumerating object properties
 listing global variables with
 var statement in 2nd
form elements [See forms, elements]
Form object 2nd 3rd 4th 5th
 name attribute and
 submissions, security restrictions on
form property 2nd 3rd 4th
 form elements
 Input object
tags 2nd
 action attribute, javascript\: URL as value of
 forms[] array and
 name attribute
 onsubmit property
 target attribute 2nd
formatting
 dialog boxes, text in
 plain-text document
forms
 checkboxes in
 elements
 defining
 form containing all
 onsubmit attribute
 scripting
 types of
 FileUpload elements
 Hidden elements in
 HTMLFormElement object
 submitting
 validating input
 functions for
forms[] property
 Document object 2nd 3rd 4th 5th 6th
 HTMLDocument object 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Window object
forward and back, moving within browsing history
Forward button
forward() method
 History object 2nd
 Window object
fragments, document 2nd 3rd
Frame object
tags 2nd
frames 2nd [See also Window object]3rd 4th
 in client-side JavaScript
 color animation (example)
 JavaScript in interacting windows
 lifetime of
 names for
 navigation bar using History and Location objects
 printing
 reference to top-level Window object containing
 relationship between
 writing to document in another frame from event handlers
frames[] property 2nd 3rd 4th
tags
 onload event handler, defining
fromCharCode() method 2nd
fromElement property 2nd
function keyword
function literals 2nd 3rd
Function object
 arguments[] property
function statement 2nd
 Function() constructor vs.
Function() constructor
functions 2nd 3rd 4th
 () (function call) operator
 anonymous
 Arguments object
 assigning to event handler properties
 built-in
 call objects 2nd
 comparing by reference
 constructor 2nd 3rd
 as data
 passing to other functions
 data type conversion
 data types vs.
 defining 2nd 3rd
 constructor vs. function literals
 problems using with statement
 return statement
 event handler [See also event handlers]2nd
 assigning single to many elements
 IE event model
 invoking
 invoking directly
 registering
 removing
 scope of
 executing
 form validation

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 frames, using in different
 function calls
 function literals
 Function object
 methods
 properties
 prototype property
 Function() constructor
 global
 identifiers
 identity, comparing for
 invoking 2nd
 with event handlers
 JavaScript, from Java
 scheduling or canceling after set delay
 mathematical 2nd
 methods vs.
 multiple scripts and
 names, case-sensitivity in
 nested
 lexical scoping and
 predefined, listing of
 as reference types
 return statement
 scope
 switch statement inside
 type of, with enhanced capabilities
 variable scope and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

g attribute (global matching) 2nd
g flag (regular expressions) 2nd 3rd
garbage collection 2nd
 mark-and-sweep algorithm
 reference counting
getArgs() function
getAttribute() method 2nd 3rd
 HTMLELement object
getAttributeNode() method 2nd 3rd
getAttributeNodeNS() method
getAttributeNS() method
getClass() function 2nd
getComputedStyle() method 2nd
getCounterValue() method
getDate() method
getDay() method
getElementById() method
getElementsByName() method
getElementsByTagName() method
 Document object 2nd
 Element object
getElementsByTagNameNS() method
 Document object
 Element object
getFirstChild() method
getFloatValue() method 2nd
getFullYear() method
getHours() method
getMember() method 2nd
getMilliseconds() method
getMinutes() method
getMonth() method
getNamedItem() method
getNamedItemNS() method
getOverrideStyle() method 2nd
getPropertyCSSValue() method 2nd
getPropertyPriority() method
getPropertyValue() method 2nd 3rd
getRectValue() method
getRGBColorValue() method 2nd
getSeconds() method
getSelection() method
getSlot() method 2nd
getStringValue() method
getTime() method
getTimezoneOffset() method
getUTCDate() method
getUTCDay() method
getUTCFullYear() method
getUTCHours() method
getUTCMilliseconds() method
getUTCMinutes() method
getUTCMonth() method
getUTCSeconds() method
getWindow() method 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

getYear() method
global methods
global object 2nd 3rd
 constructor functions for classes
global pattern matching 2nd 3rd 4th
global properties 2nd
 regular expressions
global property
global scope
 event handler functions and
 functions and
 functions created with Function()
global variables 2nd
 IE Event object as
 predefined, listing of
 reference counting and
 undefined
GMT (Greenwich Mean Time) 2nd
 local time, difference from
 string representation of date and time
go() method
 bugs in
graphics
greater than (>) operator
greater than or equal (>=) operator 2nd
greedy matching
green property
grouping in regular expressions
GUIs (graphical user interfaces)
 HTML forms containing elements of

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

handleEvent() method 2nd 3rd
hasAttribute() method
hasAttributeNS() method
hasAttributes() method
hasChildNodes() method
hasFeature() method 2nd 3rd
hash property
 Link object
 Location object
hasOwnProperty() method 2nd 3rd
tags
 defining functions in
 document color properties, setting in
 scripts appearing in
headers, HTML tables
 deleting
height attribute 2nd
height property
 Document object 2nd
 Image object 2nd 3rd 4th
 Screen object 2nd
hexadecimal numbers 2nd
 Latin-1 or Unicode character code, specifying as
Hidden object 2nd 3rd 4th
hidden property
hiding scripts from browsers
hierarchy
 class
 DOM event interfaces
 HTML document structure
 JavaPackage class
 JavaScript objects, JSObject class and
 objects, client-side
History object 2nd 3rd
 privacy issues
 security restrictions
history property 2nd 3rd
home() method
host property
 Link object
 Location object 2nd
hostname property
 Link object
 Location object
hours
 local time 2nd
 UTC time 2nd
href attribute
href property 2nd
 Link object 2nd
 Location object 2nd
hspace property 2nd
HTML [See also Document object]
 comments
 CSS style sheets, associating with documents

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 DOM API
 naming conventions
 Dynamic [See DHTML]
 dynamically generated documents
 embedding JavaScript in 2nd
 event handlers
 tags
 URLs
 links
 parsing process
 quotation marks in strings
 tree structure of documents
 W3C DOM standard
HTML attributes
 alink, link, and vlink
 checked
 class 2nd
 defer
 DOM elements representing
 event handler
 event handlers as
 onmousedown
 return values
 scope and
 href
 id
 style sheet rules and
 language 2nd 3rd
 lowsrc
 mayscript
 multiple
 name
 elements
 tags
 onblur
 onclick 2nd 3rd
 onfocus
 onload
 onmouseover
 onmove
 onresize
 onsubmit
 onunload
 src 2nd 3rd 4th
 style
 target 2nd 3rd
 type
 value
HTML forms
 forms[] array
 JavaScript event handlers in
 JavaScript, interacting with
 loan calculator (example)
 verifying form input
HTML tags 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th
20th 21st 22nd 23rd 24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th
38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th 48th 49th 50th 51st 52nd
 and
 case and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 corresponding HTMLElement
 HTMLElement object and
 not supporting event handler attributes
 or
 strings, placing within
 style attribute, specifying CSS styles with
HTMLAnchorElement object
HTMLBodyElement object
HTMLCollection object
HTMLDocument object 2nd 3rd
 creating 2nd
HTMLElement object 2nd 3rd
 Internet Explorer 4
HTMLEvents module 2nd
HTMLFormElement object 2nd
HTMLInputElement object 2nd
HTMLOptGroupElement objects
HTMLOptionElement object
HTMLSelectElement object
HTMLTableCaptionElement object
HTMLTableCellElement object
HTMLTableColElement object
HTMLTableElement object
HTMLTableRowElement
HTMLTableSectionElement object
HTMLTextAreaElement object
HTTP connections, cookies and
HTTP requests
 User-Agent field, determining browser from
 user-agent header
HTTPS protocol
hypertext links [See links]
Hypertext Markup Language [See HTML]

