This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] E=En
o Table of Contents

. Index

MySQL, Second Edition

By Paul DuBois

Publisher : Sams

Pub Date : January 17, 2003

ISBN 1 0-7357-1212-3

Pages 11248

In the second edition of MySQL Paul DuBois provides an updated, comprehensive guide to one of the
most popular relational database systems.

MySQL is the most popular open source database server in the world, with more than 2 million
installations and customers including Yahoo!, MP3.com, Motorola, and NASA.

MySQL 4.0, now generally available, is a long-awaited update to the database management system
that has many new features, including a new table definition file format, enhanced replication, and
more functions for a full text search.

Instead of giving readers merely an overview of MySQL 4.0, DuBois continues to include the most
sought-after answers to the questions he hears most often from the community.

[Team LiB] waxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Copyright
Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means—electronic, mechanical, photocopying, recording, or otherwise—without
written permission from the publisher, except for the inclusion of brief quotations in a review.

Library of Congress Catalog Card Number: 2001095496
Printed in the United States of America

First edition: January 2003

060504037654321

Interpretation of the printing code: The rightmost double-digit number is the year of the book's
printing; the rightmost single-digit number is the number of the book's printing. For example, the
printing code 03-1 shows that the first printing of the book occurred in 2003.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. The publisher cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty of fitness is implied. The information is provided on an as-is basis. The authors and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Credits

Associate Publisher

Stephanie Wall
Acquisitions Editor
Katie Purdum
Managing Editor
Charlotte Clapp

Development Editor

Chris Zahn

Senior Project Editor

Lori Lyons

Copy Editor

Pat Kinyon

Senior Indexer

Cheryl Lenser

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Proofreader

Linda Seifert

Composition

Stacey RichwineDeRome

Design

Gary Adair

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
About the Author
Paul DuBois is a writer, database administrator, and leader in the Open Source community. In

addition to MySQL, he is also the author of MySQL and Perl for the Web, MySQL Cookbook, Using csh
and tcsh, and Software Portability with imake.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fravisus Jwant o]
About the Technical Reviewers

These reviewers contributed their considerable hands-on expertise to the entire development process
for MySQL, Second Edition. As the book was being written, these dedicated professionals reviewed all
the material for technical content, organization, and flow. Their feedback was critical to ensuring that
MySQL, Second Edition fits our reader's need for the highest-quality technical information.

Shane Kirk obtained his B.S. in Computer Science from the University of Kentucky. He currently lives
in Cincinnati, Ohio, working as a database administrator and software developer for Opinion One
(www.opinionone.com), a software company whose focus is developing market research software and
solutions.

Dr. Hang T. Lau is an adjunct professor in the Computer Science Department at Concordia University
in Montreal, Canada. He has worked in industry as a system scientist for more than 20 years in areas
including telecommunication network planning, speech recognition applications in telecommunication,
and transport access radio network systems.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
Acknowledgments

Acknowledgments are presented here by edition.

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [« rruvizua fwaxt o]
First Edition

This book benefited greatly from the comments, corrections, and criticisms provided by the technical
reviewers: David Axmark, Vijay Chaugule, Chad Cunningham, Bill Gerrard, Jijo George John, Fred
Read, Egon Schmid, and Jani Tolonen. Special thanks goes to Michael "Monty" Widenius, the principal
MySQL developer, who not only reviewed the manuscript, but also fielded hundreds of questions that
I sent his way during the course of writing the book. Naturally, any errors that remain are my own. I'd
also like to thank Tomas Karlsson, Colin McKinnon, Sasha Pachev, Eric Savage, Derick H. Siddoway,
and Bob Worthy, who reviewed the initial proposal and helped shape the book into its present form.

The staff at New Riders are responsible first for conceiving this book and then for turning my
scribblings into the finished work you hold in your hands. Laurie Petrycki acted as Executive Editor.
Katie Purdum, Acquisitions Editor, helped me get under way and took the heat when I missed
deadlines. Leah Williams did double duty not only as Development Editor but as Copy Editor; she put
in many, many late hours, especially in the final stages of the project. Cheryl Lenser and Tim Wright
produced the index. John Rahm served as Project Editor. My thanks to each of them.

Most of all, I want to express my appreciation to my wife, Karen, for putting up with another book,
and for her understanding and patience as I disappeared, sometimes for days on end, into "the
writing zone." Her support made the task easier on many occasions, and I am pleased to acknowledge
her contribution; she helped me write every page.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Second Edition

For the second edition, the technical reviewers once again played a crucial role in finding errors and
making corrections and clarifications. Hang Lau and Shane Kirk served as reviewers. I'd also like to
thank Monty Widenius, Alexander Barkov, Jani Tolonen, and the other MySQL developers for patiently
enduring my many questions and supplying answers that made their way into these pages.

The New Riders staff that brought this edition to life were Stephanie Wall, Associate Publisher; Chris
Zahn, Development Editor; Lori Lyons, Senior Project Editor; Pat Kinyon, Copy Editor; Cheryl Lenser,
Indexer; and Stacey Richwine-DeRome, Compositor.

And, as always, my wife Karen provided the behind-the-scenes support that readers do not see, but
without which this book would be much poorer.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Tell Us What You Think
As the reader of this book, you are our most important critic and commentator. We value your opinion

and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or email address. I will carefully review your comments and share them with the author and editors
who worked on the book.

Email: devlib@samspublishing.com
Mail: Mark Taber

Associate Publisher

Developer's Library

Sams Publishing

201 West 103rd Street

Indianapolis, IN 46290 USA

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Introduction

A relational database management system (RDBMS) is an essential tool in many environments, from
the more traditional uses in business, research, and education contexts, to newer applications, such
as powering search engines on the Internet. However, despite the importance of a good database for
managing and accessing information resources, many organizations have found them to be out of
reach of their financial resources. Historically, database systems have been an expensive proposition,
with vendors charging healthy fees both for software and for support. In addition, because database
engines often had substantial hardware requirements to run with any reasonable performance, the
cost was even greater.

In recent years, the situation has changed on both the hardware and software sides of the picture.
Personal computers have become inexpensive but powerful, and a whole movement has sprung up to
write high-performance operating systems for them that are available for the cost of an inexpensive
CD, or even free over the Internet. These include several BSD UNIX derivatives (FreeBSD, NetBSD,
OpenBSD) as well as various forms of Linux (RedHat, Caldera, LinuxPPC, to name a few).

Production of free operating systems to drive personal computers to their full capabilities has
proceeded in concert with—and to a large extent has been made possible by—the development of
freely available tools such as gcc, the GNU C compiler. These efforts to make software available to
anyone who wants it have resulted in what is now called the Open Source movement, and which has
produced many important pieces of software. For example, Apache is the most widely used Web
server on the Internet. Other Open Source successes are the Perl general-purpose scripting language
and PHP, a language that is popular due largely to the ease with which it allows dynamic Web pages
to be written. These all stand in contrast to proprietary solutions that lock you into high-priced
products from vendors that don't even provide source code.

Database software has become more accessible, too. Database systems such as PostgreSQL are
available for free. More recently, commercial vendors such as Informix and Oracle have begun to offer
their software at no cost for operating systems such as Linux. (However, these latter products
generally come in binary-only form with no support, which lessens their usefulness.)

Another entry into the no-to-low cost database arena is MySQL, a SQL (Structured Query Language)
client/server relational database management system originating from Scandinavia. MySQL includes a
SQL server, client programs for accessing the server, administrative tools, and a programming
interface for writing your own programs.

MySQL's roots began in 1979, with the UNIREG database tool created by Michael "Monty" Widenius for
the Swedish company TcX. In 1994, TcX began looking around for a SQL server for use in developing
Web applications. They tested some commercial servers, but found all too slow for TcX's large tables.
They also took a look at mSQL, but it lacked certain features TcX required. Consequently, Monty
began developing a new server. The programming interface was designed explicitly to be similar to
the one used by mSQL because several free tools were available for mSQL; by using a similar
interface, those same tools could be used for MySQL with a minimum of porting effort.

In 1995, David Axmark of Detron HB began to push for TcX to release MySQL on the Internet. David
also worked on the documentation and on getting MySQL to build with the GNU configure utility.
MySQL 3.11.1 was unleashed on the world in 1996 in the form of binary distributions for Linux and
Solaris. Today, MySQL works on many more platforms and is available in both binary and source
form. The company MySQL AB has been formed to provide distributions of MySQL and to offer support
and training services.

And MySQL continues to develop. The addition of features such as transactions, row-level locking,
foreign key support, and replication has caused people who once would have considered only "big
engine" databases for their applications to give MySQL a second look.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MySQL is an Open Source project that can be used for free under most circumstances, for which
reason it enjoys widespread popularity in the Open Source community. But MySQL's popularity isn't
limited to Open Source enthusiasts. Yes, it runs on personal computers (indeed, much MySQL
development takes place on inexpensive Linux systems). But MySQL is portable and runs on
commercial operating systems (such as Solaris, Mac OS X, and Windows) and on hardware all the way
up to enterprise servers. Furthermore, its performance rivals any database system you care to put up
against it, and it can handle large databases with millions of records.

MySQL lies squarely within the picture that now unfolds before us: freely available operating systems
running on powerful but inexpensive hardware, putting substantial processing power and capabilities
in the hands of more people than ever before, on a wider variety of systems than ever before. This
lowering of the economic barriers to computing puts powerful database solutions within reach of more
people and organizations than at any time in the past. Organizations that once could only dream of
putting the power of a high-performance RDBMS to work for them now can do so for very little cost.
This is true for individuals as well. For example, I use MySQL with Perl, Apache, and PHP on my Apple
iBook running Mac OS X. This allows me to carry my work with me anywhere. Total cost: the cost of
the iBook.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
Why Choose MySQL?

If you're looking for a free or inexpensive database management system, several are available from
which to choose: MySQL, PostgreSQL, one of the free-but-unsupported engines from commercial
vendors, and so forth. When you compare MySQL with other database systems, think about what's
most important to you: Performance, support, features (SQL conformance, extensions, and so forth),
licensing conditions and restrictions, and price all are factors to take into account. Given these
considerations, MySQL has many attractive features to offer:

® Speed. MySQL is fast. The developers contend that MySQL is about the fastest database you
can get. You can investigate this claim by visiting http://www.mysql.com/benchmark.html, a

performance-comparison page on the MySQL Web site.

® Ease of use. MySQL is a high-performance but relatively simple database system and is much
less complex to set up and administer than larger systems.

® Query language support. MySQL understands SQL, the language of choice for all modern
database systems.

® Capability. Many clients can connect to the server at the same time. Clients can use multiple
databases simultaneously. You can access MySQL interactively using several interfaces that let
you enter queries and view the results: command-line clients, Web browsers, or X Window
System clients. In addition, a variety of programming interfaces are available for languages
such as C, Perl, Java, PHP, and Python. You can also access MySQL using applications that
support ODBC (Open Database Connectivity), a database communications protocol developed
by Microsoft. Thus, you have the choice of using prepackaged client software or writing your
own for custom applications.

® Connectivity and security. MySQL is fully networked, and databases can be accessed from
anywhere on the Internet, so you can share your data with anyone, anywhere. But MySQL has
access control so that people who shouldn't see your data can't. To provide additional security,
MySQL now supports encrypted connections using the Secure Sockets Layer (SSL) protocol.

® Portability. MySQL runs on many varieties of UNIX, as well as on other non-UNIX systems,
such as Windows and OS/2. MySQL runs on hardware from home PCs to high-end servers.

® Small size. MySQL has a modest distribution size, especially compared to the huge disk space
footprint of certain commercial database systems.

® Availability and cost. MySQL is an Open Source project, freely available under the terms of
the GNU General Public License (GPL). This means that MySQL is free for most in-house uses.
(If you want to sell MySQL or services that require it, that is a different situation and you
should contact MySQL AB.)

® Open distribution. MySQL is easy to obtain; just use your Web browser. If you don't
understand how something works or are curious about an algorithm, you can get the source
code and poke around in it. If you don't like how something works, you can change it. If you
think you've found a bug, report it; the developers listen.

What about support? Good question—a database isn't much use if you can't get help for it. Naturally,
I'd like to think this book is all the assistance you'll ever need. But, realistically, you'll have questions
that I never thought of or didn't have room to cover. You'll find that other resources are available and
that MySQL has good support. MySQL is freely available, but you're not on your own when you install
it:

® The MySQL Reference Manual is included in MySQL distributions and also is available online.
The Reference Manual regularly receives good marks in the MySQL user community. This is

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

important, because the value of a good pfoduct is diminished if no one can figure out how to
use it.

® Training classes and technical support contracts are available from MySQL AB, for those who
prefer or require formal arrangements.

® There is an active mailing list to which anyone may subscribe. The list has many helpful
participants, including several MySQL developers. As a support resource, many people find this
list sufficient for their purposes.

The MySQL community, developers and non-developers alike, is very responsive. Answers to
questions on the mailing list often arrive within minutes. When bugs are reported, the developers
generally release a fix quickly, and fixes become available immediately over the Internet. Contrast
this with the often-frustrating experience of navigating the Byzantine support channels of the big
vendors. (You've been there? Me, too. I know which alternative I prefer when I have a question about
a product. Being put on hold at a vendor's convenience has no appeal compared to being able to post
a question to a mailing list and check for replies at my convenience.)

MySQL is an ideal candidate for evaluation if you are in the database-selection process. You can try
MySQL with no risk or financial commitment. Yet, if you get stuck, you can use the mailing list to get
help. An evaluation costs some of your time, but that's true no matter what database system you're
considering—and it's a safe bet that your installation and setup time for MySQL will be less than for
many other systems.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (& Faavisva vt +]
Already Running Another RDBMS?

If you're currently running another database system, should you convert to MySQL? Not necessarily.
If you're happy with your current system, why bother to switch? But if you feel constrained by what
you're using, you definitely should consider MySQL. Perhaps performance of your current system is a
concern, or it's proprietary and you don't like being locked into it. Perhaps you'd like to run on
hardware that's not supported by your current system, or your software is provided in binary-only
format and you'd really prefer to have the source available. Or maybe it just costs too much! All of
these are reasons to look into MySQL. Use this book to familiarize yourself with MySQL's capabilities,
ask some questions on the MySQL mailing list, and you'll probably find the answers you need to make
a decision.

If you are considering switching from another SQL database to MySQL, check out the comparison
page on the MySQL Web site at http://www.mysql.com/information/crash-me.php. Then check the
chapters in this book that deal with MySQL's data types and dialect of SQL.You may decide that the
version of SQL supported by your current RDBMS is too different and that porting your applications
would involve significant effort.

Part of your evaluation should be to try porting a few examples, of course, because it may turn out
not to be as difficult as you think—even if your database is an older one that doesn't understand SQL.
One such experience I've had required converting a record management system from an RDBMS that
wasn't SQL-based. There wasn't any language similarity at all to take advantage of, and some of the
data types had no SQL equivalent. This project involved conversion of the network access methods
and dozens of screen-based entry programs and canned queries. It took perhaps a month and a half
of full-time effort. That's not bad.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
Tools Provided with MySQL

The MySQL distribution includes the following tools:

® A SQL server. This is the engine that powers MySQL and provides access to your databases.

® Client programs for accessing the server. An interactive program allows you to enter
queries directly and view the results, and several administrative and utility programs help you
run your site. One utility allows you to control the server. Others let you import or export data,
check access permissions, and more.

® A client library for writing your own programs. You can write clients in C because the
library is in C, but the library also provides the basis for third-party bindings for other
languages.

In addition to the software provided with MySQL itself, MySQL is used by many talented and capable
people who like writing software to enhance their productivity and who are willing to make that
software available. The result is that you have access to a variety of third-party tools that make
MySQL easier to use or that extend its reach into areas such as Web site development.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
What You Can Expect from This Book

By reading this book, you'll learn how to use MySQL effectively so that you can get your work done
more productively. You'll be able to figure out how to get your information into a database, and you'll
learn how to formulate queries that give you the answers to the questions you want to ask of that
data.

You don't need to be a programmer to understand or use SQL. This book will show you how it works.
But there's more to understanding how to use a database properly than just knowing SQL syntax. This
book emphasizes MySQL's unique capabilities and shows how to use them.

You'll also see how MySQL integrates with other tools. The book shows how to use MySQL with PHP or
Perl to generate dynamic Web pages created from the result of database queries. You'll learn how to
write your own programs that access MySQL databases. All of these enhance MySQL's capabilities to
handle the requirements of your particular applications.

If you'll be responsible for administrating a MySQL installation, this book will tell you what your duties
are and how to carry them out. You'll learn how to set up user accounts, perform database backups,
and make sure your site is secure.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Road Map to This Book

This book is organized into four parts.

Part I: General MySQL Use

® Chapter 1, "Getting Started with MySQL and SQL." Discusses how MySQL can be useful to
you, and provides a tutorial that introduces the interactive MySQL client program, covers the
basics of SQL, and demonstrates MySQL's general capabilities.

® Chapter 2, "Working with Data in MySQL." Discusses the column types that MySQL
provides for describing your data, properties and limitations of each type, when and how to use
them, how to choose between similar types, expression evaluation, and type conversion.

® Chapter 3, "MySQL SQL Syntax and Use." Every major RDBMS now available understands
SQL, but every database engine implements a slightly different SQL dialect. This chapter
discusses SQL with particular emphasis on those features that make MySQL distinctive.

® Chapter 4, "Query Optimization." How to make your queries run more efficiently.

Part ll: Using MySQL Programming Interfaces

® Chapter 5, "Introduction to MySQL Programming." Discusses some of the application
programming interfaces available for MySQL and provides a general comparison of the APIs
that the book covers in detail.

® Chapter 6, "The MySQL C API." How to write C programs using the API provided by the
client library included in the MySQL distribution.

® Chapter 7, "The Perl DBI API." How to write Perl scripts using the DBI module. Covers
standalone scripts and CGI scripts for Web site programming.

® Chapter 8, "The PHP API." How to use the PHP scripting language to write dynamic Web
pages that access MySQL databases.

Part lll: MySQL Administration

® Chapter 9, "Introduction to MySQL Administration.” What the database administrator's
duties are and what you should know to run a site successfully.

® Chapter 10, "The MySQL Data Directory.”" An in-depth look at the organization and
contents of the data directory, the area under which MySQL stores databases and status files.

® Chapter 11, "General MySQL Administration.” How to make sure your server starts up and
shuts down properly when your system does. Also includes instructions for setting up MySQL
user accounts, and discusses log file maintenance, configuring the InnoDB tablespace, server
tuning, running multiple servers, and setting up replication servers.

® Chapter 12, "Security."” What you need to know to make your MySQL installation safe from
intrusion, both from other users on the server host and from clients connecting over the
network. Describes how to set up your MySQL server to support secure connections over SSL.

® Chapter 13, "Database Backups, Maintenance, and Repair." Discusses how to reduce the

likelihood of disaster through preventive maintenance, how to back up your databases, and
how to perform crash recovery if disaster strikes in spite of your preventive measures.

Part IV: Appendixes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

¢ Appendix A, "Obtaining and Installing Software.”" Where to get and how to install the
major tools described in the book.

¢ Appendix B, "Column Type Reference." Descriptions of MySQL's column types.

¢ Appendix C, "Operator and Function Reference." Descriptions of the operators and
functions that are used to write expressions in SQL statements.

¢ Appendix D, "SQL Syntax Reference." Descriptions of each SQL statement that MySQL
understands.

¢ Appendix E, "MySQL Program Reference." Descriptions of the programs provided in the
MySQL distribution.

¢ Appendix F, "C API Reference." Descriptions of data types and functions in the MySQL C
client library.

¢ Appendix G, "Perl DBI API Reference." Descriptions of methods and attributes provided by
the Perl DBI module.

® Appendix H, "PHP API Reference." Descriptions of the functions that PHP provides for
MySQL support.

¢ Appendix I, "Internet Service Providers." What to consider when choosing an ISP that
provides MySQL access. What to consider when operating as an ISP providing MySQL services
to customers.

[Team LiB] [+ Faaviava vt +]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
How to Read This Book

Whichever part of the book you happen to be reading at any given time, it's best to try out the
examples as you go along. If MySQL isn't installed on your system, you should install it or ask
someone to do so for you. Then get the files needed to set up the sampdb sample database to which
we'll be referring throughout the book. Appendix A, "Obtaining and Installing Software," says where
you can obtain all the components and has instructions for installing them.

If you're a complete newcomer to MySQL or to SQL, begin with Chapter 1, "Getting Started with
MySQL and SQL." This provides you with a tutorial introduction that grounds you in basic MySQL and
SQL concepts and brings you up to speed for the rest of the book. Then proceed to Chapter 2,
"Working with Data in MySQL," and Chapter 3, "MySQL SQL Syntax and Use," to find out how to
describe and manipulate your own data so that you can exploit MySQL's capabilities for your own
applications.

If you already know some SQL, you should still read Chapter 2 and Chapter 3. SQL implementations
vary, and you'll want to find out what makes MySQL's implementation distinctive in comparison to
others with which you may be familiar.

If you have experience with MySQL but need more background on the details of performing particular
tasks, use the book as a reference, looking up topics on a need-to-know basis. You'll find several of
the appendixes especially useful for reference purposes.

If you're interested in writing your own programs to access MySQL databases, read the API chapters,
beginning with Chapter 5, "Introduction to MySQL Programming." If you want to produce a Web-
based front end to your databases for easier access to them, or, conversely, to provide a database
back end for your Web site to enhance your site with dynamic content, check out Chapter 7, "The Perl
DBI APIL," and Chapter 8, "The PHP API."

If you're evaluating MySQL to find out how it compares to your current RDBMS, several parts of the
book will be useful. Read the data type and SQL syntax chapters in Part I to compare MySQL to the
SQL that you're used to, the programming chapters in Part II if you have custom applications, and the
administrative chapters in Part III to assess the level of administrative support a MySQL installation
requires. This information is also useful if you're not currently using a database but are performing a
comparative analysis of MySQL along with other database systems for the purpose of choosing one of
them.

If you want access to MySQL and are seeking an Internet Service Provider (ISP) who offers it, see
Appendix I, "Internet Service Providers," for some tips on how to choose one. This appendix also
provides advice to service providers who want to provide MySQL to attract new customers or serve
existing ones better.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fravisus Jwant o]
Versions of Software Covered in This Book

As of this writing, the current general release of MySQL is the 4.0 version series, and active
development is taking place in the 4.1 series. This book covers them both, as well as earlier 3.22 and
3.23 features.

For the other major packages discussed here, any recent versions should be sufficient for the
examples in this book. Current versions are:

Package Version

Perl DBI 1.32

Perl MySQL DBI driver 2.1020

PHP 4.2.3

Apache 1.3.27/2.0.43
CGI.pm 2.87

All the software discussed in this book is available on the Internet. Appendix A, "Obtaining and
Installing Software," provides instructions for getting MySQL, Perl DBI support, PHP, Apache, and
CGI.pm onto your system. This appendix also contains instructions for obtaining the sample database
that is used in examples throughout this book, as well as the example programs that are developed in
the programming chapters.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fravisus Jwant o]
Conventions Used in This Book

Typographical conventions used in this book are as follows:

Monospaced font indicates hostnames, filenames, directory names, commands, options, and Web
sites. Where commands are shown as you enter them, bold monospaced font indicates the part you
enter. [talicized font in commands indicates where you should substitute a value of your own
choosing.

In commands, the prompt indicates how the command is run. The % prompt is used for most
commands; in general, these may be run either from your UNIX shell or from the DOS prompt. More
specialized prompts are #, which indicates a command run as the UNIX root user, and C:\> to indicate
a command intended specifically for Windows. SQL statements that are issued from the mysql
program are shown with the mysql> prompt.

In SQL statements, SQL keywords and function names are written in uppercase. Database, table, and
column names are written in lowercase. In syntax descriptions, square brackets ([]) indicate optional
information.

The term "Windows NT-based systems" stands collectively for the family of Windows variants that are
based on Windows NT, which currently includes Windows NT, 2000, and XP. It does not include
Windows 95, 98, or Me.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Additional Resources

This book aims to tell you virtually everything you'll need to know about MySQL. But if you have a
question the book doesn't answer, where should you turn?

Useful resources include the Web sites for the software you need help with:

Package Primary Web Site

MySQL http://www.mysqgl.com/documentation/
Perl DBI http://dbi.perl.org/

PHP http://www.php.net/

Apache http://www.apache.org/

CGIL.pm http://stein.cshl.org/WWW/software/CGI/

These sites contain pointers to various forms of information, such as reference manuals, frequently
asked-question (FAQ) lists, and mailing lists:

® Reference manuals. The primary documentation included with MySQL itself is the Reference
Manual. It's available in several formats, including an online version. PHP's manual comes in
several forms, too. The DBI module and its MySQL-specific driver are documented separately.
The DBI document provides general concepts. The MySQL driver document discusses
capabilities specific to MySQL.

® FAQs. There are FAQs for DBI, PHP, and Apache.

® Mailing lists. Several mailing lists centering around the software discussed in this book are
available. It's a good idea to subscribe to the ones that deal with the tools you want to use. It's
also a good idea to use the archives for those lists that have them. When you're new to a tool,
you will have many of the same questions that have been asked (and answered) a million
times, and there is no reason to ask again when you can find the answer with a quick search of
the archives.

Instructions for subscribing to the mailing lists vary, but you can find information at the URLs shown
here:

Package |Mailing List Instructions

MySQL http://www.mysqgl.com/documentation/

Perl DBI |http://dbi.perl.org/

PHP http://www.php.net/support.php

Apache http://www.apache.org/foundation/mailinglists.html

® Ancillary Web sites. Besides the official Web sites, some of the tools discussed here have
ancillary sites that provide more information, such as sample source code or topical articles.
Check for a "Links" area on the official site you're visiting.

Using the Online MySQL Reference Manual

Be sure to check the online MySQL Reference Manual occasionally for information on the
latest improvements to MySQL. The manual is updated continually as changes are made.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
Part I: General MySQL Use

Setting S ith MySC | 5Ql
> Worki ith C in MySG
3 MySQL SQL Syntax and Use

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Chapter 1. Getting Started with MySQL and SQL

This chapter provides an introduction to the MySQL relational database management system (RDBMS)
and to the Structured Query Language (SQL) that MySQL understands. It lays out basic terms and
concepts you should understand, describes the sample database we'll use for examples throughout
the book, and serves as a tutorial that shows you how to use MySQL to create a database and interact
with it.

Begin here if you are new to databases and perhaps uncertain whether or not you need one or can
use one. You should also read the chapter if you don't know anything about MySQL or SQL and need
an introductory guide to get started. Readers who have experience with MySQL or with database
systems might want to skim through the material. However, everybody should read the "A Sample
Database" section to become familiar with the purpose and contents of the sampdb database that is
used repeatedly throughout the book.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
How MySQL Can Help You

This section describes situations in which the MySQL database system is useful. This will give you an
idea of the kinds of things MySQL can do and the ways in which it can help you. If you don't need to
be convinced about the usefulness of a database system—perhaps because you've already got a
problem in mind and just want to find out how to put MySQL to work helping you solve it—you can
proceed to the "A Sample Database" section later in this chapter.

A database system is essentially just a way to manage lists of information. The information can come
from a variety of sources. For example, it can represent research data, business records, customer
requests, sports statistics, sales reports, personal hobby information, personnel records, bug reports,
or student grades. However, although database systems can deal with a wide range of information,
you don't use such a system for its own sake. If a job is easy to do already, there's no reason to drag
a database into it just to use one. A grocery list is a good example; you write down the items to get,
cross them off as you do your shopping, and then throw the list away. It's highly unlikely that you'd
use a database for this. Even if you have a palmtop computer, you'd probably keep track of a grocery
list by using its notepad function rather than its database capabilities.

The power of a database system comes into play when the information you want to organize and
manage becomes voluminous or complex and your records become more burdensome than you care
to deal with by hand. Clearly this is the case for large corporations processing millions of transactions
a day; a database is a necessity under such circumstances. But even small-scale operations involving
a single person maintaining information of personal interest may require a database. It's not difficult
to think of scenarios in which the use of a database can be beneficial because you needn't have huge
amounts of information before that information becomes difficult to manage. Consider the following
situations:

® Your carpentry business has several employees. You need to maintain employee and payroll
records so that you know whom you've paid and when, and you must summarize those records
so that you can report earnings statements to the government for tax purposes. You also need
to keep track of the jobs your company has been hired to do and which employees you've
scheduled to work on each job.

® You run a network of automobile parts warehouses and need to be able to tell which ones have
any given part in their inventories so that you can fill customer orders.

® As a toy seller, you're particularly subject to fad-dependent demand for items that you carry.
You want to know what the current sales trajectory is for certain items so that you can
estimate whether to increase inventory (for an item that's becoming more popular) or decrease
it (so you're not stuck with a lot of stock for something that's no longer selling well).

® That pile of research data you've been collecting over the course of many years needs to be
analyzed for publication, lest the dictum "publish or perish" become the epitaph for your
career. You want to boil down large amounts of raw data to generate summary information and
to pull out selected subsets of observations for more detailed statistical analysis.

® You're a popular speaker who travels the country to many types of assemblies, such as
graduations, business meetings, civic organizations, and political conventions. You give so
many addresses that it's difficult to remember what you've spoken on at each place you've
been, so you'd like to maintain records of your past talks and use them to help you plan future
engagements. If you return to a place where you've spoken before, you don't want to give a
talk similar to one you've already delivered there, and a record of each speech would help you
avoid repeats. You'd also like to note how well your talks are received. (Your address "Why I
Love Cats" at the Metropolitan Kennel Club was something of a dud, and you don't want to
make that mistake again the next time you're there.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® You're a teacher who needs to keep track of grades and attendance. Each time you give a quiz
or a test, you record every student's grade. It's easy enough to write down scores in a
gradebook, but using the scores later is a tedious chore. You'd rather avoid sorting the scores
for each test to determine the grading curve, and you'd really rather not add up each student's
scores when you determine final grades at the end of the grading period. Counting each
student's absences is no fun, either.

® The organization for which you are the secretary maintains a directory of members. (The
organization could be anything—a professional society, a club, a repertory company, a
symphony orchestra, or an athletic booster club.) You generate the directory in printed form
each year for members, based on a word processor document that you edit as membership
information changes. You're tired of maintaining the directory that way because it limits what
you can do with it. It's difficult to sort the entries in different ways, and you can't easily select
just certain parts of each entry (such as a list consisting only of names and phone numbers).
Nor can you easily find a subset of members, such as those who need to renew their
memberships soon—if you could, it would eliminate the job of looking through the entries each
month to find those members who need to be sent renewal notices. Also, you'd really like to
avoid doing all the directory editing yourself, but the society doesn't have much of a budget
and hiring someone is out of the question. You've heard about the "paperless office" that's
supposed to result from electronic record keeping, but you haven't seen any benefit from it.
The membership records are electronic, but, ironically, aren't in a form that can be used easily
for anything except generating paper by printing the directory!

These scenarios range from situations involving relatively small amounts to large amounts of
information. They share the common characteristic of involving tasks that can be performed manually
but that could be performed more efficiently by a database system.

What specific benefits should you expect to see from using a database system such as MySQL? It
depends on your particular needs and requirements—and as illustrated by the preceding examples,
those can vary quite a bit. Let's look at a type of situation that occurs frequently and so is fairly
representative of database use. Database management systems are often employed to handle tasks
such as those for which people use filing cabinets. Indeed, a database is like a big filing cabinet in
some ways, but one with a built-in filing system. There are some important advantages of
electronically maintained records over records maintained by hand. For example, if you work in an
office setting in which client records are maintained, the following are some of the ways MySQL can
help you in its filing system capacity:

® Reduced record filing time . You don't have to look through drawers in cabinets to figure out
where to add a new record. You just hand it to the filing system and let it put the record in the
right place for you.

® Reduced record retrieval time. When you're looking for records, you don't search through
each one yourself to find the ones containing the information you want. Suppose you work in a
dentist's office. If you want to send out reminders to all patients who haven't been in for their
checkup in a while, you ask the filing system to find the appropriate records for you. Of course,
you do this differently than if you were talking to another person to whom you'd say, "Please
determine which patients haven't visited within the last 6 months." With a database, you utter
a strange incantation:

SELECT last_name, first_name, last_visit FROM patient
WHERE last_visit < DATE_SUB(CURDATE(),INTERVAL 6 MONTH);

That can be pretty intimidating if you've never seen anything like it before, but the prospect of
getting results in a second or two rather than spending an hour shuffling through your records
should be attractive. (In any case, you needn't worry. That odd-looking bit of gobbledygook
won't look strange for long. In fact, you'll understand exactly what it means by the time you've
finished this chapter.)

® Flexible retrieval order. You needn't retrieve records according to the fixed order in which

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

you store them (by patient's last name, for example). You can tell the filing system to pull out
records sorted in any order you like—by last name, insurance company name, date of last visit,
and so on.

® Flexible output format. After you've found the records in which you're interested, there's no
need to copy the information manually. You can let the filing system generate a list for you.
Sometimes you might just print the information. Other times you might want to use it in
another program. (For example, after you generate the list of patients who are overdue on
their dental visits, you might feed this information into a word processor that prints out notices
that you can send to those patients.) Or you might be interested only in summary information,
such as a count of the selected records. You don't have to count them yourself; the filing
system can generate the summary for you.

® Simultaneous multiple-user access to records. With paper records, if two people want to
look up a record at the same time, the second person must wait for the first one to put the
record back. MySQL gives you multiple-user capability so that both can access the record
simultaneously.

® Remote access to and electronic transmission of records. Paper records require you to be
where the records are located or for someone to make copies and send them to you. Electronic
records open up the potential for remote access to the records or electronic transmission of
them. If your dental group has associates in branch offices, those associates can access your
records from their own locations. You don't need to send copies by courier. If someone who
needs records doesn't have the same kind of database software you do but does have
electronic mail, you can select the desired records and send their contents electronically.

If you've used database management systems before, you already know about the benefits just
described, and you may be thinking about how to go beyond the usual "replace the filing cabinet"
applications. The manner in which many organizations use a database in conjunction with a Web site
is a good example. Suppose your company has an inventory database that is used by the service desk
staff when customers call to find out whether you have an item in stock and how much it costs. That's
a relatively traditional use for a database. However, if your company puts up a Web site for customers
to visit, you can provide an additional service—a search page that allows customers to determine item
pricing and availability. This gives customers the information they want, and the way you provide it is
by searching the inventory information stored in your database for the items in question—
automatically. The customer gets the information immediately, without being put on hold listening to
annoying canned music or being limited by the hours your service desk is open. And for every
customer who uses your Web site, that's one less phone call that needs to be handled by a person on
the service desk payroll. (Perhaps the Web site can pay for itself this way?)

But you can put the database to even better use than that. Web-based inventory search requests can
provide information not only to your customers but to your company as well. The queries tell you
what customers are looking for, and the query results tell you whether or not you're able to satisfy
their requests. To the extent that you don't have what they want, you're probably losing business.
Consequently, it makes sense to record information about inventory searches—what customers were
looking for and whether you had it in stock. Then you can use this information to adjust your
inventory and provide better service to your customers.

Another Web-based application for databases is to serve up banner advertisements in Web pages. I
don't like them any better than you do, but the fact remains that they are a popular application for
MySQL, which can be used to store advertisements and retrieve them for display by a Web server. In
addition, MySQL can perform the kind of record keeping often associated with this activity by tracking
which ads have been served, how many times they've been displayed, which sites accessed them, and
so on.

So how does MySQL work? The best way to find out is to try it for yourself, and for that we'll need a
database to work with.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
A Sample Database

This section describes the sample database we'll use throughout the rest of this book. It gives you a
source of examples you can try out as you learn to put MySQL to work. We'll draw examples primarily
from two of the situations described earlier:

® The organizational secretary scenario. We need something more definite than "an
organization," so I'll make one up with these characteristics: It's composed of people drawn
together through a common affinity for United States history (called, for lack of a better name,
the U.S. Historical League). The members maintain their affiliation by renewing their
memberships periodically on a dues-paying basis. Dues go toward the expenses incurred by
the League, such as publication of a newsletter, Chronicles of U.S. Past. The League also
operates a small Web site, but it hasn't been developed very much. Thus far, the site has been
limited to basic information, such as what the League is about, who the officers are, and how
people can join.

® The grade-keeping scenario. During the grading period, you administer quizzes and tests,
record scores, and assign grades. Afterward, you determine final grades, which you turn in to
the school office along with an attendance summary.

Now let's examine these situations more closely in terms of two requirements:

® You have to decide what you want to get out of the database—that is, what goals you want to
accomplish.

® You have to figure out what you're going to put into the database—that is, what data you will
keep track of.

Perhaps it seems backward to think about what comes out of the database before considering what
goes into it. After all, you must enter your data before you can retrieve it. But the way you use a
database is driven by your goals, and those are more closely associated with what you want to get
from your database than with what you put into it. You certainly aren't going to waste time and effort
putting information into a database unless you're going to use it for something later.

The U.S. Historical League

The initial situation for this scenario is that you as League secretary maintain the membership list
using a word processing document. That works reasonably well for generating a printed directory but
limits what else you can do with the information. You have the following objectives in mind:

® You want to be able to produce output from the directory in different formats, using only
information appropriate to the application. One goal is to be able to generate the printed
directory each year—a requirement the League has had in the past that you plan to continue to
carry out. You can think of other uses for the information in the directory, too—for example, to
provide the current member list for the printed program that's handed out to attendees of the
League's annual banquet. These applications involve different sets of information. The printed
directory uses the entire contents of each member's entry. For the banquet program, you need
to pull out only member names (something that hasn't been easy using a word processor).

® You want to search the directory for members whose entries satisfy various criteria. For
example, you want to know which members need to renew their memberships soon. Another
application that involves searching arises from the list of keywords you maintain for each
member. These keywords describe areas of U.S. history in which each member is particularly
interested (for example, the Civil War, the Depression, civil rights, or the life of Thomas
Jefferson). Members sometimes ask you for a list of other members with interests similar to
their own, and you'd like to be able to satisfy these requests.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

® You want to put the directory online at the League's Web site. This would benefit both the

members and yourself. If you could convert the directory to Web pages by some reasonably
automated process, an online version of the directory could be kept up to date in a more timely
fashion than the printed version. And if the online directory could be made searchable,
members could look for information easily themselves. For example, a member who wants to
know which other members are interested in the Civil War could find that out without waiting
for you to perform the search, and you wouldn't need to find the time to do it yourself.

I'm well aware that databases are not the most exciting things in the world, so I'm not about to make
any wild claims that using one stimulates creative thinking. Nevertheless, when you stop thinking of
information as something you must wrestle with (as you do with your word processing document) and
begin thinking of it as something you can manipulate relatively easily (as you hope to do with
MySQL), it has a certain liberating effect on your ability to come up with new ways to use or present
that information:

® If the information in the database can be moved to the Web site in the form of an online

directory, you might be able to make information flow the other way. For example, if members
could edit their own entries online to update the database, you wouldn't have to do all the
editing yourself, and it would help make the information in the directory more accurate.

If you stored email addresses in the database, you could use them to send email to members
who haven't updated their entries in a while. The messages could show members the current
contents of their entries, ask them to review it, and indicate how to make any needed
modifications using the facilities provided on the Web site.

A database might help you make the Web site more useful in ways not even related to the
membership list. The League publishes a newsletter, Chronicles of U.S. Past, that has a
children's section in each issue containing a history-based quiz. Some of the recent issues have
focused on biographical facts about U.S. presidents. The Web site could have a children's
section, too, where the quizzes are put online. Perhaps this section could even be made
interactive by putting the information from which quizzes are drawn in the database and having
the Web server query the database for questions to present to visitors.

Well! At this point the number of uses for the database that you're coming up with may make you
realize that you could be getting a little carried away. After pausing to come back down to earth, you
start asking some practical questions:

® Isn't this a little ambitious? Won't it be a lot of work to set this up? Anything's easier when

you're just thinking about it and not doing it, of course, and I won't pretend that all of this will
be trivial to implement. Nevertheless, you'll have done everything we've just outlined by the
end of this book. Just keep one thing in mind: It's not necessary to do everything all at once.
We'll break the job into pieces and tackle it a piece at a time.

Can MySQL do all these things? No it can't, at least not by itself. For example, MySQL has
no direct Web-programming facilities. But even though MySQL alone cannot do everything
we've discussed, you can combine MySQL with other tools that work with it to complement and
extend its capabilities.

We'll use the Perl scripting language and the DBI (database interface) Perl module to write
scripts that access MySQL databases. Perl has excellent text-processing capabilities that allow
for manipulation of query results in a highly flexible manner to produce output in a variety of
formats. For example, we can use Perl to generate the directory in Rich Text Format (RTF), a
format that can be read by all kinds of word processors.

We'll also use PHP, another scripting language. PHP is particularly adapted to writing Web
applications, and it interfaces easily with databases. This allows you to run MySQL queries right
from Web pages and to generate new pages that include the results of database queries. PHP
works well with Apache (the most popular Web server in the world), making it easy to do
things such as presenting a search form and displaying the results of the search.

MySQL integrates well with these tools and gives you the flexibility to choose how to combine

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

them to achieve the ends you have in mind. You're not locked into some all-in-one suite's
components that have highly touted "integration" capabilities but that actually work well only
with each other.

® And, finally, the big question—how much will all this cost? The League has a limited
budget, after all. This may surprise you, but it probably won't cost anything. If you're familiar
with the usual ken of database systems, you know that they're generally pretty pricey. By
contrast, MySQL is usually free. (See the MySQL Reference Manual for specific details.) The
other tools we'll use (Perl, DBI, PHP, Apache) are free, so, all things considered, you can put
together a useful system quite inexpensively.

The choice of operating system for developing the database is up to you. Virtually all the software
we'll discuss runs under both UNIX (which I use as an umbrella term that includes BSD UNIX, Linux,
Mac OS X, and so on) and Windows. The few exceptions tend to be shell or batch scripts that are
specific to either UNIX or Windows.

Now let's consider the other situation for which we'll be using the sample database.
The Grade-Keeping Project

The initial scenario here is that as a teacher, you have grade keeping responsibilities. You want to
convert the grading process from a manual operation using a gradebook to an electronic
representation using MySQL. In this case, the information you want to get from a database is implicit
in the way you use your gradebook now:

® For each quiz or test, you record the scores. For tests, you put the scores in order so that you
can look at them and determine the cutoffs for each letter grade (A, B, C, D, and F).

® At the end of the grading period, you calculate each student's total score, sort the totals, and
then determine grades based on them. The totals might involve weighted calculations because
you probably want to count tests more heavily than quizzes.

® You provide attendance information to the school office at the end of the grading period.

The objectives are to avoid manually sorting and summarizing scores and attendance records. In
other words, you want MySQL to sort the scores and perform the calculations necessary to compute
each student's total score and number of absences when the grading period ends. To achieve these
goals, you'll need the list of students in the class, the scores for each quiz and test, and the dates on
which students are absent.

How the Sample Database Applies to You

If you're not particularly interested in the Historical League or in grade keeping, you may be
wondering what any of this has to do with you. The answer is that these example scenarios aren't an
end in themselves. They simply provide a vehicle by which to illustrate what you can do with MySQL
and tools that are related to it.

With a little imagination, you'll see how example database queries apply to the particular problems
you want to solve. Suppose you're working in that dentist's office I mentioned earlier. You won't see
many dentistry-related queries in this book, but you will see that many of the queries you find here
apply to patient record maintenance, office bookkeeping, and so on. For example, determining which
Historical League members need to renew their memberships soon is similar to determining which
patients haven't visited the dentist for a while. Both are date-based queries, so once you learn to
write the membership-renewal query, you can apply that skill to writing the delinquent-patient query
in which you have a more immediate interest.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Basic Database Terminology

You may have noticed that you're already several pages into a database book and still haven't seen a
whole bunch of jargon and technical terminology. In fact, I still haven't said anything at all about what
"a database" actually looks like, even though we have a rough specification of how our sample
database will be used. However, we're about to design that database and then we'll begin
implementing it, so we can't avoid terminology any longer. That's what this section is about. It
describes some terms that come up throughout the book so that you'll be familiar with them.
Fortunately, many relational database concepts are really quite simple. In fact, much of the appeal of
relational databases stems from the simplicity of their foundational concepts.

Structural Terminology

Within the database world, MySQL is classified as a relational database management system
(RDBMS). That phrase breaks down as follows:

® The database (the "DB" in RDBMS) is the repository for the information you want to store,
structured in a simple, regular fashion:

O The collection of data in a database is organized into tables.
O Each table is organized into rows and columns.
© Each row in a table is a record.

O Records can contain several pieces of information; each column in a table corresponds to
one of those pieces.

® The management system (the "MS") is the software that lets you use your data by allowing you
to insert, retrieve, modify, or delete records.

® The word "relational" (the "R") indicates a particular kind of DBMS, one that is very good at
relating (that is, matching up) information stored in one table to information stored in another
by looking for elements common to each of them. The power of a relational DBMS lies in its
ability to pull data from those tables conveniently and to join information from related tables to
produce answers to questions that can't be answered from individual tables alone.

