This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SQL Tips and Techniques
by Konrad King and Kris Jamsa (ed) ISBN:1931841454
Premier Press © 2002 (1127 pages)

TS & For programming beginners or seasoned professionals, this all-in-one reference
TECHA LGS -

presents everything you need to know about SQL.
=

Table of Contents

SQL Ti T)
Chapter 1 - Understanding SQL Basics and Creating Database Files

_Using SQL Data Definition Language (DDL) to Create Data Tables
Chapter 2 and Other Database Objects

_Using SQL Data Manipulation Language (DML) to Insert and
Chapter 3 Manipulate Data Within SQL Tables

Chapter 4 - Working with Queries, Expressions, and Aggregate Functions
Chapter 5 - Understanding SQL Transactions and Transaction Logs
Chapter 6 - Using Data Control Language (DCL) to Setup Database Security
Chapter 7 - Creating Indexes for Fast Data Retrieval

Chapter 8 - Using Keys and Constraints to Maintain Database Integrity
Chapter 9 - Performing Multiple-table Queries and Creating SQL Data Views

Chapter 10 - Working with Functions, Parameters, and Data Types
Chapter 11 - Working with Comparison Predicates and Grouped Queries

Working with SQL JOIN Statements and Other Multiple-table
Queries

Chapter 13 - Understanding SQL Subqueries

Understanding Transaction Isolation Levels and Concurrent
Processing

_ Writing External Applications to Query and Manipulate Database
Data

h r 16 - Retrieving and Manipulating Data Through Cursors
Chapter 17 - Understanding Triggers
Chapter 18 - Working with Data BLOBs and Text
Working with Ms-sqgl Server Information Schema View
Monitoring and Enhancing MS-SQL Server Performance
Chapter 21 - Working with Stored Procedures
Chapter 22 - Repairing and Maintaining MS-SQL Server Database Files
Chapter 23 - Writing Advanced Queries and Subqueries
Chapter 24 - Exploiting MS-SQL Server Built-in Stored Procedures
Chapter 25 - Working with SQL Database Data Across the Internet
Index
List of Figures
List of Tables

[Team LiB | ok

!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Back Cover

Beginning with tips for the person who is programming with SQL for the first time, SQL Tips and
Techniques grows with your skills. You can start with Tip 1, "Understanding the Definition of a Database,"
and by the last Tip, "Displaying Image Data Stored Within a SQL Table," you will have covered all aspects
of SQL.

Covers all aspects of SQL!

* Increasing Security and Simplifying Multiple Table Queries with Views

e Maintaining Data Integrity with Primary and Foreign Key Constraints

e Automating Tasks with Stored Procedures and Triggers

e Treating Multiple Update, Delete, and Insert Statements as a Single Transaction

e Using a Trigger to Send an Email Message

e Implementing Database Security by Controlling Access Rights to Database Objects
e Creating Indexes to Speedup Database Query Execution

* Writing a Visual Basic Application to Work with Database Data

e Building Dynamic Web Pages

* Using Queries to Generate Recordsets and Updateable Cursors

e Using Nested Queries to Work with Multiple Tables

e Implementing a Backup Strategy and Using Transaction Logs to Restore a Database
e Changing Values in Multiple Rows at Once

e Executing Dynamic SQL Statements

e Combining the Results of Multiple Queries, and Much, Much More!

About the Author

Konrad King is a programmer and database administrator who lives in Las Vegas, Nevada. A graduate of
the U.S. Air Force Academy, King is well versed in real-time programming, network protocols, and Web-
based applications, as well as database administration. He is the author of Hands On PowerPoint 2000 from
Premier Press.

About the Contributing Editor

Kris Jamsa, Ph.D., MBA is the author of more than 85 computer books, with cumulative sales of several
million copies. In 1992, Jamsa and his wife Debbie founded Jamsa Press, a computer-book publishing
company. After expanding the company's presence to 70 countries and 28 languages, Jamsa sold Jamsa
Press to a larger publishing house. Today, Jamsa is the founder of the Jamsa Media Group, which produces
high-quality computer books.

[Toam LiB |
[« Pasvisus]fimxt 3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [PRwvisuE]
SQL Tips and Techniques

KONRAD KING

CONTRIBUTING EDITOR KRIS JAMSA,

PH.D., M.B.A.

Fremier

Press
Copyright © 2002 by Premier Press, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or by any information storage or retrieval system without written permission from Premier
Press, except for the inclusion of brief quotations in a review.

JVIz

'Hjlﬂ Ej |:||]|:| The Premier Press logo, top edge printing, and related trade dress are trademarks of Premier Press, Inc.
and may not be used without written permission. All other trademarks are the property of their respective owners.

Publisher: Stacy L. Hiquet

Marketing Manager: Heather Buzzingham
Managing Editor: Sandy Doell

Editorial Assistant: Margaret Bauer
Technical Reviewers: David Fields
Michael Stavros

Book Production Services: Argosy
Cover Design: Phil Velikan

Important: Premier Press cannot provide software support. Please contact the appropriate software manufacturer's technical
support line or Web site for assistance.

Premier Press and the author have attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Premier Press from sources believed to be reliable. However, because of
the possibility of human or mechanical error by our sources, Premier Press, or others, the Publisher does not guarantee the
accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the fact that the Internet is an ever-changing entity. Some
facts may have changed since this book went to press.

ISBN: 1-931841-45-4

Library of Congress Catalog Card Number: 00104878
Printed in the United States of America
0203040506 RI10987654321

About the Author

Konrad King has been writing programs and working with computers since taking night school classes at Lancaster Community
College (studying COBOL) while a junior in high school. After graduating as class valedictorian from Mojave High School, Konrad
attended the U.S. Air Force Academy and earned a bachelor of science degree in computer science. In addition to other
academic awards, Konrad graduated third in his class overall from the Air Force Academy and was presented the Eagle and
Fledglings award as the top computer science major.

In 1984, Konrad entered the Air Force as a commissioned officer and served for four years as the systems manager for the Data
General MV series of minicomputers. In this capacity, Konrad worked with the vendor on hardware and software maintenance
agreements; oversaw the purchase of several millions of dollars in equipment; implemented a comprehensive backup strategy;
managed and maintained all computer systems and application programs; and also wrote real-time data collection programs in
FORTRAN.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

After leaving the Air Force in 1988, Konrad started his own consulting business in Las Vegas. His primary focus has been on
developing enterprise database systems that allow his clients to run all aspects of their business by using a set of custom, user-
friendly applications. To this end, Konrad has written interface programs in both Dbase and Dataflex relational database systems,
and more recently Visual C++ and Visual Basic applications for Microsoft, Oracle, and Sybase SQL DBMS products. In addition to
honing his programming skills by writing countless lines of code that capture data and produce critical management and
production reports, Konrad has amassed a large pool of knowledge in the areas of Windows (NT/2000/XP) networking, Novell
networks, and SQL DBMS installation, backup, and performance. Konrad has worked with mainframes, minicomputers, PCs both
on a software and hardware level—having built both PCs and PC-based networks from the ground up.

Konrad's latest efforts include designing and implementing several Web sites that allow his clients to improve customer
relationships and expand their businesses through e-commerce. Using a combination of ASP Scripts, Java applets, and ActiveX
Objects, Konrad's Web sites allow customers to contact service personnel by establishing two-way communication across the
Internet, view their SQL server based account information online, and use credit cards to make purchases on secure Web
servers.

In his spare time, Konrad has further augmented his 21-year career in the computer industry by authoring, co-authoring, and
technical editing several computer books by award-winning authors. His authoring credits include books on PowerPoint,
FrontPage, Microsoft SQL Server, and Oracle SQL database installation, performance tuning, and programming, Web server
security and installation, and Web site design and implementation using Active Server Pages, Perl, JavaScript, and Visual Basic.

You can reach Konrad at <kki@NVBizNet.com>.
Acknowledgments

It is especially difficult to thank everyone involved in the process of converting an author's expertise and experiences into a
finished manuscript available at the reader's fingertips. Please take a few moments to review the list of dedicated professionals on
the Premier Press and Argosy teams that made this book a reality. Without them, the information within these pages would not be
before you today. The excellent quality of the book's content is a direct result of their efforts.

First, let me express additional thanks to Stacy Hiquet, who saw both the book's potential and provided the firm hand and patience
to keep the project moving along. Throughout the process, Stacy always had a kind word and a cheerful attitude that made writing
the book a pleasure. Thank you, Stacy, for giving me a chance to produce some of my best work.

Thanks also to Daniel Rausch and Adriana Lavergne at Argosy for making available the editorial staff that had both in-depth
technical knowledge and a firm grasp of how to present difficult concepts in a clear and concise manner. The quality and
consistency of the book's text and illustrations would not have been possible without the superb efforts of its project managers.

A special thanks also to Lorraine Cooper, Krista Hansing, Elizabeth Agostinelli, David Fields, and the rest of the editorial team that
spent their valuable time editing, organizing, and making the technical content both interesting and easy to read. Working behind
the scenes, the editorial staff is often underappreciated. Thank you all so much for your insights, candor, and selfless
contributions of content that brought the book's quality to the excellent level readers expect from Premier Press books. | look
forward to the challenge of submitting work that meets your high standards again on future projects.

Thanks also to my friend Kris Jamsa whose technical expertise on a seemingly limitless range of subjects never ceases to amaze
me. Kris, thank you for giving me the opportunity to work with you on projects and for raising the bar of writing excellence ever
higher with each book. Every author needs a great coach to produce his best work and every person needs true friends to make it
through the trials and tribulations of life. You're both a great coach and excellent friend who has changed my life (and writing) for
the better over the years.

Last, and definitely not least, a very special thanks goes to my wife and love of my life, Karen King. Her encouragement gets me
over the "blank page" stage at the start of each chapter, helps me work through the "Why isn't this code working?" rough spots in
the middle, and she makes sure that | finish every project with an "atta-boy" and "just do it!" attitude that keep me working. Karen,
I love you and | couldn't (and wouldn't want to) do it without you!

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« rrnvisus]flveixt o]
Chapter 1: Understanding SQL Basics and Creating Database Files

1 Understanding the Definition of a Database

Many people use the term database to mean any collection of data items. Working as a consultant, I've been called onsite to
repair a database, only to find that the client was referring to a customer list in a Corel WordPerfect document that appeared
"corrupted" because someone had changed the document's margins. Microsoft and Lotus have also blurred the lines between
application data and a database by referring to "database" queries in help screens about searching the information stored in the
cells that make up their competing spreadsheet products.

As the name implies, a database contains data. The data is organized into records that describe a physical or conceptual object.
Related database records are grouped together into tables. A customer record, for example, could consist of data items, or
attributes, such as name, customer number, address, phone number, credit rating, birthday, anniversary, and so on. In short, a
customer record is any group of attributes or characteristics that uniquely identify a person (or other business), making it possible
to market the customer for new business or to deliver goods or services. A customer table, then, is a collection of customer
records. Similarly, if a business wants to track its inventory (or collection of goods for sale), it would create an inventory table
consisting of inventory records. Each inventory record would contain multiple attributes that uniquely describe each item in the
inventory. These attributes might include item number, description, cost, date manufactured or purchased, and so on.

While a flat file (which we'll discuss in Tip 2, "Understanding Flat Files,") contains only data, a database contains both data and
metadata. Metadata is a description of:

= The fields in each record (or columns in a table)

= The location, name, and number of records in each table

= The indexes used to find records in tables

= The value constraints that define the range of values that can be assigned to individual record attributes (or fields)

= The key constraints that define what records can be added to a table and that limit the way in which records can be
removed; also the relationship between records in different database tables

While the data in a database is organized into related records within multiple tables, the metadata for a database is placed in a
single table called the data dictionary.

In short, a database is defined as a self-describing collection of records organized into tables. The database is self-describing
because it contains metadata in a data dictionary table that describes the fields (or attributes) in each record (or table row) and the

structure that groups related records into tables.
[PRsviava]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
2 Understanding Flat Files

Flat files are collections of data records. When looking at the contents of a flat file, you will not find any information (metadata) that
describes the data in the file. Instead, you will see row after row of data such as the following:

010000BREAKFAST JUICES F00.000000
010200TREE TOP APPLE JUICE 120ZF01.100422
010400WELCHES GRAPE JUICE 1202F00.850198
010600MINUTE MAID LEMONADE 120ZF00.850083
010800MINUTE MAID PINK LEMONADE 120ZF00.890099
011000MINUTE MAID ORANGE JUICE 120ZF01.260704
011400MINUTE MAID FRUIT PUNCH 120ZF00.820142
011600CAMPBELLS CAN TOMATO JUICE 4602G01.200030
020000FAMOUS BRAND CEREALS G01.200000
020200GENERAL MILLS CHEERIOS 1502G03.010050

Looking at the flat file listing, you can see that the file contains only data. Spaces are used to separate one field from another and
each non-blank line is a record. Each application program reading the data file must "know" the number of characters in each
"field" and what the data means. As such, programs must have lines of code that read the first 6 characters on a line as an item
number and the next 32 characters as a description, followed by a 1-character department indicator, followed by a 5-character
sales price, and ending with a 4-digit average count delivered each week. COBOL programs using flat files had a "File
Description" that described the layout of each line (or record) to be read. Modern programming languages such as Pascal, C, and
Visual Basic let you read each line of the flat file as a text string that you can then divide into parts and assign to variables whose
meanings you define elsewhere in the application. The important thing to understand is that every program using a flat file must
have its own description of the file's data. Conversely, the description of the records in a database table is stored in the data
dictionary within the database itself. When you change the layout of the records in a flat file (by inserting a five-character item cost
field after the sales price, for example), you must change all of the programs that read data from the flat file. If you change the
fields in a database record, you need change only the data dictionary. Programs reading database records need not be changed
and recompiled.

Another difference between flat files and a database is the way in which files are managed. While a database file (which consists
of one or more tables) is managed by the database management system (DBMS), flat files are under the control of the computer
operating system's file management system. A file management system, unlike a DBMS, does not keep track of the type of data a
file contains. As such, the file system handles word-processing documents, spreadsheets, and graphic images the same way—it
keeps track of each file's location and size. Every program that works with a flat file must have lines of code that define the type of
data inside the file and how to manipulate it. When developing applications that work with database tables, the programmer needs
to specify only what is to be done with the data. While the programmer working with a flat file must know how and where the data
is stored, the database programmer is freed from having to know these details. Instead, of having to program how the file
manager is to read, add, or remove records, the database programmer needs to specify only which actions the DBMS is to take.
The DBMS takes care of the physical manipulation of the data.

Unfortunately, each operating system (DOS, Windows, Unix, and OS2, to name a few) has a different set of commands that you
must use to access files. As a result, programs written to use flat file data are not transportable from one operating system to
another since the data-manipulation code is often specific to a particular hardware platform. Conversely, programs written to
manipulate database data are transportable because the applications make use of high-level read, write, and delete commands
sent to the DBMS, which performs the specific steps necessary to carry them out. A delete command sent to the DBMS by an
application running on a Unix system is the same delete command a DBMS running on Windows NT expects to see. The physical
steps taken to carry out the command differ, but these steps are handled by the DBMS and hidden from the application program.

Thus, the major differences between a flat file and a database are that the flat file is managed by the operating system's file
management system and contains no description of its contents. As a result, application programs working with a flat file must
include a definition of the flat file record layout, code that specifies the activity (read, write, delete) to be performed, and low-level
operating system-specific commands to carry out the program's intent. A database, on the other hand, is managed by the DBMS
that handles the low-level commands that manipulate the database file data. In short, programs that work with flat files define the
data and the commands that specify what to do and how to do it. Programs that work with a database specify only what is to be

done and leave the details of how it is to be done to the DBMS.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3 Understanding the Hierarchical Database Model

A hierarchical database model consists of data arranged into a structure that looks a lot like a family tree or company
organizational chart. If you need to manage data that lends itself to being represented as parent/child relationships, you can make
use of the hierarchical database model. Suppose, for example, that you have a home food delivery service and need to know how
much of each grocery item you have to purchase in order to fill your customer orders for a particular delivery date. You might
design your database using the hierarchical model similar to that shown in Figure 3.1.

- o LS T

Figure 3.1: Hierarchical database model with ORDER/ITEM parent/child relationships

In a hierarchical database, each parent record can have multiple child records; however, each child must have one and only one
parent. The hierarchical database for the home food delivery service orders consists of two tables: ORDER (with fields:
CUSTOMER NUMBER, ORDER NUMBER, DELIVERY DATE) and ITEM (with fields: ITEM NUMBER, QUANTITY). Each
ORDER (parent) record has multiple ITEM (child) records. Conversely, each ITEM (child) record has one parent—the ORDER
record for the date on which the item is to be delivered. As such, the database conforms to the hierarchical database model.

To work with data in the database, a program must navigate its hierarchical structure by:

= Finding a particular parent or child record (that is, find an ORDER record by date, or find an ITEM by ITEM
NUMBER)

= Moving "down," from parent to child (from ORDER to ITEM)
= Moving "up," from child to parent (from ITEM to ORDER)
= Moving "sideways," from child to child (from ITEM to ITEM) or parent to parent (from ORDER to ORDER)

Thus, to generate a purchase order for the items needed to fill all customer orders for a particular date, the program would:
1. Find an ORDER record for a particular date.

2. Move down to the first ITEM (child) record and add the amount in the quantity field to the count of that item
number to be delivered. For example, if the first item were item number 10 with a quantity of 5, the program
would add 5 to the count of item 10s to be delivered on the delivery date.

3. Move sideways to the next ITEM (child) record and add the amount in its quantity field to the count of that item
number to be delivered. For example, if the next ITEM (child) record for this order were 15 with a quantity of 4,
the program would add 4 to the count of item 15s to be delivered on the delivery date.

4. Repeat Step 3 until there are no more child records.
5. Move up to the ORDER (parent) record.

6. Move sideways to the next ORDER (parent) record. If the ORDER record has a delivery equal to the one for
which the program is generating the purchase order, continue at Step 2. If there are no more ORDER records,
or if the delivery date in the ORDER record is not equal to the date for which the program is generating a
purchase order, continue at Step 7.

7. Output the purchase order by printing the item number and quantity to be delivered for each of the items with a
nonzero delivery count.

The main advantages of the hierarchical database are:

= Performance. Navigating among the records in a hierarchical database is very fast because the parent/child
relationships are implemented with pointers from one data record to another. The same is true for the sideways
relationships from child to child and parent to parent. Thus, after finding the first record, the program does not have
to search an index (or do a table scan) to find the next record. Instead, the application needs only to follow one of
the multiple child record pointers, the single sibling record pointer, or the single parent record pointer to get to the
"next" record.

= Ease of understanding. The organization of the database parallels a corporate organization chart or family tree.
As such, it has a familiar "feel" to even nonprogrammers. Moreover, it easily depicts relationships where A is a part
of B (as was the case with the order database we discussed, where each item was a part of an order).

The main disadvantage of the hierarchical database is its rigid structure. If you want to add a field to a table, the database
management system must create a new table for the larger records. Unlike an SQL database, the hierarchical model has no
ALTER TABLE command. Moreover, if you want to add a new relationship, you will have to build a new and possibly redundant
database structure. Suppose, for example, that you want to track the orders for both a customer and all of the customers for a
salesperson; you would have to create a hierarchical structure similar to that shown in Figure 3.2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 3.2: Hierarchical database model with SALESMAN, CUSTOMER, and ORDER relationships

If you just rebuild the ORDER records to include the salesman and leave the database structure as shown in Figure 3.1, your
application would have to visit each and every ORDER record to find all of the customers for a particular salesman or all of the
orders for a particular customer. Remember, each record in the hierarchical model has only one sibling pointer for use in moving
laterally through the database. In our example database, ORDER records are linked by delivery date to make it easy to find all
orders for a particular delivery date. Without knowing the date range in which a particular customer placed his or her order(s), you
have to visit every ORDER record to see if it belongs to a specific customer. If you decide to restructure the original database
instead of creating the redundant ORDER table, you increase the time it takes to find all of the orders for a particular delivery date.
In the restructured database, moving laterally at the ORDER record level of the tree gives you only the ORDER records for a
particular customer, since ORDER records are now children of a CUSTOMER record parent.

[PRwvisua]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiE | [raivisus]fiie +]
4 Understanding the Network Database Model

The network database model extends the hierarchiear model by allowing a record to participate in multiple parent/child
relationships. In order to be helpful, a database model must be able to represent data relationships in a database to mirror those
we see in the real world. One of the shortcomings of the hierarchical database model was that a child record could have one and
only one parent. As a result, if you needed to model a more complex relationship, you had to create redundant tables. For
example, suppose you were implementing an order-processing system. You would need at least three parent/child relationships
for the same ORDER record, as shown in Figure 4.1.

Figure 4.1: Database requiring multiple parent/child relationships

You need to be able to print out an invoice for the orders placed by your customers, so you need to know which orders belong to
which customer. The salesmen need to be paid commissions, so you need to know which orders each of them generated. Finally,
the production department needs to know which parts are allocated to which orders so that it can assemble the orders and
maintain an inventory of products to fill future orders.

If you were to use the hierarchical model, you would have to produce three ORDER tables, one for each of the three parents of
each ORDER record. Redundant tables take up additional disk space and increase the processing time required to complete a
transaction. Consider what happens if you need to enter an order into a hierarchical database that has redundant ORDER tables.
In the current example with three parent/child relationships to ORDER records, the program must insert each new ORDER record
into three tables. Conversely, if you had a database that allowed a record to have more than one parent, you would have to do
only a single insert.

In addition to allowing child records to have multiple parents, the network database model introduced the concepts of "sets" to the
database processing. Using the network database model, you could structure the order-processing database relationships shown

in Figure 4.1 as shown in Figure 4.2.

Figure 4.2: A database for an order-processing system based on the network database model

Look at Figure 4.2, and you will see that ORDER 101 and ORDER 103 belong to (or are the children of) CUSTOMER 10.
Meanwhile, ORDER 102, ORDER 105, and ORDER 106 belong to CUSTOMER 11. As mentioned previously, the network
database model applies set concepts to database processing. Refer again to Figure 4.2, and note that the orders that belong to
CUSTOMER 10 (ORDER 101 and ORDER 103) are defined as the Customer Order Set for CUSTOMER 10. Similarly, ORDERS
102, 105, and 106 are the Customer Order Set for CUSTOMER 11. Moving next to the SALESMEN records, you can see that
SALESMAN 5 was responsible for ORDER 101 and ORDER 102. Meanwhile SALESMAN 6 was responsible for ORDER 103 and
ORDER 105. Thus, the Salesman Order Set for SALESMAN 5 consists of ORDERS 101 and 102, and the Salesman Order Set
for SALESMAN 6 includes ORDERS 103 and 105. Finally, moving on to the PRODUCTS table, you can see that that PRODUCT
7 is on ORDER 101 and ORDER 103. PRODUCT 12, meanwhile, is on ORDER 102 and ORDER 104. As such, the Product
Order Set for PRODUCT 7 consists of ORDERS 102 and 104; while the Product Order Set for PRODUCT 12 includes ORDERS
102 and 104.

Note The company will, of course, have more customers, salesmen, products, and orders than those shown in Figure 4.2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The additional customers, salesmen, and products would be represented as additional parent records in their
respective tables. Meanwhile, each of the additional ORDER (child) records in the ORDER table would be an element
in each of the three record sets (Customer Order Set, Salesman Order Set, and Product Order Set).

To retrieve the data in the database, a program must navigate the hierarchical structure by:
= Finding a parent or child record (finding a SALESMAN by number, for example)
= Moving "down," from parent to the first child in a particular set (from SALESMAN to ORDER, for example)

= Moving "sideways," from child to child in the same set (from ORDER to ORDER, for example), or from parent to
parent (from CUSTOMER to CUSTOMER, SALESMAN to SALESMAN, or PRODUCT to PRODUCT)

= Moving "up," from child to parent in the same set, or from child to parent in another set (from ORDER to
SALESMAN or from ORDER to PRODUCT or from ORDER to CUSTOMER)

Thus, getting information out of a network database is similar to getting data out of the hierarchical database-the program moves
rapidly from record to record using a pointer to the "next" record. In the network database, however, the programmer must specify
not only the direction of the navigation (down, sideways, or up), but also the set (or relationship) when traveling up (from child
record to parent) and sideways (from child to child in the same set).

Because the network database model allows a child record to have multiple parent records, an application program can use a
single table to report on multiple relationships. Using the order-processing database example, a report program can use the
ORDER table to report which orders include a particular product, which customers bought the product, and which salesmen sold it
by performing the following steps:

1. Find a PRODUCT record by description or product number.
2. Move down to the first ORDER record (which contains the product) in the Product Order Set.

3. Find the CUSTOMER that ordered the product (placed the order) by moving up to the parent of the Customer
Order Set.

4. Return to the child ORDER record by moving back down the link ascended in Step 3.

5. Find the SALESMAN that sold the product (got the customer to place the order) by moving up to the parent of
the Salesman Order Set.

6. Return to the child ORDER record by moving back down the link ascended in Step 5.

7. Move sideways to the next ORDER (child) record in the Product Order Set. If there is another child record,
continue at Step 2.

The main advantages of the hierarchical database are:

= Performance. Although the network database model is more complex than the hierarchical database model (with
several additional pointers in each record), its overall performance is comparable to that of its predecessor. While
the DBMS has to spend more time maintaining record pointers in the network model, it spends less time inserting
and removing records due to the elimination of redundant tables.

= Ability to represent complex relationships. By allowing more than one parent/child link in each record, the
network database model lets you extract data based on multiple relationships using a single table. While we
explored using the network database to get a list of all customers that purchased a product and all salesmen that
sold the product, you could also get a list of the orders placed by one or all of the customers and a list of sales
made by one salesman or the entire sales force using the same network database structure and the same set of
tables.

Unfortunately, the network database model, like its hierarchical rival, has the disadvantage of being inflexible. If you want to add a
field to a table, the DBMS must create a new table for the larger records. Like the hierarchical model (and, again, unlike an SQL
relational database), the network model has no ALTER TABLE command. Moreover, rebuilding a table to accommodate a change
in a record's attributes or adding a new table to represent another relationship requires that a majority of the network database's
record links be recalculated and updated-this translates into the database being inaccessible for extended periods of time to make

even a minor change to a single table's fields.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lib [« rxsviour]
5 Understanding the Relational Database Model

While the relational database model did not appear in commercial products until the 1980s, Dr. Edgar F. Codd of IBM defined the
relational database in 1970. The relational model simplifies database structures by eliminating the explicit parent/child relationship
pointers. In a relational database, all data is organized into tables. The hierarchical and network database records are represented
by table rows, record fields (or attributes) are represented as table columns, and pointers to parent and child records are
eliminated.

A relational database can still represent parent/child relationships, it just does it based on data values in its tables. For example,
you can represent the complex Network database model data shown in Figure 4.2 of Tip 4 with the tables shown in Figure 5.1.

| Customer Table

[10 |[FIELDS || sALLY
[11 |[cLeaver ||waARD

|
[cusT_NO |[LAST_NAME || FIRST NAME |
|
|

| Salesman Table

|
| saLEsMAN NO || LAST NAME || FIRST_NAME |
|
|

[5 | KING || KAREN

l6 || HARDY [ROBERT

| Product Table |
[ProbuUCT NO || DEscriPTION || sALEs_PRICE || INv_counT |

[7 || 100 WATT SPEAKER || 75.00 || 25 |

8 || DVD PLAYER | 90.00 || 15 |

[9 | AMPLIFIER I 450.00 || 305 |
[10 |[RECEIVER I 750.00 || 25 |
[11 |[REMOTE coNTROL || 2500 || 15 |
[12 |[50 bvD PACK I 500.00 || 25 |
|OrderTabIe |
| orDERNO || DEL DATE || PRODUCT NO || SALESMAN_NO || cusT NO |
[101 lo1/15/2000 |[7 IE 10 |
[102 |[01/2212000 |[12 |5 11 |
[103 [03/152000 |[7 6 [10 |
[104 |[04/05/2000 || 12 |7 [12 |
[105 |[07/05/2000 ||9 Il 11 |
[106 |[08/09/2000 |7 I[8 11 |

Figure 5.1: ORDER_ TABLE with relationships to three other tables

In place of pointers, the relational database model uses common columns to establish the relationship between tables. For
example, looking at Figure 5.1, you will see that the CUSTOMER, SALESMAN, and PRODUCT tables are not related because
they have no columns in common. However, the ORDER table is related to the CUSTOMER table by the CUSTOMER_NO
column. As such, an ORDER table row is related to a CUSTOMER table row where the CUSTOMER_NO column has the same
value in both tables. Figure 5.1 shows CUSTOMER 10 owns ORDER 101 and ORDER 103 since the CUST_NO column for these
two ORDER rows is equal to the CUSTOMER_NO column in the CUSTOMER table. The SALESMAN and PRODUCT tables are
related to the ORDER table in the same manner. The SALESMAN table is related to the ORDER table by the common
SALESMAN_NO column, and the PRODUCT table is related to the ORDER table by the PRODUCT_NO column.

As you may have noticed from the discussion of the hierarchical model in Tip 3, "Understanding the Hierarchical Database
Model," and the network model in Tip 4, applications written to extract data from either of these models had the database
structures "hard-coded" into them. To navigate the records in the network model, for example, the programmer had to know what
pointers were available and what type of data existed at each level of the database tree structure. Knowing the names of the
pointers let the programmer move up, down, or across the database tree; knowing what data was available at each level of the
tree told the programmer the direction in which to move. Because record relationships based on pointers are hard-coded into the
application, adding a new level to the tree structure requires that you change the application program's logic. Even just adding a
new attribute to a network database record changes the location of the pointer within the record changes. As a result, any
changes to a database record require that the application programs accessing the database be recompiled or rewritten.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When working with a relational database, you can add tables and add columns to tables to create new relationships to the new
tables without recompiling existing applications. The only time you need to recompile an application is if you delete or change a
column used by that program. Thus, if you want to relate an entry in the SALESMAN table to a customer (in the CUSTOMER
table), you need only add a SALESMAN_NO column to the CUSTOMER table.

[« Favisas [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

6 Understanding Codd's 12-Rule Relational Database Definition

Dr. Edgar F. Codd published the first theoretical model of a relational database in an article entitled "A Relational Model of Data
for Large Shared Data Banks" in the Communications of the ACM in 1970. The relational model was theoretical at the time
because all commercially available database management systems were based on either the hierarchical or the network database
models. Although Dr. Codd worked for IBM, it was Oracle that brought the first database based on the relational model to market
in 1980—10 years later! While Dr. Codd's 12 rules are the semi-official definition of a relational database, and while many
commercial databases call themselves relational today, no relational database follows all 12 rules.

Codd's 12 rules to define a relational database are:

1.

10.

11.

12.

The Information Rule. All information in a relational database must be represented in one and only one way, by
values in columns within rows of tables. SQL satisfies this rule.

. The Guaranteed Access Rule. Each and every datum (or individual column value in a row) must be logically

addressable by specifying the name of the table, primary key value, and column name. When addressing a data
item, the name of the table identifies which database table contains the item, the column identifies a specific
item in a row of the named table, and the primary key identifies a single row within a table. SQL follows this rule
for tables with primary keys. However, SQL does not require that a table have a key.

. Systematic Treatment of Null Values. The relational database management system must be able to represent

missing and inapplicable information in a systematic way that is independent of data type, different than that
used to show empty character strings or a strings of blank characters, and distinct from zero or any other
number. SQL uses NULL to represent both missing and inapplicable information—as you will learn later, NULL
is not zero, nor is it an empty string.

. Dynamic Online Catalog Based on the Relational Model. The database catalog (or description) is

represented in the same manner as ordinary data (using tables), so authorized users can use the same
relational language to work with the online catalog and regular data. SQL does this through system tables whose
columns describe the structure of the database.

. Comprehensive Data Sublanguage Rule. The system may support more than one language, but at least one

language must have a well-defined syntax that is based on character strings and that can be used both
interactively and within application programs. The language must support:

= Data definitions

= View definitions

= Data manipulation (both update and retrieval)

= Security

= Integrity constraints

= Transaction management operations (Begin, Commit, Rollback)

SQL Data Manipulation Language (DML) (which can be used both interactively and in application programs) has
statements that perform all of the required operations.

. View Updating Rule. All views that are theoretically updateable must be updateable by the system. (Views are

virtual tables that give users different "pictures" or representations of the database structure.) SQL does not fully
satisfy this rule in that it limits updateable views to those based on queries on a single table without GROUP BY
or HAVING clauses; it also has no aggregate functions, no calculated columns, and no SELECT DISTINCT
clause. Moreover, the view must contain a key of the table, and any columns excluded from the view must be
NULL-able in the base table.

. High-Level Insert, Update, and Delete. The system must support multiple-row and table (set-at-a-time) Insert,

Update, and Delete operations. SQL does this by treating rows as sets in Insert, Update, and Delete operations.
Rule 7 is designed to exclude systems that support only row-at-a-time navigation and modification of the
database, such as that required by the hierarchical and network database models. SQL fully satisfies this rule.

. Physical Data Independence. Application programs and interactive database access methods don't have to

change due to a change in the physical storage device or method used to retrieve data from that device. SQL
does this well.

. Logical Data Independence. Application programs and interactive database access methods don't have to

change if tables are changed in a way that preserves the original table values. SQL satisfies this requirement—
the results of queries and action taken by statements do not depend on the arrangement of columns in a row,
the position of rows in a table, or the structure used to represent the table inside the computer system.

Integrity Independence. All integrity constraints specific to a particular relational database must be definable in
the relational sub-language, be specified outside of the application programs, and stored in the database
catalogue. SQL-92 has integrity independence.

Distribution Independence. Applications and end users should not be aware of whether the database data
exists in a single location or whether it is replicated on and distributed among many computers on a network.
Thus, the database language must be able to use the same commands to query and manipulate distributed data
located on both local and remote computer systems. Distributed SQL database products are relatively new, so
the jury is still out as to how well they will satisfy this criterion.

The Nonsubversion Rule. If the system provides a low-level (record-at-a-time) interface, the low-level

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

statements cannot be used to bypass integrity rules and constraints expressed in the high-level (set-at-a-time)
language. SQL-92 complies with this rule. Although one can write statements that affect individual table rows,
the system will still enforce security and referential integrity rules.

Just as no SQL DBMS complies with all of the specifications in the SQL-92 standard, none of the commercially available relational
databases follow all of Codd's 12 rules. Rather than comparing scorecards on the number of Codd's rules a relational database
satisfies, companies normally select a particular database product based on performance, features, availability of development
tools, and quality of vendor support. However, Codd's rules are important from a historical prospective, and they do help you
decide whether a DBMS is based on the relational model.

[« exsvious Joasis

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
7 Understanding Terms Used to Define an SQL Database

Tables

Every SQL database is based on the relational database model. As such, the individual data items in an SQL database are
organized into tables. An SQL table (sometimes called a relation), consists of a two-dimensional array of rows and columns. As
you learned in Codd's first two rules in Tip 6, "Understanding Codd's 12-Rule Relational Database Definition," each cell in a table
contains a single valued entry, and no two rows are identical. If you've used a spreadsheet such as Microsoft Excel or Lotus 1-2-3,
you're already familiar with tables, since spreadsheets typically organize their data into rows and columns. Suppose, for example,
that you were put in charge of organizing your high school class reunion. You might create (and maintain) a table of information on
your classmates similar to that shown in Figure 7.1.

Figure 7.1: Relational database table of student information

Notice that when you look vertically down the table, all of the values in any one column have the same meaning in each and every
row of the table. As such, if you see a student ID in the first column of the tenth row of the table, you know that every row in the
table has a student ID in its first column. Similarly, if you find a street address in the third column of the second row of a table, you
know that the remaining rows of the table have a street address in the third column. In addition to a column having a consistent
data type throughout the rows of the table, each column's data is also independent of other columns in the row. For example, the
NAME column will contain student names whether it is the second column (as shown in Figure 7.1), the fifth column, or the tenth
column in the table.

The "sameness" of the values in a column and the independence of the columns, allow SQL tables to satisfy Codd's relational
database Rule 9 (Logical Data Independence). Neither the order of the rows in the table nor the order of its columns matters to
the database management system (DBMS). When you tell the DBMS to execute an SQL statement such as

SELECT NAME, PHONE_ NUMBER
FROM STUDENT

the DBMS will look in the system table (or catalog) to determine which column contains the NAME data and which column has the
PHONE_NUMBER information. Then the DBMS will go through the rows of the table and retrieve the NAME and
PHONE_NUMBER value from each row. If you later rearrange the table's rows or its columns, the original SQL statement will still
retrieve the same NAME and PHONE_NUMBER data values—only the order of the displayed data might change if you changed
the order of the rows in the table.

If you look horizontally across the table, you will notice that all of the columns in a single row are the attributes of a single entity. In
fact, we often refer to individual table rows as records (or tuples), and the column values in the row as fields (or attributes). Thus,
you might say that Figure 7.1 consists of 15 customer records and that each record has the fields STUDENT_ID, NAME,
STREET_ADDRESS, CITY, STATE, ZIP_CODE, and PHONE_NUMBER.