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

i attribute (case-insensitive matching) 2nd
i flag (regular expressions) 2nd
id attribute
 Layer object
 style sheet rules and
id property 2nd 3rd
identifier property
identifiers
 arguments
 case-sensitivity in
 elements, getting by
 unique, function for
identity (===) operator 2nd
 rules for determining identity of values
IE [See Internet Explorer]
if statements 2nd
if/else statements
 boolean values in
 else if statement with
tags
ignoreCase property 2nd
ignoring incompatibility problems
Image object 2nd
 event handlers
 image replacement
 implementing ToggleButton with
 src property, using
 name attribute and
 off-screen images, caching and
 properties, accessing
 properties, size, borders, and resolution
images, rollover and animation effects
images[] property 2nd 3rd 4th 5th
tags 2nd 3rd 4th
 images[] array and
immutability of strings
implementation property 2nd
importNode() method
in (operator)
in clause (for/in loops)
including JavaScript files
increment (++) operator 2nd 3rd
incrementing loop variables
indenting code 2nd
index property
 Array object
 Option object
indexes
 array 2nd
 sparse
 associative arrays
 selected options
 string and array, starting with 0
indexOf() method 2nd 3rd
inequality (!=) operator 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

infinity
 division by 0, yielding
-Infinity (negative infinity)
Infinity property 2nd
inheritance 2nd
 class-based
 prototype-based vs.
 superclasses and subclasses
 classes, client-side JavaScript
 DOM interfaces
 from Object object
 object properties and
init() method (Applet), using JavaScript from
initEvent() method
initializing
 arrays
 event object properties
 loop variables
 object properties
 objects
 variables, with statements and
initMouseEvent() method
initMutationEvent() method
initUIEvent() method
inline frame
inline styles
 computed style vs.
 override styles vs.
innerHeight property
innerHTML property 2nd 3rd
innerText property
 Anchor object
 HTMLElement object
innerWidth property
input
 form, validating 2nd
 prompt() method
Input object
input property
tags
 buttons, creating
 checkboxes, creating
 FileUpload element, creating
 Hidden element, creating
 onclick attribute
 Password element, creating
 Radio element, creating
 Reset element, creating
 Submit object, creating
 Text element, creating
insertAdjacentHTML() method 2nd
insertAdjacentText() method 2nd
insertBefore() method 2nd 3rd
insertCell() method
insertData() method 2nd
inserting new elements into arrays
 push()
 splice()
 unshift()

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

inserting text (within Text node)
insertNode() method
insertRow() method
 HTMLTableElement
 HTMLTableSectionElement
insertRule() method
 CSSMediaRule object
 CSSStyleSheet object 2nd
instance properties, RegExp objects
instanceof operator
instances
 methods
 properties
instructions, processing
integer literals
Integer type (Java), in JavaScript
integers
 in array indexes 2nd
 bitwise operators, requiring as operands
 converting to strings
 JavaScript and
 parsing, string to number conversion
interacting windows
interacting with users
interfaces, DOM 2nd
 event
 Event 2nd
 MouseEvent 2nd
 MutationEvent 2nd
 UIEvent 2nd
 language-independent
 NodeList
 Range
internalSubset property
Internet Explorer
 case sensitivity
 client-side JavaScript features for browser versions
 Document object properties
 elementFromPoint() method (Document) 2nd
 embedded data, displaying with ActiveX controls
 event model 2nd
 dragging document elements (example)
 event bubbling
 Event object
 registering event handlers
 Event object properties
 image properties
 Java objects, treating as ActiveX controls
 Java, support of
 JScript interpreter, use of
 JSObject class definition, finding
 navigate() method (Window) 2nd
 Navigator object, support of
 nonstandard JavaScript in
 scrollLeft and scrollTop properties (document.body)
 security zones
 VBScript embedded in
 Version 3
 cookie property (Document)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 go() bugs
 Version 4
 DHTML in
 DOM compatibility with
 innerText property (tags)
 userLanguage property
 Version 5
 currentStyle property
 DOM standard, conformance to
 proprietary API for traversing style sheets
 Version 6
 CSS position and size attributes
 DOM standard, conformance to
 Window object properties
interpreters, JavaScript
 ECMA-262 standard-compliant versions
 embedded in web browsers
 in web servers
intervals
 clearing
 setting
inverse cosine
invoking functions 2nd 3rd
 () (parentheses), use of
 Array() constructor
 call() and apply() methods
 with event handlers
 event handler
 order of
 JavaScript, from Java
 as object methods
 scheduling or canceling after set delay
invoking methods
isFinite() function 2nd
isNaN() function 2nd 3rd
ISO Latin-1 character encoding
isPrototypeOf() method 2nd 3rd
isSupported() method
item() method
 CSSRuleList object
 CSSStyleDeclaration object
 CSSValueList
 HTMLCollection object
 MediaList object
 NamedNodeMap object
 NodeList object
 StyleSheetList object
iterations
iterators (NodeIterator)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Java 2nd
 applets 2nd [See also applets]3rd
 arrays
 char data type
 classes, using directly from JavaScript
 controlling from JavaScript
 data types
 manipulating JavaScript types
 JavaScript interpreter (Rhino)
 JavaScript, using from
 JSObject class
 methods, using in JavaScript
 objects
 packages 2nd
 switch statements
java property
JavaArray object 2nd 3rd
JavaClass object 2nd
 passing from JavaScript to Java
javaEnabled() method
JavaObject object 2nd 3rd
 creating new
 JavaScript conversion of
 passing from JavaScript to Java
JavaPackage object 2nd
JavaScript
 browsers not supporting, compatibility with
 data types
 converting Java types to JavaScript
 Java manipulations of
 delete operator
 escape sequences
 as general-purpose programming language 2nd
 Java classes, using directly
 Java methods
 JavaArray class
 JavaClass class
 JavaObject class
 JavaPackage class
 Java, controlling from
 Java, using from
 JSObject class
 lexical structure
 misconceptions about
 name property (Window), 1.0 vs. 1.1
 quotation marks in strings
 reserved words
 security
 restricted features
 same-origin policy
 security zones and signed scripts
 server-side
 switch statements, differences from other languages
 types, not specified in
 Version 1.1, reference counting for garbage collection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Version 1.2
 continue statement bug 2nd
 Netscape 4.0, incompatibilities with
 specifying in language attribute
 versions
 client-side and core language
 compatibility
 explicitly testing for
javascript\: pseudoprotocol specifier 2nd 3rd 4th
join() method 2nd
JScript interpreter [See Microsoft, JScript interpreter]
JSObject object 2nd 3rd
 applets, using in
junk mail