Here's an example that shows how a relational database organizes data into tables and relates the
information from one table to another. Suppose you run a Web site that includes a banner
advertisement service. You contract with companies that want their ads displayed when people visit
the pages on your site. Each time a visitor hits one of your pages, you serve an ad embedded in the
page that is sent to the visitor's browser and assess the company a small fee. To represent this
information, you maintain three tables (see Figure 1.1). One table, company, has columns for
company name, number, address, and telephone number. Another table, ad, lists ad numbers, the
number for the company that "owns" the ad, and the amount you charge per hit. The third table, hit,
logs each ad hit by ad number and the date on which the ad was served.

Figure 1.1. Banner advertisement tables.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

graphics/01fig01.gif

Some questions can be answered from this information using a single table. To determine the number
of companies you have contracts with, you need count only the rows in the company table. Similarly,
to determine the number of hits during a given time period, only the hit table need be examined.
Other questions are more complex and it's necessary to consult multiple tables to determine the
answers. For example, to determine how many times each of the ads for Pickles, Inc. was served on
July 14, you'd use all three tables as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1. Look up the company name (Pickles, Inc.) in the company table to find the company number
(14).

2. Use the company number to find matching records in the ad table so you can determine the
associated ad numbers. There are two such ads, 48 and 101.

3. For each of the matched records in the ad table, use the ad number in the record to find
matching records in the hit table that fall within the desired date range, and then count the
number of matches. There are three matches for ad 48 and two matches for ad 101.

Sounds complicated! But that's just the kind of thing at which relational database systems excel. The
complexity is actually somewhat illusory because each of the steps just described really amounts to
little more than a simple matching operation—you relate one table to another by matching values
from one table's rows to values in another table's rows. This same simple operation can be exploited
in various ways to answer all kinds of questions: How many different ads does each company have?
Which company's ads are most popular? How much revenue does each ad generate? What is the total
fee for each company for the current billing period?

Now you know enough relational database theory to understand the rest of this book, and we don't
have to go into Third Normal Form, Entity-Relationship Diagrams, and all that kind of stuff. (If you
want to read about such things, I suggest you begin with the works of C.]J. Date or E.F. Codd.)

Query Language Terminology

To communicate with MySQL, you use a language called SQL (Structured Query Language). SQL is
today's standard database language, and all major database systems understand it. SQL supports
many different kinds of statements, all designed to make it possible to interact with your database in
interesting and useful ways.

As with any language, SQL may seem strange while you're first learning it. For example, to create a
table, you need to tell MySQL what the table's structure should be. You and I might think of the table
in terms of a diagram or picture, but MySQL doesn't, so you create the table by telling MySQL
something like this:

CREATE TABLE company

(
company_name CHAR(30),
company_num INT,
address CHAR(30),
phone CHAR(12)

)

Statements like this can be somewhat imposing when you're new to SQL, but you need not be a
programmer to learn how to use SQL effectively. As you gain familiarity with the language, you'll look
at CREATE TABLE in a different light—as an ally that helps you describe your information, not as just a
weird bit of gibberish.

MySQL Architectural Terminology

When you use MySQL, you're actually using two programs, because MySQL operates using a
client/server architecture:

® The server program, mysqld, is located on the machine where your databases are stored. It
listens for client requests coming in over the network and accesses database contents
according to those requests to provide clients with the information they request.

® Clients are programs that connect to the database server and issue queries to tell it what
information they want.

The MySQL distribution includes the database server and several client programs. You use the clients
according to the purposes you want to achieve. The one most commonly used is mysgl, an interactive

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

client that lets you issue queries and see the results. Two administrative clients are mysgldump, which
dumps table contents into a file, and mysgladmin, which allows you to check on the status of the
server and performs administrative tasks, such as telling the server to shut down. The distribution
includes other clients as well. If you have application requirements for which none of the standard
clients is suited, MySQL also provides a client-programming library so that you can write your own
programs. The library is usable directly from C programs. If you prefer a language other than C,
interfaces are available for several other languages—Perl, PHP, Python, Java, C++, and Ruby, to
name a few.

MySQL's client/server architecture has certain benefits:

® The server provides concurrency control so that two users cannot modify the same record at
the same time. All client requests go through the server, so the server sorts out who gets to do
what and when. If multiple clients want to access the same table at the same time, they don't
all have to find and negotiate with each other. They just send their requests to the server and
let it take care of determining the order in which the requests will be performed.

® You don't have to be logged in on the machine where your database is located. MySQL
understands how to work over the Internet, so you can run a client program from wherever
you happen to be, and the client can connect to the server over the network. Distance isn't a
factor; you can access the server from anywhere in the world. If the server is located on a
computer in Australia, you can take your laptop computer on a trip to Iceland and still access
your database. Does that mean anyone can get at your data just by connecting to the Internet?
No. MySQL includes a flexible security system, so you can allow access only to people who
should have it. And you can make sure those people are able to do only what they should.
Perhaps Sally in the billing office should be able to read and update (modify) records, but Phil
at the service desk should be able only to look at them. You can set each person's privileges
accordingly. If you do want to run a self-contained system, just set the access privileges so
that clients can connect only from the host on which the server is running.

Beginning with MySQL 4, you have another option for running the server. In addition to the usual
mysqld server that is used in a client/server setting, MySQL includes the server as a library, libmysqld,
that you can link into programs to produce standalone MySQL-based applications. This is called the
embedded server library because it's embedded into individual applications. Use of the embedded
server contrasts with the client/server approach in that no network is required. This makes it easier to
create and package applications that can be distributed on their own with fewer assumptions about
their external operational environment. On the other hand, it should be used only in situations where

the embedded application is the only one that will need access to the databases managed by the
server.

The Difference Between MySQL and mysq|l

To avoid confusion, I should point out that MySQL refers to the entire MySQL RDBMS and
mysql is the name of a particular client program. They sound the same if you pronounce
them, but they're distinguished here by capitalization and typeface differences.

Speaking of pronunciation, MySQL is pronounced "my-ess-queue-ell." We know this
because the MySQL Reference Manual says so. On the other hand, SQL is pronounced
"sequel" or "ess-queue-ell," depending on who you ask. I'm not going to take sides.
Pronounce it how you like, but be prepared for the eventuality that you'll run into someone
who will correct you and inform you of the "proper" pronunciation! (I myself pronounce it
as "sequel," which is why I use constructs like "a SQL query" rather than "an SQL query.")

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
A MySQL Tutorial

You have all the background you need now; it's time to put MySQL to work!

This section will help you familiarize yourself with MySQL by providing a tutorial for you to try. As you
work through the tutorial, you will create a sample database and some tables and then interact with
the database by adding, retrieving, deleting, and modifying information in the tables. During the
process of working with the sample database, you will learn the following things:

® The basics of the SQL language that MySQL understands. (If you already know SQL from
having used some other RDBMS, it would be a good idea to skim through this tutorial to see
whether MySQL's version of SQL differs from the version with which you are familiar.)

® How to communicate with a MySQL server using a few of the standard MySQL client
programs. As noted in the previous section, MySQL operates using a client/server architecture
in which the server runs on the machine containing the databases and clients connect to the
server over a network. This tutorial is based largely on the mysql client program, which reads
SQL queries from you, sends them to the server to be executed, and displays the results so
you can see what happened. mysql runs on all platforms supported by MySQL and provides the
most direct means of interacting with the server, so it's the logical client to begin with. Some of
the examples also use mysglimport and mysqlshow.

This book uses sampdb as the sample database name, but you may need to use a different name as
you work through the material. For example, someone else on your system already may be using the
name sampdb for their own database, or your MySQL administrator may assign you a different
database name. In either case, substitute the actual name of your database for sampdb whenever you
see the latter in examples.

Table names can be used exactly as shown in the examples, even if multiple users on your system
have their own sample databases. In MySQL, it doesn't matter if other people use the same table
names, as long as each of you uses your own database. MySQL will keep the tables straight and
prevent you from interfering with each other.

Obtaining the Sample Database Distribution

This tutorial refers at certain points to files from the "sample database distribution" (also known as
the sampdb distribution, after the name of the sampdb database). These files contain queries and data
that will help you set up the sample database. See Appendix A, "Obtaining and Installing Software,"
for instructions on getting the distribution. When you unpack it, it will create a directory named
sampdb containing the files you'll need. I recommend that you change location into that directory
whenever you're working through examples pertaining to the sample database.

Preliminary Requirements

To try the examples in this tutorial, a few preliminary requirements must be satisfied:

® You need to have the MySQL software installed.
® You need a MySQL account so that you can connect to the server.
® You need a database to work with.

The required software includes the MySQL clients and a MySQL server. The client programs must be
located on the machine where you'll be working. The server can be located on your machine, although
that is not required. As long as you have permission to connect to it, the server can be located
anywhere. If you need to get MySQL, see Appendix A for instructions. If your network access comes
through an Internet service provider (ISP), find out whether the provider offers MySQL as a service. If
not and your ISP won't install it, check Appendix I, "Internet Service Providers," for some guidelines

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

on choosing a more suitable provider.

In addition to the MySQL software, you'll need a MySQL account so that the server will allow you to
connect and create your sample database and its tables. (If you already have a MySQL account, you
can use that, but you may want to set up a separate account for use with the material in this book.)

At this point, we run into something of a chicken-and-egg problem. To set up a MySQL account to use
for connecting to the server, it's necessary to connect to the server. Typically, this is done by
connecting as the MySQL root user on the host where the server is running and issuing a GRANT
statement to create a new MySQL account. If you've installed MySQL on your own machine and the
server is running, you can connect to it and set up a new sample database administrator account with
a username of sampadm and a password of secret as follows (change the name and password to those
you want to use, both here and throughout the book):

% mysql -p -u root
Enter password: *****%
mysql> GRANT ALL ON sampdb.* TO 'sampadm’'@’'localhost’' IDENTIFIED BY 'secret’;

The mysgl command includes a -p option to cause mysql to prompt for the root user's MySQL
password. Enter the password where you see ****** in the example. (I assume that you have already
set up a password for the MySQL root user and that you know what it is. If you haven't yet assigned a
password, just press Enter at the Enter password: prompt. However, having no root password is
insecure and you should assign one as soon as possible.)

The GRANT statement just shown is appropriate if you'll be connecting to MySQL from the same
machine where the server is running. It allows you to connect to the server using the name sampadm
and the password secret and gives you complete access to the sampdb database. However, GRANT
doesn't create the database; we'll get to that a bit later.

If you don't plan to connect from the same host as the one where the server is running, change
localhost to the name of the machine where you'll be working. For example, if you will connect to the
server from the host asp.snake.net, the GRANT statement should look like this:

mysqgl> GRANT ALL ON sampdb.* TO 'sampadm'@'asp.snake.net' IDENTIFIED BY 'secret’;

If you don't have control over the server, ask your MySQL administrator to set up an account for you.
Then substitute the MySQL username, password, and database name that the administrator assigns
you for sampadm, secret, and sampdb throughout the examples in this book.

More information on the GRANT statement, setting up MySQL user accounts, and changing passwords
can be found in Chapter 11, "General MySQL Administration."

Establishing and Terminating Connections to the Server

To connect to your server, invoke the mysgl program from your shell (that is, from your UNIX prompt
or from a DOS console under Windows). The command is as follows:

% mysql options

I use % throughout this book to indicate the shell prompt. That's one of the standard UNIX prompts;
another is $. Under Windows, the prompt that you'll see will be something like C:\>.

The options part of the mysgl command line might be empty, but more probably you'll have to issue a
command that looks something like the following:

% mysql -h host_name -p -u user_name

You may not need to supply all those options when you invoke mysql, but it's likely that you'll have to
specify at least a name and password. Here's what the options mean:

® -h host_name (alternate form: --host=host_name)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The server host you want to connect to. If the MySQL server is running on the same machine
where you are running mysqgl, this option normally can be omitted.

® -u user_name (alternate form: --user=user_name)

Your MySQL username. If you're using UNIX and your MySQL username is the same as your
login name, you can omit this option; mysgl will use your login name as your MySQL name.

Under Windows, the default user name is ODBC, which is unlikely to be a useful default for you.
Either specify a -u option on the command line or add a default to your environment by setting
the USER variable. For example, you can use the following set command to specify a user name
of sampadm:

C:\> set USER=sampadm

If you place this command in your AUTOEXEC.BAT file, it will take effect whenever you start up
Windows and you won't have to issue it at the prompt.

® -p (alternate form: --password)
This option tells mysqgl to prompt you for your MySQL password. For example:

% mysql -h host_name -p -u user_name
Enter password:

When you see the Enter password: prompt, type in your password. (It won't be echoed to the
screen, in case someone's looking over your shoulder.) Note that your MySQL password is not
necessarily the same as your UNIX or Windows password. If you omit the -p option, mysql
assumes you don't need one and doesn't prompt for it.

An alternate form of this option is to specify the password value directly on the command line
by typing the option as -pyour_pass (alternate form: --password=your_pass). However, for
security reasons, it's best not to do that. For one thing, the password becomes visible to others
that way.

If you do decide to specify the password on the command line, note particularly that there is no
space between the -p option and the following password value. This behavior of -p is a common
point of confusion because it differs from the -h and -u options, which are associated with the
word that follows them whether or not there is a space between the option and the word.

Suppose that my MySQL username and password are sampadm and secret. If the MySQL server is
running on the same host, I can leave out the -h option and the mysgl command to connect to the
server looks like this:

% mysql -p -u sampadm
Enter password: *****x*

After I enter the command, mysql prints Enter password: to prompt for my password, and I type it in
(the ****** indicates where I type secret).

If all goes well, mysql prints a greeting and a mysqgl> prompt indicating that it is waiting for me to
issue queries. The full startup sequence is as follows:

% mysql -p -u sampadm

Enter password: *****%

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7575 to server version: 4.0.4-log

Type 'help;' or "\h' for help. Type '\c' to clear the buffer.
mysql>

To connect to a server running on some other machine, it's necessary to specify the hosthame using
an -h option. If that host is cobra.snake.net, the command looks like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

% mysql -h cobra.snake.net -p -u sampadm

In most of the examples that follow that show a mysgl command line, I'm going to leave out the -h, -
u, and -p options for brevity and assume that you'll supply whatever options are necessary.

After you establish a connection to the server, you can terminate your session any time by typing
QUIT:

mysql> QUIT
Bye

You can also quit by typing \q or (on UNIX) by pressing Ctrl-D.

When you're just starting to learn MySQL, you'll probably consider its security system to be an
annoyance because it makes it harder to do what you want. (You must obtain permission to create
and access a database, and you must specify your name and password whenever you connect to the
server.) However, after you move beyond the sample database used in this book to entering and
using your own records, your perspective will change radically. Then you'll appreciate the way that
MySQL keeps other people from snooping through (or worse, destroying) your information.

There are ways to set up your account so you don't have to type in connection parameters each time
you run mysql. These are discussed in the "Tips for Interacting with mysql" section later in this
chapter. The most common method for simplifying the connection process is to store your connection
parameters in an option file. You may want to skip ahead to that section right now to see how to set
up such a file.

Issuing Queries

After you're connected to the server, you're ready to issue queries. This section describes some
general things you should know about interacting with mysql.

To enter a query in mysql, just type it in. At the end of the query, type a semicolon character (';') and
press Enter. The semicolon tells mysql that the query is complete. After you've entered a query, mysq|
sends it to the server to be executed. The server processes the query and sends the results back to
mysgql, which displays the result for you.

The following example shows a simple query that asks for the current date and time:

mysql> SELECT NOW();

+ +
| NOW() |
+ +
| 2002-09-01 13:54:24 |
+ +

1 row in set (0.00 sec)

mysql displays the query result and a line that shows the number of rows the result consists of and
the time elapsed during query processing. In subsequent examples, I usually will not show the row-
count line.

Because mysql waits for the semicolon as a statement terminator, you need not enter a query all on a
single line. You can spread it over several lines if you want:

mysql> SELECT NOW(),

-> USER(),

-> VERSION()

_> ;
+ : + +
| NOW() | USER() | VERSION() |
+ + + +

| 2002-09-01 13:54:37 | sampadm@Ilocalhost | 4.0.4-beta-log |
+ } + +

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note how the prompt changes from mysqgl> to -> after you enter the first line of the query. That tells
you that mysql thinks you're still entering the query, which is important feedback—if you forget the
semicolon at the end of a query, the changed prompt helps you realize that mysql is still waiting for
something. Otherwise, you'll be waiting, wondering why it's taking MySQL so long to execute your
query, and mysql will be waiting patiently for you to finish entering your query! (mysql has a couple of
other prompts as well; they're all discussed in Appendix E, "MySQL Program Reference.")

For the most part, it doesn't matter whether you enter queries using uppercase, lowercase, or mixed
case. The following queries are all equivalent:

SELECT USER();
select user();
SelLeCt UsEr();

The examples in this book use uppercase for SQL keywords and function names, and lowercase for
database, table, and column names.

When you invoke a function in a query, there must be no space between the function name and the
following parenthesis:

mysql> SELECT NOW ();
ERROR 1064: You have an error in your SQL syntax near '()' at line 1
mysql> SELECT NOW();

+ +
| NOW() |
+ +
| 2002-09-01 13:56:36 |
+ +

These two queries look similar, but the first one fails because the parenthesis doesn't immediately
follow the function name.

Another way to terminate a query is to use \g rather than a semicolon:

mysql> SELECT NOW()\g

+ +
| NOW() |
+ +
| 2002-09-01 13:56:47 |
+ +

Or you can use \G, which displays the results in vertical format:

mysql> SELECT NOW(), USER(), VERSION()\G

3K 3K 3k 5k 3k 5k 3k oK >k ok 3k ok 3k 3k 3k K K Kk 3k koK koK kok ko 1 row 3K 3K 3k 3K 3k 3K 3k 5K >k ok 3k ok 3k ok kK K Kk K kK kK kok ko
NOW(): 2002-09-01 13:56:58
USER(): sampadm@localhost

VERSION(): 4.0.4-beta-log

For a query that generates short output lines, \G is not so useful, but if the lines are so long that they
wrap around on your screen, \G can make the output easier to read.

If you've begun typing in a multiple-line query and decide you don't want to execute it, type \c to
clear (cancel) it:

mysql> SELECT NOW(),
-> VERSION(),
-> \c

mysql>

Notice how the prompt changes back to mysqgl> to indicate that mysql is ready for a new query.

You can store queries in a file and tell mysql to read queries from the file rather than from the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

keyboard. Use your shell's input redirection facilities for this. For example, if I have queries stored in
a file named myfile.sqgl, I can execute its contents as follows:

% mysql < myfile.sql

You can call the file whatever you want. I use the .sql suffix as a convention to indicate that a file
contains SQL statements.

Executing mysql this way is something that will come up in the "Adding New Records" section later in
this chapter when we enter data into the sampdb database. It's a lot more convenient to load a table
by having mysqgl read INSERT statements from a file than to type in each statement manually.

The remainder of this tutorial shows many queries that you can try out for yourself. These are
indicated by the mysql> prompt before the query, and such examples are usually accompanied by the
output of the query. You should be able to type in these queries as shown, and the resulting output
should be the same. Queries that are shown without a prompt are intended simply to illustrate a
point, and you need not execute them. (You can try them out if you like; if you use mysql to do so,
remember to include a terminator such as a semicolon at the end.)

When Do You Need a Semicolon?

Most queries shown in this book end with a semicolon, which is a convenient way of
indicating where each query ends (particularly for multiple-statement examples). It also
parallels the way you'd enter the queries should you try them from the mysql program. But
semicolons are not part of the SQL syntax for the statements, so when you issue a query
in another context, such as from within a Perl or PHP script, you should omit the
semicolon. If you do not, an error will most likely occur.

Creating the Database

We'll begin by creating the sampdb sample database and the tables within it, populating its tables,
and performing some simple queries on the data contained in those tables. Using a database involves
several steps:

1. Creating (initializing) the database
2. Creating the tables within the database
3. Interacting with the tables by inserting, retrieving, modifying, or deleting data

Retrieving existing data is easily the most common operation performed on a database. The next
most common operations are inserting new data and updating or deleting existing data. Less frequent
are table creation operations, and least frequent of all is database creation. However, we're beginning
from scratch, so we must begin with database creation, the least common thing, and work our way
through table creation and insertion of our initial data before we get to where we can do the really
common thing—retrieving data.

To create a new database, connect to the server using mysqgl and then issue a CREATE DATABASE
statement that specifies the database name:

mysql> CREATE DATABASE sampdb;

You'll need to create the sampdb database before you can create any of the tables that will go in it or
do anything with the contents of those tables.

Does creating the database select it as the default (or current) database? No, it doesn't, as you can
see by executing the following query:

mysql> SELECT DATABASE();

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| DATABASE() |
e +

| I
e +

To make sampdb the default database, issue a USE statement:

mysql> USE sampdb;
mysql> SELECT DATABASE();

The other way to select a database is to name it on the command line when you invoke mysql:
% mysql sampdb

That is, in fact, the usual way to name the database you want to use. If you need any connection
parameters, specify them before the database name. For example, the following two commands allow
the sampadm user to connect to the sampdb database on the local host and on cobra.snake.net:

% mysql -p -u sampadm sampdb
% mysql -h cobra.snake.net -p -u sampadm sampdb

Unless specified otherwise, all the examples that follow assume that when you invoke mysql, you
name the sampdb database on the command line to make it the current database. If you invoke mysq|
but forget to name the database on the command line, just issue a USE sampdb statement at the
mysql> prompt.

Creating Tables

In this section, we'll build the tables needed for the sampdb sample database. First, we'll consider the
tables needed for the Historical League and then those for the grade-keeping project. This is the part
where some database books start talking about Analysis and Design, Entity-Relationship Diagrams,
Normalization Procedures, and other such stuff. There's a place for all that, but I prefer just to say we
need to think a bit about what our database will look like—what tables it should contain, what the
contents of each table should be, and some of the issues involved in deciding how to represent our
data.

The choices made here about data representation are not absolute. In other situations, you might well
elect to represent similar data in a different way, depending on the requirements of your applications
and the uses to which you intend to put your data.

Tables for the Historical League

Table layout for the Historical League is pretty simple:

® A president table. This contains a descriptive record for each U.S. president. We'll need this
for the online quiz on the League Web site (the interactive analog to the printed quiz that
appears in the children's section of the League's newsletter).

¢ A member table. This is used to maintain current information about each member of the

League. It'll be used for creating printed and online versions of the member directory, sending
automated membership renewal reminders, and so on.

The president Table

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The president table is simpler, so let's discuss it first. This table will contain some basic biographical
information about each United States president:

® Name. Names can be represented in a table several ways. For example, we could have a
single column containing the entire name or separate columns for the first and last name. It's
certainly simpler to use a single column, but that limits you in some ways:

O If you enter the names with the first name first, you can't sort on last name.

O If you enter the names with the last name first, you can't display them with the first
name first.

O It's harder to search for names. For example, to search for a particular last name, you
must use a pattern and look for names that match the pattern. This is less efficient and
slower than looking for an exact last name.

To avoid these limitations, our president table will use separate columns for the first and last
names.

The first name column will also hold the middle name or initial. This shouldn't break any sorting
we might do because it's not likely we'll want to sort on middle name (or even first name).
Name display should work properly, too, because the middle name immediately follows the first
name regardless of whether a name is printed in "Bush, George W." or in "George W. Bush"
format.

There is another slight complication. One president (Jimmy Carter) has a "Jr." at the end of his
name. Where does that go? Depending on the format in which names are printed, this
president's name is displayed as "James E. Carter, Jr.," or "Carter, James E., Jr." The "Jr."
doesn't associate with either first or last name, so we'll create another column to hold a name
suffix. This illustrates how even a single value can cause problems when you're trying to
determine how to represent your data. It also shows why it's a good idea to know as much as
possible about the type of data values you'll be working with before you put them in a
database. If you have incomplete knowledge of what your data look like, you may have to
change your table structure after you've already begun to use it. That's not necessarily a
disaster, but in general it's something you want to avoid.

® Birthplace (city and state). Like the name, this too can be represented using a single
column or multiple columns. It's simpler to use a single column, but as with the name,
separate columns allow you to do some things you can't do easily otherwise. For example, it's
easier to find records for presidents born in a particular state if city and state are listed
separately.

® Birth date and death date. The only special problem here is that we can't require the death

date to be filled in because some presidents are still living. MySQL provides a special value
NULL that means "no value," so we can use that in the death date column to signify "still alive."

The member Table

The member table for the Historical League membership list is similar to the president table in the
sense that each record contains basic descriptive information for a single person. But each member
record contains more columns:

® Name. We'll use the same three-column representation as for the president table: last name,
first name, and suffix.

® ID number. This is a unique value assigned to each member when a membership first begins.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The League hasn't ever used ID numbers before, but now that the records are being made
more systematic, it's a good time to start. (I am anticipating that you'll find MySQL beneficial
and that you'll think of other ways to apply it to the League's records. When that happens, it'll
be easier to associate records in the member table with other member-related tables you may
create if you use numbers rather than names.)

® Expiration date. Members must renew their memberships periodically to avoid having them
lapse. For some applications, you might use the date of the most recent renewal, but this is not
suitable for the League's purposes. Memberships can be renewed for a variable number of
years (typically one, two, three, or five years), and a date for the most recent renewal wouldn't
tell you when the next renewal must take place. In addition, the League allows lifetime
memberships. We could represent these with a date far in the future, but NULL seems more
appropriate because "no value" logically corresponds to "never expires."

® Email address. Publishing these addresses will make it easier for those members that have
them to communicate with each other more easily. For your purposes as League secretary,
these addresses will allow you to send out membership renewal notices electronically rather
than by postal mail. This should be easier than going to the post office and less expensive as
well. You'll also be able to use email to send members the current contents of their directory
entries and ask them to update the information as necessary.

® Postal address. This is needed for contacting members that don't have email (or who don't
respond to it). We'll use columns for street address, city, state, and Zip code.

I'm assuming that all League members live in the United States. For organizations with a
membership that is international in scope, that assumption is an oversimplification, of course.
If you want to deal with addresses from multiple countries, you'll run into some sticky issues
having to do with the different address formats used for different countries. For example, Zip
code is not an international standard, and some countries have provinces rather than states.

® Phone number. Like the address fields, this is useful for contacting members.

® Special interest keywords. Every member is assumed to have a general interest in U.S.
history, but members probably also have some special areas of interest. This column records
those interests. Members can use it to find other members with similar interests.

Creating the Historical League Tables

Now we're ready to create the Historical League tables. For this we use the CREATE TABLE statement,
which has the following general form:

CREATE TABLE tb/_name (column_specs);

tbl_name indicates the name you want to give the table. column_specs provides the specifications for
the columns in the table, as well as any indexes (if there are any). Indexes make lookups faster; we'll
discuss them further in Chapter 4, "Query Optimization." For the president table, the CREATE TABLE
statement looks like this:

CREATE TABLE president

(
last_name VARCHAR(15) NOT NULL,
first_name VARCHAR(15) NOT NULL,
suffix ~ VARCHAR(5) NULL,
city VARCHAR(20) NOT NULL,
state VARCHAR(2) NOT NULL,
birth DATE NOT NULL,
death DATE NULL

)

If you want to type in that statement yourself, invoke mysgl, making sampdb the current database:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

% mysql sampdb

Then enter the CREATE TABLE statement as just shown, including the trailing semicolon so that mysq|
can tell where the end of the statement is.

To create the president table using a prewritten description, use the create_president.sql file from the
sampdb distribution. This file is located in the sampdb directory that is created when you unpack the
distribution. Change location into that directory and then run the following command:

% mysql sampdb < create_president.sql

Whichever way you invoke mysql, specify any connection parameters you may need (hostname,
username, or password) on the command line preceding the database name.

Each column specification in the CREATE TABLE statement consists of the column name, the data type
(the kind of values the column will hold), and possibly some column attributes.

The two column types used in the president table are VARCHAR and DATE.VARCHAR(n) means the
column contains variable-length character (string) values, with a maximum length of n characters
each. You choose the value of naccording to how long you expect your values to be. state is declared
as VARCHAR(2); that's all we need if states are entered using their two-character abbreviations. The
other string-valued columns need to be wider to accommodate longer values.

The other column type we've used is DATE. This type indicates, not surprisingly, that the column

holds date values. However, what may be surprising to you is the format in which dates are
represented. MySQL expects dates to be specified in 'CCYY-MM-DD format, where CC, YY, MM, and DD
represent the century, year within the century, month, and date. This is the ANSI SQL standard for
date representation (also known as ISO 8601 format). For example, a date of July 18, 2002 is
specified in MySQL as '2002-07-18', not as '07-18-2002' or '18-07-2002'".

The only attributes we're using for the columns in the president table are NULL (values can be
missing) and NOT NULL (values must be filled in). Most columns are NOT NULL because we'll always
have a value for them. The two columns that can have NULL values are suffix (most names don't have
one) and death (some presidents are still alive, so there is no date of death).

For the member table, the CREATE TABLE statement looks like this:

CREATE TABLE member
(
member_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (member_id),
last_name VARCHAR(20) NOT NULL,
first_name VARCHAR(20) NOT NULL,
suffix ~ VARCHAR(5) NULL,
expiration DATE NULL DEFAULT '0000-00-00',
email VARCHAR(100) NULL,
street VARCHAR(50) NULL,
city VARCHAR(50) NULL,
state VARCHAR(2) NULL,
zip VARCHAR(10) NULL,
phone VARCHAR(20) NULL,
interests VARCHAR(255) NULL

)

Type that statement into mysql or execute the following command to use the prewritten file from the
sampdb distribution:

% mysql sampdb < create_member.sql

In terms of column types, most columns of the member table except two are not very interesting
because they are created as variable-length strings. The exceptions are member_id and expiration,
which exist to hold sequence numbers and dates, respectively.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The primary consideration for the member_id membership number column is that each of its values
should be unique to avoid confusion between members. An AUTO_INCREMENT column is useful here
because then we can let MySQL generate unique numbers for us automatically when we add new
members. Even though it just contains numbers, the declaration for member_id has several parts:

® INT signifies that the column holds integers (numeric values with no fractional part).
® UNSIGNED disallows negative numbers.

® NOT NULL requires that the column value must be filled in. (This means that no member can be
without an ID number.)

® AUTO_INCREMENT is a special attribute in MySQL. It indicates that the column holds sequence
numbers. The AUTO_INCREMENT mechanism works like this; If the value for the member_id
column is missing (or NULL) when you create a new member table record, MySQL automatically
generates the next sequence number and assigns it to the column. This makes it easy to assign
IDs to new members, because MySQL will do it for us.

The PRIMARY KEY clause indicates that the member_id column is indexed to allow fast lookups and
that each value in the column must be unique. The latter property is desirable for member ID values,
because it prevents us from using the same ID twice by mistake. (Besides, MySQL requires every
AUTO_INCREMENT column to have some kind of unique index, so the table definition is illegal without
one.)

If you don't understand that stuff about AUTO_INCREMENT and PRIMARY KEY, just think of them as
giving us a magic way of generating an ID number for each member. It doesn't particularly matter
what the values are, as long as they're unique. (When you're ready to learn more about how to
declare and use AUTO_INCREMENT columns, Chapter 2, "Working with Data in MySQL," covers them
in detail.)

The expiration column is a DATE. It has a default value of '0000-00-00', which is a non-NULL value that
means no legal date has been entered. The reason for this is that expiration can be NULL to indicate
that a member has a lifetime membership. If we don't specify otherwise, a column that can contain
NULL also has NULL as its default value. That's not desirable in this case; if you created a new
member record but forgot to specify the expiration date, MySQL would fill in the expiration column
with NULL automatically—thus making the member a lifetime member! By specifying that the column
has a default value of '0000-00-00' instead, we avoid this problem. That also gives us a value we can
search for periodically to find records for which the expiration date was never properly entered.

Now that you've told MySQL to create a couple of tables, check to make sure that it did so as you
expect. In mysql, issue the following query to see the structure of the president table:

mysql> DESCRIBE president;

+ + + } + + +
| Field | Type | Null | Key | Default | Extra |
+ } } } + } +

last_name	varchar(15)]		
first_name	varchar(15)]		
suffix	varchar(5)	YES		NULL	
city	varchar(20)				

| state | char(2) | | |

| birth | date | |] 0000-00-00 | |

| death | date | YES | | NULL | |
+ } } . + } +

In some versions of MySQL, the results from DESCRIBE include additional information showing access
privilege information. I've not shown that here because it makes the lines too long to display without
wrapping around.

The output looks pretty much as we'd expect, except that the information for the state column says
its type is CHAR(2). That's odd; wasn't it declared as VARCHAR(2)? Yes, it was, but MySQL has silently

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

changed the type from VARCHAR to CHAR. The reason for this has to do with efficiency of storage
space for short character columns, which I won't go into here. If you want the details, check the
discussion of the ALTER TABLE statement in Chapter 3, "MySQL SQL Syntax and Use." For our
purposes here, there is no difference between the two types. The important thing is that the column
stores two-character values.

If you issue a DESCRIBE member query, mysql will show you similar information for the member table.

DESCRIBE is useful when you forget the name of a column in a table or need to know its type or how
wide it is and so on. It's also useful for finding out the order in which MySQL stores columns in table
rows. That order is important when you use INSERT or LOAD DATA statements that expect column
values to be listed in the default column order.

The information produced by DESCRIBE can be obtained in different ways. It may be abbreviated as
DESC or written as an EXPLAIN or SHOW statement. The following statements are all synonymous:

DESCRIBE president;

DESC president;

EXPLAIN president;

SHOW COLUMNS FROM president;
SHOW FIELDS FROM president;

These statements also allow you to restrict the output to particular columns. For example, you can
add a LIKE clause at the end of a SHOW statement to display information only for column names that
match a given pattern:

mysql> SHOW COLUMNS FROM president LIKE '%0name’;

+ + } + + + +
| Field | Type | Null | Key | Default | Extra |

+ + + +----- B +-mmees +
| last_name | varchar(15) | || | |

| first_name | varchar(15) | | | |

+ } } } + + +

The '%' character used here is a special wildcard character that is described later in the "Pattern
Matching" section. Similar restrictions can be used with DESCRIBE and EXPLAIN as well; for the exact
syntax, see Appendix D, "SQL Syntax Reference."

The SHOW statement has other forms that are useful for obtaining different types of information from
MySQL. SHOW TABLES lists the tables in the current database, so with the two tables we've created so
far in the sampdb database, the output looks like this:

mysql> SHOW TABLES;

et +
| Tables_in_sampdb |
B +
| member |
| president |
et +

SHOW DATABASES lists the databases that are managed by the server to which you're connected:

mysql> SHOW DATABASES;

| menagerie |
| mysgl |

| sampdb |
| test |

The list of databases varies from server to server, but you should see at least sampdb and mysql. You

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

created sampdb yourself, and the database named mysql holds the grant tables that control MySQL
access privileges.

The mysglshow utility provides a command-line interface to the same kinds of information that the
SHOW statement displays. With no arguments, mysglshow displays a list of databases:

% mysqlshow

| menagerie |
| mysql I

| sampdb |
| test |

With a database name, it shows the tables in the given database:

% mysqlshow sampdb
Database: sampdb

| member |
| president |

With a database and table name, mysqlshow displays information about the columns in the table,
much like the SHOW COLUMNS statement.

Tables for the Grade-Keeping Project

To see what tables are required for the grade-keeping project, let's consider how you might write
down scores when you use a paper-based gradebook. Figure 1.2 shows a page from your gradebook.
The main body of this page is a matrix for recording scores. There is also other information necessary
for making sense of the scores. Student names and ID numbers are listed down the side of the
matrix. (For simplicity, only four students are shown.) Along the top of the matrix, you put down the
dates when you give quizzes and tests. The figure shows that you've given quizzes on September 3,
6, 16, and 23, and tests on September 9 and October 1.

Figure 1.2. Example gradebook.

To keep track of this kind of information using a database, we need a score table. What should records
in this table contain? That's easy. For each row, we need student name, the date of the quiz or test,
and the score. Figure 1.3 shows how some of the scores from the gradebook look when represented

in a table like this. (Dates are written the way MySQL represents them, in 'CCYY-MM-DD' format.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 1.3. Initial score table layout.

However, there is a problem with setting up the table in this way because it leaves out some
information. For example, looking at the records in Figure 1.3, we can't tell whether scores are for a
quiz or a test. It could be important to know score types when determining final grades if quizzes and
tests are weighted differently. We might try to infer the type from the range of scores on a given date
(quizzes usually are worth fewer points than a test), but that's ugly because it relies on inference and
not something explicit in the data.

It's possible to distinguish scores by recording the type in each record, for example, by adding a
column to the score table that contains 'T' or 'Q' for each row to indicate "test" or "quiz," as in Figure
1.4. This has the advantage of making the type of score explicit in the data. The disadvantage is that
this information is somewhat redundant. Observe that for all records with a given date, the score type
column always has the same value. The scores for September 23 all have a type of 'Q', and the scores
for October 1 all have a type of 'T'. This is unappealing. If we record a set of scores for a quiz or test
this way, not only will we be putting in the same date for each new record in the set, we'll be putting
in the same score type over and over again. Ugh. Who wants to enter all that redundant information?

Figure 1.4. score table layout, revised to include score type.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Let's try an alternative representation. Instead of recording score types in the score table, we'll figure
them out from the dates. We can keep a list of dates and use it to keep track of what kind of "grade
event" (quiz or test) occurred on each date. Then we can determine whether any given score was
from a quiz or a test by combining it with the information in our event list; just match the date in the
score table record with the date in the event table to get the event type. Figure 1.5 shows this table
layout and demonstrates how the association works for a score table record with a date of September
23. By matching the record with the corresponding record in the event table, we see that the score is
from a quiz.

Figure 1.5. score and event tables, linked on date.

This is much better than trying to infer the score type based on some guess; instead, we're deriving
the type directly from data recorded explicitly in our database. It's also preferable to recording score
types in the score table because we must record each type only one time, rather than once per score
record.

However, now we're combining information from multiple tables. If you're like me, when you first
hear about this kind of thing, you think, "Yeah, that's a cute idea, but isn't it a lot of work to do all
that looking up all the time; doesn't it just make things more complicated?"

In a way, that's correct; it is more work. Keeping two lists of records is more complicated than
keeping one list. But take another look at your gradebook (see Figure 1.2). Aren't you already
keeping two sets of records? Consider the following facts:

® You keep track of scores using the cells in the score matrix, where each cell is indexed by
student name and date (down the side and along the top of the matrix). This represents one
set of records; it's analogous to the contents of the score table.

® How do you know what kind of event each date represents? You've written a little 'T' or 'Q’
above the date, so you're also keeping track of the association between date and score type
along the top of the matrix. This represents a second set of records; it's analogous to the event
table contents.

In other words, even though you may not think about it as such, you're really not doing anything
different with the gradebook than what I'm proposing to do by keeping information in two tables. The
only real difference is that the two kinds of information aren't so explicitly separated in the paper-
based gradebook.

The page in the gradebook illustrates something about the way we think of information and about the
difficulty of figuring out how to put information in a database. We tend to integrate different kinds of
information and interpret them as a whole. Databases don't work like that, which is one reason why
they sometimes seem artificial and unnatural. Our natural tendency to unify information makes it
quite difficult sometimes even to realize when we have multiple types of data instead of just one.
Because of this, you may find it a challenge to "think as a database thinks" about how your data
should be represented.

One requirement imposed on the event table by the layout shown in Figure 1.5 is that the dates be

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

unique because each date is used to link together records from the score and event tables. In other
words, you cannot give two quizzes on the same day, or a quiz and a test. If you do, you'll have two
sets of records in the score table and two records in the event table, all with the same date, and you
won't be able to tell how to match score records with event records.

That problem will never come up if there is never more than one grade event per day. But is it really
valid to assume that will never happen? It might seem so; after all, you don't consider yourself
sadistic enough to give a quiz and a test on the same day. But I hope you'll pardon me if I'm
skeptical. I've often heard people claim about their data, "That odd case will never occur." Then it
turns out the odd case does occur on occasion, and usually you have to redesign your tables to fix
problems that the odd case causes.

It's better to think about the possible problems in advance and anticipate how to handle them. So,
let's suppose you might need to record two sets of scores for the same day sometimes. How can we
handle that? As it turns out, this problem isn't so difficult to solve. With a minor change to the way we
lay out our data, multiple events on a given date won't cause trouble:

1. Add a column to the event table and use it to assign a unique number to each record in the
table. In effect, this gives each event its own ID number, so we'll call this the event_id column.
(If this seems like an odd thing to do, consider that your gradebook in Figure 1.2 already has
this property; the event ID is just like the column number in your gradebook score matrix. The
number might not be written down explicitly there and labeled "event ID," but that's what it
is.)

2. When you put scores in the score table, record the event ID rather than the date.

The result of these changes is shown in Figure 1.6. Now you link together the score and event tables
using the event ID rather than the date, and you use the event table to determine not just the type of
each score but also the date on which it occurred. Also, it's no longer the date that must be unique in
the event table, it's the event ID. This means you can have a dozen tests and quizzes on the same
day, and you'll be able to keep them straight in your records. (No doubt your students will be thrilled
to hear this.)

Figure 1.6. score and event tables, linked on event ID.

Unfortunately, from a human standpoint, the table layout in Figure 1.6 seems less satisfactory than
the previous ones. The score table is more abstract because it contains fewer columns that have a
readily apparent meaning. The table layout shown earlier in Figure 1.4 was easy to look at it and
understand because the score table had columns for both dates and score types. The current score
table shown in Figure 1.6 has columns for neither. This seems highly removed from anything we can
think about easily. Who wants to look at a score table that has "event IDs" in it? That just doesn't
mean much to us.

At this point, you reached a crossroads. You're intrigued by the possibility of being able to perform
grade-keeping electronically and not having to do all kinds of tedious manual calculations when
assigning grades. But after considering how you actually would represent score information in a
database, you're put off by how abstract and disconnected the representation seems to make that
information.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This leads naturally to a question: "Would it be better not to use a database at all? Maybe MySQL isn't
for me." As you might guess, I will answer that question in the negative, because otherwise this book
will come to a quick end. But when you're thinking about how to do a job, it's not a bad idea to
consider various alternatives and to ask whether you're better off using a database system such as
MySQL or something else, such as a spreadsheet program:

® The gradebook has rows and columns, and so does a spreadsheet. This makes the gradebook
and a spreadsheet conceptually and visually very similar.

® A spreadsheet program can perform calculations, so you could total up each student's scores
using a calculation field. It might be a little tricky to weight quizzes and tests differently, but
you could do it.

On the other hand, if you want to look at just part of your data (quizzes only or tests only, for
example), perform comparisons such as boys versus girls, or display summary information in a
flexible way, it's a different story. A spreadsheet doesn't work so well, whereas relational database
systems perform those operations easily.

Another point to consider is that the abstract and disconnected nature of your data as represented in
a relational database is not really that big of a deal, anyway. It's necessary to think about that
representation when setting up the database so that you don't lay out your data in a way that doesn't
make sense for what you want to do with it. However, after you determine the representation, you're
going to rely on the database engine to pull together and present your data in a way that is
meaningful to you. You're not going to look at it as a bunch of disconnected pieces.

For example, when you retrieve scores from the score table, you don't want to see event IDs; you
want to see dates. That's not a problem. The database will look up dates from the event table based
on the event ID and show them to you. You may also want to see whether the scores are for tests or
quizzes. That's not a problem, either. The database will look up score types the same way—using the
event ID. Remember, that's what a relational database system like MySQL is good at—relating one
thing to another to pull out information from multiple sources to present you with what you really
want to see. In the case of our grade-keeping data, MySQL does the thinking about pulling
information together using event IDs so that you don't have to.

Now, just to provide a little advance preview of how you'd tell MySQL to do this relating of one thing
to another, suppose you want to see the scores for September 23, 2002. The query to pull out scores
for an event given on a particular date looks like the following:

SELECT score.name, event.date, score.score, event.type
FROM score, event

WHERE event.date = '2002-09-23'

AND score.event_id = event.event_id;

Pretty scary, huh? This query retrieves the student name, the date, score, and the type of score by
joining (relating) score table records to event table records. The result looks like this:

+ + + +

| name | date | score | type
+ } + }

| Billy | 2002-09-23 | 15| Q

Missy	2002-09-23	14	Q
Johnny	2002-09-23	17	Q
Jenny	2002-09-23	19	Q
+ + + + +

+
|
+
|

Notice anything familiar about the format of that information? You should; it's the same as the table
layout shown in Figure 1.4. And you don't need to know the event ID to get this result. You specify
the date you're interested in and let MySQL figure out which score records go with that date. So if
you've been wondering whether all the abstraction and disconnectedness loses us anything when it
comes to getting information out of the database in a form that's meaningful to us, it doesn't.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Of course, after looking at that query, you might be wondering something else, too. Namely, it looks
kind of long and complicated; isn't writing something like that a lot of work to go to just to find the
scores for a given date? Yes, it is. However, there are ways to avoid typing several lines of SQL each
time you want to issue a query. Generally, you figure out once how to perform a query such as that
one and then you store it so that you can repeat it easily as necessary. We'll see how to do this in the

"Tips for Interacting with mysql" section later in this chapter.