Views

A database view is not an opinion, nor is it what you see when you look out of a window in your home. Rather, a database view is
the set of columns and rows of data from one or more tables presented to a user as if it were all of the rows and columns in a
single table. Views are sometimes called "virtual" tables because they look like tables; you can execute most SQL statements on
views as if they were tables. For example, you can query a view and update its data using the same SQL statements you would
use to query and update the tables from which the view was generated. Views, however, are "virtual" tables because they have no
independent existence. Views are a way of looking at the data, but they are not the data itself.

Suppose, for example, that your school had a policy of calling the homes of students too sick to attend classes (why else would
you miss school, right?). The attendance clerk would need only a few columns (or attributes) from the STUDENT table and only
those rows (or records) in which the student is absent. Figure 7.2 shows the attendance clerk's view of the data.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 7.2: Attendance clerk database view derived from a single table

Although the student database has seven fields, the attendance clerk sees only three on his screen: STUDENT_ID, NAME, and
PHONE_NUMBER. Since the attendance clerk is to call the homes of only the students absent from school, you would write a
query that selected the rows of the STUDENT table that did not have a matching row in the ATTENDANCE table. Then you would
have your query display only the three fields shown in the ATTENDANCE_CLERK view in Figure 7.2. Thus, the attendance clerk
would see only the STUDENT_ID, NAME, and PHONE_NUMBER fields of absent students.

Now, suppose you needed to print the class schedule for the students. Well, each student needs only his or her own class
information, as show in Figure 7.3.

Figure 7.3: Student schedule and personnel views derived from multiple tables

The STUDENT_SCHEDULE view includes the majority of columns from the CLASS_ DETAIL table and only two columns from
the STUDENT_TABLE. Thus, one student's view of the database is very different than that shown to the attendance clerk. While
the attendance clerk sees the database as a list of names and phone numbers of students absent on a particular day, the student
sees the database as a list of classes he is scheduled to attend. As such, you can hide table columns from view, combine
columns from multiple tables, and display only some of the rows in one or more tables.

As far as the user is concerned, the view itself is a table. As mentioned previously in the current example, the student thinks there
is a table with his name and class schedule, and the attendance clerk thinks there is a table of absent students. In addition to
displaying data as if it were a table, a view also allows a user with update access to change values in the base tables. (Base
tables are those tables from which the view [or virtual table] is derived.) Notice the PERSONNEL view shown in Figure 7.3.
Suppose that you had a personnel clerk responsible for entering the names of the instructors for each of the classes. The clerk's
screen (view) would show the information on a particular class and allow the clerk to update the name of the instructor for that
class. When the clerk changes the name in the INSTRUCTOR_NAME column of the PERSONNEL view, the DBMS actually
updates the value in the INSTRUCTOR_NAME column of the CLASS_DETAIL table in the row from which the PERSONNEL view
was derived.

Schemas

The database schema is a set of tables (often called the system catalog) that contain a full description of the entire database.
Although Figure 7.1 shows the names of the columns as part of the table, and Figure 7.2 and Figure 7.3 show the names of the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

columns in place of data, actual database data tables contain only data values. Thus, the actual database table shown in Figure
7.1 would have only the information shown below the column headings. Similarly, the table rows (or records) represented by the
rectangles in Figure 7.2 and Figure 7.3 would have the actual student, attendance, and class information. The database schema
has tables that contain:

= The name of each data table

= The names of each data table's columns, the type of data the column can hold, and the range of values that a
column can take on

= A list of database views, how the views are derived, and which users are allowed to use which views

= A list of constraints, or rules, that limit the range of values one can enter into a column, rows one can delete from a
table, and rows one can add

= Security information on who can view (query) an existing table, remove a table, or create a new one
= Security information on who can update each table's contents and which columns he or she can change
= Security information on who can add rows to or delete rows from each table

You will learn more about the database schema in Tip 12, "Understanding Schemas." For now, the important thing to know is that
the database schema contains a complete description of the database.

Domains

Each column of a table (or attribute of a relation) contains some finite number of values. The domain of the table column (or
attribute) is the set of all possible values one could find in that column. Suppose, for example, that you had a table of coins in a
U.S. coin collection. The DENOMINATION column could have only the values 0.01, 0.05, 0.10, 0.25, 0.50, and 1.00. Thus, the
"domain" of the DENOMINATION table is [0.01, 0.05, 0.10, 0.25, 0.50, 1.00], and all of the rows in the table must have one of
these values in the DENOMINATION column.

Constraints

Constraints are the rules that limit what can be done to the rows and columns in a table and the values that can be entered into a
table's attributes (columns). While the domain is the range of all values that a column can assume, a column constraint (such as
the CHECK constraint, which you will learn about in Tip 193, "Using the CHECK Constraint to Validate a Column's Value") is what
prevents a user from entering a value outside the column's domain.

In addition to limiting the values entered into a field, constraints specify rules that govern what rows can be added to or removed
from a table. For example, you can prevent a user from adding duplicate rows to a table by applying the PRIMARY KEY constraint
(which you will learn about in Tip 173, "Understanding Foreign Keys") to one of a table's columns. If you apply the PRIMARY KEY
constraint to the STUDENT_ID column of the STUDENT table in Figure 7.1, the DBMS will make sure that every value in the
STUDENT_ID column remains unique. If you already have a STUDENT_ID 101 in the STUDENT table, no user (or application
program) can add another row with 101 in the STUDENT_ID column to the table. Similarly, you can apply the FOREIGN KEY
constraint (which you will learn about in Tip 174, "Understanding Referential Data Integrity Checks and Foreign Keys") to a column
to prevent related rows in another table from being deleted. Suppose, for example, that you had a CUSTOMER and ORDER table
similar to that shown in Figure 7.4.

| CUSTOMER table |
[customerD | Name || ADDress |
| 10 || Konrad King || 765 wally way |
| ORDER table

| Order_No ” CUSTOMER_ID ” Item H Quantity ” Order Date

E I 10 789 || 12 || 41122000

| 2

I [|
[4 [|
[s Ll |

Figure 7.4: ORDER and CUSTOMER table related by CUSTOMER_ID

The rows (or records) in the ORDER table are related to the CUSTOMER table by the value in the CUSTOMER_ID column. Thus,
a row (or order) in the ORDER table with a CUSTOMER_ID of 10 was placed by Customer 10 (the row in the CUSTOMER table
with a 10 in the CUSTOMER_ID column). If someone removed Customer 10 from the CUSTOMER table, you would no longer
have any information (other than customer number) on the person that placed Order 1. You can prevent the loss of information by
placing the FOREIGN KEY constraint on the CUSTOMER_ID column of the ORDER table. Once in place, the constraint will
prevent anyone from deleting Customer 10 from the CUSTOMER table, as long as at least one row (order) in the ORDER table
has a 10 in the CUSTOMER_ID field.

In short, constraints are the rules that maintain the domain, entity, and referential integrity of your database. You will learn all
about the database integrity and the importance of maintaining it in Tips 175—-190.
EEIEET [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o | [eiviovs [o]

8 Understanding the Components of a Table

An SQL table consists of scalar (single-value) data arranged in columns and rows. Relational database tables have the following
components:

= A unique table name
= Unique names for each of the columns in the table
= At least one column

= Data types, domains, and constraints that specify the type of data and its range of values for each column in the
table

= A structure in which data in one column of the table has the same meaning in every row of the table
= Zero or more rows that represent physical or logical entities

When naming a table, bear in mind that no two tables you create can have the same name. However, table names in the SQL
database need be unique only among all of the tables created (or owned) by an individual user. As such, if two users—Joe and
Mark, for example—were to create tables in an SQL database, both of them could create a table named Stocks. However, neither
of them could create two tables named Stock in the same schema. In Tip 9, "Understanding Table Names," you'll learn more
about table names and how the DBMS uses the owner name and schema name to make the names unique across all of the
tables in the database. For now, the important thing to know is that you must give your table a name, and you don't have to worry
about what other people have named their tables. When selecting a table name, analyze the columns you plan to include in the
table, and use a name that summarizes the table's contents. Figure 8.1, for example, contains columns of data that deal with
phone call data: PHONE_REP_ID (who made the call), PHONE_NUMBER (the phone number called), DATE_TO_CALL and
TIME_TO_CALL (the date and time the call was to be made), DATE_CALLED and TIME_CALLED (the date and time the call was
made), HANGUP_TIME (the time the call ended), and DISPOSITION (what happened as a result of the call). The column titles
indicate that the table will contain phone call data. Therefore, CALL_HISTORY is an appropriate table name since the name
describes the type of data that can be retrieved from the table.

| CALL_HISTORY table

| PHONE_REP_ID H PHONE_NUMBER H DATE_TO_CALL H TIME_TO_CALL || DATE_CALLED “ TIME_CALLED

I | | | | I

I
I | | | I I

Figure 8.1: Relational database table of phone call history data

Each horizontal row in a relational database table represents a physical or logical entity. In the CALL_HISTORY table, for
example, each row represents a phone call. The columns in a row represent data items. Although neither the relational database
rules nor the SQL-92 specification dictates that columns in a table must be somehow related, you will seldom (if ever) see a
database table where the columns are just a random mix of data. Typically (if not by convention), data in the columns of a row
details the attributes of the entity represented by that row. Notice that the columns in the CALL_HISTORY table shown in Figure 8
all describe some attribute of a phone call.

All relational database tables have at least one column. (A table may have no rows but must have at least one column.) The SQL
standard does not specify the maximum number of columns, but most commercial databases normally limit the number of
columns in a table to 255. Similarly, the SQL standard places no limit on the number of rows a table may contain. As a result,
most SQL products will allow a table to grow until it exhausts the available disk space—or, if they impose a limit, they will set it to a
number in the billions.

The order of the columns in a table has no effect on the results of SQL queries on the database. When creating a table, you do,
however, have to specify the order of the columns, give each column a unique name, specify the type of data that the column will
contain, and specify any constraints (or limits) on the column's values. To create the table shown in Figure 8.1, you could use this
SQL statement:
CREATE TABLE CALL HISTORY
(PHONE_REP_ID CHAR(3) NOT NULL,
PHONE_NUMBER INTEGER NOT NULL,

DATE TO CALL
TIME_TO_CALL
DATE_CALLED
TIME CALLED

DATE,
INTEGER,

DATE NOT
INTEGER NOT

NULL,
NULL,

HANGUP_TIME INTEGER NOT NULL,
DISPOSITION CHAR(4) NOT NULL)

When you look vertically down the columns in a relational database table, you will notice that the column data is self-consistent,
meaning that data in the column has the same meaning in every row of the column. Thus, while the order of the columns is
immaterial to the query, the table must have some set arrangement of columns that does not change from row to row. After you
create the table, you can use the ALTER TABLE command to rearrange its columns; doing so will have no effect on subsequent
SQL queries on the data in the table.

Each column in the table has a unique name, which you assign to the column when you execute the CREATE TABLE statement.
In the current example, the column heading names are shown at the top of each column in Figure 8.1. Notice that the DBMS
assigns column names from left to right in the table and in the order in which the names appear in the CREATE TABLE statement.
All of the columns in a table must have a different (unique) name. However, the same column name may appear in more than one
table. Thus, | can have only one PHONE_NUMBER column in the CALL_HISTORY table, but | can have a PHONE_NUMBER
column in another table, such as CALLS_TO_MAKE, for example.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

9 Understanding Table Names

When selecting the name for a table, make it something short but descriptive of the data the table will contain. You will want to
keep the name short since you will be typing it in SQL statements that work with the table's data. Keeping the name descriptive
will make it easy to remember which table has what data, especially in a database system with many (perhaps hundreds) of
tables. If you are working on a personal or departmental database, you normally have carte blanche to name your tables whatever
you wish—within the limits imposed by your DBMS, of course. SQL does not specify that table names begin with a certain letter or
set of letters. The only demand is that table names be unique by owner. (We'll discuss table ownership further in a moment.) If
you are working in a large, corporatewide, shared database, your company will probably have some restrictions on table names to
organize the tables by department (perhaps) and to avoid name conflicts. In a large organization, for example, tables for sales
may all begin with "SALES_," those for human resources might begin with "HR_," and those for customer service might start with
"SERVICE_." Again, SQL makes no restrictions on the table names other than they be unique by owner—a large company with
several departments may want to define its own set of restrictions to make it easier to figure out where the data in a table came
from and who is responsible for maintaining it.

In order to create a table, you must be logged in to the SQL DBMS, and your username must have authorization to use the
CREATE TABLE statement. Once you are logged in to the DBMS, the system knows your username and automatically makes
you the owner of any table you create. Therefore, if you are working in a multi-user environment, the DBMS may indeed have
more than one table named CUSTOMER—but it has only one CUSTOMER table owned by any one user. Suppose, for example,
that DBMS users Karen and Konrad each create a CUSTOMER table. The DBMS will automatically adds the owner's name (by
default, the table owner is the user ID of the person creating the table) to the name of the table to form a qualified table name that
is then stored in the system catalog. Thus, Karen's CUSTOMER table would be stored in the system catalog as
KAREN.CUSTOMER, and Konrad's table would be stored as KONRAD.CUSTOMER. As such, all of the table names in the
system catalog are still unique even though both Konrad and Karen executed the same SQL statement: CREATE TABLE
CUSTOMER.

When you log in to the DBMS and enter an SQL statement that references a table name, the DBMS will assume that you are
referring to a table that you created. As such, if Konrad logs in and enters the SQL statement SELECT * FROM CUSTOMER, the
DBMS will return the values in all columns of all rows in the KONRAD.CUSTOMER table. Likewise, if Karen logs in and executes
the same statement, the DBMS will display the data in KAREN.CUSTOMER. If another user (Mark, for example) logs in and
enters the SQL statement SELECT * FROM CUSTOMER without having first created a CUSTOMER table, the system will return
an error, since the DBMS does not have a table named MARK.CUSTOMER.

In order to work with a table created by another user, you must have the proper authorization (access rights), and you must enter
the qualified table name. A qualified table name specifies the name of the table's owner, followed by a period (.) and then the
name of the table (as in <owner>.<table name>). In the previous example, if Mark had the proper authorization, he could type the
SQL statement SELECT * FROM KONRAD.CUSTOMER to display the data in Konrad's CUSTOMER table, or SELECT * FROM
KAREN.CUSTOMER to display the contents of Karen's CUSTOMER table. You can use a qualified table name in an SQL
statement wherever a table name can appear.

The SQL-92 standard further extends the DBMS's ability to work with duplicate tables by allowing a user to create tables within a
schema. (You will learn more about schemas in Tip 12, "Understanding Schemas," and about creating tables within schemas in
Tip 506, "Using the CREATE SCHEMA Statement to Create Tables and Grant Access to Those Tables.") The fully qualified name
of a table created within a schema becomes the schema name, followed by a period (.) and then the name of the table (for
example, <schema>.<table name>). Thus an individual user could create multiple tables with the same name by putting each of
the tables in a different schema. For now, the important thing to know is that every table must have a unique qualified table name.
As such, a user cannot use the same name for two tables unless he creates the tables in different schemas (which you will learn

how to do in Tip 506).
[exsvious [s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[oam Lo [+ rriisus [oesr]

10 Understanding Column Names

The SQL DBMS stores the names of the columns along with the table names in its system catalog. Column names must be
unique within a table but can appear in multiple tables. For example, you can have a STUDENT_ID column in both a STUDENT
table and a CLASS_SCHEDULE table. However, you cannot have more than one STUDENT_ID column in either table. When
selecting a column name, use a short, unique (to the table being created) name that summarizes the kind of data the column will
contain. If you plan to store an address in a column, name the column ADDRESS or STREET_ADDRESS, use CITY as the name
for a column that holds the city names, and so on. The SQL specification does not limit your choice as to the name you use for a
column (other than that a column name can appear only once in any one table). However, using descriptive column names makes
it easier to know which columns to use when you write SQL statements to extract data from the table.

When you specify a column name in an SQL statement, the DBMS can determine the table to which you are referring if the
column name is unique to a single table in the statement. Suppose, for example, that you had two tables with column names

defined as shown in Figure 10.1.

| STUDENT table

|

I STUDENT_ID |
I STUDENT_NAME |
I STREET_ADDRESS |
I CITY |
I STATE |
|

|

|

|

|

|

[ziP cope

| PHONE_NUMBER
[CLASS1 TEACHER
| CLASS2 TEACHER
| CLASS3 TEACHER
| CLASS4 TEACHER

| TEACHER table

[TEACHER ID |
[TEACHER NAME |
|
|

[suBJECT
[PHONE NUMBER

Figure 10.1: Example STUDENT table and TEACHER table with duplicate column names

The DBMS would have no trouble determining which columns to display in the following SQL statement:

SELECT

STUDENT_ID, STUDENT NAME, SUBJECT, TEACHER NAME
FROM

STUDENT, TEACHER
WHERE

CLASS1_TEACHER = TEACHER ID

Since STUDENT_ID and STUDENT_NAME appear only in the STUDENT table, the DBMS would display the values in the
STUDENT_ID and STUDENT_NAME columns of the STUDENT table. Similarly, SUBJECT and TEACHER_NAME are found only
in the TEACHER table, so the DBMS would display SUBJECT and TEACHER_NAME information from the TEACHER table as it
executes the SELECT statement. Thus, if you use columns from more than one table in an SQL statement, the DBMS can figure
out which column name refers to which table if none of the column names in the SQL statement appears in more than one table
listed in the FROM clause.

If you want to display data from one or more columns that have the same name in more than one table used in an SQL statement,
you will need to use the qualified column name for each of the duplicate columns. The qualified column name is the name of the
table, followed by a period (.) and then the name of the column. As such, if you wanted to list the student's phone number (found
in the PHONE_NUMBER column in the STUDENT table), you could use the following SQL statement:

SELECT
STUDENT_ID, STUDENT NAME, STUDENT.PHONE NUMBER, SUBJECT,
TEACHER_NAME
FROM
STUDENT, TEACHER
WHERE
CLASS1_TEACHER = TEACHER_ID

If you specified only PHONE_NUMBER after STUDENT_NAME, the DBMS would not know if it were supposed to display the
student's phone number or the teacher's phone number, since both tables have the column named PHONE_NUMBER. By using
the qualified column name (STUDENT.PHONE_NUMBER, in this example), you specify not only the column whose data you
want, but also the table whose data the DBMS is to use. In general, you can use qualified column names in an SQL statement
wherever unqualified column names can appear.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As you learned in Tip 9, "Understanding Table Names," you need to use qualified table names whenever you want to work with a
table that you do not own. Thus, you must use the qualified table name (the name of the table, followed by a period [.] and then
the table name) in your SQL statement wherever the name of the table that you do not own appears. Thus, in the current
example, if you own the TEACHER table but you did not create the STUDENT table (and Konrad, who created the table, gave you
access to the table but did not assign its ownership to you), you would modify the SQL statement as follows:
SELECT

STUDENT _ID, STUDENT NAME, KONRAD.STUDENT.PHONE NUMBER,

SUBJECT, TEACHER NAME
FROM

KONRAD.STUDENT, TEACHER
WHERE

CLASS1 TEACHER = TEACHER_ ID

By using the qualified table name KONRAD.STUDENT in place of STUDENT in the SELECT statement, you tell the DBMS to
extract data from the STUDENT table owned by Konrad instead of trying to get data from a nonexistent STUDENT table created

(or owned) by you.
[« exsvious Joasis

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan LD [+ervvious Lt]

11 Understanding Views

As you learned in Tip 7, "Understanding Terms Used to Define an SQL Database," views are virtual tables. A view looks like a
table because it appears to have all of the essential components of a table-it has a name, it has rows of data arranged in named
columns, and its definition is stored in the database catalog right along with all of the other "real" tables. Moreover, you can use
the name of a view in many SQL statements wherever a table name can appear. What makes a view a virtual vs. real table is that
the data seen in a view exists in the tables used to create the view, not in the view itself.

The easiest way to understand views is to see how they are created, what happens when you use the name of a view in an SQL
query, and what happens to the view upon completion of the SQL statement.

To create a view, use the SQL CREATE VIEW statement. Suppose, for example, that you have relational database tables with
salesman and payroll data similar to that shown in Figure 11.1.

| SALES_REPS table |
lemp_Num || NamE || APPT_count || saLEs_count | ssan |[Abor |
| 1 ” Tamika James “ 10 ” 6 ” || |
| 2 || saywens || 23 | 9 | | |
[3 || Robert Hardy || 17 I 12 I I |
[4 | Janesmith || 12 I 8 I I |
| 5 “ Rodger Dodger “ 22 ” 17 ” “ |
[6 || ciide wiliams || 19 I 16 I I |
| PAYROLL table |
[Emp_Num || yrD_saLarY || yTD_commission |
[1 | 6959500 || $2,595.00 |
[2 | sso49800 || $16,323.00 |
I | s4500000 || $27,123.00 |
[4 | s7500000 || $17,000.00 |
[s | $6300000 || $5000.00 |
[6 | s72.89800 || $2.993.00 |

Figure 11.1: Example relational database tables to use as base tables for a view

When you execute this SQL statement

CREATE VIEW APPT_SALES_PAY
(NAME, APPTS, SALES, SALES_PCT, YTD SALARY,YTD COMMISSION) AS

SELECT
NAME, APPT COUNT, SALES COUNT, ((APPT_COUNT / SALES COUNT)
* 100), YTD SALARY, YTD COMMISSION

FROM
SALES REPS, PAYROLL

WHERE

SALES_REPS.EMP NUM = PAYROLL.EMP NUM

the DBMS stores the definition of the view in the database under the name APPT_SALES_PAY. Unlike the CREATE TABLE
statement that creates an actual empty database table in addition to storing the definition of the table in the system catalog, the
CREATE VIEW statement only stores the definition of the view.

The DBMS does not create an actual table when you create a view because, unlike a real table, the view does not exist in the
database as a set of values in a table. Instead, the rows and columns of data you see through a view are the results produced by
the query that defines the view.

After you create a view, you can use it in a SELECT statement as if it were a real table. For example, after you create the
APPT_SALES_PAY view (using the CREATE statement that follows Figure 11.1), you can display the results of the query that
defines the view by using this SQL statement:

SELECT * FROM APPT_SALES PAY

When the DBMS sees the reference to a view in an SQL statement, it finds the definition of the view in its system tables. The
DBMS then transforms the view references into an equivalent request against the base tables and executes the equivalent SQL
statements. For the current example, the DBMS will execute a multi-table select statement (which you will learn about in Tip 205,
"Using a SELECT Statement with a FROM Clause for Multi-table Selections") to form the virtual table shown in Figure 11.2, and
then display the values in all of the columns in each row of the virtual table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 11.2: APPT_SALES_PAY view generated from base tables SALES_REPS and PAYROLL

For simple views, the DBMS will construct each row of the view's virtual table "on the fly." Thus, in the current example, the DBMS
will extract data from the columns specified in the view definition from one row in the SALES_REPS and PAYROLL tables to
create a row in the virtual APPT_SALES_PAY table. Next, the DBMS will execute the SELECT statement to display the fields in
the newly created row (of the virtual table). The DBMS will then repeat the procedure (create a virtual row from the two tables and
then display the columns of the virtual row), until no more rows in the base tables satisfy the query in the view.

To execute more complex views (such as those used in SQL statements that update data in the base tables), the DBMS must
actually materialize the view, meaning that the DBMS will perform the query that defines the view and store the results in a
temporary table. The DBMS will then use the temporary table to execute the SQL statement (such as SELECT * FROM
APPT_SALES_PAY) that references the view. When the DBMS no longer needs the temporary table (at the completion of the
SQL statement), the DBMS discards it. Remember, views do not hold data; they merely display the data stored in their base
tables (SALES_REPS and PAYROLL, in the current example).

Whether the DBMS handles a particular view by creating rows on the fly or by pulling the view data into a temporary table, the end
result is the same-the user can reference views in SQL statements as if they were real tables in the database.

There are several advantages in using views:

= Provide security. When you don't want a user to see all of the data in a table, you can use a view to let the user
see only specific columns. Thus, someone working in the personnel department can see the employee name and
address information through a view, while the salary or hourly pay can remain hidden by being excluded from the
view.

= Simplify data structures. You can present the database as a "personalized" set of tables. Suppose, for example,
that you have separate employee and payroll tables. You can use a view to display employee names and pay
figures in a single virtual table for the company's managers.

= Abstract data structures. As time goes on, some users will save SQL queries that they use often, and others may
even write Visual Basic or C++ programs that extract data from the database to produce reports. If someone (such
as the table owner or database administrator) changes the physical structure of a table by splitting it into two tables,
for example, saved user queries may no longer function and application programs may try to access columns that
no longer exist. However, if users write their queries or application programs to access data in the "virtual" view
tables, you can insulate them from changes to the underlying database structures. When you split a table, for
example, you need change the view's query so that it recombines the split tables into the set of columns found in
the original view.

= Simplify queries. By using a view to combine the data from several tables into a single virtual table, you make it
possible for a user to write SQL queries based on a single table, thus avoiding the complexity of using multi-table
SELECT and JOIN statements.

While views provide several advantages, there are two main disadvantages to using them:

= Performance. Since a view is a virtual table, the DBMS must either materialize the data in a view as a temporary
table or extract the data in the view's rows on the fly (one row at a time) whenever you use a view in an SQL
statement. Thus, each time you use an SQL statement that contains a view reference, you are telling the DBMS to
perform the query that defines the view in addition to performing the query or update in SQL statement you just
entered.

= Update restrictions. Unfortunately, SQL violates Rule 6 of Codd's rules (you learned about this in Tip 6,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

"Understanding Codd's 12-Rule Relational Database Definition"), in that not all views are updateable. Currently,
SQL limits updateable views to those based on queries on a single table without GROUP BY or HAVING clauses. In
addition, to be updateable a view cannot have aggregate functions, calculated columns, or a SELECT DISTINCT
clause. And, finally, the view must contain a table key column, and any columns excluded from the view must be
NULL-able in the base table.

Due to SQL limitations on what views you can use for updating base tables, you cannot always create views to use in place of

base tables. Moreover, in those cases where you can use a view, always weigh the advantages of using the view against the
performance hit you take in having the DBMS create virtual tables every time it executes an SQL statement that references a

view.
[exsvious [s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

12 Understanding Schemas

A table consists of rows and columns of data that deal with a specific type of entity such as marketing calls, sales statistics,
customers, orders, payroll, and so on. A schema is the collection of related tables. Thus, a schema is to tables what tables are to
individual data items. While a table brings together related data items so that they describe an entity when considered a row at a
time in a table, the schema is the set of related tables and organizational structure that describe your department or company.

Suppose that you worked in a sales organization with five departments as shown in Figure 12.1.

Figure 12.1: Database with tables grouped into five schemas, one for each department in the company

The tables in the marketing department, for example, might include tables showing the history of marketing calls made, marketing
representative appointment setting statistics, an appointment list, and demographic data on prospects. The collections
department, meanwhile, would have tables that deal with customer information, payments made on accounts, and collections
activity such as scheduling dunning letters and field calls for payment pickups. All of the tables shown in Figure 12.1 would exist in
a single database. However, each department has its own set of activities, as reflected in the set tables of data it maintains. Each
department's tables could be organized into a separate schema within the company's database.

The schema is more of a "container" for objects than just a "grouping” of related tables because a schema includes:

= Tables. Related data items arranged in columns of rows that describe a physical or logical entity. The schema
includes the tables as well as all of the components of a table (described in Tip 8, "Understanding the Components
of a Table"), which include the column domains, check constraints, primary and foreign keys, and so on).

= Views. Virtual tables defined by an SQL query that display data from one or more base tables (as described in Tip
11, "Understanding Views"). The schema includes the definition of all views that use base tables of "real" data
included in the schema. (As you learned in Tip 11, the virtual tables exist only for the duration of the SQL statement
that references the view.)

= Assertions. Database integrity constraints that place restrictions on data relationships between tables in a schema.
You will learn more about assertions in Tip 33, "Understanding Assertions."

= Privileges. Access rights that individual users and groups of users have to create or modify table structures, and to
query and/or update database table data (or data in only specific columns in tables through views). You will learn all
about the SQL security privileges in Tips 135-158.

= Character sets. Database structures used to allow SQL to display non-Roman characters such as Cyrillic
(Russian), Kaniji (Asian), and so on.

= Collations. Define the sorting sequences for a character set.

= Translations. Control how text character sequences are to be translated from one character set to another.
Translations let you store data in Kaniji, for example, and display it in Cyrillic, Kanji, and Roman-depending on the
user's view of the data. In addition to showing which character(s) in one character set maps to which character(s) in
another, translations define how text strings in one character set compare to text strings in another when used in
comparison operations.

In short, the schema is a container that holds a set of tables, the metadata that describes the data (columns) in those tables, the
domains and constraints that limit what data can be put into a table's columns, the keys (primary and foreign) that limit the rows
that can be added to and removed from a table, and the security that defines who is allowed to do what to objects in the schema.

When you use the CREATE TABLE statement (which you will learn about in Tip 46, "Using the CREATE TABLE Statement to
Create Tables"), the DBMS automatically creates your table in the default schema for your interactive session, the schema named
<user ID>. Thus, if users Konrad and Karen each log in to the database and execute the SQL statement

CREATE TABLE CALL_HISTORY

(PHONE_REP_TID CHAR(3) NOT NULL,

the DBMS will add a table to each of two schemas, as shown in Figure 12.2.

PHONE_NUMBER
DATE_TO_CALL
TIME_TO_CALL
DATE_CALLED
TIME_CALLED
HANGUP_TIME
DISPOSITION

INTEGER NOT
DATE,
INTEGER,
DATE NOT
INTEGER NOT
INTEGER NOT
CHAR (4) NOT

NULL,

NULL,
NULL,
NULL,
NULL)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 12.2: Database with two schemas, KONRAD and KAREN

In short, anytime you use the CREATE statement to create a database object such as a table, view, domain, assertion, and so on,
the DBMS will create that object in the default "container" schema.

If you want to create an object in a specific schema "container," the container must exist and you must use the qualified name for
the object you are creating. Qualified object names are an extension of the qualified table names you learned about in Tip 9,

"Understanding Table Names." Instead of using <owner>.<object name>, use <schema name>.<object name> to place an object
in a specific schema.

For example, to create the MARKETING schema shown in Figure 12.1, you could use the SQL statement

CREATE SCHEMA MARKETING AUTHORIZATION KONRAD

CREATE TABLE CALLS HISTORY
(PHONE_REP ID CHAR (3) NOT NULL,
PHONE NUMBER INTEGER, NOT NULL,
DATE_CALLED DATE)

CREATE TABLE MARKETING REPS
(REP_ID CHAR(3),

REP_NAME CHAR(25)

CREATE TABLE APPOINTMENTS
(APPOINTMENT DATE DATE,
APPOINTMENT TIME INTEGER,
PHONE_NUMBER INTEGER)

CREATE TABLE PROSPECTS
PHONE_NUMBER INTEGER,

NAME CHAR(25),
ADDRESS CHAR (35)

to create the MARKETING schema and the structure for its four tables. The AUTHORIZATION predicate in the CREATE
SCHEMA statement authorizes Konrad to modify the schema and its objects. As such, Konrad could then use an ALTER TABLE
MARKETING.<table name> statement to change the columns, domains, and constraints of columns in the tables included in the
MARKETING schema. Moreover, Konrad can create additional tables in the MARKETING schema by specifying the schema
name in a CREATE TABLE statement, such as:
CREATE TABLE MARKETING.CONTESTS

(DESCRIPTION CHAR(25),

RULES VARCHAR (100),

WIN LEVEL1 MONEY,

WIN LEVEL2 MONEY,

WIN LEVEL3 MONEY)

All DBMS products have schema, or "containers," that hold a collection of tables and related objects. However, the name you can
give to a schema varies from product to product. Oracle, Informix, and Sybase, for example, require that the schema name and
username be the same. Each also limits the types of objects you can define in the CREATE SCHEMA statement. Thus, you must
check the syntax of the CREATE SCHEMA statement in your DBMS manual (or Help system) to see what objects can be grouped
together in schema "containers" and what names you can give to schema itself.

[Team LiB | [puivisus fir=t o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [Faivisus] fimxt]
13 Understanding the SQL System Catalog

The system catalog is a collection of tables that the DBMS itself owns, creates, and maintains in order to manage the user-defined
objects (tables, domains, constraints, schemas, other catalogs, security, and so on) in the database. As a collection, the tables in
the system catalog are often referred to as the system tables because they contain data that describes the structure of the
database and all of its objects and are used by the database management system in some way during the execution of every SQL
statement.

When processing SQL statements, the DBMS constantly refers to the tables in the system catalog to:
= Make sure that all tables or views referenced in a statement actually exist in the database

= Make sure the columns referenced in the SQL statement exist in the tables listed in the target tables list portion of
the statement (for example, the FROM section of a SELECT statement)

= Resolve unqualified column names to one of the tables or views referenced in the statement
= Determine the data type of each column

= Check the system security tables to make sure that the user has the privilege necessary to carry out the action
described in the SQL statement on the target table (or column)

= Find and apply any primary key, foreign key, domain, and constraint definitions during INSERT, UPDATE, or
DELETE operations

By storing the database description as a set of system tables, SQL meets the requirement for a "Dynamic Online Catalog Based
on the Relational Model," listed as Rule 4 of Codd's 12 rules that define a relational database (which you learned about in Tip 6,
"Understanding Codd's 12-Rule Relational Database Definition").

Not only does an SQL database use the system tables in the system catalog to validate and then execute SQL statements issued
by the user or application programs, but the DBMS also makes the data in the system catalog available either directly or through
views.

Note The database administrator may limit access to the tables in the system catalog due to security concerns. After all, if
you knew the primary key constraints, column name, and data domains for a particular table, you could determine the
contents of the column(s) in the primary key-even if you did not have SELECT access to the table itself. Moreover, the
structure of the database may itself be a trade secret if table and/or column names give information as the types of
data a company in a particular market would find important enough to collect.

Since the DBMS maintains the data in the system tables so that it accurately describes the structure and contents of the
database, user access to the system catalog is strictly read-only. Allowing a user to change the values in system tables would
destroy the integrity of the system catalog. After all, if the DBMS is doing its job of maintaining the tables to accurately describe
the database, any changes made to the catalog by the user would, by definition, change a correct value into an incorrect one.

The main advantage of user-accessible system tables is that they allow applications programmers to write general-purpose
database tools that allow users to access SQL databases without having to know SQL. For example, by querying the system
tables, an application program can determine the list of tables and views to which a user has access. The program could then
allow the user to select the table(s) of interest and list the columns available for display in the selected table(s). Next the
application program could allow the user to enter any "filtering" or search criteria. After the user has selected the table and
columns and entered selection criteria, the application program could generate the SQL statements necessary to extract the data
and format and display the query results to the user.

Without the system tables, the table and column names and the access rights would have to be hard-coded into the application
programs, making general-purpose third-party applications impossible to write. Due to the demand for such third-party software
solutions (owing perhaps to the scarcity of good SQL programmers), most major SQL database products are moving to support a
common a set of system catalog views know collectively as the INFORMATION_SCHEMA.

You will learn more about the INFORMATION_SCHEMA and system tables in Tips 472-493, which discuss the
INFORMATION_SCHEMA and the system tables on which it is based, and Tip 494 "Understanding the MS-SQL Server System
Database Tables," which reviews the MS-SQL Server system tables. For now, the important thing to know is that the
INFORMATION_SCHEMA views will allow the same application program to access system table information in different database
products even though the structure of the catalog and the tables it contains varies considerable from one brand of DBMS to

another.
[FREviRO]|

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L2 [o]

14 Understanding Domains

A domain is the set of all values that are legal for a particular column in a table. Suppose, for example, that your EMPLOYEE
table had a DEPENDANT field that your company policy states must be an INTEGER between 0 and 14. The domain of
DEPENDANT would then be 0,1,2,3,4,5,6,7,8,9,10,12,13,14. Or, suppose you were maintaining a table for a tablecloth inventory
that has a COLOR column, and all of your tablecloths were white, beige, or blue. The domain of the COLOR column would then
be WHITE, BEIGE, BLUE.

Once you define a domain using the CREATE DOMAIN statement (which we will discuss in Tip 170, "Using the CREATE
DOMAIN Statement to Create Domains"), you can use the domain as a data type when defining a column. Suppose, for example,
that you had a CUSTOMER table with a STATE field. You could define the domain of the STATE field by creating a
STATE_CODE domain using this SQL statement:
CREATE DOMAIN STATE CODE AS CHAR(2)
CONSTRAINT VALID STATE ABBREVIATION
CHECK (VALUE IN ('AL', 'AK', 'AZ', 'CO', 'CT', ...))

Note You would list the remaining 45 state codes in place of the "..." in the VALUE IN section of the CREATE DOMAIN
statement.

To have the DBMS validate data as it is entered into the STATE field of the CUSTOMER table, use the STATE_CODE domain as
the data type for the state field when creating the table, as shown in this SQL statement:

CREATE TABLE CUSTOMER

(NAME VARCHAR (25) ,
ADDRESS VARCHAR (35),
CITY VARCHAR (20),
STATE STATE CODE,

ZIP CODE INTEGER)

The beauty of defining a domain is that you can change it on the fly without having to alter the structure of the table or recompile
any existing stored procedures or application programs.