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

keyboard events [See also event handlers; Event object; events]
 HTMLElement properties for
keyboard focus method) [See focus focus (]
keyboard modifier keys (events)
keyCode property (IE Event) 2nd
keywords
 break 2nd
 case
 case sensitivity in
 catch
 do
 event
 float
 for
 function 2nd
 HTML attribute names, conflicts with
 identifiers, illegal use as
 listed (ECMAScript v3)
 switch
 this [See this]
 undefined
 var
 while

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

label property
tags
labels, statement
 for and break statements
lambda functions 2nd
lang property 2nd 3rd
language
 operating system, default for
 user preference for
language attribute 2nd 3rd 4th
 specifying JavaScript version
language property
language version compatibility
 language attribute (), setting
 loading new (compatible) page
 suppressing version-related errors
 testing version explicitly
largest number representable in JavaScript
last character of strings, getting
last modified date
 adding to HTML document
 lastModified property 2nd 3rd
lastChild property 2nd
 Node object
lastChild() method
lastIndex property 2nd
 String object methods and
lastIndexOf() method
Latin-1 character set, escape sequences
Layer API, Netscape 2nd
 Layer object
 Layer object properties with CSS equivalents
Layer object
 capturing events (Netscape 4)
tags 2nd 3rd
layers[] property
 Document object
 Layer object
layerX, layerY properties (Document)
least-common-denominator approach
left attribute 2nd
left property 2nd
 Layer object
left-to-right associativity (L)
length property 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th
 Arguments object 2nd 3rd
 arguments[] array
 Array object 2nd
 arrays 2nd
 Form object
 Function object 2nd
 History object 2nd
 HTMLFormElement object
 Input object
 JavaArray object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Plugin object
 Select object
 String object
 strings
 Window object
length, arrays (Netscape 4 implementation, JavaScript 1.2)
less than (<) operator
less than or equal (<=) operator
letters, in identifier names
levels, DOM [See DOM]
lexical scoping
 functions executed in different frames
 nested functions and
lexical structure, JavaScript
 case sensitivity
 comments
 identifiers
 keywords
 literals
 Unicode character set
 whitespace and line breaks
lifetime
 cookies
 variable
line breaks
lines, matching beginning/end of
Link object 2nd
 event handlers 2nd
 random links (example)
 web crawlers and
link property
linkColor property 2nd 3rd
links
 buttons vs.
 colors
 Document properties for 2nd 3rd
 visited, in document
 onmouseout event handler
 setting status line in
 user confirmation for following
links[] property 2nd 3rd 4th 5th
LinkStyle object
listeners for events [See event handlers]
listStyle property
literals
 array 2nd
 comparing
 in expressions
 floating-point
 function 2nd
 Function() constructor vs.
 hexadecimal
 integer
 numeric
 object 2nd
 octal
 regular expression 2nd
 string
LiveConnect

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Applet object and
 data types
 Java manipulation of JavaScript types
 JavaArray class
 JavaObject class
 manipulating Java types from JavaScript
LiveVideo plugin (Netscape)
ln10 constant
ln2 constant
load() method
 Cookie object
 Document object
 Layer object
loading web pages
loadXML() function
loan payment calculation (example program)
local scope
local time 2nd 3rd
 date, string representation of
 day of month and week
 GMT or UTC, difference from
 hours, setting in
 milliseconds, setting in
 year expressed in
 year, setting 2nd
local variables
 cyclical objects, garbage collection and
localeCompare() method 2nd
localization
 arrays, string representation of
 date and time
 numbers, formatting for locales
 objects, string representation of 2nd 3rd 4th
 strings
 converting 2nd
localName property
location bar, visibility in window
Location object 2nd 3rd 4th 5th
 navigation bar using 2nd
location property
 Document object 2nd 3rd
 HTMLDocument object
 Window object 2nd 3rd 4th 5th
log() function
log10e constant
log2e constant
logical operators
long data type
look-ahead assertions 2nd
loops
 continue statement and
 do/while
 exiting with break statement
 for
 for/in 2nd 3rd
 debugging, using in
 enumerating object properties
 identifiers
 incrementing counter controlling

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 labeling
 while
lowercase [See case]
lowsrc attribute
lowsrc property
lvalues

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

m attribute (multiline matches)
m flag (regular expressions) 2nd
Macromedia Flash
magic cookies
mailto\: protocol specifier, security restrictions on
makeBarChart() function
makeTable() function
maketoc() function
malicious programs, guarding against
tags, target attribute
margin properties, setting
mark-and-sweep garbage collection
markers, HTML comments 2nd
match() method 2nd
 lastIndex property and
Math object 2nd
 max() function
Math property
mathematical functions
 arithmetic operators
 computation
max() function 2nd
 Math object
MAX_VALUE constant 2nd
maxLength property
mayscript attribute
media property 2nd 3rd
MediaList object
mediaText property
members, class
 Circle class, defining for
 class methods
 class properties
 instance methods
 instance properties
memory
 deallocating (garbage collection)
 reclaiming through garbage collection
 mark-and-sweep algorithm
menu bar, visibility in window
message property
 Error object 2nd 3rd
 EvalError object
 RangeError object
 ReferenceError object
 SyntaxError object
 TypeError object
 URIError object
metacharacters in regular expressions
metaKey property 2nd
method property 2nd
methods 2nd 3rd 4th
 Array object
 built-in classes, defining for
 class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 defining and invoking
 Document object
 DOM interfaces
 factory, for creating objects (DOM)
 Function object 2nd
 functions vs.
 instance
 Java
 invoking from JavaScript
 using in JavaScript
 object 2nd
 invoking functions as
 RegExp object, for pattern matching
 String object, using regular expressions
 Window object
Microsoft
 Internet Explorer [See Internet Explorer]
 JScript interpreter 2nd
 versions
 VBScript
 embedded in browsers
 language attribute for
milliseconds
 local time 2nd
 representation of specified Date object date
 setting for date and time
 UTC time
 setting for date
MIME types
 non-HTML documents
 scripting language, specifying as
MimeType object
mimeTypes[] property
min() function
MIN_VALUE constant
minutes
 local time 2nd
 UTC time
 setting for date
modification date, Document object 2nd 3rd
modifiers property 2nd
modules, DOM
 events
 interfaces associated with
 style sheets and CSS
 testing support for
modulo (%) operator 2nd
monitors, size and color-depth
months
 local time
 setting in
 UTC time
 setting for date
more than (>) operator
mouse events
 HTMLElement properties for
 Link object
mouse pointer, X and Y coordinates 2nd
mousedown event handler, invoking from beginDrag() function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

mousedown events
 initializing
MouseEvent object 2nd 3rd
moveAbove() method 2nd
moveBelow() method 2nd
moveBy() method
 Layer object 2nd
 Window object 2nd 3rd
moveTo() method
 Layer object 2nd
 Window object 2nd 3rd 4th
moveToAbsolute() method
movies embedded in web page, playing with LiveVideo
moving a window (example code)
Mozilla
 client sniffers, prewritten code
 CSS style and position attributes
 DOM standard, conformance to
 objects, registering as event handlers
 open-source JavaScript interpreter, web site
 test suites for standards
multidimensional arrays 2nd
 accessing with JavaArray objects
multiline matches 2nd
multiline property (RegExp)
multiple attribute ()
multiple property
multiple scripts in document
multiplication (*) operator
MutationEvent object 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