I've actually jumped the gun a little bit in showing you that query. It is, believe it or not, a little
simpler than the one we're really going to use to pull out scores. The reason for this is that we need
to make one more change to our table layout. Instead of recording student name in the score table,
we'll use a unique student ID. (That is, we'll use the value from the "ID" column of your gradebook
rather than from the "Name" column.) Then we create another table called student that contains name

and student_id columns (Figure 1.7).

Figure 1.7. student, score, and event tables, linked on student ID and event ID.

Why make this modification? For one thing, there might be two students with the same name. Using a
unique student ID number helps you tell their scores apart. (This is exactly analogous to the way you
can tell scores apart for a test and quiz given on the same day by using a unique event ID rather than
the date.) After making this change to the table layout, the query we'll actually use to pull out scores
for a given date becomes a little more complex:

SELECT student.name, event.date, score.score, event.type
FROM event, score, student

WHERE event.date = '2002-09-23'

AND event.event_id = score.event_id

AND score.student_id = student.student_id;

If you're concerned because you don't find the meaning of that query immediately obvious, don't be.
Most people wouldn't. We'll see the query again after we get further along into this tutorial, but the
difference between now and later is that later you'll understand it. And, no, I'm not kidding.

You'll note from Figure 1.7 that I added something to the student table that wasn't in your gradebook;
it contains a column for sex. This will allow for simple things like counting the number of boys and
girls in the class or more complex things like comparing scores for boys and girls.

We're almost done designing the tables for the grade-keeping project. We need just one more table to
record absences for attendance purposes. Its contents are relatively straightforward: a student ID
number and a date (see Figure 1.8). Each row in the table indicates that the given student was absent
on the given date. At the end of the grading period, we'll call on MySQL's counting abilities to
summarize the table's contents to tell us how many times each student was absent.

Figure 1.8. absence table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now that we know what our grade-keeping tables should look like, we're ready to create them. The
CREATE TABLE statement for the student table is as follows:

CREATE TABLE student
(
name VARCHAR(20) NOT NULL,
sex ENUM('F','M") NOT NULL,
student_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (student_id)

)i
Type that statement into mysql or execute the following command:
% mysql sampdb < create_student.sql

The CREATE TABLE statement creates a table named student with three columns, name, sex, and
student_id.

name is a variable-length string column that can hold up to 20 characters. This hame representation is
simpler than the one used for the Historical League tables; it uses a single column rather than
separate first name and last name columns. That's because I know in advance that no grade-keeping
query examples will need to do anything that would work better with separate columns. (Yes, that's
cheating. I admit it.)

sex represents whether a student is a boy or a girl. It's an ENUM (enumeration) column, which means
it can take on only one of the values listed in the column specification: 'F' for female or 'M' for male.
ENUM is useful when you have a restricted set of values that a column can hold. We could have used
CHAR(1) instead, but ENUM makes it more explicit what the column values can be. If you forget what
the possible values are, issue a DESCRIBE tb/_name statement. For an ENUM column, MySQL will
display the list of legal enumeration values.

By the way, values in an ENUM column need not be just a single character. The type column could
have been declared as something like ENUM('female’,'male") instead.

student_id is an integer column that will contain unique student ID numbers. Normally, you'd probably
get ID numbers for your students from a central source, such as the school office. We'll just make
them up, using an AUTO_INCREMENT column that is declared in much the same way as the
member_id column that is part of the member table created earlier.

Note that if you really were going to get student ID numbers from the office rather than generating
them automatically, you could declare the student_id column without the AUTO_INCREMENT attribute.
But leave in the PRIMARY KEY clause to disallow duplicate IDs.

The event table looks like this:

CREATE TABLE event

(
date DATE NOT NULL,

type ENUM('T,'Q") NOT NULL,
event_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
PRIMARY KEY (event_id)

);

To create the table, type that statement into mysql or execute the following command:

% mysql sampdb < create_event.sql

All the columns are declared as NOT NULL because none of them can be missing.

The date column holds a standard MySQL DATE value, in 'CCYY-MM-DD' (year-first) format.

type represents score type. Like sex in the student table, type is an enumeration column. The
allowable values are 'T' and 'Q’, representing "test" and "quiz."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

event_id is an AUTO_INCREMENT column declared as a PRIMARY KEY, similar to student_id in the
student table. Using AUTO_INCREMENT allows us to generate unique event ID values easily. As with
the student_id column in the student table, the particular values are less important than that they be
unique.

The score table looks like this:

CREATE TABLE score

(
student_id INT UNSIGNED NOT NULL,
event_id INT UNSIGNED NOT NULL,
PRIMARY KEY (event_id, student_id),
score INT NOT NULL

)i
Type that statement into mysql or execute the following command:
% mysql sampdb < create_score.sql

The student_id and event_id columns are INT (integer) columns indicating the student and event to
which each score applies. By using them to link to the student and event tables, we'll be able to tell
the student name and event date. We've also made the combination of the two columns a PRIMARY
KEY. This ensures that we won't have duplicate scores for a student for a given quiz or test. Also, it'll
be easier to change a score later. For example, when a score is entered incorrectly, we can clobber
the old record when we put in the new records by using MySQL's REPLACE statement. It's not
necessary to do a DELETE coupled with an INSERT; MySQL does it for us.

Note that it's the combination of event_id and student_id that is unique. In the score table, neither
value is unique by itself. There will be multiple score records for each event_id value (one per student)
and multiple records for each student_id value (one for each quiz and test).

score is an integer column. That is, I'm assuming score values are always integers. If you wanted to
allow scores such as 58.5 that have a fractional part, you'd use one of the floating-point column
types, such as FLOAT or DECIMAL, instead.

The absence table for attendance looks like this:

CREATE TABLE absence

(
student_id INT UNSIGNED NOT NULL,
date DATE NOT NULL,
PRIMARY KEY (student_id, date)

)

Type that statement into mysql or execute the following command:
% mysql sampdb < create_absence.sql

The student_id and date columns are both declared as NOT NULL to disallow missing values. We make
the combination of the two columns a primary key so that we don't accidentally create duplicate
records. After all, it wouldn't be fair to count a student absent twice on the same day!

Adding New Records

At this point, our database and its tables have been created. Now we need to put some records into
the tables. However, it's useful to know how to check what's in a table after you put something into it,
so although retrieval is not covered in any detail until the next section, you should know at least that
the following statement will show you the contents of any table tb/_name:

SELECT * FROM tbl_name;

For example:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mysql> SELECT * FROM student;
Empty set (0.00 sec)

Right now, mysql indicates that the table is empty, but you'll see a different result after trying the
examples in this section.

There are several ways to add data to a database. You can insert records into a table manually by
issuing INSERT statements. You can also add records by reading them from a file, either in the form of
pre-written INSERT statements that you feed to mysql or as raw data values that you load using the
LOAD DATA statement or the mysglimport utility.

This section demonstrates each method of inserting records into your tables. What you should do is
play with all of them to familiarize yourself with them and to see how they work. After you're done
trying out the methods, go to the end of the section and run the commands you find there to drop the
tables, recreate them, and load them with a known set of data. By doing so, you'll make sure the
tables contain the same records that I worked with while writing the sections that follow, and you'll
get the same results shown in those sections. (You may want to skip directly to the end of this section
if you already know how to insert records and just want to populate the tables.)

Let's start adding records by using INSERT, a SQL statement for which you specify the table into
which you want to insert a row of data and the values to put in the row. The INSERT statement has
several forms:

® You can specify values for all the columns:
INSERT INTO tb/_name VALUES(valuel,valuez,...);
For example:

mysql> INSERT INTO student VALUES('Kyle','M',NULL);
mysql> INSERT INTO event VALUES('2002-9-3','Q",NULL);

With this syntax, the VALUES list must contain a value for each column in the table, in the
order that the columns are stored in the table. (Normally, this is the order in which the
columns were specified in the table's CREATE TABLE statement.) If you're not sure what the
column order is, issue a DESCRIBE tb/_name statement to find out.

You can quote string and date values in MySQL using either single or double quotes. The NULL
values are for the AUTO_INCREMENT columns in the student and event tables. Inserting a
"missing value" into an AUTO_INCREMENT column causes MySQL to generate the next
sequence number for the column.

MySQL versions from 3.22.5 up allow you to insert several rows into a table with a single
INSERT statement by specifying multiple value lists:

INSERT INTO tb/_name VALUES(...),(...),... ;
For example:
mysql> INSERT INTO student VALUES('Abby’,'F',NULL),('Kyle','M',NULL);

This involves less typing than multiple INSERT statements and is also more efficient for the
server to execute.

® You can name the columns to which you want to assign values and then list the values. This is
useful when you want to create a record for which only a few columns need to be set up
initially.

INSERT INTO tb/_name (col_namel,col_nameZ,...) VALUES(valuel,valuez,...);
For example:

mysql> INSERT INTO member (last_name,first_name) VALUES('Stein','"Waldo");

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As of MySQL 3.22.5, this form of INSERT allows multiple value lists too:
mysqgl> INSERT INTO student (name,sex) VALUES('Abby','F"),('Kyle','M");

Any column not named in the column list is assigned a default value. For example, the
preceding statements contain no values for the member_id or student_id columns, so MySQL
will assign the default value of NULL. (member_id and student_id both are AUTO_INCREMENT
columns, so the net effect in each case is to generate and assign the next sequence number,
just as if you had assigned NULL explicitly.)

® As of MySQL 3.22.10, you can name columns and values in col_name=value form.
INSERT INTO tb/_name SET col_namel=valuel, col_name2=valuez, ... ;
For example:
mysql> INSERT INTO member SET last_name='Stein’',first_name="Waldo’;

Any column not named in the SET clause is assigned a default value. You cannot insert multiple
rows using this form of INSERT.

Another method for loading records into a table is to read them directly from a file. For example, if
you have a file named insert_president.sql that contains INSERT statements for adding new records to
the president table, you can execute those statements like this:

% mysql sampdb < insert_president.sql

(The insert_president.sql file can be found in the sampdb distribution.) If you're already running mysq|l,
you can use a SOURCE command to read the file:

mysql> SOURCE insert_president.sql;
SOURCE requires MySQL 3.23.9 or newer.

If you have the records stored in a file as raw data values rather than as INSERT statements, you can
load them with the LOAD DATA statement or with the mysglimport utility.

The LOAD DATA statement acts as a bulk loader that reads data from a file. Use it from within mysql:
mysql> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

Assuming that the member.txt data file is located in your current directory on the client host, this
statement reads it and sends its contents to the server to be loaded into the member table.
(member.txt can be found in the sampdb distribution.)

By default, the LOAD DATA statement assumes that column values are separated by tabs and that
lines end with newlines (also known as linefeeds). It also assumes that the values are present in the
order that columns are stored in the table. It's possible to read files in other formats or to specify a
different column order. See the entry for LOAD DATA in Appendix D for details.

LOAD DATA LOCAL won't work if your MySQL is older than version 3.22.15 because that's when the
capability of reading files from the client was added to LOAD DATA. (Without the LOCAL keyword, the
file must be located on the server host and you need a server access privilege that most MySQL users
don't have.) In addition, as of MySQL 3.23.49, the LOCAL capability may be present but disabled by
default. If the LOAD DATA statement results in an error, try again after invoking mysql with the --local-
infile option—for example:

% mysql --local-infile sampdb
mysql> LOAD DATA LOCAL INFILE 'member.txt' INTO TABLE member;

If that doesn't work, either, the server also needs to be told to allow LOCAL. See Chapter 11 for
information on how to do this.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The mysglimport utility acts as a command line interface to LOAD DATA. You invoke mysglimport from
the shell, and it generates a LOAD DATA statement for you:

% mysqlimport --local sampdb member.txt

This won't work if your MySQL is older than version 3.22.15 because the --local option requires LOAD
DATA LOCAL. As with the mysql program, if you need to specify connection parameters, indicate them
on the command line preceding the database name.

For the command just shown, mysglimport generates a LOAD DATA statement to load member.txt into
the member table. That's because mysglimport determines the table name from the name of the data
file using everything up to the first period of the filename as the table name. For example, member.txt
and president.txt would be loaded into the member and president tables. This means you should
choose your filenames carefully or mysqlimport won't use the correct table name. For example, you
may want to load memberl.txt and member2.txt into the member table, but mysglimport would think it
should load them into tables named memberl and member2. You could, however, use names like
member.1.txt and member.2.txt, or member.txtl and member.txt2.

After you have tried the record-adding methods just described, you should re- create and load the
sampdb database tables so that their contents are the same as what the next sections assume. From
your shell, execute the following commands:

% mysql sampdb < create_president.sql
% mysql sampdb < insert_president.sql
% mysql sampdb < create_member.sql
% mysql sampdb < insert_member.sql
% mysql sampdb < create_student.sql
% mysql sampdb < insert_student.sql
% mysql sampdb < create_score.sql

% mysql sampdb < insert_score.sql

% mysql sampdb < create_event.sql

% mysql sampdb < insert_event.sql

% mysql sampdb < create_absence.sql
% mysql sampdb < insert_absence.sql

If you don't want to type those commands individually (which is not unlikely), try the following under
UNIX:

% sh init_all_tables.sh sampdb
Or try the following under Windows:
C:\> init_all_tables.bat sampdb

If you need to specify connection parameters, list them on the command line before the database
name.

Retrieving Information

Our tables are created and loaded with data now, so let's see what we can do with that data. The
SELECT statement allows you to retrieve and display information from your tables, in as general or
specific a manner as you like. You can display the entire contents of a table

SELECT * FROM president;
or you can select as little as a single column of a single row:
SELECT birth FROM president WHERE last_name = 'Eisenhower’;

The SELECT statement has several clauses (or parts), which you combine as necessary to retrieve the
information in which you're interested. Each of these clauses can be simple or complex, so SELECT

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

statements as a whole can be simple or complex. However, you may rest assured that you won't find
any page-long queries that take an hour to figure out in this book. (When I see arm-length queries in
something I'm reading, I generally skip right over them, and I'm guessing you do the same.)

The general form of SELECT is as follows:

SELECT what to select
FROM table or tables
WHERE condiitions that data must satisfy;

To write a SELECT statement, specify what you want to retrieve and then some optional clauses. The
clauses just shown (FROM and WHERE) are the most common ones, although others can be specified
as well, such as GROUP BY, ORDER BY, and LIMIT. Remember that SQL is a free-format language, so
when you write your own SELECT queries, you need not put line breaks in the same places I do.

The FROM clause is usually present, but it need not be if you don't need to name any tables. For
example, the following query simply displays the values of some expressions. These can be calculated
without reference to any table, so no FROM clause is necessary:

mysql> SELECT 2+2, 'Hello, world', VERSION();
+ + +

| 242 | Hello, world | VERSION() |

+----- + + +

| 4| Hello, world | 4.0.4-beta-log |

+----- } + +

When you do use a FROM clause to specify a table from which to retrieve data, you'll also indicate
which columns you want to see. The most "generic" form of SELECT uses * as a column specifier,
which is shorthand for "all columns." The following query retrieves all rows from the student table and
displays them:

mysql> SELECT * FROM student;

+mmmmmmmm e +----- et +
| name | sex | student_id |
B +----- Fmmmmmmmeem +
| Megan | F | 1]
| Joseph | M | 2|
| Kyle |M | 3]

[F | 4|

| Katie

The columns are displayed in the order that MySQL stores them in the table. This is the same order in
which the columns are listed when you issue a DESCRIBE student statement. (The ... at the end of the
example indicates that the query returns more rows than are shown.)

You can explicitly name the column or columns you want to see. To select just student names, do the
following:

mysql> SELECT name FROM student;

e +
| name |
o +
| Megan |
| Joseph |
| Kyle |

If you name more than one column, separate them with commas. The following statement is
equivalent to SELECT * FROM student, but names each column explicitly:

mysql> SELECT name, sex, student_id FROM student;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+----- +ommmmmm - +
| name | sex | student_id |
o +----- Fommmmm - +
| Megan | F | 1]
Joseph	M	2
Kyle	M	3
Katie	F	4

You can name columns in any order:

SELECT name, student_id FROM student;
SELECT student_id, name FROM student;

You can even name a column more than once if you like, although generally that's kind of pointless.

MySQL allows you to select columns from more than one table at a time. We'll get to this in the

"Retrieving Information from Multiple Tables" later in this chapter.

Column names are not case sensitive in MySQL, so the following queries are equivalent:

SELECT name, student_id FROM student;
SELECT NAME, STUDENT_ID FROM student;
SELECT nAmE, sTuDeNt_Id FROM student;

On the other hand, database and table names may be case sensitive; it depends on the file system
used on the server host. Windows filenames are not case sensitive, so a server running on Windows
does not treat database and table names as case sensitive. A server running on UNIX treats database
and table names as case sensitive because UNIX filenames are case sensitive. (An exception to this
occurs under Mac OS X; filenames on HFS+ file systems are not case sensitive, whereas filenames on
UFS file systems are.) If you want to have MySQL treat database and table names as not case

sensitive, see the "Operating System Constraints on Database and Table Naming" section in Chapter
10, "The MySQL Data Directory."

Specifying Retrieval Criteria

To restrict the set of records retrieved by the SELECT statement, use a WHERE clause that specifies
criteria for selecting rows. You can select rows by looking for column values that satisfy various
criteria. You can look for various types of values. For example, you can search for numbers:

mysql> SELECT * FROM score WHERE score > 95;

+ + + +
| student_id | event_id | score |
+ } + +
I 5] 31 97|

| 18 | 31 96|

| 1] 6| 100 |

| 5| 6| 97|

| 11 | 6| 98]

| 16 | 6| 98]

+ } + +

Or you can look for string values. (Note that string comparisons normally are not case sensitive.)

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='ROOSEVELT";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+ + +
| last_name | first_name |
+ + +

| Roosevelt | Theodore |

| Roosevelt | Franklin D. |

+ + +

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='roosevelt’;

+ + +
| last_name | first_name |
+ + +

| Roosevelt | Theodore |
| Roosevelt | Franklin D. |
+ + +

Or you can look for dates:

mysql> SELECT last_name, first_name, birth FROM president
-> WHERE birth < '1750-1-1";

+ } + +

| last_name | first_name | birth |

+ + + +

| Washington | George | 1732-02-22 |
| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |
+ + + +

It's also possible to search for a combination of values:

mysql> SELECT last_name, first_name, birth, state FROM president
-> WHERE birth < '1750-1-1' AND (state='VA' OR state='MA’);

+ + + + +

| last_name | first_name | birth | state |

+ } + + +

| Washington | George | 1732-02-22 | VA |
| Adams | John | 1735-10-30 | MA |

| Jefferson | Thomas | 1743-04-13 | VA |
+ + + + +

Expressions in WHERE clauses can use arithmetic operators (Table 1.1), comparison operators (Table
1.2), and logical operators (Table 1.3). You can also use parentheses to group parts of an expression.
Operations can be performed using constants, table columns, and function calls. We will have
occasion to use several of MySQL's functions in queries throughout this tutorial, but there are far too
many to show here. See Appendix C, "Operator and Function Reference," for a complete list.

Table 1.1. Arithmetic Operators

Operator Meaning

+ Addition_

- Subtraction

* Multiplication

/ Division

% Modulo (remainder after division)
Table 1.2. Comparison Operators

Operator Meaning

< Less thaa

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

<= Less than or equal to
= Equal to
<=> Equal to (works even for NULL)
I= or <> Not equal to

= Greater than or equal to
> Greater than

Table 1.3. Logical Operators

Operator Meaning
AND Logical AND
OR Logical OR
XOR Logical ExclusiveOR
NOT Logical negation

When you're formulating a query that requires logical operators, take care not to confuse the meaning
of the logical AND operator with the way we use "and" in everyday speech. Suppose you want to find
"presidents born in Virginia and presidents born in Massachusetts." That question is phrased using
"and," which seems to imply that you'd write the query as follows:

mysql> SELECT last_name, first_name, state FROM president
-> WHERE state='VA' AND state='MA’;
Empty set (0.36 sec)

It's clear from the empty result that the query doesn't work. Why not? Because what it really means
is "Select presidents who were born both in Virginia and in Massachusetts," which makes no sense. In
English, you might express the query using "and," but in SQL, you connect the two conditions with
OR:

mysql> SELECT last_name, first_name, state FROM president
-> WHERE state='VA' OR state='MA";

+ + + +
| last_name | first_name | state |
+ + + +
Washington	George	VA
Adams	John	MA
Jefferson	Thomas	VA
Madison	James	VA
Monroe	James	VA

| Adams | John Quincy | MA |
| Harrison | William H. | VA |

| Tyler | John | VA |

| Taylor | Zachary | VA |

| Wilson | Woodrow | VA |

| Kennedy | John F | MA |

| Bush | George HW. | MA |
+ + + +

This disjunction between natural language and SQL is something to be aware of, not just when
formulating your own queries, but also when writing queries for other people. It's best to listen
carefully as they describe what they want to retrieve, but you don't necessarily want to transcribe
their descriptions into SQL using the same logical operators. For the example just described, the
proper English equivalent for the query is "Select presidents who were born either in Virginia or in
Massachusetts."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The NULL Value

The NULL value is special. It means "no value," so you can't assess it against known values the way
you can assess two known values against each other. If you attempt to use NULL with the usual
arithmetic comparison operators, the result is undefined:

mysql> SELECT NULL < 0, NULL = 0, NULL != 0, NULL > 0;

+ + + + +
| NULL < O | NULL = 0 | NULL != 0 | NULL > O |
+ + + : +
| NULL| NULL| NULL| NULL |
+ + + : +

In fact, you can't even compare NULL against itself because the result of comparing two unknown
values cannot be determined:

mysql> SELECT NULL = NULL, NULL != NULL;

+ + +
| NULL = NULL | NULL '= NULL |
+ + +
| NULL | NULL |
+ + +

To perform searches for NULL values, you must use a special syntax. Instead of using = or != to test
for equality or inequality, use IS NULL or IS NOT NULL. For example, you can find presidents who are
still living using the following query because we have represented their death dates as NULL in the
president table:

mysql> SELECT last_name, first_name FROM president WHERE death IS NULL;

+ + +
| last_name | first_name |
+ + +

| Ford | Gerald R |

| Carter | JamesE. |

Reagan	Ronald W.
Bush	George H.W.
Clinton	William J.

| Bush | George W. |
+ + +

To find names that have a suffix part, use IS NOT NULL:

mysql> SELECT last_name, first_name, suffix
-> FROM president WHERE suffix IS NOT NULL;

+ + + +

| last_name | first_name | suffix |
+ + + +

| Carter |JamesE. |Jr. |

+ + + +

MySQL 3.23 and up has a special MySQL-specific <=> comparison operator that is true even for
NULL-to-NULL comparisons. The preceding two queries can be rewritten to use this operator as
follows:

mysql> SELECT last_name, first_name FROM president WHERE death <=> NULL;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e + +

| last_name | first_name |
+ + +

| Ford | Gerald R |

| Carter | JamesE. |

| Reagan | Ronald W. |

| Bush | George H.W. |

| Clinton | William J. |

| Bush | George W. |

+ + +

mysql> SELECT last_name, first_name, suffix

-> FROM president WHERE NOT (suffix <=> NULL);

+ + + +
| last_name | first_name | suffix |
+ + + +

| Carter |JamesE. |Jr. |

+ + + +

Sorting Query Results

Every MySQL user notices sooner or later that if you create a table, load some records into it, and
then issue a SELECT * FROM tb/_name statement, the records tend to be retrieved in the same order
in which they were inserted. That makes a certain intuitive sense and, as a result, it's natural to make
the assumption that retrieval of records in insertion order is a principle that you can rely on. But you
can't, because the assumption is incorrect. For example, if you delete and insert rows after loading
the table initially, those actions likely will change the order in which the server returns the table's
rows. (Deleting records puts "holes" of unused space in the table, which MySQL tries to fill later when
you insert new records.)

The principle that you can rely on is this: There is no guarantee about the order in which the server
will return rows, unless you specify one yourself. To do so, add an ORDER BY clause to the statement
that defines the sort order you want. The following query returns president names, sorted lexically
(alphabetically) by last name:

mysql> SELECT last_name, first_name FROM president
-> ORDER BY last_name;

+ + +

| last_name | first_name |

+ } +

| Adams | John |

| Adams | John Quincy |

| Arthur | Chester A. |

| Buchanan | James |

You can specify whether to sort a column in ascending or descending order by using the ASC or DESC
keywords after column names in the ORDER BY clause. For example, to sort president names in
reverse (descending) name order, use DESC as follows:

mysql> SELECT last_name, first_name FROM president
-> ORDER BY last_name DESC;

+ + +

| last_name | first_name |

+ + +

| Wilson | Woodrow |

| Washington | George |

| Van Buren | Martin |

| Tyler | John [

Ascending order is the default if you specify neither ASC nor DESC for a column name in an ORDER BY

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

clause.

Query output can be sorted on multiple columns, and each column can be sorted in ascending or
descending order independently of any other. The following query retrieves rows from the president
table, sorts them by reverse state of birth, and by last name within each state:

mysql> SELECT last_name, first_name, state FROM president
-> ORDER BY state DESC, last_name ASC;

+ } + +
| last_name | first_name | state |
+ + + +
| Arthur | Chester A. | VT |

| Coolidge | Calvin | VT |

| Harrison | William H. | VA |

| Jefferson | Thomas | VA |
| Madison | James | VA |

| Monroe | James | VA |

| Taylor | Zachary | VA |

| Tyler | John | VA |

| Washington | George | VA |

Wilson	Woodrow	VA
Eisenhower	Dwight D.	TX
Johnson	Lyndon B.	TX

If you sort a column that may contain NULL values, where will they appear in the sort order? It
depends. As of MySQL 4.0.2, they'll always sort at the beginning, even if specify DESC. Prior to that,
they sort at the beginning for ascending sorts and at the end for descending sorts.

If you want to ensure that NULL values will appear at a given end of the sort order, add an extra sort
column that distinguishes NULL from non-NULL values. For example, to sort presidents by death date
but put living presidents (those with NULL death dates) at the beginning of the sort order, use the
following query:

mysql> SELECT last_name, first_name, death FROM president
-> ORDER BY IF(death IS NULL,0,1), death;

+ + + +

| last_name | first_name | death |

+ } + +

| Ford | Gerald R | NULL |

| Carter | James E. | NULL |

| Reagan | Ronald W. | NULL |

| Bush | George H.W. | NULL |

| Clinton | William J. | NULL |

| Bush | George W. | NULL |

Washington	George	1799-12-14
Adams	John	1826-07-04
Truman	Harry S.	1972-12-26

| Johnson | Lyndon B. | 1973-01-22 |
| Nixon | Richard M | 1994-04-22 |
+ + + +

To put living presidents at the end instead, use the following query:

mysql> SELECT last_name, first_name, death FROM president
-> ORDER BY IF(death IS NULL,1,0), death;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+ + 1 +

| last_name | first_name | death |

+ + + +

| Washington | George | 1799-12-14 |
| Adams | John | 1826-07-04 |

| Truman | Harry S. | 1972-12-26 |

Johnson	Lyndon B.	1973-01-22
Nixon	Richard M	1994-04-22
Ford	Gerald R	NULL

| Carter | James E. | NULL |

| Reagan | Ronald W. | NULL |

| Bush | George H.W. | NULL |

| Clinton | William J. | NULL |

| Bush | George W. | NULL |

+ + + +

The IF() function evaluates an expression and returns the value of its second or third argument,
depending on whether the expression is true or false. For the first query, IF() evaluates to 0 for NULL
values and 1 for non-NULL values, which places all NULL values ahead of all non-NULL values. For the
second query, it does the opposite, placing all NULL values after all non-NULL values. This strategy
can be used as of MySQL 3.23.2, which is the first version that allows expressions in ORDER BY
clauses.

Limiting Query Results

When a query returns many rows, but you want to see only a few of them, the LIMIT clause is useful,
especially in conjunction with ORDER BY. MySQL allows you to limit the output of a query to the first n
rows of the result that would otherwise be returned. The following query selects the five presidents
who were born first:

mysql> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth LIMIT 5;

+ + + +
| last_name | first_name | birth |

+ + + +

| Washington | George | 1732-02-22 |
| Adams | John | 1735-10-30 |

Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
+ + + +

If you sort in reverse order, using ORDER BY birth DESC, you'd get the five most recently born
presidents instead:

mysql> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth DESC LIMIT 5;

+ + + +
| last_name | first_name | birth |
+ + + +

| Clinton | William J. | 1946-08-19 |

| Bush | George W. | 1946-07-06 |
| Carter | James E. | 1924-10-01 |

| Bush | George H.W. | 1924-06-12 |
| Kennedy | JohnF | 1917-05-29 |

+ + + +

LIMIT also allows you to pull a section of records out of the middle of a result set. To do this, you

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

must specify two values. The first value is the number of records to skip at the beginning of the result
set, and the second is the number of records to return. The following query is similar to the previous
one but returns 5 records after skipping the first 10:

mysql> SELECT last_name, first_name, birth FROM president
-> ORDER BY birth LIMIT 10, 5;

+ + + +
| last_name | first_name | birth |
+ + + +
| Tyler | John | 1790-03-29 |

| Buchanan | James | 1791-04-23 |
| Polk | James K. | 1795-11-02 |

| Fillmore | Millard | 1800-01-07 |

| Pierce | Franklin | 1804-11-23 |

+ + + +

To pull a randomly selected record from the president table, use ORDER BY RAND() in conjunction with
LIMIT:

mysql> SELECT last_name, first_name FROM president
-> ORDER BY RAND() LIMIT 1;

+ + +

| last_name | first_name |

+ + +

| McKinley | William |

+ + +

Ordering by the result of a formula like this works for MySQL 3.23.2 and later. Prior to that, you must
use a workaround that involves generating an additional column containing random numbers. See the

"Qverriding Optimization" section in Chapter 4 for details.
Calculating and Naming Output Column Values

Most of the preceding queries have produced output by retrieving values from tables. MySQL also
allows you to calculate an output column value as the result of an expression. Expressions can be
simple or complex. The following query evaluates a simple expression (a constant) and a more
complex expression involving several arithmetic operations and a couple of function calls:

mysql> SELECT 17, FORMAT(SQRT(3*3+4*4),0);

+----t +
| 17 | FORMAT(SQRT(3*3+4%*4),0) |
+----t +
11715 |

+----+ +

Expressions can also refer to table columns:

mysql> SELECT CONCAT(first_name,' ',last_name),CONCAT(city,’, ',state)
-> FROM president;

+ } +

| CONCAT(first_name,' ',last_name) | CONCAT(city,', ',state) |
+ + +

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

This query formats president names as a single string by concatenating first and last names separated
by a space and formats birthplaces as the birth cities and states separated by a comma.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you use an expression to calculate a column value, the expression becomes the column's name
and is used for its heading. That can lead to a very wide column if the expression is long (as the
preceding query illustrates). To deal with this, you can assign the column a different name using the
AS name construct. Such names are called column aliases. The output from the previous query can be
made more meaningful as follows:

mysql> SELECT CONCAT(first_name,' ',last_name) AS Name,
-> CONCAT(city,', ',state) AS Birthplace
-> FROM president;

+ + +

| Name | Birthplace |

+ + +

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

If the column alias contains spaces, you'll need to put it in quotes:

mysql> SELECT CONCAT(first_name,' ',last_name) AS 'President Name',
-> CONCAT(city,', ',state) AS 'Place of Birth'
-> FROM president;

+ + +

| President Name | Place of Birth |

+ + +

| George Washington | Wakefield, VA |

| John Adams | Braintree, MA |

| Thomas Jefferson | Albemarle County, VA |

| James Madison | Port Conway, VA |

Working with Dates

The principal thing to keep in mind when it comes to dates in MySQL is that it always represents them
with the year first. July 27, 2002 is represented as '2002-07-27'. It is not represented as '07-27-2002'
or as '27-07-2002', as you might be more used to writing.

MySQL provides several ways to perform operations on dates. Some of the things you can do are as
follows:

® Sort by date. (We've seen this several times already.)

® | ook for particular dates or a range of dates.

® Extract parts of a date value, such as the year, month, or day.

® Calculate the difference between dates.

® Compute a date by adding or subtracting an interval from another date.

Some examples of these operations follow.

To look for particular dates, either by exact value or compared to another value, compare a DATE
column to the value you're interested in:

mysql> SELECT * FROM event WHERE date = '2002-10-01";

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e s +

| date | type | event_id |
+ + } +
| 2002-10-01 | T | 6 |
+ 4 } +

mysql> SELECT last_name, first_name, death
-> FROM president
-> WHERE death >= '1970-01-01' AND death < '1980-01-01';

+ + + +
| last_name | first_name | death |
+ + + +

| Truman | Harry S. | 1972-12-26 |
| Johnson | Lyndon B. | 1973-01-22 |
+ + + +

To test or retrieve parts of dates, you can use functions such as YEAR(), MONTH(), or DAYOFMONTH().
For example, I can find presidents who were born in the same month that I was (March) by looking
for dates with a month value of 3:

mysql> SELECT last_name, first_name, birth
-> FROM president WHERE MONTH(birth) = 3;

+ + + +
| last_name | first_name | birth |
+ + + +

Madison	James	1751-03-16
Jackson	Andrew	1767-03-15
Tyler	John	1790-03-29
Cleveland	Grover	1837-03-18
+ + + +

The query can also be written in terms of the month name:

mysql> SELECT last_name, first_name, birth
-> FROM president WHERE MONTHNAME(birth) = 'March’;

+ + + +
| last_name | first_name | birth |
+ + + +

Madison	James	1751-03-16
Jackson	Andrew	1767-03-15
Tyler	John	1790-03-29
Cleveland	Grover	1837-03-18
+ + + +

To be more specific—down to the day—I can combine tests for MONTH() and DAYOFMONTH() to find
presidents born on my birthday:

mysql> SELECT last_name, first_name, birth
-> FROM president WHERE MONTH(birth) = 3 AND DAYOFMONTH(birth) = 29;

+ + + +
| last_name | first_name | birth |
+ + + +
| Tyler | John | 1790-03-29 |
+ + + +

This is the kind of query you'd use to generate one of those "these famous people have birthdays
today" lists such as you see in the Entertainment section of your newspaper. However, for the current
date, you don't have to plug in a specific day the way the previous query did. To check for presidents
born today, no matter what day of the year today is, compare their birthdays to the month and day
parts of CURDATE(), which always returns the current date:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT last_name, first_name, birth
FROM president WHERE MONTH(birth) = MONTH(CURDATE())
AND DAYOFMONTH(birth) = DAYOFMONTH(CURDATE());

You can subtract one date from another, which allows you to find the interval between dates. For
example, to determine which presidents lived the longest, subtract the birth date from the death date.
To do this, convert birth and death to days using the TO_DAYS() function and take the difference:

mysql> SELECT last_name, first_name, birth, death,
-> TO_DAYS(death) - TO_DAYS(birth) AS age
-> FROM president WHERE death IS NOT NULL
-> ORDER BY age DESC LIMIT 5;

+ + + + + +
| last_name | first_name | birth | death | age |
+ + + + . +
| Adams | John | 1735-10-30 | 1826-07-04 | 33119 |

Hoover	Herbert C.	1874-08-10	1964-10-20	32943
Truman	Harry S.	1884-05-08	1972-12-26	32373
Madison	James	1751-03-16	1836-06-28	31150
Jefferson	Thomas	1743-04-13	1826-07-04	30397
+ + + + + +

To convert age in days to approximate age in years, divide by 365 (the FLOOR() function used here
chops off any fractional part from the age to produce an integer):

mysql> SELECT last_name, first_name, birth, death,
-> FLOOR((TO_DAYS(death) - TO_DAYS(birth))/365) AS age
-> FROM president WHERE death IS NOT NULL
-> ORDER BY age DESC LIMIT 5;

+ + + + . +
| last_name | first_name | birth | death | age |
+ + + + . +
| Adams | John | 1735-10-30 | 1826-07-04 | 90 |

Hoover	Herbert C.	1874-08-10	1964-10-20	90
Truman	Harry S.	1884-05-08	1972-12-26	88
Madison	James	1751-03-16	1836-06-28	85
Jefferson	Thomas	1743-04-13	1826-07-04	83
+ + + + . +

In this particular case, the age values happen to correspond to true age at death. But the calculation
used in the query may not always do so, because years are not always exactly 365 days long. To

calculate ages as we normally think of them, take the difference between the year parts of the dates
and then subtract one if the calendar day of the death date occurs earlier than that of the birth date:

mysql> SELECT last_name, first_name, birth, death,
-> (YEAR(death) - YEAR(birth)) - IF(RIGHT(death,5) < RIGHT(birth,5),1,0)
-> AS age
-> FROM president WHERE death IS NOT NULL
-> ORDER BY age DESC LIMIT 5;

+ + + + + +

| last_name | first_name | birth | death | age |

+ + + + } +

| Adams | John | 1735-10-30 | 1826-07-04 | 90 |

| Hoover | Herbert C. | 1874-08-10 | 1964-10-20 | 90 |

| Truman | Harry S. | 1884-05-08 | 1972-12-26 | 88 |

| Madison | James | 1751-03-16 | 1836-06-28 | 85 |

| Jefferson | Thomas | 1743-04-13 | 1826-07-04 | 83 |

+ + + + + +

The IF() expression used here performs the calendar day test based on a simple substring comparison

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

of the last five characters of the dates. This works for two reasons. First, MySQL treats dates as
strings if you pass them to a string function—in this case, RIGHT(), which returns the rightmost n
characters of a string. Second, MySQL produces dates with a fixed number of digits in each of their
subparts. The comparison would not work if leading zeroes were not present for month and day
values less than 10.

Taking a difference between dates is also useful for determining how far dates are from some
reference date. That's how you can tell which Historical League members need to renew their
memberships soon. Compute the difference between their expiration dates and the current date, and
if it's less than some threshold value, a renewal will soon be needed. The following query finds
memberships that are due for renewal within 60 days:

SELECT last_name, first_name, expiration FROM member
WHERE (TO_DAYS(expiration) - TO_DAYS(CURDATE())) < 60;

To calculate one date from another, you can use DATE_ADD() or DATE_SUB(). These functions take a
date and an interval and produce a new date, for example:

mysql> SELECT DATE_ADD('1970-1-1', INTERVAL 10 YEAR);

+ +
| DATE_ADD('1970-1-1', INTERVAL 10 YEAR) |

+ +

| 1980-01-01 |

+ +

mysql> SELECT DATE_SUB('1970-1-1', INTERVAL 10 YEAR);
+ +

| DATE_SUB('1970-1-1', INTERVAL 10 YEAR) |

+ +

| 1960-01-01 |

+ +

A query shown earlier in this section selected presidents who died during the 1970s, using literal
dates for the endpoints of the selection range. That query can be rewritten to use a literal starting
date and an ending date calculated from the starting date and an interval:

mysql> SELECT last_name, first_name, death
-> FROM president
-> WHERE death >= '1970-1-1'
-> AND death < DATE_ADD('1970-1-1', INTERVAL 10 YEAR);

+ + + +
| last_name | first_name | death |
+ + + +

| Truman | Harry S. | 1972-12-26 |
| Johnson | Lyndon B. | 1973-01-22 |
+ + + +

The membership-renewal query can be written in terms of DATE_ADD():

SELECT last_name, first_name, expiration FROM member
WHERE expiration < DATE_ADD(CURDATE(), INTERVAL 60 DAY);

Earlier in this chapter, a query was presented for determining which of a dentist's patients haven't
been in for their checkups in a while:

SELECT last_name, first_name, last_visit FROM patient
WHERE last_visit < DATE_SUB(CURDATE(),INTERVAL 6 MONTH);

That query may not have meant much to you then. Is it more meaningful now?
Pattern Matching

MySQL supports pattern matching operations, which allows you to select records without supplying an

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

exact comparison value. To perform a pattern match, you use special operators (LIKE and NOT LIKE),
and you specify a string containing wild card characters. The character '_' matches any single
character, and '%' matches any sequence of characters (including an empty sequence). Pattern
matches using LIKE or NOT LIKE are not case sensitive.

The following pattern matches last names that begin with a 'W' or 'W' character:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name LIKE 'W%';

+ } +
| last_name | first_name |
+ + +

| Washington | George |
| Wilson | Woodrow |
+ + +

On the other hand, the following pattern match is erroneous:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name = 'W%';
Empty set (0.00 sec)

The query demonstrates a common error, which is to use a pattern with an arithmetic comparison
operator. The only way for such a comparison to succeed is for the column to contain exactly the
string 'W%' or 'w%".

This pattern matches last names that contain 'W' or 'w' anywhere in the name, not just at the
beginning:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name LIKE '%W©%';

+ + +
| last_name | first_name |
+ } +

| Washington | George |
| Wilson | Woodrow |

| Eisenhower | Dwight D. |
+ + +

This pattern matches last names that contain exactly four characters:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name LIKE ' H

+ + +

| last_name | first_name |

+ + +

| Polk | James K. |

| Taft | William H. |

| Ford | Gerald R |

| Bush | George H.W. |

| Bush | George W. |

+ + +

MySQL also provides another form of pattern matching based on regular expressions, which are
described in the section that discusses the REGEXP operator in Appendix C.

Setting and Using SQL Variables

MySQL versions 3.23.6 and up allow you to set variables using query results, which provides a
convenient way to save values for use in later queries. Suppose you want to find out which presidents
were born before Andrew Jackson. To determine that, you can retrieve his birth date into a variable

and then select other presidents with a birth date earlier than the value of the variable:[1]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1] This problem could be solved in a single query using a join, but we're not to the
point of writing joins yet. Besides, sometimes it's just easier to use a variable.

mysql> SELECT @birth := birth FROM president
-> WHERE last_name = 'Jackson' AND first_name = 'Andrew’;

oo +
| @birth := birth |
e +
| 1767-03-15 |
oo +

mysql> SELECT last_name, first_name, birth FROM president
-> WHERE birth < @birth ORDER BY birth;

+ } + +

| last_name | first_name | birth |

+ + + +

| Washington | George | 1732-02-22 |
| Adams | John | 1735-10-30 |

Jefferson	Thomas	1743-04-13
Madison	James	1751-03-16
Monroe	James	1758-04-28
+ } + +

Variables are named using @name syntax and assigned a value in a SELECT statement using an
expression of the form @name = value. The first query therefore looks up the birth date for Andrew
Jackson and assigns it to the @birth variable. (The result of the SELECT still is displayed; assigning a
query result to a variable doesn't cause the query output to be suppressed.) The second query refers
to the variable and uses its value to find other president records with a lesser birth value.

Variables also can be assigned using a SET statement, although in this case either = or := are
allowable as the assignment operator:

mysql> SET @one_week_ago = DATE_SUB(CURDATE(),INTERVAL 7 DAY);
mysql> SELECT CURDATE(), @one_week_ago;

+ + +

| CURDATE() | @one_week_ago |
+ + +

| 2002-09-03 | 2002-08-27 |

+ + +

Generating Summaries

One of the most useful things MySQL can do for you is to boil down lots of raw data and summarize it.
MySQL becomes a powerful ally when you learn to use it to generate summaries because that is an
especially tedious, time-consuming, error-prone activity when done manually.

One simple form of summarizing is to determine which unique values are present in a set of values.
Use the DISTINCT keyword to remove duplicate rows from a result. For example, the different states
in which presidents have been born can be found as follows:

mysql> SELECT DISTINCT state FROM president ORDER BY state;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| MA |
| MO |
I NC |
| NE |
INH |
N |
I NY |

wn o
S5REEQ

Another form of summarizing involves counting, using the COUNT() function. If you use COUNT(¥), it
tells you the number of rows selected by your query. If a query has no WHERE clause, COUNT(*) tells
you the number of rows in your table. The following query shows how many members are listed in the
Historical League membership table:

mysql> SELECT COUNT(*) FROM member;

dommmmeeee +
| COUNT(*) |
dommmmneee +

| 102 |
Fommmmne- +

If a query does have a WHERE clause, COUNT(*) tells you how many rows the clause matches. The
following query shows how many quizzes you have given to your class so far:

mysql> SELECT COUNT(*) FROM event WHERE type = 'Q’;

Fommmmne +
| COUNT(*) |
e +

| 4|
ommmne +

COUNT(*) counts every row selected. By contrast, COUNT(co/_name) counts only non-NULL values.
The following query demonstrates these differences:

mysql> SELECT COUNT(*),COUNT(email),COUNT(expiration) FROM member;

+ + + +

| COUNT(*) | COUNT(email) | COUNT(expiration) |
+ + + +

| 102 | 80 | 96 |

+ + + +

This shows that while the member table has 102 records, only 80 of them have a value in the email
column. It also shows that six members have a lifetime membership. (A NULL value in the expiration
column indicates a lifetime membership, and because 96 out of 102 records are not NULL, that leaves
Six.)