Suppose, for example, that Puerto Rico were to become a state; you could use the ALTER DOMAIN statement to add PR to the
list of valid state abbreviations. The DBMS would then automatically allow the user to enter PR for the STATE field, since the
updated STATE_CODE domain (stored in the system tables) would include PR as a valid state code the next time the DBMS
referred to it in checking the value in the STATE field of a row to be added to the CUSTOMER table.

[« ravvions foost

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

15 Understanding Constraints

Constraints are database objects that restrict the data that a user or application program can enter into the columns of a table.
There are seven types of constraints: assertions, domains, check constraints, foreign key constraints, primary key constraints,
required data, and uniqueness constraints. Each type of constraint plays a different roll in maintaining database integrity:

= Assertions. Allow you to maintain the integrity of a relationship among data values that cross multiple tables within
a database. Suppose, for example, that you have a marketing room with four teams of sales representatives, and
each of the sales representatives has a quota for the number of sales he or she is to make on a daily basis. If your
marketing manager has a daily quota, you would use an assertion to ensure that the ROOM_QUOTA column in the
marketing manager record (row) of the MANAGER table did not exceed the sum of the values in the REP_QUOTA
column in the PHONE_REP table. You will learn more about assertions in Tip 33, "Understanding Assertions," and
ip 199, "Using the CREATE ASSERTION Statement to Create Multi-table Constraints."

= Domains. Ensure that users and applications enter only valid values into table columns. Every column in a table
has a certain set of values that are legal for that column. For example, if the MONTHLY_SALARY column in a
PAYROLL table must always have values between $0.00 and $100,000.00, you can apply a domain constraint to
tell the DBMS to prevent values outside of that range from being entered into the database. (Of course, high-stress
jobs, such as SQL DBA, will require that the upper limit of the MONTHLY_SALARY domain be higher.)

= Check constraints. In addition to being used to define domains and assertions, this constraint can be applied
directly to table columns in CREATE TABLE or ALTER TABLE statements. Whether a check constraint is given a
name (using the CREATE DOMAIN or CREATE ASSERTION statement) or is added directly to a table definition, it
performs the same function.

As you learned in Tip 14, "Understanding Domains," you create a domain by giving a name to a check constraint with a constant
set of data values. Instead of using the CREATE DOMAIN statement, you can include CHECK constraint (which you will learn
about in Tip 193, "Using the CHECK Constraint to Validate a Column's Value") directly to a column in the CREATE TABLE or
ALTER TABLE statement.

As you will learn in Tip 33, an assertion is really another name for a CHECK constraint to which you've assigned a name using the
CREATE ASSERTION statement. You can use assertions or multi-table CHECK constraints to apply business rules to the values
of columns in a table. Suppose, for example, that your company did not allow back orders. As such, you could use a query in the
CHECK constraint on the QUANTITY column of the ORDER table that would allow only values that were less than the total of the
product currently on hand, as shown in the INVENTORY table. You will learn more about using search conditions in the CHECK
constraint in Tip 444, "Understanding When to Use a CHECK Constraint Instead of a Trigger."

= Foreign key constraints. Are used to maintain referential integrity within the database by making sure that the
parent record is not removed if there are still child records. Conversely, the FOREIGN KEY constraint also makes
sure that you do not add a child record (row) to a table if there is no corresponding parent. Suppose, for example,
that you had two tables, STUDENT and GRADES. You would apply the FOREIGN KEY constraint (which you will
learn about in Tip 174, "Understanding Referential Data Integrity Checks and Foreign Keys") to one of the columns
(such as STUDENT_NUMBER) in the child (GRADES) table to tell the DBMS that the value inserted in that column
must also be present in the PRIMARY KEY column in one of the rows in the parent (STUDENT) table. Thus, if
STUDENT_ID were the PRIMARY KEY in the (parent) STUDENT table, the DBMS would allow the insertion of a
row into the GRADES table only if the student record (row) had a STUDENT_NUMBER equal to one of the
STUDENT_IDs in the STUDENT table. Conversely, the DBMS would prevent the deletion of any student record
(row) from the STUDENT table if one or more grades records (rows) had a STUDENT_NUMBER equal to the
STUDENT_ID in the row to be deleted.

Primary key constraints. Maintain entity integrity by specifying that at least one column in a table must have a
unique value in each and every row of the table. Having a column with a different value in every row of the table
prevents two rows of the table from being identical, thereby satisfying Codd's Rule #2 ("The Guaranteed Access
Rule," discussed in Tip 6, "Understanding Codd's 12-Rule Relational Database Definition"). If you have a
STUDENT table, for example, you would want one and only one row in the table to list the attributes (columns) for
any one student. As such, you would apply the PRIMARY KEY constraint (which you will learn about in Tip 173,
"Understanding Foreign Keys") to the STUDENT_ID column of the STUDENT table in order to ensure that no two
students were given the same student ID number.

Required data. Some columns in a table must contain data in order for the row to successfully describe a physical
or logical entity. For example, suppose you had a GRADES table that contained a STUDENT_ID column. Each and
every row in the table must have a value in the STUDENT_ID column in order for that grade record (row) to make
sense—after all, a grade in a class is meaningless unless it is associated with the specific student (identified by the
STUDENT_ID) that earned it. You will learn about the NOT NULL (required data) constraint in Tip 191, "Using the
NOT NULL Column Constraint to Prevent NULL Values in a Column."”

Uniqueness constraints. While each table can have only one PRIMARY KEY, there are times when you may want
to specify that more than one column in a table should have a unique value in each row. You can apply the
UNIQUE constraint (which you will learn about in Tip 192, "Using the UNIQUE Column Constraint to Prevent
Duplicate Values in a Column") to a table column to ensure that only one row in the table will have a certain value in
that column. Suppose, for example, that you have a TEACHERS table and want to have only one teacher available
for each subject offered at the school. If the table's PRIMARY KEY constraint were already applied to the
TEACHER_ID column, you could apply the UNIQUE constraint to the SUBJECT column to tell the DBMS not to
allow the insertion of a row where the value in the SUBJECT column matched the value in the SUBJECT column of
a row already in the table.

The DBMS stores a description of each constraint in its system tables when the constraint is normally specified as part of a table
definition (CHECK, FOREIGN KEY, PRIMARY KEY, NOT NULL [required data], UNIQUE), or by using the CREATE statement
(ASSERTION, DOMAIN). All constraints are database objects that either limit the values that you can put into a table's columns or

limit the rows (combination of column values) that you can add to a table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
16 Understanding the History of SQL

Both SQL and relational database theory originated in IBM's research laboratories. In June 1970, Dr. Edgar F. Codd, an IBM
engineer, wrote a paper outlining the mathematical theory of how data could be stored in tables and manipulated using a data
sublanguage. The article, entitled "A Relational Model of Data for Large Shared Data Banks," was published in the
Communications of the Association for Computing Machinery (ACM) and led to the creation of relational database management
systems (DBMS) and Structured Query Language (SQL).

After Dr. Codd published his article, IBM researchers began work on System /R, a prototype relational DBMS. During the
development of System /R, the engineers also worked on a database query language-after all, once data was stored in a DBMS, it
would be of no use unless you could combine and extract it in the form of useful information. One of the query languages,
SEQUEL (short for Structured English Query Language), became the de facto standard data query language for relational DBMS
products. The SQL we use today is the direct descendant of IBM's original SEQUEL data sublanguage.

Although IBM started the research in 1970 and developed the first prototype relational DBMS (System /R) in 1978, it was Oracle
(then known as Relational Software, Inc.) that introduced the first commercial relational DBMS product in 1980. The Oracle DBMS
(which ran on Digital Equipment Corp [DEC] VAX minicomputers) beat IBM's first commercial DBMS product (SQL/DS) to market
by two years. While Oracle continued to refine its product and released version 3, which ran on mainframes, minicomputers, and
PCs, in 1982, IBM was working on Database 2 (DB2) which it announced in 1983 and began shipping in 1985.

DB2 operated on IBM's MVS operating system on IBM mainframes that dominated the large data center market at the time. IBM
called DB2 its flagship relational DBMS, and with IBM's weight behind it, DB2's SQL became the de facto standard database
language.

Although initially slower than other database models (such as the hierarchical model that you learned about in Tip 3,
"Understanding the Hierarchical Database Model," and the network model that you learned about in Tip 4, "Understanding the
Network Database Model"), the relational model had one major advantage-you didn't need a programmer to get information from
the database. The relational query languages let users pose ad hoc, English-like queries to the database and get immediate
answers-without having to write a program first.

As the performance of relational DBMS products improved through software enhancements and increases in hardware processing
power, they became accepted as the database technology of the future. Unfortunately, compatibility across vendor platforms was
poor. Each company's DBMS included its own version of SQL. While every flavor of SQL contained the basic functionality of IBM's
DB2 SQL, each extended it in ways that took advantage of the particular strengths of the vendor's relational DBMS and hardware
platform.

In 1986 the American National Standards Institute (ANSI) and the International Organization for Standardization (ISO) published
the first formal ANSI/ISO standard for SQL. SQL-86 (or SQL1) gave SQL "official" status as the relational DBMS data language.
ANSI updated the standard in 1992 to include "popular" enhancements/extensions found across DBMS products and added a
"wish list" objects and methods that a DBMS should have.

SQL-92 (or SQL2), published in ANSI Document X3.135-1992, is the most current and comprehensive definition of SQL. At
present, no commercial DBMS fully supports all of the features defined by SQL-92, but all vendors are working toward becoming
increasingly compliant with the standard. As a result, we are getting closer to the goal of having a data language (SQL) that is truly

transportable across DBMS products and hardware platforms.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

17 Understanding the Difference Between SQL and a Programming
Language

To solve problems in a procedural programming language (such as Basic, C, COBOL, FORTRAN, and so on), you write lines of
code that perform one operation after another until the program completes its tasks. The program may execute its lines of code in
a linear sequence or loop to repeat some steps or branch to skip others. In any case, when writing a program in a procedural
language, the programmer specifies what is to be done and how to do it.

SQL, on the other hand, is a nonprocedural language in that you tell SQL what you want to do without specifying exactly how to
accomplish the task. The DBMS, not the programmer, decides the best way to perform the job. Suppose, for example, that you
have a CUSTOMER table and you want a list of customers that owe you more than $1,000.00. You could tell the DBMS to
generate the report with this SQL statement:
SELECT
NAME, ADDRESS, CITY, STATE, ZIP, PHONE NUMBER,
BALANCE DUE
FROM
CUSTOMER
WHERE
BALANCE DUE > 1000.00

If writing a procedural program, you would have to write the control loop that reads each row (record) in the table, decides whether
to print the values in the columns (fields), and moves on to the next row until it reaches the end of the table. In SQL, you specify
only the data you want to see. The DBMS then examines the database and decides how best to fulfill your request.

Although it is an acronym for "Structured Query Language,” SQL is more than just a data retrieval tool. SQL is a:

= Data definition language (DDL), for creating (and dropping) database objects such as tables, constraints,
domains, and keys.

= Data manipulation language (DML), for changing values stored in columns, inserting new rows, and deleting
those you no longer want.

= Data control language (DCL), for protecting the integrity of your database by defining a sequence of one or more
SQL statements as a transaction in which the DBMS must complete all statements successfully or have none of
them affect the database. DCL also lets you set up the security structure for the database.

= Query language, for retrieving data.

In addition to the DDL, DML, DCL, and query functions, SQL maintains data integrity and coordinates concurrent access to the
database objects. In short, SQL provides all of the tools you need for controlling and interacting with the DBMS.

Despite all that it does, SQL is not a complete computer language (like Basic, C, or FORTRAN) because it contains no block
(BEGIN, END) statements, conditional (IF) statements, branch (GOTO) statements, or loop (DO, WHILE, FOR) statements.
Because it lacks input statements, output statements, and common procedural language control methods, SQL is considered a
data sublanguage. What SQL lacks in procedural language components, it makes up for in the database realm with statements
specialized for database management and data retrieval tasks.

You can get information from an SQL database by submitting ad hoc queries during an interactive session or by embedding SQL
statements in a procedural application program. Issuing queries during an interactive session is most appropriate when you want a
quick answer to a specific question that you may ask only once. If, on the other hand, you need the same information repeatedly
and want to control the format of the output, embedding SQL statements in an application program or having the program send
SQL commands to the DBMS via a call-level interface makes the most sense.

Note Most major database vendors are adding procedural programming language-like features to their SQL products by
allowing you to create stored procedures. Stored procedures are sequences of SQL statements that you tell the DBMS
to execute by entering the stored procedure's name at the console during an interactive session, or by sending the
name as a command to the DBMS within an application program. The stored procedure itself contains SQL statements
and code written in the vendor's extensions to SQL that provide procedural language facilities such as BEGIN-END
blocks, IF statements, functions, procedures, WHILE loops, FOR loops, and so on. Oracle, for example, extends SQL
with PL/SQL and SQL *Plus, while Microsoft lets you use its Transact-SQL extensions in stored procedures.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Frvisus |
18 Understanding Data Definition Language (DDL)

Data definition language (DDL) is the set of SQL statements (ALTER, CREATE, DROP, GRANT) that let you create, alter, or
destroy (drop) the objects that make up a relational database. To put it another way, you use DDL to define the structure and
security of a database. SQL-89 (the first ANSI/ISO standard written for SQL) defines data manipulation language (DML) and DDL
as two distinct and relatively unrelated languages. Moreover, DML statements, which allow you to update the data in the
database, must be available for use while users are accessing the database, for obvious reasons. SQL-89 does not require that
the DBMS accept DDL statements during its normal operation. Thus, the standard allows a static database structure similar to that
of the hierarchical model (see Tip 3, "Understanding the Hierarchical Database Model") and the network model (see Tip 4,
"Understanding the Network Database Model").

The most basic (and powerful) DDL statement is the CREATE statement. Using CREATE, you build the database schema (which
you learned about in Tip 12, "Understanding Schemas"). For example, to build a database with two schemas as shown in Figure
18.1, you could use the following SQL statements:

Figure 18.1: Example database with two schemas named KONRAD and KAREN, each containing three
tables

CREATE SCHEMA AUTHORIZATION KONRAD
CREATE TABLE EMPLOYEES

(ID CHAR (3),
NAME VARCHAR (35) ,
ADDRESS VARCHAR (45) ,

PHONE_NUMBER CHAR(11),
DEPARTMENT CHAR(10),
SALARY MONEY,
HOURLY RATE MONEY)

CREATE CUSTOMERS

(NAME VARCHAR (35) ,
ADDRESS VARCHAR (45) ,
PHONE_NUMBER CHAR(11),
FOOD_PLAN CHAR(2))

CREATE TABLE APPT SCHEDULE
(APPT DATE DATE,
APPT TIME INTEGER,

APPT_DISPOSITION CHAR(4),
APPT_SALESMAN_ID CHAR(3)
GRANT SELECT, UPDATE
ON EMPLOYEES
TO HR_DEPARTMENT
GRANT ALL PRIVILEGES
ON CUSTOMERS
TO MARKETING_REPS, OFFICE_CLERKS
GRANT SELECT
ON APPT SCHEDULE
TO PUBLIC
GRANT SELECT, INSERT
ON APPT SCHEDULE
TO MARKETING REPS
CREATE SCHEMA AUTHORIZATION KAREN
CREATE TABLE EMPLOYEES
(ID CHARM,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

NAME VARCHAR(
ADDRESS VARCHAR (4
PHONE NUMBER CHAR(11),
EMPLOYEE TYPE CHAR (2
SALARY MONEY,
HOURLY_ RATE, MONEY)
GRANT SELECT, UPDATE
ON EMPLOYEES
TO HR DEPARTMENT
CREATE PATIENTS

(ID INTEGER
SPONSOR_SSAN CHAR(11),
NAME VARCHAR (35) ,
ADDRESS VARCHAR (45),
PHONE_NUMBER CHAR(11),
AILMENT CODES VARCHAR (120))

GRANT SELECT, UPDATE

ON PATIENTS

TO DOCTORS, NURSES, CLERKS
CREATE TABLE APPT_SCHEDULE

(APPT_DATE DATE,

APPT TIME INTEGER,
REASON _CODES VARCHAR (120),
DOCTOR_ID CHAR(3),
NURSE_ID CHAR(3),

REFERRAL_DOCTOR_ID CHAR(15)
GRANT SELECT, UPDATE

ON APPT_SCHEDULE

TO PUBLIC

Note The CREATE SCHEMA statement uses AUTHORIZATION in place of USER in naming the schema (such as CREATE
SCHEMA AUTHORIZATION KONRAD, in the example). Not only does the SQL-89 specification refer to users as
"authorization IDs," but the term authorization /D is more applicable on those occasions when you are creating a
schema for a department vs. an individual. Moreover, even when creating schemas for individual authorization ID
"works," the user ID (or username) is the ID that is authorized to the rights of ownership over the objects in the schema

If you were working in an environment using a static DDL, you would submit the CREATE SCHEMA statements to the database
builder program, which would create the tables and set up the security scheme. The database structure would then be "frozen."
Users could log in (and application programs could attach) to the database and send DML commands to work with the data in the
database, but no tables could be removed or added.

In support of the static nature of the database structure, the SQL-89 specification did not include DROP TABLE and ALTER
TABLE statements in the DDL definition. If you needed to change the structure of the database (by adding or removing a table, for
example), you would have to get everyone to log out of the database and stop all DBMS access and processing. Then you would
unload the data, submit a revised schema to the builder application, and then reload the data.

Although the SQL-89 standard permits a static database structure, no SQL database ever used this approach. Even the earliest
releases of the IBM SQL products included the DROP TABLE and ALTER TABLE statements. Full compliance with SQL-92
eliminates the static database structure in that the current (as of this writing) SQL standard includes both DROP and ALTER
statements—which require that users be able to remove or modify the structure of tables on the fly (that is, during the normal
operation of the DBMS).

Although only the CREATE SCHEMA statement was shown in detail in this tip, other tips in this book will show how to use each of
the DDL statements to:

= CREATE/DROP/ALTER ASSERTION. Limits the values that can be assigned to a column based on single or
multiple table column relationships. DDL assertion statements are discussed in Tip 199, "Using the CREATE
ASSERTION Statement to Create Multi-table Constraints."

= CREATE/DROP/ALTER DOMAIN. A named set of valid values for a column. DDL domain statements are
discussed in Tip 170, "Using the CREATE DOMAIN Statement to Create Domains."

= CREATE/DROP INDEX. Structures that speed up database access by making it easier for SQL query statements to
find the set of rows with columns that meet the search criteria. DDL index statements are discussed in Tip 161,
"Using the CREATE INDEX Statement to Create an Index," and Tip 163, "Using the MS-SQL Server Enterprise
Manager to Create an Index."

= CREATE/DROP SCHEMA. a set of related tables, views, domains, constraints, and security structure. Discussed in
Tip 506, "Using the CREATE SCHEMA Statement to Create Tables and Grant Access to Those Tables."

= CREATE/DROP/ALTER TABLE. Rows of related columns (of data). DDL table statements are discussed in Tip 46,
"Using the CREATE TABLE Statement to Create Tables"; Tip 56, "Understanding the ALTER TABLE Statement";
ip 57, "Using the ALTER TABLE Statement to Add a Column to a Table"; Tip 60, "Using the ALTER TABLE
Statement to Change Primary and Foreign Keys"; and Tip 63, "Using the DROP TABLE Statement to Remove a
Table from the Database."

= CREATE/DROP/ALTER VIEW. Virtual tables that display columns of data from rows in one or more base tables.
DDL view statements are discussed in Tip 64, "Using the DROP VIEW Statement to Remove a View"; Tip 206,
"Using a View to Display Columns in One or More Tables or Views"; and Tip 460, "Using the ALTER VIEW
Statement to Modify a View."

= GRANT. Gives specific SQL statement access on individual database objects to a user or group of users. The
GRANT statement is discussed in Tip 145, "Using the GRANT Statement WITH GRANT OPTION to Allow Users to
Give Database Object Access to Other Users."

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The important thing to know now is that DDL consists of the statements that let you create, alter, and destroy objects (tables,
views, indexes, domains, constraints) in your database. DDL also has the GRANT statement that you can use to set up database
security by granting users or groups DDL and DML statement access on a statement-by-statement and object-by-object basis.

Note The GRANT statement is part of the DDL and the data control language (DCL). When used in a CREATE SCHEMA
statement, GRANT acts as a DDL statement. When used to give users (or groups) additional privileges outside a
schema definition, GRANT is a DCL statement. As such, you will find GRANT and its opposite (REVOKE) in Tip 20,
"Understanding Data Control Language (DCL)," which describes the SQL DCL statements.

[Team LiB | [Pasvisus] [t 3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
19 Understanding Data Manipulation Language (DML)

Data manipulation language (DML) lets you do five things to an SQL database: add data to tables, retrieve and display data in
table columns, change data in tables, and delete data from tables. As such, basic DML consists of five statements:

= INSERT INTO. Lets you add one or more rows (or columns) into a table.

= SELECT. Lets you query one or more tables and will display columns in rows that meet your search criteria.
= UPDATE. Lets you change the value in one or more columns in table rows that meet your search criteria.

= DELETE FROM. Lets you remove one or more table rows that meet your search criteria.

= TRUNCATE. Lets you remove all rows from a table.

In theory, data manipulation is very simple. You already understand what it means to add data. Tip 67, "Using the INSERT
Statement to Add Rows to a Table," will show you how to INSERT (add) data directly into to a table; Tip 68, "Using the INSERT
Statement to Insert Rows Through a View," will show you how to INSERT data into a table through a view; and Tip 71, "Using the
SELECT Statement to INSERT Rows from One Table into Another," will show you how to copy rows from one table into another.

The hardest part of data manipulation is selecting the rows you want to display, change, or delete. Since a relational database can
have more than one schema, there is no guarantee that all data items (column values) in a database are related to each other in
some way. What you do know is that sets of data items (columns in tables and tables in a schema) are related. You will use the
SELECT statement to describe the data you want to see, and then the DBMS will find and display it for you. Tip 86,
"Understanding the Structure of a SELECT Statement," shows you the structure of the SELECT statement, and Tip 87,
"Understanding the Steps Involved in Processing an SQL SELECT Statement," shows you what you can expect after executing an
SQL query.

Because databases model a constantly changing world, the data in a database will require frequent updates. The update process
involves finding the row(s) with the data item(s) (column[s]) you want to change and then updating the values in those columns.
Tips 73-77 show you how to use the UPDATE statement in conjunction with the SELECT statement to update column values in
rows that meet your search criteria.

Once data gets old and loses its usefulness, you will want to remove it from the table in which it resides. Outdated or unneeded
data in table rows slows performance, consumes memory and disk space, and can confuse users if returned as part of a query.
Thus, you will want to use the DELETE statement to remove unneeded rows from a table. Tip 79, "Using the DELETE Statement
to Remove a Row from a Table," shows you how to use the DELETE statement to remove a single row from a table; Tip 80,
"Using the DELETE Statement with a Conditional Clause to Remove Multiple Rows from a Table," and Tip 81, "Using the
DELETE Statement with a Subquery to Remove Multiple Rows from a Table,"” show you how use the DELETE statement to
remove multiple rows from a table; and Tip 82, "Using the TRUNCATE Statement to Remove All Rows from an MS-SQL Server
Table," shows you how to use the TRUNCATE statement to remove all rows from a table.

Although basic DML consists of only five statements, it is a powerful tool for entering, displaying, changing, and removing data
from your database. DML lets you specify exactly what you want to do to the data in your database.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
20 Understanding Data Control Language (DCL)

While DML lets you make changes to the data in your database, data control language (DCL) protects your data from harm. If you
correctly use the tools that DCL provides, you can keep unauthorized users from viewing or changing your data, and prevent
many of the problems that can corrupt your database. There are four DCL commands:

= COMMIT. Tells the DBMS to make permanent changes made to temporary copies of the data by updating the
permanent database tables to match the updated, temporary copies. The COMMIT statement is discussed in Tip
129, "Understanding When to Use the COMMIT Statement."

= ROLLBACK. Tells the DBMS to undo any changes made to the DBMS after the most recent commit. The
ROLLBACK statement is discussed in Tip 130, "Using the ROLLBACK Statement to UNDO Changes Made to
Database Objects."

= GRANT. Gives specific SQL statement access on individual database objects to a user or group of users. The
GRANT statement is discussed in Tip 145, "Using the GRANT Statement WITH GRANT OPTION to Allow Users to
Give Database Object Access to Other Users."

= REVOKE. Removes specific SQL statement access previously granted on individual database objects from a user
or group of users. The REVOKE statement is discussed in Tip 147, "Using the REVOKE Statement with the
CASCADE Option to Remove Privileges."

A database is most vulnerable to damage while someone is changing it. If the software or hardware fails in the middle of making a
change, the data will be left in an indeterminate state-part of what you wanted done will be completed, and part will not. Suppose
for example that you told SQL to move money from one bank account to another. If the computer locks up while it is doing the
transfer, you won't know if the DBMS debited the one account or if it got around to crediting the second account.

By encapsulating the debit and credit UPDATE statements within a transaction, you can make sure that the DBMS executes both
statements successfully before executing the COMMIT command to write the updated balances permanently to the database.

If the DBMS does not successfully complete all of the statements in a transaction, you issue a ROLLBACK command. The DBMS
will back out any changes made to the database since the last COMMIT command was executed. In the case of our failed money
transfer example, the DBMS would back out any and all updates so that the balances in the accounts would be as they were
before the DBMS attempted to move money from one account to another-it would be as if the transaction never happened.

Aside from data corruption caused by hardware or software failures, you also have to protect your data from the users
themselves. Some people should have no access to the database. Others should be able to see some but not all of the data,
while not being able to update any of it. Still others should have access to see and update a portion of the data. Thus, you must
be able to approach database security on a user-by-user and group-by-group basis. DCL gives you the GRANT and REVOKE
commands to use in assigning access privileges to individual users and groups of users. The DCL commands used to control
security are:

= GRANT SELECT. Lets the user or group see the data in a table or view. Tip 149 discusses the GRANT and
REVOKE SELECT statements.

= REVOKE SELECT. Prevents the user or group from seeing data in a table or view. Tip 149 discusses the GRANT
and REVOKE SELECT statements.

= GRANT INSERT. Lets the user or group to add row(s) to a table or view. Tip 151 discusses the GRANT INSERT
statement

= REVOKE INSERT. Prevents users or groups from adding row(s) to a table or view. Tip 151 discusses the REVOKE
INSERT statement.

= GRANT UPDATE. Lets the user or group of users change the values in the columns of a table or view. Tip 152
discusses the GRANT UPDATE statement.

= REVOKE UPDATE. Prevents the user or group of users from changing the values in the columns of a table or view.
ip 152 discusses the REVOKE UPDATE statement.

= GRANT DELETE. Allows a user or group of users to delete row(s) in table or view
= REVOKE DELETE. Prevents a user or group of users from deleting row(s) in a table or view.

= GRANT REFERENCES. Lets a user or group of users to define a FOREIGN KEY reference to the table. Tip 153
discusses the GRANT REFERENCES statement.

= REVOKE REFERENCES REVOKE REFERENCES. Prevents the user or group of users from defining a FOREIGN
KEY reference to the table. Tip 153 discusses the REVOKE REFERENCES statement.

Thus, DCL contains commands you can use to control who can access your database and what those users can do once they log
in. Moreover, the DCL gives you control over when the DBMS makes permanent (COMMITs) changes to your database and lets

you undo (ROLLBACK) changes not yet committed.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= [« revvious)
21 Understanding SQL Numeric Integer Data Types

Columns of type INTEGER can hold whole numbers-numbers without a fractional part (nonzero digits to the right of the decimal
point). The maximum number of digits, or precision, of an INTEGER column is implementation-dependant. As such, you cannot
control the maximum positive and negative value you can assign to an INTEGER column (check your SQL manual for the
precision of integers on your system).

Note An implementation is a DBMS product running on a specific hardware platform.

There are two standard SQL INTEGER types: INTEGER (also INT) and SMALLINT. The precision of INTEGER is twice that of
SMALLINT. MS-SQL Server running on a Windows NT platform, for example, can store an INTEGER value in the range -
2,147,483,648 to +2,147,486,647 (-[2**31] to 2**31). Each MS-SQL INTEGER consists of 4 bytes (32 bits)-31 bits for the
magnitude (precision) and 1 bit for the sign. (Note that the term "precision" as used here is the number of digits in the number and
not its accuracy.)

An MS-SQL Server SMALLINT, on the other hand, can hold numbers in the range -32,768 to 37,267 (-[2**15] to 2**15). Each MS-
SQL Server SMALLINT consists of 2 bytes (16 bits)-15 for the magnitude (precision) and 1 bit for the sign.

The amount of storage space required to save an integer value to disk depends on its precision, not the actual number being
stored. Thus, if you declare a column to be of type INTEGER, the system will take 8 bytes to store 1, 10,000, 1,000,000, or
2,000,000,000 in that column. Similarly, if you declare a column to be of type SMALLINT, the DBMS will take 4 bytes (instead of
8) to store a value, whether it is 2, 2,000, or 32,000.

Even in this day of large, inexpensive disks, it is best to conserve disk space by using the appropriate integer type (INTEGER or
SMALLINT) based on the precision that you will need to store the values in a column. Thus, if you know that the value in a column
will be no more than 32,767 and no less than -32,768, define the column as a SMALLINT, not an INTEGER. Both will hold whole
numbers, but the SMALLINT data type will store those numbers using 4 bytes fewer than that used to store the same value in a
column of type INTEGER.

Some SQL servers will even allow you to store a whole number value using as little as 1 byte. MS-SQL Server, for example, has
the TINYINT data type. Columns of type TINYINT can hold positive whole numbers in the range 0 to 255. Thus, if you know that
you will be using a column to store numbers no smaller than 0 and no larger than 255, define the column as TINYINT instead of
INTEGER, and save 6 bytes per value stored.

The DBMS will automatically prevent the insertion of any rows where the value in a column is outside the acceptable range of
values for that column's data type. Thus, if you create a table using:

CREATE TABLE 1integer_table

(integer max INT,
smallint max SMALLINT,
tinyint max TINYINT)

and then try to INSERT a row using:

INSERT INTO INTEGER TABLE
VALUES (1,2,256)

the DBMS will reject the row and return an error message similar to:
Server: Msg 220, Level 16, State 2, Line 1

Arithmetic overflow error for type tinyint, value = 256.
The statement has been terminated.

You will learn all about the INSERT statement in Tip 67, "Using the INSERT Statement to Add Rows to a Table." For now the
important thing to know is that the VALUES clause in the INSERT statement tells the DBMS to insert the listed values by position.
In the current example, the DBMS tries to assign the value 1 to the INTEGER_MAX column, the value 2 to the SMALLINT_MAX
column, and the value 256 to the TINYINT_MAX column. The DBMS is able to carry out the first two assignments, but the third
(assigning 256 to TINYINT_MAX, of data type TINYINT) causes an error since the maximum value of a column of type TINYINT is
255.

To summarize, SQL numeric INTEGER types are as shown in the following table:

Table 21.1: Numeric Integer Data Types and Storage Requirements

| Type ” Precision “ Storage Space |
I INTEGER (or INT) “ -2,147,483,648 to +2,147,486,647 H 4 bytes (32 bits) |
[SMALLINT |[-32,768 t0 32,767 || 2 bytes (16 bits) |
ITINYINT || 0 to 255 || 1 byte (8 bits) |

The precision and storage space are those for an MS-SQL Server running on a Windows NT server. Moreover, TINYINT is an
MS-SQL Server-specific data type. You will need to check your system manuals to determine the precision, storage requirements,
and other whole number types for your DBMS.

Note If you want to make your tables transportable, stick with the standard SQL INTEGER types: INTEGER (or INT) and
SMALLINT. Otherwise, you may have to change your table definitions to create the same tables under different DBMS
products if one supports a data type (such as TINYINT) and the other does not.

[oam L [+ rriisus [oesr]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
22 Understanding SQL Numeric Floating-Point Data Types

You can use floating-point columns to store both whole numbers and numbers with a fractional part—numbers with nonzero digits
to the right of the decimal point. Unlike the INTEGER data types (INTEGER, SMALLINT, TINYINT), which have precision set by
the implementation, you control the precision of the columns you define as NUMERIC or DECIMAL. (The precision of the other
floating-point data types—REAL, DOUBLE PRECISION, and FLOAT—is machine-dependent.)

The SQL floating-point data types are:
= NUMERIC (precision, scale)
= DECIMAL (precision, scale) or DEC (precision, scale)
= REAL
= DOUBLE PRECISION
= FLOAT (precision)

NUMERIC Data Type

When identifying a column as type NUMERIC, you should specify both the precision and the scale the DBMS is to use in storing
values in the column. A number's precision is the total number of digits in a number. The scale is the maximum number of digits in
the fractional part of the number. Thus, to allow for numeric data in the range -9999.999 to 9999.9999 you could use the following
SQL statement:

CREATE TABLE numeric_table
(numeric_column NUMERIC (8,4))

Both the precision and the scale of a NUMERIC column must be positive, and the scale (digits to the right of the decimal) cannot
be larger than the precision (the maximum number of digits in the number). In the current example, the column
NUMERIC_COLUMN has a precision of 8 and a scale of 4, meaning it can hold a number with, at most, eight digits, with four of
them to the left and four of them to the right of the decimal point. Thus, if you attempt to insert the value 12345.6 into the column,
the DBMS will return an arithmetic overflow error because your value has more than four digits to the left of the decimal. Similarly,
if you insert the value 123.12345 into the column, the DBMS will round the value to 123.1235 because the scale is, at most, four
digits (to the right of the decimal point).

Note If you don't specify the precision and scale when you identify a column of type NUMERIC, you will get the DBMS
default for precision and scale. For example, if you are using MS-SQL Server and enter the following SQL statement

CREATE TABLE numeric_table
(numeric_column NUMERIC)

MS-SQL Server will give you a precision of 18 and a scale of 0. Thus, you can enter whole numbers 18 digits—the
DBMS ignores any digits you enter to the right of the decimal point since the default scale is 0. Other DBMS products
may give you a scale that is half of the precision. Thus, if the default precision is 18, the scale would be 9. When using
the NUMERIC type, don't leave the precision and scale up to the DBMS—specify both. Otherwise, you may find that
applications using your tables on one DBMS work fine but fail when running on another DBMS because the default
precision and scale are different between the two products.

DECIMAL and DEC Data Types

The DECIMAL data type is similar to NUMERIC in that you specify both the precision and the scale of the numbers the DBMS is
to store in columns of type DECIMAL. When a column is of type decimal, however, it may hold values with a greater precision and
scale than you specify if the DBMS and the computer on which it is running allow for a greater precision. Thus, if you use the SOL
statement
CREATE TABLE decimal table

(decimal column DECIMAL (6,2))

you can always put values up to 9999.99 into the column DECIMAL_COLUMN. However, if the implementation uses a greater
precision, the DBMS will not reject values with values greater than 9999.99.

Note An implementation is a DBMS product running on a specific hardware platform.

REAL Data Type

Unlike the NUMERIC, DECIMAL, and DEC data types, which define columns with precise values, REAL, DOUBLE PRECISION,
and FLOAT are approximate data types. When you define a column of TYPE NUMERIC(5,2), the computer will store the exact
value of the number. You can specify the precision and scale for the precise floating point types (NUMERIC, DECIMAL, DEC), but
there is a limit to the largest value you can store "exactly." Using MS-SQL Server running on an NT platform, for example, you can
store a NUMERIC value with up to 38 digits. Therefore, if you need to store very large or very small numbers, you will need to use
the REAL, DOUBLE, or FLOAT approximate data types.

The precision of the REAL data type depends on the platform on which you're running. A 64-bit machine (such as one based on
the Alpha processor) will give you more precision than a 32-bit machine (such as one based on the Intel processor). When you
define a column to be of type REAL using MS-SQL Server running under Windows NT on an INTEL platform, for example, the
column can hold values with up seven digits of precision in the range 3.4E-38 to 3.4E+38.

In case, you're a bit "rusty" on the scientific notation you learned in high school, let's digress for a quick review. As you know (or
knew), you can represent any number as a mantissa and an exponent. For example, if you have the number 32,768, you can
express it as 3.2768E+4, which is the mantissa (3.2768, in this example) multiplied by 10 raised to the power or exponent (4, in
this example). Thus, writing 3.2768E+4 is the same as writing 3.2768 * 10**4, which equals 32,768. Similarly, you could write
0.000156 as 1.56E-4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A column of type REAL in an MS-SQL Server database running on an Intel platform can hold up to eight digits in the mantissa and
have a value in the range 3.4E-38 to 3.4E+38.

Note Check your system manual to find out the exact precision and value range of REAL numbers for your implementation.