name attribute
 elements
 Form, Image, and Applet objects
 Layer object
 tag
 tags 2nd
name property 2nd 3rd 4th 5th
 Anchor object 2nd
 Error object 2nd
 EvalError object
 form elements
 Form object
 Image object
 Input object 2nd
 Layer object
 Plugin object
 RangeError object
 ReferenceError object
 SyntaxError property
 TypeError object
 URIError object
 Window object 2nd 3rd 4th
namedItem() method
NamedNodeMap object
names [See also identifiers]
 browser
 browser window
 class and object, case conventions
 Document objects
 HTML conventions for
 JavaPackage hierarchy
 of properties, as strings
 windows and frames
namespace
 Attr node
 attribute
 checking for
 removing
 attribute nodes
 document elements
 element 2nd
namespaceURI property
NaN (not-a-number) 2nd 3rd 4th 5th 6th 7th
 0/0, yielding
 comparing values for identity
 comparison of values
 global property
 isNaN() function
 string to number conversions
navigate() method
navigation bar, using History and Location objects
navigation window for document, listing all anchors
Navigator object 2nd 3rd
navigator property 2nd 3rd
negating character class elements

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

negation, unary operator (-)
negative infinity (-Infinity)
negative look-ahead assertion 2nd
NEGATIVE_INFINITY constant
nested dynamic elements
nested functions
 CSS-based animation
 event handler
 Netscape 4 event model
 lexical scoping and
 listener objects and
nested layers
nesting
 array literals
 arrays
 if statements with else clauses
 object literals
Netscape
 case sensitivity
 client-side JavaScript features for browser versions
 Document object methods
 Document object properties
 DOM standard conformance, test suites for
 Event object constants
 Event object properties
 image properties
 Java, support of
 JavaScript 1.2 (language attribute, tag)
 Array methods and
 JavaScript interpreter
 JavaScript versions
 LiveConnect
 Java classes, using directly
 plugins, displaying embedded data
 Version 2
 bgColor property, Unix platform workaround
 bugs in Date object
 go() bugs
 onmouseover, onmouseout event handlers
 tags
 Version 3
 garbage collection (JavaScript 1.1)
 LiveConnect data conversion
 onclick event handler (not supported)
 tags
 Version 4
 DHTML in
 DOM compatibility with
 equality and inequality operators
 event model 2nd
 JavaScript 1.2 incompatibilities 2nd
 JavaScript, nonstandard uses in
 security, signed scripts
 text property (tags)
 Version 6
 CSS position and size attributes
 DOM standard, conformance to
 Mozilla code, basing on
 objects, registering as event handlers

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 oneror handler, bugs in
 security, signed scripts
 web servers
 embedded JavaScript in
 JavaScript interpreter in
 Window object methods
 Window object properties
netscape property
new Array() function
new operator 2nd 3rd 4th 5th
 constructor function, using with
 creating objects
 JavaClass object and
newlines
 \\\\n, in strings 2nd
 appearing between tokens
 break statements and
 formatting, plain-text document
news\: URL, security restrictions on submissions to
newValue property
next property (cyclical objects), setting to null
nextNode() method
 NodeIterator object 2nd
 TreeWalker object
nextSibling property 2nd
 Node object
nextSibling() method
Node object
 properties defined by
NodeFilter object 2nd
NodeIterator object 2nd
 creating
 creating and using
 filtering
NodeList object 2nd 3rd
nodeName property
nodes
 Attr
 creating and adding to documents
 DocumentFragment
 filtering with NodeIterator and TreeWalker
 importing
 moving within document tree
 NamedNodeMap object
 Range object containing single
 related to target node of event
 reversing
 traversing
nodeType property 2nd 3rd
nodeValue property
non-greedy matching
non-HTML documents
non-identity (!==) operator
non-word boundary (\\\\B) metacharacter
nonalphanumeric characters in regular expressions
normalize() method
tags
not equal to (!=) operator
NOT operator

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ! (logical NOT)
 ~ (bitwise NOT)
not-a-number [See NaN]
Notation object
notationName property
notations property
null (keyword)
 breaking cyclical references
 testing for object existence
null values, identity of
Number object 2nd
 localized values for
 number-to-string conversion methods
Number(), calling as function
numbers 2nd 3rd [See also Number object]
 binary
 comparing by value
 complex, defining class for
 converting
 converting between JavaScript and Java
 converting JavaObject objects to
 converting strings to/from
 converting to strings 2nd
 copying, passing, and comparing by value
 finite, testing for
 floating-point 2nd 3rd
 hexadecimal
 identifiers, rules for use in
 Infinity, NaN, and Number values
 integer literals
 JavaScript range of 2nd
 NaN
 Number object
 operations on
 pseudorandom
 rounding 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object context, using strings in
Object data type
object literals 2nd 3rd
Object object 2nd
 hasOwnProperty() method
 inheritance from
 isPrototypeOf() method
 propertyIsEnumerable() method
 toLocaleString() method
 toString() method
 obtaining class value
 user-defined objects
 valueOf() method
tags
Object(), calling as function
object-oriented programming
 inheritance
 methods
objects 2nd 3rd 4th [See also JSObject object; Object object]5th
 access operators
 Array
 arrays vs.
 as associative arrays 2nd 3rd
 call objects 2nd
 classes for
 complex number class, defining
 hierarchy
 client-side JavaScript, case insensitivity in
 comparing by reference
 constructor property
 converting strings to
 converting to primitive data type 2nd
 converting to strings
 copying, passing, and comparing by reference
 creating 2nd
 with constructor function and new operator
 object literals, using
 creation operator
 Date
 delete operator and
 DOM
 behaving as JavaScript arrays
 factory methods for creating
 embedded in browsers, JavaScript interaction with
 error
 Error
 existence, testing for
 Function 2nd
 global
 handler functions, order of invoking
 hierarchy, client-side
 HTML document content
 identity, comparing for
 inheritance from prototypes
 instance methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 instance properties
 JavaArray object
 JavaClass object
 JavaObject object 2nd
 JavaScript conversion of
 JavaPackage object
 JavaScript 2nd [See also individual object names]
 corresponding to HTML elements
 Date object
 Document object
 Form object and Form element objects
 Navigator object
 Screen object
 setting properties and array elements from Java
 Window object
 JSObject objects
 methods 2nd 3rd
 primitive value of 2nd
 properties
 deleting
 enumerating 2nd
 same-origin policy
 setting and querying
 variables as
 prototype 2nd 3rd 4th
 inheritance and
 as reference types
 reference counting
 RegExp
 registering as event handlers
 strings vs.
 with statement and
 wrapper objects 2nd
octal numbers 2nd
 Latin-1 characters, escape sequences
off-screen images, caching and
offset() method
offsetHeight property
offsetLeft property
offsetParent property
offsetTop property
offsetWidth property
offsetX, offsetY properties (IE Event) 2nd
onabort event handler 2nd
onblur event handler
 form elements
 Input object
 window losing keyboard focus
onchange event handler 2nd
 FileUpload object
 form elements
 FileUpload
 Radio and Checkbox
 Select
 text fields
 Input object
 Select object
 Text object
 Textarea object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