As of MySQL 3.23.2, you can combine COUNT() with DISTINCT to count the number of distinct values
in a result. For example, to count the number of different states in which presidents have been born,
do the following:

mysql> SELECT COUNT(DISTINCT state) FROM president;

+ +
| COUNT(DISTINCT state) |
+ +

20 |

|
+ +

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You can produce an overall count of values in a column or break down the counts by categories. For
example, you may know the overall number of students in your class as a result of running the
following query:

mysql> SELECT COUNT(*) FROM student;

oo +
| COUNT(*) |
oo +

| 31
ommmneee- +

But how many students are boys and how many are girls? One way to find out is by asking for a count
for each sex separately:

mysql> SELECT COUNT(*) FROM student WHERE sex="f";

o +

| COUNT(*) |
Fommmmmen +

I 15 |
o +
mysql> SELECT COUNT(*) FROM student WHERE sex="m";
o +

| COUNT(*) |
o +

I 16 |
Fommmmmen +

However, although that approach works, it's tedious and not really very well suited for columns that
might have several different values. Consider how you'd determine the number of presidents born in
each state this way. You'd have to find out which states are represented so as not to miss any
(SELECT DISTINCT state FROM president) and then run a SELECT COUNT(*) query for each state. That
is clearly something you don't want to do.

Fortunately, MySQL can count, using a single query, how many times each distinct value occurs in a
column. For our student list, we can count boys and girls as follows:

mysql> SELECT sex, COUNT(*) FROM student GROUP BY sex;

+----- Fommmmee- +
| sex | COUNT(*) |
+----- o +

| F | 15 |
M| 16 |
- o +

The same form of query tells us how many presidents were born in each state:

mysql> SELECT state, COUNT(*) FROM president GROUP BY state;

+omme- B +
| state | COUNT(*) |
+ommme- Fommmmee- +
| AR | 1]
| CA | 1]
|CT | 1|
| GA | 1]
| IA | 1]
[IL | 1]
| KY | 1|
| MA | 4|
| MO | 1]
| NC | 2|
| NE | 1]
| NH | 1]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

—Wwn
SSH38ER=ZE
NOONKRHRH A

+
1
1
1
1
1
1
1

+
1
1
1
1
1
1
1
1
1
1

+

When you count values this way, the GROUP BY clause is necessary; it tells MySQL how to cluster
values before counting them. You'll just get an error if you omit it.

The use of COUNT(*) with GROUP BY to count values has a number of advantages over counting
occurrences of each distinct column value individually:

® You don't have to know in advance what values are present in the column you're summarizing.
® You need only a single query, not several.
® You get all the results with a single query, so you can sort the output.

The first two advantages are important for expressing queries more easily. The third advantage is
important because it affords you flexibility in displaying your results. By default, MySQL uses the
columns named in the GROUP BY to sort the results, but you can specify an ORDER BY clause to sort
in a different order. For example, if you want number of presidents grouped by state of birth but
sorted with the most well-represented states first, you can use an ORDER BY clause as follows:

mysql> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state ORDER BY count DESC;
oo et +
| state | count |
+ommmen +ommmen +
| VA |
|OH |
| MA |
|NY |

o wn -
228338

—_
TRrRrRr PR RER LR NNNOD g™

>DEOZO0ZE 2
?U'_grn>cz>>*—-§

(@]
-
=

+
1
1
1
1
1
1
1
+
1
1
1
1
1
1
1
+

When the column you want to sort by is determined by a summary function, you can give the column
an alias and refer to the alias in the ORDER BY clause. The preceding query demonstrates this, where
the COUNT(*) column is aliased as count. Another way to refer to such a column is by its position in
the output. The previous query could have been written as follows instead:

SELECT state, COUNT(*) FROM president
GROUP BY state ORDER BY 2 DESC;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I don't find that referring to columns by position leads to very understandable queries. Also, if you
add, remove, or reorder output columns, you must remember to check the ORDER BY clause and fix
the column number if it has changed. Aliases don't have this problem.

If you want to group results using GROUP BY with a calculated column, you can refer to it using an
alias or column position, just as with ORDER BY. The following query determines how many presidents
were born in each month of the year:

mysql> SELECT MONTH(birth) AS Month, MONTHNAME(birth) AS Name,
-> COUNT(*) AS count
-> FROM president GROUP BY Name ORDER BY Month;
+ . +
Month | Name | count |
+ . +
| January | 4|
| February | 4|
| March | 4|
| April | 4|
| May [2]
|
I
I
I

June | 1]
July | 4]
August | 4|
September | 1 |
| October | 6|

| November | 5|

| December | 3|
+ + } +

+
I
+
I
I
|
|
I
I
I
I
I
I
|
|

1

2

3

4

5

6

7

8

9
10
1
12

Using column positions, the query would be written as follows:

SELECT MONTH (birth), MONTHNAME(birth), COUNT(*)
FROM president GROUP BY 2 ORDER BY 1;

COUNT() can be combined with ORDER BY and LIMIT to find, for example, the four most well-
represented states in the president table:

mysql> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state ORDER BY count DESC LIMIT 4;

oo et +
| state | count |
+ommmen +ommmen +
|[VA | 8]
|[OH | 7]
IMA | 4]
INY | 4]
et et +

If you don't want to limit query output with a LIMIT clause but rather by looking for particular values
of COUNT(), use a HAVING clause. HAVING is similar to WHERE in that it specifies conditions that must
be satisfied by output rows. It differs from WHERE in that it can refer to the results of summary
functions like COUNT(). The following query will tell you which states are represented by two or more
presidents:

mysql> SELECT state, COUNT(*) AS count FROM president
-> GROUP BY state HAVING count > 1 ORDER BY count DESC;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+ommmen +ommen +
| state | count |
+ommmn +ommen +
|VA | 8]
|[OH | 7]
IMA | 4]
INY | 4]
INC | 2]
VT | 2|
[TX | 2]
+ommmn +ommen +

More generally, this is the type of query to run when you want to find duplicated values in a column
(or to find non-duplicated values, use HAVING count = 1.)

There are summary functions other than COUNT(). The MIN(), MAX(), SUM(), and AVG() functions are
useful for determining the minimum, maximum, total, and average values in a column. You can even
use them all at the same time. The following query shows various numeric characteristics for each
quiz and test you've given. It also shows how many scores go into computing each of the values.
(Some students may have been absent and are not counted.)

mysql> SELECT
-> event_id,
-> MIN(score) AS minimum,
-> MAX(score) AS maximum,
-> MAX(score)-MIN(score)+1 AS range,
-> SUM(score) AS total,
-> AVG(score) AS average,
-> COUNT(score) AS count
-> FROM score
-> GROUP BY event_id;

+ + } } + } }
event_id | minimum | maximum | range | total | average | count |
+ + + + + + +

| 9] 20| 12| 439]15.1379| 29|

| 8] 19| 12| 425]|14.1667 | 30|

| 60| 97| 38| 2425]|78.2258| 31|

| 7] 20| 14| 379]14.0370| 27|

| 8| 20| 13| 383|14.1852| 27|

| 62| 100] 39| 2325|80.1724| 29|
+ + t + + t +

AU WN =

+
I
—+
I
|
I
I
I
I
+

This information might be more meaningful if you knew whether the event_id values represented
quizzes or tests, of course. However, to produce that information, we need to consult the event table

as well; we'll revisit this query in the next section, "Retrieving Information from Multiple Tables."

Summary functions are fun to play with because they're so powerful, but it's easy to get carried away
with them. Consider the following query:

mysql> SELECT
-> state AS State,
-> AVG((TO_DAYS(death)-TO_DAYS(birth))/365) AS Age
-> FROM president WHERE death IS NOT NULL
-> GROUP BY state ORDER BY Age;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+ommmen tommmmmees +
| State | Age |

+ommmn tommmmmeee +
| KY | 56.208219 |
| VT | 58.852055 |
| NC]60.141096 |
OH	62.866145
NH	64.917808
NY	69.342466
NJ	71.315068
TX	71.476712
MA	72.642009
VA	72.822945
PA	77.158904
I

SC | 78.284932 |
CA | 81.336986 |
MO | 88.693151 |
IA | 90.254795 |
et rmmmmnee +

The query selects presidents who have died, groups them by state of birth, figures out their age at
time of death, computes the average age (per state), and then sorts the results by average age. In
other words, the query determines, for non-living presidents, the average age of death by state of
birth.

And what does that demonstrate? It shows only that you can write the query. It certainly doesn't
show that the query is worth writing. Not all things you can do with a database are equally
meaningful; nevertheless, people sometimes go query-happy when they find out what they can do
with their database. This may account for the rise of increasingly esoteric (and pointless) statistics on
televised sporting events over the last few years. The sports statisticians can use their databases to
figure out everything you'd ever want to know about a team and also everything you'd never want to
know. Do you really care which third-string quarterback holds the record for most interceptions on
third down when his team is leading by more than 14 points with the ball inside the 15-yard line in
the last two minutes of the second quarter?

Retrieving Information from Multiple Tables

The queries we've written so far have pulled data from a single table. But MySQL is capable of
working much harder for you. I've mentioned before that the power of a relational DBMS lies in its
ability to relate one thing to another because that allows you to combine information from multiple
tables to answer questions that can't be answered from individual tables alone. This section describes
how to write queries that do that.

When you select information from multiple tables, you're performing an operation called a join. That's
because you're producing a result by joining the information from one table to the information in
another. This is done by matching up common values in the tables.

Let's work through an example. Earlier, in "Tables for the Grade-Keeping Project" section, a query to
retrieve quiz or test scores for a given date was presented without explanation. Now it's time for the
explanation. The query actually involves a three-way join, so we'll build up to it in two steps. In the
first step, we construct a query to select scores for a given date as follows:

mysql> SELECT student_id, date, score, type
-> FROM event, score
-> WHERE date = '2002-09-23'
-> AND event.event_id = score.event_id;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I.

+ +
score | type |

+ +
student_id | date |
+ . +
|
I
I
I
I

151Q |
121Q |
111Q |
131Q |
181Q |

T T T T — 4+ +
+

The query works by finding the event record with the given date and then using the event ID in that
record to locate scores that have the same event ID. For each matching event record and score record
combination, the student ID, score, date, and event type are displayed.

The query differs from others we have written in two important respects:

® The FROM clause names more than one table because we're retrieving data from more than
one table:

FROM event, score

® The WHERE clause specifies that the event and score tables are joined by matching up the
event_id values in each table:

WHERE ... event.event_id = score.event_id

Notice how we refer to the event_id columns using tb/_name.col_name syntax so that MySQL knows to
which tables we're referring. (event_id occurs in both tables, so it's ambiguous if used without a table
name to qualify it.) The other columns in the query (date, score, type) can be used without a table
qualifier because they appear in only one of the tables and thus are unambiguous.

I generally prefer to qualify every column in a join to make it clearer (more explicit) which table each
column is part of, and that's how I'll write joins from now on. In fully qualified form, the query looks
like the following:

SELECT score.student_id, event.date, score.score, event.type
FROM event, score

WHERE event.date = '2002-09-23'

AND event.event_id = score.event_id;

The first-stage query uses the event table to map a date to an event ID and then uses the ID to find
the matching scores in the score table. Output from the query contains student_id values, but names
would be more meaningful. By using the student table, we can map student IDs onto names, which is
the second step. Name display is accomplished using the fact that the score and student tables both
have student_id columns, allowing the records in them to be linked. The resulting query is as follows:

mysql> SELECT student.name, event.date, score.score, event.type
-> FROM event, score, student
-> WHERE event.date = '2002-09-23'
-> AND event.event_id = score.event_id
-> AND score.student_id = student.student_id;
+ + + + +
| name | date | score | type |
+ + + + +
Megan	2002-09-23	15	Q
Joseph	2002-09-23	12	Q
Kyle	2002-09-23	11	Q
Abby	2002-09-23	13	Q
Nathan	2002-09-23	18	Q

This query differs from the previous one as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® The student table is added to the FROM clause because it is used in addition to the event and
score tables.

® The student_id column was unambiguous before, so it was possible to refer to it in either
unqualified (student_id) or qualified (score.student_id) form. Now it is ambiguous because it is
present in both the score and student tables, so it must be qualified as score.student_id or
student.student_id to make it clear which table to use.

® The WHERE clause has an additional term specifying that score table records are matched
against student table records based on student ID:

WHERE ... score.student_id = student.student_id

® The query displays the student name rather than the student ID. (You could display both if you
wanted to, of course.)

With this query, you can plug in any date and get back the scores for that date, complete with student
names and the score type. You don't have to know anything about student IDs or event IDs. MySQL
takes care of figuring out the relevant ID values and using them to match up table rows
automatically.

Another task the grade-keeping project involves is summarizing student absences. Absences are
recorded by student ID and date in the absence table. To get student names (not just IDs), we need
to join the absence table to the student table, based on the student_id value. The following query lists
student ID number and name along with a count of absences:

mysql> SELECT student.student_id, student.name,
-> COUNT(absence.date) as absences
-> FROM student, absence
-> WHERE student.student_id = absence.student_id
-> GROUP BY student.student_id;

+ + + +
| student_id | name | absences |
+ + + +

| 3 | Kyle | 1]

I 5| Abby | 1]

| 10 | Peter | 2 |

| 17 | Will | 1|

| 20 | Avery | 1]

+ + + +

Note: Although I'm supplying a qualifier in the GROUP BY clause, it isn't strictly necessary for this
query. GROUP BY refers to output columns, and there is only one such column named student_id, so
MySQL knows which one you mean.

The output produced by the query is fine if we want to know only which students had absences. But if
we turn in this list to the school office, they may say, "What about the other students? We want a
value for every student." That's a slightly different question. It means we want to know the number of
absences, even for students that had none. Because the question is different, the query is different as
well.

To answer the question, we can use LEFT JOIN rather than a regular join. LEFT JOIN tells MySQL to
produce a row of output for each row selected from the table named first in the join (that is, the table
named to the left of the LEFT JOIN keywords). By naming the student table first, we'll get output for
every student, even those who are not represented in the absence table. To write this query, use LEFT
JOIN between the tables named in the FROM clause (rather than separating them by a comma) and
add an ON clause that says how to match up records in the two tables. The query is as follows:

mysql> SELECT student.student_id, student.name,
-> COUNT(absence.date) as absences
-> FROM student LEFT JOIN absence

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

-> ON student.student_id = absence.student_id
-> GROUP BY student.student_.id;

+ + + +
| student_id | name | absences |
+ } + +

| 1] Megan | 0|

| 2 | Joseph | 0|

| 3| Kyle | 1|

| 4 | Katie | 0|

I 5| Abby | 1]

| 6 | Nathan | 0]

| 7 | Liesl | 0|

Earlier, in the "Generating Summaries" section, we ran a query that produced a numeric
characterization of the data in the score table. Output from that query listed event ID but did not

include event dates or types, because we didn't know then how to join the score table to the event
table to map the IDs onto dates and types. Now we do. The following query is similar to one run
earlier, but shows the dates and types rather than simply the numeric event IDs:

mysql> SELECT
-> event.date,event.type,
-> MIN(score.score) AS minimum,
-> MAX(score.score) AS maximum,
-> MAX(score.score)-MIN(score.score)+1 AS range,
-> SUM(score.score) AS total,
-> AVG(score.score) AS average,
-> COUNT(score.score) AS count
-> FROM score, event
-> WHERE score.event_id = event.event_id
-> GROUP BY event.date;

+ + + + + + + + +
| date | type | minimum | maximum | range | total | average | count |
+ } . + + + + + +

| 2002-09-03 | Q | 9] 20| 12| 439 15.1379| 29|

| 2002-09-06 | Q | 8| 19| 12| 425]14.1667 | 30|

| 2002-09-09 | T | 60 | 97| 38| 2425|78.2258 | 31|

| 2002-09-16 | Q | 7| 20| 14| 379]14.0370| 27|

| 2002-09-23 | Q | 8| 20| 13| 383]|14.1852| 27|

| 2002-10-01 | T | 62| 100| 39| 2325]80.1724| 29|

+ + . + + + + + +

You can use functions, such as COUNT() and AVG(), to produce a summary over multiple columns,
even if the columns come from different tables. The following query determines the number of scores
and the average score for each combination of event date and student sex:

mysql> SELECT event.date, student.sex,
-> COUNT(score.score) AS count, AVG(score.score) AS average
-> FROM event, score, student
-> WHERE event.event_id = score.event_id
-> AND score.student_id = student.student_id
-> GROUP BY event.date, student.sex;

+ +----- + + +
| date | sex | count | average |

+ fo-m- + + +

2002-09-03	F	14	14.6429
2002-09-03	M	15 15.6000	
2002-09-06	F	14	14.7143
2002-09-06	M	16	13.6875
2002-09-09	F	15	77.4000
2002-09-09	M	16	79.0000
2002-09-16	F	13	15.3077

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

2002-09-16	M	14	12.8571
2002-09-23	F	12	14.0833
2002-09-23	M	15	14.2667
2002-10-01	F	14	77.7857
2002-10-01	M	15	82.4000
+ +----- + + +

We can use a similar query to perform one of the grade-keeping project tasks—computing the total
score per student at the end of the semester. The query looks like this:

SELECT student.student_id, student.name,
SUM(score.score) AS total, COUNT(score.score) AS n
FROM event, score, student

WHERE event.event_id = score.event_id

AND score.student_id = student.student_id

GROUP BY score.student_id

ORDER BY total;

There is no requirement that a join be performed between different tables. It might seem odd at first,
but you can join a table to itself. For example, you can determine whether any presidents were born
in the same city by checking each president's birthplace against every other president's birthplace:

mysql> SELECT p1.last_name, p1.first_name, p1.city, pl.state
-> FROM president AS p1, president AS p2
-> WHERE p1.city = p2.city AND pl.state = p2.state
-> AND (p1.last_name != p2.last_name OR p1.first_name != p2.first_name)
-> ORDER BY state, city, last_name;

+ + + + +

| last_name | first_name | city | state |

+ + + + +

| Adams | John Quincy | Braintree | MA |

| Adams | John | Braintree | MA |

+ + + + +

There are two tricky things about this query:

® Jt's necessary to refer to two instances of the same table, so we create table aliases (pl1 and
p2) and use them to disambiguate references to the table's columns.

® Every president's record matches itself, but we don't want to see that in the output. The
second line of the WHERE clause disallows matches of a record to itself by making sure the
records being compared are for different presidents.

A similar query finds presidents who were born on the same day. However, birth dates cannot be
compared directly because that would miss presidents who were born in different years. Instead, use
MONTH() and DAYOFMONTH() to compare month and day of the birth date:

mysql> SELECT p1.last_name, p1.first_name, pl.birth
-> FROM president AS p1, president AS p2
-> WHERE MONTH(p1.birth) = MONTH(p2.birth)
-> AND DAYOFMONTH(p1.birth) = DAYOFMONTH(p2.birth)
-> AND (pl.last_name != p2.last_name OR p1.first_name != p2.first_name)
-> ORDER BY p1l.last_name;

+ + + +
| last_name | first_name | birth |
+ + + +

| Harding | Warren G. | 1865-11-02 |
| Polk | James K. | 1795-11-02 |
+ + + +

Using DAYOFYEAR() rather than the combination of MONTH() and DAYOFMONTH() would result in a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

simpler query, but it would produce incorrect results when Eomparing dates from leap years to dates
from non-leap years.

The joins performed thus far have combined information from tables that have some meaningful
logical relationship, but meaningfulness is in the eye of the beholder—that is, you. MySQL doesn't
know (or care) whether or not the joined tables have anything to do with each other. For example,
you can join the event table to the president table to find out whether you gave any quizzes or tests
on a president's birthday:

mysql> SELECT president.last_name, president.first_name,
-> president.birth, event.type
-> FROM president, event
-> WHERE MONTH(president.birth) = MONTH(event.date)
-> AND DAYOFMONTH(president.birth) = DAYOFMONTH(event.date);

+ + + + +
| last_name | first_name | birth | type |
+ + + + +
| Carter |JamesE. | 1924-10-01 | T |
+ + + + +

It turns out you did. But so what? This illustrates that MySQL will happily crank out results, whether
they make any sense or not. Just because you're using a computer, it doesn't automatically mean that
results from a query are useful or worthwhile. Fortunately or unfortunately, we still must think about
what we're doing.

Deleting or Updating Existing Records

Sometimes you want to get rid of records or change their contents. The DELETE and UPDATE
statements let you do this. This section discusses how to use them.

The DELETE statement has the following form:

DELETE FROM tbl_name
WHERE which records to delete;

The WHERE clause that specifies which records should be deleted is optional. But if you leave it out,
all records in the table are deleted, which means the simplest DELETE statement is also the most
dangerous:

DELETE FROM tb/_name;

That query wipes out the table's contents entirely, so be careful with it! To delete specific records, use
the WHERE clause to select the records in which you're interested. This is similar to using a WHERE
clause in a SELECT statement to avoid selecting the entire table. For example, to specifically delete
from the president table only those presidents born in Ohio, use the following query:

mysql> DELETE FROM president WHERE state="OH';
Query OK, 7 rows affected (0.00 sec)

If you're not really sure which records a DELETE statement will remove, it's often a good idea to test
the WHERE clause first by using it with a SELECT statement to find out which records it matches. This
can help you ensure that you'll actually delete the records you intend (and only those records).
Suppose you want to delete the record for Teddy Roosevelt. Would the following query do the job?

DELETE FROM president WHERE last_name='Roosevelt';

Yes, in the sense that it would delete the record you have in mind. No, in the sense that it also would
delete the record for Franklin Roosevelt. It's safer to check the WHERE clause with a SELECT
statement first, like this:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='Roosevelt';

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

+ + +
| last_name | first_name |
+ + +

| Roosevelt | Theodore |
| Roosevelt | Franklin D. |
+ + +

From that you can see the need to be more specific:

mysql> SELECT last_name, first_name FROM president
-> WHERE last_name='Roosevelt' AND first_name='Theodore’;
+ + +
| last_name | first_name |
+ + +
| Roosevelt | Theodore |
+ + +

Now you know the proper WHERE clause to select the desired record, so the DELETE query can be
constructed correctly:

mysql> DELETE FROM president
-> WHERE last_name='Roosevelt' AND first_name="'Theodore’;

This seems like a lot of work to delete a record, doesn't it? Better safe than sorry! (This is the type of
situation in which you'll want to minimize typing through the use of copy and paste or input line-

editing techniques. See the "Tips for Interacting with mysql" section later in this chapter for more

information.)
To modify existing records, use UPDATE, which has the following form:

UPDATE tbl_name
SET which columns to change
WHERE which records to update;

The WHERE clause is just as for DELETE. It's optional, so if you don't specify one, every record in the
table will be updated. For example, the following query changes the name of each of your students to
George:

mysql> UPDATE student SET nhame='George';

Obviously, you must be careful with queries like that, so normally you'll add a WHERE clause to be
more specific about which records to update. Suppose you recently added a new member to the
Historical League but filled in only a few columns of his entry:

mysql> INSERT INTO member (last_name,first_name)
-> VALUES('York','Jerome');

Then you realize you forgot to set his membership expiration date. You can fix that with an UPDATE
statement that includes an appropriate WHERE clause to identify which record to change:

mysql> UPDATE member
-> SET expiration='2001-7-20'
-> WHERE last_name="'York' AND first_name='Jerome’;

You can update multiple columns with a single statement. The following UPDATE modifies Jerome's
email and postal addresses:

mysql> UPDATE member
-> SET email='jeromey@aol.com’,street="'123 Elm St',city="Anytown’,
-> state='NY',zip='01003'
-> WHERE last_name="'York' AND first_name='Jerome’;

You can also "unset" a column by setting its value to NULL (assuming the column allows NULL values).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If at some point in the future Jerome later decides to pay the big membership renewal fee that allows
him to become a lifetime member, you can mark his record that way by setting his expiration date to
NULL ("never expires"):

mysql> UPDATE member
-> SET expiration=NULL
-> WHERE last_name="'York' AND first_name='Jerome’;

With UPDATE, just as for DELETE, it's not a bad idea to test a WHERE clause using a SELECT statement
to make sure you're choosing the right records to update. If your selection criteria are too narrow or
too broad, you'll update too few or too many records.

If you've tried the queries in this section, you'll have deleted and modified records in the sampdb
tables. Before proceeding to the next section, you should undo those changes. Do that by reloading
the tables using the instructions at the end of the "Adding New Records" section earlier in this
chapter.

[Team LiB] [+ Faaviava vt +]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Tips for Interacting with mysq|l

This section discusses how to interact with the mysql client program more efficiently and with less
typing. It also describes how to connect to the server more easily, how to enter queries without
typing each one by hand, and how to change the prompt if you don't like the default prompt.

Simplifying the Connection Process

It's likely that you need to specify connection parameters, such as hostname, username, or password
when you invoke mysgl. That's a lot of typing just to run a program and it gets tiresome very quickly.
There are several ways to minimize the amount of typing necessary to establish a connection to the
MySQL server:

® Store connection parameters in an option file.
® Repeat commands by taking advantage of your shell's command history capabilities.

® Define a mysgl command line shortcut using a shell alias or script.
Using an Option File

As of version 3.22.10, MySQL allows you to store connection parameters in an option file. Then you
don't have to type the parameters each time you run mysql; they are used just as if you had entered
them on the command line. A big advantage of this technique is that the parameters will also be used
by other MySQL clients, such as mysglimport. In other words, an option file makes it easier to use not
just mysql but many other programs as well.

Under UNIX, you set up an option file by creating a file named ~/.my.cnf (that is, a file named .my.cnf
in your home directory). Under Windows, create an option file named my.cnf in the root directory of
the C drive or named my.ini in your Windows system directory (that is, C:\my.cnf or
%SYSTEM%\my.ini). An option file is a plain text file, so you can create it using any text editor. The
file's contents look something like the following:

[client]
host=server_host
user=your_name
password= your_pass

The [client] line signals the beginning of the client option group; any lines following it are read by
MySQL client programs to obtain option values through the end of the file or until a different option
group begins. Replace server_host, your_name, and your_pass with the hostname, username, and
password that you specify when you connect to the server. For example, .my.cnf might look like this:

[client]
host=cobra.snake.net
user=sampadm
password=secret

The [client] line is required to define where the option group begins, but lines that define parameter
values are optional. You can specify just the ones you need. For example, if you're using UNIX and
your MySQL username is the same as your UNIX login name, there is no need to include a user line. If
you connect to localhost, no host line is necessary.

After creating the option file, an additional precaution you should take under UNIX is to set the file's
access mode to a restrictive value to make sure no one else can read or modify it. Either of the
following commands make the file accessible only to you:

% chmod 600 .my.cnf

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com
% chmod u=rw,go-rwx .my.cnf

More information on option files may be found in Appendix E.
Using Your Shell's Command History

Shells such as tcsh and bash remember your commands in a history list and allow you to repeat
commands from that list. If you use such a shell, your history list can help you avoid typing entire
commands. For example, if you've recently invoked mysql, you can execute it again, as follows:

% Imy

The ! character tells your shell to search through your command history to find the most recent
command that begins with "my" and reissue it as though you'd typed it again yourself. Some shells
also allow you to move up and down through your history list using the Up arrow and Down arrow
keys (or perhaps Ctrl-P and Ctrl-N). You can select the command you want this way and then press
Enter to execute it. tcsh and bash have this facility, and other shells may as well. Check the
documentation for your shell to find out more about using your history list.

Using Shell Aliases and Scripts

If your shell provides an alias facility, you can set up a short command name that maps to a long
command. For example, in csh or tcsh, you can use the alias command to set up an alias named
sampdb like this:

alias sampdb 'mysql -h cobra.snake.net -p -u sampadm sampdb'
The syntax for bash is slightly different:

alias sampdb='mysql -h cobra.snake.net -p -u sampadm sampdb'
Defining the alias makes the following two commands equivalent:

% sampdb
% mysql -h cobra.snake.net -p -u sampadm sampdb

Clearly, the first is easier to type than the second. To make the alias take effect each time you log in,
put the alias command in one of your shell's startup files (for example, .tcshrc for tcsh, or .bash_profile
for bash).

Under Windows, a similar technique is to create a shortcut that points to the mysqgl program and then
edit the shortcut properties to include the appropriate connection parameters.

Another way to invoke commands with less typing is to create a script that executes mysql for you
with the proper options. In UNIX, a shell script that is equivalent to the sampdb alias just shown looks
like this:

#! /bin/sh
exec mysql -h cobra.snake.net -p -u sampadm sampdb

If you name the script sampdb and make it executable (with chmod +x sampdb), you can type sampdb
at the command prompt to run mysgl and connect to my database.

Under Windows, a batch file can be used to do the same thing. Name the file sampdb.bat and put the
following line in it:

mysql -h cobra.snake.net -p -u sampadm sampdb

This batch file can be run either by typing sampdb at the prompt in a DOS console or by double-
clicking its Windows icon.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you access multiple databases or connect to multiple hosts, you can define several aliases,
shortcuts, or scripts, each of which invokes mysql with different options.

Issuing Queries with Less Typing

mysql is an extremely useful program for interacting with your database, but its interface is most
suitable for short, single-line queries. It's true that mysql itself doesn't care whether or not a query
spreads across multiple lines, but long queries aren't much fun to type. Nor is it very entertaining to
enter a query, even a short one, only to discover that you must retype it because it has a syntax
error. There are several techniques you can use to avoid needless typing and retyping:

® Use mysql's input line-editing facility.
® Use copy and paste.

® Run mysql in batch mode.
Using the mysql Input Line Editor

mysql has the GNU Readline library built in to allow input line editing. You can manipulate the line
you're currently entering or you can recall previous input lines and re-enter them, either as is or after
further modification. This is convenient when you're entering a line and spot a typo; you can back up
within the line to correct the problem before pressing Enter. If you enter a query that has a mistake in
it, you can recall the query, edit it to fix the problem, and then resubmit it. (This is easiest if you type
the entire query on one line.)

Some of the editing sequences you will find useful are shown in Table 1.4, but there are many input
editing commands available besides those shown in the table. You can read about them in the
command editing chapter of the bash manual, available online from the GNU Project Web site at

http://www.gnu.org/manual/.
Table 1.4. mysql Input Editing Commands
Key Sequence Meaning
Up arrow or Ctrl-P Recall previous line
Down arrow or Ctrl-N Recall next line
Left arrow or Ctrl-B Move cursor left (backward)
Right arrow or Ctrl-F Move cursor right (forward)
Escape Ctrl-B Move backward one word
Escape Ctrl-F Move forward one word
Ctrl-A Move cursor to beginning of line
Ctrl-E Move cursor to end of line
Ctrl-D Delete character under cursor
Delete Delete character to left of cursor
Escape D Delete word
Escape Backspace Delete word to left of cursor
Ctrl-K Erase everything from cursor to end of line
Ctrl-_ Undo last change; may be repeated

The following example describes a simple use for input editing. Suppose you've entered this query
while using mysql:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mysql> SHOW COLUMNS FROM persident;

If you notice that you've misspelled president as persident before pressing Enter, press Left arrow or
Ctrl-B a few times to move the cursor left until it's on the s. Then press Delete twice to erase the er,
type re to fix the error, and press Enter to issue the query. If you press Enter before you notice the
misspelling, that's not a problem. After mysql displays its error message, press up arrow or Ctrl-P to
recall the line and then edit it as just described.

Under Windows, the Readline editing capabilities are not available in mysql. (If you're using a
Windows NT-based system, mysql will support the arrow keys for moving up and down through input
lines or left and right within lines, but not the other editing commands.) To take advantage of the full
set of input editing commands, you can use the mysglc program, which is like mysql but is built with
the Cygnus libraries that include Readline support. For details on making sure mysglc is installed

correctly, see the entry for mysql in Appendix E.
Using Copy and Paste to Issue Queries

If you work in a windowing environment, the text of queries that you find useful can be saved in a file
and recalled by copy and paste operations. Simply perform the following steps:

1. Invoke mysgl in a terminal window or a DOS console window.

2. Open the file containing your queries in a document window (for example, I use vi on UNIX,
gvim on Windows, and BBEdit on Mac 0S).

3. To execute a query stored in your file, select it in the document and copy it. Then switch to
your terminal window or DOS console and paste the query into mysql.

The procedure sounds cumbersome when written out like that, but when you're actually carrying it
out, it provides a way to enter queries quickly and with no typing.

This technique also allows you to edit your queries in the document window, and it allows you to
construct new queries by copying and pasting pieces of existing queries. For example, if you often
select rows from a particular table but like to view the output sorted in different ways, you can keep a
list of different ORDER BY clauses in your document window and then copy and paste the one you
want to use for any particular query.

You can use copy and paste in the other direction, too (from your terminal window to your query file).
When you enter lines in mysql, they are saved in a file named .mysql_history in your home directory. If
you manually enter a query that you want to save for further reference, quit mysql, open

.mysql_history in an editor, and then copy and paste the query from .mysql_history into your query file.

Running mysql in Batch Mode

It's not necessary to run mysql interactively. mysqgl can read input from a file in non-interactive
(batch) mode. This is useful for queries that you run periodically because you certainly don't want to
retype such a query every time you run it. It's easier to put it into a file once and then have mysq|
execute the contents of the file as needed.

Suppose you have a query that finds Historical League members who have an interest in a particular
area of U.S. history by looking in the interests column of the member table. For example, to find
members with an interest in the Great Depression, the query could be written as follows:

SELECT last_name, first_name, email, interests FROM member
WHERE interests LIKE '%depression%'
ORDER BY last_name, first_name;

Put the query in a file interests.sqgl and then run it by feeding it to mysql as follows:

% mysql sampdb < interests.sql

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

By default, mysql produces output in tab-delimited format when run in batch mode. If you want the
same kind of tabular ("boxed") output you get when you run mysql interactively, use the -t option:

% mysql -t sampdb < interests.sql
If you want to save the output, redirect it to a file:
% mysql -t sampdb < interests.sql > output_file

To use the query to find members with an interest in Thomas Jefferson, you could edit the query file
to change depression to Jefferson and then run mysql again. That works okay as long as you don't use
the query very often. If you do, a better method is needed. One way to make the query more flexible
is to put it in a shell script that takes an argument from the script command line and uses it to change
the text of the query. That parameterizes the query so that you can specify the interests value when
you run the script. To see how this works, write a little shell script, interests.sh:

#! /bin/sh

interests.sh - find USHL members with particular interests

if [$# -ne 1]; then echo 'Please specify one keyword'; exit; fi
mysql -t sampdb <<QUERY_INPUT

SELECT last_name, first_name, email, interests FROM member
WHERE interests LIKE '%$1%'

ORDER BY last_name, first_name;

QUERY_INPUT

The third line makes sure there is one argument on the command line; it prints a short message and
exits otherwise. Everything between <<QUERY_INPUT and the final QUERY_INPUT line becomes the
input to mysqgl. Within the text of the query, the shell replaces the reference to $1 with the argument
from the command line. (In shell scripts, $1, $2, and so on refer to the command arguments.) This
causes the query to reflect whatever keyword you specify on the command line when you run the
script.

Before you can run the script, you must make it executable:
% chmod +x interests.sh

Now you don't need to edit the script each time you run it. Just tell it what you're looking for on the
command line:

% interests.sh depression
% interests.sh Jefferson

The interests.sh script can be found in the misc directory of the sampdb distribution. An equivalent
Windows batch file, interests.bat, is provided there as well.

Changing the mysql Prompt

As of MySQL 4.0.2, you can change the primary mysql prompt if you don't like it. For example, to
include the name of the current database in the prompt, use the PROMPT command as follows and
then select different databases to see how the prompt follows the current selection:

% mysql

mysql> PROMPT \d>_
PROMPT set to "\d>\ '
(none)> USE sampdb;
Database changed
sampdb> USE test;
Database changed

test>

The PROMPT keyword is followed by the prompt string that you want to use. Within the string,
sequences that begin with backslashes indicate special prompt options. The \d and _ sequences

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

signify the current database name and a space; for a complete list of available options, see the entry
for mysql in Appendix E.
[Team LiB] [ranvisus] izt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
Where to Now?

You know quite a bit about using MySQL now. You can set up a database and create tables. You can
put records into those tables, retrieve them in various ways, change them, or delete them. But the
tutorial in this chapter only scratches the surface, and there's still a lot to know about MySQL. You can
see this by considering the current state of our sampdb database. We've created it and its tables and
populated them with some initial data. During the process we've seen how to write some of the
queries we need for answering questions about the information in the database. But much remains to
be done. For example, we have no convenient interactive way to enter new score records for the
grade-keeping project or new member entries for the Historical League directory. We have no
convenient way to edit existing records. And we still can't generate the printed or online forms of the
League directory. These tasks and others will be revisited in the upcoming chapters, particularly in

Chapter 7, "The Perl DBI API," and Chapter 8, "The PHP API."

Where you go next in this book depends on what you're interested in. If you want to see how to finish
the job we've started with our Historical League and grade-keeping projects, Part II, "Using MySQL
Programming Interfaces," covers how to write MySQL-based programs. If you're going to serve as the
MySQL administrator for your site, Part III of this book, "MySQL Administration," deals with
administrative tasks. However, I recommend acquiring additional general background in using MySQL
first, by reading the remaining chapters in Part I, "General MySQL Use." These chapters discuss how
MySQL handles data, provide further information on the syntax and use of query statements and show
how to make your queries run faster. A good grounding in these topics will stand you in good stead no
matter the context in which you use MySQL—whether you're running mysql, writing your own
programs, or acting as a database administrator.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raivisvs =t o)
Chapter 2. Working with Data in MySQL

Virtually everything you do in MySQL involves data in some way or another because the purpose of a
database management system is, by definition, to manage data. Even a simple SELECT 1 statement
involves expression evaluation to produce an integer data value.

Every data value in MySQL has a type. For example, 37.4 is a number, and 'abc' is a string.
Sometimes data types are explicit, as when you issue a CREATE TABLE statement that specifies the
type for each column you declare as part of the table:

CREATE TABLE mytbl

(
int_col INT, /* integer-valued column */
str_col CHAR(20), /* string-valued column */
date_col DATE /* date-valued column */
)

Other times, data types are implicit, such as when you refer to literal values in an expression, pass
values to a function, or use the value returned from a function:

INSERT INTO mytbl (int_col,str_col,date_col)
VALUES(14,CONCAT('a','b'"),20020115);

The INSERT statement shown here performs the following operations, all of which involve data types:

® [t assigns the integer value 14 to the integer column int_col.

® It passes the string values 'a' and 'b' to the CONCAT() function. CONCAT() returns the string
value 'ab', which is assigned to the string column str_col.

® [t assigns the integer value 20020115 to the date column date_col. The assignment involves a
type mismatch, so MySQL performs an automatic type conversion that converts the integer
20020115 to the date '2002-01-15".

To use MySQL effectively, it's essential to understand how MySQL handles data. This chapter
describes the types of data values that MySQL can handle and discusses the issues involved in
working with those types:

® The general kinds of values MySQL can represent, including the NULL value.

® The specific data types MySQL provides for table columns and the pro perties that characterize
each column type. Some of MySQL's column types are fairly generic, such as the BLOB string
type. Others, such as AUTO_INCREMENT integer types and the TIMESTAMP date type, behave
in special ways that you should understand to avoid being surprised.

® MySQL support for working with different character sets.

® Choosing column types appropriately for your tables. It's important to know how to pick the
best type for your purposes when you build a table, and when to choose one type over another
when several related types might be applicable to the kind of values you want to store.

® MySQL's rules for expression evaluation. MySQL provides a wide range of operators and
functions that you can use in expressions to retrieve, display, and manipulate data. The rules
for expression evaluation include the rules governing type conversion that come into play when
a value of one type is used in a context requiring a value of another type. It's important to
understand when type conversion happens and how it works; some conversions don't make
sense and result in meaningless values. Assigning the string '13' to an integer column results in
the value 13, but assigning the string 'abc' to that column results in the value 0 because 'abc'

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

doesn't look like a number. Worse, if you perform a comparison without knowing the
conversion rules, you can do considerable damage, such as updating or deleting every row in a
table when you intend to affect only a few rows.

Two appendixes provide additional information to supplement the discussion here about MySQL's
column types, operators, and functions. These are Appendix B, "Column Type Reference," and
Appendix C, "Operator and Function Reference."

The examples used throughout this chapter use CREATE TABLE extensively. The statement should be
reasonably familiar to you because we used it in the tutorial section of Chapter 1, "Getting Started
with MySQL and SQL." See also the entry for CREATE TABLE in Appendix D, "SQL Syntax Reference."
Several examples also use ALTER TABLE to modify the structure of tables. This statement too is
discussed in the appendix as well as in Chapter 3, "MySQL SQL Syntax and Use."

MySQL supports several table types, which differ in their properties. In some cases, the way you use
a particular column type will be determined or influenced by the table type. This chapter refers to
table types on occasion, but a more detailed description of the available types and their
characteristics can be found in Chapter 3.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
MySQL Data Types

MySQL knows about several data types—that is, general categories in which values can be
represented. These include numbers, string values, temporal values such as dates and times, and the
NULL value.

Numeric Values

Numbers are values such as 48 or 193.62. MySQL understands numbers specified as integers (with no
fractional part) or floating-point values (with a fractional part). Integers can be specified in decimal or
hexadecimal format.

An integer consists of a sequence of digits with no decimal point. In numeric contexts, an integer can
be specified as a hexadecimal constant and is treated as a 64-bit integer. The syntax for specifying
hexadecimal values is given in the next section, "String (Character) Values," because they are treated
as strings by default.

A floating-point number consists of a sequence of digits, a decimal point, and another sequence of
digits. One sequence of digits or the other can be empty, but not both.

MySQL understands scientific notation. This is indicated by immediately following an integer or
floating-point number with 'e' or 'E', a sign character ('+' or '-'), and an integer exponent. 1.34E+12
and 43.27e-1 are numbers in legal scientific notation. The number 1.34E12 is also legal even though it
is missing a sign character before the exponent, but only as of MySQL 3.23.26. Prior to that version, a
sign character is required.

Hexadecimal numbers cannot be used in scientific notation: The 'e' that begins the exponent part is
also a legal hex digit and thus would be ambiguous.

Any number can be preceded by a minus sign ('-') to indicate a negative value.
String (Character) Values

Strings are values, such as 'Madison, Wisconsin', or 'patient shows improvement'. You can use either
single or double quotes to surround a string value. The ANSI SQL standard specifies single quotes, so
statements written using them are more portable to other database engines.

Several escape sequences are recognized within strings and can be used to indicate special
characters, as shown in Table 2.1. Each sequence begins with a backslash character ('\') to signify a
temporary escape from the usual rules for character interpretation. Note that a NUL byte is not the
same as the NULL value; NUL is a zero-valued byte, whereas NULL is the absence of a value.

Table 2.1. String Escape Sequences

Sequence Meaning

\0 NUL (ASCII 0)

\' Single quote

\" Double quote

\b Backspace

\n Newline (linefeed)

\r Carriage return

\t Tab

\\ Backslash

\Z Ctrl-Z (Windows EOF character)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To include either kind of quote character within a string, you can do one of three things:

® Double the quote character if the string is quoted using the same character:

'T can"t'

"He said, ""I told you so."™"

® Quote the string with the other quote character; in this case, you do not double the quote
characters within the string:

III Canltll

'He said, "I told you so."

® Escape the quote character with a backslash; this works regardless of the quote characters
used to quote the string:

'T can\'t'
"T can\'t"
"He said, \"I told you so.\
'He said, \"I told you so.\"

Hexadecimal constants can be used to specify string values. There are two different syntaxes for such
constants. The first consists of '0x' followed by one or more hexadecimal digits ('0' through '9' and 'a'
through 'f'). For example, 0x0a is 10 decimal, and Oxffff is 65535 decimal. Non-decimal hex digits can
be specified in uppercase or lowercase, but the leading '0x' cannot be given as '0X'. That is, 0x0a and
O0x0A are legal, but 0X0a and 0X0A are not. In string context, pairs of hexadecimal digits are
interpreted as ASCII codes, converted to characters, and the result is used as a string. In numeric
context, a hexadecimal constant is treated as a number. The following statement illustrates both
uses:

mysql> SELECT 0x616263, 0x616263+0;

+ + +
| 0x616263 | 0x616263+0 |
+ + +
| abc | 6382179 |
+ + +

As of MySQL 4.0, string values can also be specified using the ANSI SQL notation X'va/, where va/
consists of pairs of hexadecimal digits. As with 0x notation, such values are interpreted as strings but
can be used as numbers in a numeric context:

mysql> SELECT X'616263', X'616263'+0;

+ + +
| X'616263' | X'616263'+0 |
+ + +
| abc | 6382179 |
+ + +

Unlike Ox notation, the leading 'X' is not case sensitive:

mysql> SELECT X'61', x'61';

+-mmmes +-mmmees +
| X'61" | x'61" |
+-mmee +-mme- +
la Ja |
+emmmenn Femmmene +

From MySQL 4.1 and later, string values can be specified to lie within a particular character set.
Before that, string values are interpreted using the server's default character set. The "Character Set
Support" section later in this chapter discusses issues related to character sets in more detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Date and Time (Temporal) Values

Dates and times are values such as '2002-06-17' or '12:30:43"'. MySQL also understands combined
date/time values, such as '2002-06-17 12:30:43'". Take special note of the fact that MySQL represents
dates in year-month-day order. This often surprises newcomers to MySQL, although this format is the
ANSI SQL standard (also known as ISO 8601 format). You can display date values any way you want
by using the DATE_FORMAT() function, but the default display format lists the year first, and input
values must be specified with the year first.