DOUBLE PRECISION Data Type

When you define a column as being a DOUBLE PRECISION type, you are telling the DBMS that you want to store values with
double the precision of a REAL data type. Like the REAL data type, the actual precision of a DOUBLE PRECISION column
depends on the implementation (the combination of DBMS and platform on which it is running). The SQL-92 specification does
not specify exactly what DOUBLE PRECISION means. It requires only that the precision of a DOUBLE PRECISION number be
greater than the precision of a REAL (or single precision) number.

In some systems, the DOUBLE PRECISION data type will let you store numbers with twice the number of digits of precision
defined for the REAL data type and twice the exponent. Other systems will let you store less than double the number of REAL
digits in the mantissa, but let you store much larger (or smaller) numbers by letting you more than double the exponent allowed for
the REAL data type.

The DOUBLE PRECISION data type for MS-SQL Server running under Windows NT on an INTEL platform gives you 16 digits of
precision (17 digits total) for the mantissa and much more than twice the exponent of a REAL number. While an MS-SQL Server
column of type REAL can hold values with up to 8 digits (7 digits of precision) and be in the range 3.4E-38 to 3.4E+38, a DOUBLE
PRECISION column on the same system can hold 17-digit mantissas (16 digits of precision) and be in the range of 1.7E-308 to
1.7E+308.

Check your system manual to find out the exact precision and value range of DOUBLE PRECISION numbers for your
implementation. Don't assume that DOUBLE PRECISION means twice the precision and twice the exponent.

FLOAT Data Type

Whether the FLOAT data type has the precision and range of a REAL number or a DOUBLE PRECISION number depends on the
precision you specify when defining a column to be of type FLOAT.

When you define a column of type FLOAT, you specify the precision you want. If the hardware on which you are running the
DBMS will support the precision using single-precision (REAL) registers, then you will get the default precision for REAL numbers.
If, on the other hand, the hardware supports only the precision you specified for the FLOAT data type using DOUBLE PRECISION
registers, the DBMS will store values of type FLOAT using the default precision for the DOUBLE PRECISION data type.

In reality, you will have to check your system manual or experiment with storing numbers in columns of type FLOAT to see the
actual precision you will get based on the precision you specify for the FLOAT data type. For example, when running MS-SQL
Server under Windows NT on an INTEL computer, the SQL statement

CREATE TABLE float_table
(float_column FLOAT (15))

will result in only seven digits of precision (eight digits total). Thus, MS-SQL Server will insert 123456789012 as 1.2345679E+11 in
the FLOAT_COLUMN, even though you specified a precision as 15. In fact, any precision less than 25 will result in only a single-
precision (REAL) 7 digits of precision. If you specify a FLOAT precision of 26—-53 (or omit the precision), the DBMS will store

values using the DOUBLE PRECISION 16 digits of precision (17 digits total).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lia | [« ravvious |
23 Understanding SQL Character Data Types

Table columns defined as being of one of the character data types can hold letters, numbers, and special characters (such as
1.@,#,$,%,", and so on). There are four character data types, each with one or two synonyms. The SQL character data types are:

Table 23.1: SQL Character Data Types

Character Type || Description

CHAR(length) Fixed-length character string
CHARACTER(length)

VARCHAR(length) Variable-length character string

CHAR VARYING(length)

CHARACTER VARYING(length)

NCHAR(length) Fixed-length Unicode character string
NATIONAL CHAR(length)

NATIONAL CHARACTER(length)

NCHAR VARYING(length) Variable-length Unicode character string

NATIONAL CHAR VARYING(length)
NATIONAL CHARACTER VARYING(length)

When declaring a column as one of the character types, you specify both the character data type and its length. (The length of a
character string is the maximum number of letters, symbols, and numbers the string can hold.) Thus, given the SQL table

declaration

CREATE TABLE character_table
(char_column CHAR (10),
char column2 CHAR (100),
varchar_column VARCHAR (100),
nchar column NCHAR (20)

nchar_varying_column NCHAR VARYING (200))

you can store 10 characters in the column CHAR_COLUMN, 100 characters in CHAR_COLUMNZ2, 100 characters in the
VARCHAR_COLUMN column, 20 characters in the column NCHAR_COLUMN, and 200 characters in the
NCHAR_VARYING_COLUMN column.

To insert values that include letters or symbols into a CHARACTER data type column, enclose the string you want to insert in
either single or double quotes. In our current example, executing the SQL INSERT statement

INSERT IN character_table
VALUES ("Konrad", 9, 5+4, '5+4")

you would store Konrad in CHAR_COLUMN, 9 in VARCHAR_COLUMN, 9 in NCHAR_COLUMN, and 5+4 in
NCHAR_VARYING_COLUMN. As you can see, if a character string includes only numbers, you need not enclose it in quotes.
However, if the character string is a numeric expression, you must enclose it in quotes if you want the DBMS to store the numeric
expression instead of the results of the numeric expression.

Fixed-Length CHARACTER Data Types

When you store data in a CHAR or CHARACTER column, each character, symbol, or number uses 1 byte of storage space.
CHAR and CHARACTER are fixed-length data types, and the DBMS will pad (add blanks to) your string to make it the length
specified in the column type definition. In the current example, the CHAR_COLUMN can store 10 characters. As such, the DBMS
will store 10 characters in the CHAR_COLUMN column—the character string Konrad followed by four blanks. Similarly, the 9 in
CHAR_COLUMNS2 is stored as the character 9 followed by 99 blank spaces, since column CHAR_COLUMN2 was declared as a
fixed-length character field of 100 characters.

You can store up to 8,000 characters in a column of type CHAR or CHARACTER.
Variable-Length CHARACTER Data Types

VARCHAR, CHAR VARYING, and CHARACTER VARYING are variable-length character strings, meaning that the length in the
declaration is the maximum number of characters the column can hold, but the character string in the column may actually have
less characters. Thus, in the current example, the NCHAR_COLUMN holds the character 9, using only one byte of storage.
Similarly, the column NCHAR_VARYING_COLUMN holds the character string 5+4, using 3 bytes of data. Conversely, the DBMS
uses 100 bytes to store the character 9 in CHAR_COLUMN2 and 10 bytes to store the character string Konrad because
CHAR_COLUMN and CHAR_COLUMNZ are fixed-length character fields that must have the number of characters given as the
column length in the table declaration.

You can store up to 8,000 characters in a column of type VARCHAR, CHAR VARYING, or CHARACTER VARYING.
Fixed- and Variable-Length Unicode CHARACTER Data Types

Computers store characters (whether symbols, letters, or numbers) as a numeric value. As such, every character, symbol, and
number in the English language is represented on the computer as a unique sequence of 1s and 0s. Because different languages
have characters that differ from any characters in another language, each has its own in encoding scheme. Thus, an A in German
will have a different encoding (be represented as a different sequence of 1s and 0s) than an A in Russian. In fact, the European
Union requires several different encodings to cover all of its languages.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Unicode was designed to provide a unique number for every character, no matter what platform, program, or language. Thus, the
Unicode encoding for the letter A will have the same numeric value whether the A is found in a table on a system in Russia,
Greece, or Japan.

The advantage of using Unicode is that you don't have to program in all of the possible numeric values for each symbol, letter,
and number for all of the languages whose text you want to store in your database. The disadvantage of using Unicode is that due
to the large number of Unicode characters (remember, Unicode is a combination of common and unique characters from any
different character sets), it takes 2 bytes instead of 1 to represent each Unicode character. As a result, a Unicode string of type
NCHAR(20) takes 40 bytes of storage, while a string of type CHAR(20) takes only 20 bytes.

When you define a column of type NCHAR, NATIONAL CHAR, or NATIONAL CHARACTER, you are telling the DBMS to store a
fixed-length character string in the column using the Unicode encoding for each character in the string. Thus, a column of type
NCHAR(length) (NATIONAL CHAR(length) and NATIONAL CHARACTER (length)) is a fixed-length character string like a column
of type CHARACTER(length). Both contain the number of characters specified by (length). Thus, in our example, the
NCHAR_COLUMN defined as data type NCHAR(20) can hold a character string of 20 characters. If you insert a character string
of less than 20 characters into an NCHAR(20) column, the DBMS will add spaces to the end of the string to bring it to 20
characters.

You can store up to 4,000 characters in a column of type NCHAR, NATIONAL CHAR, or NATIONAL CHARACTER.

NCHAR VARYING is the Unicode equivalent of the VARCHAR data type. Like VARCHAR, columns of data type NCHAR
VARYING(length) (NATIONAL CHAR VARYING (length) and NATIONAL CHARACTER VARYING(length)) hold variable-length
character strings up to the number of characters specified by length. Thus, in our example, the NCHAR_VARYING_COLUMN
defined as data type NCHAR VARYING(200) can hold a character string of up to 200 characters. If you insert a string of less than
200 characters into an NCHAR VARYING(200) column, the DBMS will not add blanks to the end of the character string. As such,
the length of a character string stored in an NCHAR VARYING column can be less than the maximum length (number of
characters) specified for the column in the table declaration.

You can store up to 4,000 characters in a column of type NCHAR VARYING, NATIONAL CHAR VARYING, or NATIONAL
CHARACTER VARYING.

Note If you insert a character string longer than the length specified by the character type, the DBMS will truncate (or cut off)
the extra characters and store the shortened string in the column without reporting an error. Therefore, if you have a
column defined as being of type CHAR(10) and you attempt to insert the string abcdefghijkimnop, the DBMS will store
abcdefghij in the column, shortening the maximum number of characters you specified for the character string. When
storing a character string, the DBMS will truncate (shorten) a string longer than the maximum specified length, whether
the character type is fixed-length or variable-length.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [« rnwvious | v o
24 Understanding the Advantages of Using the VARCHAR Data Type

If you have a text column where the number of characters you want to store varies from to row, use a variable-length character
string to save disk space. Suppose, for example, that you define an order table as follows:

CREATE TABLE order table

(customer_ number INTEGER,
delivery date DATE,

item_number SMALLINT,
quantity SMALLINT,

special_instructions CHAR(1000))

By using a fixed CHARACTER type, the DBMS will make the SPECIAL_INSTRUCTIONS column in every row 1,000 characters in
length, even if you enter SPECIAL_INSTRUCTION strings for only a few items. As you learned in Tip 23, "Understanding SQL
Character Data Types," the DBMS adds blanks to the end of a fixed-length character string if you insert a string with less than the
number of characters you define as the string's length—in this case, 1,000 characters. Therefore, if you have one item that
requires special instructions in a 10,000-row table, you will waste 9.9MB of disk spaces because the system will store 1,000 blank
characters in each of the 9,999 rows that don't have any special instructions.

If on the other hand, you were to create the same ORDER_TABLE using the SQL statement
CREATE TABLE order table

(customer_ number INTEGER,
delivery date DATE,

item_number SMALLINT,
quantity SMALLINT,

special instructions VARCHAR(1000)

the DBMS would not add blanks to the character string you insert in the SPECIAL_INSTRUCTIONS column. Thus, for the current
example, where only 1 row has SPECIAL_INSTRUCTIONS, your 10,0000-row table will be 9,999,000 bytes (9MB) smaller than
the table with identical data whose SPECIAL_INSTRUCTIONS column is declared as a fixed-length character type of 1,000 bytes.

The variable-length data types are:
= VARCHAR
= CHAR VARYING
= CHARACTER VARYING
= NCHAR VARYING
= NATIONAL CHAR VARYING
= NATIONAL CHARACTER VARYING

Review Tip 23 for additional information on how to declare a column using each of these data types.

= IS

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrvisus |
25 Understanding the LONG (Oracle) or TEXT (MS-SQL Server) Data Type

If you need to store a large amount of text data in a table, you may run into the problem of needing to store a character string
larger than the maximum number or characters allowed for the CHARACTER (or VARCHAR) data type. Suppose, for example,
that you had a HUMAN_RESOURCES table and one of the columns was RESUME. If you are using MS-SQL Server as your
DBMS, you could store only the first 4,000 characters of the resume in the RESUME column of the HUMAN_RESOURCES table.
Fortunately, Microsoft has the TEXT data type which, like Oracle's LONG data type, lets you store character strings of up to
2,147,483,647 characters. (If you are storing text strings in Unicode using columns of type NTEXT, you can store only
1,073,741,823 characters. Each Unicode character takes 2 bytes of storage, so you can store only half as many of them.)

It would be wasteful to preallocate 2GB of disk space for each column you declare as type TEXT. As such, MS-SQL Server
preallocates only a small portion (8K) of the maximum TEXT space and allocates the remainder in 8K (8,192 byte) increments as
you need it. As such, when it is ready to save character 8,193 of a TEXT string to disk, the DBMS allocates another block (page)
of 8,192 bytes and creates a link from the page holding the previous 8,192 bytes to the page holding the next 8,192 bytes.

Once the DBMS stores the data in the TEXT column to disk, the entire TEXT block is logically contiguous. This is to say that the
DBMS "sees" the TEXT block as one huge character string, even if the individual 8K blocks (pages) that make up the TEXT block
are not physically contiguous. As such, you can display the entire contents of a TEXT column using a single SELECT statement
such as:

SELECT resume FROM human_resources

if, for example, HUMAN_RESOURCES were a table defined as:
CREATE TABLE human_resources

(id INTEGER,
name VARCHAR (25),
department code TINYINT,
data_of_hire DATE,

resume TEXT)

Note The actual number of characters of TEXT data displayed by the SELECT statement is limited by the value of the
Global Variable @@Textsize. If you don't change the value of @@ Textsize, MS-SQL Server limits the number of

TEXT characters displayed to 64K (64,512) by default.
[« exsviou]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o [erivos]
26 Understanding the MS-SQL Server IMAGE Data Type

The MS-SQL Server IMAGE data type is similar to the TEXT data type in that it you can store 2,147,483,647 bytes of data in a
column declared as data type IMAGE. You would use an image type, for example, if you wanted to create a table of graphics
images such as:

CREATE TABLE graphic images

(id INTEGER,
description VARCHAR(250),
picture IMAGE)

Typically, you won't use an INSERT statement to enter binary data into an IMAGE column. Instead, you will use an application
program that passes the binary (picture) data to the DBMS for storage in the table.

Similarly, an IMAGE column is not meant for direct output using a SELECT statement, although such a SELECT statement is not
prohibited. Instead, you would have the DBMS pass the image data to a graphics program (like WinJPeg) or to a Web browser for
display.

If you do display an IMAGE column using the SELECT statement, you will find that the SELECT statement does not translate the

values in the IMAGE column to ASCII. For example, suppose that you use the INSERT statement

INSERT INTO graphic images
VALUES (123, 'Picture 123','Picture'l23"'")

to place data into a row in the GRAPHICS_IMAGES table created as the example at the beginning of this tip. If you use the
SELECT statement
SELECT * FROM graphic_images

MS-SQL Server would display:

id description picture

123 Picturel23 0x50696374757265313233

By not translating the hexadecimal representation of data in the IMAGE column to ASCII when SELECTED, the DBMS makes it
easy to pass the actual "raw" picture file to a graphics program in answer to a query sent to the DBMS by an application program.

[+ rivions [t]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | (4 Faivisu]
27 Understanding Standard SQL Datetime Data Types and the DATETIME
Data Type

Although you can store dates and times in columns of type CHAR or VARCHAR, you will find it more convenient to use datetime
columns instead. If you put dates and times into date-time columns, the DBMS will format the dates and times in a standard way
when you display the contents of the columns as part of SELECT statements. More importantly, by using datetime columns, you
will be able to use specialized date and time functions (such as INTERVAL and EXTRACT) to manipulate date and time data.

The SQL-92 standard specifies five datetime data types:

= DATE. Uses 10 characters to store the four-digit year, two-digit month, and two-digit day values of the date in the
format 2000-04-25. Because the DATE data type uses a four-digit year, you can use it to represent any date from
the year 0001 through the year 9999. Thus, SQL will have a year 10K problem, but I, for one, will let future
generations worry about it.

TIME. Uses eight characters, including the colons, to represent the two-digit hours, two-digits minutes, and two-digit
seconds in the format 19:22:34. Because the SQL formats time using the 24-hour clock, 19:22:34 represent 22
minutes and 34 seconds past 7 P.M., whereas 07:22:34 represents 22 minutes and 34 seconds past 7 A.M. If you
define a column as type TIME, the default is for the DBMS to display only whole seconds. However, you can tell the
DBMS to store (and display) fractions of seconds by adding the precision you want to the TIME data type when
using it to define a column of type TIME. For example, if you create a table with the SQL statement

CREATE TABLE time_table
(time_with seconds TIME(3))

the DBMS will store time data including up to three digits representing thousandths of seconds.

TIMESTAMP. Includes both date and time using 26 characters-10 characters to hold the date, followed by a space
for separation, and then 15 characters to represent the time, including a default of fractions of seconds to six
decimal places. Thus, if you create a table using
CREATE TABLE time table
(timestamp column TIMESTAMP,
timestamp:columninoidecimal TIMESTAMP (0)

the DBMS will store the date and time in TIMESTAMP_COLUMN formatted as 2000-04-25 19:22:34.123456, and
the date and time in TIMESTAMP_COLUMN_NO_DECIMAL formatted as 2000-04-25 19:25:34. (The number in
parenthesis (()) after TIMESTAMP specifies the precision of the fractions of seconds portion of the time-0, in the
example.)

TIME WITH TIME ZONE. Uses 14 characters to represent the time and the offset from Universal Coordinated Time
(UTC)-eight characters to hold the time followed by the offset of the local time from (UTC)-formerly known as
Greenwich Mean Time or GMT. Therefore, if you create a table using
CREATE TABLE time table

(time with gmt TIME WITH TIME ZONE,

time with seconds gmt TIME (4) WITH TIME ZONE)

the DBMS will store the time in TIME_WITH_GMT formatted as 19:22:24-05:00, and in
TIME_WITH_SECONDS_GMT formatted as 19:22:24.1234-05:00. (The (4) in the data type for the
TIME_WITH_SECONDS_GMT column in the example represents the optional precision you can specify to
represent the fractions of seconds in the time.)

TIMESTAMP WITH TIME ZONE. Uses 32 characters to represent the date, the time, and the offset from Universal
Coordinated Time (UTC)-10 characters to hold the date, followed by a space for separation, and then 21 characters
to represent the time, including a default of fractions of seconds given to six decimal places and the office from
UTC (GMT). Thus, if you create a table using
CREATE TABLE time table
(timestamp_coiumn TIMESTAMP WITH TIME ZONE,
timestamp no dec TIMESTAMP (0)WITH TIME ZONE)

the DBMS stores the date and time in TIMESTAMP_COLUMN formatted as 2000-04-25 19:22:34.123456+04:00
and in TIMESTAMP_NO_DEC using the format 2000-04-25 19:25:34+01:00 (The number in parenthesis (()) after
TIMESTAMP specifies the precision of the fractions of seconds portion of the time-0, in the example.)

Unfortunately, not all DBMS products support all five of the standard SQL datetime data types. In fact, some DBMS products even
use TIMESTAMP for purposes other than defining columns that hold date and time data. As such, check your system manual to
see which of the SQL datetime data types your DBMS supports.

Don't be surprised to find that your system uses a nonstandard data type such as DATETIME (used by SQLBase, Sybase, and
MS-SQL Server) to format columns that will hold dates and times.

If your system uses the DATETIME data type, you can define a column to hold date and time using an SQL statement similar to:

CREATE TABLE date_table
(date_time DATETIME)

To insert a date and time into a DATETIME column, enclose the date and time in single quotes using an INSERT statement
similar to:

INSERT INTO date table
VALUES ('04/25/2000 21:05:06:123")

If you are using MS-SQL Server and execute the SQL statement
SELECT * FROM date_table

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the DBMS will display the value in the DATE_TIME column as: 2000-04-25 21:05:06.123.

MS-SQL Server lets you specify the date in the INSERT statement using any one of a variety of formats, including but not limited
to:

= Apr 25 2000
= APR 25 2000
= April 25, 2000
= 25 April 2000
= 2000 April 25
= 4/25/00

= 4-25-2000

= 4.25.2000

MS-SQL Server also gives you a number of ways to express the time you want to insert into a DATETIME column. Valid ways to
express time include:

= 9:05:06:123pm
= 9:5:6:123pm

= 9:05pm

= 21:00

= 9pm

= 9PM

= 9:05

(Note that the last entry in this example ["9:05"] will insert 9:05am and not 9:05pm.) If you insert a date without a time, MS-SQL
Server will append 00:00:00:000 to your date. Thus, the SQL statement

INSERT INTO date table VALUES ("2000 Apr 25")

will set the value of DATE_TIME to 2000-04-10 00:00:00.000. (MS-SQL Server will replace the portion of the time you leave off
with zeroes.)

If you insert only a time into a DATETIME column, MS-SQL Server will replace the omitted date with 01/01/1900.

(e eevious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Frvisus |
28 Understanding the SQL BIT Data Type

When you are working with data that can take on only one of two values, use the BIT data type. For example, you can use BIT
fields to store the answers to yes/no or true/false survey questions such as: these "Are you a homeowner?" "Are you married?"
"Did you complete high school?" "Do you love SQL?"

You can store answers to yes/no and true/false questions in CHARACTER columns using the letters Y, N, T, and F. However, if
you use a column of type CHARACTER, each data value will take 1 byte (8 bits) of storage space. If you use a BIT column
instead, you can store the same amount of data using 1/8 the space.

Suppose, for example, that you create a CUSTOMER table using the SQL statement:
CREATE TABLE customer

(id INTEGER,
name VARCHAR (25),
high_school_graduate BIT,
some_college BIT,
graduate_school BIT,
post_graduate_work BIT,
male BIT,
married BIT,
homeowner BIT,
US_citizen BIT)

If you follow normal conventions, a 1 in a BIT column would represent TRUE, and a 0 would represent FALSE. Thus, if the value
of the MARRIED column were 1, that would mean that the CUSTOMER is married. Similarly, if the value in the US_CITIZEN
column were 0, that would mean that the CUSTOMER is not a U.S. citizen.

Using the BIT data type instead of a CHARACTER data type for the eight two-state (BIT) columns in the current example not only
saves 56 bytes of storage space per row, but it also simplifies queries based on the two-state column values.

Suppose, for example, that you wanted a list of all male customers. If the MALE column were of type CHARACTER, you would
have to know whether the column would contain a T, t, Y, y, or some other value to indicate that the CUSTOMER is a male. When
the column is a BIT column, you know that the value in the male column can only be a 1 or a 0-and will most likely be a 1 if the
CUSTOMER is a male, since a 1 would, by convention, indicate TRUE.

You can use a BIT column to select rows that meet a specific condition by checking the value of the column in the WHERE clause
of your SQL statement. For example, you could make a list of all customers that are high school graduates using the SQL
SELECT statement:

SELECT id, name

FROM customer

WHERE high_school _graduate = 1

Selecting rows that meet any one of several criteria is also easy. Suppose, for example, that you want a list of all customers that
are either married or homeowners. You could use the SQL SELECT statement:

SELECT id, name
FROM customer
WHERE married = 1 OR homeowner = 1

If, on the other hand you want to select only married homeowners, you would use an AND in place of the OR in the WHERE

clause.
[« rxvvions foaxi o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiE | [raivisus]fiie +]
29 Understanding Constants

SQL does not have a CONSTANT data type, like that found in programming languages such as Pascal, Visual Basic, and C++.
However, you do not have to put data values into columns in order to use those values in SQL statements. Valid SQL statements
can and often do include literal string, numeric, and date and time constants, and symbolic constants (also referred to as system
maintained constants).

Numeric Constants (Exact and Approximate Numeric Literals)

Numeric constants include integers, decimals, and floating-point numbers. When using integer and decimal constants (also called
exact numeric literals) in SQL statements, enter them as decimal numbers. Write negative numbers using a leading (vs. trailing)
minus sign (dash), and you can precede positive numbers with an optional plus sign. Whether writing positive or negative
constants, omit all commas between digits.

Examples of well-formed SQL exact numeric literals are: 58, -47, 327.29, +47.89, -785.256.

In addition to integers and decimals, SQL lets you enter floating-point constants (also called approximate numeric literals). Use E
(or scientific) notation when using floating-point numbers in an SQL statement. Floating-point numbers look like a decimal number
(called the mantissa), flowed by an E and then a positive or negative integer (the exponent) that represents the power of 10 by
which to multiply the number to the left of the E (the mantissa).

Examples of well-formed SQL approximate numeric literals are: 2.589E5, -3.523E2, 7.89E1, +6.458E2, 7.589E-2, +7.589E-6,
which represent the numbers 258900, -352.3, 78.9, +645.8, 0.07589E-2, and +0.000007589, respectively.

String Constants (Literals)

The SQL-92 standard specifies that you enclose SQL character constants in single quotes.
Well-formed string constants include: 'Konrad King,' 'Sally Fields,' 'Nobody doesn"t like Sarah Lee.'

Notice that you can include a single quote within a string constant, (the word doesn't, in the current example) by following the
single quote that you want to include with another single quote. Thus, to include the contraction doesn't in the string constant, you
write "doesn"t."

Some DBMS products (such as MS-SQL Server) allow you to enclose string constants within double quotes. Valid string constants
for such DBMS products include: "Konrad King," "Sally Fields," "Nobody doesn't like Sara Lee." Notice that if you enclose a string
constant in double quotes, you do not have to use two single quotes to form the contraction doesn't.

Date and Time Constants

Using date and time constants in an SQL statement is a bit more involved than including numeric and string literals. Every DBMS
supports the use of characters and number strings. However, as you learned in Tip 27, "Understanding Standard SQL Datetime
Data Types and the DATETIME Data Type," not all DBMS products support all five of the SQL standard datetime data types-in
fact, MS-SQL Server does not support any of them, opting instead to support its own DATETIME data type. As such, before you
can use a date or time constant in an SQL statement, you must first know the proper format for entering dates and times on your
DBMS. So, check your system manual.

Once you know the correct date and time format for your DBMS product, you can use date and time constants by enclosing valid
date and time values within single quotes.

For MS-SQL Server, valid date and time constants include: '27 Apr 2000,' '4-27-2000,' '4.27.2000," '2000 Apr 27,' '2000.4.27,'
'5:15:00 pm,' '17:23:45,' '4-27-2000 5:15:23.'

Symbolic Constants (System-Maintained Constants)

The SQL-89 standard specified only a single symbolic constant: USER. SQL-92 includes USER, SESSION_USER,
SYSTEM_USER, CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP. Unfortunately, many DBMS products
support only some or none of the symbolic constants to varying degrees. MS-SQL Server, for example, supports USER,
CURRENT_USER, SESSION_USER, SYSTEM_USER, CURRENT_TIMESTAMP, and APP_NAME-but only when used as part
of a DEFAULT constraint in a CREATE or ALTER TABLE statement. Thus, the SQL statement

SELECT customer_name, balance_due, date_due
FROM customer_ ar
WHERE date_due < CURRENT_DATE

may be perfectly acceptable in your DBMS product but unacceptable to MS-SQL Server.

Note MS-SQL Server gives you access to system-maintained constants through built-in functions instead of through
symbolic constants. As such, MS-SQL Server would return the customers with past due balances as requested by the
example query if you wrote the SQL statement as:

SELECT customer_name, balance_due, date_due
FROM customer ar
WHERE date due < GETDATE ()

Before using symbolic constants, check your system manual to determine which of the symbolic (or system-
maintained) constants your DBMS supports. Also check your manual to see if your DBMS has built-in functions that
return the values of system-maintained constants not included in the list of symbolic constants.

[Toam Lia | (< raivisus [aer o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrviou]
30 Understanding the Value of NULL

When a DBMS finds a NULL value in a column, it interprets it as undefined or unavailable. The SQL-92 standard specifies that a
DBMS cannot assign or assume an explicit or implicit value to a NULL column.

A NULL is not the same as a space (in a character column), a zero (in a numeric column), or a NULL ASCII character (which is all
zeroes) (in a character column). In fact, if you execute the SQL statement

SELECT * FROM customer WHERE education = NULL

the DBMS will not display any rows, even if the education column in some of the rows in the CUSTOMER table has a NULL value.
According to the SQL standard, the DBMS cannot make any assumption about a NULL value in a column-it cannot even assume
that a NULL value equals NULL!

There are several reasons that a column may be NULL, including:

= Its value is not yet known. If your STUDENT table includes a RANK_IN_CLASS column, you would set its value
to NULL on the first day of school.

= Its value does not yet exist. If your MARKETING_REP table includes an APPOINTMENT_QUOTA, the column's
value would be NULL until set by the marketing room manager after the marketing rep completes his or her training.

= The column is not applicable to the table row. If your EMPLOYEE table includes a MANAGER-ID column, you
would set the column to NULL for the company owner's row.

Be selective about the columns in which you allow the DBMS to store NULL values. A PRIMARY KEY column (which you will learn
about in Tip 172, "Using the PRIMARY KEY Column Constraint to Uniquely Identify Rows in a Table"), cannot have a NULL in any
of its rows. After all, a PRIMARY KEY column must be unique in each and every row. Since the DBMS cannot make any
assumptions about the value of a NULL, it cannot say with certainty that the NULL value in one row would be the same as the
value in another row once the column's value is no longer unknown (or becomes defined).

Also, if you plan to use a column in functions such as MIN, MAX, SUM, AVG, and so on, be sure to apply the NOT NULL
constraint (which you will learn about in Tip 191, "Using the NOT NULL Column Constraint to Prevent NULL Values in a Column")
to the column. If you use one of the aggregate functions on a column that has a NULL in a row, the result of the function will be
indeterminate (that is, NULL). After all, the DBMS cannot compute the SUM of the values in a column if there are one or more
rows in the table whose column value is unknown.

In summary, think of NULL as an indicator rather than a value. When the DBMS finds a NULL in a column of a row in a table, the

DBMS "knows" that data is missing or not applicable.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lid [« Frvvious
31 Understanding the MS-SQL Server ISNULL() Function

You can use the MS-SQL Server ISNULL() built-in function to return a value other than NULL for columns that are NULL.
Suppose, for example, that your EMPLOYEE table has data in columns as shown in Figure 31.1.

| EMPLOYEE table |
[p || ~Name || pATE_HIRED |[quoTa |
[1 || salysmith || oaz7o0 || nuL |
[2 || watyweis || oan3me || 5 |
[3 || Gregones || osm207 || 7 |
[4 ||Bruce wiliams || 0411500 || NuLL |
[5 || PauHarvey || oei0s99 || o |

Figure 31.1: EMPLOYEE table with sample data and NULL values

If you execute the SQL SELECT statement
SELECT id, name, date hired, quota FROM employee

MS-SQL Server will display output similar to the following:

id name date hired quota
1 Sally Smith 04/27/00 00:00:00 NULL
2 Wally Wells 04/13/99 00:00:00 5
3 Greg Jones 05/12/97 00:00:00 7
4 Bruce Williams 04/15/00 00:00:00 NULL
5 Paul Harvey 06/05/99 00:00:00 9

If you don't want to explain what a NULL is to your users, you can use the built-in ISNULL() to replace "(null)" in the output with
another text string or number.

The syntax of the ISNULL() function is:

ISNULL (expression,value)

Substitute the name of the column that contains NULLs for expression and the character string or number you want displayed in
place of "(null)" for value. Therefore, if you want MS-SQL Server to replace "(null)" in the QUOTA column with "In Training," use
the SQL statement

SELECT

id, name, date_hired, 'quota'=ISNULL(quota,'In Training')
FROM

employee

to have MS-SQL Server output the following for our example data:

id name date_hired quota

1 Sally Smith 04/27/00 00:00:00 1In Training
2 Wally Wells 04/13/99 00:00:00 5

3 Greg Jones 05/12/97 00:00:00 7

4 Bruce Williams 04/15/00 00:00:00 1In Training
5 Paul Harvey 06/05/99 00:00:00 9

You can also use the MS-SQL Server ISNULL() function to select either rows where a column is NULL or rows where a column is
not NULL. For example, if you want to see the rows in the EMPLOYEE table where the quota is null, you could use an SQL
SELECT statement similar to:

SELECT id, name, date hired, ISNULL(quota,'In Training')
FROM employee
WHERE ISNULL (quota,-999) = -999

If, on the other hand, you want to see only those reps who have a defined quota, replace the = in the WHERE clause with <>,
similar to the following:

SELECT id, name, date_hired, quota

FROM employee

WHERE ISNULL (quota,-999) <> -999

Toan Lo [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Frvisus |
32 Understanding the MS-SQL Server IDENTITY Property

You can apply the IDENTITY property to one (and only one) of the columns in a table to have MS-SQL Server supply an
incrementing, non-NULL value for the column whenever a row is added that does not specify the column's value. Suppose, for
example, that you wanted to create an EMPLOYEE table that included an EMPLOYEE_ID column, but you did not want to supply
the EMPLOYEE_ID each time you added a new employee to the table. You can have MS-SQL Server supply the "next"
EMPLOYEE_ID each time a row is added by creating the EMPLOYEE table using an SQL statement similar to the following:

CREATE TABLE employee
(id INTEGER IDENTITY (10,10),
name VARCHAR(35),
quota SMALLINT)

The format of the IDENTITY property is:

IDENTITY (initial value, increment)
If you omit the initial_value and increment, MS-SQL Server will set both the initial_value and the increment to 1.

The CREATE TABLE statement in the current example tells MS-SQL Server to assign a 10 to the ID column of the first row added
to the EMPLOYEE table. Then, when you add subsequent rows to the table, MS-SQL Server will add 10 to the ID value in the last
row of the table and assign that value to the ID column of the new row to be added. Thus, executing the SQL statements

INSERT INTO employee (name, quota)
VALUES ('Sally Smith', NULL)

INSERT INTO employee (name, quota)
VALUES ('Wally Wells', 5)

INSERT INTO employee (name, quota)
VALUES ('Greg Jones', 7)

SELECT * FROM employee

MS-SQL Server will insert the three employee rows into the display and display them similar to the following:

id name quota
10 Sally Smith NULL
20 Wally Wells 5
30 Greg Jones 7

You can apply the IDENTITY property only to columns of type INTEGER, INT, SMALLINT, TINYINT, DECIMAL, or NUMERIC—
and only if the column does not permit NULL values.

Note Specifying the IDENTITY property for a column does not guarantee that each row will have a unique value in that
column. Suppose, for example, that you executed the SQL statements on the table in the current example:

SET IDENTITY INSERT employee ON
INSERT INTO employee (id, name, quota)
VALUES (20, 'Bruce Williams', NULL)
SET IDENTITY INSERT employee OFF
INSERT INTO employee (name, quota)

VALUES ('Paul Harvey', 9)
SELECT * FROM employee

MS-SQL Server will display table rows similar to the following:

id name quota

10 Sally Smith (
20 Wally Wells 5
30 Greg Jones 7
20 Bruce Williams (
40 Paul Harvey 9

Because the first INSERT statement specifies the value for the ID column, the DBMS puts a 20 in the ID column of the
Bruce Williams row. The second INSERT statement does not include a value for the ID column. As a result, the DBMS
adds 10 (the increment) to the highest ID (30) and uses the result (40) as the ID for the new Paul Harvey row.

If you want to guarantee that the IDENTITY column contains a unique value in each row of the table, you must create a unique
index based on the IDENTITY column, which you will learn how to do in Tip 161, "Using the CREATE INDEX Statement to Create
an Index."

[oam L [+ rriisus [oesr]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o | [eiviovs [o]

33 Understanding Assertions

As you learned in Tip 15, "Understanding Constraints," a constraint is a database object that restricts the data a user or
application program can enter into the columns of a table. An assertion is a database object that uses a check constraint to limit
data values you can enter into the database as a whole.

Both assertions and constraints are specified as check conditions that the DBMS can evaluate to either TRUE or FALSE.
However, while a constraint uses a check condition that acts on a single table to limit the values assigned to columns in that table;
the check condition in an assertion involves multiple tables and the data relationships among them. Because an assertion applies
to the database as a whole, you use the CREATE ASSERTION statement to create an assertion as part of the database
definition. (Conversely, since a constraint applies to only a single table, you apply [define] the constraint when you create the
table.)

For example, if you want to prevent investors from withdrawing more than a certain amount of money from your hedge fund, you
could create an assertion using the following SQL statement:

CREATE ASSERTION maximum withdrawal
CHECK (investor.withdrawal limit>
SELECT SUM(withdrawals.amount)
FROM withdrawals
WHERE withdrawals.investor_ id = investor.ID)

Thus, the syntax used to create an assertion is:
CREATE ASSERTION <assertion name> <check condition>

Once you add the MAXIMUM_WITHDRAWAL ASSERTION to the database definition, the DBMS will check to make sure that the
assertion remains TRUE each time you execute an SQL statement that modifies either the INVESTOR or WITHDRAWALS tables.
As such, each time the user or application program attempts to execute an INSERT, UPDATE, or DELETE statement on one of
the tables in the assertion's CHECK clause, the DBMS checks the check condition against the database, including the proposed
modification. If the check condition remains TRUE, the DBMS carries out the modification. If the modification makes the check
condition FALSE, the DBMS does not perform the modification and returns an error code indicating that the statement was
unsuccessful due to an assertion violation.