onclick event handler 2nd 3rd 4th 5th
 Button object
 Checkbox object
 form elements
 Radio and Checkbox
 HTMLElement object
 Input object
 Link object 2nd
 Reset object
 Submit object
 tags
ondblclick event handler
onerror event handler 2nd
 Image object
 Window object
 suppressing language version errors
onfocus event handler
 form elements
 Input object
 Window object
onhelp event handler
onkeydown event handler 2nd
onkeypress event handler 2nd
onkeyup event handler 2nd
onload event handler 2nd
 Image object
 Window object
onmousedown event handler 2nd
 Netscape 4
onmouseout event handler 2nd 3rd
 HTMLElement object
 image rollover effect, creating
 Link object
 Netscape 2 and 3 (Windows), defining for 2nd
onmouseover event handler 2nd 3rd
 HTMLElement property
 image rollover effect, creating
 Link object
 status line in hyperlink, setting
 tag
onmouseup event handler 2nd 3rd
onmove event handler 2nd
onreset event handler 2nd 3rd 4th
onresize event handler
onsubmit event handler 2nd 3rd
 element 2nd
onunload event handler
 Window object
open() method
 Document object 2nd 3rd
 creating new documents
 non-HTML documents
 HTMLDocument object
 Window object 2nd 3rd 4th 5th
 dynamically creating dialog with Document methods
 specifying undefined return value
open-source JavaScript interpreters 2nd
opener property (Window) 2nd 3rd
 browser compatibility problems, avoiding

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Opera browser, support for client-side JavaScript
operands
operating systems, default language
operators 2nd
 arithmetic 2nd 3rd
 array and object access
 assignment
 associativity of
 bitwise
 comma (,) 2nd
 comparison
 conditional
 data types of operands
 delete 2nd
 equality and identity
 equality and inequality, Netscape 4 problems with
 function call
 in
 increment and decrement
 instanceof
 logical
 new (object creation)
 operands
 precedence of 2nd 3rd
 relational
 shift
 string 2nd
 typeof
 void
tags
Option object 2nd 3rd
tags
Option() constructor
options
 HTMLOptionElement object
 Select object
options[] property
 Input object
 Select object 2nd 3rd
 null values in
OR (|) operator
OR (||) operator 2nd
order
 alphabetical
 of operations
original event model 2nd
 events and event types
 mixing with standard (DOM Level 2)
outerHeight property
outerHTML property 2nd
outerText property 2nd
outerWidth property
output
 alert() method
 HTML, displaying with alert() method
overflow attribute
override style sheets
override styles
ownerDocument property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ownerElement property
ownerNode property
ownerRule property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Packages object (Netscape)
packages property
Packages property (Window)
packages, Java 2nd 3rd
page YOffset property
pages
 cookies associated with
 displaying
pageX property
 Event object (Netscape)
 Layer object
pageX, pageY properties (Event object, Netscape)
pageXOffset property 2nd 3rd
pageY property
 Event object (Netscape)
 Layer object
pageYOffset property 2nd
paragraphs, converting to uppercase
parent node property
parent nodes
 changing for child nodes
parent property
 Window object 2nd
parentElement property
parentheses , under Symbols) [See (]
parentLayer property
parentNode property
 Node object
parentNode() method
parentRule property 2nd
parentStyleSheet property 2nd
parentWindow property
parse() method
parseFloat() function 2nd
parseInt() function 2nd
parsing HTML
passing
 by reference
 different meanings of
 strings
 by value
 by reference vs.
Password object 2nd 3rd 4th
path attribute (cookie) 2nd
pathname property
 Link object
 Location object 2nd
pattern matching (and regular expressions) 2nd 3rd
 defining regular expressions
 alternation, grouping, and references
 character classes in
 flags
 literal characters in
 match position, specifying
 repetition

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 RegExp object 2nd
 methods
 string methods for
 strings, searching for matches 2nd
 substring matches, replacing
performance, caching JavaScript code
Perl
 JavaScript, comparison to
 RegExp features not supported in JavaScript
 regular expression syntax
permanence of variables
persistence, Window and variable lifetime
personal bar of bookmarks
pi constant
pixel units
pixelDepth property
plain-text document, creating
platform property 2nd
platforms
 compatibility issues
 defensive coding for incompatibilities
 failing to resolve
 feature testing
 ignoring incompatibilities
 server-side scripts
 workarounds
Plugin object
plugins 2nd 3rd
 updating plugins[] array
plugins[] property
 Document object
plus sign [See +, under Symbols]
point object, creating and initializing
pop() method
pop-up dialogs [See dialog boxes]
port property
 Link object
 Location object
position attribute
 pixel units, specifying in
 values for
positioning elements with CSS
 display and visibility attributes
 positioning example
 specifying position and size
 standardization process
 visibility (partial), overflow and clip attributes
 z-index attribute
positioning properties, unit specifications for
positive look-ahead assertion 2nd
positive or negative Infinity
positive or negative infinity
 testing for
POSITIVE_INFINITY constant
post-decrement operator
pow() function
pre-increment and post-increment operator
precedence
 CSS style rules, determining

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 operator 2nd
 + (concatenation) operator
precision, number
predefined functions
predefined functions and global variables
predefined JavaScript elements
 as global object properties
 constructors
prefix property
preventDefault() method 2nd 3rd
 synthesized events and
previewing events before processing (Netscape)
previousNode() method
 NodeIterator object 2nd
 TreeWalker object
previousSibling property 2nd
 Node object
previousSibling() method
prevValue property
primitive data types
 converting objects to 2nd
 converting values from one type to another
 Java char, converting to JavaScript number
 JavaScript
 converting JavaObject objects to 2nd
 numbers
 numbers, converting to Java types
 strings
 numbers, strings, and booleans
 reference types vs. 2nd
 wrapper objects for
primitiveType property 2nd
print() function
print() method
 Window object
privacy issues, JavaScript programs and
ProcessingInstruction object 2nd
programming languages
 JavaScript as
 typed versus untyped
programs (JavaScript), executing
 event handlers
 functions
 JavaScript URLs
 scripts
 Window and variable lifetime
prompt() method 2nd 3rd 4th
properties
 class
 client-side JavaScript, case insensitivity in
 CSS2Properties
 defined by DOM interfaces
 form elements
 function
 defining custom
 prototype
 global, predefined
 HTML API (DOM)
 instance 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 object 2nd 3rd
 Anchor
 applets
 assigning functions to 2nd
 constructor function, creating with 2nd 3rd
 Cookie
 CSS2Properties
 deleting
 Document 2nd 3rd
 embedded data
 enumerable
 enumerating
 Event 2nd
 event handler attributes as
 event handler return values
 event handler, assigning function to 2nd
 Form 2nd
 global
 HTMLElement
 Image 2nd
 inheritance from Object class
 Input
 JavaPackage hierarchy
 JavaScript binding of DOM API 2nd
 JavaScript, corresponding to CSS style attributes
 Layer
 Layer, with CSS equivalents
 Link 2nd 3rd
 locally defined, checking for 2nd
 Location
 names as strings
 Navigator
 prototypes and inheritance
 same-origin policy
 Screen
 setting and querying
 setting from Java
 undefined 2nd
 Window
properties, object
 arguments
 delete operator and
 deleting
 for/in statement and
 Function
 looping through
 Navigator object
 Window object
propertyIsEnumerable() method 2nd 3rd
protocol property
 Link object
 Location object 2nd
prototype objects 2nd 3rd 4th 5th
 built-in classes
 Circle class, defining with
 inheritance and
 class-based inheritance vs.
 isPrototypeOf() method
 multiple frames and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

prototype property
 constructor functions
 Function object
 functions
protptype objects
 inheritance and
pseudorandom numbers
public fields (applets), accessing from JavaScript
publicId property 2nd 3rd
push() method
 Netscape 4 implementation, JavaScript 1.2