The NULL Value

NULL is something of a "typeless" value. Generally, it's used to mean "no value," "unknown value,"
"missing value," "out of range," "not applicable," "none of the above," and so on. You can insert NULL
values into tables, retrieve them from tables, and test whether a value is NULL. However, you cannot
perform arithmetic on NULL values; if you try, the result is NULL.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
MySQL Column Types

Each table in a database is made up of one or more columns. When you create a table using a CREATE
TABLE statement, you specify a type for each column. A column type is more specific than a data

type, which is just a general category, such as "number" or "string." A column type precisely
characterizes the kind of values a given table column can contain, such as SMALLINT or VARCHAR(32).

MySQL's column types are the means by which you describe what kinds of values a table's columns
contain, which in turn determines how MySQL treats those values. For example, if you have numeric
values, you can store them using a numeric or a string column type, but MySQL will treat the values
somewhat differently depending on how you store them. Each column type has several
characteristics:

® What kind of values you can store in it

® How much space values take up, and whether the values are fixed-length (all values of the
type taking the same amount of space) or variable-length (the amount of space depending on
the particular value being stored)

® How values of the type are compared and sorted
® Whether the type allows NULL values

® Whether the type can be indexed

The following discussion surveys MySQL's column types briefly in a broad overview and then describes
in more detail the properties that characterize each type.

Overview of Column Types

MySQL provides column types for values from all the general data type categories except the NULL
value. NULL spans all types in the sense that the property of whether a column can contain NULL
values is treated as a type attribute.

MySQL has numeric column types for both integer and floating-point values, as shown in Table 2.2.
Integer columns can be signed or unsigned. A special attribute allows sequential integer column
values to be generated automatically, which is useful in applications that require a series of unique
identification numbers.

Table 2.2. Numeric Column Types
Type Name |Meaning
TINYINT A very small integer
SMALLINT A small integer
MEDIUMINT |A medium-sized integer

INT A standard integer

BIGINT A large integer

FLOAT A single-precision floating-point number
DOUBLE A double-precision floating-point number
DECIMAL A floating-point number, represented as a string

MySQL string column types are shown in Table 2.3. Strings can hold anything, even arbitrary binary

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

data such as images or sounds. Strings can be compared'according to whether or not they are case
sensitive. In addition, you can perform pattern matching on strings. (Actually, in MySQL you can
perform pattern matching on any column type, but it's most often done with string types.)

Table 2.3. String Column Types

Type Name |[Meaning

CHAR A fixed-léngth character string

VARCHAR A variable-length character string

TINYBLOB A very small BLOB (binary large object)

BLOB A small BLOB

MEDIUMBLOB|A medium-sized BLOB

LONGBLOB |A large BLOB

TINYTEXT A very small text string

TEXT A small text string

MEDIUMTEXT |A medium-sized text string

LONGTEXT |A large text string

ENUM An enumeration; column values may be assigned one
enumeration member

SET A set; column values may be assigned multiple set
members

MySQL date and time types are shown in Table 2.4, where CC, YY, MM, DD hh, mm, and ss represent
century, year, month, day, hour, minute, and second. For temporal values, MySQL provides types for
dates and times (either combined or separate) and timestamps (a special type that allows you to
track when changes were last made to a record). There is also a type for efficiently representing year
values when you don't need an entire date.

Table 2.4. Date and Time Column Types

Type Name |Meaning

DATE A date value, in 'CCYY-MM-DD format

TIME A time value, in 'hh:mm:ss format

DATETIME |A date and time value, in 'CCYY-MM-DD hh:mm:ss format
TIMESTAMP |A timestamp value, in CCYYMMDDhhmmss format

YEAR A year value, in CCYY format

Creating Tables

To create a table, issue a CREATE TABLE statement and specify a list of the columns that make up the
table. Each column has a name and a type, and various attributes can be associated with each type.
The following example creates a table named mytbl containing three columns named f, ¢, and i:

CREATE TABLE mytbl

f FLOAT(10,4),
¢ CHAR(15) NOT NULL DEFAULT 'none,
i TINYINT UNSIGNED NULL

)

The syntax for declaring a column is as follows:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

htt

://www.colorpilot.com

col_name col_type [col_attributes) [general_attributes)

The name of the column, co/_name, is always first in the definition. The precise rules for naming
columns are given in the "MySQL Naming Rules" section of Chapter 3. Briefly summarized, column
names can be up to 64 characters long and can consist of alphanumeric characters from the server's
default character set, as well as the underscore and dollar sign characters ('_' and '$"). Function
names (words such as POS and MIN) are not reserved and can be used as column names; but
keywords, such as SELECT, DELETE, and CREATE, normally are reserved and cannot be used, but as of
MySQL 3.23.6, you can include other characters within a name or use reserved words by enclosing
the name within backtick (**') characters. A column name can begin with any character that is legal in
a name, including a digit. However, unless quoted within backticks, a name cannot consist entirely of
digits because then it would appear to be a number.

The column type col_type indicates the specific kind of values the column can hold. The type specifier
can also indicate the maximum length of the values you store in the column. For some types, you
specify the length explicitly as a number. For others, the length is implied by the type name. For
example, CHAR(10) specifies an explicit length of 10 characters, whereas TINYBLOB values have an
implicit maximum length of 255 characters. Some of the type specifiers allow you to indicate a
maximum display width (how many characters to use for displaying values). Floating-point types
allow the number of decimal places to be specified, so you can control how precise values are.

Following the column type, you can specify optional type-specific attributes as well as more general
attributes. These attributes function as type modifiers. They cause MySQL to change the way it treats
column values in some way:

® The type-specific attributes that are allowable depend on the column type you choose. For
example, UNSIGNED is allowable only for numeric types, and BINARY is allowable only for CHAR
and VARCHAR.

® The general attributes can be given for any column type, with a few exceptions. You can
specify NULL or NOT NULL to indicate whether a column can hold NULL values. For all but BLOB
and TEXT types, you can specify DEFAULT def_value to indicate that a column should be
assigned the value def_value when a new row is created that does not explicitly specify the
column's value. The value of def_value must be a constant; it cannot be an expression or refer
to other columns.

If multiple column attributes are given, there are some constraints on the order in which they may
appear. In general, you should be safe if you specify column type-specific attributes such as
UNSIGNED or ZEROFILL before general attributes such as NULL or NOT NULL.

The rest of this section discusses the syntax for declaring each of MySQL's column types and the
properties that characterize them, such as their range and storage requirements. The type
specifications are shown as you use them in CREATE TABLE statements. Optional information is
indicated by square brackets ([]). For example, the syntax MEDIUMINT[(M)] indicates that the
maximum display width, specified as (M), is optional. On the other hand, for VARCHAR(M), the lack of
brackets indicates that (M) is required.

Numeric Column Types

MySQL's numeric column types fall into two general classifications:

® Integer types are used for numbers that have no fractional part, such as 1, 43, -3, 0, or -
798432. You can use integer columns for data represented by whole numbers, such as weight
to the nearest pound, height to the nearest inch, number of stars in a galaxy, nhumber of
people in a household, or number of bacteria in a petri dish.

® Floating-point types are used for numbers that may have a fractional part, such as 3.14159, -
.00273, -4.78, or 39.3E+4. You can use floating-point column types for values that may have a

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

fractional part or that are extremely large or small. Some types of data you might represent as
floating-point values are average crop yield, distances, money values, unemployment rates, or
stock prices.

Integer types are the simplest. Floating-point types are more complex, particularly because their
behavior has changed at certain points in MySQL's development.

Floating-point values can be assigned to integer columns but will be rounded to the nearest integer.
Conversely, integer values can be assigned to floating-point columns. They are treated as floating-
point values with a fractional part of zero.

Table 2.5 shows the name and range of each numeric type, and Table 2.6 shows the amount of
storage required for values of each type.

Table 2.5. Numeric Column Type Ranges
Type Range
Specification

TINYINT[(M)] Signed values: -128 to 127 (-27 to 27 - 1)

Unsigned values: 0 to 255 (0 to 28 - 1)

SMALLINT[(M)] |[Signed values: -32768 to 32767 (-215 to 215 - 1)
Unsigned values: 0 to 65535 (0 to 216 - 1)
MEDIUMINT[(M)] |Signed values: -8388608 to 8388607 (-223 to 223 - 1)
Unsigned values: 0 to 16777215 (0 to 224 - 1)

INT[(M)] Signed values: -2147683648 to 2147483647 (-231 to
231 - 1)
Unsigned values: 0 to 4294967295 (0 to 232 - 1)
BIGINT[(M)] Signed values: -9223372036854775808 to

9223372036854775807 (-263 to 263 - 1)

Unsigned values: 0 to 18446744073709551615 (0 to
264 - 1)

FLOAT[(M,D)] Minimum non-zero values: £1.175494351E-38
Maximum non-zero values: £3.402823466E+38

DOUBLE[(M,D)] [Minimum non-zero values: £2.2250738585072014E-
308

Maximum non-zero values:
+1.7976931348623157E+308

DECIMAL([M,D]])|Varies; range depends on Mand D

Table 2.6. Numeric Column Type Storage Requirements

Type Storage Required
Specification
TINYINT[(M)] 1 byte

SMALLINT[(M)] 2 bytes
MEDIUMINT[(M)] |3 bytes
INT[(M)] 4 bytes
BIGINT[(M)] 8 bytes

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

FLOAT[(M,D)] 4 bytes

DOUBLE[(M,D)] 8 bytes

DECIMAL([M],D]]) |Mbytes (MySQL < 3.23), M+2 bytes (MySQL =
3.23)

Integer Column Types

MySQL provides five integer types: TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT. INTEGER is a
synonym for INT. These types vary in the range of values they can represent and in the amount of
storage space they require. (Types with a larger range require more storage.) Integer columns can be
declared as UNSIGNED to disallow negative values; this shifts the range for the column upward to
begin at 0.

When you declare an integer column, you can specify an optional display size M. If given, M should be
an integer from 1 to 255. It represents the number of characters used to display values for the
column. For example, MEDIUMINT(4) specifies a MEDIUMINT column with a display width of 4. If you
declare an integer column without an explicit width, a default width is assigned. The defaults are the
lengths of the "longest" values for each type. Note that displayed values are not chopped to fit within
M characters. If the printable representation of a particular value requires more than M characters,
MySQL displays the full value.

The display size M for an integer column is related only to the number of characters used to display
column values. It has nothing to do with the number of bytes of storage space required. For example,
BIGINT values require 8 bytes of storage regardless of the display width. It is not possible to
magically cut the required storage space for a BIGINT column in half by declaring it as BIGINT(4). Nor
does M have anything to do with the range of values allowed. If you declare a column as INT(3), that
will not restrict it to a maximum value of 999.

The following statement creates a table to illustrate the default values of Mand D for integer column
types:

CREATE TABLE mytbl

(
itiny TINYINT,
itiny_u TINYINT UNSIGNED,
ismall SMALLINT,
ismall_u SMALLINT UNSIGNED,
imedium MEDIUMINT,
imedium_u MEDIUMINT UNSIGNED,
ireg INT,
ireg_u INT UNSIGNED,
ibig BIGINT,
ibig_u BIGINT UNSIGNED

)

If you issue a DESCRIBE mytbl statement after creating the table, the number following each type
name shows the value that MySQL uses by default in the absence of an explicit display width

specifier: 1]

[1] Due to a minor glitch, the display width for BIGINT will be 21 (not 20) if you run
this query using a version of MySQL older than 3.23.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

+ + +
| Field | Type |
+ + +

| itiny | tinyint(4) |

| itiny_u | tinyint(3) unsigned |

| ismall | smallint(6) |

ismall_u	smallint(5) unsigned
imedium	mediumint(9)
imedium_u	mediumint(8) unsigned
ireg	int(11)

| ireg_u | int(10) unsigned |

| ibig | bigint(20) |

| ibig_u | bigint(20) unsigned |
+ + +

Floating-Point Column Types

MySQL provides three floating-point types: FLOAT, DOUBLE, and DECIMAL. Synonymous types are
DOUBLE PRECISION and REAL for DOUBLE, and NUMERIC for DECIMAL. Ranges for these types differ
from ranges for integer types in the sense that there is not only a maximum value a floating-point
type can represent, but also a minimum non-zero value. The minimum values provide a measure of
how precise the type is, which is often important for recording scientific data. (There are, of course,
corresponding negative maximum and minimum values.)

Floating-point types can be declared as UNSIGNED, although not until MySQL 4.0.2 for FLOAT and
DOUBLE. Unlike the integer types, declaring a floating-point type UNSIGNED doesn't shift the type's
range upward, it merely eliminates the negative end.

For each floating-point type, you can specify a maximum display size M and the number of decimal
places D. The value of M should be from 1 to 255. The value of D can be from 0 to 30, but should be
no more than M=2. (If you're more familiar with ODBC terms, M and D correspond to the ODBC
concepts of "precision" and "scale.")

For FLOAT and DOUBLE, M and D are optional. If they are omitted, these types are treated as follows:

® Prior to MySQL 3.23.6, FLOAT and DOUBLE are treated as FLOAT(10,2) and DOUBLE(16,4) with
stored values rounded to 2 and 4 decimals, respectively.

® For MySQL 3.23.6 and later, FLOAT and DOUBLE are stored to the full precision allowed by your
hardware.

For DECIMAL, M and D may or may not be optional, depending on your version of MySQL:

® Prior to MySQL 3.23.6, M and D are required for DECIMAL columns.

® For MySQL 3.23.6 and later, if Dis omitted, it defaults to 0. If Mis omitted as well, it defaults
to 10. In other words, the following equivalences hold:

DECIMAL = DECIMAL(10) = DECIMAL(10,0)
DECIMAL(r7) = DECIMAL(7,0)

FLOAT(p) syntax is also allowed for ODBC compatibility. However, the precise behavior of columns
specified using this syntax is somewhat complicated:

® Prior to MySQL 3.23, the allowable values of p are 4 and 8, indicating the number of bytes of
storage per value. FLOAT(4) and FLOAT(8) are treated as FLOAT(10,2) and DOUBLE(16,4) with
stored values rounded to 2 and 4 decimals, respectively.

® For MySQL 3.23.0 to 3.23.5, the allowable values of p are still 4 and 8 and indicate the number

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

of bytes of storage, but FLOAT(4) and FLOAT(8) are treated as single-precision and double-
precision columns with values stored to full hardware precision.

® For MySQL 3.23.6 and later, p can range from 0 to 53 and indicates the minimum number of
bits of precision required for stored values. For p values from 0 to 24, the column is treated as
single-precision. For values from 25 to 53, the column is treated as double-precision.

More confusing still is that MySQL allows FLOAT4 and FLOATS8 as synonyms, but what they are
synonyms for depends on your version of MySQL:

® Prior to MySQL 3.23.6, FLOAT4 and FLOATS are equivalent to FLOAT(10,2) and DOUBLE(16,4).
® For MySQL 3.23.6 and later, FLOAT4 and FLOATS8 are equivalent to FLOAT and DOUBLE.
If you carefully compare these equivalences to those for FLOAT(4) and FLOAT(8), you'll see that

FLOAT4 and FLOATS are not quite the same as FLOAT(4) and FLOAT(8), although you might have
expected them to be.

Checking How MySQL Treats a Type Specification

If you're not sure how your version of MySQL will treat a given floating-point column
specification, try the following. Create a table that contains a column defined the way
you're wondering about and then use DESCRIBE to see how MySQL reports the type. For
example, in MySQL 3.23.0, if you create a column using FLOAT4, you'd see the following:

mysql> CREATE TABLE t (f FLOAT4);
mysql> DESCRIBE t;

+ + + } + + +
| Field | Type | Null | Key | Default | Extra |

} + + } + + +
| f] float(10,2) | YES | | NULL | |

+ + + + + + +

In MySQL 3.23.6, you'd see the following instead:

mysql> CREATE TABLE t (f FLOAT4);
mysql> DESCRIBE t;

+ + + +----- et +omee- +
| Field | Type | Null | Key | Default | Extra |
+ + + +----- Fommmme +ommee- +
| f |float| YES | | NULL | |

+ + + +----- et +ommme- +

The lack of a (M,D) indicator in the latter case indicates that values are stored to the full
precision allowed by the hardware.

This technique actually works to see how MySQL treats any column definition, but I have
found it most useful for floating-point types.

Choosing Numeric Column Types

When you choose a numeric type, consider the range of values you need to represent and choose the
smallest type that will cover the range. Choosing a larger type wastes space, leading to tables that
are unnecessarily large and that cannot be processed as efficiently as if you had chosen a smaller
type. For integer values, TINYINT is the best if the range of values in your data is small, such as a
person's age or number of siblings. MEDIUMINT can represent millions of values and can be used for
many more types of values, at some additional cost in storage space. BIGINT has the largest range of
all but requires twice as much storage as the next smallest integer type (INT) and should be used
only when really necessary. For floating-point values, DOUBLE takes twice as much space as FLOAT.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unless you need exceptionally high precision or an extremely large range of values, you can probably
represent your data at half the storage cost by using FLOAT.

Every numeric column's range of values is determined by its type. If you attempt to insert a value
that lies outside the column's range, truncation occurs; MySQL clips the value to the appropriate
endpoint of the range and uses the result. No truncation occurs when values are retrieved.

Value truncation occurs according to the range of the column type, not the display width. For
example, a SMALLINT(3) column has a display width of 3 and a range from -32768 to 32767. The
value 12345 is wider than the display width but within the range of the column, so it is inserted
without clipping and retrieved as 12345. The value 99999 is outside the range, so it is clipped to 32767
when inserted. Subsequent retrievals retrieve the value 32767.

In general, values assigned to a floating-point column are rounded to the number of decimals
indicated by the column specification. If you store 1.23456 in a FLOAT(8,1) column, the result is 1.2. If
you store the same value in a FLOAT(8,4) column, the result is 1.2346. This means you should declare
floating-point columns with a sufficient number of decimals to give you values as precise as you
require. If you need accuracy to thousandths, don't declare a type with only two decimal places.

The DECIMAL type is a floating-point type, but it differs from FLOAT and DOUBLE in that DECIMAL
values actually are stored as strings and have a fixed number of decimals. The significance of this fact
is that DECIMAL values are not subject to roundoff error the way that FLOAT and DOUBLE columns are
—a property that makes DECIMAL especially applicable to currency calculations. The corresponding
tradeoff is that DECIMAL values are not as efficient as floating-point values stored in native format
that the processor can operate on directly.

The maximum possible range for DECIMAL is the same as for DOUBLE, but the effective range is
determined by the values of Mand D. If you vary M and hold D fixed, the range becomes larger as M
becomes larger. This is illustrated by Table 2.7. If you hold M fixed and vary D, the range becomes
smaller as D becomes larger, although the precision increases. This is shown by Table 2.8.

Table 2.7. How M Affects the Range of DECIMAL(M,D)

Type Range (for MySQL < Range (for MySQL =

Specification 3.23) 3.23)

DECIMAL(4,1) -9.9t0 99.9 -999.9 to 9999.9

DECIMAL(5,1) -99.9 to 999.9 -9999.9 to 99999.9

DECIMAL(6,1) -999.9 to 9999.9 -99999.9 to 999999.9
Table 2.8. How D Affects the Range of DECIMAL(M,D)

Type Range (for MySQL < Range (for MySQL =

Specification 3.23) 3.23)

DECIMAL(4,0) -999 to 9999 -9999 to 99999

DECIMAL(4,1) -9.9 t0 99.9 -999.9 to 9999.9

DECIMAL(4,2) -.99 to0 9.99 -99.99 to 999.99

The range for a given DECIMAL type depends on your version of MySQL. As of MySQL 3.23, DECIMAL
values are handled according to the ANSI specification, which states that a type of DECIMAL(M,D)
must be able to represent any value with M digits and D decimal places. For example, DECIMAL(4,2)
must be able to represent values from -99.99 to 99.99. Because the sign character and decimal point
must still be stored, this requires an extra two bytes, so DECIMAL(M,D) values for MySQL 3.23 and
later use M+2 bytes. For DECIMAL(4,2), six bytes are needed for the "widest" value (-99.99). At the
positive end of the range, the sign byte is not needed to hold a sign character, so MySQL uses it to
extend the range beyond that required by the ANSI specification. In other words, for DECIMAL(4,2),
the maximum value that can be stored in the six bytes available is 999.99.

There are two special conditions that reduce the DECIMAL storage requirement of M+2 bytes to a
lesser value:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® If Dis 0, DECIMAL values have no fractional part and no byte need be allocated to store the
decimal point. This reduces the required storage by one byte.

® [f a DECIMAL column is UNSIGNED, no sign character need be stored, also reducing the
required storage by one byte.

For versions of MySQL prior to 3.23, DECIMAL values are represented in a slightly different fashion. A
DECIMAL(M,D) column is stored using M bytes per value, and the sign character and decimal point (if
needed) are included in the M bytes. Thus, for a type DECIMAL(4,2), the range is -.99 to 9.99 because
those cover all the possible 4-character values. If Dis 0, no decimal point need be stored, and the
byte usually used for that purpose can be used to store another digit. The effect is to extend the
range of the column by an extra order of magnitude. (This explains why the pre-3.23 range in Table
2.8 shifts by a factor of 10 for DECIMAL(4,2) compared to DECIMAL(4,1), but by a factor of 100 for
DECIMAL(4,1) compared to DECIMAL(4,0). I bet you didn't even notice that!)

Numeric Column Type Attributes

The ZEROFILL attribute can be specified for all numeric types. It causes displayed values for the
column to be padded with leading zeros to the display width. You can use ZEROFILL when you want to
make sure column values always display using a given number of digits. Actually, it's more accurate
to say "a given minimum number of digits" because values wider than the display width are displayed
in full without being chopped. You can see this by issuing the following statements:

mysql> DROP TABLE IF EXISTS mytbl;

mysql> CREATE TABLE mytbl (my_zerofill INT(5) ZEROFILL);
mysql> INSERT INTO mytbl VALUES(1),(100),(10000),(1000000);
mysql> SELECT my_zerofill FROM mytbl;

Fommmmemeee +
| my_zerofill |
tommmmmm e +
| 00001 |
| 00100 |
| 10000 |
| 1000000 |
oo +

Note that the final value, which is wider than the column's display width, is displayed in full.

The UNSIGNED attribute disallows negative values. It is most often used with integer types. Making an
integer column UNSIGNED doesn't change the "size" of the underlying data type's range; it just shifts
the range upward. Consider this table specification:

CREATE TABLE mytbl
(
itiny TINYINT,
itiny_u TINYINT UNSIGNED

)

itiny and itiny_u are both TINYINT columns with a range of 256 values but differ in the particular
allowable values. The range of itiny is -128 to 127, whereas the range of itiny_u is shifted up,
resulting in a range of 0 to 255.

UNSIGNED is useful for integer columns into which you plan to store information that doesn't take on
negative values, such as population counts or attendance figures. If you use a signed column for such
values, you use only half of the column type's range. By making the column UNSIGNED, you
effectively double your range. If you use the column for sequence numbers, it will take twice as long
to run out of values if you make it UNSIGNED.

You can also specify UNSIGNED for floating-point columns, although the effect is slightly different than

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

for integer columns. The range does not shift upward; instead, the upper end remains unchanged and
the lower end becomes zero. A precaution to observe is that you should not use UNSIGNED with
FLOAT or DOUBLE columns prior to MySQL 4.0.2. In earlier versions, MySQL allows these types to be
declared as UNSIGNED, but doing so may result in unpredictable column behavior. (This prohibition
does not apply to DECIMAL.)

One other attribute, AUTO_INCREMENT, can be specified for integer column types only. Use the
AUTO_INCREMENT attribute when you want to generate unique identifiers or values in a series. When
you insert NULL into an AUTO_INCREMENT column, MySQL generates the next sequence value and
stores it in the column. Normally, unless you take steps to cause otherwise, AUTO_INCREMENT values
begin at 1 and increase by 1 for each new row. The sequence can be affected if you delete rows from
the table. This depends on the table type, which determines whether or not sequence values are
reused.

You can have at most one AUTO_INCREMENT column in a table. The column should be NOT NULL, and
it should be declared as a PRIMARY KEY or as a UNIQUE key. Also, because sequence values are
always positive, you normally declare the column UNSIGNED as well. For example, you can declare an
AUTO_INCREMENT column in any of the following ways:

CREATE TABLE ai (i INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY);
CREATE TABLE ai (i INT UNSIGNED AUTO_INCREMENT NOT NULL, PRIMARY KEY (i));
CREATE TABLE ai (i INT UNSIGNED AUTO_INCREMENT NOT NULL, UNIQUE (i));

It is always allowable to declare an AUTO_INCREMENT column explicitly NOT NULL, as shown.
However, for versions 3.23 and later, MySQL treats AUTO_INCREMENT columns as NOT NULL
automatically.

The behavior of AUTO_INCREMENT columns is discussed further in the "Working with Sequences"
section later in this chapter.

Following the attributes just described, which are specific to numeric columns, you can also specify
the general attributes NULL or NOT NULL. If you do not specify NULL or NOT NULL for a numeric
column, the default is NULL. You can also specify a default value using the DEFAULT attribute. If you
do not specify a default value, one is chosen automatically. For all numeric column types, the default
is NULL for columns that may contain NULL, and 0 otherwise.

The following table contains three INT columns, having default values of -1, 1, and NULL:

CREATE TABLE t
(
il INT DEFAULT -1,
i2 INT DEFAULT 1,
i3 INT DEFAULT NULL

)i
String Column Types

MySQL provides several string types to hold character data. Strings are often used for values like the
following:

'N. Bertram, et al.'
'Pencils (no. 2 lead)'
'123 Elm St.'
'Monograph Series IX'

But strings are actually "generic" types in a sense because you can use them to represent any value.
For example, you can use string types to hold binary data, such as images or sounds, or output from
gzip, should you want to store compressed data.

Table 2.9 shows the types provided by MySQL for declaring string-valued columns and the maximum
size and storage requirements of each type. For variable-length column types, the amount of storage
taken by a value varies from row to row and depends on the length of the values actually stored in
the column. This length is represented by L in the table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The extra bytes required in addition to L are the number of bytes needed to store the length of the
value. MySQL handles variable-length values by storing both the content of the value and its length.
These extra bytes are treated as an unsigned integer. Notice the correspondence between a variable-
length type's maximum length, the number of extra bytes required for that type, and the range of the
unsigned integer type that uses the same number of bytes. For example, MEDIUMBLOB values can be
up to 224-1 bytes long and require 3 bytes to record the result. The 3-byte integer type MEDIUMINT

has a maximum unsigned value of 224-1. That's not a coincidence.

Table 2.9. String Column Types

Type Specification Maximum Size [Storage Required
CHAR[(M)] M bytes M bytes
VARCHAR(M) M bytes L+1 bytes
TINYBLOB, TINYTEXT 28 — 1 bytes L+1 bytes

BLOB, TEXT 216 - 1 bytes L+2 bytes
MEDIUMBLOB, MEDIUMTEXT 224 - 1 bytes L+3 bytes
LONGBLOB, LONGTEXT 232 - 1 bytes L+4 bytes
ENUM('valuel, 'valueZ,...) 65535 members |1 or 2 bytes
SET('valuel, 'valueZ,...) 64 members 1, 2, 3, 4, or 8 bytes

For ENUM and SET, the column definition includes a list of legal values. Attempting to store a value

other than those causes the value to be converted to " (the empty string). For the other string types,
values that are too long are chopped to fit. But string types range from very small to very large, with
the largest type able to hold nearly 4GB of data, so you should be able to find something long enough

to avoid truncation of your information.[2]

[2] The effective maximum column size is actually imposed by the maximum packet
size of the client/server communication protocol. This value is 16MB prior to MySQL 4,
and 1GB for MySQL 4 and later.

ENUM and SET values are stored internally as numbers, as detailed later in the "ENUM and SET
Column Types" section. Values for the other string types are stored as a sequence of bytes and
treated either as bytes or characters, depending on whether the type holds binary or non-binary
strings:

® A binary string is treated as a generic sequence of bytes, without respect to any character set.
BLOB columns hold binary values, as do CHAR and VARCHAR columns if they are declared with
the BINARY attribute.

® A non-binary string is treated as a sequence of characters and interpreted with respect to the
properties of a particular character set. TEXT columns hold non-binary strings, as do CHAR and
VARCHAR columns if they are declared without the BINARY attribute. For a single-byte
character set, each character takes one byte. For multi-byte character sets, characters can take
more than one byte. In MySQL 4.1 and later, columns can be assigned character sets
individually. Prior to MySQL 4.1, the server's default character set is used to interpret character
strings.

Use of a character set causes non-binary strings to be compared and sorted using the character set's

collating sequence. By contrast, a binary string has no character set and thus no collating sequence.
This results in some differences in the way binary and non-binary strings are interpreted:

® Binary strings are processed byte-by-byte in comparisons based only on the underlying

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

numeric value of each byte. One implication of this property is that binary values are case
sensitive, because the lowercase and uppercase versions of a given letter have different
numeric codes.

® Non-binary strings are processed character-by-character in comparisons using the character
set collating sequence. For most character sets, uppercase and lowercase versions of a given
letter have the same collating value, which means that non-binary string comparisons are not
case sensitive. Similar characters with different accents also may have the same collating
value. For example, 'E' and 'E compare as the same character in the latinl character set.

There are a few character sets that do treat uppercase and lowercase as having different collating
values and that distinguish between accent marks: cp1521csas, cp1527Itlvcsas, latinlcsas, maccecsas,
and macromancsas. Note that these character set names each end with csas, which means "case
sensitive, accent sensitive." They're something of a special case, so although elsewhere in this book I
discuss non-binary strings as not case sensitive, keep in mind that these character sets exist as
exceptions to the rule.

The distinction between characters and bytes can be seen easily by considering the length of a string
containing multi-byte characters. For example, in MySQL 4.1 and later, you can use the CONVERT()
function to generate a string in any available character set. The following statement creates @s as a
string using ucs2, a character set that uses two bytes to encode each character:

mysql> SET @s = CONVERT('ABC' USING ucs2);

What is the "length" of the string @s? It depends. If you measure with CHAR_LENGTH(), which is
multi-byte aware, you get the length in characters. If you measure with LENGTH(), which is not multi-
byte aware, you get the length in bytes:

mysql> SELECT CHAR_LENGTH(@s), LENGTH(@s);

+ + +

| CHAR_LENGTH(@s) | LENGTH(@s) |
+ + +

| 31 6|

+ + +

A binary string has no character set and is treated simply as a sequence of individual bytes.
Consequently, the length of the string is the same whether measured in characters or bytes:

mysql> SET @s = BINARY CONVERT('ABC' USING ucs2);
mysql> SELECT CHAR_LENGTH(BINARY @s), LENGTH(BINARY @s);

+ + +
| CHAR_LENGTH(BINARY @s) | LENGTH(BINARY @s) |
+ : +

| 6| 6|

+ : +

The difference between lengths in characters and in bytes is significant for interpreting the meaning of
string column types. For example, a column declaration of VARCHAR(20) doesn't really mean "20
characters maximum," it means "as many characters as will fit in 20 bytes." For single-byte character
sets, the two are the same because the number of characters is the same as the number of bytes.
But, for a multi-byte character set, the number of characters can be many less than 20.

The CHAR and VARCHAR Column Types

CHAR and VARCHAR are the most commonly used string types. The difference between them is that
CHAR is a fixed-length type and VARCHAR is a variable-length type. Values in a CHAR(M) column each
take M bytes; shorter values are right-padded with spaces when they are stored. (Trailing spaces are
stripped off on retrieval, however.) Values in a VARCHAR(M) column are stored using only as many
bytes as necessary, plus one byte to record the length. Trailing spaces are stripped from VARCHAR
values when they are stored; this differs from the ANSI SQL standard for VARCHAR values. (A
VARCHAR type for which trailing spaces are not stripped may be introduced in a future version of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

MySQL.)

CHAR and VARCHAR columns can be declared with a maximum length M from 1 to 255. Mis optional
for CHAR and defaults to 1 if missing. Beginning with MySQL 3.23, CHAR(O) is also legal. CHAR(O) is
useful as a placeholder when you want to declare a column but don't want to allocate space for it if
you're not sure yet how wide to make it. You can use ALTER TABLE to widen the column later. A
CHAR(0) column can also be used to represent on/off values if you allow it to be NULL. Values in such
a column can have two values—NULL or the empty string. A CHAR(0) column takes very little storage
space in the table—only a single bit. As of MySQL 4.0.2, VARCHAR(0) is allowable as well, but it's
treated as CHAR(0).

Keep two general principles in mind when choosing between CHAR and VARCHAR column types:

® If your values are all the same length, VARCHAR actually will use more space due to the extra
byte required to record the length of values. On the other hand, if your values vary in length,
VARCHAR columns have the advantage of taking less space. A CHAR(n) column always takes n
bytes, even if it is empty or NULL.

® If your values don't vary much in length, CHAR is a better choice than VARCHAR if you're using
MyISAM or ISAM tables. For such table types, tables with fixed-length rows can be processed
more efficiently than tables with variable-length rows.

With a few limited exceptions, you cannot mix CHAR and VARCHAR within the same table. MySQL will
even change columns from one type to another, depending on the circumstances. (This is something
that other databases do not do.) The principles that apply are as follows:

® Table rows are fixed-length only if all the columns in the table are fixed-length types.
® If even a single column has a variable length, table rows become variable-length as well.

® If table rows are variable-length, any fixed-length columns in the column may as well be
converted to variable-length equivalents when that will save space.

What this means is that if you have VARCHAR, BLOB, or TEXT columns in a table, you cannot also
have CHAR columns; MySQL silently converts them to VARCHAR. Suppose you create a table as
follows:

CREATE TABLE mytbl

(
c1 CHAR(10),

c2 VARCHAR(10)
)

If you issue a DESCRIBE query, the output is as follows:

mysql> DESCRIBE mytbl;

+ + + - . + +
| Field | Type | Null | Key | Default | Extra |
+ + + - . + +
| c1 | varchar(10) | YES | | NULL | |
| c2 | varchar(10) | YES | | NULL | |
+ + + +---t + +

Notice that the presence of the VARCHAR column causes MySQL to convert cl1 to VARCHAR as well. If
you try using ALTER TABLE to convert c1 to CHAR, it won't work. The only way to convert a VARCHAR
column to CHAR is to convert all VARCHAR columns in the table at the same time:

mysql> ALTER TABLE mytbl MODIFY c1 CHAR(10), MODIFY c2 CHAR(10);
mysql> DESCRIBE mytbl;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e 1 s [S Ammmmmn +

| Field | Type | Null | Key | Default | Extra |
+ + + +----- et e +
| cl |char(10) | YES | | NULL | |

| c2 |char(10) | YES | | NULL | |

+ + + +--e- tommmmmeen R +

The BLOB and TEXT column types are variable-length like VARCHAR, but they have no fixed-length
equivalent, so you cannot use CHAR columns in the same table as BLOB or TEXT columns. Any CHAR
column will be converted to VARCHAR.

The exception to non-mixing of fixed- and variable-length columns is that CHAR columns shorter than
four characters are not converted to VARCHAR. For example, MySQL will not change the CHAR column
in the following table to VARCHAR:

CREATE TABLE mytbl

(
c1 CHAR(2),

c2 VARCHAR(10)
)

You can see this from the output of DESCRIBE:

mysql> DESCRIBE mytbl;

+ + + +--m . + +
| Field | Type | Null | Key | Default | Extra |
+ + + - . + +
|cl |char(2) |YES | |NULL | |

| c2 | varchar(10) | YES | | NULL | |

+ + + +---t + +

The reason columns shorter than four characters are not converted is that, on average, any savings
you might gain by not storing trailing spaces are offset by the extra byte needed in a VARCHAR
column to record the length of each value. In fact, if all your columns are short, MySQL will convert
any that you declare as VARCHAR to CHAR. MySQL does this because the conversion will decrease
storage requirements on average and, for MyISAM and ISAM tables, will improve performance by
making table rows fixed-length. Suppose you create a table with the following specification:

CREATE TABLE mytbl
(
0 VARCHAR(0),
c1 VARCHAR(1),
2 VARCHAR(2),
3 VARCHAR(3)

)i
DESCRIBE reveals that MySQL silently changes all the VARCHAR columns to CHAR:

mysql> DESCRIBE mytbl;

+ + + -t + +
| Field | Type | Null | Key | Default | Extra |
+ + + fommee + + +
| cO | char(0) | YES | | NULL | |
|[cl |char(l) | YES | | NULL | |
|c2 |char(2) | YES | | NULL | |
|c3 |char(3) | YES | | NULL | |

+ + + -t + +

The BLOB and TEXT Column Types

A "BLOB" is a binary large object—basically, a container that can hold anything you want to toss into
it, and that you can make about as big as you want. In MySQL, the BLOB type is really a family of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

types (TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB), which are identical except for the maximum
amount of information they can hold (see Table 2.9). BLOB columns are useful for storing data that
may grow very large or that can vary widely in size from row to row. Some examples are word-
processing documents, images and sounds, compound data, and news articles. MySQL also has a
family of TEXT types (TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT). These are similar to the
corresponding BLOB types, except that they are associated with a character set and operations on
TEXT columns take character set into account. (For MySQL 4.1 and later, this is the character set
assigned to the TEXT column itself. Prior to 4.1, it is the server's default character set.) This results in
the general differences between binary and non-binary strings that were described earlier. For
example, in comparison and sorting operations, BLOB values are case sensitive and TEXT values are
not.

BLOB or TEXT columns sometimes can be indexed, depending on the table type you're using:

® MyISAM tables support BLOB and TEXT indexing (for MySQL 3.23.2 and later), as do BDB
tables. However, you must specify a prefix size to be used for the index. This avoids creating
index entries that might be huge and thereby defeat any benefits to be gained by that index.
The exception is that no prefix is specified for FULLTEXT indexes on TEXT columns, because
FULLTEXT searches are based on the entire content of the indexed columns.

® [SAM, HEAP, and InnoDB tables do not support BLOB and TEXT indexes.

BLOB or TEXT columns may require special care:

® Due to the typical large variation in the size of BLOB and TEXT values, tables containing them
are subject to high rates of fragmentation if many deletes and updates are done. You'll want to
run OPTIMIZE TABLE periodically to reduce fragmentation and maintain good performance. See
Chapter 4, "Query Optimization," for more information.

® If you're using very large values, you may need to tune the server to increase the value of the
max_allowed_packet parameter. See Chapter 11, "General MySQL Administration," for more
information. You will also need to increase the packet size for any client that wishes to use very
large values. Appendix E, "MySQL Program Reference," describes how to do this for the mysq|
client program.

The ENUM and SET Column Types

ENUM and SET are special string column types for which values must be chosen from a fixed
(predefined) list of allowable strings. The primary difference between them is that ENUM column
values must consist of exactly one member of the list of values, whereas SET column values can
contain any or all members of the list. In other words, ENUM is used for values that are mutually
exclusive, whereas SET allows multiple choices from the list.

The ENUM column type defines an enumeration. ENUM columns can be assigned values consisting of
exactly one member chosen from a list of values specified at table-creation time. You can define an
enumeration to have up to 65,535 members. Enumerations are commonly used to represent category
values. For example, values in a column declared as ENUM('N','Y") can be either 'N' or 'Y'. Or you can
use ENUM for such things as answers to multiple-choice questions in a survey or questionnaire, or
available sizes or colors for a product:

employees ENUM('less than 100','100-500','501-1500','more than 1500')
color ENUM('red','green’,'blue’,'black")
size ENUM('S','M','L","XL","XXL")

If you are processing selections from Web pages, you can use an ENUM to represent the option that a
visitor to your site chooses from a set of mutually exclusive radio buttons on a page. For example, if
you run an online pizza ordering service, an ENUM can be used to represent the type of crust a
customer orders:

crust ENUM('thin','regular','pan style','deep dish")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If enumeration categories represent counts, it's important to choose your categories properly when
you create the enumeration. For example, when recording white blood cell counts from a laboratory
test, you may group the counts into categories as follows:

wbc ENUM('0-100','101-300','>300")

When a test result comes in as an exact count, you can record the value in the wbc column terms of
the category into which the count falls. But you cannot recover the original count if you decide you
want to convert the column from a category-based ENUM to an integer column based on exact count.
(If you really need the exact count, use an integer column instead.)

The SET type is similar to ENUM in the sense that when you create a SET column, you specify a list of
legal set members. But unlike ENUM, each column value can consist of any number of members from
the set. The set can have up to 64 members. You can use a SET when you have a fixed set of values
that are not mutually exclusive, as they are in an ENUM column. For example, you might use a SET to
represent options available for an automobile:

SET('luggage rack','cruise control','air conditioning','sun roof")
Then, particular SET values would represent those options actually ordered by customers:

'cruise control,sun roof’

'luggage rack,air conditioning'

'luggage rack,cruise control,air conditioning'
'air conditioning'

The final value shown (the empty string) means that the customer ordered no options. This is a legal
SET value.

SET column values are represented as a single string. If a value consists of multiple set members, the
members are separated in the string by commas. Obviously, this means you shouldn't use a string
containing a comma as a SET member.

Other uses for SET columns might be for representing information, such as patient diagnoses or
results from selections on Web pages. For a diagnosis, there may be a standard list of symptoms to
ask a patient about, and the patient might exhibit any or all of them. For your online pizza service,
the Web page for ordering could have a set of check boxes for ingredients that a customer wants on a
pizza, several of which might be chosen.

The way you declare the legal value list for an ENUM or SET column is significant in several ways:

® The list determines the possible legal values for the column, as has already been discussed.

® You can insert ENUM or SET values in any lettercase, but the lettercase of the strings specified
in the column declaration determines the lettercase of column values when they are retrieved
later. For example, if you have an ENUM('Y','N') column and you store 'y' and 'n' in it, the values
are displayed as 'Y' and 'N' when you retrieve them. This does not affect comparison or sorting
behavior because ENUM and SET columns are not case sensitive.

® The order of values in an ENUM declaration is the order used for sorting. The order of values in
a SET declaration also determines sort order, although the relationship is more complicated
because column values can contain multiple set members.

® The order of values in a SET declaration determines the order in which set members appear
when SET column values consisting of multiple members are displayed.

ENUM and SET are classified as string types because enumeration and set members are specified as
strings when you create columns of these types. However, the members are stored internally as
numbers and you can operate on them as such. This means that ENUM and SET types are more
efficient than other string types because they often can be handled using numeric operations rather
than string operations. It also means that ENUM and SET values can be used in either string or

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

numeric contexts.

ENUM members in the column declaration are numbered sequentially beginning with 1. (0 is reserved
by MySQL for the error member, which is represented in string form by the empty string.) The
number of enumeration values determines the storage size of an ENUM column. One byte can
represent 256 values, two bytes can represent 65,536 values. (Compare this to the ranges of the one-
byte and two-byte integer types TINYINT UNSIGNED and SMALLINT UNSIGNED.) Thus, the maximum
number of enumeration members is 65,536 (counting the error member) and the storage size
depends on whether or not there are more than 256 members. You can specify a maximum of 65,535
(not 65,536) members in the ENUM declaration because MySQL reserves a spot for the error member
as an implicit member of every enumeration. When you assign an illegal value to an ENUM column,
MySQL assigns the error member instead.

The following is an example you can try using the mysql client. It demonstrates that you can retrieve
ENUM values in either string or numeric form (which shows the numeric ordering of enumeration
members and also that the NULL value has no number in the ordering):

mysql> CREATE TABLE e_table (e ENUM('jane’,'fred’,'will','marcia"));
mysql> INSERT INTO e_table

-> VALUES('jane"),('fred"),('will'),('marcia‘),(""),(NULL);
mysql> SELECT e, e+0, e+1, e*3 FROM e_table;

+ + + + +
| e | e+0 | e+l | e*3 |
+ + + + +

|[jane | 1| 2| 3|
|fred | 2| 3| 6]

[will | 3] 4] 9]

| marcia| 4| 5| 12|

I | O] 1] O]

[NULL | NULL | NULL | NULL |
+ + + + +

You can compare ENUM members either by name or number:

mysql> SELECT e FROM e_table WHERE e="will’;

+--me- +
le |
+--mm- +
| will |
+--mm- +
mysql> SELECT e FROM e_table WHERE e=3;
+----- +
le |
+--me- +
| will |
+--mm- +

It is possible to declare the empty string as a legal enumeration member. It will be assigned a non-
zero numeric value, just as any other member listed in the declaration would be. However, using an
empty string may cause some confusion because that string is also used for the error member that
has a numeric value of 0. In the following example, assigning the illegal enumeration value 'X' to the
ENUM column causes the error member to be assigned. This is distinguishable from the empty string
member only when retrieved in nhumeric form:

mysql> CREATE TABLE t (e ENUM('a',",'b"));
mysql> INSERT INTO t VALUES('a'),(""),('b"),('x");
mysql> SELECT e, e+0 FROM t;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

e |e+0 |
+mmmme e +
la | 1]
I
b | 3
| | O]
e e +

The numeric representation of SET columns is a little different than for ENUM columns. Set members
are not numbered sequentially. Instead, each member corresponds to an individual bit in the SET
value. The first set member corresponds to bit 0, the second member corresponds to bit 1, and so on.
A numeric SET value of 0 corresponds to the empty string. SET members are maintained as bit values.
Eight set values per byte can be stored this way, so the storage size for a SET column is determined
by the number of set members, up to a maximum of 64 members. SET values take 1, 2, 3, 4, or 8
bytes for set sizes of 1 to 8, 9 to 16, 17 to 24, 25 to 32, and 33 to 64 members.