= I

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Lis | [raivisus]fiie +]
34 Understanding the SQL DBMS Client/Server Model

Client/Server computing (often called n-tier computing when you use the Internet to connect the client to the server), involves
distributed data processing, or multiple computers working together to perform a set of operations. In the client/server model, the
client (workstations) and server (DBMS) work together to perform operations that create objects and manipulate the data in a
database. Although they work together in the overall scheme of things, the tasks the server performs are different than the work
accomplished by the clients.

The relational DBMS model and SQL are particularly suited for use in a client/server environment. The DBMS and data reside on
a central server (computer), and multiple clients (network workstations) communicate requests for data to the server across
connections on the local area network (LAN). The application program running on the client machine accepts user input and
formulates the SQL statements, which it then sends to the DBMS on the server. The DBMS then interprets and executes the SQL
commands, and sends the results back to the client (workstation). Finally, the application program running at the workstation
formats and displays the results for the user.

Using the SQL client/server relationship is a much more efficient use of bandwidth as compared to a simple database file-sharing
system where the workstation would copy large amounts of data from the fileserver, manipulate the data locally, and then send
large amounts of data back to the fileserver to be stored on the network disk drives. Put another way, the older, more inefficient
shared file access method involves sending you the entire filing cabinet and all of its folders. Your application program then has to
sift through everything available to find the file folder it needs.

In the client/server model, the server rummages the filing cabinet for you and sends only the desired file folder to the application
program. The user uses an application program running on a network workstation (the client) to send requests (using SQL
statements) for data to the DBMS (the server). The DBMS and data reside on the same system, so the DBMS can execute the
SQL statements and send only the data the user needs across the LAN to the workstation.

A DBMS (the server) has nothing to do until it receives a request (one or more SQL statements) from the client (network
workstation). The server is responsible for storing, manipulating, and retrieving data for multiple clients. As such, the server
hardware typically has multiple, high-end processors to handle simultaneous data requests and large amounts of fast storage, and
it is optimized for fast data access and retrieval.

When processing SQL statements, the DBMS (server) interprets the commands and translates them into database operations.
After executing the operations, the server then formats and sends the results to the client. Thus, the server's job is relatively
straightforward: read, interpret, and execute SQL statements. Moreover, the server has no responsibility for presenting the
information to the user-that job is left to the client.

The client portion of the SQL client/server system consists of hardware (often similar in processing power to the server) and
software, the user's interface to the DBMS. When working with SQL, the user often does not even realize that there is a separate
DBMS server involved. As far as the user is concerned, the application program (such as an order entry system) running on his or
her computer is acting on data stored on a shared network drive. In reality, the client (application program) accepts user input,
translates what the user enters into SQL commands, and sends the commands along with any data entered to the DBMS server.
The application then waits for the server to send back the results, which the program then displays to the user.

In the client/server environment, the client is responsible for:
= Accepting needed information from the user (or another application program)
= Formulating the data retrieval, removal, or update request for the server
= Displaying all information (data and server messages) to the user

= Manipulating individual data items (the server takes care of the physical storage, removal, and retrieval of data, but
data values are determined on the client side of the client/server model)

= Formatting the information and producing any reports (both printed and online)

Note You can reduce network traffic and server workload by duplicating some data validity checks in the client
application. For example, having the application program force the user to enter a valid quantity before
sending the columns in an order row to the DBMS will avoid sending the data to the server, having the
DBMS parse the SQL statement only to send it back to the client as invalid.

Be sure to use validity checks on the client side of the client/server model in addition to (and not in place of) the server's SQL-
defined data integrity mechanisms. By consolidating validation on the server (and duplicating it on the client where it makes
senses), you ensure that EVERY application's data is validated using the same set of rules. If you trust the application to perform
its own validation, you will invariably run into problems where validation code, omitted during the testing phase, is inadvertently left
out of the production system as well. Moreover, if you need to change or add new business rules, changing server validity checks
in one place (on the server) is relatively simple as compared to contacting each software vendor (or in-house programming staff)

to update individual application programs.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toam Lid [« Frvvious
35 Understanding the Structure of SQL Statements

When using SQL to send commands to the DBMS, you first tell the DBMS what you want to do and then describe the data (or
structure) on which you want the DBMS to take the action. SQL is similar to the German language in that you put the action word
(the verb) at the beginning of the sentence (the SQL statement) and then follow the verb with one or more clauses that describe
the subject (the database object, or set of rows) on which you want the DBMS to act. Figure 35.1 shows the basic form of SQL
statements.

Figure 35.1: Basic structure of an SQL statement

As shown in Figure 35.1, each SQL statement begins with a keyword that describes what the statement does. Keywords you'll find
at the beginning of SQL statements include: SELECT, INSERT, UPDATE, DELETE, CREATE, or DROP. After you tell the DBMS
what you want done, you tell it the columns of interest and the table(s) in which to look. You normally identify the columns and
tables you want to use by listing the columns after the verb (at the start of the SQL statement) and by listing the table(s) after the
keyword FROM.

After you tell the DBMS what to do and identify the columns and tables to which to do it, you finish the SQL statement with one or
more clauses that either further describe the action the DBMS is to take, or give a description of the data values that identify
tables rows on which you want you want to DBMS to act. Typical descriptive clauses begin with the keywords: HAVING, IN, INTO,
LIKE, ORDER BY, WHENEVER, WHERE, or WITH.

ANSI/ISO SQL-92 has approximately 300 reserved words of which you will probably use about 30 to do the majority of your work
with the database. Table 35.1 lists some of the most commonly used keywords. Although some of the keywords are applicable
only to MS-SQL Server, you will find keywords that perform similar functions if you are using another vendor's DBMS.

Table 35.1: Commonly Used SQL and MS-SQL Server Keywords

| Keyword ” Description |

| Data Definition Language (DML) |

CREATE (MS-SQL Server). Creates a database and transaction log. A database has one or more schemas,

DATABASE which contain database objects such as tables, views, domains, constraints, procedures, triggers,
and so on.

DROP (MS-SQL Server). Erases a database and transaction log.

DATABASE

CREATE Adds a named container of database objects to the database. A database may have more than one

SCHEMA schema. All database objects (tables, views, domains, constrains, procedures, triggers, and so on)
reside in one of the schemas within the database.

DROP Removes a schema from a database.

SCHEMA

CREATE Creates a named list of allowable values for columns in database tables. You can use domains as

DOMAIN data types for columns in multiple tables.

DROP Removes a domain definition from the database.

DOMAIN

CREATE Creates a structure (table) of columns and rows to hold data.

TABLE

ALTER Adds columns to a table, removes columns from a table, changes column data types, or adds column

TABLE constraints to a table.

| DROP TABLE ” Removes a table from the database. |

CREATE Creates a database object that displays rows of one or more columns from one or more tables. Some
VIEW views allow you to update the base tables.

| DROP VIEW ” Drops a database view. |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CREATE Creates a structure with values from a table column, which speeds up the DBMS's ability to find
INDEX specific rows within the table.

|DROP INDEX ” Removes an INDEX from the database.

| Data Manipulation Language (DML)

| INSERT “ Adds one or more rows to a table.

| SELECT “ Retrieves database data.

| UPDATE ” Updates data values in a table.

| DELETE ” Removes one or more rows from a table.
[TRUNCATE || (MS-SQL Server). Removes all rows from a table.

| Data Control Language (DCL)
| ROLLBACK ” Undoes changes made to database objects, up to the last COMMIT or SAVEPOINT.

COMMIT Makes proposed changes to the database permanent. (COMMITTED changes cannot be undone
with a ROLLBACK.)

SAVEPOINT Marks points in a transaction (set of actions) that can be used to ROLLBACK (or undo) a part of a
transaction without having to undo the entire transaction.

| GRANT ” Gives access to database objects or SQL statements. |

| REVOKE ” Removes access privileges to database objects or executes specific SQL statements. |

| Programmatic SQL |

| DECLARE “ Reserves server resources for use by a cursor. |
OPEN Creates a cursor and fills it with data values selected from columns in one or more rows in one or

more database tables.

| FETCH ” Passes data values from a cursor to host variables. |

| CLOSE ” Releases the resources used to hold the data copied from the database into a cursor. |

| DEALLOCATE ” Releases server resources reserved for use by a cursor. |

CREATE (MS-SQL Server). Creates a named list of SQL statements that a user (with the correct access rights)

PROCEDURE can execute by using the name as he or she would any other SQL keyboard.

ALTER (MS-SQL Server). Changes the sequence of SQL statements that the DBMS will perform when the

PROCEDURE user calls a procedure.

DROP (MS-SQL Server). Removes a procedure from the database.

PROCEDURE

CREATE (MS-SQL Server, DB2, PL/SQL). Creates a named sequence of SQL statements that the DBMS will

TRIGGER execute automatically when a column has a specific data value or when a user attempts a specific
database command (the triggering event).

ALTER (MS-SQL Server, DB2, PL/SQL). Changes the SQL statements executed when the DBMS detects

TRIGGER the triggering event, or changes the nature of the event.

DROP (MS-SQL Server, DB2, PL/SQL). Removes a trigger from the database.

TRIGGER

DESCRIBE Reserves an input area an application program will use to pass values to the DBMS during a dynamic

INPUT SQL statement.

GET Tells the DBMS to use the DESCRIPTOR area to retrieve data values placed there by an application

DESCRIPTOR || program during a dynamic SQL statement.

DESCRIBE Reserves an output area the DBMS will use to pass data from the database to an application

OUTPUT program during a dynamic SQL statement.

SET Tells the DBMS to place data into the DESCRIPTOR area for retrieval by an application program

DESCRIPTOR || during a dynamic SQL statement.

PREPARE Tells the DBMS to create an execution plan or compile the SQL statement(s) in a dynamic SQL
statement.

EXECUTE ” Tells the DBMS to execute a dynamic SQL statement. |

You will find several tips on each of the common SQL statements (and others that are important, though not commonly used),
throughout this book. The important thing to know now is that all SQL statements begin with a keyword (verb), have a list of
objects on which to act, and may have one or more clauses that further describe the action or identify the rows on which to act at
the end of the statement. If the SQL statement does not contain clauses that limit the action to rows with specific column data
values, the DBMS will take action on all of the rows in a table (or multiples tables through a VIEW).

ET

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
36 Understanding How the DBMS Executes SQL Statements

When processing an SQL statement, the DBMS goes through five steps:

= Parse. The DBMS goes through the SQL statement word by word and clause by clause to make sure that all of the
keywords are valid and all of the clauses are well-formed. The DBMS will catch any syntax errors (badly formed
SQL expressions) or typographical errors (misspelled keywords) during the parsing stage.

= Validate. The DBMS will check to make sure that all tables and columns named in the statement exist in the
system catalog, as well as make sure there are no ambiguous column name references. During the validation step,
the DBMS will catch any semantic errors (invalid references or valid references to nonexistent objects) and access
violations (attempts to access database objects or attempts to execute SQL statements to which the user does not
have sufficient privilege).

= Optimize. The DBMS runs an optimizer to decide on the best way to carry out the SQL statement. For a SELECT
statement, for example, the optimizer checks to see if it can use an INDEX to speed up the query. If the query
involves multiple tables, the optimizer decides if it should join the tables first and then apply the search condition, or
vice versa. When the query appears to involve a scan of all rows in the table, the optimizers determines if there is a
way to limit the data set to a subset of the rows in order to avoid a full table scan. Once the optimizer runs through
all of the possibilities and gives them a rating based on speed (efficiency) and safety, the DBMS chooses one of
them.

= Generate execution plan. The DBMS generates a binary representation of the steps involved in carrying out the
SQL statement based on the optimization method suggested by the optimizer. The execution plan is what is stored
when you create an MS-SQL Server procedure and what is generated when you prepare a dynamic SQL query.
Generating the execution plan is the DBMS equivalent of compiling an application program to produce the .EXE file
(the executable code).

= Execute. The DBMS carries out the action specified by the SQL statement by executing the binary execution plan.

Different steps in the process put different loads on the DBMS and server CPU. The parsing requires no database access and
very little CPU time. Validation requires some database access but does not put too much of a load on the DBMS. The
optimization step, however, requires a lot of database access and CPU time. In order to optimize a complex, multi-table query, for
example, the optimizer may explore more than 20 ways to execute the statement.

The reason you don't just skip the optimization step is because the "cost" of doing the optimization is typically much less than the
cost of performing the SQL statement in less than the most efficient manner. To put it another way, the reduction in time it takes to
complete a well-optimized query more than makes up for the time spent in optimizing the query. Moreover, the more complex the
query, the greater the benefits of optimization.

One of the major benefits of using procedures is being able to avoid performing the same parsing, validation, and (especially)
optimization steps over and over again. When you enter an SQL query using an interactive tool (such as the MS-SQL Server
Query Analyzer), the DBMS has no choice but to go through the entire five-step execution processor, even if you type in the same
query multiple times.

If you put your SQL statement (or statements) into a stored procedure, however, the DBMS can parse, validate, optimize, and
develop the execution plan in advance. Then, when you call the procedure, the DBMS needs only to execute the already compiled
execution plan. Precompiled procedures let the DBMS avoid the "expensive" optimization phase the second and subsequent
times you execute the SQL statements in the procedure. Thus, procedures let you move the first four steps of the execution
process to the development environment, which reduces the load on the online production DBMS (and server).

[+ ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lio | [« ravvious |
37 Understanding SQL Keywords

SQL keywords are words that have a special significance in SQL and should not be used as user-defined names for database
objects such as tables, columns, domains, constraints, procedures, variables, and so on. There are two types of keywords,
reserved and nonreserved. The difference between reserved and nonreserved keywords is that some database products let you
(although you should not) use nonreserved keywords to name database objects and variables. To make your SQL statements
portable and less confusing, avoid using reserved words as identifiers.

When writing SQL statements, use all capital letters for keywords and lowercase letters for nonkeywords (or vice versa).
Keywords are case-insensitive, meaning that the DBMS will recognize a keyword whether you type it using all capital letters,
lowercase letters, or a combination of both. Making the case (capital vs. lower case) of reserved words different than non-reserved
words in SQL statements makes the SQL statements easier for you (and those responsible for maintaining your database
creation) to read.

Since each DBMS product supports most SQL-92 reserved words and adds a few of its own, the system manual and online help
system are your best source for a list of reserved words. For example, to review MS-SQL Server's list of reserved words, perform
the following steps:

1. Click on the Start button. Windows will display the Start menu.

2. Select Programs, Microsoft SQL Server 7.0 option, and click on Books Online. Windows will start the MS-SQL
Server Help system.

3. Click on the Index tab and enter KEYWORDS in the Type in the Keyword to Find field. The MS-SQL Server Help
system will display an alphabetical list of terms starting with Keywords.

4. To see a list of reserved keywords, click on Reserved and then click on the DISPLAY button. The Help system
will display a dialog box asking you to select the type of reserved words on which you want its assistance.

5. Click on Reserved Keywords (T-SQL) and then click on the DISPLAY button. The MS-SQL Server Help system
will display a list of T-SQL (Transact-SQL) reserved words, followed by a list of ODBC reserved words. The
ODBC reserved words include the SQL-92 reserved words that MS-SQL Server supports. (Transact-SQL is MS-
SQL Server's own procedural SQL language; Oracle uses PL/SQL and SQL Plus*.)

To exit the Help system, click on the close button (the X) in the upper-right corner of the Help application window.

[ervous Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt ¥
38 Using the MS-SQL Server Query Analyzer to Execute SQL Statements

You can use the MS-SQL Server Query Analyzer (QA) to execute any SQL statement supported by MS-SQL Server. (As
mentioned in previous tips, no commercially available database supports everything in the SQL-92 standard.) QA has a graphical
user interface (GUI) you can use to pose ad hoc (interactive) queries and to send SQL commands to an MS-SQL Server. (MS-
SQL Server also provides a command-line interface to the database through ISQL, which you will learn about in Tip 39, "Using the
MS-SQL Server ISQL to Execute SQL Statements from the Command Line or Statements Stored in an ASCII File.")

Note You will need to install MS-SQL Server prior to using the Query Analyzer. Tip 527 gives you step-by-step instructions
for installing MS-SQL Server, if you have not yet installed it on your computer system.
To start to start MS-SQL Server QA, perform the following steps:
1. Click on the Start button. Windows will display the Start menu.

2. Select Programs, Microsoft SQL Server 7.0 option; click on Query Analyzer. Windows will start QA and display a
Connect to SQL Server dialog box similar to that shown in Figure 38.1.

Figure 38.1: MS-SQL Server Query Analyzer, Connect to SQL Server dialog box

3. Enter the name of the SQL Server to which you wish to connect in the SQL Server field. (The name of the SQL
Server is typically the same as the name of the Windows NT Server on which you installed the MS-SQL Server.)

4. Enter your login name in the Login Name field. When you install MS-SQL Server, the program automatically
creates the sa (system administrator) account without a password. If you are working with your own installed
copy of the MS-SQL Server, use the sa account; if not, enter the Login Name and Password your system
administrator (or database administrator) assigned to you.

5. Click on the OK button. QA will log in to the MS-SQL Server you specified in Step 4 and display the Query pane
in the QA application window, similar to that shown in Figure 38.2.

Figure 38.2: The MS-SQL Server Query Analyzer Query pane in the Query Analyzer
window

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you install MS-SQL Server under Windows NT, the installation program creates several databases, as shown in the DB
drop-down list in the right corner of the Query pane in Figure 38.2. Before using QA to send SQL statements to the MS-SQL
Server, you must select a database.

To work with the pubs (sample) database, perform the following steps:

1. Click on the drop-down button to the right of the DB field (in the upper-right corner of the QA Query pane) to list
the databases on the SQL Server to which you are connected.

2. Click on a database to select it. For the current example, click on pubs.

3. Place your cursor in the Query pane by clicking anywhere within it. QA will place the cursor in the upper-left
corner of the Query pane.

4. Enter your SQL statement in the Query pane. For the current example, enter SELECT * FROM authors.

5. To execute the query (entered in Step 4), either press F5 or Ctrl+E, or select the Query menu Execute option.
For the current example, press F5. QA will display your query results in a Results pane below the Query pane,
similar to that shown in Figure 38.3.

Figure 38.3: The Query Analyzer, with a query in the Query pane and query results in a Results
pane

Whenever you tell QA to execute the SQL in the Query pane, QA will send all of the statements in the Query pane to the SQL
Server for processing, unless you select a specific statement (or set of statements) you want to execute. So, be careful you don't
press Ctrl+E (or press F5, or select the Query menu Execute option), thinking that QA will send only the last statement you typed
to the SQL server.

If you have multiple statements in the Query pane, either remove the ones you don't want to execute, or highlight the statement(s)
that you want QA to send to the SQL Server for processing. For example, if you, you had the following statements in the Query
pane

SELECT * FROM authors

SELECT * FROM authors WHERE au_lname = 'Green'

and you only wanted to execute the second statement, highlight the second query to select it and then select the Query menu
Execute option (or click on the green Execute Query button on the standard toolbar). QA will send only the second select
statement to the SQL Server and display the results in the Results pane, similar to that shown in Figure 38.4.

Figure 38.4: The Query Analyzer after executing the highlight statement when the Query pane contains multiple
statements

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Having QA retain SQL statements in the Query pane after it executes them can save you a lot of typing, especially if you enter a
complex query and don't get the results you expect. If you need to change the logic of your query's selection clause, you need
only click your cursor in the SQL statement and make your change, without having to retype the entire statement.

EEIIE (R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxT ¥
39 Using the MS-SQL Server ISQL to Execute SQL Statements from the

Command Line or Statements Stored in an ASCII File

In Tip 38, "Using the MS-SQL Server Query Analyzer to Execute SQL Statements," you learned how to use the MS-SQL Query
Analyzer GUI query tool. MS-SQL Server also includes two command-line query tools: ISQL.EXE and OSQL.EXE. You'll find both
of these tools in MS-SQL Server's BINN subdirectory. (If you installed MS-SQL Server to the default C:\MSSQL?7 folder, you will
find ISQL and OSQL in the C:\MSSQL7\BINN sub-folder.)

Aside from the name, the only difference between ISQL and OSQL is that ISQL uses DB-LIB to connect to the database, whereas
OSQL uses ODBC. Although we'll use ISQL to access that database in this tip, the important thing to know is that you can execute
the same statements using OSQL. Thus, if you have only OSQL on your system, just use it in place of ISQL in the following
example.

The command-line query tools are useful if you find yourself running a series of SQL statements. You can use ISQL (or OSQL) to
execute the statements one after another by typing them into an ASCII that you pass to ISQL or OSQL for processing. The
command-line tools also give you a quick, low overhead way to test your SQL queries.

Note You will need to install MS-SQL Server prior to using either of the two command-line query tools (ISQL or OSQL). Tip
527 gives you step-by-step instructions for installing MS-SQL Server, if you have not yet installed it on your computer
system.

If you are using the computer on which you installed MS-SQL Server, you need type only | SQL or OSQL at the MS-DOS prompt
to start the query tool because the installation program added the C:\MSSQL7\BINN folder in your path. If you are attaching to the
MS-SQL Server across a network, have your system administrator give you access to the MSSQL7\BINN\OSQL.EXE on the
server. (In order to use ISQL.EXE, you must install NTWDBLIB.DLL on your computer—OSQL.EXE does not require an additional
DLL file.)

Before you can start using ISQL, you must get to an MS-DOS prompt. If you have an MS-DOS icon on your desktop, double-click
on it. Otherwise, click your mouse on the Start button, select Programs, and then click your mouse on Command Prompt.
Windows will start an MS-DOS session.

The format of the command to start ISQL is:

ISQL -S<server name> -U<username> -P<password>
(If you want to see the list of all ISQL command line parameters, type ISQL-? and then press the Enter key.)

To use ISQL to attach to your MS-SQL Server, replace <server name> with the name of your MS-SQL Server, and replace
<username> and <password> with your login name and password. For example, to attach to the MS-SQL Server NVBizNet2 using
the login name sa, which has no password, type

ISQL -SNVBizNet2 -Usa -P

and then press the Enter key. ISQL will display its equivalent of the MS-DOS prompt, similar to that shown in Figure 39.1.

Figure 39.1: The ISQL response to the - ? parameter, followed by the ISQL Ready prompt (1>) after ISQL successfully
attached to the NVBizNet2 SQL Server
Once you see the ISQL Ready prompt, perform the following steps to send SQL statements to the SQL server:

1. Type an SQL statement at the Ready (1>) prompt. For the current example, type USE pubs (to tell the SQL
Server you want to use the PUBS database), and then press the Enter key. ISQL will respond with the Ready
prompt 2>, indicating that it is ready for you to enter the second line of commands.

2. Type an SQL statement. For the current example, type SELECT * FROM authors WHERE zip = 94609 and then
press the Enter key. ISQL will respond with the Ready prompt 3>, waiting for the third statement or command.

3. If you have additional statements you want ISQL to send to the server as a group, repeat Step 2 until you finish
entering.

4. Type GO and the press the Enter key to tell ISQL to send your SQL statements to the SQL server.

After you complete Step 4, ISQL will send the SQL statements you entered prior to the GO command to the DBMS, display the
results, and then indicate that it is ready for your next command by displaying another Ready prompt (1>).

The important thing to understand is that ISQL sends your SQL statements to the SQL Server only after you type GO at a ready
prompt and press the Enter key.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To exit ISQL, type EXIT at a ready prompt and then press the Enter key. ISQL will terminate and your computer will return to the
MS-DOS prompt.

To exit your MS-DOS session and return to the Windows desktop, type EXIT at the MS-DOS prompt and press the Enter key.

Note By typing USE pubs in Step 2, you told the DBMS that you wanted to use the PUBS database. Instead of having ISQL
send the USE statement to the DBMS, you can select the database you want to use by adding -d<use database
name> when you start ISQL. In the current example, you would have entered:

ISQL -SNVBizNet2 -Usa -P -dpubs

To start ISQL, log in to the sa account on the NVBizNet2 SQL Server and select PUBS as the database to use in
subsequent SQL statements.

As mentioned at the beginning of this tip, you can type SQL statements into an ASCII file and then have ISQL (or OSQL) execute
them. To do so, add the -i<input file> parameter when typing the ISQL startup command. Suppose, for example, that you had the
following statements in a file named INFILE39.SQL:

USE pubs

SELECT au_ID, au_lname, zip FROM authors WHERE zip = 94301

GO

You could tell ISQL to send the two statements in INFILE39.SQL to the DBMS and display the results to the screen by starting
ISQL with the command line:

ISQL -SNVBizNet2 -Usa -P -dpubs -iInFile39.sgl -n

The -n tells ISQL not to display statement numbers. Without the -n, ISQL will display a statement number and the greater than (>)
symbol for each of the three SQL statements. As a result, the headings won't line up with the column data. The -n tells ISQL not to
display the statement line numbers. After you enter the command line, press the Enter key. ISQL will send each of the statements
in the input file InFile39.sql to the DBMS and display output similar to:

au_ID au_lname zip
427-17-2319 Dull 94301
846-92-7186 Hunter 94301

As a final permutation, to store the query results in a file instead of displaying them to the screen, add the -o<output file>
parameter to the ISQL startup command. Suppose, for example, that you want to store the query results from executing the
statements in the input INFILE39.SQL into the output file OUTFLE39. You would type

ISQL -SNVBizNet2 -Usa -P -iInFile39.sgl -n -oOutFle39

at the MS-DOS prompt and then press the Enter key to start ISQL.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxT ¥
40 Using the ED Command Within ISQL to Edit SQL Statements

Before sending SQL statements to the DBMS when you enter the GO command, ISQL acts as a line editor. As you learned in Tip
39, "Using the MS-SQL Server ISQL to Execute SQL Statements from the Command Line or Statements Stored in an ASCII File,"
the format of the command to start ISQL at the MS-DOS command line is:

ISQL -S<server name> -U<username> -P<password>

Note Substitute the name of your SQL Server for NVBizNet2, and use your own username and password for login if the sa
account is not available to you.

Thus, to log in to the NVBizNet2 MS-SQL Server as username sa, perform the following steps:

1. Click your mouse on the Start button, select Programs, and click your mouse on Command Prompt. Windows
will start an MS-DOS session.

2. To start ISQL, type ISQL -SNVBizNet2 -Usa -P and press the Enter key. ISQL will display its Ready prompt
(1>).

3. Next, enter the SQL SELECT statement:
SELECT * FROM authors

4. Press the Enter key. After ISQL puts your statement in its statement buffer, your screen will appear similar to the
following:

ISQL -SNVBizNet2 -Usa -P
1> SELECT * FROM authors
2>

Since you did not identify the database you want to use, ISQL will display the following if you enter GO and press the Enter key at
the Ready prompt (2>).

Msg 208, Level 16, State 1, Server NVBIZNET2, Line 1
Invalid object name 'authors'.

Because ISQL is a line editor interface, you cannot move your cursor in front of SELECT and insert a statement. Thus, if you had
only ISQL, your only choice would be to enter EXIT or QUIT at the Ready prompt (2>) and start over, this time either adding the -d
<use database name> parameter to the ISQL command line or typing USE <database name> in response the first Ready
prompt (1>).

Fortunately, ISQL lets you use the MS-DOS full-screen editor.

To start the full screen editor, type ED at a ready prompt (2>) and press the Enter key. ISQL will start the MS-DOS editor and
transfer the contents of its statement buffer, similar to that shown in Figure 40.1.

Figure 40.1: The MS-DOS full-screen editor as started by ISQL

To insert the USE statement in front of the SELECT statement, move your cursor in front of the word SELECT. Type USE pubs
and press the Enter key. Once you've done that, you will have two statements in the text editor:

USE pubs
SELECT * FROM authors

To transfer the contents of the full-screen editor to the ISQL statement buffer, select the File, Exit option. When the editor prompts
you to save your changes, press Y. The MS-DOS editor will send its contents to ISQL which will display them as individual lines
similar to:

1> USE pubs
2> SELECT * FROM authors
3>

Now, type GO and press the Enter key to send the USE and SELECT statements to the DBMS. After ISQL displays the query
results, type EXIT and press the Enter key to exit ISQL and return to the MS-DOS prompt.

The important things to know are:
= You can work in single-line edit mode by typing your SQL statements in response to each ISQL Ready prompt.

= |SQL stores each statement you enter in its statement buffer.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= You can use a full-screen editor by entering ED in response to an ISQL Ready prompt.

= When you start the full-screen editor (with the ED command), ISQL copies the contents of its statement buffer to
the editor screen.

= When you leave the full-screen editor (by selecting the File menu Exit option), ISQL reads the contents of the editor
screen into its statement buffer as one statement per editor line.

Toan L2 [+erevons Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam L& s asvions
41 Using the CREATE DATABASE Statement to Create an MS-SQL Server
Database and Transaction Log

Unlike many other DBMS products, MS-SQL Server lets you create multiple databases for each MS-SQL Server. Most
commercial DBMS products do not even have a CREATE DATABASE command. Instead, the installation program creates the
one database file the SQL Server will use. The database administrator (dba) and privileged users then create all of the database
objects in the one database. As a result, the typical database contains a mix of both related and unrelated tables.

MS-SQL Server gives you the best of both worlds. If you want, you can create a single database for all of your tables, or you can
separate totally unrelated tables into separate databases. Suppose, for example, that you and your spouse each run your own
home business. Using the typical DBMS, you would create one database to hold both your (mail order) CUSTOMER list and your
spouse's (accounting) CLIENT list, even though the two tables are completely unrelated.

Having a single database means that both businesses would lose database access during backup and (if necessary) recovery
operations. If the two were separate, you could still use a single server (to save a bit of hard-earned cash on software and
hardware), but you would not be affected by database problems or maintenance activities that have nothing to do with your own
tables.

Finally, MS-SQL Server's multiple database strategy makes it possible to create a development database that uses the same
database objects and security setup as its production counterpart. Having an identical database structure and security setup
makes it easier to test how proposed changes will affect online application programs, database stored procedures, views, and
triggers. Moreover, once you've fully tested new or modified code on the development system, you will be able to install
procedures, triggers, and views on the production system without further modification. Finally, you can import data from tables in
the production database into identical tables in the development database, making it easy to use the development system to
"freeze" database data and reproduce errors that seem to occur at random intervals.

The syntax of the CREATE DATABASE statement is:

CREATE DATABASE <database name>
[ON {[PRIMARY] <filespec>} [,...<last filespec>]
[LOG ON { <filespec>} [,...<last filespec>]]
[FOR RESTORE]
<filespec> is defined as:

(NAME = <logical file name>,

FILENAME = '<physical file name>'
[, SIZE = <initial file size>]
[, MAXSIZE = {<maximum file size> | UNLIMITED}]

[, FILEGROWTH = <file extension inc>])
Review Table 41.1 for a brief explanation of CREATE DATABASE keywords and options.

Table 41.1: Definition of CREATE DATABASE Statement Keywords and Options

| Keyword/Option ” Description |

| database name ” The name of the database. |

ON <filespec> The name(s) of the disk file(s) that will hold the data portion of the database. MS-SQL Server lets
you split a single database into multiple files.

PRIMARY If you split the database into multiple files, PRIMARY identifies the file that contains the start of the
data and the system tables. If you don't specify a PRIMARY file, MS-SQL Server will use the first
file in the list as the PRIMARY file.

LOG ON The name(s) of the disk file(s) that will hold the transaction log.
<filespec>

FOR RESTORE ” Do not allow access to the database until it is filled with data by a RESTORE operation.

<logical file The name the MS-SQL Server will use to reference the database or transaction log.

name>

<physical file The full pathname to the database or transaction log file.

name>

<initial file size> The initial size, in megabytes, of the database or transaction log. If you don't specify an initial size
for the transaction log, the system will size it to 25 percent of the total size of the database files.

<maximum file The maximum size to which the database or transaction log can grow. If you specify UNLIMITED,

size> the files can grow until they exhaust the physical disk space.

<file extension The number of bytes to add to the size of the transaction log or database file when the current free

inc> space in the file is used up.

To create a database using the MS-SQL Server Query Analyzer, perform the following steps:
1. Click your mouse on the Start button. Windows will display the Start menu.
2. Move your mouse pointer to Programs on the Start menu, select the Microsoft SQL Server 7.0 option, and click
your mouse on Query Analyzer. Query Analyzer will display the Connect to SQL Server dialog box similar to that

shown in Figure 41.1.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 41.1: The Query Analyzer Connect to SQL Server dialog box
3. Enter the name of your SQL Server in the SQL Server field.
4. Enter your username in the Login Name field, and enter your password in the Password field.

5. Click on the OK button. Query Analyzer will connect to the SQL Server you entered in Step 3 and display the
Query pane in the SQL Server Query Analyzer application window.

6. Enter the CREATE DATABASE statement. For the current example, enter:
CREATE DATABASE SQLTips

ON (NAME = SQLTips_data,
FILENAME = 'c:\mssgl7\data\SQLTips_data.mdf'
SIZE - 10,
FILEGROWTH = 1MB)

LOG ON (NAME = 'SQLTipSilog',
FILENAME = 'c:\mssgl7\data\SQLTips log.ldf',
SIZE = 3,

FILEGROWTH = 1MB)

7. Click on the green arrow Execute Query button on the standard toolbar (or select the Query menu Execute
option). Query Analyzer will create the database on the SQL Server to which you connected in Step 5.

After you complete Step 7, the Query Analyzer will display the results of the CREATE DATABASE execution in the Results pane
in the SQL Server Query Analyzer application window. If Query Analyzer is successful in executing your CREATE DATABASE
statement, the program will display the following in the Results pane:

The CREATE DATABASE process is allocating 10.00 MB on disk 'SQLTips data'.

The CREATE DATABASE process is allocating 3.00 MB on disk "SQLTips_log'.

(1o L R R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiE | [Paivisus it +]
42 Using the MS-SQL Server Enterprise Manager to Create a Database and

Transaction Log

In Tip 41, "Using the CREATE DATABASE Statement to Create an MS-SQL Server Database and Transaction Log," you learned
that MS-SQL Server lets you create multiple databases on a single server, and you also learned how to use the CREATE
DATABASE statement. Like most database management tools, MS-SQL Server gives you not only a command line (SQL or
Transact-SQL) statement, but also a graphical user interface (GUI) tool to perform the same function. To create a database using
the MS-SQL Server Enterprise Manager, perform the following steps:

1. Click your mouse on the Start button. Windows will display the Start menu.

2. Move your mouse pointer to Programs on the Start menu, select the Microsoft SQL Server 7.0 option, and click
your mouse on Enterprise Manager. Windows will start the Enterprise Manager in the SQL Server Enterprise
Manager application window.

3. Click your mouse on the plus (+) to the left of SQL Server Group to display the list of MS-SQL Servers available
on your network.

4. Click your mouse on the plus (+) to the left of the SQL Server on which you wish to create a database.
Enterprise Manager, in turn, will display a Database Properties dialog box similar to that shown in Figure 42.2

5. Click your mouse on the Databases folder to display the list of databases currently on the server, similar to that

shown in Figure 42.1.

Figure 42.1: The SQL Server Enterprise Manager application window

6. Select the Action menu New Database option. Enterprise Manager displays a Database Properties dialog box

similar to that shown in Figure 42.2.

Figure 42.2: The Enterprise Manager Database Properties dialog box

7. Enter the name of the database in the Name field. For the current project, enter MARKETING. The Enterprise
Manager will automatically fill in the pathname and initial database size in the Database Files section of the
Database Properties dialog box.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Note If you want to put the database in a folder other than the default folder or change the physical file
name, click your mouse on the Search button in the Location field in the Database Files area of the
Database Properties dialog box. Enterprise Manager will display the Locate Database File dialog box
s0 you can select a folder or change the database's physical file name.

8. Click on the Initial size (MB) field and enter the initial size of the database file. For the current project, enter 10.

9. Set the database File Growth and Maximum File Size options. For the current project, accept the defaults, which
allow the database file to grow by 10 percent each time it fills up and place no restriction on its maximum size.

10. Click on the Transaction Log tab.

11. If you want to change the pathname (the file name and physical location) of the transaction log file, click on the
Search button in the Location field to work with the Locate Transaction Log File dialog box. For the current
project, accept the default pathname for the transaction log.

12. Click on the Initial size (MB) field, and enter the initial size of the transaction log. For the current project, enter 3.

13. Set the database File Growth and Maximum File Size options. For the current project, accept the defaults, which
allow the transaction log to grow by 10 percent each time it fills up and place no restriction on its maximum size.

14. Click on the OK button.

After you complete Step 14, the Enterprise Manager will create the database (MARKETING, in the current example) according to
the options you selected and return to the SQL Server Enterprise Manager application window.

The important thing to know now is that MS-SQL Server gives you two ways to create a database. You can use the CREATE
DATABASE statement or use the Enterprise Manager's Action menu New Database option. Whether you use CREATE
DATABASE or the Enterprise Manager, you can set database and transaction log options that specify:

= The physical locations (pathnames) of the database and transaction log file(s)
= The initial size of the database and transaction log

= The increment by which the database and transaction log will grow

= The maximum size to which the database and transaction log file(s) can grow

If you are using CREATE DATABASE, you specify the database and transaction log properties in separate clauses within the
statement. When you use the Enterprise Manager to create a database, you can still specify different properties for the database
and transaction log file(s) by using the Database Properties dialog box General tab to specify database options and using the
Transaction Log tab to select transaction log options.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [« rnwvious | v o
43 Using DROP DATABASE to Erase an MS-SQL Server Database and
Transaction Log

Dropping (deleting) databases you no longer need frees up disk space. The primary rule to follow: Be careful! You cannot easily
undo an executed DROP DATABASE statement. As such, always back up the database before dropping (erasing) it. Having a full
backup will save you a lot of headaches if the user decides he or she needs "one more thing" from the database-right after you
erase it, of course.