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

query strings
quotation marks in strings

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Radio object 2nd 3rd 4th 5th
radix (base)
 parseInt() function, specifying for
random links (example)
random() function
Range API, DOM 2nd
 manipulating ranges
 start and end positions for ranges
Range object 2nd
 creating
 representing single Node or subtree document
RangeError object
RangeException object
reading
 array elements
 cookies
 files
 individual characters from strings
 object properties
readOnly property 2nd
readyState property
real numbers, representing in JavaScript
reason property (IE Event)
Rect object 2nd
Rectangle object, constructor function
recursive node-reversal function
red property
red, green, and blue color values
reference data types 2nd
 copying, passing, and comparing object
ReferenceError object
references
 in arrays
 comparing for equality
 counting for garbage collection
 cyclical
 manipulating data values by
 object, passing to constructor function
 passing by value
 in regular expressions
 to sibling frames
referrer property 2nd 3rd 4th
refresh() method 2nd
RegExp object 2nd 3rd 4th 5th
 constructor for
 instance properties
 methods for pattern matching
registering event handlers
 functions
 addEventListener(), this (keyword) and
 Internet Explorer event model
 mixing original event model and DOM Level 2
 Netscape 4 event model
 objects as
 security restrictions on

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 temporarily
regular expressions
 replacing substrings that match
 string methods for
 strings, searching for matches 2nd
relatedNode property
relatedTarget property 2nd
relational operators
 comparison
 in operator
 instanceof
relative positioning, elements
releaseEvents() method 2nd
reload() method 2nd
remainder (%) operator
remembering client information
remove() method
 Cookie object
 HTMLSelectElement
removeAttribute() method 2nd 3rd 4th
removeAttributeNode() method
removeAttributeNS() method
removeChild() method 2nd 3rd
removeEventListener() method 2nd
 mixing original event model and DOM Level 2
removeMember() method
removeNamedItem() method
removeNamedItemNS() method
removeProperty() method 2nd
repetition in regular expressions
 non-greedy
replace() method
 Location object 2nd 3rd
 String object 2nd
 lastIndex property and
replaceChild() method 2nd 3rd
replaceData() method 2nd
replacing text within a Text node
report() function
reserved words 2nd
 arguments identifier
Reset button (forms) 2nd 3rd
Reset object 2nd 3rd 4th
reset() method
 Form object
 HTMLFormElement object 2nd
resizeBy() method
 Window object 2nd 3rd
resizeBy(), resizeTo() methods
 Layer object
resizeBy(), resizeTo() methods (Window)
resizeTo() method
 Window object 2nd
resolution, image
restrictions, security
 same-origin policy
 security zones and signed scripts
return statement 2nd 3rd
 automatic semicolons and

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

return values, event handler
returnValue property 2nd
reverse() method 2nd
reversing document nodes
 DocumentFragment, using
 recursion, using
RGBColor object 2nd
Rhino (Java-language JavaScript interpreter)
right attribute 2nd
right property
right-to-left associativity (R)
rollovers, image
root property 2nd
round() function
rounding numbers
 ceil() function
 floor() function
 round() function
routeEvent() method 2nd
rowIndex property
rows property 2nd 3rd
rows, HTML tables
 deleting 2nd
 inserting 2nd
rules, adding to/removing from style sheets

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

same-origin policy
scope
 call objects 2nd
 event handlers 2nd
 functions created with Function()
 global object and
 lexical, nested functions and
 variables 2nd
 with statement and
scope chains
 frames and
 nested functions and
 Window as global object
Screen object 2nd 3rd
screen property 2nd
screenX property
 Event
 Event object
 MouseEvent object
 Window object
screenX, screenY properties (MouseEvent)
screenY property
 Event
 Event object
 MouseEvent object
 Window object
tags 2nd 3rd
 browsers not supporting
 defer attribute
 language attribute 2nd
 src attribute
 write() method (Document), calling from 10th
 required inclusion of
scripting applets
scripting languages
 ActionScript
 default, specifying for entire HTML file
 embedded in browsers
 language attribute
 specifying as MIME type
scripts
 deferring execution of
 executing
 execution order of
 hiding from browsers
 multiple in document
 writing
scroll() method 2nd 3rd
scrollbars, visibility in window
scrollBy() method 2nd 3rd
scrollIntoView() method
scrollLeft and scrollTop properties (Internet Explorer)
scrollTo() method 2nd 3rd
search property
 Link object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Location object 2nd 3rd
search() method
 lastIndex property and
 String object
search-and-replace operations, using regular expressions
 replace() method 2nd
searching web pages
seconds
 local time
 setting for Date object date
 UTC time, getting
 UTC time, setting for
sectionRowIndex property
secure attribute (cookie) 2nd
security
 cookies and
 History objects and
 Java applets interacting with JavaScript
 JavaScript and 2nd
 restricted features
 same-origin policy
 security zones and signed scripts
 Password element values
 reading/writing files
 restrictions on moving/resizing windows
 trusted web servers within domain
 web crawler restrictions
Select object 2nd 3rd 4th
tags
 onchange event handler
 Select element, creating
select() method
 HTMLInputElement object
 HTMLTextAreaElement
 Input object
selected property 2nd
 Option object
selectedIndex property
 Input object
 Select object 2nd
selectNode() method
selectNodeContents() method
selectorText property 2nd 3rd
self property 2nd
 Window object
semicolon [See , under Symbols]
separator property
server-side JavaScript 2nd
server-side scripts 2nd
setAttribute() method 2nd 3rd 4th 5th
setAttributeNode() method
setAttributeNodeNS() method
setAttributeNS() method
setDate() method
setEnd() method
setEndAfter() method
setEndBefore() method
setFloatValue() method
setFullYear() method

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

setHours() method
setInterval() method 2nd 3rd 4th 5th
setMember() method 2nd
setMilliseconds() method
setMinutes() method
setMonth() method
setNamedItem() method
setNamedItemNS() method
setProperty() method 2nd
setSeconds() method
setSlot() method 2nd
setStart() method
setStartAfter() method
setStartBefore() method
setStringValue() method
setTime() method
setTimeout() method 2nd 3rd 4th 5th
 clearing status line
 Window object
setUTCDate() method
setUTCFullYear() method
setUTCHours() method
setUTCMilliseconds() method
setUTCMinutes() method
setUTCMonth() method
setUTCSeconds() method
setYear() method
sheet property
shift left (<<) operator
shift right with sign (>>) operator
shift right zero fill (>>>) operator
shift() method 2nd
shiftKey property
 IE Event 2nd
 MouseEvent object
short data type
sibling Layer objects, stacking order
sibling nodes 2nd
signed scripts
sin() function 2nd
sine (arc)
size
 browser screen
 images
 specifying for elements
 pixel units
 windows
 security restrictions on
size and color-depth of monitors
size property 2nd
slice() method
 Array object
 String object
smallest number representable in JavaScript
sniffers 2nd
sort() method 2nd 3rd
sorting
 alphabetically
 array elements in reverse order