The representation of a SET as a set of bits is what allows a SET value to consist of multiple set
members. Any combination of bits can be turned on in the value, so the value can consist of any
combination of the strings in the SET declaration that correspond to those bits.

The following is an example that shows the relationship between the string and numeric forms of a
SET column; the numeric value is displayed in both decimal and binary form:

mysql> CREATE TABLE s_table (s SET('jane’,'fred’,'will’,'marcia'));
mysql> INSERT INTO s_table

-> VALUES('jane"),('fred"),('will"),('marcia’),(""),(NULL);
mysql> SELECT s, s+0, BIN(s+0) FROM s_table;

+ t + +
s |s+0 | BIN(s+0) |
+ + + +
|jane | 11 I
|fred | 2110 |
|will | 4]100 |

| marcia| 8] 1000 |

I | 0]0 I

| NULL | NULL | NULL |
+ t + +

If you assign a value containing substrings that are not listed as set members to a SET column, those
strings drop out and the column is assigned a value consisting of the remaining substrings. When you
assign values to SET columns, the substrings don't need to be listed in the same order that you used

when you declared the column. However, when you retrieve the value later, members will be listed in
declaration order. Suppose you declare a SET column to represent furniture items using the following
declaration:

SET('table','lamp','chair")

If you assign a value of 'chair,couch,table’ to this column, two things happen. First, 'couch' drops out
because it's not a member of the set. Second, when you retrieve the value later, it appears as
'table,chair'. This occurs because MySQL determines which bits correspond to each substring of the
value to be assigned and turns them on in the stored value. 'couch' corresponds to no bit and is
ignored. On retrieval, MySQL constructs the string value from the numeric value by scanning the bits
in order, which automatically reorders the substrings to the order used when the column was
declared. This behavior also means that if you specify a set member more than once in a value, it will
appear only once when you retrieve the value. If you assign 'lamp,lamp,lamp’ to a SET column, it will
be simply 'lamp' when retrieved.

The fact that MySQL reorders members in a SET value means that if you search for values using a
string, you must list members in the proper order. If you insert 'chair,table’' and then search for
'chair,table' you won't find the record; you must look for it as 'table,chair'.

Sorting and indexing of ENUM and SET columns is done according to the internal (numeric) values of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

column values. The following example might appear to be incorrect otherwise because the values are
not sorted in alpha numeric order:

mysql> SELECT e FROM e_table ORDER BY e;

e +
le |
o +
| NULL |
I I

| jane |
| fred |

| will |

| marcia |
T +

The placement of the NULL value depends how your version of MySQL sorts NULL values. (See the
"Sorting Query Results" section in Chapter 1.)

If you have a fixed set of values and you want them to sort in a particular order, you can exploit the
ENUM sorting properties. Represent the values as an ENUM column in a table and list the enumeration
values in the column declaration in the order that you want them to be sorted. Suppose you have a
table representing personnel for a sports organization, such as a football team, and that you want to
sort output by personnel position so that it comes out in a particular order, such as the coaches,
assistant coaches, quarterbacks, running backs, receivers, linemen, and so on. Define the column as
an ENUM and list the enumeration elements in the order that you want to see them. Sort operations
on that column will automatically come out in the order you specify.

For cases where you want an ENUM to sort in regular lexical order, you can convert the column to a
non-ENUM string by using CONCAT() and sorting the result:

mysql> SELECT CONCAT(e) AS e_str FROM e_table ORDER BY e_str;

| jane |
| marcia |
| will |

CONCAT() doesn't change the displayed values but has the side effect in this query of performing an
ENUM-to-string conversion that alters their sorting properties.

String Column Type Attributes

The BINARY attribute can be specified for the CHAR and VARCHAR types to cause column values to be
treated as binary strings (that is, as a string of bytes rather than as a string of characters). A common
use for this is to cause column values to be case sensitive.

In MySQL 4.1 and later, you can specify a CHARACTER SET charset attribute for CHAR, VARCHAR, and
TEXT columns. charset should be a valid character set name. The character set may differ among
columns. For example, the following table contains latinl_de (German), utf8 (Unicode), and sjis
(Japanese) columns:

CREATE TABLE mytbl

(
cl CHAR(10) CHARACTER SET latinl_de,
c2 VARCHAR(40) CHARACTER SET utf8,
t MEDIUMTEXT CHARACTER SET sjis

)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In versions of MySQL for which individual columns may be assigned character sets, DESCRIBE output
will show that information:

mysql> DESCRIBE mytbl;

+ + + : + + +
| Field | Type | Null | Key | Default | Extra |

+ + + s LR R +-mmmm- +
| c1 | varchar(10) character set latinl_de | YES | | NULL | |
| c2 | varchar(40) character set utf8 | YES | | NULL | [

| t | mediumtext character set sjis | YES | | NULL | |
+ + } : + } +

Binary strings do not have character sets, so the CHARACTER SET attribute is not applicable to CHAR
BINARY, VARCHAR BINARY, or any of the BLOB types. Character sets cannot be assigned to ENUM or

SET columns, either, because values in such columns are represented numerically.m

[3] The string values that correspond to ENUM and SET values currently are
interpreted with respect to the server's default character set. There is work in progress
in MySQL 4.1 to allow such columns to be associated with a named character set or to
be declared as BINARY— a feature that may in fact be available by the time this book
reaches you.

In MySQL 4.1 and later, every non-binary character column has a character set; one will be assigned,
even if you do not specify one explicitly in the column definition. Character sets can be designated at
the column, table, database, or server level, so when you create a character column, MySQL
determines which character set to assign to it by trying the following rules in order:

1. If the column definition includes a character set, use that set.

2. Otherwise, if the table definition includes a table-level character set other than DEFAULT, use
that set.

3. Otherwise, if the database has been assigned a character set other than DEFAULT, use that set.
4. Otherwise, use the server's default character set.

In other words, MySQL searches up through the levels at which character sets can be specified until it
finds an explicit character set and then uses that for the column's set. The server always has a default
character set, so the search process is guaranteed to terminate at the server level even if no
character set is specified explicitly at any of the lower levels.

Suppose the server's character set is greek and that the current database has a character set of
DEFAULT. The following CREATE TABLE statement specifies no character set at either the column or
table level:

CREATE TABLE t (c CHAR(10));

The database has no explicit set either, so MySQL searches all the way up to the server level to find a
character set (greek) to use for the column c. You can verify that with DESCRIBE:

mysql> DESCRIBE t;

+ + . oo R +
| Field | Type | Null | Key | Default | Extra |

+ + + Rttt e +
| ¢ | char(10) character set greek | YES | | NULL | |
+ + } oo e +

The next statement specifies a table-level character set, so MySQL searches only up to that level to
determine that the character set for column ¢ should be czech:

CREATE TABLE t (c CHAR(10)) CHARACTER SET czech;

Again, you can verify that with DESCRIBE:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

mysql> DESCRIBE t;

+ + } oo e +
| Field | Type | Null | Key | Default | Extra |

+ + : oo e +
| ¢ | char(10) character set czech | YES | | NULL | |
+ + : e et R +

Character sets are described further in the "Character Set Support" section later in this chapter.

The general attributes NULL or NOT NULL can be specified for any of the string types. If you don't
specify either of them, NULL is the default. However, declaring a string column as NOT NULL does not
prevent entry of an empty string. An empty value is different than a missing value, so don't make the
mistake of thinking that you can force a string column to contain non-empty values by declaring it
NOT NULL. If you require string values to be non-empty, that is a constraint you must enforce from
within your own applications.

You can also specify a default value using the DEFAULT attribute for all string column types except the
BLOB and TEXT types. If you don't specify a default value, one is chosen automatically. The default is
NULL for columns that may contain NULL. For columns that may not contain NULL, the default is the
empty string except for ENUM, where the default is the first enumeration member. (For SET, the
default when the column cannot contain NULL is actually the empty set, but that is equivalent to the
empty string.)

Date and Time Column Types
MySQL provides several column types for temporal values—DATE, DATETIME, TIME, TIMESTAMP, and

YEAR. Table 2.10 shows the types provided by MySQL for declaring columns that hold date and time
values and the range of legal values for each type. The storage requirements for each type are shown

in Table 2.11.
Table 2.10. Date and Time Column Types
Type Range
Specification
DATE '1000-01-01" to '9999-12-31"
TIME '-838:59:59' to '838:59:59"
DATETIME '1000-01-01 00:00:00' to '9999-12-31 23:59:59'
TIMESTAMP[(M)] 19700101000000 to sometime in the year 2037
YEAR[(M)] 1901 to 2155 for YEAR(4), and 1970 to 2069 for
YEAR(2)
Table 2.11. Date and Time Column Type Storage Requirements
Type Specification Storage Required
DATE 3 bytes (4 bytes prior to MySQL 3.22)
TIME 3 bytes
DATETIME 8 bytes
TIMESTAMP 4 bytes
YEAR 1 byte

Each date and time type has a "zero" value that is stored when you insert a value that is illegal for the
type, as shown in Tabhle 2.12. This value is also the default value for date and time columns that are
declared NOT NULL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Table 2.12. Date and Time Type "Zero" Values

Type Specification Zero Value

DATE '‘0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'
TIMESTAMP 00000000000000
YEAR 0000

MySQL always represents dates with the year first, in accordance with the ANSI SQL and ISO 8601
specifications. For example, December 3, 2004 is represented as '2004-12-03'. MySQL does allow
some leeway in the way it allows input dates to be specified. For example, it will convert two-digit
year values to four digits, and you need not supply a leading zero digit for month and day values that
are less than 10. However, you must specify the year first and the day last. Formats that you may be
more used to, such as '12/3/99' or '3/12/99', will be interpreted incorrectly. The date interpretation

rules MySQL uses are discussed further in the "Working with Date and Time Columns" section later in
this chapter.

Time values are returned in the time zone local to the server; MySQL doesn't make any time zone
adjustments for the values that it returns to the client.

The DATE, TIME, and DATETIME Column Types

The DATE, TIME, and DATETIME types hold date, time, and combined date and time values. The
formats are 'CCYY-MM-DD, 'hh:mm.ss, and 'CCYY-MM-DD hh:mm:ss, where CC, YY, MM, DD hh, mm,
and ss represent century, year, month, day, hour, minute, and second. For the DATETIME type, the
date and time parts are both required; if you assign a DATE value to a DATETIME column, MySQL
automatically adds a time part of '00:00:00'. (Conversely, if you assign a DATETIME value to a DATE
column, MySQL discards the time part.)

MySQL treats the time in DATETIME and TIME values slightly differently. For DATETIME, the time part
represents a time of day. A TIME value, on the other hand, represents elapsed time—that's why the
range for TIME columns is so great and why negative values are allowed.

One thing to watch out for when inserting TIME values into a table is that if you use a "short" (not
fully qualified) value, it may not be interpreted as you expect. For example, you'll probably find that if
you insert '30' and '12:30' into a TIME column, one value will be interpreted from right to left and the
other from left to right, resulting in stored values of '00:00:30' and '12:30:00'. If you consider '12:30'
to represent a value of "12 minutes, 30 seconds," you should specify it in fully qualified form as
'00:12:30".

The TIMESTAMP Column Type

TIMESTAMP columns represent values in CCYYMMDDhhmmss format, with a range from
19700101000000 to sometime in the year 2037. The range is tied to UNIX time, where the first day of
1970 is "day zero," also known as "the epoch." The beginning of 1970 determines the lower end of
the TIMESTAMP range. The upper end of the range corresponds to the four-byte limit on UNIX time,

which can represent values into the year 2037.14]

[4] The upper limit on TIMESTAMP values will increase as operating systems are
modified to extend the upper range of UNIX time values. This is something that must
be addressed at the system library level. MySQL will take advantage of these changes
as they are made.

The TIMESTAMP type is so called because it has some special properties for recording when a row is
created or modified:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® If you insert a NULL into any TIMESTAMP column, the column value is set automatically to the
current date and time.

® The current date and time are also used if you create or update a row without assigning an
explicit value to the column, but only for the first TIMESTAMP column in a row.

® For any TIMESTAMP column, you can update its value to the current timestamp by setting it to
NULL, or you can defeat timestamping by inserting an explicit date and time value into the
column rather than NULL.

A TIMESTAMP column declaration can include a specification for a maximum display width M. Table
2.13 shows the display formats for the allowed values of M. If Mis omitted from a TIMESTAMP
declaration or has a value of 0 or greater than 14, the column is treated as TIMESTAMP(14). Odd
values of M are treated as the next higher even number.

Table 2.13. TIMESTAMP Display Formats

Type Specification Display Format
TIMESTAMP(14) CCYYMMDDhhmmss
TIMESTAMP(12) YYMMDDhhmmss
TIMESTAMP(10) YYMMDDhhmm
TIMESTAMP(8) CCYYMMDD
TIMESTAMP(6) YYMMDD
TIMESTAMP(4) YYMM
TIMESTAMP(2) Yy

The display width for TIMESTAMP columns has nothing to do with storage size or the values stored
internally. TIMESTAMP values are always stored in 4 bytes and used in calculations to full 14-digit
precision, regardless of the display width. To see this, suppose you declare a table as follows and then
insert some rows into it and retrieve them:

mysql> CREATE TABLE mytbl (ts TIMESTAMP(8), i INT);
mysql> INSERT INTO mytbl VALUES(20020801120000,3);
mysql> INSERT INTO mytbl VALUES(20020801120001,2);
mysql> INSERT INTO mytbl VALUES(20020801120002,1);
mysqgl> INSERT INTO mytbl VALUES(20020801120003,0);
mysql> SELECT * FROM mytbl ORDER BY ts, i;

Fommmnnees Homneee +
| ts i

Hommmnnees Hommee +
20020801	3
20020801	2
20020801	1
20020801	O
Hommmm- +ome +

On the face of it, the rows produced by the SELECT statement appear to be sorted in the wrong order
—the values in the first column are all the same, so it seems the sort should order the rows according
to the values in the second column. This apparently anomalous result is due to the fact that MySQL is
using the full 14-digit values inserted into the TIMESTAMP column for sorting. These values are all
distinct, so they entirely determine the sort order of the result.

MySQL has no column type that can be set to the current date and time when a record is created and
that remains immutable thereafter. If you want to achieve that, you can do it two ways:

® Use a TIMESTAMP column. When you create a new record, set the column to NULL to initialize

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

it to the current date and time:
INSERT INTO tb/_name (ts_col, ...) VALUES(NULL, ...);

Whenever you update the record thereafter, explicitly set the column to the value it already
has. Assigning an explicit value defeats the timestamping mechanism because it prevents the
column's value from being automatically updated:

UPDATE tbl_name SET ts_col=ts_col WHERE ... ;

® Use a DATETIME column. When you create a record, initialize the column to NOW():
INSERT INTO tb/_name (dt_col, ...) VALUES(NOW(), ...);
Whenever you update the record thereafter, leave the column alone:

UPDATE tbl_name SET ... anything BUT dt_col here ... WHERE ... ;

If you want to use TIMESTAMP columns to maintain both a time-created value and a last-modified
value, you can do so by using one TIMESTAMP for the time-modified value and a second TIMESTAMP
for the time-created value. Make sure the time-modified column is the first TIMESTAMP, so that it's
set when the record is created or changed. Make the time-created column the second TIMESTAMP,
and initialize it to NOW() when you create new records. That way, its value will reflect the record
creation time and will not change after that.

The YEAR Column Type

YEAR is a one-byte column type used for efficient representation of year values. A YEAR column
declaration can include a specification for a display width M, which should be either 4 or 2. If Mis
omitted from a YEAR declaration, the default is 4. YEAR(4) has a range of 1901 to 2155. YEAR(2) has a
range of 1970 to 2069, but only the last two digits are displayed. You can use the YEAR type when you
want to store date information but only need the year part of the date, such as year of birth, year of
election to office, and so forth. When you do not need a full date value, YEAR is much more space-
efficient than other date types.

TINYINT has the same storage size as YEAR (one byte), but not the same range. To cover the same
range of years as YEAR by using an integer type, you would need a SMALLINT, which takes twice as
much space. If the range of years you need to represent coincides with the range of the YEAR type,
YEAR is more space-efficient than SMALLINT. Another advantage of YEAR over an integer column is
that MySQL will convert two-digit values into four-digit values for you using MySQL's usual year-
guessing rules. For example, 97 and 14 become 1997 and 2014. However, be aware that inserting the
numeric value 00 into a four-digit YEAR column will result in the value 0000 being stored, not 2000. If
you want a value of 00 to convert to 2000, you must specify it in string form as '00'.

Date and Time Column Type Attributes

There are no attributes that are specific to the date and time column types. The general attributes
NULL or NOT NULL can be specified for any of the date and time types. If you don't specify either of
them, NULL is the default. You can also specify a default value using the DEFAULT attribute. If you
don't specify a default value, one is chosen automatically. The default is NULL for columns that may
contain NULL. Otherwise, the default is the "zero" value for the type. TIMESTAMP columns are special;
the default for the first such column in a table is the current date and time and the "zero" value for
any others.

Note that because default values must be constants. you cannot use a function such as NOW() to
supply a value of "the current date and time" as the default for a DATETIME column. To achieve that
result, set the column value explicitly to NOW() whenever you create a new record or else use a
TIMESTAMP column (assuming that the special properties of TIMESTAMP are suitable for your
purposes).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Working with Date and Time Columns

MySQL tries to interpret date and time values in a variety of formats, including both string and
numeric forms. Table 2,14 shows the allowable formats for each of the date and time types.

Table 2.14. Date and Time Type Input Formats
Type Allowable Formats
DATETIME, TIMESTAMP 'CCYY-MM-DD hh:mm:ss
"YY-MM-DD hh:mm:ss'
'CCYYMMDDhhmmss'
"YYMMDDhhmmss'
CCYYMMDDhhmmss
YYMMDDhhmmss
DATE 'CCYY-MM-DD
'YY-MM-DD
'CCYYMMDD
"YYMMDD
CCYYMMDD
YYMMDD
TIME ‘hh:mm:ss
'hhmmss
hhmmss
YEAR 'cCcyY
'Yy
ccyy
YY

Formats that have no century part (CC) are interpreted using the rules described in next section,
"Interpretation of Ambiguous Year Values." For string formats that include delimiter characters, you
don't have to use '-' for dates and ':' for times. Any punctuation character can be used as the
delimiter. Interpretation of values depends on context, not on the delimiter. For example, although
times are typically specified using a delimiter of ':', MySQL won't interpret a value containing ':' as a
time in a context where a date is expected. In addition, for the string formats that include delimiters,
you need not specify two digits for month, day, hour, minute, or second values that are less than 10.
The following are all equivalent:

'2012-02-03 05:04:09'
'2012-2-03 05:04:09'
'2012-2-3 05:04:09'
'2012-2-3 5:04:09'
'2012-2-3 5:4:09'
'2012-2-3 5:4:9'

Note that values with leading zeroes may be interpreted differently depending on whether they are
specified as strings or numbers. The string '001231"' will be seen as a six-digit value and interpreted as
'2000-12-31' for a DATE and as '2000-12-31 00:00:00' for a DATETIME. On the other hand, the number
001231 will be seen as 1231 after the parser gets done with it and then the interpretation becomes
problematic. This is a case where it's best to supply a string value '001231' or else use a fully qualified

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

value if you are using numbers (that is, 20001231 for DATE and 200012310000 for DATETIME).

In general, you can freely assign values between the DATE, DATETIME, and TIMESTAMP types,
although there are certain restrictions to keep in mind:

® If you assign a DATETIME or TIMESTAMP value to a DATE, the time part is discarded.

® If you assign a DATE value to a DATETIME or TIMESTAMP, the time part of the resulting value
is set to zero ('00:00:00").

® The types have different ranges. In particular, TIMESTAMP has a more limited range (1970 to
2037), so, for example, you cannot assign a pre-1970 DATETIME value to a TIMESTAMP and
expect reasonable results. Nor can you assign values that are far in the future to a TIMESTAMP.

MySQL provides many functions for working with date and time values. See Appendix C for more
information.

Interpretation of Ambiguous Year Values

For all date and time types that include a year part (DATE, DATETIME TIMESTAMP, YEAR), MySQL
handles values that contain two-digit years by converting them to four-digit years. This conversion is
performed according to the following rules:

® Year values from 00 to 69 become 2000 to 2069.
® Year values from 70 to 99 become 1970 to 1999.

You can see the effect of these rules most easily by assigning different two-digit values to a YEAR
column and then retrieving the results. This will also demonstrate something you should take note of:

mysql> CREATE TABLE y_table (y YEAR);
mysql> INSERT INTO y_table VALUES(68),(69),(99), (00);
mysql> SELECT * FROM y_table;

| 2068 |
| 2069 |
| 1999 |
| 0000 |

Notice that 00 was converted to 0000, not to 2000. That's because as a number, 00 is the same as 0
and is a perfectly legal value for the YEAR type. If you insert a numeric zero, that's what you get. To
get 2000 using a value that does not contain the century, insert the string '0' or '00'. You can make
sure MySQL sees a string and not a number by inserting YEAR values using CONCAT(). This function
returns a string result uniformly regardless of whether its argument is a string or a number.

In any case, keep in mind that the rules for converting two-digit to four-digit year values provide only
a reasonable guess. There is no way for MySQL to be certain about the meaning of a two-digit year
when the century is unspecified. If MySQL's conversion rules don't produce the values that you want,
the solution is to provide unambiguous data with four-digit years.

Is MySQL Year-2000 Safe?

MySQL itself is year-2000 safe because it stores dates internally with four-digit years, but

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

it's your responsibility to provide data that result in the proper values being stored in the
first place. The real problem with two-digit year interpretation comes not from MySQL but
from the human desire to take a shortcut and enter ambiguous data. If you're willing to
take the risk, go ahead. It's your risk to take, and MySQL's guessing rules are adequate for
many situations. Just be aware that there are times when you really do need to enter four
digits. For example, to enter birth and death dates into the president table that lists U.S.
presidents back into the 1700s, four-digit year values are in order. Values in these
columns span several centuries, so letting MySQL guess the century from a two-digit year
is definitely the wrong thing to do.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Working with Sequences

Many applications need to use unique numbers for identification purposes. The requirement for unique
values occurs in @a number of contexts: membership numbers, sample or lot numbering, customer
IDs, bug report or trouble ticket tags, and so on.

MySQL's mechanism for providing unique numbers is through AUTO_INCREMENT columns that allow
you to generate sequential numbers automatically. However, AUTO_INCREMENT columns are handled
somewhat differently for the various table types that MySQL supports, so it's important to understand
not only the general concepts underlying the AUTO_INCREMENT mechanism, but also the differences
between table types. This section describes how AUTO_INCREMENT columns work so that you can use
them effectively without running into the traps that sometimes surprise people. It also describes how
you can generate a sequence without using an AUTO_INCREMENT column.

For versions of MySQL up to 3.23, the only table type available is ISAM. After that, additional table
types were introduced—the MyISAM and HEAP types first, and the BDB and InnoDB types later. The
discussion here indicates how each table type behaves with respect to AUTO_INCREMENT columns.
(For more general information about the characteristics of MySQL's table handlers, see Chapter 3.)

AUTO_INCREMENT for ISAM Tables

AUTO_INCREMENT columns in ISAM tables behave as follows:

® Inserting NULL into an AUTO_INCREMENT column causes MySQL to automatically generate the
next sequence number and insert that value into the column. AUTO_INCREMENT sequences
begin at 1, so the first record inserted into the table gets a sequence column value of 1 and
subsequent records get values of 2, 3, and so forth. Each automatically generated value will be
one more than the current maximum value stored in the column.

® Inserting 0 into an AUTO_INCREMENT column has the same effect as inserting NULL. However,
this is not guaranteed to be true indefinitely, so it's better to insert NULL.

® Inserting a row without specifying an explicit value for the AUTO_INCREMENT column is the
same as inserting NULL into the column.

® [f you insert a record and specify a non-NULL, non-zero value for the AUTO_INCREMENT
column, one of two things will happen. If a record already exists with that value, an error
occurs because values in AUTO_INCREMENT columns must be unique. If a record does not exist
with that value, the record is inserted and the sequence continues with the next value after
that for subsequent rows. In other words, you can "bump up" the counter by inserting a record
with a sequence value greater than the current counter value.

Bumping up the counter can result in gaps in the sequence, but you can also exploit this
behavior to generate a sequence that begins at a value higher than 1. Suppose you create an
ISAM table with an AUTO_INCREMENT column, but you want the sequence to begin at 1000
rather than at 1. To achieve this, insert a "fake" record with a value of 999 in the
AUTO_INCREMENT column. Records inserted subsequently will be assigned sequence numbers
beginning with 1000, after which you can delete the fake record.

(Why might you want to begin a sequence with a value higher than 1? One reason is to make
sequence numbers all have the same number of digits. If you're generating customer ID
numbers, and you expect never to have more than a million customers, you could begin the
series at 1,000,000. You'll be able to add well over a million customer records before the digit
count for customer ID values changes. Other reasons for not beginning a sequence at 1 might
have nothing to do with technical considerations. For example, if you were assigning
membership numbers, you might want to begin a sequence at a number higher than 1 to
forestall political squabbling over who gets to be member number 1—by making sure there
isn't any such number. Hey, it happens. Sad, but true.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

® [f you delete the record containing the largest value in an AUTO_INCREMENT column, that

value is reused the next time you generate a new value. This is a consequence of the principle
that for ISAM tables, each new automatically generated value is one larger than the current
maximum value stored in the column. Another consequence is that if you delete all the records
in the table, all values are reused, so the sequence starts over beginning at 1.

If you use UPDATE to set an AUTO_INCREMENT column to a value that already exists in another
row, a "duplicate key" error occurs. If you update the column to a value larger than any
existing column value, the sequence continues with the next number after that for subsequent
records.

If you use REPLACE to update a record based on the value of the AUTO_INCREMENT column,
the AUTO_INCREMENT value does not change. If you use REPLACE to update a record based on
the value of some other PRIMARY KEY or UNIQUE index, the AUTO_INCREMENT column will be
updated with a new sequence number if you set it to NULL.

The value of the most recent automatically generated sequence number is available by calling
the LAST_INSERT_ID() function. This allows you to reference the AUTO_INCREMENT value in
other statements without knowing what the value is. LAST_INSERT_ID() is tied to
AUTO_INCREMENT values generated during the current server session; it is not affected by
AUTO_INCREMENT activity associated with other clients. If no AUTO_INCREMENT value has
been generated during the current session, LAST_INSERT_ID() returns 0.

The AUTO_INCREMENT mechanism for ISAM forms the basis for understanding sequence behavior for
the other table types. Those types implement behavior that for the most part is similar to that just
described, so keep the preceding discussion in mind as you read on.

AUTO_INCREMENT for MylSAM Tables

MyISAM tables offer the most flexibility for sequence handling. The MyISAM storage format introduces
some features that address some of the shortcomings of ISAM tables:

® With ISAM tables, values deleted from the top of the sequence are reused. If you delete the

record with the highest sequence number, the new record added gets the same sequence value
as the deleted record. This results in sequences that are not strictly monotonic, which is a
problem should you need to guarantee that no record be given a number that has been used
before. With MyISAM, the values in an automatically generated series are strictly increasing
and are not reused. If the maximum value is 143 and you delete the record containing that
value, MySQL still generates the next value as 144.

ISAM sequences always begin at 1 unless you use the fake-record technique mentioned earlier
to start the sequence at a higher value. With MyISAM tables, you can specify the initial value
explicitly by using an AUTO_INCREMENT = n option in the CREATE TABLE statement. The
following example creates a MyISAM table with an AUTO_INCREMENT column named seq that
begins at 1,000,000:

CREATE TABLE mytbl

seq INT UNSIGNED AUTO_INCREMENT NOT NULL,
PRIMARY KEY (seq)
) TYPE = MYISAM AUTO_INCREMENT = 1000000;

A table can have only one AUTO_INCREMENT column, so there is never any ambiguity about
the column to which the terminating AUTO_INCREMENT = n option applies, even if the table
has multiple columns (as most tables do).

You can change the current sequence counter for an existing MyISAM table with ALTER TABLE.
If the sequence currently stands at 1000, the following statement will cause the next number
generated to be 2000:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

ALTER TABLE mytbl AUTO_INCREMENT = 2000;

If you want to reuse values that have been deleted from the top of the sequence, you can do
that, too. The following statement will set the counter down as far as possible, causing the next
number to be one larger than the current maximum sequence value:

ALTER TABLE mytbl AUTO_INCREMENT = 1;

In addition to overcoming the weaknesses of ISAM sequence handling, the MySQL table handler as of
MySQL 3.23.5 supports the use of composite (multiple-column) indexes for creating multiple
independent sequences within the same table. To use this feature, create a multiple-column PRIMARY
KEY or UNIQUE index that includes an AUTO_INCREMENT column as its last column. For each distinct
key in the leftmost column or columns of the index, the AUTO_INCREMENT column will generate a
separate sequence of values. For example, you might use a table named bugs for tracking bug reports
of several software projects, where the table is declared as follows:

CREATE TABLE bugs
(
proj_name VARCHAR(20) NOT NULL,
bug_id INT UNSIGNED AUTO_INCREMENT NOT NULL,
description VARCHAR(100),
PRIMARY KEY (proj_name, bug_id)
) TYPE = MYISAM;

Here, the proj_name column identifies the project name and the description column contains the bug
description. The bug_id column is an AUTO_INCREMENT column; by creating an index that ties it to
the proj_name column, you can generate an independent series of sequence numbers for each
project. Suppose you enter the following records into the table to register three bugs for
SuperBrowser and two for SpamSquisher:

mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','crashes when displaying complex tables');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','image scaling does not work');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SpamSquisher’,'fails to block known blacklisted domains');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SpamSquisher’,'fails to respect whitelist addresses');
mysql> INSERT INTO bugs (proj_name,description)

-> VALUES('SuperBrowser','background patterns not displayed");

The resulting table contents look like the this:

mysql> SELECT * FROM bugs ORDER BY proj_name, bug_id;

+ + + +
| proj_name | bug_id | description |

+ + + +

| SpamSquisher | 1 | fails to block known blacklisted domains |
| SpamSquisher | 2 | fails to respect whitelist addresses |

| SuperBrowser | 1 | crashes when displaying complex tables |
| SuperBrowser | 2 | image scaling does not work |

| SuperBrowser | 3 | background patterns not displayed [
+ + + +

Note that it does not matter that the order of record entry switches between projects. The table
numbers bug_id values for each project separately.

If you use a composite index to create multiple sequences, values deleted from the top of a sequence
are reused. This contrasts with the usual MyISAM behavior of not reusing values.

AUTO_INCREMENT for HEAP Tables

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

HEAP tables do not support the AUTO_INCREMENT mechanism prior to MySQL 4.1. As of 4.1,
AUTO_INCREMENT columns are allowed and behave as follows:

® The initial sequence value can be set with an AUTO_INCREMENT = n option in the CREATE

TABLE statement and can be modified after table creation time using that option with ALTER
TABLE.

® Values that are deleted from the top of the sequence are not reused.
® Composite indexes cannot be used to generate multiple independent sequences within a table.

AUTO_INCREMENT for BDB Tables

The BDB table handler manages AUTO_INCREMENT columns as follows:

® The initial sequence value cannot be set with an AUTO_INCREMENT = n option in the CREATE
TABLE statement. Nor can it be modified using that option with ALTER TABLE.

® Values that are deleted from the top of the sequence are reused.
® Composite indexes can be used to generate multiple independent sequences within a table.

AUTO_INCREMENT for InnoDB Tables

The InnoDB table handler manages AUTO_INCREMENT columns as follows:

® The initial sequence value cannot be set with an AUTO_INCREMENT = n option in the CREATE
TABLE statement. Nor can it be modified using that option with ALTER TABLE.

® Values that are deleted from the top of the sequence are not reused.
® Composite indexes cannot be used to generate multiple independent sequences within a table.

Issues to Consider with AUTO_INCREMENT

You should keep the following points in mind to avoid being surprised when you use
AUTO_INCREMENT columns:

® AUTO_INCREMENT is not a column type; it's a column type attribute. Furthermore,
AUTO_INCREMENT is an attribute intended for use only with integer types. Versions of MySQL
earlier than 3.23 are lax in enforcing this constraint and will let you declare a column type such
as CHAR with the AUTO_INCREMENT attribute. However, only the integer types work correctly
as AUTO_INCREMENT columns.

® The primary purpose of the AUTO_INCREMENT mechanism is to allow you to generate a
sequence of positive integers, so you should declare AUTO_INCREMENT columns to be
UNSIGNED. This also has the advantage of giving you twice as many sequence numbers before
you hit the upper end of the column type's range.

It is possible under some circumstances to generate sequences of negative values using an
AUTO_INCREMENT column. But this is an unsupported use of AUTO_INCREMENT and the results
are not guaranteed. My own experiments indicate somewhat inconsistent behavior between
versions with regard to negative sequences, so even if you achieve the results you want with
one version of MySQL, that may change if you upgrade to a newer version. (In other words,
attempting to use AUTO_INCREMENT for anything but a sequence of positive integers can result
in unpredictable behavior. You have been warned!)

® Don't be fooled into thinking that adding AUTO_INCREMENT to a column declaration is a magic

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

way of getting an unlimited sequence of numbers. It's not; AUTO_INCREMENT sequences are
always bound by the range of the underlying column type. For example, if you use a TINYINT
column, the maximum sequence number is 127. When you reach that limit, your application
will begin to fail with "duplicate key" errors. If you use TINYINT UNSIGNED instead, you'll reach
the limit at 255.

® Clearing a table's contents entirely may reset a sequence to begin again at 1, even for table
types that normally to not reuse AUTO_INCREMENT values. This can occur for either of the
following statements:

DELETE FROM tbl_name;
TRUNCATE TABLE tb/_name;

The sequence reset occurs due to the way MySQL optimizes a complete table erasure
operation: It tosses the data rows and indexes and recreates the table from scratch rather than
deleting individual rows. This causes all sequence number information to be lost. If you want to
delete all records but preserve the sequence information, you can suppress this optimization by
using DELETE with a WHERE clause that is always true:

DELETE FROM tb/_name WHERE 1;

This forces MySQL to evaluate the condition for each row and thus delete every row
individually.

Forcing Non-Reuse of Sequence Values

What can you do to maintain a strictly increasing series of values for table types that reuse values
that are deleted from the top of a sequence? One solution is to maintain a separate table that you use
only for generating AUTO_INCREMENT values and from which you never delete records. That way, the
values in the table are never reused. When you need to generate a new record in your main table,
first insert a NULL into the sequence number table. Then insert the record into your main table using
the value of LAST_INSERT_ID() for the column that you want to contain a sequence number:

INSERT INTO ai_tbl SET ai_col = NULL;
INSERT INTO main_tbl SET id=LAST_INSERT_ID() ... ;

Adding a Sequence Number Column to a Table

Suppose you create a table and put some information into it:

mysql> CREATE TABLE t (c CHAR(10));
mysql> INSERT INTO t VALUES('a"),('b"),('c");
mysql> SELECT * FROM t;

+---- +
lc |
+emmeee +
la |
[b |
lc |
+--mne- +

Then you decide that you want to include a sequence number column in the table. To do this, issue an
ALTER TABLE statement to add an AUTO_INCREMENT column, using the same kind of type definition
that you'd use with CREATE TABLE:

mysql> ALTER TABLE t ADD i INT AUTO_INCREMENT NOT NULL PRIMARY KEY;
mysql> SELECT * FROM t;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Homneee —
lc [il
Homeee +---+
la [|1]
b |2]
lc |3]
Home- +---+

Note how MySQL has assigned sequence values to the AUTO_INCREMENT column automatically. You
need not do so yourself.

Resequencing an Existing Column

If a table already has an AUTO_INCREMENT column but you want to renumber it to eliminate gaps in
the sequence that may have resulted from row deletions, the easiest way to do it is to drop the
column and then add it again. When MySQL adds the column, it will assign new sequence numbers
automatically, as shown in the previous example.

Suppose a table t looks like the following, where i is the AUTO_INCREMENT column:

mysql> CREATE TABLE t (c CHAR(10), i INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
mysql> INSERT INTO t (c)
-> VALUES('a"),('b"),('c"),('d"),('e"),('f"),("g"),("h"),("i"),('i"),('k');
mysql> DELETE FROM t WHERE c IN('a','d",'f','q",'j');
mysql> SELECT * FROM t;

+-mmee- +-+
lc |i]
+-mmee- +-+
b | 2]
lc | 3]
le | 5]
[h | 8]
[i 9]
[k [11]
+-mmee- +-+

The following ALTER TABLE statement drops the column and then adds it again:

mysql> ALTER TABLE t
-> DROP |,
-> ADD i INT UNSIGNED AUTO_INCREMENT NOT NULL,
-> AUTO_INCREMENT = 1;

mysql> SELECT * FROM t;

+-mmee- +--+
lc |i]
+-mmee- +-—-+
b [1]
lc [2]
le [3]
lh [4]
i |5]
[k 16]
+-mmee- +-—-+

The AUTO_INCREMENT = 1 clause resets the sequence to begin again at 1. For a MyISAM table (or a
HEAP table as of MySQL 4.1), you can use a value other than 1 to begin the sequence at a different
value. For other table types, just omit the AUTO_INCREMENT clause, because they do not allow the

initial value to be specified this way. The sequence will begin at 1.

Note that although it's easy to resequence a column, there is usually very little reason to do so.
MySQL doesn't care whether a sequence has holes in it, nor do you gain any performance efficiencies
by resequencing.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Generating Sequences Without AUTO_INCREMENT

Another method for generating sequence numbers doesn't use an AUTO_INCREMENT column at all.
Instead, it uses an alternate form of the LAST_INSERT_ID() function that takes an argument. (This
form was introduced in MySQL 3.22.9.) If you insert or update a column using LAST_INSERT_ID(expr),
the next call to LAST_INSERT_ID() with no argument returns the value of expr. In other words, expr is
treated as though it had been generated as an AUTO_INCREMENT value. This allows you to generate a
sequence number and then retrieve it later in your session, confident that the value will not have
been affected by the activity of other clients.

One way to use this strategy is to create a single-row table containing a value that is updated each
time you want the next value in the sequence. For example, you can create and initialize the table as
follows:

CREATE TABLE seq_table (seq INT UNSIGNED NOT NULL);
INSERT INTO seq_table VALUES(0);

These statements set up seq_table with a single row containing a seq value of 0. To use the table,
generate the next sequence number and retrieve it as follows:

UPDATE seq_table SET seq = LAST_INSERT_ID(seq+1);
SELECT LAST_INSERT_ID();

The UPDATE statement retrieves the current value of the seq column and increments it by 1 to
produce the next value in the sequence. Generating the new value using LAST_INSERT_ID(seq+1)
causes it to be treated like an AUTO_INCREMENT value, which allows it to be retrieved by calling
LAST_INSERT_ID() without an argument. LAST_INSERT_ID() is client-specific, so you get the correct
value even if other clients have generated other sequence numbers in the interval between the
UPDATE and the SELECT.

Other uses for this method are to generate sequence values that increment by a value other than 1 or
that are negative. For example, the following statement can be executed repeatedly to generate a
sequence of numbers that increase by 100 each time:

UPDATE seq_table SET seq = LAST_INSERT_ID(seq+100);
Repeating the following statement will generate a sequence of decreasing numbers:
UPDATE seq_table SET seq = LAST_INSERT_ID(seg-1);

You can also use this technique to generate a sequence that begins at an arbitrary value by setting
the seq column to an appropriate initial value.

The preceding discussion describes how to set up a counter using a table with a single row. That's
okay for a single counter, but if you want several of them, creating one table per counter leads to
needless multiplication of tables. For example, suppose you have a Web site and you want to put
some "this page has been accessed ntimes" counters in several pages. You probably don't want to set
up a separate counter table for every page that has a counter.

One way to avoid creating multiple counter tables is to create a single table with two columns. One
column holds a counter value; the other holds a name that uniquely identifies each counter. You can
still use the LAST_INSERT_ID() function, but you determine which row it applies to by using the
counter name. The table looks like this:

CREATE TABLE counter

name VARCHAR(255) BINARY NOT NULL,
PRIMARY KEY (name),
value INT UNSIGNED

)

The name column is a string so that you can name a counter whatever you want, and it's declared as

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

a PRIMARY KEY to prevent duplicate names. This assumes that applications using the table agree on
the names they'll be using. For Web counters, uniqueness of counter names is ensured simply by
using the pathname of each page within the document tree as its counter name. The BINARY attribute
causes pathname values to be treated as case sensitive. (Omit it if your system has pathnames that
are not case sensitive.)

To use the counter table, insert a row corresponding to each page for which you need a counter. For
example, to set up a new counter for the site's home page, do the following:

INSERT INTO counter (name,value) VALUES('index.html',0);

That initializes a counter named 'index.html' with a value of zero. To generate the next sequence value
for the page, use its pathname to look up the correct counter value and increment it with
LAST_INSERT_ID(expr) and then retrieve the value with LAST_INSERT_ID():

UPDATE counter SET value = LAST_INSERT_ID(value+1) WHERE name = 'index.html';
SELECT LAST_INSERT_ID();

An alternative approach is to increment the counter without using LAST_INSERT_ID():

UPDATE counter SET value = value+1 WHERE name = 'index.html’;
SELECT value FROM counter WHERE name = 'index.html';

However, that doesn't work correctly if another client increments the counter after you issue the
UPDATE and before you issue the SELECT. You could solve that problem by using a transaction or by
putting LOCK TABLES and UNLOCK TABLES around the two statements to block other clients while
you're using the counter. But the LAST_INSERT_ID() method accomplishes the same thing more
easily. Because its value is client-specific, you always get the value you inserted, not the one from
some other client, and you don't have to complicate the code with transactions or locks to keep other
clients out.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [privieua]firaxt +]
Character Set Support

Character-based data values are interpreted with respect to a given character set, which determines
the allowable characters that can be used. Character sets also have a collating (sorting) order, which
affects many types of operations on character values:

® Comparisons: <, <=, =, <>, >=, and >.
® Sorting: ORDER BY, MIN(), MAX().
® Grouping: GROUP BY, DISTINCT.

The character set also affects other aspects of server operation, such as which characters can be used
in database, table, and column names, because names normally are constructed from the
alphanumeric characters in the server's default character set. (See the "MySQL Naming Rules" section
in Chapter 3.)

The level of character set support available to you depends on your version of MySQL. Prior to MySQL
4.1, the server operates using a single character set at a time. As of MySQL 4.1, the server can
support multiple character sets simultaneously, and character sets can be specified at the server,
database, table, column, or string constant level. For example, if you want a table's columns to use
latinl by default, but also to include a Hebrew column and a Greek column, you can do that. You can
also find out what character sets are available or convert data from one character set to another.

This section describes how to use the character sets that are supported by your server. To configure
your server to support the character sets you want, see Chapter 11. That chapter also includes notes
on what to do when upgrading to MySQL 4.1 so that you can use the new features with older tables.

Character Set Support Before MySQL 4.1

Prior to MySQL 4.1, data values in MySQL have no explicit character set. Instead, string constants and
column values are interpreted with respect to the server's character set. By default, this is the
character set selected when the server was built (usually latinl), but the built-in value can be
overridden at runtime with the --default-character-set option. This is very simple but quite limiting. For
example, you cannot have a table that stores values using different character sets for different
columns.

The single-character-set model also can lead to index-related problems if you change the server's
character set after having already created tables and loaded character data into them. These
problems occur due to the fact that index values are stored in sorted order, with the order for
character columns being determined by the collating sequence of the character set that happens to be
in force at the time the index entries are created. Some character sets have different collating
sequences than others, so if you load a table while the server is using one character set and then
reconfigure the server to use a different set, it's possible that the index entries will no longer be in the
correct order with respect to the collating sequence of the new character set. Worse, if you add new
rows to the table, the index that was initially created using the sort order of the original character set
will be updated using the order of the new set. Consequently, index-based queries may not work
correctly.

The solution to this problem is to rebuild the indexes for each existing table that has character-based
indexes to use the collating order of the new character set. A table can be converted in various ways:

® Dump the table with mysgldump, drop it, and reload it from the dump file. This operation
causes the indexes to be rebuilt as the file is reloaded. It works for any table type.

® Drop the indexes and add them again (for example, with ALTER TABLE, or with DROP INDEX
and CREATE INDEX). This works for any table type but requires that you know the exact index
definitions so that you can re-create them properly.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® For MyISAM tables, you can rebuild indexes by running myisamchk with the --recover and --
quick options, together with a --set-character-set option that specifies the character set to use.
Equivalent alternatives are to use the mysqlcheck program with the --repair and --quick options
or a REPAIR TABLE statement with the QUICK option. mysglcheck and REPAIR TABLE are more
convenient because the server does the work and it knows which character set to use.
myisamchk must be run with the tables offline, and you have to specify the character set
explicitly.