Only the system administrator (sa) or a user with dbcreator or sysadmin privilege can drop a database. You cannot drop the
MASTER, MODEL, or TempDB database.

The syntax of the DROP DATABASE statement is:

DROP DATABASE <database name>
[,<database name>, <last database name>]

Thus, to remove the MARKETING database you created in Tip 42, "Using the MS-SQL Server Enterprise Manager to Create a
Database and Transaction Log," perform the following steps:

1. Start the MS-SQL Server Query Analyzer (as you learned to do in Tip 38, "Using the MS-SQL Server Query
Analyzer to Execute SQL Statements"), or start the Enterprise Manager (as you learned to do in Tip 42) and
select the Tools menu, SQL Server Query Analyzer option.

2. Enter the DROP DATABASE statement in the Query Analyzer's Query pane. For the current project, type
DROP DATABASE marketing.

3. Press Ctrl+E (or select the Query menu, Execute option).

After you complete Step 3, the Query Analyzer will attempt to delete the database and log file. If Query Analyzer
successfully deletes the MARKETING database and transaction log, it will display the following in the Results
pane of the Query Analyzer application window:

Deleting database file 'C:\MSSQL7\data\MARKETING Data.MDF'.

Deleting database file 'C:\MSSQL7\data\MARKETING_ Log.LDF'.

1o L) R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

44 Understanding How to Size MS-SQL Server Databases and Transaction
Logs

MS-SQL Server puts all database objects (tables, views, procedures, triggers, indexes, and so on) into a single large file.
Whenever you make a change to the database (add an object, alter an object, delete a row, update a column value, insert a row,
and so on), the DBMS makes an entry in a second file, the transaction log. Thus, every database has two files: the database file,
which contains all of the database objects; and the transaction log, which contains an entry for each change made to the database
(since the last time the log was cleared).

Note The database file and transaction log can each be made up of more than one physical file. However, the DBMS treats
the set of physical files used to hold the database data as a single, logical "database file" and the set of physical files
used to hold the transaction log as a single, logical "transaction log" file. You can set the initial size of each individual
file, but the FILEGROWTH option applies to the logical database file and transaction log, not to each physical file used
to store them on disk.

As you learned in Tip 41, "Using the CREATE DATABASE Statement to Create an MS-SQL Server Database and Transaction
Log," and Tip 42, "Using the MS-SQL Server Enterprise Manager to Create a Database and Transaction Log," you use the SIZE
option to specify the initial size of the database and transaction log when you create them. For example, in Tip 41, you executed
the SQL statement

CREATE DATABASE SQLTips

ON (NAME = SQLTips data,
FILENAME = 'c:\mssgl7\data\SQLTips data.mdf',
SIZE = 10,
FILEGROWTH = 1MB)

LOG ON (NAME = 'SQLTips_log',
FILENAME = 'c:\mssqgl7\data\SQLTips log.ldf"',
SIZE = 3,

FILEGROWTH = 1MB)

which created the SQLTips database file (SQLTIPS_DATA.MDF) with an initial size of 10MB and the transaction log for the
database (SQLTIPS_LOG.LDF) with an initial size of 3MB. As you add rows to tables in the database, you use up the free space
in the database file. If you add data to a table where each row consists of 10 columns of type CHAR(100), you use up 1,000 bytes
(10 columns X 100 bytes / column) of the 10MB available each time you add a row to the table.

Once you've used all of the free space in a database file (10MB, in the current example) you can no longer add data to the
database, even if there is a large amount of physical disk storage space available. To avoid running out of room in the database
file before exhausting the physical disk space, use the FILEGROWTH option when you create a database. The FILE-GROWTH
option tells MS-SQL Server to extend the size of the database file each time it gets full.

In the current example, you set FILEGROWTH to 1MB, which means that each time you use up the space allocated to the
database file, the DBMS will increase the size of the file by 1MB. Moreover, since you did not specify a maximum database file
size, the DBMS will extend the database file 1MB at a time (as necessary) until it exhausts the physically disk storage space.

Each time you make a change to the database, the DBMS stores the original data values and makes a notation detailing what was
done in the transaction log. As such, the DBMS may use up the 3MB allocated to the transaction log in the current example rather
quickly if you are making a lot of changes to the database. Fortunately, you can have MS-SQL Server extend the size of the
transaction log, just as it does the size of the database file.

In the current example, the DBMS will add 1MB of free space to the transaction log each time the transaction log file fills up.

Note Although the current example uses the same FILEGROWTH value for the database file and the transaction log, the
two are independent. For example, you can set the FILEGROWTH at 5MB for the database file and 3MB for the
transaction log-one does not depend on the other.

Be sure to specify a large enough initial database file size and growth factor so that your DBMS isn't spending the majority of its
time extending the size of the database file as you add table rows. To determine the initial database file size, perform the following
analysis on each table in the database:

1. List the column name, data type, and number of bytes of disk space the DBMS will need to store a value in the
column. (Your system manual will have a breakdown of the storage required for the data types your DBMS
supports.)

2. Determine the number of rows you expect the table to hold within the first six months (or year) of operation.

3. Multiply the number of bytes per row times the number of rows in the table to determine the storage
requirements of the table.

Once you know the storage required for each table in your database, set the initial size of the database file to 25-50 percent more
than the sum of the space required by all of its tables. The extra space (50 percent, if possible), allows for a margin of error for
your guess as to the number or rows you expect each table to hold, leaves space for indexes the DBMS can add to speed up data
access, and gives the DBMS room for system cursors and for temporary tables it creates when processing complex queries with
large result sets.

Set the FILEGROWTH option to 10 percent of the initial database file size, rounded up to the nearest whole number. Thus, if your
initial database file size is 25MB, set your FILE-GROWTH to 3MB. Monitor the size of your database file, especially during the first
several months of operation. If you find the database file growing at more than 10 percent in a month, increase the FILEGROWTH
option so that the DBMS has to extend the database file size only once a month.

As a general rule of thumb, set the initial size of your transaction log file to 25 percent of the initial size of your database file, and
set its FILEGROWTH to 10 percent of its initial size. Thus, if your initial database file size is 250MB, set the transaction log file to
start at 25MB and grow by 3MB. Monitor the growth in size of your transaction log, and adjust its growth factor so that the DBMS
has to extend it at most only once per month.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You learned how to set the initial file size and the growth increment (FILEGROWTH) for your database and transaction log files
using the CREATE DATABASE statement in Tip 41 and using the MS-SQL Server Enterprise Explorer in Tip 42. After you've
created the database file and transaction log, you can use the Enterprise Manager to change the size of either the file or its growth
factor by performing the following steps:

1. To start the Enterprise Manager, click on the Start button, move your mouse pointer to Programs on the Start
menu, select Microsoft SQL Server 7.0, and click your mouse on Enterprise Manager.

2. Todisplay the list of SQL Servers, click on the plus (+) to the left of SQL Server Group.

3. To display the list of resources on the SQL Server with the database file or transaction log you want to modify,
click on the plus (+) to the left of the SQL Server's name. For example, if you want to work with the SQL Server
NVBizNet2, click on the plus (+) to the left of NVBizNet2. Enterprise Manager will display a list of folders that
represent the resources managed by the SQL Server NVBizNet2 (in the current example).

4. Click on the Databases folder. The Enterprise Manager will display the databases on the SQL Server in its right
pane.

5. Double-click your mouse on the database icon whose database file or transaction log you want to modify. For
the current example, double-click your mouse on SQLTips (if you created the database in Tip 41). Enterprise
Manager will display the General tab of the SQLTips Properties dialog box similar to that shown in Figure 44.1.
(The name of the dialog box is <database name> Properties.) As such, your dialog box will be SQLTips
Properties only if you double-clicked your mouse on the SQLTips database.

Figure 44.1: The Enterprise Manager database properties dialog box

6. Click on the Space Allocated field in the Database files area of the dialog box. For the current example, change
the 10 to 15.

7. To have the database file grow by a percentage of its current size instead of by a constant number of
megabytes, click your mouse on the By Percent radio button in the File Properties area of the dialog box. For the
current example, leave the percentage the default, 10 percent.

8. If you want to restrict the database file growth to a certain number of megabytes, click on the Restrict Filegrowth
(MB) radio button and enter the maximum file size in megabytes. For the current example, allow for unrestricted
file growth by clicking on the Unrestricted Filegrowth radio button.

9. Click on the Transaction Log tab to work with the transaction log properties. For the current example, leave the
transaction log properties unchanged. However, if you did want to change the transaction log options, you would
follow Steps 6 to 8, substituting "transaction log" for "database file" in each step.

10. Click on the OK button. The Enterprise Manager will apply your changes to the SQLTips database and return to
the Enterprise Manager application window.

The optimal initial size and growth increment for a database and transaction log depend on the amount of data, amount of
physical storage space available, and volume of transactions you expect the DBMS to handle. If you're converting from one DBMS
product to another, base your size and increment settings on historical requirements. Otherwise, use the figures in this tip as a
reasonable starting point. The important thing to understand is that while you don't want to allocate space you'll never need, you
also want the DBMS to spend as little time as possible increasing the size of the database file and transaction log.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Frvisus |
45 Understanding the MS-SQL Server TempDB Database

Each time you start MS-SQL Server, the DBMS creates a special database named TempDB. The server uses the TempDB
database for such things as temporary tables, cursor data, and temporary, user-created global variables. In short, the TempDB
database is the system's scratchpad. However, you can use it as well.

The advantage of using TempDB is that activities you perform to TempDB objects (tables, views, indexes, and so on) are not
logged. As such, the DBMS can manipulate data in TempDB faster than it does in other databases.

Prior to changing database objects and data values (other than TempDB objects and data), the DBMS must store the preupdate
(original) object structures and values in the transaction log. Thus, for non-TempDB data, every data manipulation involves two
save operations— save the original and then save the updated value. Saving the original data values can impose significant
overhead if you are making a large number of changes. When using TempDB objects, however, the DBMS has to perform storage
operations only once—to save the updated values to disk.

The downside of using TempDB objects is that you cannot roll back (or undo) manipulations made on TempDB objects. Moreover,
each time you shut down the DBMS and restart it, TempDB (and all of its objects) is erased. As such, any information stored in
TempDB is lost each time the DBMS restarts (and re-creates TempDB). Therefore, do not rely on the existence of any information
in TempDB from one session to the next.

Use TempDB as a scratchpad (as MS-SQL Server does) to hold temporary data values and tables. TempDB is especially useful
for aggregating data values from multiple tables in order to generate a summary report. Rather than trying to write an SQL
statement that both selects and summarizes data, you can simplify your task by writing a query that aggregates the data you want
in a temporary TempDB table, and then execute a simple second query to produce your final report.

[« ravvions foost

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« rrnvisus]flveixt o]
Chapter 2: Using SQL Data Definition Language (DDL) to Create

Data Tables and Other Database Objects

46 Using the CREATE TABLE Statement to Create Tables

Tables are the primary structures used to hold data in a relational database. In a typical multi-user environment, the database
administrator (dba) creates the tables that serve as the data stores for the organization's data. Users normally create their own
temporary tables used to store data extracted from the main organizational tables.

For example, the dba would create the CUSTOMER and ORDERS tables to hold a permanent record of all of the company's
customers and their orders. If you then need to produce several reports for a particular quarter, you would create a temporary
table to hold a portion of the company's data. By extracting a portion of the overall table into a temporary table, you have to do the
data selection only once, and you can use the results of the selection for multiple reports such as quarter-to-quarter comparisons,
a list of the top customers based on amount purchased, or a summary of items sold during the period.

Whether you are creating permanent or temporary tables, you use the same SQL CREATE TABLE statement. The syntax of the
CREATE TABLE statement is:

CREATE TABLE <table name>
(<column definition> [,...<last column definition]
[<primary key definition>]
[<foreign key definition>])
<column definition> is defined as:
<column name> <data-type> [DEFAULT <value>]
[NOT NULL] [UNIQUE] [<check constraint definition>]
<check constraint definition> is defined as:
CHECK (<search condition>)
<primary key definition> is defined as:
PRIMARY KEY (<column name> [, <column name>]
<foreign key definition> is defined as:
FOREIGN KEY (<column name>) REFERENCES <table name>

Review Table 46.1 for a brief explanation of CREATE TABLE keywords and options.

Table 46.1: Definition of CREATE TABLE Statement Keywords and Options

| Keyword/Option ” Description |

table name The name of the table—must be unique by owner within a database. (See Tip 9, "Understanding
Table Names.")

|co|umn name ” The name of a column—must be unique within the table. |

data-type One of the SQL data types (see Tips 21-26) or a named domain (see Tip 14, "Understanding
Domains").

DEFAULT Value assigned to a column if you create a row and do not give the column an explicit initial value.

<value> (See Tip 51, "Using the DEFAULT Clause in a CREATE TABLE Statement to Set Default Column
Values.")

NOT NULL Constraint to prevent the assignment of a NULL value to a column. (See Tip 191, "Using the NOT
NULL Column Constraint to Prevent Null Values in a Column.")

UNIQUE Constraint that prevents adding two table rows with the same value in the unique column. (See Tip
192, "Using the UNIQUE Column Constraint to Prevent Duplicate Values in a Column.")

CHECK <search The search condition can be any SQL statement that evaluates to either TRUE or FALSE. The

condition> check constraint prevents adding rows to a table where the search condition evaluates to FALSE.
(See Tip 193, "Using the CHECK Constraint to Validate a Column's Value.")

PRIMARY KEY Constraint that prevents adding two table rows with the same value in the column or set of
columns. A table can have only one PRIMARY KEY. The PRIMARY KEY is column (or set of
columns) that can be referenced as a FOREIGN KEY in another table. (See Tip 172, "Using the
PRIMARY KEY Column Constraint to Uniquely Identify Rows in a Table.")

FOREIGN KEY Column whose value can be found as the PRIMARY KEY in table specified by REFERENCES
<table name>. (See Tip 174, "Understanding Referential Data Integrity Checks and Foreign
Keys.")

For example, if you execute the CREATE TABLE statements

CREATE TABLE item master
(item_number INTEGER,

description VARCHAR(35)
PRIMARY KEY

NOT NULL
(item_number)

CREATE TABLE orders

(order number
item_number

quantity
item_cost

INTEGER UNIQUE NOT NULL,
INTEGER NOT NULL,
SMALLINT DEFAULT 1,
DECIMAL (5, 2),

customer number INTEGER

PRIMARY KEY

(order_number, item_number)

FOREIGN KEY (item_number) REFERENCES item _master)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the DBMS will create two tables, ITEM_MASTER and ORDERS. The ITEM_MASTER table has two columns, DESCRIPTION and
ITEM_NUMBER. The ITEM_NUMBER is the PRIMARY KEY for the ITEM_MASTER table, meaning that each item (row) in the
table will have a unique ITEM_NUMBER. Put another way, no two item descriptions will have the same item number.

The second table, ORDERS, has five columns. The PRIMARY KEY of the ORDERS table is a composite key, meaning that it is
made up of two or more columns. In the current example, the PRIMARY KEY for ORDERS consists of the ORDER_NUMBER and
ITEM_NUM-BER columns, meaning that the same ORDER_NUMBER (like 123, for example) may appear in several rows of the
table, but each row for the same ORDER_NUMBER will have a unique ORDER_NUMBER-ITEM_NUMBER pair.

The FOREIGN KEY constraint in the ORDERS table tells the DBMS that the value in the ITEM_NUMBER column in the ORDERS
table REFERENCES the PRIMARY KEY in the ITEM_MASTER table. Thus, the DBMS can take the value in the ITEM_NUMBER
column and uniquely identify a single row in the ITEM_MASTER table. Moreover, the DBMS will not allow you to add a row to the
ORDERS table if the ITEM_NUMBER value in the row to be inserted does not exist in the ITEM_MASTER table. Conversely, you
will not be able to delete a row in the ITEM_MASTER file if its ITEM_NUMBER value exists as an ITEM_NUMBER in the
ORDERS table. (You will learn more about the FOREIGN KEY constraint in Tip 174.)

From its syntax and the examples in this tip, you can see that the CREATE TABLE statement lets you define database tables.
When creating a table, you give the names of the columns and the data type of each column, and specify any constraints as to
the data values the columns can hold. Moreover, you can identify one of the columns or a set of columns as the PRIMARY KEY
for the table, meaning that each row in the table has a unique value in the column (or set of columns) that make up the PRIMARY
KEY. Finally, you can use the FOREIGN KEY constraint to identify parent/child relationships between tables. In the current

example, ORDERS is the child of the ITEM_MASTER parent.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

47 Using the MS-SQL Server Enterprise Manager to Create Tables

In addition to typing CREATE TABLE statements into the MS-SQL Server Query Analyzer's Query pane or at the ISQL (or OSQL)
Ready prompts, MS-SQL Server gives you a GUI tool you can use. To create a table using the Enterprise Manager, perform the

following steps:

1.

10.

11.

12.

13.

14.

To start the Enterprise Manager, click on the Start button, move your mouse pointer to Programs on the Start
menu, select Microsoft SQL Server 7.0, and click your mouse on Enterprise Manager.

. To display the list of SQL servers, click on the plus (+) to the left of SQL Server Group.

. To display the list of resources on the SQL Server on which you wish to create a table, click on the plus (+) to

the left of the SQL Server's name. For example, if you want to work with the SQL Server, NVBizNet2, click on
the plus (+) to the left of NVBIZNET2. Enterprise Manager will display a list of folders that represent the
resources managed by the SQL Server NVBizNet2 (in the current example).

. Click on the Database folders. The Enterprise Manager will display the databases on the SQL Server in its right

pane.

. Right-click your mouse on the database in which you wish to create the table. For the current example, right-

click your mouse on the SQLTips database. (If you did not create the SQLTips database, right-click your mouse
on the TempDB database.) The Enterprise Manager will display a pop-up menu.

. Move your mouse pointer to New on the pop-up menu, and then select Table. Enterprise Manager will display

the Choose Name dialog box.

. Enter the table name in the Enter a Name for the Table field of the Choose Name dialog box. For the current

example, enter Item_Master and then click on the OK button. Enterprise Manager will display the SQL Server
Enterprise Manager-New Table window shown in Figure 47.1.

Figure 47.1: The MS-SQL Server Enterprise Manager New Table window

. Prepare to enter the first column name by clicking your mouse on the first cell in the Column Name column.

. Enter the name of the column. For the current example, enter item_number. Next, press the Enter key to move

to the input cursors to the Datatype field.

Select the field's data type. Either click on the drop-down arrow to the right of the Datatype field and select the
data type, or enter the data type into the Data Type field. For the current example, enter INT. Next, press the
Enter key to move to the insert cursor to the Length field.

If you are working with a character, image, or text type, enter the length of the character. In the current example,
you are working with an integer, so the Length field is not applicable. Press the Enter key to move the input
cursor to the Precision field.

If you are working with a decimal or floating-point (nonwhole) number, enter the total number of digits in the
number into the Precision field. In the current example, you are working with an integer, so the precision is set to
the default precision for your implementation (which you cannot change). Press the Enter key to move the input
cursor to the Scale field.

If you are working with a decimal or floating-point (nonwhole) number, enter the number of digits you want to
carry to the right of the decimal point into the Scale field. In the current example, you are working with an
integer, so the Scale field is not applicable. Press the Enter key to move to the Allow Nulls check box.

To allow the field to hold a NULL value, click on the Allow Nulls check box until the check mark appears. For the
current example, clear the Allow Nulls check box-every item in the ITEM_MASTER table must have an
ITEM_NUMBER.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

15.

16.

17.

18.

19.
20.

21.

22.

23.

If you want to set the column to a constant default value if you don't supply an explicit value for the column when
inserting a row into the table, enter the value into the Default Value field. For the current example, leave the
Default Value field blank.

To have the DBMS supply an incrementing value for the column if you don't supply an explicit value for the
column when inserting a row into the table, click on the Identity check box until the check mark appears. For the
current example, click a check mark into the Identity check box-you want the system to supply the item numbers
for new items you add to the ITEM_MASTER table. Then press the Enter key to move the input cursor to the
Identity Seed field.

Enter the first value the DBMS should supply for the column-applicable only if you've identified the column as
having the IDENTITY property. For the current example, enter 1000. Then press the Enter key to move the input
cursor to the Identity Increment field.

Enter the value by which the DBMS is to increment the previous number it supplied for the column when
inserting a new table row-applicable only if you've identified the column as having the IDENTITY property. For
the current example, enter 100.

Click on the next empty cell in the Column Name field to enter another column name.

Repeat Steps 9-19 until you've defined all of the columns in your table. For the current example, add a second
column named Description, with data type VARCHAR of length 35, which does not allow NULL values.
Enterprise Manager will display your table definition similar to that shown in Figure 47.2.

Figure 47.2: The MS-SQL Server Enterprise Manager New Table window after defining two columns for
the ITEM_MASTER table

To identity a column as the PRIMARY KEY, right-click your mouse on any field in the column, and select Set
Primary Key from the pop-up menu. For the current example, right-click your mouse on ITEM_NUMBER in the
Column Name field, and then select Set Primary Key from the pop-up menu.

Note If you want to use a multiple-column (composite) PRIMARY KEY, right-click your mouse on any cell
in the table and select Properties from the pop-up menu. The Enterprise Manager will display the
Properties dialog box. Click on the Indexes/Keys tab and select the columns you want to include in
the PRIMARY KEY in the Column Name list field in the Type area of the Indexes/Keys tab. When you
are finished selecting columns for the PRIMARY KEY, click on the Close button. (You will learn more
about using Enterprise Manager to create indexes in Tip 162, "Understanding MS-SQL Server
CREATE INDEX Statement Options.")

To save your table definition, click on the Save button (first button on the left with the floppy disk icon) on the
New Table standard toolbar.

To close the MS-SQL Server Enterprise Manager New Table window, click on the close button (the X) in the
upper-right corner of the application window.

You can use the CREATE TABLE statement (which you learned about in Tip 46, "Using the CREATE TABLE Statement to Create
Tables") or the Enterprise Manager GUI New Table tool to create MS-SQL Server tables. Both SQL and GUI allow you to define
columns, set constraints, and identify table keys. If you have MS-SQL Server Enterprise Manager installed on your computer, the
method you select to create your tables is a matter of personal preference (command line vs. GUI).

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Frvisus |
48 Creating MS-SQL Server Temporary Tables

MS-SQL Server lets you create two types of temporary tables: global and local. Local temporary tables are available only to the
session in which they are created, and the DBMS automatically erases local temporary tables when the session ends. Global
temporary tables are available to multiple database sessions. The DBMS drops a global temporary table after the last user using
the table terminates his or her session.

Each login to the database starts a new session. As such, when you use Query Analyzer to attach to a database, you start a
session. When you log off or terminate Query Analyzer, the DBMS ends your session. If you're logged in to the database, each
time you execute a stored procedure or run an application program that logs in to the same or another database, the DBMS starts
a new session. If you log in to the same database a second time, the DBMS keeps your original session open, but information in
temporary tables created in the first session is not available to the second session.

Temporary tables are useful when you need to do several operations on the same set of data, such as creating summary reports
on a subset of the data from multiple tables. By selecting and combining the raw data you need into a single table, you avoid
having the DBMS extract and combine the data multiple times. In addition to eliminating multiple select operations, using a single
temporary table increases execution speed because the MS-SQL Server can retrieve data faster from a single table than it can
through references to multiple base tables.

To create a local temporary table, start the table name with a single pound (#) sign. As such, executing the statement

CREATE TABLE f#customer orders
(customer_ number INTEGER,
customer name VARCHAR (35)
order_date DATETIME,
amount MONEY)

will create a local temporary table. The #CUSTOMER_ORDERS table is accessible only to the person who created it. Moreover,
the DBMS will automatically DROP the table when the user logs out.

If you want to create a global temporary table, start the table name with two pound (#) signs. Thus, if you want to create a
temporary table that is accessible to multiple users (and sessions), use a double pound (#) sign with a CREATE TABLE statement
similar to:

CREATE TABLE ##customer orders
(customer_number INTEGER,
customer name VARCHAR (35),
order _date DATE TIME,
amount MONEY)

The DBMS will not DROP the global temporary table until the last user that referenced the table during his or her session logs out.

[oam L [+ eevnsus a1]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

49 Using the Transact-SQL CREATE DEFAULT Statement to Set a Column

Default

MS-SQL Server lets you create named, default values you can bind to columns and user-defined data types. Once you bind a
default to a table column, the DBMS will supply the default value for the column (instead of NULL) if you insert a row that includes
the column without specifying its value. The advantages of creating a default outside the CREATE TABLE statement are that you
can use a descriptive name for the default, apply the same default to multiple columns in the same or different tables, and change

or drop the default at any time.

The syntax of the Transact-SQL CREATE DEFAULT statement is:

CREATE DEFAULT
AS <constant expression>

[<owner name>.]<name of default>

Note Transact-SQL consists of Microsoft's additions to standard SQL. No commercial DBMS product fully supports
everything in the SQL-92 standard. Conversely, every vendor adds its own SQL extensions (such as CREATE
DEFAULT) and provides procedural language constructs. Microsoft calls its SQL and extensions and procedural
language additions Transact-SQL. Oracle uses PL/SQL and SQL *Plus. While most standard SQL-92 code is
transportable across DBMS products, specific product extensions (such as Transact-SQL statements) are not. If you
need to use a Transact-SQL statement in an Oracle DBMS, check your system manual. You will probably find a
PL/SQL statement that performs the same function but has a different name syntax.

Defaults you create must comply with the following rules:

= You do not have to supply the <owner name> for the default. However, if you do not, the DBMS will supply your
login name as the default for <owner name>

= The name you use for the default (<name of default>) must be unique by owner.

= The <constant expression> must contain only constant values such as numbers, character strings, built-in
functions, or mathematical expressions. The <constant expression> cannot include any columns or other database

objects.

= After creating a default, you must use the stored procedure sp_bindefault to bind the default value to a column
before the DBMS will supply the value for the column when inserting a row.

= The default must be compatible with the column to which you bind it. If you bind a character string to a numeric
column, for example, the DBMS will generate an error message and not insert the row each time it has to supply

the default value for the column.

= |f you supply a character string default for a character column and the default is longer than the column length, the

DBMS will truncate the default value to fit into the column.

= |f a column has both a default and a constraint, the default value cannot violate the constraint. If a column's default
value violates a column constraint, the DBMS will generate an error message and not insert the row each time it

has to supply the default value for the column.

Suppose, for example, you had a table defined by

CREATE TABLE employee

(employee_ ID INTEGER,
first name VARCHAR (20),
last_name VARCHAR (30),
social security number CHAR(11),
street_address VARCHAR (35),
health_card_number CHAR(15),
sheriff card number CHAR (15)

PRIMARY KEY

(employee_1ID))

and you want to supply "applied for" and "unknown" in place of NULL values if you don't know the Social Security number, health
card number, or sheriff card number when adding a new employee to the EMPLOYEE table. You can create the defaults you

need by executing the Transact-SQL statements:

CREATE DEFAULT ud_value_unknown AS "Unknown"
CREATE DEFAULT ud_applied for AS "Applied for"

Note You can only enter one CREATE DEFAULT statement at a time into the Query Analyzer's Query Pane, or into the

ISOQL (or OSOQL) command buffer.

Before the DBMS will use a default, you must execute the sp_bindefault stored procedure to bind the default value to a user-
defined data type or a table column. You will learn how to bind default values to a table column in Tip 50 and how to bind a default

to a user-defined data type in Tip 594.

You can use the stored procedure sp_help to display a list of user and system-defined defaults. Since sp_help will display all

defaults, not just the ones you create, you may want to group all of your defaults together in the list. To do so, use the same first
one or two characters for the names of the defaults (such as UD_, short for USER DEFAULTS). Then, when you use sp_help to
list the database defaults, the stored procedure will group all of the defaults you create together in its semi-alphabetized list of all

defaults.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

50 Using the MS-SQL Server Stored Procedure sp_bindefault to Bind a
User-Created Default to a Table Column

As mentioned in Tip 49, "Using the Transact-SQL CREATE DEFAULT Statement to Set a Column Default," you must bind
defaults to table columns so the DBMS knows which columns it is supposed to set to which default values. The syntax to use
when executing the stored procedure sp_bindefault to bind a default value to a table column is
EXEC sp_bindefault
@DEFNAME=<name of defaults>,
QOBJNAME=<table name>.<column name>

where <name of default> is the name you gave the default in the CREATE DEFAULT statement, and <table name>.<column
name> is the name column in the table for which you want the DBMS to supply the default value.

For example, if you executed the Transact-SQL CREATE DEFAULT statements

CREATE DEFAULT ud_value_ unknown AS "Unknown"
CREATE DEFAULT ud_applied_for AS "Applied for"

the DBMS would store the default values UD_VALUE_UNKNOWN and UD_APPLIED_FOR in the database system tables. Once
it's created, you can use the stored procedure sp_bindefault to bind the defaults to columns in tables (such as the EMPLOYEE
table defined by example in Tip 49).

To bind the default ud_value_unknown ("Unknown") to the SOCIAL_SECURITY_NUMBER column in the EMPLOYEE table,
execute the Transact-SQL statement:
EXEC sp_bindefault
@defname=ud_value_unknown,
@objname='employee. [social security number]'

To bind the default ud_applied_for ("Applied For") to the SHERIFF_CARD_NUMBER column in the EMPLOYEE table, execute
the Transact-SQL statement:
EXEC sp_bindefault

@defname=ud_applied for,

@objname='employee. [sheriff card number]’

To bind the default ud_applied_for ("Applied For") to the HEALTH_CARD_NUMBER column in the EMPLOYEE table, execute the
Transact-SQL statement:
EXEC sp_bindefault

@defname=ud_applied_ for,

@objname='employee. [health card number]'

After you bind defaults to the EMPLOYEE table columns, the DBMS will supply the default value for the default-bound columns
when you execute an INSERT statement on the EMPLOYEE table, such as:
INSERT INTO employee (employee ID, first name, last_name)
VALUES (1, 'Konrad', 'King')

In the current example, the DBMS will supply "Unknown" for SOCIAL_SECURITY_NUMBER, "Applied For" for
SHERIFF_CARD_NUMBER and HEALTH_CARD_NUMBER, and NULL for STREET_ADDRESS.

[oam Lo [+ reinsus a1

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisvs]fiie +]
51 Using the DEFAULT Clause in a CREATE TABLE Statement to Set

Default Column Values

A default column value is the character string or number that you want the DBMS to enter into a column when you don't provide a
value for the column. You learned how to create default column values in Tip 49, "Using the Transact-SQL CREATE DEFAULT
Statement to Set a Column Default," and how to bind them to multiple columns in one or more tables in Tip 50, "Using the MS-
SQL Server Stored Procedure sp_bindefault to Bind a User-Created Default to a Table Column." Unfortunately, the Transact-SQL
CREATE DEFAULT statement and the sp_bindefault stored procedure are available to you only if you are working with MS-SQL
Server.

The standard SQL-92 CREATE TABLE statement (available on all SQL relational DBMS products) gives you the ability to define
default values for columns when you create a table. Not only is setting default column values standard across DBMS products, but
it is also simpler than the Transact-SQL default value creation and binding process.

To define a column default value, simply add the keyword DEFAULT followed by the default value to the column definition in a
CREATE TABLE statement. For example, the SQL CREATE TABLE statement

CREATE TABLE employee

(employee ID INTEGER,

first_name VARCHAR (20) NOT NULL,

last name VARCHAR (30) NOT NULL,
social_security number CHAR(11) DEFAULT 'Unknown',
street_address VARCHAR (35) DEFAULT 'Unknown',
health card number CHAR (15) DEFAULT 'Applied For',
sheriff card number CHAR (15) DEFAULT 'Applied For',
hourly rate NUMERIC (5,2) DEFAULT 10.00,
bonus_level INTEGER DEFAULT 1,

job_rating 90days SMALLINT,

job_rating_180days SMALLINT,

job_rating lyear SMALLINT

PRIMARY KEY (employee ID)

defines default values for SOCIAL_SECURITY_NUMBER, STREET_ADDRESS, HEALTH_CARD_NUMBER,
SHERIFF_CARD_NUMBER, HOURLY_RATE, and BONUS_LEVEL. As such, when you execute the SQL INSERT statement

INSERT INTO employee
(employee ID, first_name, last_name,
social security number, street address)
VALUES (1, 'Konrad', 'King', NULL, '77 Sunset Strip')

the DBMS will set the HEALTH_CARD_NUMBER and SHERIFF_CARD_NUMBER columns to "Applied For," the HOURLY_RATE
column to 10.00, and the BONUS_LEVEL column to 1. Although the SOCIAL_SECURITY_NUMBER and STREET_ADDRESS
columns have defaults, the default values were not used for the columns since the INSERT statement set the
SOCIAL_SECURITY_NUMBER column to NULL and the STREET_ADDRESS column to "77 Sunset Strip." Finally, since the
CREATE TABLE in the current example, did not define default values for the three job rating columns (JOB_RATING_90DAYS,
JOB_RATING_180DAYS, and JOB_RATING_1YEAR), the DBMS will set these columns to NULL.

Note Before you set column default values in the CREATE TABLE statement, check to see if your DBMS will allow you to
change or stop using the defaults after you've created the table. MS-SQL Server will not let you use the ALTER TABLE
statement to add, change, or drop (remove) any column defaults you define in a CREATE TABLE statement. (You can
use the ALTER TABLE statement to add a new column and assign a default value to the column. However, once the
column is part of a table, you cannot change its default value). If you are using MS-SQL Server, you can get around
this shortcoming by using the Transact-SQL CREATE DEFAULT statement to create a named column default object
outside the table definition. MS-SQL Server lets you bind a name column default to a column using the sp_bindefault
stored procedure. You can change the value of a named column default at any time by unbinding the default from all
columns, dropping it, re-creating the column default with a new value, and then rebinding it to the columns in one or
more tables.

[Toam 1o | [revvious e o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

52 Using the MS-SQL Server Enterprise Manager to Create a Default for a
User-Defined Data Type or Table Column

As usual, MS-SQL Server has both a command-line Transact-SQL statement way to create a default (which you learned about in

ip 49, "Using the Transact-SQL CREATE DEFAULT Statement to Set a Column Default") and a GUI method using the MS-SQL
Server Enterprise Manager. The advantages of creating a default outside the CREATE TABLE statement are that you can give
the default a meaningful name, use it for user-defined data types or multiple columns in one or more tables, change the default
value at any time, or stop using it altogether.

To create a default using the MS-SQL Server Enterprise Manager, perform the following steps:

1.

To start the Enterprise Manager, click your mouse on the Start button, move your mouse pointer to Programs on
the Start menu, select Microsoft SQL Server 7.0, and click your mouse on Enterprise Manager.

. To display the list of SQL servers, click your mouse on the plus (+) to the left of SQL Server Group.

. To display the list of resources on the SQL Server with the database in which you wish to create the default,

click your mouse on the plus (+) to the left of the SQL Server's name. For example, if you want to work with the
SQL Server NVBizNet2, click your mouse on the plus (+) to the left of NVBizNet2. Enterprise Manager will
display a list of folders that represent the resources managed by the SQL Server, NVBizNet2 (in the current
example).

. Click your mouse on the Databases folder. The Enterprise Manager will display the databases on the SQL

Server in its right pane.

. Click your mouse on the icon for the database in which you wish to create the default. For the current example,

click your mouse on SQLTips (if you created the database in Tip 41). (If you don't have an SQLTips database,
click your mouse on Northwind, the example database.)

. Select the Action menu New option, and click your mouse on Default. The Enterprise Manager will display a

Default Properties dialog box similar to that shown in Figure 52.1.

Figure 52.1: The Enterprise Manager Default Properties dialog box

. Enter the name of the default into the Name field. For the current example, enter ud_minimum_wage and then

press the Tab key.

. Enter the default value into the Value field. You can enter either a number, a character string, a built-in function,

or a mathematical expression. The value cannot include any columns or other database objects. For the current
example, enter 7.35 into the Value field.

. Click your mouse on the OK button. The Enterprise Manager will add the UD_MINIMUM_WAGE default

definition to the system tables and close the Default Properties dialog box.

As you learned in Tip 51, "Using the DEFAULT Clause in a CREATE TABLE Statement to Set Default Column Values," you must
bind the default value to a column or user-defined data type in order for the DBMS to actually use the default you created. In Tip
51, you used the stored procedure sp_bindefault to bind a default to a table column. In Tip 54, "Using the MS-SQL Server
Enterprise Manager to Bind a Default to a Data Type or Table Column," you will learn how to use the Enterprise Manager to bind a
default to a user-defined data type and a table column.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [Eraivisus]fiie +]
53 Using the MS-SQL Server Enterprise Manager to Create a User-Defined
Data Type

You learned about SQL data types in Tips 21-26, and you used them when you learned to create a table in Tip 46, "Using the
CREATE TABLE Statement to Create Tables." As you now know, each table column must have a data type that defines the type
of data you can put into the column. For example, if a column is of type INTEGER, you can store only whole numbers—characters
and numbers with a decimal point are not allowed. Similarly, when you define a column as being of type CHAR(10), you know that
it can hold up to 10 characters, symbols, or numeric digits.