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

source property (RegExp) 2nd
sourceIndex property
spaces, formatting (plain-text document)
spam
sparse arrays
specified property
SpiderMonkey (JavaScript interpreter)
splice() method (Array) 2nd
splice()method (Array)
split() method 2nd 3rd
 String object
splitText() method
spoofing events
sqrt() function
SQRT1_2 constant
SQRT2 constant
square root, computing
square() function
 defining with function literal
src attribute 2nd 3rd 4th
src property
 Image object 2nd
 Layer object
srcElement property (IE Event) 2nd
srcFilter property (IE Event)
stack, implementing with array
stacking order
 layers
 changing
 of elements
standard event model 2nd
 dragging document elements (example) 2nd
 event interfaces and event details
 event modules and event types
 event propagation
 mixing with original event model
 registering event handlers
 functions
 objects as
 synthesizing events
standards
 ECMA-262, for JavaScript
 emphasizing over particular browsers
 recent developments in
start and end points, setting for ranges
startContainer property
startOffset property
state
 client
 local variables and arguments, in function scope
 Window object and its variables
statement blocks
 block-level variable scope
statements
 break
 compound
 terminating abruptly
 continue
 do/while

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 else
 else if
 empty 2nd
 in event handlers
 expression
 for
 for/in
 with associative arrays
 function 2nd
 in JavaScript URLs
 labeling
 return 2nd
 semicolons between 2nd 3rd
 summary of
 switch
 throw
 try/catch
 try/catch/finally 2nd
 try/finally
 var
 while
 with
static positioning, elements
status bar
 animation techniques
 visibility in window
status line, browser window
 displaying user messages with JavaScript
status property 2nd 3rd
 Window object
stop() method
stopPropagation() method 2nd 3rd
store() method
storing cookies
string concatenation (+) operator 2nd 3rd
string literals
 color properties
 concatenating 2nd
 converting
 converting numbers to/from
 operators for
 property names as
 variable type of
String object
 defining method for all
 HTML methods
 methods
 cookie, determining value of
String(), calling as function
strings 2nd 3rd
 associating values with [See associative arrays]
 comparing 2nd
 by value 2nd
 for identity
 concatenating 2nd 3rd
 converting
 array elements to and concatenating
 arrays to 2nd
 between JavaScript and Java

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 boolean values to
 character codes to
 integers to
 JavaObject objects to
 numbers to 2nd
 objects to 2nd 3rd
 regular expressions to
 to numbers
 copying and passing by reference
 CSS style attribute vales
 CSSPrimitiveValue
 date and time
 date, in local time zone
 GMT
 localized time 2nd
 first character, finding
 HTML event handler attribute values
 indexes to associative arrays
 last character, getting
 length of 2nd
 matching beginning/end of
 methods using regular expressions
 objects, converting to
 localization
 property names, expressing as
 second, third, and fourth characters, extracting
 String class methods
 split()
 substring()
 string literals
 escape sequences in
 String object
 style properties, specifying values as
style attributes
 combining
 display and visibility
 DOM object types representing
 element positioning and visibility
 HTML, defining inline styles with
 JavaScript properties corresponding to
 naming in JavaScript
 z-index (element stacking order)
style attributes, CSS
Style object
style properties, JavaScript
 CSS2Properties object, working with
style property 2nd 3rd 4th
 HTMLElement object 2nd 3rd
style sheets and CSS modules, DOM
tags
 Netscape 4, using JavaScript to define CSS style sheets
StyleSheet object
StyleSheet objects
styleSheet property
StyleSheetList object
styleSheets property
styleSheets[] property (Document)
subclasses
Submit button 2nd 3rd 4th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Submit object 2nd 3rd 4th
submit() method
 Form object 2nd
 HTMLFormElement object 2nd
submitting forms, security restrictions on
subpatterns in regular expressions
substr() method
substring() method 2nd 3rd
substringData() method
substrings, splitting strings into
subtraction
 - operator
 -- (decrement) operator
suffixes property
sun property
superclasses
superclasses and subclasses
surroundContents() method
switch statements
 break statement in 2nd
 JavaScript, differences from other languages
SyntaxError object
synthesizing events (DOM Level 2)
System class
systemId property 2nd 3rd
systemLanguage property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

tabIndex property 2nd 3rd
table of contents, dynamically created (DOM example)
tables, HTML
 caption
 cell elements
 columns
 footers
 headers
 rows
 sections
tabs
 formatting, plain-text document
tag names, getting elements by
tagName property 2nd
tags
 language attribute
 onchange event handler
tags() method
tan() function
tangent (arc)
target attribute 2nd 3rd
target property 2nd
 Event object 2nd
 Event object (Netscape)
 Form object 2nd 3rd
 Link object 2nd
target, event
tBodies property
Tcl language
tags
ternary operator 2nd
test suites for standards compliance
test() method 2nd
testing
 explicit, for JavaScript version
 for feature support
 loop variables
 for object existence
text
 appending, inserting, deleting, or replacing in Text node
 boldface (within node or its descendants)
 default color in document
 reversing case of
Text object 2nd 3rd 4th 5th 6th
 creating
 registering event handlers for
text property 2nd
 Anchor object 2nd
 Link object
 Option object 2nd
text/html MIME type
text/plain MIME type
Textarea object 2nd 3rd 4th
tags 2nd
 onchange event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

tFoot property
tags
tHead property
this (keyword) 2nd 3rd
 class methods and
 event handlers and 2nd
 addEventListener() method
 IE event model
 listener objects, references to
 global object, referring to
 instance methods, use of
throw statement
throwing errors
time zones
timeouts
 clearing 2nd
 setting 2nd 3rd
times and dates
 Date object, manipulating with
 local and universal (UTC) time
 localized dates and times
 localized time
 milliseconds, setting
 parsing date and time strings
 display_time_in_status_line() function
timeStamp property
 Event object
timestamps, displaying on documents
title property 2nd
 Document object 2nd
 HTMLElement object 2nd
 StyleSheet object
tags
titlebar on browser window, security requirement for
toDateString() method
toElement property 2nd
toExponential() method 2nd
toFixed() method 2nd
toggle buttons
 Select element vs.
ToggleButton class (example)
toGMTString() method 2nd
tokens 2nd
toLocaleLowerCase() method
toLocaleString() method
 Array object 2nd
 Date object
 Number object
 Object object 2nd 3rd
toLocaleUpperCase() method
toLowerCase() method 2nd
toolbar, visibility in window
top attribute 2nd
top property
 Layer object 2nd
 Window object 2nd 3rd
top-level windows
 lifetime of
 opening new 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 parent and top properties
toPrecision() method 2nd
toString() method 2nd 3rd
 Array object 2nd
 Netscape 4 implementation, JavaScript 1.2
 Boolean object 2nd
 Complex object
 converting numbers to strings
 Date object
 Error object 2nd
 Function object
 JSObject object
 Number object
 Object object 2nd 3rd
 Netscape 4 implementation, JavaScript 1.2
 obtaining class value
 objects, converting to numbers
 Range object
 RegExp object
 String object
toTimeString() method
toUpperCase() method 2nd
toUTCString() method
Traversal API, DOM
 filtering
 NodeIterator object
 TreeWalker object
traversing style sheets
tree structure, DOM
 moving nodes within
 traversing
 Internet Explorer 4 and
TreeWalker object 2nd
 creating
 filtering
trigonometric functions
true and false values 2nd 3rd [See also boolean data type]
 converting to other values
 logical OR (||) operator, returning
truncating arrays
trusted scripts, configuring security on
try/catch statements 2nd
 finally clause
 language attribute (), setting for
try/finally statement
type attribute
type property 2nd 3rd 4th 5th 6th 7th
 CSSRule objects
 Event object 2nd 3rd
 Internet Explorer
 Netscape
 form elements
 Input object 2nd
 MimeType object
 Select object 2nd
typed languages
TypeError object 2nd
typeof operator 2nd 3rd 4th
 applied to string values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 testing argument data types
types/typing [See data types]
typing/untyped variables
 LiveConnect data conversion