Despite the many methods available for reordering indexes if you change the server's character set,
the fact that you need to do it at all is a bother. MySQL 4.1 eliminates the need.

Character Set Support in MySQL 4.1 and Later

Character set support has been revised considerably in MySQL 4.1 to provide the following features:

® Support for using multiple character sets simultaneously

® The ability to specify character sets at the server, database, table, column, and string constant
level, not just at the server level:

O An ALTER DATABASE statement for database character set assignment

© CREATE TABLE and ALTER TABLE clauses for table- and column-level character set
assignment

® Functions and operators for converting individual values from one character set to another or
for determining the character set of a value

® A COLLATE operator for treating values in one character set as having the collating order of
another character set

® A SHOW CHARACTER SET statement to list all the character sets the server knows about

® Automatic index reordering when character set changes occur

® Unicode support, provided by the utf8 and ucs2 character sets

® Many other new character sets
You cannot mix character sets within a string or use different character sets for different rows of a
given column. However, by using a Unicode character set (which represents the encodings for many

languages within a single character set), you may be able to implement multi-lingual support of the
type you desire.

Specifying Character Sets

Character sets can be assigned at several levels, from the default used by the server down to the set
used for individual strings:

® The server's default character set is built in at compile time, and you can override it at server
startup time by using a --default-character-set option.

® To specify a default character set for a database, use the following statement:
ALTER DATABASE db_name DEFAULT CHARACTER SET charset;

charset is the name of a supported character set, or DEFAULT. A value of DEFAULT indicates
that the database has no explicit character set; in this case, the server makes database-level
character set decisions by referring to the server's default character set.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

® To specify a default character set for a table, use a CHARACTER SET table option at table

creation time:
CREATE TABLE tb/_name (...) CHARACTER SET = charset;

charset is the name of a supported character set, or DEFAULT. A value of DEFAULT tells the
server to make table-level character set decisions by referring to the database character set.

Columns in a table can be assigned a character set explicitly with a CHARACTER SET attribute.
For example:

¢ CHAR(10) CHARACTER SET charset

In this case, the charset value must be the name of a supported character set; it cannot be
DEFAULT. However, you can omit the CHARACTER SET attribute entirely, in which case the
table-level character set is used. Column types for which a character set can be given are CHAR
and VARCHAR (if declared without the BINARY attribute) and the TEXT types.

String constants can be converted to a given character set using the following notation, where
charset is the name of a supported char acter set:

_charset str
The following examples produce strings in the latinl_de and utf8 character sets:

_latin1_de 'abc'
_utf8 'def'

This notation works only for literal quoted strings, not for hexadecimal constants, string
expressions, or column values. However, any string can be converted to a designated character
set using the CONVERT() function:

SELECT CONVERT(str USING charset);

It's also possible to sort values from given character set using the collating sequence for a different
set by using the COLLATE operator. For example, if c is a latinl column but you want to order it using
latin1_de sorting rules, do this:

SELECT c FROM t ORDER BY c COLLATE latin1_de;

Determining What Character Sets Are In Use

Character set support in MySQL 4.1 and up includes statements for obtaining information at several

levels:

® At the server level, you can find out which character sets are available using the following

query:
SHOW CHARACTER SET;
To determine what the server's default character set is, issue the following query:

SHOW VARIABLES LIKE 'character_set’;

® The database-level character set for a given database can be obtained as follows:

SHOW CREATE DATABASE db_name;

If the statement output doesn't indicate a character set, the database's character set has been
never been set or has been set explicitly to DEFAULT.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® A table's character set can be discovered two ways:

SHOW CREATE TABLE tb/_name;
SHOW TABLE STATUS LIKE 'tbl_nameé,

® Individual character set assignments for a table's columns are displayed by each of the
following statements:

DESCRIBE tb/_name;
SHOW COLUMNS FROM tbl_name;
SHOW CREATE TABLE tbl_name;

® To determine what character set is associated with a string, string expression, or column value,
use the CHARSET() function:

SELECT CHARSET(str);
Unicode Support

One of the reasons there are so many character sets is that different encodings have been developed
for different languages. This presents several problems. For example, a given character that is
common to several languages might be represented by different numeric values in different
encodings. Also, different languages require different numbers of bytes to represent characters. The
Latin-1 character set is small enough that every character fits in a single byte, but some languages,
such as those used in Japan and China, contain so many characters that they require multiple bytes
per character.

The goal of Unicode is to provide a unified character-encoding system within which all languages can
be represented in a consistent manner. In MySQL, Unicode support is provided through two character
sets:

® UTF-8 is a variable-length format in which characters are represented using from one to four
characters. (UTF is an abbreviation for UCS Transformation Format, where UCS is itself an
abbreviation for Universal Character Set.) The utf8 character set in MySQL does not include any
four-byte characters, although support for them may be added in the future.

® The other Unicode character set in MySQL is UCS2. The ucs2 set represents each character
using two bytes, most significant byte first. This character set does not represent characters
that require more than two bytes.

Converting Older Tables to MySQL 4.1 Format

If you upgrade a server to MySQL 4.1 or newer, older tables can still be used but will not be able to
take full advantage of the improved character set support instituted in 4.1. To rectify this, you should
convert them to 4.1 format. Instructions for doing so can be found in Chapter 11.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Choosing Column Types

The "MySQL Column Types" section earlier in this chapter describes the various MySQL column types
from which you can choose and the general properties of those types, such as the kind of values they
can contain, how much storage space they take, and so on. But how do you actually decide which
types to use when you create a table? This section discusses issues to consider that will help you
choose.

The most "generic" column types are the string types. You can store anything in them because
numbers and dates can be represented in string form. So why not just declare all your columns as
strings and be done with it? Let's consider a simple example. Suppose you have values that look like
numbers. You can represent these as strings, but should you? What happens if you do?

For one thing, you'll probably use more space because numbers can be stored more efficiently using
numeric columns than string columns. You'll also notice some differences in query results due to the
different ways that numbers and strings are handled. For example, the sort order for numbers is not
the same as for strings. The number 2 is less than the number 11, but the string '2' is lexically greater
than the string '11'. You can work around this by using the column in a numeric context as follows:

SELECT co/_name + 0 as num ... ORDER BY num;

Adding zero to the column forces a numeric sort, but is that a reasonable thing to do? It's a useful
technique sometimes, but you don't want to have to use it every time you want a numeric sort.
Causing MySQL to treat the column as a number rather than a string has a couple of significant
implications. It forces a string-to-number conversion for each column value, which is inefficient. Also,
using the column in a calculation prevents MySQL from using any index on the column, which slows
down the query further. Neither of these performance degradations occur if you store the values as
numbers in the first place. The simple choice of using one representation rather than another has
implications for storage requirements, query handling, and processing performance.

The preceding example illustrates that several issues come into play when you choose column types.
The following list gives a quick rundown of factors to think about when picking a type for a column.

® What kind of values will the column hold? Numbers? Strings? Dates? This is an obvious
question, but you must ask it. You can represent any type of value as a string, but as we've
just seen, it's likely that you'll get better performance if you use other more appropriate types
for numeric values. (This is also true for date and time values.) However, assessing the type of
values you're working with isn't necessarily trivial, particularly for other people's data. It's
especially important to ask what kind of values the column will hold if you're setting up a table
for someone else, and you must be sure to ask enough questions to get sufficient information
for making a good decision.

® Do your values lie within some particular range? If they are integers, will they always be
non-negative? If so, you can use UNSIGNED. If they are strings, will they always be chosen
from among a fixed set of values? If so, you may find ENUM or SET a useful type.

There is a tradeoff between the range of a type and the amount of storage it uses. How "big" a
type do you need? For numbers, you can choose small types with a limited range of values, or

large types that are essentially unlimited. For strings, you can make them short or long, so you
wouldn't choose CHAR(255) if all the values you want to store contain fewer than 10 characters.

® What are the performance and efficiency issues? Some types can be processed more
efficiently than others. Numeric operations generally can be performed more quickly than
string operations. Short strings can be compared more quickly than long strings and also
involve less disk overhead. For ISAM and MyISAM tables, performance is better for fixed-length
types than for variable-length types.

® How do you want your values to be compared? For strings, comparisons can be case
sensitive or not case sensitive. You choices here also affect sorting and grouping operations,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

which are based on comparisons.

® Do you plan to index a column? If you do, it affects your choice of table type and column
type because indexing properties are not the same for all table handlers. For example, with
ISAM tables, you cannot index BLOB and TEXT columns, and indexed columns must be defined
as NOT NULL (which affects your ability to use NULL values).

Now let's consider each of these issues in more detail. But before we do, allow me to point something
out. You want to make the best column type choices you can when you create a table, but if you
make a choice that turns out to be non-optimal, it's not the end of the world. You can use ALTER
TABLE to change the type to a better one. This can be as simple as changing a SMALLINT to
MEDIUMINT after finding out your data contain values larger than you originally thought. Or it can be
more complex, such as changing a CHAR to an ENUM with a specific set of allowed values. In MySQL
3.23 and later, you can use PROCEDURE ANALYSE() to obtain information about your table's columns,
such as the minimum and maximum values as well as a suggested optimal type to cover the range of
values in a column:

SELECT * FROM tb/_name PROCEDURE ANALYSE();

The output from this query can help you determine that a smaller type can be used, which can
improve the performance of queries that involve the table and reduce the amount of space required
for table storage.

What Kind of Values Will the Column Hold?

The first thing you think of when you're trying to decide on a column type is the kind of values the
column will be used for, because this has the most evident implications for the type you choose. In
general, you do the obvious thing—you store numbers in numeric columns, strings in string columns,
and dates and times in date and time columns. If your numbers have a fractional part, you use a
floating-point column type rather than an integer type, and so on. But sometimes there are
exceptions. The principle here is that you need to understand the nature of your data to be able to
choose the type in an informed manner. If you're going to store your own data, you probably have a
good idea of how to characterize it. On the other hand, if others ask you to set up a table for them,
it's sometimes a different story. It may not be so easy to know just what you're working with. Be sure
to ask enough questions to find out what kind of values the table really should contain.

Suppose you're told that a table needs a column to record "amount of precipitation." Is that a
number? Or is it "mostly" numeric—that is, typically but not always coded as a humber? For example,
when you watch the news on tele vision, the weather report generally includes a measure of
precipitation. Sometimes this is a number (as in "0.25 inches of rain"), but sometimes it's a "trace" of
precipitation, meaning "not much at all." That's fine for the weather report, but what does it mean for
storage in a database? You either need to quantify "trace" as a number so that you can use a numeric
column type to record precipitation amounts, or you need to use a string so that you can record the
word "trace." Or you could come up with some more complicated arrangement, using a humber
column and a string column where you fill in one column and leave the other one NULL. It should be
obvious that you want to avoid that option, if possible; it makes the table harder to understand and it
makes query-writing much more difficult.

I would probably try to store all rows in numeric form, and then convert them as necessary for display
purposes. For example, if any non-zero amount of precipitation less than .01 inches is considered a
trace amount, you could display values from the column as follows:

SELECT IF(precip>0 AND precip<.01,'trace’,precip) FROM ... ;

Some values are obviously numeric, but you must determine whether to use a floating-point or
integer type. You should ask what your units are and what accuracy you require. Is whole-unit
accuracy sufficient, or do you need to represent fractional units? This may help you distinguish
between integer and floating-point column types. For example, if you're representing weights, you
can use an integer column if you record values to the nearest pound. You'd use a floating-point
column if you want to record fractional units. In some cases, you might even use multiple fields—for
example, if you want to record weight in terms of pounds and ounces.

Height is a numeric type of information for which there are several representational possibilities:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® As a string such as '6-2' for a value like "6 feet, 2 inches". This has the advantage of
having a form that's easy to look at and understand (certainly more so than "74 inches"), but
it's difficult to use this kind of value for mathematical operations such as summation or
averaging.

® As one numeric field for feet and another for inches. This would be a little easier to work
with for numerical operations, but two fields are more difficult to use than one.

® As one numeric field representing inches. This is easiest for a database to work with, and
least meaningful for humans. But remember that you don't have to present values in the same
format that you use to work with them. You can reformat values for meaningful display using
MySQL's many functions. That means this might be the best way to represent height.

Another type of numeric information is money. For monetary calculations, you're working with values
that have dollars and cents parts. These look like floating-point values, but FLOAT and DOUBLE are
subject to rounding error and may not be suitable except for records in which you need only
approximate accuracy. Because people tend to be touchy about their money, it's more likely you need
a type that affords perfect accuracy. You have a couple of choices:

® You can represent money as a DECIMAL(M,2) type, choosing M as the maximum width
appropriate for the range of values you need. This gives you floating point values with two
decimal places of accuracy. The advantage of DECIMAL is that values are represented as strings
and are not subject to roundoff error. The disadvantage is that string operations are less
efficient than operations on values represented internally as numbers.

® You can represent all monetary values internally as cents using an integer type. The advantage
is that calculations are done internally using integers, which is very fast. The disadvantage is
that you will need to convert values on input or output by multiplying or dividing by 100.

If you need to store date information, do the values include a time? That is, will they ever need to
include a time? MySQL doesn't provide a date type that has an optional time part; DATE never has a
time and DATETIME must have a time. If the time really is optional, use a DATE column to record the
date and a separate TIME column to record the time. Then allow the TIME column to be NULL and
interpret that as "no time:"

CREATE TABLE mytbl

date DATE NOT NULL, # date is required
time TIME NULL # time is optional (may be NULL)

)

One type of situation in which it's especially important to determine whether you need a time value
occurs when you're joining two tables with a master-detail relationship that are "linked" based on date
information.

Suppose you're conducting research involving subjects who come in to your office to be tested.
Following a standard initial set of tests, you may run several additional tests, with the choice of tests
varying according to the results of the initial tests. You might represent this information using a
master-detail relationship in which the subject identification information and the standard initial tests
are stored in a master record and any additional tests are stored as rows in a secondary detail table.
Then you link together the two tables based on subject ID and the date on which the tests are given.

The question you must answer in this situation is whether you can use just the date or whether you
need both date and time. This depends on whether or not a subject may go through the testing
procedure more than once during the same day. If so, record the time (say, the time that the
procedure begins) using either a DATETIME column or separate DATE and TIME columns that both
must be filled in. Without the time value, you will not be able to associate a subject's detail records
with the proper master records if the subject is tested twice in a day.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I've heard people claim "I don't need a time; I will never test a subject twice on the same day."
Sometimes they're correct, but I have also seen some of these same people turn up later wondering
how to prevent detail records from being mixed up with the wrong master record after entering data
for subjects who were tested multiple times in a day. Sorry, then it's too late!

Sometimes you can deal with this problem by retrofitting a TIME column into the tables.
Unfortunately, it's difficult to fix existing records unless you have some independent data source, such
as the original paper records. Otherwise, you have no way to disambiguate detail records to associate
them to the proper master record. Even if you have an independent source of information, this is very
messy and likely to cause problems for applications you've already written to use the tables. It's best
to explain the issues to the table owners and make sure you've got a good characterization of the
data values before creating their tables.

Sometimes you may have incomplete data, and this will influence your choice of column types. You
may be collecting birth and death dates for genealogical research, and sometimes all you can find out
is the year or year and month someone was born or died—not the exact date. If you use a DATE
column, you can't enter a date unless you have the full date. If you want to be able to record
whatever information you have, even if it's incomplete, you may have to keep separate year, month,
and day fields. Then you can enter the parts of the date that you have and leave the rest NULL.
Another possibility is available in MySQL 3.23 and later, which allows the day or month and day parts
of DATE values to be 0. Such "fuzzy" dates can be used to represent incomplete date values.

Do Your Values Lie Within Some Particular Range?

If you've decided on the general category from which to pick a type for a column, thinking about the
range of values you want to represent will help you narrow down your choices to a particular type
within that category. Suppose you want to store integer values. The range of your values determines
the types you can use. If you need values in the range from 0 to 1000, you can use anything from a
SMALLINT up to a BIGINT. If your values range up to 2 million, you can't use SMALLINT, and your
choices range from MEDIUMINT to BIGINT. Then you need to pick one type from among the
possibilities.

Of course, you could simply use the largest type for the kind of value you want to store (BIGINT for
the examples in the previous paragraph). Generally, however, you should use the smallest type that
is large enough for your purposes. By doing so, you'll minimize the amount of storage used by your
tables, and they will give you better performance because smaller columns usually can be processed
more quickly than larger ones. (Reading smaller values requires less disk activity, and more key
values fit into the index cache, allowing indexed searches to be performed faster.)

If you don't know the range of values you'll need to be able to represent, you either must guess or
use BIGINT to accommodate the worst possible case. (If you guess and the type you choose does turn
out to be too small, all is not lost; you can use ALTER TABLE later to make the column bigger.)

In Chapter 1, we created a score table for the grade-keeping project that had a score column for
recording quiz and test scores. The table was created using INT to keep the discussion simpler, but
you can see now that if scores are in the range from 0 to 100, a better choice would be TINYINT
UNSIGNED because that would use less storage.

The range of values in your data also affects the attributes you can use with your column type. If
values are never negative, you can use UNSIGNED; otherwise, you can't.

String types don't have a "range" in the same way numeric columns do, but they have a length, and
the maximum length you need affects the column types you can use. If your strings are shorter than
256 characters, you can use CHAR, VARCHAR, TINYTEXT, or TINYBLOB. If you want longer strings, you
can use a TEXT or BLOB type, but CHAR and VARCHAR are no longer options.

For string columns that you will use to represent a fixed set of values, you might consider using an
ENUM or SET column type. These can be good choices because they are represented internally as
numbers. Operations on them are performed numerically, which makes them more efficient than
other string types. They can also be more compact than other string types, which saves space.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When characterizing the range of values you have to deal with, the best terms are "always" and
"never" (as in "always less than 1000" or "never negative") because they allow you to constrain your
column type choices more tightly. But be wary of using these terms when they're not really justified.
Be especially wary if you're consulting with other people about their data and they start throwing
around those two terms. When people say "always" or "never," be sure they really mean it.
Sometimes people say their data always have a particular characteristic when they really mean
"almost always."

For example, suppose you're designing a table for a group of investigators who tell you, "Our test
scores are always 0 to 100." Based on that statement, you choose TINYINT and you make it
UNSIGNED because the values are always non-negative. Then you find out that the people who code
the data for entry into the database sometimes use -1 to mean "student was absent due to illness."
Oops. They didn't tell you that. It may be acceptable to use NULL to represent such values, but if not,
you'll have to record a -1 and then you can't use an UNSIGNED column. (This is an instance where
ALTER TABLE comes to your rescue!)

Sometimes decisions about these types of cases can be made more easily by asking a simple
question: Are there ever exceptions? If an exceptional case ever occurs, even just once, you must
allow for it. You will find that people who talk to you about designing a database invariably think that
if exceptions don't occur very often, they don't matter. When you're creating a table, you can't think
that way. The question you need to ask isn't "How often do exceptions occur?" It's "Do exceptions
ever occur?" If they do, you must take them into account.

What Are the Performance and Efficiency Issues?

Your choice of column type can influence query performance in several ways. If you keep the general
guidelines discussed in the following sections in mind, you'll be able to choose types that will help
MySQL process your tables more efficiently.

Numeric Versus String Operations

Numeric operations are generally faster than string operations. Consider comparison operations.
Numbers can be compared in a single operation. String comparisons may involve several byte-by-byte
or character-by-character comparisons, more so as the strings become longer.

If a string column has a limited number of values, use an ENUM or SET type to get the advantages of
numeric operations. These types are represented internally as numbers and can be processed more
efficiently.

Consider alternative representations for strings. Sometimes you can improve performance by
representing string values as numbers. For example, to represent IP numbers in dotted-quad
notation, such as 192.168.0.4, you might use a string. But as an alternative, you could convert the IP
numbers to integer form by storing each part of the dotted-quad form in one byte of a four-byte INT
UNSIGNED type. Storing integers would both save space and speed lookups. On the other hand,
representing IP numbers as INT values might make it difficult to perform pattern matches, such as
you might do if you wanted to look for numbers in a given subnet. So you cannot consider only space
issues; you must decide which representation is more appropriate based on what you want to do with
the values. (Whichever way you choose, the INET_ATON() and INET_NTOA() functions can help
convert between the two representations.)

Smaller Types Versus Bigger Types

Smaller types can be processed more quickly than larger types. A general principle is that they take
less space and involve less overhead for disk activity. For strings in particular, processing time is in
direct relationship to string length.

For columns that use fixed-size types, choose the smallest type that will hold the required range of
values. For example, don't use BIGINT if MEDIUMINT will do. Don't use DOUBLE if you only need
FLOAT precision. For variable-size types, you may still be able to save space. A BLOB uses 2 bytes to
record the length of the value, a LONGBLOB uses 4 bytes. If you're storing values that are never as

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

long as 64KB, using BLOB saves you 2 bytes per value. (Similar considerations apply for TEXT types,
of course.)

Fixed-Length Versus Variable-Length Types

Fixed-length and variable-length types have different performance implications, although the
particular effects of each depends on the table type.

For MyISAM and ISAM tables, fixed-length types generally can be processed more quickly than
variable-length types:

® \Vith variable-length columns, you get more fragmentation of a table on which you perform
many deletes or updates due to the differing sizes of the records. You'll need to run OPTIMIZE
TABLE periodically to maintain performance. This is not an issue with fixed-length rows.

® Tables with fixed-length rows are easier to reconstruct if you have a table crash. The beginning
of each record can be determined because they all are at positions that are multiples of the
fixed record size, something that is not true with variable-length rows. This is not a
performance issue with respect to query processing, but it can certainly speed up the table
repair process.

If you have variable-length columns in a MyISAM or ISAM table, converting them to fixed-length
columns will improve performance because fixed-length records are easier to process. Before you
attempt to do this, though, consider the following:

® Fixed-length columns are faster but take more space. CHAR(n) columns always take n bytes per
value (even empty ones) because values are padded with trailing spaces when stored in the
table. VARCHAR(n) columns take less space because only as much space is allocated as is
necessary to store each value, plus one byte per value to record the length. Thus, if you are
choosing between CHAR and VARCHAR columns, the tradeoff is one of time versus space. If
speed is your primary concern, use CHAR columns to get the performance benefits of fixed-
length columns. If space is at a premium, use VARCHAR columns. As a rule of thumb, you can
assume that fixed-length rows will improve performance even though more space is used. But
for an especially critical application, you may want to implement a table both ways and run
some tests to determine which alternative actually is better for your particular application.

® You cannot convert just one variable-length column; you must convert them all. Additionally,
you must convert them all at the same time using a single ALTER TABLE statement or the
attempt will have no effect.

® Sometimes you cannot use a fixed-length type, even if you want to. There is no fixed-length
type for strings longer than 255 bytes, for example.

For InnoDB tables, fixed-length and variable-length rows are both stored the same way (as a row
header containing pointers to individual column values, plus storage for the values). This means that
fixed-length rows aren't any simpler to process. Consequently, the primary performance factor is the
amount of storage used for rows. The implication is that variable-length rows will usually be faster for
InnoDB tables because they require less space and thus less disk I/O to process.

Indexable Types

Indexes speed up queries, so choose types you can index, at least for columns that you plan to use
for comparisons in searches. See the "Do You Plan to Index a Column?" section later in this chapter
for more information.

NULL Versus NOT NULL Types

If you declare a column NOT NULL, it can be handled more quickly because MySQL doesn't have to

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

check the column's values during query processing to see whether they are NULL. It also saves one
bit per row in the table. Avoiding NULL in columns may make your queries simpler (because you don't
have to think about NULL as a special case), and simpler queries generally are processed more
quickly.

How Do You Want Your Values to be Compared?

You can often control case sensitivity of string values for comparison and sorting purposes by the type
of column you use to store them. The determining factor is whether the column contains binary
strings (case sensitive) or non-binary strings (not case sensitive). Table 2.15 shows each binary string
type and the corresponding non-binary type. Some types (CHAR, VARCHAR) are binary or not binary
according to the presence or absence of the keyword BINARY in the column declaration. The "binary-
ness" of other types (BLOB, TEXT) is implicit in the type name.

Table 2.15. Binary and Non-Binary String Types

Binary Type Non-Binary Type
CHAR(M) BINARY CHAR(M)
VARCHAR(M) BINARY VARCHAR(M)
TINYBLOB TINYTEXT

BLOB TEXT
MEDIUMBLOB MEDIUMTEXT
LONGBLOB LONGTEXT

If you want to use a column for both case-sensitive and not case-sensitive comparisons, use a non-
binary type. Then, whenever you want a case-sensitive comparison, use the BINARY keyword to force
a string to be treated as a binary string value. For example, if mycol is a CHAR column, you can
compare it different ways. The following comparison is not case sensitive:

mycol = 'ABC'

But the following comparisons are both case sensitive (note that it doesn't matter which string the
BINARY operator is applied to):

BINARY mycol = 'ABC'
mycol = BINARY 'ABC'

If you have string values that you want to sort in some non-lexical order, consider using an ENUM
column. Sorting of ENUM values occurs according to the order in which you list the enumeration
values in the column declaration, so you can make the values sort in any order you want.

Do You Plan to Index a Column?

Indexes allow MySQL to process queries more efficiently. Choosing indexes is a topic covered in more
detail in Chapter 4, but a general principle is that columns you commonly use in WHERE clauses to
select rows are good candidates for indexing.

If you want to index a column or include it in a multiple-column index, there may be constraints on
the types you can choose. For example, some table types (InnoDB and ISAM) do not allow indexes on
BLOB or TEXT columns, and prior to MySQL 3.23.2, all indexed columns must be declared as NOT
NULL. If you find yourself bumping up against these restrictions, you may be able to work around
them:

® If you want to use a BLOB or TEXT column but your table type does not allow them to be
indexed, check whether your values ever exceed 255 bytes. If not, use a similar VARCHAR
column type instead and index that. You can use VARCHAR(255) BINARY for BLOB values and
VARCHAR(255) for TEXT values.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

® To work around a NOT NULL restriction, if you can designate some value as special, you might
be able to treat it as though it means the same thing as NULL. For a DATE column, you might
designate '0000-00-00' to mean "no date." In a string column that normally holds only non-
empty values, you might designate that the empty string means "missing value." In a numeric
column, you might use -1 if the column normally would hold only non-negative values. (Of
course, you could not declare the column as UNSIGNED in this case.)

Inter-Relatedness of Column Type Choice Issues

You can't always consider the issues involved in choosing column types as though they are
independent of one another. For example, range is related to storage size for numeric types; as you
increase the range, you require more storage, which affects performance. Or consider the implications
of choosing to use AUTO_INCREMENT to create a column for holding unique sequence numbers. That
single choice has several consequences involving the column type, indexing, and the use of NULL:

® AUTO_INCREMENT is a column attribute that should be used only with integer types. That
immediately limits your choices to TINYINT through BIGINT.

® AUTO_INCREMENT columns are intended only for generating sequences of positive values, so
you should declare them as UNSIGNED.

® AUTO_INCREMENT columns must be indexed. Furthermore, to prevent sequence numbers from
being reused, the index must be unique. This means you must declare the column as a
PRIMARY KEY or as a UNIQUE index.

® AUTO_INCREMENT columns must be NOT NULL.

All of this means you do not just declare an AUTO_INCREMENT column like this:
mycol arbitrary_type AUTO_INCREMENT
You declare it like this:

mycol integer_type UNSIGNED AUTO_INCREMENT NOT NULL,
PRIMARY KEY (mycol)

Or like like this:

mycol integer_type UNSIGNED AUTO_INCREMENT NOT NULL,
UNIQUE (mycol)

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Expression Evaluation and Type Conversion

MySQL allows you to write expressions that include constants, function calls, and references to table
columns. These values can be combined using different kinds of operators, such as arithmetic or
comparison operators, and terms of an expression can be grouped with parentheses. Expressions
occur most commonly in the output column list and WHERE clause of SELECT statements. For
example, the following is a query that is similar to one used for age calculations in Chapter 1:

SELECT

CONCAT(last_name, ', ', first_name),

(YEAR(death) - YEAR(birth)) - IF(RIGHT(death,5) < RIGHT(birth,5),1,0)
FROM president
WHERE

birth > '1900-1-1' AND DEATH IS NOT NULL;

Each column selected represents an expression, as does the content of the WHERE clause.
Expressions also occur in the WHERE clause of DELETE and UPDATE statements, the VALUES() clause
of INSERT statements, and so on.

When MySQL encounters an expression, it evaluates it to produce a result. For example, (4*3)/(4-2)
evaluates to the value 6. Expression evaluation may involve type conversion, such as when MySQL
converts the number 960821 into a date '1996-08-21'" if the number is used in a context requiring a
DATE value.

This section discusses how you can write expressions in MySQL and the rules that govern the various
kinds of type conversions that MySQL performs during the process of expression evaluation. Each of
MySQL's operators is listed here, but MySQL has so many functions that only a few are discussed. For

more information, see Appendix C.
Writing Expressions

An expression can be as simple as a single constant:

0 Numeric constant
'abc’ String constant

Expressions can use function calls. Some functions take arguments (values inside the parentheses)
and some do not. Multiple arguments should be separated by commas. When you invoke a function,
there can be spaces around arguments, but there must be no space between the function name and

the opening parenthesis:m

[5] Actually, you can tell MySQL to allow spaces after function names by starting the
server with the --ansi or --sgl-mode=IGNORE_SPACE option. However, this causes
function names to be treated as reserved words.

NOW() Function with no arguments
STRCMP(‘abc’,'def') Function with two arguments
STRCMP('abc', 'def') Spaces around arguments are legal
STRCMP (‘abc','def') Space after function name is illegal

If there is a space after the function name, the MySQL parser may interpret the function name as a
column name. (Function names are not reserved words, and you can use them for column names if
you want.) The usual result is a syntax error.

You can use table column values in expressions. In the simplest case, when the table to which a
column belongs is clear from context, a column reference can be given simply as the column name.
Only one table is named in each of the following SELECT statements, so the column references are
unambiguous, even though the same column names are used in each statement:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT last_name, first_name FROM president;
SELECT last_name, first_name FROM member;

If it's not clear which table should be used, column names can be preceded by the table name. If it's
not clear which database should be used, the table name can be preceded by the database name. You
can also use these more-specific forms in unambiguous contexts if you simply want to be more
explicit:

SELECT
president.last_name, president.first_name,
member.last_name, member.first_name

FROM president, member
WHERE president.last_name = member.last_name;
SELECT sampdb.student.name FROM sampdb.student;

Finally, you can combine all these kinds of values (constants, function calls, and column references)
to form more complex expressions.

Operator Types

MySQL includes several kinds of operators that can be used to combine terms of expressions.
Arithmetic operators, listed in Table 2.16, include the usual addition, subtraction, multiplication, and
division operators, as well as the modulo operator. Arithmetic is performed using BIGINT (64-bit)
integer values for +, -, and * when both operands are integers, as well as for / and % when the
operation is performed in a context where the result is expected to be an integer. Otherwise, DOUBLE
is used. Be aware that if an integer operation involves large values such that the result exceeds 64-bit
range, you will get unpredictable results. (Actually, you should try to avoid exceeding 63-bit values;
one bit is needed to represent the sign.)

Table 2.16. Arithmetic Operators

Operator |[Syntax |Meaning

+ a+b Addition; sum of operands

- a-b Subtraction; difference of operands

- -a Unary minus; negation of operand

x a*b Multiplication; product of operands

/ a/b Division; quotient of operands

% a%b Modulo; remainder after division of operands

Logical operators, shown in Table 2.17, evaluate expressions to determine whether they are true
(non-zero) or false (zero). It is also possible for a logical expression to evaluate to NULL if its value
cannot be ascertained (for example, 1 AND NULL is of indeterminate value). MySQL allows the C-style
&&, ||, and ! operators as alternative forms of AND, OR, and NOT. Note in particular the || operator;
ANSI SQL specifies || as the string concatenation operator, but in MySQL it signifies a logical OR

operation.m

[6] If you want the ANSI behavior for ||, start the server with the --ansi or --sql-
mode=PIPES_AS_CONCAT option.

If you use the following expression, expecting it to perform string concatenation, you may be
surprised to discover that it returns the number 0:

'abc’ || 'def’ =30

'abc' and 'def' are converted to integers for the operation, and both turn into 0. In MySQL, you must

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

use CONCAT('abc','def") to perform string concatenation:

CONCAT('abc','def") ==+ 'abcdef'
Table 2.17. Logical Operators

Operator|Syntax Meaning

AND, && |[a AND b, a Logical intersection; true if both operands are

& b true

OR, || a OR b, a || b |Logical union; true if either operand is true

XOR aXORDb Logical exclusive-OR; true if exactly one operand
is true

NOT, ! NOT a, 'a Logical negation; true if operand is false

Bit operators, shown in Table 2.18, perform bitwise intersection, union and exclusive-OR where each
bit of the result is evaluated as the logical AND, OR, or exclusive-OR of the corresponding bits of the
operands. (The XOR and ” exclusive-OR operators are not available until MySQL 4.0.2.) You can also
perform bit shifts left or right. Bit operations are performed using BIGINT (64-bit) integer values.

Table 2.18. Bit Operators

Operator|Syntax|Meaning

& a & b |Bitwise AND (intersection); each bit of result is set if
corresponding bits of both operands are set

| a|b [Bitwise OR (union); each bit of result is set if
corresponding bit of either operand is set

N a b |Bitwise exclusive-OR; each bit of result is set only if
exactly one corresponding bit of the operands is set

<< a << b |Left shift of g by b bit positions

>> a >> b |Right shift of g by b bit positions

Comparison operators, shown in Table 2.19, include operators for testing relative magnitude or lexical
ordering of numbers and strings as well as operators for performing pattern matching and for testing
NULL values. The <=> operator is MySQL-specific and was introduced in MySQL 3.23.

Table 2.19. Comparison Operators

Operator [Syntax Meaning

= a=>b True if o-perands are equal

<=> a<=>b True if operands are equal (even if NULL)

=, <> al=b,a<>b True if operands are not equal

< a<b True if g is less than b

<= a<=b True if g is less than or equal to b

>= a>=b True if g is greater than or equal to b

> a>b True if g is greater than b

IN aIN (b1, b2, ...) True if g is equal to any of bl, b2, ...

BETWEEN |a BETWEEN b AND |True if g is between the values of b and ¢,
C inclusive

NOT a NOT BETWEEN b [True if a is not between the values of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

BETWEEN |AND C band ¢, inclusive

LIKE a LIKE b SQL pattern match; true if g matches b

NOT LIKE J|a NOT LIKE b SQL pattern match; true if 3 does not
match b

REGEXP a REGEXP b Regular expression match; true if g
matches b

NOT a NOT REGEXP b Regular expression match; true if g does

REGEXP not match b

IS NULL a IS NULL True if operand is NULL

IS NOT a IS NOT NULL True if operand is not NULL

NULL

The BINARY operator is available as of MySQL 3.23 and can be used to cast (convert) a string to a
binary string. Generally, this is done to render a string case sensitive in comparison or sorting
operations. The first of the following comparisons is not case sensitive, but the second and third ones

are:

'abc' = 'Abc’ e B
BINARY 'abc' = 'Abc' —F ()
'abc' = BINARY 'Abc' =+ 0

There is no corresponding NOT BINARY cast. If you expect to use a column both in case-sensitive and
in not case-sensitive contexts, use a column type that is not case sensitive and use BINARY for those
comparisons that you want to be case sensitive. Alternatively, for a column that is case sensitive, you
can use it in a comparison that is not case sensitive by converting both operands to the same
lettercase with UPPER() or LOWER():

UPPER(col_name) < UPPER('Smith")
LOWER(col_name) < LOWER('Smith")

For string comparisons that are not case sensitive, it is possible that multiple cr)aracters will be
considered equivalent, depending on your character set. For example, 'E' and 'E' might be treated the
same for comparison and ordering operations. Binary (case sensitive) comparisons are done using the
numeric codes of successive bytes in the values.

Pattern matching allows you to look for values without having to specify an exact literal value. MySQL
provides SQL pattern matching using the LIKE operator and the wildcard characters '%' (match any
sequence of characters) and '_' (match any single character). MySQL also provides pattern matching
based on the REGEXP operator and regular expressions that are similar to those used in UNIX
programs such as grep, sed, and vi. You must use one of these pattern-matching operators to perform
a pattern match; you cannot use the = operator. To reverse the sense of a pattern match, use NOT
LIKE or NOT REGEXP.

The two types of pattern matching differ in important respects besides the use of different operators
and pattern characters:

® | IKE is not case sensitive unless at least one operand is a binary string. This is also true for
REGEXP, except that prior to MySQL 3.23.4, REGEXP is always case sensitive.

® SQL patterns match only if the entire string is matched. Regular expressions match if the
pattern is found anywhere in the string.

Patterns used with the LIKE operator can include the '%' and '_' wildcard characters. For example, the
pattern 'Frank%' matches any string that begins with 'Frank':

'Franklin' LIKE 'Frank%' =3 1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'Frankfurter' LIKE 'Frank%' e |

The wildcard character '%' matches any sequence of characters, including the empty sequence, so
'Frank%' matches 'Frank':

'Frank' LIKE 'Frank%' — 1

This also means the pattern '%' matches any string, including the empty string. However, '%" will not
match NULL. In fact, any pattern match with a NULL operand fails:

'Frank' LIKE NULL == NULL
NULL LIKE '%' = NULL

MySQL's LIKE operator is not case sensitive unless one of its operands is a binary string. Thus,
'Frank%' matches both of the strings 'Frankly' and 'frankly' by default, but matches only one of them in
a binary comparison:

'Frankly' LIKE 'Frank%' —
'frankly' LIKE 'Frank%' — 1
BINARY 'Frankly' LIKE 'Frank%' — 1
BINARY 'frankly’ LIKE 'Frank%' —30

This differs from the ANSI SQL LIKE operator, which is case sensitive.

The wildcard character can be specified anywhere in the pattern. '%bert' matches 'Englebert’, 'Bert',
and 'Albert'. '%bert%' matches all of those strings and also strings like 'Berthold', 'Bertram’, and
'Alberta’. 'b%t' matches 'Bert', 'bent’, and 'burnt'.

The other wildcard character allowed with LIKE is '_', which matches any single character. The pattern
' '"matches any string of exactly three characters. 'c_t' matches 'cat', 'cot’, 'cut’, and even 'c_t'
(because '_' matches itself).

To match literal instances of the '%' or '_' characters, turn off their special meaning by preceding
them with a backslash ("\%' or "_'):

'abc’ LIKE 'a%c' =1
'abc’ LIKE 'a\%c' -+ 0
'a%¢c' LIKE 'a\%c' e 1
'abc’ LIKE 'a_c' — 1
'abc' LIKE 'a_c' =30
'a_c' LIKE 'a_c' =1

MySQL's other form of pattern matching uses regular expressions. The operator is REGEXP rather than
LIKE. The most common regular expression pattern characters are as follows:

® The '.' character is a wildcard that matches any single character:

'abc' REGEXP 'a.c' =) 1

® The [...] construction matches any character listed between the square brackets.

'e' REGEXP '[aeiou]' w— 1
'f' REGEXP '[aeiou]' -+ 0

You can specify a range of characters by listing the endpoints of the range separated by a dash ('-') or
negate the sense of the class (to match any character not listed) by specifying '' as the first
character of the class:

'abc’ REGEXP '[a-z]' -1
'abc’ REGEXP '[*a-z]' — 0

"*' means "match any number of the previous thing," so that, for example, the pattern 'x*' matches
any number of 'X' characters:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

'abcdef' REGEXP 'a.*f' =1
'abc' REGEXP '[0-9]*abc' — 1
‘abc' REGEXP '[0-9][0-9]*' e)

"Any number" includes zero instances, which is why the second expression succeeds.

"“pat and pat$' anchor a pattern match so that the pattern pat matches only when it occurs at the
beginning or end of a string, and “‘pat$' matches only if pat matches the entire string:

'abc’ REGEXP 'b' -1
'abc’ REGEXP '~b' =3 0
'abc’ REGEXP 'b$' =0
'abc’ REGEXP '~abc$' e
'abcd' REGEXP '~abc$' =30

A REGEXP pattern can be taken from a table column, although this will be slower than a constant
pattern if the column contains several different values. The pattern must be examined and converted
to internal form each time the column value changes.

MySQL's regular expression matching has other special pattern elements as well. See Appendix C for
more information.

Operator Precedence

When MySQL evaluates an expression, it looks at the operators to determine the order in which it
should group the terms of the expression. Some operators have higher precedence; that is, they are
"stronger" than others in the sense that they are evaluated earlier than others. For example,
multiplication and division have higher precedence than addition and subtraction. The following two
expressions are equivalent because * and / are evaluated before + and -:

1+2*3-4/5 =¥ 6.2
1+6-.8 =+ 6.2

Operator precedence is shown in the following list, from highest precedence to lowest. Operators
listed on the same line have the same precedence. Operators at a higher precedence level are
evaluated before operators at a lower precedence level. Operators at the same precedence level are
evaluated left to right.

BINARY COLLATE

NOT !

N

XOR

- (unary minus) ~ (unary bit negation)
* [o

+ -

<< >>

&

|
< <= = <=> I= <> >= > IN IS LIKE REGEXP RLIKE

BETWEEN CASE WHEN THEN ELSE
AND &&
OR]

You can use parentheses to override the precedence of operators and change the order in which
expression terms are evaluated:

1+2%3-4/5 =2 6.2
(1+2)*(3-4/5 =*-0.6

NULL Values in Expressions

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Take care when you use NULL values in expressions, because the result may not always be what you
expect. The following guidelines will help you avoid surprises.

If you supply NULL as an operand to any arithmetic or bit operator, the result is NULL:

1 + NULL =¥ NULL
1| NULL =4 NULL

With logical operators, the result is NULL unless the result can be determined with certainty.m

[7] Prior to MySQL 3.23.9, NULL is treated as a false value with logical operators; this
behavior may be considered a bug.

1 AND NULL = NULL
1 OR NULL -1
0 AND NULL =30
0 OR NULL == NULL

NULL as an operand to any comparison or pattern-matching operator produces a NULL result, except
for the <=>, IS NULL, and IS NOT NULL operators, which are intended specifically for dealing with

NULL values:

1 = NULL = NULL
NULL = NULL =3 NULL
1 <=> NULL e)
NULL LIKE '%' = NULL
NULL REGEXP '.*' =¥ NULL
NULL <=> NULL e 1

1 IS NULL =

NULL IS NULL w— 1

Functions generally return NULL if given NULL arguments, except for those functions designed to deal
with NULL arguments. For example, IFNULL() is able to handle NULL arguments and returns true or
false appropriately. On the other hand, STRCMP() expects non-NULL arguments; if it discovers you've
passed it a NULL argument, it returns NULL rather than true or false.

In sorting operations, NULL values group together. However, whether they sort before or after
non-NULL values is version dependent, as discussed in the "Sorting Query Results" section in Chapter

1.
Type Conversion
Whenever a value of one type is used in a context that requires a value of another type, MySQL

performs extensive type conversion automatically according to the kind of operation you're
performing. Type conversion can occur for any of the following reasons:

® Conversion of operands to a type appropriate for evaluation of an operator
® Conversion of a function argument to a type expected by the function
® Conversion of a value for assignment into a table column that has a different type

You can also perform explicit type conversion using a cast operator or function.

The following expression involves implicit type conversion. It consists of the addition operator + and
two operands, 1 and '2":

1+2

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The operands are of different types (number and string), so MySQL converts one of them to make
them the same type. But which one should it change? In this case, + is a numeric operator; MySQL
wants the operands to be numbers and converts the string '2' to the number 2. Then it evaluates the
expression to produce the result 3. Here's another example. The CONCAT() function concatenates
strings to produce a longer string as a result. To do this, it interprets its arguments as strings, no
matter what type they are. If you pass it a bunch of numbers, CONCAT() will convert them to strings
and then return their concatenation:

CONCAT(1,2,3) = '123'

If the call to CONCAT() is part of a larger expression, further type conversion may take place.
Consider the following expression and its result:

REPEAT('X',CONCAT(1,2,3)/10) =3 YXXOKXXXXXXXX!

CONCAT(1,2,3) produces the string '123'. The expression '123'/10 is converted to 123/10 because
division is an arithmetic operator. The result of this expression would be 12.3 in floating-point context,
but REPEAT() expects an integer repeat count, so an integer division is performed to produce 12. Then
REPEAT('X',12) produces a string result of 12 'X' characters.

A general principle to keep in mind is that MySQL attempts to convert values to the type required by
an expression rather than generating an error. Depending on the context, it will convert values of
each of the three general categories (numbers, strings, or dates and times) to values in any of the
other categories. However, values can't always be converted from one type to another. If a value to
be converted to a given type doesn't look like a legal value for that type, the conversion fails.
Conversion to numbers of things like 'abc' that don't look like numbers results in a value of 0.
Conversion to date or time types of things that don't look like a date or time result in the "zero" value
for the type. For example, converting the string 'abc' to a date results in the "zero" date '0000-00-00'.
On the other hand, any value can be treated as a string, so it's generally not a problem to convert a
value to a string.