A user-defined data type lets you use one of the standard SQL data types or domain you've created to define a descriptive name
for the type of data a user will find in a column you define as being of that (user-defined) data type. Suppose, for example, that
you were working with the REGULAR_PAY_RATE column in an EMPLOYEE table; you could define the column's data type as
NUMERIC(5,2), or you could use a more descriptive user-defined data type such as HOURLY_PAY_RATE.

To use Enterprise Manager to create a user-defined data type, perform the following steps:

1. To start the Enterprise Manager, click your mouse on the Start button, move your mouse pointer to Programs on
the Start menu, select Microsoft SQL Server 7.0, and click your mouse on Enterprise Manager.

2. Todisplay the list of SQL servers, click your mouse on the plus (+) to the left of SQL Server Group.

3. To display the list of resources on the SQL Server with the database in which you wish to create the data type,
click your mouse on the plus (+) to the left of the SQL Server's name. For example, if you want to work with the
SQL Server NVBizNet2, click your mouse on the plus (+) to the left of NVBIZNET2. Enterprise Manager will
display a list of folders that represent the resources managed by the SQL Server NVBizNet2 (in the current
example).

4. Click your mouse on the plus (+) to the left of the Databases folder. The Enterprise Manager will expand the
server list to show the list of databases on the SQL Server you selected in Step 3.

5. Click your mouse on the plus (+) to the left of the database in which you wish to create the data type. For the
current example, click your mouse on the plus (+) to the left of SQLTips (if you created the database in Tip 41,
"Using the CREATE DATABASE Statement to Create an MS-SQL Server Database and Transaction Log"). (If
you don't have an SQLTips database, click your mouse on the plus (+) to the left of Northwind, the example
database.) Enterprise Manager will display a list of database object types.

6. Click your mouse on User-Defined Data Types. Enterprise Manager will display the existing user-defined data
types in the right pane of the application window.

7. Select the Action menu New User-Defined Data Type option. The Enterprise Manager will display a User-
Defined Data Type Properties dialog box similar to that shown in Figure 53.1.

Figure 53.1: The Enterprise Manager User-Defined Data Type Properties dialog box
8. Enter the name of the data type into the Name field. For the current example, enter hourly_pay_rate.

9. Click your mouse on the drop-down list button to the right of the Data Type field to list the available SQL data
types and select one for your user-defined data type. (Your are not actually creating a new data type. Rather,
you are simply applying a descriptive name to an existing SQL data type.) For the current example, select
money.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

10. If you want to allow NULL values for columns of your user-defined data type, click your mouse on the All NULLS
check box until the check mark appears. For the current example, click your mouse on the check box until the
check mark appears—you want to allow a NULL value for the hourly pay rate if the employee is salaried or gets
paid only on commission.

11. If you want to use a database rule to apply a constraint to limit the values a user can enter into columns defined
as being of the data type you are defining, use the drop-down list button to the right of the Rule field to display
the list of database rules and select the one you want. (You will learn how to create Rules in Tip 195, "Using the
Transact-SQL CREATE RULE Statement to Create an MS-SQL Server Rule.") For the current example, select
(none).

12. If you want the DBMS to supply a default value when a user does not provide a value when inserting rows that
include columns defined as being of the data type you are defining, use the drop-down list button to the right of
the Default Name field to display the list of defined defaults, and select the one you want. For the current
example, select (none).

13. Click your mouse on the OK button.

After you complete Step 13, the Enterprise Manager will store your data type definition in the DBMS system tables. You can then
use the data type you defined in the database anywhere you can use a standard SQL data type. In the current example, the SQL

statement

CREATE TABLE employee
(id INTEGER,
name VARCHAR (35),

regular pay rate hourly pay rate)
would be valid once you performed the steps to create the HOURLY_PAY_RATE data type.

Note User-defined data type names in a database must be unique by owner and must be defined in the database in which
you want to use them. For example, if you define HOURLY_PAY_RATE in the SQLTips database, you must also
define it in the Northwind database if you want to use HOURLY_PAY_RATE as a data type for columns in both
SQLTips database tables and Northwind database tables.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxT ¥
54 Using the MS-SQL Server Enterprise Manager to Bind a Default to a Data
Type or Table Column

Before MS-SQL Server will use a default value you've created, you must bind the default to a table column or a user-defined data
type. In Tip 50, "Using the MS-SQL Server Stored Procedure sp_bindefault to Bind a User-Created Default to a Table Column,”
you learned how to use the stored procedure sp_bindefault to bind a default to a table column. In this tip, you will learn how to use
the Enterprise Manager.

To use Enterprise Manager to bind a default to a table column, perform the following steps:

1. To start the Enterprise Manager, click your mouse on the Start button, move your mouse pointer to Programs on
the Start menu, select Microsoft SQL Server 7.0, and click your mouse on Enterprise Manager.

2. Todisplay the list of SQL Servers, click your mouse on the plus (+) to the left of SQL Server Group.

3. To display the list of resources on the SQL Server with the database in which you wish to bind the default to a
column, click your mouse on the plus (+) to the left of the SQL Server's name. For example, if you want to work
with the SQL Server NVBizNet2, click your mouse on the plus (+) to the left of NVBizNet2. Enterprise Manager
will display a list of folders that represent the resources managed by the SQL Server NVBizNet2 (in the current
example).

4. Click your mouse on the plus (+) to the left of the Databases folder. The Enterprise Manager will expand the
database branch of the SQL Server list to show the list of databases on the SQL Server you selected in Step 3.

5. Click your mouse on the plus (+) to the left of the database in which you wish to bind the default. For the current
example, click your mouse on the plus (+) to the left of SQLTips (if you created the database in Tip 41, "Using
the CREATE DATABASE Statement to Create an MS-SQL Server Database and Transaction Log"). (If you don't
have an SQLTips database, click your mouse on the plus (+) to the left of Northwind, the example database.)
Enterprise Manager will display a list of database object types.

6. Click your mouse on the Defaults icon in the list of database object types. Enterprise Manager will use its right
pane to display the list of user-defined defaults in the database you selected in Step 5, similar to that shown in

Figure 54.1: The Enterprise Manager application window displaying the user-defined defaults for a
database

7. Double-click your mouse on the name of the default you want to bind to a table column. For the current
example, double-click your mouse on ud_minimum_wage (if you created the UD_MINIMUM_WAGE default in
Tip 52, "Using the MS-SQL Server Enterprise Manager to Create a Default for a User-Defined Data Type or
Table Column"). Enterprise Manager will display a Default Properties dialog box similar to that shown in Figure
54.2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 54.2: The Default Properties dialog box after selecting the UD_MINIMUM_WAGE
default

8. Click your mouse on the Bind Columns button. Enterprise Manager will display a Bind Default to Columns dialog
box similar to that shown in Figure 54.3.

Figure 54.3: The Bind Default to Columns dialog box

9. Click your mouse on the drop-down list button to the right of the Table field to display the list of tables in the
database. Click your mouse on the table with the column to which you want to bind a default. For the current
example, click your mouse on the EMPLOYEE table. Enterprise Manager will display a list of the table's columns
in the Unbound columns list.

10. Find the column to which you wish to bind the default in the Unbound defaults list along the lower-left side of the
Bind Default to Columns dialog box, and click your mouse on it. For the current example, click your mouse on
REGULAR_PAY_RATE.

11. Click your mouse on the ADD button. Enterprise Manager will add the REGULAR_PAY_RATE column to the
Bound columns list. (Since the left list shows only unbound columns, you will see that Enterprise Manager
removed REGULAR_PAY_RATE from the Unbound columns list when it placed the column name in the Bound
columns list.)

12. Click your mouse on the OK button. Enterprise Manager will return to the Default Properties dialog box.

After you complete Step 12, Enterprise Manager will note your default bindings in the database system tables. The DBMS wiill
then set the column to the default value whenever a user adds a row to the table without giving the value of the column to which
you've bound a default.

If you later decide that you no longer want the DBMS to supply a default for a particular column execute the stored procedure
sp_unbindefault, or perform Steps 1-9 of the procedure to bind a default to a column. Then, instead of selecting an unbound
column in Step 10, select the column you want to unbind from the Bound columns list in the lower-right side of the Bind Default to
Columns dialog box. Next, in Step 11, click your mouse on the Remove button. Finally, finish unbinding the default by clicking on
the OK button in Step 12.

In addition to binding defaults to table columns, you can also bind a default to a user-defined data type. Once you do so, the
DBMS will supply the default value instead of NULL whenever a user does not supply a value for a table column defined as being
of the data type to which you've bound the default.

For example, to bind the UD_MINIMUM_WAGE default to the HOURLY_PAY_RATE data type you defined in Tip 53, "Using the
MS-SQL Server Enterprise Manager to Create a User-Defined Data Type," perform the following steps:

Note If you exited the Default Properties dialog box or did not perform the bind default procedure at the beginning of this tip,
perform Steps 1-7 of the bind defaults procedure, as necessary, to display the Default Properties dialog box.

1. Click your mouse on the Bind UDTs button on the Default Properties dialog box. Enterprise Manager will display
defaults you've defined in a Bind Default to User-Defined Data Types dialog box similar to that shown in Figure
54.4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 54.4: The Bind Default to User-Defined Data Types dialog box

2. Find the data type to which you wish to bind the default, and click your mouse on the check box in the Bind
column until the check mark appears. For the current example, click your mouse on the check box to the right of
the HOURLY_PAY_RATE data type (if you created it in Tip 53).

3. If you want a default value bound only to future columns defined as being of the data type to which you are
binding the default, click your mouse on the Future Only check box until the check mark appears. For the current
example, leave the Future Only check box clear—the DBMS will then use the default both for columns already
declared as being of the HOURLY_PAY_RATE data type as well as those for you will define as being of the data
type in the future.

4. Click your mouse on the OK button. Enterprise Manager will note your default bindings in the DBMS system
tables and return to the Default Properties dialog box.

If you later decide you that you no longer want the DBMS to supply a default for a particular columns defined as a specific user-
defined data type to which you've bound a default, you can execute the stored procedure sp_unbindefault (which you will learn
about in Tip 650), or return to the User-Defined Data Types dialog box and clear the Bind check box for the user-defined data

type.

When you unbind a default from a data type, you must decide whether or not you want the default to remain bound to existing
columns of the data type. If you click a check mark into the Future Only check box, the DBMS will continue supplying the default
value for existing columns of the user-defined data type. If you clear the Future Only check box, the DBMS will supply NULL (stop
supplying the default value) for both existing columns of the data type and any that you create in the future.

To return to the Enterprise Manager application window, click your mouse on the OK button on the Default Properties dialog box.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisus]fiie +]
55 Using the Transact-SQL DROP DEFAULT Statement to Remove a Default

from a Database

When you no longer need a default you've created, you can use the Transact-SQL DROP DEFAULT statement to permanently
remove the default from the database in which you created it. The syntax of the DROP DEFAULT statement is

DROP DEFAULT <default name>
{, <default name>, ... ,<last default name>]

where the <default name> is the name you gave the default when you defined it. As you can see from the syntax of the statement,
you can drop multiple defaults with a single DROP DEFAULT.

In Tip 49, "Using the Transact-SQL CREATE DEFAULT Statement to Set a Column Default," you used the Transact-SQL
statements

CREATE DEFAULT ud_value unknown AS "Unknown"
CREATE DEFAULT ud_applied for AS "Applied for"

to create two defaults: UD_VALUE_UNKNOWN and UD_APPLIED_FOR. If you no longer need these defaults, execute the
Transact-SQL statement

DROP DEFAULT ud_value_unknown, ud_applied_ for
to remove them from the database.

One important thing to know is that you cannot drop a default that is currently bound to either columns or user-defined data types.
You must first use either the Enterprise Manager or the stored procedure sp_unbindefault to unbind the default from all columns
and user-defined data types. Once you've completely unbound the default, you can remove it from the database.

If you create and use defaults, it is essential that you keep an accurate list of them and (perhaps more importantly) the columns
and user-defined data types to which they are bound. Unfortunately, the error message the DBMS returns if you try to drop a
column with a bound default states only the error and does not identify the bindings that caused it. For example, if you execute the
statement

DROP DEFAULT ud_applied_ for

and UD_APPLIED_FOR is bound to a column or data type, the statement will fail and the DBMS will display the error message:

The default 'ud_applied_for' cannot be dropped because it
is bound to one or more column.

To successfully execute the DROP DEFAULT statement, you will need to run the stored procedure sp_unbindefault. However,
sp_unbindefault requires that you supply both the table and the column name in order to unbind a default. Moreover, MS-SQL
Server does not have a stored procedure that will list the columns to which a default is bound, so you will need to refer to your
documentation.

If you don't have a list of bindings for the default you want to remove, or if you prefer to use a GUI tool, you can use the MS-SQL
Server Enterprise Manager to unbind and drop a default. First, perform the first eight steps of the bind default procedure in Tip 54,
"Using the MS-SQL Server Enterprise Manager to Bind a Default to a Data Type or Table Column." After you complete Step 8, the
DBMS will display the Bind Default to Columns dialog box (refer to Figure 54.3, in Tip 54).

Once you have the Bind Default to Columns dialog box on your screen, perform the following steps to unbind the default:

1. To find a table with one or more bindings to the default you want to remove, click your mouse on the drop-down
list box to the right of the Table field. Enterprise Manager will display the list of database tables in the drop-down
list box.

2. If you know the name of the table you want, select it from the drop-down list. (If you don't know the table you
want, you will have to select each of the tables in the database, one at a time.) The Enterprise Manager will
display the table columns bound to your default in the Bound Columns list,

3. To unbind the default from a column, click your mouse on the column name in the Bound Columns list, and then
click your mouse on the Remove button.

4. Repeat Step 3 until you've removed all of the column names from the Bound Columns list.

5. If your documentation lists other tables to which the default is bound (or if you don't have documentation and
you have not made it through the list of database tables), click your mouse on the Apply button and then
continue at Step 3 to select the next table with which you want to work.

6. When you are finished unbinding the default from table columns, click your mouse on the OK button. Enterprise
Manager will return to the Default Properties dialog box (similar to that shown in Figure 54.2, in Tip 54).

7. Click your mouse on the OK button. Enterprise Manager will return to its application window with defaults
displayed in the right pane, similar to that shown in Figure 54.1, in Tip 54.
Now that you've unbound the default, you can perform the following steps to delete (drop) the default:
1. To select the default you want to delete (drop), click your mouse on the name of the default in the list of defaults
in the right pane of the Enterprise Manager's application window.

2. To delete the default, click your mouse on the Delete button (the red X) on the Standard Toolbar (or select the
Action menu Delete option). Enterprise Manager will display the name, owner, and type of the default you
selected in the Drop Objects dialog box.

3. Click your mouse on the Drop All button.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To exit Enterprise Manager, click on the application window's close button (the X in the upper-right corner), or select the Console
menu Exit option.

[+erevious P v

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L | [« Frrviou]
56 Understanding the ALTER TABLE Statement

No amount of prior planning completely eliminates the need for changing the structure of tables over the course of time. This is
not to say that you should spend little time designing tables because they are going to change anyway. Quite the opposite—the
more time you spend on design and deciding exactly what data goes in what tables, the less time you will spend later changing
your tables and trying to input several months' worth of information that you initially omitted from the database.

That being said, changes to database tables, like changes in life, are inevitable. Perhaps you created your customer table before
everyone had an e-mail address (yes, that was not too many years ago). So, now you need to add not only an e-mail address but
also a Web (home page) address to the customer record. Or, maybe your company no longer accepts back orders. As such, your
inventory table now needs a "minimum_stock_level" column so the DBMS can alert you to order parts from your supplier before
you run out and can't take a customer's order. Finally, suppose that your company expands its product line and now makes
purchases from multiple vendors. You may need to add a foreign key linking a new "vendor" column in the item master table to a
newly created vendors table. None of these changes are necessitated by poor design. The database tables must change because
the entities they represent (the business, business rules, and relationships) do not remain constant.

Fortunately, the SQL ALTER TABLE statement allows you to:
= Add a column to a table
= Drop a column from a table
= Change or drop a column's default value
= Add or drop individual column constraints
= Change the data type of a column
= Add or drop a table's primary key
= Add or drop foreign keys
= Add or drop table check constraints

The syntax of the ALTER TABLE statement is:

ALTER TABLE <table name>
{ADD <column definition>}
{[WITH CHECK | WITH NO CHECK] ADD <table constraint>}
{ALTER COLUMN <column name> <new data type>
[(precision,scale)] [NULL | NOT NULL]}
{DROP COLUMN <column name>
[,<column name>...,<last column name]}
{DROP [CONSTRAINT] <constraint name>}
{CHECK | NO CHECK CONSTRAINT [ALL |
<constraint name>
[,<constraint name>...,<last constraint name>]}
{ENABLE | DISABLE TRIGGER [ALL |
<trigger name>
[,<trigger name>...,<last trigger name>]}

<column definition> is defined as:
<column name> <data type>
[IDENTITY [(seed,increment)]| [NOT NULL]
[DEFAULT <value>]] [UNIQUE]
[<check constraint definition>]

<check constraint definition> is defined as:
CHECK (<search condition>)

<table constraint> is defined as:
[CONSTRAINT <constraint name>]
<primary key definition>
| <foreign key definition>
| DEFAULT <constant expression>
FOR <column name>
| CHECK (<search condition>)

<primary key definition> is defined as:
PRIMARY KEY (<column name> [, <column name>]

<foreign key definition> is defined as:
FOREIGN KEY (<column name>) REFERENCES <table name>

Note Do not include the ellipses ({}) in your ALTER TABLE statement. The ellipses delineate the different forms of the
ALTER TABLE statement, and you must select one (and only one) of the forms per statement. Thus,

ALTER TABLE <table name> ADD <column definition>

is one valid choice, as is this

ALTER COLUMN <column name> <new data type>
[(precision,scale)] [NULL | NOT NULL]

and so on.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Also, do not put the pipe (|) symbol in your ALTER TABLE statement. The pipe symbol indicates "or," meaning you must select
one clause or another. As such, when specifying a table constraint, either define a primary key, a foreign key, a default, or a check
constrain, but not all four.

SQL ALTER TABLE statement clauses tend to be very DBMS-specific. All products allow you to add columns. However, not all
products let you drop columns. (Using the ALTER STATEMENT to drop a column is not part of the SQL-92 specification.) Some
products allow you to add and drop individual column constraints on existing columns; others, including MS-SQL Server, do not.

In short, each DBMS vendor adds what it considers to be important features to the ALTER TABLE statement and removes those
clauses more easily implemented with other vendor-specific constructs. MS-SQL Server, for example, does not let you use the
ALTER TABLE statement to change defaults on or add defaults to existing columns, even though other DBMS vendors do.
Instead, MS-SQL Server, through Transact-SQL and stored procedures, provides CREATE DEFAULT, sp_bindefault,
sp_unbindefault, and DROP DEFAULT to manage column default apart from the ALTER TABLE statement.

We will discuss many of the ALTER TABLE clauses later in this book. The important thing to know is that every DBMS has an
ALTER TABLE statement you can use to change a table's structure. Check your DBMS documentation for the specific clauses

available to the ALTER TABLE statement in your DBMS product.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiB | [« rnwvious | v o
57 Using the ALTER TABLE Statement to Add a Column to a Table

Adding a column to a table is perhaps the most common use of the ALTER TABLE statement. The syntax of the ALTER TABLE
statement to add a column is:

ALTER TABLE <table name>
ADD <column name> <data type> [DEFAULT <value>]
[NOT NULL] [IDENTITY][UNIQUE] [CHECK (<search condition>)]
For example, to add a BADGE_NUMBER column to an EMPLOYEE table defined by
CREATE TABLE employee

(employee_id INTEGER,
first name VARCHAR (20),
last_name VARCHAR (30) ,
social_ security number CHAR(11)
street address VARCHAR (35)

PRIMARY KEY (employee_id))

you could use the ALTER TABLE statement:
ALTER TABLE employee ADD badge_number INTEGER IDENTITY

The DBMS will add a new column, BADGE NUMBER, to the EMPLOYEE table. In addition (MS-SQL Server only), IDENTITY
characteristic in the current example will have MS-SQL Server set the value of the BADGE_NUMBER column in each row, starting
with 1 and incrementing the value by 1 for each subsequent row.

When you use the ALTER TABLE statement to add a new column to a table, the DBMS adds the column to the end of the table's
column definitions, and it will appear as the rightmost column in subsequent queries. Unless you specify a default value (or use
the IDENTITY constraint on MS-SQL Server), the DBMS assumes NULL for the value of the new column in existing rows.

Since the DBMS assumes NULL for the new column in existing rows, you cannot simply add the NOT NULL constraint when you
use the ALTER TABLE statement to add a column. If you add the NOT NULL constraint, you must also provide a default. After all,
the DBMS assumes NULL for the new column in existing rows if you don't provide a default value, and thus would immediately
violate the NOT NULL constraint.

When you add column to a table, the DBMS does not actually expand existing rows. Instead, it expands only the description of the
table to include the new column(s) in the system tables. Each time you ask the DBMS to read an existing row, it adds one (or
more) NULL values for the new column(s) before presenting query results. The DBMS will add the new column(s) to new rows and

to any existing rows as the DBMS stores updates to them.
[« rrvvions frosr

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

58 Using the MS-SQL Server ALTER TABLE DROP COLUMN Clause to
Remove a Table Column

The SQL-92 standard does not specify a DROP COLUMN clause as part of the ALTER TABLE statement. As a result, some
DBMS products require that you unload data from the table, use the DROP TABLE statement to erase the table, execute the
CREATE TABLE statement to re-create the table without the column you want to drop, and then reload the data you unloaded
before dropping the table. (Given the steps involved, you might be tempted to just ignore the column you want to drop.)

Fortunately, MS-SQL Server provides a DROP COLUMN clause as part of its ALTER TABLE statement. The syntax for dropping
a column is:

ALTER TABLE <table name>
DROP COLUMN <column name>
[,<column name>...,<last column name]

Thus, to drop columns from an EMPLOYEE table defined by

CREATE TABLE employee
(employee id INTEGER,

first_name VARCHAR (20),
last_name VARCHAR (30),
social_security_number CHAR(11),

street address VARCHAR (35),
health_card_number CHAR (15),

sheriff card number CHAR (15),

badge number IDENTITY (100,100)

PRIMARY KEY (employee_id))

you could use the ALTER TABLE statement

ALTER TABLE employee
DROP COLUMN health card_number, sheriff card_ number

to drop the HEALTH_CARD_NUMBER and SHERIFF_CARD_NUMBER columns.

MS-SQL Server will prevent you from dropping a column to which a constraint or default value is assigned. Moreover, you cannot
drop a column identified as a FOREIGN KEY in another table. For example, if you attempt to drop the EMPLOYEE_ID from the
EMPLOYEE table, MS-SQL Server will respond with the error message
Server: Msg 4922, Level 16, State 3, Line 1
ALTER TABLE DROP COLUMN employee id failed because PRIMARY
KEY CONSTRAINT PKiiemployee776501572D access this column.

and the ALTER TABLE statement will fail.

In order to drop a column with a default value or constraint, you must first drop the constraint using an ALTER TABLE statement
in the form:

ALTER TABLE <table name> DROP CONSTRAINT <constraint name>

In the current example, the CREATE TABLE statement did not specify a name for the PRIMARY KEY constraint on the
EMPLOYEE_ID column of the EMPLOYEE table. As a result, the DBMS created the unique constraint name
PK_employee_6E01572D for the PRIMARY KEY constraint. Thus, in order to remove the PRIMARY KEY constraint from the
EMPLOYEE table in the example, use the Transact-SQL statement:

Note The name the DBMS assigns to an unnamed constraint will differ each time you create a constraint, even if you drop
and respecify the same constraint. Also, when dropping a constraint with a DBMS-generated name, be sure to note
and use double (vs. single) underscores (__) in the constraint name.

If you want to drop a column that is a FOREIGN KEY in another table, you must first use the ALTER TABLE statement to drop the
FOREIGN KEY reference in the other table, and then you drop the column in the current table. (You will learn more about using
the ALTER TABLE statement to work with FOREIGN KEY constraints in Tip 60.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia [« rasvious]
59 Using the ALTER TABLE Statement to Change to Width or Data Type of a
Column

Unlike many DBMS products, MS-SQL Server allows you to change not only the width of a column but also its data type. There
are, however, a few restrictions on data type changes. You cannot change the data type of a column if the column:

= |s of type TEXT, IMAGE, NTEXT, or TIMESTAMP

u |s part of an index, unless the original data type is VARCHAR or VARBINARY and you are not changing the original
data type or making the column width shorter

un |s part of a PRIMARY KEY or FOREIGN KEY
= |s used in a CHECK constraint

= |s used in a UNIQUE constraint

= Has a default associate with it

= |s replicated

= |s computed or used in a computed column

When changing a column's data type, all of the existing data in the column must be compatible with the new data type. As such,
you can always convert from INTEGER to character since a CHARACTER column can hold numeric digits, letters, and special
symbols. However, when converting a CHARACTER column to INTEGER, you must ensure that every row of the table has
numeric digits or NULL in the CHARACTER field you are converting.

Once you've identified the column as one whose type you can change, use the ALTER TABLE statement in the form
ALTER TABLE <table name>
ALTER COLUMN <column name> <new data type>
to change the width or data type of a column. For example, if you have an EMPLOYEE table defined by
CREATE TABLE employee

(employee id INTEGER,
first name VARCHAR (20),
last_name VARCHAR (30) ,
social_security number CHAR(11),
street address CHAR (30),
health_card_number CHAR (15),
sheriff card number CHAR (15)

PRIMARY KEY (employee id))

you can use the ALTER TABLE statement

ALTER TABLE employee
ALTER COLUMN street_address CHAR (35)

to change the width of the STREET_ADDRESS column from CHAR(30) to CHAR(35).

You can also use the ALTER TABLE statement to change a column's data type. For example, to change the
HEALTH_CARD_NUMBER from CHAR(15) to INTEGER, use the ALTER TABLE statement:

ALTER TABLE employee
ALTER COLUMN health card number INTEGER

When converting a column from one data type to another, remember that all of the existing data in the column must be compatible
with the new data type. Thus, the conversion of HEALTH_CARD_NUMBER from character to integer will work only if all of the
current health card numbers are NULL or if they are all composed of only digits. As such, if any health card number includes a
non-numeric character, the ALTER TABLE statement converting the column's data type from CHARACTER to INTEGER wiill fail.

[Yoam L [ervsos o1+

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [Craivisus]fiiex +]
60 Using the ALTER TABLE Statement to Change Primary and Foreign Keys

In addition to changing the width and data type of a column, you can use the ALTER TABLE statement to add table constraints
such as a PRIMARY KEY and FOREIGN KEY. Tip 61, "Using the CREATE TABLE Statement to Assign the Primary Key," and Tip
62, "Using the CREATE TABLE Statement to Assign Foreign Key Constraints," will show you how to define keys as part of the
CREATE TABLE statement when creating a new database table. For existing tables, use the ALTER TABLE statement to add
named and unnamed PRIMARY KEY and FOREIGN KEY constraints.

Both PRIMARY KEY and FOREIGN KEY constraints are database "keys," which means that each is a column or a combination of
columns that uniquely identifies a row in a table. While a PRIMARY key uniquely identifies a row in the table in which it is defined,

a FOREIGN KEY uniquely identifies a row in another table. (A FOREIGN KEY in one table always references the PRIMARY key in
another table.)

A table can have only one PRIMARY KEY, but it can have several FOREIGN KEYS. While the value of the column or combination
of columns that makes up a PRIMARY key must be unique for each row in the table, the value of the column or combination of
columns that makes up a FOREIGN KEY need not be (and most likely are not) unique within the table in which the FOREIGN
KEY is defined.

You will learn more about the PRIMARY KEY constraint in Tip 172, "Using the PRIMARY KEY Column Constraint to Uniquely
Identify Rows in a Table," and the FOREIGN KEY constraints in Tip 173, "Understanding Foreign Keys."

The syntax for using the ALTER TABLE statement to add a PRIMARY KEY constraint to a table is:
ALTER TABLE <table name> ADD CONSTRAINT

<constraint name> PRIMARY KEY (<column name>
[,<column name>...,<last column name>]

Therefore if you have a table created by
CREATE TABLE employee
(employee id INTEGER NOT NULL,
badge_number SMALLINT NOT NULL,
first name VARCHAR (20),
last_name VARCHAR (30))

you can add a single column PRIMARY KEY based on the EMPLOYEE_ID using the statement:

ALTER TABLE employee
ADD CONSTRAINT pk employee PRIMARY KEY (employee_ id)

If the values in a single column are not unique in each row of the table, but the values in a combination of columns are, you must
use a composite, or multi-column PRIMARY KEY. Suppose, for example, that you had an EMPLOYEE table where two
employees could have the same employee number, but no two employees with the same employee number would have the same
badge number. To add the PRIMARY KEY to the table, use the ALTER TABLE statement
ALTER TABLE employee
ADD CONSTRAINT pk employee
PRIMARY KEY (emplgyee_id,badge_number)

to combine EMPLOYEE_ID and BADGE_NUMBER into a single, unique key value for each row of the table.

Note Since a table can have only one PRIMARY KEY, you just first use the ALTER TABLE statement
ALTER TABLE <table name> DROP CONSTRAINT <constraint name>

if you want to change a table's PRIMARY KEY. In other words, you must remove a table's existing PRIMARY KEY
before you can use the ALTER TABLE statement to add a new PRIMARY KEY constraint to the table.

Adding FOREIGN KEY constraints to a table is similar to defining the PRIMARY KEY. However, when working with a FOREIGN
KEY, you must identity not only the columns in the current table that make up the FOREIGN KEY but also the PRIMARY KEY
columns in the table referenced by the FOREIGN KEY.

A FOREIGN KEY constraint is normally used to represent a parent/child relationship between two tables. When you place a
FOREIGN KEY constraint on a column or combination of columns, you are saying that the value in the column (or combination of
columns) in the child record (row in the child table) can be found in the column (or combination of columns) that makes up the
PRIMARY KEY in the parent record (row in the parent table).

The syntax for using the ALTER TABLE statement to add a FOREIGN KEY constraint to a table is:

ALTER TABLE <table name>
[WITH NOCHECK]
ADD [CONSTRAINT <constraint name] FOREIGN KEY
(<column name>[,<column name>...,<last column name>]
REFERENCES <foreign table name>
(<foreign column name>
[,<foreign column name>...,<last foreign column name>])

As such, to create a parent/child relationship between a (parent) CUSTOMER table created by

CREATE TABLE customer
(customer_number INTEGER PRIMARY KEY,

first name VARCHAR (20),
last_name VARCHAR (30) ,
address VARCHAR (35)

and a (child) ORDER table created by

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CREATE TABLE order
(placed_by_ customer_ num INTEGER,

order_date DATETIME,
item_number INTEGER,
quantity SMALLINT)

you might use the ALTER TABLE statement

ALTER TABLE order ADD
CONSTRAINT fk_order_column
FOREIGN KEY (placed_by_ customer_num)
REFERENCES customer (customer_number)

which links each row in the ORDER table to one (and only one) of the rows in the CUSTOMER table. In other words, each and
every value in the PLACED BY_CUSTOMER_NUM column in the ORDER table can be found in the CUSTOMER_NUMBER
column of the customer table. Thus, every order (child) must have an associated customer (parent) that placed the order.

Note When you use the ALTER TABLE statement to add a FOREIGN KEY to a table, the DBMS will check existing data to
make sure it does not violate the constraint. In the current example, the DBMS will ensure that every value in the
PLACED_BY_CUSTOMER_NUM of the ORDER table exists in the CUSTOMER_NUMBER table of the CUSTOMER
table. If the check fails, the DBMS will not create the FOREIGN KEY, thereby maintaining referential data integrity.

If you are sure that existing data will not violate the FOREIGN KEY constraint, you can speed up the execution of the ALTER
TABLE statement by adding the WITH NOCHECK clause. If you do so, the DBMS will not apply the FOREIGN KEY constraint to
existing rows of the table. Only rows subsequently updated or inserted will be checked to make sure that the FOREIGN KEY value
exists in the PRIMARY KEY of the referenced (parent) table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Li | [raivisus]fiie +]
61 Using the CREATE TABLE Statement to Assign the Primary Key

A key is a column or combination of columns that uniquely identifies a row in a table. As such, a key gives you way to distinguish
one particular row in a table from all of the others. Because a key must be unique, you should not include NULL values in any of
the columns that make up a key. Remember, the DBMS cannot make any assumptions about the actual value of NULL in a
column. Thus, a row with NULL in a key column will be indistinguishable from any other row in the table because the NULL value
could, in fact, be equal to the value in any other row.

Each table can have one (and only one) PRIMARY KEY. Because the PRIMARY KEY must uniquely identify each row in a table,
the DBMS automatically applies the NOT NULL constraint to each of the columns that make up the PRIMARY KEY. When
creating a new table, you can create a single-column PRIMARY KEY by including the key words "PRIMARY KEY" in the column
definition.

The syntax of a PRIMARY KEY definition in a CREATE TABLE statement comes in one of two forms
[CONSTRAINT <constraint name>] PRIMARY KEY

if the PRIMARY KEY is an unnamed constraint defined as part of the PRIMARY KEY column's definition, or
CONSTRAINT <constraint name>

PRIMARY KEY (<column name>
[,<column name...[,<last column name>]])

for a multiple-column (or composite) PRIMARY KEY or a single-column named PRIMARY KEY.

For example, the CREATE TABLE statement
CREATE TABLE employee
(employee_id INTEGER PRIMARY KEY,
first name VARCHAR(20),
last_name VARCHAR (30))

identifies the EMPLOYEE_ID column as the PRIMARY KEY in the EMPLOYEE record. As such, every row in the EMPLOYEE
table must have a unique, non-NULL value in the EMPLOYEE_ID column.

The system stores the PRIMARY KEY as a constraint in the system tables. As such, if you don't give the PRIMARY KEY a name,
the DBMS will generate one for you. The name the system assigns becomes important to you if you ever want to drop a table's
PRIMARY KEY so that you can change it. (Since a table can have only one PRIMARY KEY, you will need to drop the existing
PRIMARY KEY and create a new one when if you want to change its columnls].)

Note If you are using MS-SQL Server, you can call the stored procedure sp_help to display the name that the DBMS
assigned to the PRIMARY KEY by executing the command

EXEC sp_help <table name>
(where <table name> is the name of the table with the PRIMARY KEY whose name you want to know).

MS-SQL Server will respond with a description of the table identified by <table name>. Look in the index_name column of the
section of the report titted PRIMARY to see the name the DBMS assigned to the PRIMARY KEY.

If you don't want the DBMS to generate its own name for the PRIMARY KEY, you can name it yourself by specifying the name
when you identify the column that makes up the PRIMARY KEY. For example, to give the name pk_employee_table to the
PRIMARY KEY in the current example, use the CREATE TABLE statement:

CREATE TABLE employee
(employee_id INTEGER,
CONSTRAINT pk employee table PRIMARY KEY,
first_name VARCHAR(20),
last_name VARCHAR (30))

Sometimes no single column in a table has a unique value in every row. Suppose, for example, that each division in your
company issues its own employee numbers. Division #1 has employees #123, #124, and #126; division #2 has employees #121,
#122, and #123. If you identify EMPLOYEE_ID as the PRIMARY KEY, you will be able to insert all division #1 employees into the
EMPLOYEE table. However, when you try to insert division #2 employee #123, the DBMS will not allow you to do so. Because the
EMPLOYEE table already has a row with an EMPLOYEE_ID of 123, the DBMS rejects your attempt to add a second row with 123
in the EMPLOYEE_ID column because EMPLOYEE_ID, the PRIMARY KEY, must be unique in each row of the table.

You can still create a PRIMARY KEY for the table where no single column is unique by identifying a set of multiple columns that,
when taken together, is different in every row of the table. In the current example, you know that employee numbers are unique by
division. Thus, you can use a two-column PRIMARY KEY consisting of EMPLOYEE_ID and DIVISION, such as
CREATE TABLE employee

(employee id INTEGER,

division SMALLINT,

first name VARCHAR(20),

last_name VARCHAR (30)

CONSTRAINT pk_employee_table
PRIMARY KEY (employee_ id, division))

to create a PRIMARY KEY for the EMPLOYEE table.