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UIEvent object 2nd 3rd
unary operators 2nd
 + (plus)
 - (minus)
 new 2nd
 typeof
 void
unassigned vs. undefined variables
undefined property
undefined values 2nd
 generating with void operator
 identity of
 properties
 unassigned vs.
unescape() function 2nd
Unicode
 escape sequences
 in identifiers
 keypress events
 in string literals
 whitespace characters, in regular expression matching
Uniform Resource Locators [See URLs]
uniqueInteger() function
unit values
 specifying for CSS style attributes
 specifying for style properties
universal (UTC) time 2nd 3rd 4th
 Date object methods for
 date, string representation
 difference from local time
 minutes, setting for date
 month, setting for
 year, setting in
unnamed functions, embedding in programs as literal data values
unshift() method 2nd
untrusted scripts
 configuring security on
 JavaScript programs, Java classes and
untyped variables
 LiveConnect data conversion
updating loop variables
uppercase [See case]
uppercase() function
URIError object
URIs
 decodeURI() function
 decodeURIComponent() function
 encodeURI() function
 encodeURIComponent() function
URL property 2nd 3rd 4th
URLs
 about\:, security restrictions on displaying
 currently displayed document
 javascript\: pseudoprotocol specifier
 embedding JavaScript in HTML

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 executing code in
 including JavaScript on client side
 Location object and
 security restrictions on form submissions to
useMap property
User-Agent field (HTTP)
userAgent property 2nd
userLanguage property
users, interacting with
UTC() (Date)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validation of form data 2nd
value attribute
value property 2nd 3rd 4th
 Button object 2nd
 Checkbox object 2nd
 FileUpload object 2nd
 security restrictions on
 Hidden object 2nd
 Input object 2nd
 Option object 2nd
 Radio object 2nd
 Reset object
 Submit object
 Text object 2nd
 Textarea object
value, comparing by
valueOf() method 2nd
 Boolean object 2nd
 Complex class (example)
 Date object
 Number object
 Object object 2nd 3rd
 objects, converting to numbers
 String object
values
 data, arrays of
 function literals, embedding in programs
 functions as
 null
 property, in object literals
var statement 2nd
variables
 browser information
 case-sensitivity in
 counter
 declaring 2nd
 in for/in loops
 frames, using in different
 global 2nd
 reference counting and
 identifiers
 initializing, with statements and
 lifetime of
 local
 loop, initializing, testing, and updating
 mark and sweep garbage collection
 multiple scripts and
 null values in
 as object properties
 scope of 2nd
 with statement and
 typing/untyped
 LiveConnect data conversion
 unassigned vs. undefined
 undefined values

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VBScript (Visual Basic Scripting Edition language) 2nd
verify() function
verifying
 existence of objects
 function arguments
 JavaScript version
versions
 browser 2nd
 CSS style sheets
 JavaScript 2nd
 client-side and core language
 compatibility
 explicitly testing for
 listing with descriptions
 specifying in language attribute 2nd
vertical bar [See |, under Symbols]
video, playing movies embedded in web pages
view property 2nd
views, DOM
viruses, guarding against
visibility
 cookies
visibility attributes 2nd
 overflow and clip
visibility property 2nd
visible property
vLink property
vlinkColor property 2nd 3rd
void data type
void operator 2nd 3rd
vspace property 2nd 3rd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

W3C [See World Wide Web Consortium]
web browsers [See browsers]
web crawler programs
web pages, executable content (client-side JavaScript)
web servers
 cookie storage limitations
 JavaScript interpreter in
 security restrictions, relaxing within domain
web sites
 examples from this book
 Mozilla, open-source JavaScript interpreter
whatToShow property 2nd
which property 2nd
while loops
 continue statements in
whitespace
 backspace character
 in dialog boxes
 indentation of code 2nd
 in JavaScript
 newlines 2nd
 optional semicolons and
 regular expression metacharacters for
 tabs
width attribute 2nd
width property
 Document object (Netscape)
 Event object
 Image object 2nd 3rd
 reference to
 Screen object 2nd
Window object 2nd 3rd 4th 5th
 capturing events (Netscape 4)
 control methods
 close()
 focus() and blur()
 moveTo(), moveBy()
 moving a window (example)
 open()
 resizeTo() method
 scrollBy(), scrollTo()
 dialogs, methods for
 error handling
 features
 History objects 2nd
 lifetime of
 Location objects 2nd
 methods
 navigate(), Internet Explorer
 Netscape
 multiple windows and frames
 colored frames (example)
 JavaScript in interacting windows
 naming
 relationship between frames

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Navigator object
 properties
 Internet Explorer
 Netscape
 packages
 Screen object 2nd 3rd
 screen property
 security restrictions on closing
 status line
 timeouts and intervals
window property
 Layer object
 Window object 2nd 3rd 4th
Windows Scripting Host, use of JScript interpreter
windows, displaying with CSS
with statement
word boundary (\\\\b) character
World Wide Web Consortium (W3C)
 DOM standard 2nd 3rd 4th
 DOM standard API vs. client-side JavaScript
 DOM standards, Level 1 and 2
wrapper objects
 for primitive data types
write() method
 Document object 2nd 3rd 4th 5th
 dynamic document generation 2nd
 HTMLDocument object 2nd
writeln() method
 Document object 2nd 3rd
 HTMLDocument object
writing
 array elements
 files
 object properties
 scripts

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

x, y properties
 Event object 2nd
 Layer object
X- and Y- coordinates, mouse pointer
XML
 CDATASection
 declaration
 DOM representation of documents
 DOM, using with
 DTD
 DocumentType object
 entities
 notation declaration
 namespaces
 W3C DOM standard
XOR (^) operator
xpoints and ypoints properties (JavaObject)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

years
 local time 2nd 3rd
 universal (UTC) time 2nd
 year field (Date), minus 1900

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

z-index attribute, CSS
zIndex property 2nd

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