MySQL also performs more minor type conversions. If you use a floating-point value in an integer
context, the value is converted (with rounding). Conversion in the other direction works as well; an
integer can be used without problem as a floating-point number.

Hexadecimal constants are treated as strings unless the context clearly indicates a number. In string
contexts, each pair of hexadecimal digits is converted to a character and the result is used as a string.
The following examples illustrate how this works:

0x61 — '

0x61 + 0 =% 97
X'61' — '3’

X'61' + 0 =+ 97
CONCAT(0x61) = 'y’
CONCAT(0x61 + 0) —* '97'
CONCAT(X'61") - '
CONCAT(X'61' + 0) =} '97'

In comparisons, treatment of hexadecimal constants depends on your version of MySQL. From MySQL
3.23.22 and later, hex constants in comparisons are treated as numbers:

0x0a = "\n' — 0
Oxaaab < Oxab e 1)
Oxaaab > Oxab e B
0x0a = 10 e A |

Prior to MySQL 3.23.22, hex constants are treated as binary strings unless compared to a number.
Thus, several of the preceding comparisons have a different result when executed under older
servers:

Ox0a = "\n' e 1
—

Oxaaab < Oxab 1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Oxaaab > Oxab — 0
0x0a = 10 — 1
Some operators force conversion of the operands to the type expected by the operator, no matter

what the type of the operands is. Arithmetic operators are an example of this; they expect numbers
and the operands are converted accordingly:

3+4 -7
3'+4 -7
|3|+|4| .ﬁ.7

In string-to-number conversion, it's not enough for a string simply to contain a number somewhere.
MySQL doesn't look through the entire string hoping to find a number, it looks only at the beginning;
if the string has no leading numeric part, the conversion result is 0.

'1973-2-4' + 0 =+ 1973
'12:14:01'+ 0 = 1)
'23-skidoo' + 0 — 23
'-23-skidoo' + 0 = -23
'carbon-14' + 0 =t 0

Be aware that MySQL's string-to-number conversion rule changed as of version 3.23. Currently,
numeric-looking strings are converted to floating-point values. Prior to 3.23, they are converted to
integer values, with rounding:

'-428.9' + 0 =¥ -428.9 (MySQL > 3.23)
'-428.9' + 0 =¥ 429 (MySQL < 3.23)

The logical and bit operators are even stricter than the arithmetic operators. They want the operators
to be not only numeric, but to be integers, and type conversion is performed accordingly. This means
that a floating-point number, such as 0.3, is not considered true, even though it's non-zero; that's
because the result is 0 when it's converted to an integer. In the following expressions, the operands
are not considered true until they have a value of at least 1.

0.3 OR .04 = 0
1.30R .04 m— 1
0.3 AND .04 —*0
1.3 AND .04 =0
1.3 AND 1.04 — 1

This type of conversion also occurs with the IF() function, which expects the first argument to be an
integer. This means that values that round to zero will be considered false:

IF(1.3,'non-zero','zero") ==# 'non-zero'
IF(0.3,'non-zero','zero") =¥ 'zero'
IF(-0.3,'non-zero','zero") = 'zero'
IF(-1.3,'non-zero','zero") ==¥ 'non-zero'

To test floating-point values properly, it's best to use an explicit comparison:
IF(0.3>0,'non-zero','zero") == 'non-zero'

Pattern matching operators expect to operate on strings. This means that you can use MySQL's
pattern matching operators on numbers because it will convert them to strings in the attempt to find

a match.
12345 LIKE '1%' = |
12345 REGEXP '1.*5' =} 1

The magnitude comparison operators (<, <=, =, and so on) are context sensitive; that is, they are
evaluated according to the types of their operands. The following expression compares the operands
numerically because they are both numbers:

2<11 =1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This expression involves string operands and thus results in a lexical comparison:
|2| < |11| .q. 0

In the following comparisons, the types are mixed, so MySQL compares them as numbers. As a result,
both expressions are true:

2'< 11 - 1
2<'11 -y 1

When evaluating comparisons, MySQL converts operands as necessary according to the following
rules:

® Other than for the <=> operator, comparisons involving NULL values evaluate as NULL. (<=>
is like =, except that NULL <=> NULL is true.)

® If both operands are strings, they are compared lexically as strings. Binary strings are
compared on a byte-by-byte basis using the numeric value of each byte. Comparisons for non-
binary strings are performed character-by-character using the collating sequence of the
character set in which the strings are expressed. If the strings have different character sets (as
is possible as of MySQL 4.1), the comparison may not yield meaningful results. A comparison
between a binary and a non-binary string is treated as a comparison of binary strings.

® If both operands are integers, they are compared numerically as integers.

® As of MySQL 3.23.22, hexadecimal constants are compared as numbers. Before that, hex
constants that are not compared to a number are compared as binary strings.

® If either operand is a TIMESTAMP or DATETIME value and the other is a constant, the operands
are compared as TIMESTAMP values. This is done to make comparisons work better for ODBC
applications.

® Otherwise, the operands are compared numerically as floating-point values. Note that this
includes the case of comparing a string and a number. The string is converted to a number,
which results in a value of 0 if the string doesn't look like a number. For example, '14.3'
converts to 14.3, but 'L4.3' converts to 0.

Date and Time Interpretation Rules

MySQL freely converts strings and numbers to date and time values as demanded by context in an
expression, and vice versa. Date and time values are converted to nhumbers in numeric context;
numbers are converted to dates or times in date or time contexts. This conversion to a date or time
value happens when you assign a value to a date or time column or when a function requires a date
or time value. In comparisons, the general rule is that date and time values are compared as strings.

If the table mytbl contains a DATE column date_col, the following statements are equivalent:

INSERT INTO mytbl SET date_col = '2004-04-13";
INSERT INTO mytbl SET date_col = '20040413";
INSERT INTO mytbl SET date_col = 20040413;

In the following examples, the argument to the TO_DAYS() function is interpreted as the same value
for all three expressions:

TO_DAYS('2004-04-10") —+ 732046
TO_DAYS('20040410") —+ 732046
TO_DAYS(20040410) —3 732046

Testing and Forcing Type Conversion

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To see how type conversion will be handled in an expression, use the mysql program to issue a
SELECT query that evaluates the expression:

mysql> SELECT 0x41, 0x41 + 0;

+-me- Fommmmmnen +
| 0x41 | 0x41 + O |
+--mm- Fommmmmen +
A | 65]

+--mm- Fommmmmmem +

As you might imagine, I did quite a bit of that sort of thing while writing this chapter!

Testing expression evaluation is especially important for statements such as DELETE or UPDATE that
modify records because you want to be sure you're affecting only the intended rows. One way to
check an expression is to run a preliminary SELECT statement with the same WHERE clause that
you're going to use with the DELETE or UPDATE statement to verify that the clause selects the proper
rows. Suppose the table mytbl has a CHAR column char_col containing the following values:

‘abc
'def'
|OOI
|ghi|
Ijkll
00"
'mno

Given these values, what is the effect of the following statement?
DELETE FROM mytbl WHERE char_col = 00;

The intended effect is probably to delete the two rows containing the value '00'. The actual effect is to
delete all the rows—an unpleasant surprise! This happens as a consequence of MySQL's comparison
rules. char_col is a string column, but 00 in the statement is not quoted, so it is treated as a number.
By MySQL's comparison rules, a comparison involving a string and a number is evaluated as a
comparison of two numbers. As the DELETE statement is performed, each value of char_col is
converted to a number and compared to 0. Unfortunately, although '00' converts to 0, so do all the
strings that don't look like numbers. As a result, the WHERE clause is true for every row, and the
DELETE statement empties the table. Obviously, this is a case where it would have been prudent to
test the WHERE clause with a SELECT statement prior to executing the DELETE, because that would
have shown you that too many rows are selected by the expression:

mysql> SELECT char_col FROM mytbl WHERE char_col = 00;

| 'abc' |
| 'def* |
| '00" |
| 'ghi* |
| kI
|'00" |
| 'mno’ |

When you're uncertain about the way a value will be used, you may want to exploit MySQL's
expression evaluation mechanism to force conversion of a value to a particular type or to call a
function that performs the desired conversion:

® Add +0 or +0.0 to a term to force conversion to a numeric value:

0x65 — ‘g

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

0X65 + 0 — 101
0x65 + 0.0 —3 101.0

® Use FLOOR() to convert a floating-point number to an integer, or add +0.0 to convert an
integer to a floating-point number:

FLOOR(13.3) -+ 13
13 + 0.0 =+ 13.0

If you want rounding instead, use ROUND() rather than FLOOR().

® Use CONCAT() to turn a value into a string:

14 - 14
CONCAT(14) — 14’

Or (as of MySQL 4.0.2), use HEX() to convert a number to a hexadecimal string:

HEX(255) m— 'FF
HEX(65535) =+ 'FFFF'

You can also use HEX() with a string value to convert it to a string of hex digit pairs
representing successive bytes in the string:

HEX('abc"); — '616263'

® Use ASCII() to convert a character to its ASCII value:

|A| ._} IAI
ASCII('A") —3 65

To go in the other direction from ASCII code to character, use CHAR():
CHAR(65) = A
® Use DATE_ADD() to force a string or number to be treated as a date:

20030101 =+ 20030101
DATE_ADD(20030101, INTERVAL 0 DAY) —+ '2003-01-01'
'20030101" —+ '20030101'
DATE_ADD('20030101', INTERVAL 0 DAY) =+ '2003-01-01'

® Generally, you can convert a temporal value to numeric form by adding zero:

CURDATE() ==+ '2002-09-18'
CURDATE()+0 ==¥ 20020918
CURTIME() =¥ '12:05:41'
CURTIME()+0 =¥ 120541

® In MySQL 4.1 and later, you can convert a string from one character set to another by using
CONVERT() or by prepending a character set identifier to the string:

‘abc' =¥ 'abc’

CONVERT("abc' USING ucs2) =% "\0a\0b\0c'
CHARSET("abc") =% 'latin1’
CHARSET(CONVERT("abc' USING ucs?2)) =¥ 'ucs2'
CHARSET(_ucs2 'abc') =¥ 'ucs2'

Conversion of Out-of-Range or Illegal Values

The basic principle is this: Garbage in, garbage out. If you don't verify your data first before storing it,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

you may not like what you get. Hraving said that, the following are some general principles that
describe MySQL's handling of out-of-range or otherwise improper values:

® For numeric or TIME columns, values that are outside the legal range are clipped to the nearest

endpoint of the range and the resulting value is stored.

For date and time columns other than TIME, values that are outside the range for the type may

be converted to the "zero" value, NULL, or some other value. (In other words, the results are
unpredictable.)

For string columns other than ENUM or SET, strings that are too long are truncated to fit the
maximum length of the column. Assignments to an ENUM or SET column depend on the values
that are listed as legal in the column definition. If you assign to an ENUM column a value that is
not listed as an enumeration member, the error member is assigned instead (that is, the
empty string that corresponds to the zero-valued member). If you assign to a SET column a
value containing substrings that are not listed as set members, those strings drop out and the
column is assigned a value consisting of the remaining members.

For date or time columns, illegal values are converted to the appropriate "zero" value for the
type (see Table 2.12).

These conversions are reported as warnings for ALTER TABLE, LOAD DATA, UPDATE, INSERT INTO ...
SELECT, and multiple-row INSERT statements. In the mysql client, this information is displayed in the
status line that is reported for a query. In a programming language, you may be able to get this
information by some other means. If you're using the MySQL C or PHP APIs, you can invoke the

mysql_

info() function. With the Perl DBI API, you can use the mysql_info attribute of your database

connection. The information provided is a count of the number of warnings.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Chapter 3. MySQL SQL Syntax and Use

Fluency with SQL is necessary for effective communication with the MySQL server, because that is the
language that it understands. For example, when you use a program such as the mysql client, it
functions primarily as a means for you to send SQL statements to the server to be executed. You
must also know SQL if you write programs that use the MySQL interface provided by your
programming language because the interface functions as the means that allows you to communicate
with the server by sending SQL statements to it.

Chapter 1, "Getting Started with MySQL and SQL," presented a tutorial introduction to many of
MySQL's capabilities. This chapter builds on that material to go into more detail on several areas of
SQL implemented by MySQL. It discusses how to refer to elements of databases, including the rules
for naming and the case sensitivity constraints that apply. It also describes many of the more
important SQL statements that are used for the following types of operations:

® Creating and destroying databases, tables, and indexes
® Obtaining information about your databases and tables
® Retrieving data using joins, subselects, and unions

® Using multiple-table deletes and updates

Performing transactions that allow multiple statements to be treated as a unit
® Setting up foreign key relationships
® Using the FULLTEXT search engine

MySQL's SQL statements can be grouped into several broad categories; Table 3.1 lists some
representative statements for each. In some cases, a utility program is available that provides a
command-line interface to a statement. For example, mysqlshow allows SHOW operations to be
performed from the command line. This chapter points out such equivalences where appropriate.

Some of the statements in the table are not covered here because they are more appropriately
discussed in other chapters. For example, the administrative statements GRANT and REVOKE for
setting up user privileges are dealt with in Chapter 11, "General MySQL Administration." Chapter 12,
"Security," provides further details on what privileges are available and what they allow. The syntax
for all SQL statements implemented by MySQL is listed in Appendix D, "SQL Syntax Reference." In
addition, you should consult the MySQL Reference Manual for additional information, especially for
changes made in recent versions of MySQL.

Table 3.1. Types of SQL Statements Supported by MySQL
SELECTING, CREATING, DROPPING, AND ALTERING DATABASES

USE

CREATE DATABASE

DROP DATABASE

ALTER DATABASE

CREATING, ALTERING, AND DROPPING TABLES AND INDEXES

CREATE TABLE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

DROP TABLE

CREATE INDEX

DROP INDEX

ALTER TABLE

GETTING INFORMATION ABOUT DATABASES AND TABLES
DESCRIBE

SHOW

RETRIEVING INFORMATION FROM TABLES
SELECT

UNION

PERFORMING TRANSACTIONS
BEGIN
COMMIT
ROLLBACK

SET AUTOCOMMIT

MODIFYING INFORMATION IN TABLES
DELETE
INSERT
LOAD DATA
REPLACE

UPDATE

ADMINISTRATIVE STATEMENTS
FLUSH
GRANT

REVOKE

The final section of the chapter describes what MySQL does not include—that is, what features it
lacks. These are capabilities found in some other databases but not in MySQL. Such features include
triggers, stored procedures, and views. Do these omissions mean that MySQL isn't a "real" database
system? Some people think so, but in response I'll simply observe that the lack of these capabilities in
MySQL hasn't stopped large numbers of people from using it. That's probably because for many or
most applications, those features don't matter.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

I should also point out that the set of features missing from MySQL continues to shrink over time. For
the first edition of this book, the list of missing features included transactions, subselects, foreign
keys, and referential integrity. A significant amount of progress has been made in improving MySQL
since then, and those capabilities all have been added now. Triggers, stored procedures, and views
are scheduled for implementation in the future.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

MySQL Naming Rules

Almost every SQL statement refers in some way to a database or its constituent elements. This
section describes the syntax rules for referring to databases, tables, columns, indexes, and aliases.
Names are subject to case sensitivity considerations, which are described as well.

Referring to Elements of Databases

When you use names to refer to elements of databases, you are constrained by the characters you
can use and the length that names can be. The form of names also depends on the context in which
you use them. Another factor that affects naming rules is that the server can be started in different
naming modes.

® Legal characters in names. Unquoted names can consist of any alphanumeric characters in

the server's default character set, plus the characters '_' and '$'. Names can start with any
character that is legal in a name, including a digit. However, a name cannot consist entirely of
digits because that would make it indistinguishable from a number. MySQL's support for names
that begin with a number is somewhat unusual among database systems. If you use such a
name, be particularly careful of names containing an 'E' or 'e' because those characters can
lead to ambiguous expressions. For example, the expression 23e + 14 (with spaces surrounding
the '+' sign) means column 23e plus the number 14, but what about 23e+14? Does it mean the
same thing, or is it a number in scientific notation?

Aliases can be fairly arbitrary, but you should quote an alias within single or double quotes if it
is a SQL keyword, is entirely numeric, or contains spaces or other special characters.

As of MySQL 3.23.6, names can be quoted within backtick characters ('''), which allows use of
any character except backtick, ASCII 0, and ASCII 255. This is useful when a name contains
special characters or is a reserved word. Quoting a name also allows it to be entirely numeric,
something that is not true of unquoted names.

There are also two additional constraints for database and table names, even if you quote
them. First, you cannot use the '.' character because it is the separator in db_name.tbl_name
and db_name.tbl_name.col_name notation. Second, you cannot use the UNIX or Windows
pathname separator characters ('/' or '\'). The separator characters are disallowed in database
and table names because databases are represented on disk by directories, and tables are
represented on disk by at least one file. Consequently, these types of names must not contain
characters that are illegal in directory names and filenames. The UNIX pathname separator is
disallowed on Windows (and vice versa) to make it easier to transfer databases and tables
between servers running on different platforms. For example, suppose you were allowed to use
a slash in a table name on Windows. That would make it impossible to move the table to UNIX,
because filenames on that platform cannot contain slashes.

Name length. Names for databases, tables, columns, and indexes can be up to 64 characters
long. Alias names can be up to 256 characters long.

Name qualifiers. Depending on context, a name may need to be qualified to make it clear
what the name refers to. To refer to a database, just specify its name:

USE db_name;
SHOW TABLES FROM db_name;

To refer to a table, you have two choices. First, a fully qualified table name consists of a
database name and a table name:

SHOW TABLES FROM db_name.tbl_name;
SELECT * FROM db_name.tbl_name;

Second, a table name by itself refers to a table in the default (current) database. If sampdb is

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

the default database, the following statements are equivalent:

SELECT * FROM member;
SELECT * FROM sampdb.member;

If no database has been selected, naming a table without a database qualifier is illegal because
the server cannot tell which database the table belongs to.

To refer to a column, there are three choices: fully qualified, partially qualified, and unqualified.
A fully qualified name (written as db_name.tbl_name.col_name) is completely specified. A
partially qualified name (written as tb/_name.col_name) refers to a column in the named table.
An unqualified name (written simply as col_name) refers to whatever table is indicated by the
surrounding context. The following two queries refer to the same pair of column names, but the
context supplied by the FROM clause of each statement indicates from which table to select the
columns:

SELECT last_name, first_name FROM president;
SELECT last_name, first_name FROM members;

It's usually unnecessary to supply fully qualified names, although it's always legal to do so if
you want. If you select a database with a USE statement, that database becomes the default
database and is implicit in every unqualified table reference. If you're using a SELECT
statement that refers to only one table, that table is implicit for every column reference in the
statement. It's necessary to qualify names only when a table or database cannot be
determined from context. For example, if a query refers to tables from multiple databases, any
table not in the default database must be referenced using the db_name.tbl_name form to let
MySQL know which database to look in to find the table. Similarly, if a query uses multiple
tables and refers to a column name that is present in more than one table, it's necessary to
qualify the name with a table name to make it clear which column you mean.

Server startup mode. If the server has been started with the --ansi or --sql-
mode=ANSI_QUOTES option, names can be quoted with double quotes rather than backticks
(although backticks can still be used).

Case Sensitivity in SQL Statements

Case sensitivity rules in SQL statements vary for different parts of the statement and also depend on
what you referring to and the operating system of the machine on which the server is running:

® SQL keywords and function names. Keywords and function names are not case sensitive.

They can be given in any lettercase. The following statements are equivalent:

SELECT NOW();
select now();
SEIECT nOw();

Database and table names. Databases and tables in MySQL are implemented using
directories and files in the underlying file system on the server host. As a result, case
sensitivity of database and table names depends on the way the operating system on that host
treats filenames. Windows filenames are not case sensitive, so a server running on Windows
does not treat database and table names as case sensitive. Servers running on UNIX usually
treat database and table names as case sensitive because UNIX filenames are case sensitive.
(An exception is that names in HFS+ file systems under Mac OS X are not case sensitive.)

You should consider lettercase issues if you create a database on a server with case-sensitive
filenames and you might someday move the database to a server where filenames are not case
sensitive. For example, if you create two tables named abc and ABC on a UNIX server where
those names are treated differently, you would have problems moving the tables to a Windows
machine; there, abc and ABC would not be distinguishable because names are not case

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

sensitive. One way to avoid having case sensitivity properties become an issue is to pick a
given lettercase (for example, lowercase) and always create databases and tables using names
in that lettercase. Then case of hames won't be a problem if you move a database to a different
server. Another approach to issues of name lettercase is to start the server with the
lower_case_table_names variable set. This variable is discussed further in Chapter 10, "The
MySQL Data Directory."

Column and index names. Column and index names are not case sensitive in MySQL. The
following queries are equivalent:

SELECT name FROM student;
SELECT NAME FROM student;
SELECT nAmE FROM student;

® Alias names. Aliases are case sensitive. You can specify an alias in any lettercase (upper,

lower, or mixed), but you must refer to it elsewhere in the query using the same case.

Regardless of whether or not a database or table name is case sensitive on your system, you must
refer to it using the same lettercase throughout a given query. That is not true for SQL keywords,
function names, or column and index names, all of which can be referred to in varying lettercase style
throughout a query. Naturally, the query will be more readable if you use a consistent lettercase
rather than "ransom note" style (SelECt NamE FrOm ...).

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Selecting, Creating, Dropping, and Altering Databases

MySQL provides several database-level statements: USE for selecting a default database, CREATE
DATABASE for creating databases, DROP DATABASE for removing them, and ALTER DATABASE for
modifying global database characteristics.

Selecting Databases

The USE statement selects a database to make it the default (current) database for a given connection
to the server:

USE db_name;

You must have some access privilege for the database or you cannot select it. If you do have access
to a database, you can use its tables even without selecting the database explicitly by qualifying table
names with the database name. For example, to retrieve the contents of the president table in the
sampdb database without selecting the database first, write the query like this:

SELECT * FROM sampdb.president;
However, it's much more convenient to refer to tables without having to specify a database qualifier.

Selecting a default database doesn't mean it must be the default for the duration of the connection.
You can issue any number of USE statements to switch back and forth among databases as often as
you want, as long as you have access privileges to use them. Nor does selecting a database limit you
to using tables only from that database. While one database is the default, you can refer to tables in
other databases by qualifying their names with the appropriate database name.

When a connection to the server terminates, any notion by the server of what the default database
was disappears. That is, if you connect to the server again, it doesn't remember what database you
had selected previously. In fact, that's not even an idea that makes any sense, given that MySQL is
multi-threaded and can handle multiple connections from a given user, which can begin and end
asynchronously. In this environment, it's not clear what the meaning of "the previously selected
database" might be.

Creating Databases

Creating a database is easy; just name it in a CREATE DATABASE statement:
CREATE DATABASE db_name;

The constraints on database creation are that the name must be legal, the database must not already
exist, and you must have sufficient privileges to create it.

Dropping Databases

Dropping a database is just as easy as creating one, assuming you have sufficient privileges:
DROP DATABASE db_name;

However, the DROP DATABASE statement is not something you should use with wild abandon. It
removes the database and all tables within it. After you drop a database, it's gone forever. In other
words, don't try out this statement just to see how it works. If your administrator has been
performing database backups regularly, you may be able to get the database back. But I can
guarantee that no administrator will be sympathetic if you say, "Uh, I was just playing around with
DROP DATABASE to see what would happen, and, uh...can you restore my database for me?"

Note that a database is represented by a directory under the data directory, and the directory is
intended for storage of table data. If you drop a database but its name continues to show up when
you issue a SHOW DATABASES statement, the reason is most likely that the database directory

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

contains non-table files. DROP DATABASE will not delete such files and, as a result, will not delete the
directory either. This means that the database directory will continue to exist, albeit empty of any
tables. To really drop the database if this occurs, manually remove any remaining files in the
database directory and the directory itself.

Altering Databases

The ALTER DATABASE statement, available as of MySQL 4.1, makes changes to a database's global
characteristics or attributes. Currently, the only such characteristic is the default character set:

ALTER DATABASE db_name DEFAULT CHARACTER SET charset;

charset should be the name of a character set supported by the server, such as latinl_de or sjis. (To
find out which sets your server supports, issue a SHOW CHARACTER SET statement.) charset can also
be DEFAULT to indicate that the database uses the server-level character set by default. See Chapter
2, "Working with Data in MySQL," for further discussion of character sets and character set levels.

Database attributes are stored in the db.opt file in the database directory.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Creating, Dropping, Indexing, and Altering Tables

MySQL allows you to create tables, drop (remove) them, and change their structure using the CREATE
TABLE, DROP TABLE, and ALTER TABLE statements. The CREATE INDEX and DROP INDEX statements
allow you to add or remove indexes on existing tables. But before diving into the details for these
statements, it's helpful to understand something about the different types of tables that MySQL
supports.

Table Types

MySQL supports multiple table handlers, each of which implements a table type that has a specific set
of properties or characteristics. The table types actually available to you will depend on your version
of MySQL, how it was configured at build time, and the options with which it was started. The current
table type handlers and the versions in which they are first available are listed in the following table:

Table Type MySQL Version First Available
ISAM All versions

MyISAM 3.23.0

MERGE 3.23.25

HEAP 3.23.0

BDB 3.23.17/3.23.34a

InnoDB 3.23.29/3.23.34a

Two version numbers are listed for BDB and InnoDB. The first number indicates when the table type
appeared in binary distributions, the second when it became available in source distributions.
MRG_MyISAM and BerkeleyDB are synonyms for MERGE and BDB. (From 3.23.29 through 3.23.36,
the InnoDB table type was known as Innobase; thereafter, InnoDB is the preferred name, though
Innobase is recognized as a synonym.)

Because MySQL can be configured in different ways, it's quite possible that a server for a given
version of MySQL will not support all table types available in that version. See the "Getting
Information about Databases and Tables" section later in this chapter to find out how to tell which

types a given server actually supports. See the "Selecting Table Handlers" section in Chapter 11 for
details on configuring the server.

The general characteristics of MySQL's table types are described in the following sections.
ISAM Tables

The ISAM handler manages tables that use the indexed sequential access method. The ISAM storage
format is the original MySQL table type and is the only one available prior to Version 3.23. The ISAM
handler has since been superceded by the MyISAM handler; MyISAM tables are the preferred general
replacement because they have fewer limitations. The ISAM type is still available but is considered
pretty much obsolete. Support for it will fade over time. (ISAM table support has been omitted from
the embedded server now, for example, and probably will disappear entirely in MySQL 5.)

MyISAM Tables

The MyISAM storage format is the default table type in MySQL as of version 3.23, unless the server
has been configured otherwise.

® Tables can be larger than for the ISAM storage method if your operating system itself allows
large file sizes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

® Table contents are stored in machine-independent format. This means you can copy tables
directly from one machine to another, even if they have different architectures.

® Relative to ISAM tables, MyISAM relaxes several indexing constraints. For details, see the

"Indexing Tables" section later in this section.

® MyISAM format provides better key compression than does ISAM format. Both formats use
compression when storing runs of successive similar string index values, but MyISAM also can
compress runs of similar numeric index values because numeric values are stored with the high
byte first. (Index values tend to vary faster in the low-order bytes, so high-order bytes are
more subject to compression.) To enable numeric compression, use the PACK_KEYS=1 option
when creating a table.

® MyISAM has more capable AUTO_INCREMENT handling than is available for other table types.
The details of this are discussed in the "Working with Sequences" section of Chapter 2.

® For improved table integrity checking, each MyISAM table has a flag that is set when the table
is checked by the server or by myisamchk. MyISAM tables also have a flag indicating whether a
table was closed properly. If the server shuts down abnormally or the machine crashes, the
flag can be used to detect tables that need to be checked. This can be done automatically at
server startup time by specifying the --myisam-recover option.

® The MyISAM handler supports full text searching through the use of FULLTEXT indexes.

MERGE Tables

MERGE tables are a means for grouping multiple MyISAM tables into a single logical unit. By querying
a MERGE table, you are in effect querying all the constituent tables. One advantage of this is that you
can in effect exceed the maximum table size allowed by the file system for individual MyISAM tables.

The tables that make up a MERGE table must all have the same structure. This means the columns in
each table must be defined with the same names and types in the same order, and the indexes must
be defined in the same way and in the same order. It is allowable to mix compressed and
uncompressed tables. (Compressed tables are produced with myisampack; see Appendix E, "MySQL
Program Reference.")

A MERGE table cannot refer to tables in a different database.

HEAP Tables

The HEAP storage format uses tables that are stored in memory and that have fixed-length rows, two
characteristics that make them very fast. HEAP tables are temporary in the sense that they disappear
when the server terminates. However, in contrast to temporary tables created with CREATE
TEMPORARY TABLE, HEAP tables are visible to other clients. Several constraints apply to HEAP tables
that allow them to be handled more simply and thus more quickly:

® Indexes are used only for comparisons performed with the = and <=> operators. This is due to
the use of hashed indexes, which are very fast for equality comparisons but not for range
searches with comparison operators such as < or >. Indexes also are not used in ORDER BY
clauses for this reason.

® You cannot have NULL values in indexed columns prior to MySQL 4.0.2.
® AUTO_INCREMENT columns cannot be used prior to MySQL 4.1.

® BLOB and TEXT columns cannot be used. Because rows are stored using fixed-length format,
you cannot use variable length column types such as BLOB and TEXT. VARCHAR is allowed but
is treated internally as the corresponding CHAR type.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

BDB Tables

BDB tables are managed by the Berkeley DB handler developed by Sleepycat. The BDB handler offers
these features:

® Transaction-safe tables with commit and rollback

® Automatic recovery after a crash

® page-level locking for good concurrency performance under query mix conditions that include
both retrievals and updates

InnoDB Tables

InnoDB tables are the most recent table type added to MySQL. They are managed by the InnoDB
handler developed by Innobase Oy. The InnoDB handler offers the following features:

® Transaction-safe tables with commit and rollback.
® Automatic recovery after a crash.
® Foreign key support, including cascaded delete.

® Row-level locking for good concurrency performance under query mix conditions that include
both retrievals and updates.

® InnoDB tables are managed within a separate tablespace rather than by using table-specific
files like the other table types. The tablespace can consist of multiple files and can include raw
partitions. The InnoDB handler, in effect, treats the tablespace as a virtual file system within
which it manages the contents of all InnoDB tables.

® Tables can exceed the size allowed by the file system for individual files through use of multiple
files or raw partitions in the tablespace.

Table Representation on Disk

Every table, no matter its format, is represented on disk by a file that contains the table's format
(that is, its definition). This file has a basename that is the same as the table name and a .frm
extension. For most table types, a table's contents are stored on disk using other files that are unique
to the table. The exceptions are for HEAP and InnoDB tables, for which the .frm file is the only one
that is uniquely associated with a given table. (HEAP table contents are stored in memory. InnoDB
table contents are managed within the InnoDB tablespace in common with other InnoDB tables, not
within files specific to a particular table.) The various table types use files with the following

extensions:

Table Files on Disk

Type

ISAM frm (definition), .ISD (data), .ISM (indexes)

MyISAM frm (definition), .MYD (data), .MYI (indexes)

MERGE frm (definition), .MRG (list of constituent MyISAM table
names)

HEAP frm (definition)

BDB frm (definition), .db (data and indexes)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

InnoDB .frm (definition)

For any given table, the files specific to it are located in the directory that represents the database to
which the table belongs.

Table Type Portability Characteristics

Any table is portable to another server in the sense that you can dump it into a text file with
mysqldump, move the file to the machine where the other server runs, and load the file to recreate
the table. Portability as described in this section means that you can directly copy the files that
represent the table on disk to another machine, install them into a database directory, and expect the
MySQL server there to be able to use the table. Of course, HEAP tables do not satisfy this definition
because their contents are stored in memory, not on disk. Of the other table types, some are portable
and some are not:

® [SAM tables are stored in a machine-dependent format, so they are portable only between
machines that have identical hardware characteristics.

® BDB tables are not portable because the location of the table is encoded into the table's .db
file. This makes a BDB table location-specific within the file system of the machine on which
the table was created. (That's the conservative view of BDB portability. I have experimented
with BDB files in various ways, such as by moving them between database directories,
renaming the files to use a different basename, and so on. I have not observed ill effects. But
presumably it's better to play it safe and move BDB tables by dumping them with mysgldump
and re-creating them on the destination machine by reloading the dump file.)

® MyISAM and InnoDB tables are stored in machine-independent format and are portable,
assuming that your processor uses two's-complement integer arithmetic and IEEE floating-
point format. Unless you have some kind of oddball machine, neither of these conditions should
present any real issues. In practice, you're probably most likely to see portability-
compromising variation in hardware if you're using an embedded server built for a special-
purpose device, as these sometimes will use processors that have non-standard operating
characteristics.

® MERGE tables are portable as long as their constituent MyISAM files are portable.

In essence, the portability requirements for MyISAM and InnoDB tables are that they either contain no
floating-point columns or that both machines use the same floating-point storage format. "Floating-
point" means FLOAT and DOUBLE here. DECIMAL columns are stored as strings, which are portable.

Note that for InnoDB, portability must be assessed at the tablespace level, not at the table level. The
InnoDB handler stores the contents of all InnoDB tables within the tablespace rather than within
table-specific files. Consequently, it's the InnoDB tablespace files that are or are not portable, not
individual InnoDB tables. This means that the floating-point portability constraint applies if any
InnoDB table uses floating-point columns.

Regardless of a table type's general portability characteristics, you should not attempt to copy table or
tablespace files to another machine unless the server has been shut down cleanly. You cannot assume
the integrity of your tables if you perform a copy after an unclean shutdown; they may be in need of
repair or there may be transaction information still stored in a table handler's log files that needs to
be applied or rolled back to bring tables up to date.

Similarly, if the server is running and actively updating tables, the table contents on disk will be in
flux and the associated files will not yield usable table copies. In the case of a running server, you
may be able to tell it to leave the tables alone while you copy them. For details, see Chapter 13,
"Database Backups, Maintenance, and Repair."

Creating Tables

To create a table, use a CREATE TABLE statement. The full syntax for this statement is complex

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

because there are so many optional clauses, but in practice, it's usually fairly simple to use. For
example, all of the CREATE TABLE statements that we used in Chapter 1 are reasonably
uncomplicated. If you start with the more basic forms and work up, you shouldn't have much trouble.

The CREATE TABLE specifies, at a minimum, the table name and a list of the columns in it—for
example:

CREATE TABLE mytbl

(
name CHAR(20),
age INT NOT NULL,
weight INT,
sex ENUM('F','M")

)

In addition to the columns that make up a table, you can specify how the table should be indexed
when you create it. Another option is to leave the table unindexed when you create it and add the
indexes later. (For MyISAM and ISAM tables, that's a good strategy if you plan to populate the table
with a lot of data before you begin using it for queries. Updating indexes as you insert each row is
much slower for those table types than loading the data into an unindexed table and creating the
indexes afterward.)

We have already covered the basic syntax for the CREATE TABLE statement in Chapter 1 and
discussed how to write column definitions in Chapter 2. I assume you've read those chapters and
won't repeat that material here. Instead, the remainder of this section deals with some important
extensions to the CREATE TABLE statement that were introduced beginning with MySQL 3.23 and that
give you a lot of flexibility in how you construct tables:

® Table options that modify storage characteristics

® Creation of a table only if it doesn't already exist

® Temporary tables that are dropped automatically when the client session ends
® The capability of creating a table from the result of a SELECT query

® Using MERGE tables

Table Options

As of MySQL 3.23, you can add table options after the closing parenthesis in the CREATE TABLE
statement to modify the table's storage characteristics. For example, prior to MySQL 3.23, any table
created will be of type ISAM, because that is the only type available. From 3.23 on, you can add a
TYPE = tb/_type option to specify the type explicitly. For example, to create a HEAP or InnoDB table,
write the statement like this (the table type name is not case sensitive):

CREATE TABLE mytbl (...) TYPE = HEAP;
CREATE TABLE mytbl (...) TYPE = INNODB;

With no TYPE specifier, the server creates the table using its default type. This will be MyISAM unless
you reconfigure the server to use a different default, either when you build the server or by giving a --
default-table-type option at server startup time. If you specify a table type name that is syntactically
legal but for which the handler is unavailable, MySQL creates the table using the default type. If you
give an illegal table type, an error results.

Other table options can be given as well. Many of them apply only to particular table types. For
example, a MIN_ROWS = n option can be used with HEAP tables to allow the HEAP handler to optimize
memory usage:

CREATE TABLE mytbl (...) TYPE = HEAP MIN_ROWS = 10000;

If the handler considers the value of MIN_ROWS to be large, it may allocate memory in larger hunks

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to avoid the overhead of making many allocation calls.
A complete list of table options is given in the entry for CREATE TABLE in Appendix D.

For an existing table, table options can be used with an ALTER TABLE statement to modify the table's
current characteristics. For example, to change mytbl from its current table type to InnoDB, do this:

ALTER TABLE mytbl TYPE = INNODB;

The types allowed when you convert a table's type may depend on the feature compatibility of the old
and new types. Suppose you have a MyISAM table that includes a BLOB column. You will not be able
to convert the table to HEAP format because HEAP tables do not support BLOB columns.

Provisional Table Creation

To create a table only if it doesn't already exist, use CREATE TABLE IF NOT EXISTS. This feature is
available as of MySQL 3.23.0. You can use it for an application that makes no assumptions about
whether a table that it needs has been set up in advance. The application can go ahead and attempt
to create the table as a matter of course. The IF NOT EXISTS modifier is particularly useful for scripts
that you run as batch jobs with mysql. In this context, a regular CREATE TABLE statement doesn't
work very well. The first time the job runs, it creates the table, but the second time an error occurs
because the table already exists. If you use IF NOT EXISTS, there is no problem. The first time the job
runs, it creates the table, as before. For the second and subsequent times, table creation attempts are
silently ignored without error. This allows the job to continue processing as if the attempt had
succeeded.

Temporary Tables

You can use CREATE TEMPORARY TABLE to create temporary tables that disappear automatically when
your session ends. This is handy because you don't have to bother issuing a DROP TABLE statement
explicitly to get rid of the table, and the table doesn't hang around if your session terminates
abnormally. For example, if you have a canned query in a batch file that you run with mysgl and
decide not to wait for it to finish, you can kill the script in the middle with impunity and the server will
remove any temporary tables that the script creates.

A temporary table is visible only to the client that creates the table. The name can be the same as
that of an existing permanent table. This is not an error, nor does the existing permanent table get
clobbered. Instead, the permanent table becomes hidden (inaccessible) while the temporary table
exists. Suppose you create a temporary table in the sampdb database named member. The original
member table becomes hidden, and references to member refer to the temporary table. If you issue a
DROP TABLE member statement, the temporary table is removed and the original member table
"reappears." If you simply disconnect from the server without dropping the temporary table, the
server automatically drops it for you. The next time you connect, the original member table is visible
again. (The original table also reappears if you rename a temporary table that hides it to have a
different name. If the temporary table's new name happens to be that of another permanent table,
that table becomes hidden while the temporary table has its name.)

The name-hiding mechanism works only to one level. That is, you cannot create two temporary tables
with the same name.

A TEMPORARY table can be created with a particular storage format by using a TYPE option. (Prior to
MySQL 3.23.54, a MERGE table cannot be TEMPORARY.)

Prior to MySQL 3.23.2, TEMPORARY is unavailable, so there are no true temporary tables except in the
sense that you consider them temporary in your own mind. You must remember to drop such a table
yourself. If you forget, the table hangs around until you notice and remove it. Table persistence also
occurs if an application creates a table but exits early due to an error before it can drop the table.

Creating Tables from SELECT Query Results

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

One of the key concepts of relational databases is that everything is represented as a table of rows
and columns, and the result of every SELECT is also a table of rows and columns. In many cases, the
"table" that results from a SELECT is just an image of rows and columns that scroll off the top of your
display as you continue working. But sometimes it is desirable to save a query result in another table
so that you can refer to it later.

As of MySQL 3.23.0, you can do that easily. Use a CREATE TABLE ... SELECT statement to cause a new
table to spring into existence on-the-fly to hold the result of an arbitrary SELECT query. You can do
this in a single step without having to know or specify the data types of the columns you're retrieving.
This makes it exceptionally easy to create a table fully populated with the data you're interested in,
ready to be used in further queries. For example, the following statement creates a new table named
student_f that consists of information for all female students in the student table:

CREATE TABLE student_f SELECT * FROM student WHERE sex = 'f';

To copy an entire table, omit the WHERE clause:

CREATE TABLE new_tbl_name SELECT * FROM tb/_name;

Or, to create an empty copy, use a WHERE clause that always evaluates to false:
CREATE TABLE new_tbl_name SELECT * FROM tb/_name WHERE 0;

Creating an empty copy of a table is useful if you want to load a data file into the original table using
LOAD DATA, but you're not sure if you have the options for specifying the data format quite right. You
don't want to end up with malformed records in the original table if you don't get the options right the
first time! Using an empty copy of the original table allows you to experiment with the LOAD DATA
options for specifying column and line delimiters until you're satisfied your input records are being
interpreted properly. After you're satisfied, you can load the file into the original table. Do that either
by rerunning the LOAD DATA statement with the original table name or by copying the data into it
from the copy:

INSERT INTO orig_tb/ SELECT * FROM copy._thl;

You can combine CREATE TEMPORARY TABLE with SELECT to retrieve a table's contents into a
temporary copy of itself:

CREATE TEMPORARY TABLE mytbl SELECT * FROM mytbl;

That allows you to modify the contents of mytbl without affecting the original, which can be useful
when you want to try out some queries that modify the contents of the table, but you don't want to
change the original table. To use pre-written scripts that use the original table name, you don't need
to edit them to refer to a different table; just add the CREATE TEMPORARY TABLE statement to the
beginning of the script. The script will create a temporary copy and operate on the copy, and the
server will delete the copy when the script finishes. (One caution to observe here is that some clients,
such as mysql, attempt to reconnect to the server automatically if the connection drops. Should this
happen when you're working with the temporary table, it will be dropped and the queries executed
subsequent to reconnecting will use the original table. Keep this in mind if you have an unreliable
network.)

To create a table as an empty copy of itself, use a WHERE clause that is never true in conjunction with
CREATE TEMPORARY TABLE ... SELECT:

CREATE TEMPORARY TABLE mytbl SELECT * FROM mytbl WHERE 0;

Creating a table on-the-fly from the results of a SELECT statement is a powerful capability, but there
are several issues to consider when doing this.

With CREATE TABLE ... SELECT, you should use aliases as necessary to provide reasonable column

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

names. When you create a table by selecting data into it, the column names are taken from the
columns that you are selecting. If a column is calculated as the result of an expression, the "name" of
the column is the text of the expression. Prior to MySQL 3.23.6, the following statement will fail
outright, because expressions aren't legal as column names:

mysql> CREATE TABLE mytbl SELECT PI();
ERROR 1166: Incorrect column name 'PI()'

From 3.23.6 on, column naming rules are relaxed, so the statement will succeed but create a table
with an unusual column name:

mysqgl> CREATE TABLE mytbl SELECT PI();
mysql> SELECT * FROM mytbl;

Hommmme- +
| PIO |

Hommmnnees +
| 3.141593 |
s +

That's unfortunate, because the column name can be referred to directly only by enclosing it within
backticks:

mysql> SELECT PI()" FROM mytbl;

dommmmeeee +
| PIO |

dommmneee +
| 3.141593 |
Fommmmn- +

To provide a column name that is easier to work with when selecting an expression, use an alias:

mysql> CREATE TABLE mytbl SELECT PI() AS mycol;
mysql> SELECT mycol FROM mytbl;

o +
| mycol |

o +
| 3.141593 |
o +

A related snag occurs if you select columns from different tables that have the same name. Suppose
tables t1 and t2 both have a column ¢ and you want to create a table from all combinations of rows in
both tables. The following statement will fail because it attempts to create a table with two columns
named C:

mysql> CREATE TABLE t3 SELECT * FROM t1, t2;
ERROR 1060: Duplicate column name 'c'

You can provide aliases to specify unique column names in the new table:
mysql> CREATE TABLE t3 SELECT tl.c AS c1, t2.c AS c2 FROM t1, t2;

Another thing to watch out for is that characteristics of the original table that are not reflected in the
selected data will not be incorporated into the structure of the new table. For example, creating a
table by selecting data into it does not automatically copy any indexes from the original table,
because result sets are not themselves indexed. Similarly, column attributes such as
AUTO_INCREMENT or the default value may not be carried into the new table. (Newer versions do
better than older ones.) In some cases, you can force specific attributes to be used in the new table
by invoking the CAST() function, which is available as of MySQL 4.0.2. The following CREATE TABLE ...
SELECT statement forces the columns produced by the SELECT to be treated as INT UNSIGNED, DATE,
and CHAR BINARY, which you can verify with DESCRIBE:

mysql> CREATE TABLE mytbl SELECT
-> CAST(1 AS UNSIGNED) AS i,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

-> CAST(CURDATE() AS DATE) AS d,
-> CAST('Hello, world' AS BINARY) AS c;
mysql> DESCRIBE mytbl;

+ + + + } + +
| Field | Type | Null | Key | Default | Ex