Note The Placement of the PRIMARY KEY definition within the CREATE TABLE statement is not important. As such, the
CREATE TABLE statement

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

CREATE TABLE employee
(employee id INTEGER
CONSTRAINT pk_employee_table
PRIMARY KEY (employee id, division),

division SMALLINT,
first_name VARCHAR (20),
last_name VARCHAR (30))

is equivalent to the one in the example just prior to this note.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisus firet +]
62 Using the CREATE TABLE Statement to Assign Foreign Key Constraints

As was previously discussed, a database key uniquely identifies a row in a table. In Tip 61, "Using the CREATE TABLE Statement
to Assign the Primary Key," you learned that each row in a PRIMARY KEY uniquely identifies single row within the table in which
the PRIMARY KEY is declared. A FOREIGN KEY, on the other hand, references the PRIMARY KEY in a table other than the one
in which the FOREIGN KEY is declared. As such, each row within a FOREIGN KEY in one table uniquely identifies a single row in
another table. While each PRIMARY KEY value must be unique within a table, the values within a FOREIGN KEY need not be
(and most likely is not) unique.

A FOREIGN KEY is normally represents a parent/child relationship between two tables. When you place a FOREIGN KEY
constraint on a column or combination of columns, you are saying that the value in a column (or combination of columns) within
the row in the child table can be found in the column (or combination of columns) that makes up the PRIMARY KEY value of a
specific row within the parent table.

The syntax of the FOREIGN KEY constraint declaration is:

[CONSTRAINT <constraint name>]
FOREIGN KEY (<column name>
[,<column name>...[,<last column name>]])
REFERENCES <foreign table name>
(<foreign table column name>
[,<foreign table column name>...
[,<last foreign table column name>]]}

Suppose, for example, that you want to track customer orders using the CUSTOMER (parent) table and ORDER (child) table

created by:
CREATE TABLE customer
(customer number INTEGER,
first_name VARCHAR (20),
last_name VARCHAR (30) ,
address VARCHAR (35),

CONSTRAINT pk_customer_ table
PRIMARY KEY (customer_number)

CREATE TABLE order
(placed_by_ customer num INTEGER
FOREIGN KEY (placed by customer num) REFERENCES
customer(customer_number),

order_date DATETIME,
item_number INTEGER,
quantity SMALLINT,

CONSTRAINT pk_order_table
PRIMARY KEY
(placed_by customer_num, order_date, item_number)

The FOREIGN KEY defined in the ORDER table tells you that you can find the value in the PLACED_BY_CUSTOMER_NUM
column (of the child table ORDER) in the PRIMARY KEY column CUSTOMER_NUMBER of a row in the CUSTOMER (parent)
table.

Because the column PLACED_BY_CUST_NUM is a foreign and not a primary key in the ORDER table, you can have more than
one ORDER row with the same value in the PLACED_BY_CUST_NUM column, indicating that an individual customer ordered
more than one item or placed more than one order.

The FOREIGN KEY constraint on the PLACED_BY_CUSTOMER_NUM column also tells you that the value in the
PLACED_BY_CUST_NUM column will appear once and only once in the CUSTOMER_NUMBER field of the CUSTOMER table
(because a FOREIGN KEY in a table always refers to the PRIMARY KEY in another table). As such, you will be able to uniquely
identify the customer that placed the order because the FOREIGN KEY value (PLACED_BY_CUSTOMER_NUM) in the current
table uniquely identifies a row (a customer) in the foreign (CUSTOMER) table.

When you do not provide a name for a FOREIGN KEY constraint, the system will generate one for you so that it can store the
constraint in its system tables. In the current example, the FOREIGN KEY in the ORDER table was not explicitly named. As such,
the system will generate a name.

If you are using MS-SQL Server, you can determine the name of the FOREIGN KEY by executing the stored procedure sp_help
and supplying the name of the parent table (CUSTOMER, in the current example) for <table name> in the statement:

EXEC sp_help <table name>

MS-SQL Server will respond with a description of the table and will list the FOREIGN KEY names in the "Table Is Referenced By"
section of the report.

If you want to select a name for the FOREIGN KEY (instead of having the DBMS generate one), change the CREATE TABLE
statement in the current example to:
CREATE TABLE order
(placed by customer num INTEGER
CONSTRAINT fk_customer_table FOREIGN KEY
(placed_by_customer_num) REFERENCES
customer(customer_number),

order_date DATETIME,
item_number INTEGER,
quantity SMALLINT,

CONSTRAINT pk_order_table
PRIMARY KEY
(placed by customer num, order date, item number))

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

As you learned in Tip 61, a PRIMARY KEY may consist of more than one column. When a FOREIGN KEY in one table references
a composite (or multi-column) PRIMARY KEY in another table, the FOREIGN key, too, will consist of multiple columns. Suppose,
for example, that the ITEM_MASTER table for the orders in the current example was defined by:
CREATE TABLE item master
(item number - INTEGER,
vendor id INTEGER,
quantigy_on_hand SMALLINT

CONSTRAINT pk_item master_table
PRIMARY KEY (item number, vendor id))

You could reference the composite PRIMARY KEY in the ITEM_MASTER table with the FOREIGN KEY constraint

FK_ITEM_MASTER_TABLE using the CREATE TABLE statement:

CREATE TABLE order
(placed by customer num INTEGER

order_date DATETIME,
item number INTEGER,
vendor_id_number INTEGER,
quantity SMALLINT,

CONSTRAINT fk item master table FOREIGN KEY
(item number, vendor_ id number) REFERENCES
item master (item_number, vendor_ id),

CONSTRAINT fk customer_table FOREIGN KEY
(placed_by_ customer_num) REFERENCES
customer (customer_number),

CONSTRAINT pk_order_table
PRIMARY KEY
(placed by customer num, order date, item number))

The important thing to know about the FOREIGN KEY constraint is that it specifies that the value in the column or combination of
columns in one table must be found as the value in the PRIMARY KEY of the table, which it references. As such, if you have a
single-column PRIMARY KEY, you will use a single-column FOREIGN KEY. Conversely, if you need to reference a multi-column
or composite PRIMARY KEY, you will use a multi-column FOREIGN KEY.

[Team LiB | [rrsvisus] [t 3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia [« rasvisus)
63 Using the DROP TABLE Statement to Remove a Table from the Database

When you no longer need a table, use the DROP TABLE statement to remove it from the database. Before dropping a table,
however, make sure that you no longer need it! When the DBMS executes the DROP TABLE statement, it erases the table data
and index(es) from the database and removes the definition of the table and its constraints from the system tables. Thus, the only
way to recover a dropped table is to re-create the table and restore data by reading it from the most recent backup. As such, make
sure you really no longer need the table or its data before you execute the DROP TABLE statement.

The syntax of the DROP TABLE statement is:

DROP TABLE
[[<schema name>.]<table owner name>.]]<table name>

Thus, to drop the CUSTOMER table in Tip 62, "Using the CREATE TABLE Statement to Assign Foreign Key Constraints," you
would execute the SQL statement:

DROP TABLE customer

When it receives the DROP TABLE command, the DBMS checks to see if the table you want to drop is referenced by a FOREIGN
KEY in another table. If it is (as is the case with CUSTOMER in the current example), the DROP TABLE statement will fail, and
the DBMS will display an error message similar to:

Server: Msg 3726, Level 16, State 1, Linel

Could not drop object 'customer' because it is referenced

by a FOREIGN KEY constraint

Before you can remove a table reference by a FOREIGN KEY, you must first use the ALTER TABLE statement to remove the
FOREIGN KEY constraint from the other table. In the current example, you must execute the ALTER TABLE statement

ALTER TABLE order DROP CONSTRAINT fk customer table
before the DBMS will let you drop the CUSTOMER table.

Note While the DBMS checks its system tables for FOREIGN KEY references to the table you want to remove, it does not
check VIEWs (which you learned about in Tip 11, "Understanding Views") and stored procedures to see if they
reference the table or its columns. Stored procedures that reference a dropped table will fail to run, and the DBMS will
return an error message in place of VIEWSs data that includes columns from a dropped table. As such, check your
database documentation carefully to make sure that you are the only one that uses the table you are about to drop-

before you drop the table.
EEE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [ravioos
64 Using the DROP VIEW Statement to Remove a View

To remove a database view that you no longer need, execute the DROP VIEW statement. Unlike the DROP TABLE statement,
the DROP VIEW command does not erase any database tables or data. When you DROP a view, the DBMS simply removes its
definition (the name and the SELECT statement that defines the view) from the system tables. If you later decide you need the
view again, simply use the CREATE VIEW statement or a tool like the MS-SQL Server Create View Wizard to re-create the view.
As long as the underlying table is still in the database, re-creating the view will bring back the virtual table and its data.

The syntax of the DROP VIEW statement is:

DROP VIEW <view name> [,<view name>...[,<last view name>]]

As such, to remove a VIEW named VW_SALES_PRODUCTION from the database, you would execute the SQL statement:
DROP VIEW vw_sales_production

You can remove several views at once by separating the names of the views with commas in a single DROP VIEW statement. For
example, to remove views VW_SALES_PRODUCTION_EAST and VW_SALES_PRODUCTION_WEST, you would use the SQL
statement:
DROP VIEW
vw_sales_production_east, vw_sales_production_west

Although no data is erased when you drop a view, you do need to make sure that no stored procedures or other views reference
the view you are about to drop. If you run a stored procedure or use view that references a dropped view, the DBMS will respond
with an error message in the form:

Server: Msg 208, Level 16, State 1, Procedure

<name of referencing view>, Line 2
Invalid object name '<name of dropped view>'.

Server: Msg 4413, Level 16, State 1, Line 1
Could not use view '<name of referencing view>' because of
previous binding errors.

(The DBMS, of course, substitutes the actual name of the dropped view for "<name of dropped view>" and the actual name of the
view that references the dropped view for "<name of referencing view>.")

= [+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« Favisus |
65 Using the MS-SQL Server Enterprise Manager Create View Wizard to
Create a View

Views are virtual tables. Although they look and act like regular relational database tables, views contain no data. Rather, a view is
a set of instructions for the DBMS that tells it what data stored in physical (real) tables to display and how to display it. MS-SQL
Server gives you two ways to define a view. You can use the CREATE VIEW statement (which you will learn about in Tip 206,
"Using a View to Display Columns in One or More Tables or Views"), or you can use the MS-SQL Server's Create View Wizard.
Whichever method you use to create the view, the DBMS will store its name in the system tables along with the SELECT
statement that lists the view's columns and search criteria (its WHERE clause).

At the lowest level, all views are based on one or more physical database tables. (You can create views based on other views.
However, at some point, one of the views in the chain has to be based on an actual database table.) Therefore, to see how you
can use the Create View Wizard to create a view, you must start by deciding on the data you want to display. Suppose, for
example, that you want to create a view based on the data in the PRODUCTION table shown in Figure 65.1.

| PRODUCTION table I
| Rep_ID “ Call “ Appointments “ Sales “ Deliveries ‘
[1 Jlroo [4 Ls | 2 |
| 2 lzss [7 Le | 4 |
[3 ol 12 e || 5 |
[4 Jaoo [15 Jlo I[7 |
L s ees || 10 s [6 |
L6 l[ssa [11 Le I 4 |
L7 lees || 17 a [1 |

Figure 65.1: PRODUCTION table with sample data to use in creating a view

To use the Create View Wizard to create a view that displays data from a single table, perform the following steps:

1. Start the Enterprise Manager by clicking your mouse on the Start button. When Windows displays the Start
menu, move your mouse pointer to Programs, select Microsoft SQL Server 7.0, and then click your mouse on
Enterprise Manager.

2. Todisplay the list of SQL servers, click your mouse on the plus (+) to the left of SQL Server Group.

3. Click your mouse on the icon for the SQL Server with the database in which you wish to create the view. For
example, if you want to create a view in a database on a server named NVBIZNET2, click your mouse on the
icon for NVBIZNET2.

4. Select the Tools menu Wizards option (or click your mouse on the Wizards button, the magic wand on the
Standard Toolbar). Enterprise Manager will display the Select Wizard dialog box so that you can select the
wizard you want to use.

5. Click your mouse on the plus (+) to the left of Database to display the list of database object wizards.

6. Click your mouse on Create View Wizard to select it, and then click your mouse on the OK button. Enterprise
Manager will start the Create View Wizard, which displays its "Welcome to the Create View Wizard" screen.

7. Click your mouse on the Next button. The Create View Wizard will display the Select Database dialog box.

8. Click your mouse on the drop-down list button to the right of the Database Name field to display the list of
databases on the SQL Server you selected in Step 3.

9. Click your mouse on the database in which you wish to create the view. For the current example, click your
mouse on SQLTips to select the SQLTips database.

10. Click your mouse on the Next button. The Create View Wizard will display a Select Tables dialog box, similar to

that shown in Figure 65.2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

11.

12.

13.

14.

15.
16.

17.

Figure 65.2: The MS-SQL Server Create View Wizard's Select Tables dialog box

Click your mouse on the check boxes of the tables whose data you want to include your view. For the current
example, click your mouse on the check box for the PRODUCTION table until the check mark appears.

Click your mouse on the Next button. The Create View Wizard will display a Select Columns dialog box, similar

to that shown in Figure 65.3.

Figure 65.3: The MS-SQL Server Create View Wizard's Select Columns dialog box

Click your mouse on the check boxes of the columns you want to display. For the current example, select:
PRODUCTION.REP_ID, PRODUCTION.CALLS, PRODUCTION. SALES, and PRODUCTION.DELIVERIES.

Note The list of columns in the selection area of the Select Columns dialog box includes all of the columns
for all of the tables selected in Step 11. The Create View Wizard shows you which columns belong in
which tables by using the qualified column name for each column-that is, it displays the column name
as <table name>.<column name> (where <table name> is the name of the table that contains
<column name>).

Click your mouse on the Next button. The Create View Wizard will display the Define Restriction dialog box. If
you do not want to display all of the rows in the tables you selected (in Step 11), enter the WHERE clause that
you want the DBMS to use as the criteria for selecting the rows to display. For the current example, enter
WHERE PRODUCTION.SALES > 4 to have the DBMS display only rows where the value in the SALES column
of the PRODUCTION table is greater than 4.

Click your mouse on the Next button. The Create View Wizard will display the Name the View dialog box.

Enter a name for the view in the View Name field. For the current example, enter vw_sales_production into the
View Name field.

Note It is best to keep view names consistent so that you can distinguish them from actual tables when
looking at a list of database objects. For example, if you start all of your view names (and only your
view names) with "vw_", you will know that any database object starting with "vw_" is a view.

Click your mouse on the Next button. The Create View Wizard will display the SQL statements the DBMS will
use to create the view, in a Completing the Create View Wizard dialog box similar to that shown in Figure 65.4.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Figure 65.4: The MS-SQL Server Create View Wizard's Completing the Create View Wizard dialog
box

18. Make any necessary corrections to the WHERE clause and any other changes necessary to further refine the
view. (You can add or remove columns, change the view name, change the selection criteria in the WHERE
clause, and so on.)

19. Click your mouse on the Finish button.

After you complete Step 19, the Create View Wizard will check the syntax of the statements in the Completing the Create View
Wizard dialog box and will prompt you to correct any errors. (If there are any errors, the problem will most likely be with the
WHERE clause you entered in Step 14.)

Repeat Steps 18 and 19 until the Create View Wizard displays the "Wizard Complete!" message box, with the message "The view
was created successfully." Once you see the message box, click your mouse on its OK button to return to the MS-SQL Server
Enterprise Manager application window.

Once the DBMS stores your view in its system tables, use the SELECT statement to display the view data. For example, to
display all of the columns and rows in the view you created in the current example, execute the SELECT statement:

SELECT * FROM vw_sales_production

Given that the PRODUCTION table has the data shown in Figure 65.1, MS-SQL Server will display the virtual contents of your
view table, VW_SALES_PRODUCTION as

rep_id calls sales deliveries
3 750 6 5

4 400 9 7

5 625 8 6

6 384 6 4

(

S
[oam Lo T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L2 | [+ pasvioor
66 Understanding the CASCADE and RESTRICT Clauses in a DROP VIEW
Statement

As mentioned in Tip 64, the DBMS will not erase any database data when you drop a view. However, you still have to be careful
that the view you are dropping is not referenced by another view. Some DBMS products let you add the CASCADE or RESTRICT
clause to a DROP VIEW statement to control the behavior of the DBMS when you tell the system to DROP a view that is
referenced by another view.

If you execute the DROP VIEW statement with the CASCADE clause, the DBMS will not only remove the view you name in the
DROP VIEW statement, but also any other view that references the view in the DROP VIEW statement. For example, if you have
two views as defined by

CREATE VIEW vw_sales_production AS
SELECT rep id, calls, sales, deliveries FROM production
and

CREATE VIEW vw delivered sales commissions
(rep_id, deliveries, commission) AS

SELECT rep_id, deliveries, deliveries * 150.00

FROM vw_sales_production

when you execute
DROP VIEW vw_sales_production

the DBMS will remove only the VW_SALES_PRODUCTION view from the system tables. If you execute the SELECT statement

SELECT * FROM vw_delivered_sales_commissions

after you DROP the VW_SALES_PRODUCTION view, the DBMS will respond with an error message in the form:

Server: Msg 208, Level 16, State 1,
Procedure vw_delivered sales commissions, Line 1
Invalid object name 'vw_sales_production'.

Server: Msg 4413, Level 16, State 1, Line 1
Could not use view ' vw_delivered_sales_commissions'
previous binding errors.
If, on the other hand, you DROP the VW_SALES_PRODUCTION view with the DROP VIEW statement
DROP VIEW vw sales production CASCADE

the DBMS will remove both VW_SALES_PRODUCTION and VW_DELIVERED_SALES_COMMISSIONS (which references it)
from the system tables.

Conversely, some DBMS products allow you to add the RESTRICT clause to the DROP VIEW statement. The RESTRICT clause
will prevent you from dropping a view that is referenced by another view Thus, in the current example, executing the "restricted"
DROP VIEW statement

DROP VIEW vw_sales production RESTRICT
will fail because the view VW_SALES_PRODUCTION view is referenced by the VW_DELIVERED_SALES_COMMISSIONS view.

Note Not all DBMS products provide the CASCADE and RESTRICT clauses for the DROP VIEW statement-MS-SQL
Server, for example, does not. As such, check your system documentation to see if you can add the CASCADE or
RESTRICT clause to the DROP VIEW statement in your DBMS product.

[Toam Lio [rrnoos [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« rrnvisus]flveixt ¥
Chapter 3: Using SQL Data Manipulation Language (DML) to Insert

and Manipulate Data Within SQL Tables

67 Using the INSERT Statement to Add Rows to a Table

Use the INSERT statement to add data to a database table one row at a time. The syntax of the INSERT statement is:
INSERT INTO <table name>

[(<column name>...[,<last column name>])]
VALUES (<column value>...[,<last column value>]

This tells the DBMS to insert the values (listed in the VALUES clause) into the columns (listed after the <table name> in the INTO
clause) in the table given by <table name>.

Although the word INSERT seems to imply that you are placing the new row of data in front of or between existing rows in the
table, the INSERT statement merely builds a single row of data that matches the column structure of the table. Once it receives
the INSERT statement, the DBMS decides on the physical location in the table for the new row. As a result, a new row of data
may end up at the beginning, the end, or somewhere else among the existing rows in a table.

Note As you learned from Tip 6, "Understanding Codd's 12-Rule Relational Database Definition," a relational database must
exhibit logical data independence (Rule 9). As such, the actual order of the columns in a row (as long as it is consistent
throughout the table) and the order of the rows in the table have no effect on information retrieved when you query the
database. Therefore, where the DBMS places a new row of data in a table is unimportant.

Suppose, for example, that you have an ORDERS table created with the statement:
CREATE orders

(order_number INTEGER NOT NULL,
customer number INTEGER NOT NULL,
item_number INTEGER NOT NULL,
quantity SMALLINT DEFAULT 1,
order_date DATETIME,

special instructions VARCHAR(30))

You would use the INSERT statement

INSERT INTO orders
(order_number, customer_number, item_number, quantity,
order_date, special instructions)

VALUES (1, 10, 1001, 5, '05/18/00', 'keep frozen')

to add an order with order number 1, placed on 05/18/00, by customer 10, for 5 of item 1001, which must be kept frozen to the
ORDERS table.

The names of the columns listed after the keyword INSERT must be in the definition of the table into which the DBMS is to insert
a row. The names need not be in the same order as the columns in the table, nor do you have to list all of the table's columns (as
you will learn in Tip 70, "Using the INSERT Statement to Add Data to Specific Columns in a Row"). As such, the INSERT
statement
INSERT INTO orders
(customer_ number, order_number, order_date, item_number,
quantity, special instructions)
VALUES (10, 1, '05/18/00', 1001, 5, 'keep frozen')

is equivalent to that given in the preceding paragraph, even though the column names and values are listed in a different order.

Starting from left to right, the DBMS will take the first value in the VALUES clause and place it into the table column given by the
first name in the list of column names; it will take the second value from the list of values and place it in the table column given by
the second name in the list of column names, and so on. The list of columns and the list of values must both contain the same
number of items. Moreover, the data type of each value in the values list must be compatible with the data type of the
corresponding table column into which the DBMS is to place it.

Note Most DBMS products will allow you to omit the list of columns from the INSERT statement. If you don't provide the
column list, the DBMS assumes a column list that includes all of the columns in the table in the order in which they
appear in the table definition. As such, in the current example
INSERT INTO orders
VALUES (1, 10, 1001, 5, '05/18/00', 'keep frozen')

is equivalent to:

INSERT INTO orders
(order number, customer number, item number, quantity,
order_date, special_instructions)

VALUES (1, 10, 1001, 5, '05/18/00', 'keep frozen')

To get a list of a table's columns and the order in which they appear in each row of the table, without listing any of the
table's data, execute the SELECT statement:

SELECT * <table name> WHERE NULL = NULL
(Substitute the name of the table whose columns you want to display for <table name>, of course.)

(In Tip 317, "Understanding Why the Expression NULL = NULL Evaluates to False," you will learn why the WHERE
clause NULL = NULL is FALSE and will therefore cause the SELECT statement to display only the column names and
none of the table's data.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisus]fiie +]
68 Using the INSERT Statement to Insert Rows Through a View

In addition to using a view to display table data, you can use a view in an INSERT statement to add data to the view's underlying
table. The syntax for inserting data into a table through a view is the same as that used to INSERT data directly into a table-except
that you use the name of the view instead of the name of the table as the target of the INSERT statement's INSERT clause. Thus,
the syntax of the INSERT statement to add rows to a table through a view is:
INSERT INTO <view name>

[(<view column Eame>...[,<view column name>])]
VALUES (<view column value>...[,<last value column value>])

For example, given a table created with the SQL statement

CREATE orders
(order_id INTEGER IDENTITY,

cust_id INTEGER NOT NULL,
item INTEGER NOT NULL,
gty SMALLINT DEFAULT 1,

order date CHAR(10),
ship_date CHAR(10),
handling VARCHAR (30) DEFAULT 'none')

and a view defined by

CREATE VIEW vw_shipped orders AS
SELECT order_id, cust_id, item, gty, order_date,
ship date
FROM orders
WHERE ship_date IS NOT NULL

you can use the INSERT statement

INSERT INTO vw_shipped orders
(cust_id, item, gty, order date, ship date)
VALUES (1002, 55, 10, '2000-05-17', '2000-18-00"

to add a row the underlying table, ORDERS.

Executing the SELECT statement
SELECT * FROM vw_shipped_orders

on the view yields the result:

order_id cust_id item gty order_date ship_ date

1 1002 55 10 2000-05-17 200-15-18
(1 row(s) affected)

Executing the SELECT statement
SELECT * FROM orders

on the underlying ORDERS table, yields the result:
order id cust id item gty order date ship date handling

1 1002 55 10 2000-05-17 200-15-18 none
(1 row(s) affected)

Notice that when you INSERT data through a view, you need not include values for all of the columns in the view. In the current
example, the ORDER_ID column included in the view definition was omitted from the INSERT statement.

As is the case with an INSERT directly into the underlying table, the DBMS will use the table columns default value for any column
for which the INSERT statement does not specify a value. In the current example, the DBMS will supply the "next" unique
INTEGER value for the ORDER_ID column because the table definition specifies the IDENTITY characteristic for the ORDER_ID
column, and the INSERT statement does not include a value for the column. (You learned about the MS-SQL Server IDENTITY
property in Tip 32, "Understanding the MS-SQL Server IDENTITY Property.") Similarly, the DBMS will use the defined default
value of "none" for the HANDLING column, since the values list in the INSERT statement does not include a HANDLING value.

Note If a column does not have a default value and the INSERT statement does not include an explicit value for it, the
DBMS will set the column to NULL when it executes the INSERT statement.

Note When inserting a row into an underlying table through a view, you can supply values for the columns only in the view
definition. In the current example, the HANDLING column is not a part of the view definition. As such, you cannot
supply a value for the HANDLING column when adding rows to the ORDERS table through the
VW_SHIPPED_ORDERS view.

An interesting anomaly can occur when you INSERT data into a table through a view-a row from a successfully executed INSERT
statement may seem to "disappear" when you use the view to display table data. For example, execute the INSERT statement

INSERT INTO vw_shipped orders
(cust_id, item, gty, order date)
VALUES (2004, 110, 20, '2000-05-01")

to add a row to the ORDERS table through the VW_SHIPPED_ORDERS view. Next, execute the SELECT statement:
SELECT * FROM vw_shipped_orders

The DBMS will return the results:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

order id cust_id item gty order date ship date

1 1002 55 10 2000-05-17 200-15-18
(1 row(s) affected)

What happened to the second order?

If you execute the SELECT statement
SELECT * FROM orders

on the underlying ORDERS table, the DBMS will return:
order_id cust_id item gty order_date ship_date handling

1 1002 55 10 2000-05-17 200-15-18 none
2 2004 110 20 2000-05-01 NULL none
(2 row(s) affected)

So, the second order is indeed in the table!

The reason the SELECT on the view did not display the second order while the SELECT on the underlying ORDERS table did is
that the value in the SHIP_DATE column is NULL in the second order. Since the WHERE clause in the view definition specifies
that the view is to display only rows where the SHIP_DATE is not NULL, the view will not display the second order. (The DBMS
set the SHIP_DATE column to NULL because the INSERT statement did not include a value for the column, and the table
definition did not define a default value.)

= [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

69 Using the MS-SQL Server Enterprise Manager to Define or Change a
Primary Key Constraint

As you learned in Tip 61, "Using the CREATE TABLE Statement to Assign the Primary Key," a PRIMARY KEY uniquely identifies
each row in the table in which it is defined. MS-SQL Server gives you three ways to add key constraints to your tables: as part of a
CREATE TABLE statement (as you learned in Tip 61 and Tip 62, "Using the CREATE TABLE Statement to Assign Foreign Key
Constraints"), as part of an ALTER TABLE statement (as you learned in Tip 60, "Using the ALTER TABLE Statement to Change
Primary and Foreign Keys"), and by using the MS-SQL Server Enterprise Manager.

To use MS-SQL Server Enterprise Manager to add or change a table's PRIMARY KEY constraint, perform the following steps:

1.

10.

11.

12.

Start the Enterprise Manager by clicking your mouse on the Start button. When Windows displays the Start
menu, move your mouse pointer to Programs, select Microsoft SQL Server 7.0, and then click your mouse on
Enterprise Manager.

. To display the list of SQL Servers, click your mouse on the plus (+) to the left of SQL Server Group.

. Click your mouse on the plus (+) to the left of the icon for the SQL Server with the database containing the

tables to which you wish to add key constraints. For example, if you want to work with tables in a database on a
server named NVBizNet2, click your mouse on the plus (+) to the left of the icon for NVBizNet2. The Enterprise
Manager will display folders containing databases and services available on the MS-SQL Server you selected.

. Click your mouse on the plus (+) to the left of the Databases folder. The Enterprise Manager will display a list of

databases on the SQL Server you selected in Step 3.

. Click your mouse on the plus (+) to the left of the database with the table to which you wish to add key

constraints. For the current example, click your mouse on the plus (+) to the left of the SQLTips database icon.
Enterprise Manager will display a list of icons representing database objects.

. Click your mouse on the Tables icon. Enterprise Manager will display the list of tables in the database (whose

object list you expanded in Step 5) in the application window's right pane.

. Click your mouse on the name of the table to which you wish to add a key constraint. For the current example,

click your mouse on EX_ORDERS.

. Select the Action menu Design Table option. The Enterprise Manager will display a Design Table window similar

to that shown in Figure 69.1.

Figure 69.1: The MS-SQL Server Enterprise Manager's Design Table window

. To select a single column for the table's PRIMARY KEY, click your mouse on the selection button to the left of

the name of the column that will make up the key. If you want to create a composite or multi-column PRIMARY
KEY, hold down the Ctrl key as you click your mouse on the selection buttons to the left of the names of the
columns to include in the key, and then release the Ctrl key. For the current example, click your mouse on the
selection button to the left of ORDER_NUMBER.

Note Be sure to clear the Allow Nulls check box for every column in your PRIMARY KEY. NULL values are
not allowed in the columns that make up the PRIMARY KEY.

To tell the Enterprise Manager to create the PRIMARY KEY, either click your mouse on the Set Primary Key
button on the Design Table Standard toolbar, or right-click your mouse on one of the columns in the PRIMARY
KEY and then select the Set Primary Key option on the pop-up menu.

To save your changes, click your mouse on the Save button (the floppy disk icon), the first button from the left
on the Design Table Standard toolbar.

Click your mouse on the Close button (the X) in the upper-right corner of the Design Table window.

When you complete Step 12, Windows will close the Design Table window and return to the Enterprise Manager application

window.

[+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

70 Using the INSERT Statement to Add Data to Specific Columns in a Row

The most common form of the INSERT statement is as a row value expression. Although you can use the INSERT statement to
add a single value to a table, you will normally use it to add a row of data a time. For example, the INSERT statement

INSERT INTO employee VALUES

(1, "Konrad', 'King"',

'555-55-5555"','7810 Greenwood Ave',NULL,NULL)

will add a row to a table created with the statement

CREATE TABLE employee
(employee id
first_name
last_name
social_security number
street_address
health_card_number
sheriff card number
PRIMARY KEY

INTEGER,
VARCHAR (
VARCHAR (
CHAR (11
CHAR (30
CHAR (15

(15

)

20
30) NOT NULL,

)
)
)
CHAR)

’
’
’
’

(employee id))

by transferring the data values in the VALUES clause into the columns of the table row based on position. "Based on position"
means the DBMS will put the first value, 1 into the first column, employee_id; the second value, Konrad into the second column,
first_name; the third value, King into the third column, last_name, and so on.

The syntax of the INSERT statement is:

INSERT INTO <table name>

[(<column name>[...,<last column name>])]

VALUES

(<column value>[...,

<last column value>])

If you omit the optional column list following the <table name>, the DBMS sets the column list to include all of the columns in the
table in the order in which they appear in the table definition. In the current example, the DBMS treats the statement

INSERT INTO employee VALUES

(1, "Konrad', 'King',

'555-55-5555","'7810 Greenwood Ave',NULL,NULL)

as if it were written as:

INSERT INTO employee
(employee_id, _
social security number,
health_card_number,

VALUES (1, 'Konrad', 'King

first name,

last_name,
street address,

sheriff card_ number)
', '555-55-5555",

'7810 Greenwood Ave',NULL,NULL)

While the data values in the VALUES clause must match the number of columns specified in the column list (which follows the
table name), you need not list all of the table row's columns in the column list. For example, if you want to provide only
EMPLOYEE_ID, FIRST_NAME, and LAST NAME, you could use the INSERT statement:

INSERT INTO employee
(employee id,
VALUES (2, 'Sally',

first_name,
'Fields")

last_name)

The DBMS will then set the EMPLOYEE_ID column to 2, FIRST_NAME to Sally, LAST_NAME to Fields, and the remaining
columns in the row to their default values (which is NULL unless set to another value by a DEFAULT clause in the CREATE
statement or previously bound to a default value using the sp_bindefault stored procedure).

Thus, from the current example, you can see that while every column name in the INSERT statement's column name list must
match a column name in the table into which you are inserting data, the INSERT statement's column list need not contain the
names of all of the table's columns. Moreover, the column names in the column list need not be listed in the order in which they
appear in a table row. For example, the INSERT statement

INSERT INTO employee
(first_name,
VALUES ('Sally', 2,

is equivalent to:
INSERT INTO employee
(employee id,
VALUES (2, 'Sally',

employee_id,
'Fields")

first name,
'Fields")

last_name)

last _name)

The advantage in listing column names in an INSERT statement is that the statement with a column list will still execute properly
after a user adds a column to the table. For example, if the user executes the statement

ALTER TABLE employee ADD COLUMN hourly pay_ rate NUMERIC

the INSERT statement

INSERT INTO employee VALUES

(1, '"Konrad', 'King',

'555-55-5555","'7810 Greenwood Ave',NULL,NULL)

will fail to execute because the VALUES clause does not have a value for the HOURLY_PAY_RATE column. (Remember, if you
do not supply a column list, the DBMS sets the column list to include all of the column names from the table definition. Thus, the
INSERT statement in the current example fails to execute, because the column name list includes one more column name than
the number of values in the VALUES clause.)

Conversely, after using the same ALTER TABLE statement (cited in the previous paragraph) to add a new column to the table,

the statement

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

INSERT INTO employee
(first_name, employee id, last_name)
VALUES ('Sally', 2, 'Fields"'")

will still execute properly. It tells the DBMS to put values into the FIRST_NAME, EMPLOYEE_ID, and LAST_NAME columns, and
to set the remaining columns (including the new HOURLY_PAY_RATE column) to the column's default value (NULL, unless
otherwise defined).

Note When listing columns in an INSERT statement, you must include values for any columns with a NOT NULL constraint
unless the column has a non-NULL default value. In the current example, an INSERT statement must include values
for both the EMPLOYEE_ID and LAST_NAME columns, since both columns are governed by a NOT NULL constraint
and neither of them has a non-NULL default value. (The PRIMARY KEY constraint on the EMPLOYEE_ID column
adds the NOT NULL constraint to the column by default.) As such, the INSERT statement
INSERT INTO employee

(first name, last name) VALUES ('Sally', 'Fields')

will fail when the DBMS attempts to set the EMPLOYEE_ID column to NULL.

Note If you want the DBMS to supply a unique non-NULL value for a single-column PRIMARY KEY, add the IDENTITY
property to column. (You learned about the IDENTITY property in Tip 32, "Understanding the MS-SQL Server
IDENTITY Property.") If the EMPLOYEE_ID column in the EMPLOYEE table in the current example had the IDENTITY
property, the DBMS would successfully execute the INSERT statement in the previous note by supplying a unique,

non-NULL EMPLOYEE_ID.
[+erevious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisus]fiiext +]
71 Using the SELECT Statement to INSERT Rows from One Table into
Another

Although used primarily to add one row of data to a table, you can use a single INSERT statement to add multiple rows to table at
once. In fact, you can use an INSERT statement to copy all or part of one table into another.

As you learned in Tip 70, "Using the INSERT Statement to Add Data to Specific Columns in a Row," the syntax of the basic
INSERT statement is:

INSERT INTO <table name>
[(<column name> [...,<last column name>])]
VALUES (<column value>[...,<last column value>]

Well, the VALUES clause of the INSERT statement should actually be written as:

INSERT INTO <table name>
[(<column name> [...,<last column name>])]
VALUES (<row value constructor>
[...,<last row value constructor>])

Here, each <row value constructor> is a list of column values that matches the number (and type) of columns in the statement's
column name list (which follows the table name).

Thus, while you used the INSERT statement to add a single row to the table in Tip 70, you can add additional row values to the
same statement when you want to add multiple rows to the table at once. For example, the statement

INSERT INTO employee VALUES (1, 'Konrad', 'King',
'555-55-5555"','7810 Greenwood Ave',NULL,NULL)

with one row value constructor (introduced by the keyword VALUES) will add one row to the employee table, while the statement
INSERT INTO employee
(employee id, first name, last name,
social_security number, street_ address,
health_card _number, sheriff card_number)
VALUES (1, 'Konrad', 'King', '555-55-5555",
'7810 Greenwood Ave',NULL,NULL),
(2, 'sally', 'Fields', '556-55-5555",
'77 Sunset Strip',NULL,NULL),
(3, 'Wally', 'Wallberg', '557-55-5555",
'765 E. Eldorado Lane',NULL,NULL)

with three row value constructors (following the keyword VALUES) will add three rows to the same table.

Note As you learned previously, the column list (following the table name) in the two example INSERT statements in the
previous paragraph are equivalent. When you do not specify column names (as is the case in the first INSERT
statement), the DBMS supplies the INSERT statement with a column name list that consists of all columns in the table
(as is explicitly enumerated in the second INSERT statement).

Thus far, the example INSERT statements in this tip list values for all columns in a table row. However, as is the case with a
single-row INSERT statement, multi-row INSERT statements can supply values for all or part of a row's columns. For example, the
statement

INSERT INTO employee (employee_id, first_name, last_name)
VALUES (4, 'Joe', 'Kernan'), (5, 'David', 'Faber'),
(3, 'Brad', 'Woodyard')

will add three rows to the EMPLOYEE table. (The DBMS will assign the column default value [NULL, in the current example] to
each of the columns not list in the column name list.)

Because SQL lets you use a single INSERT statement to add multiple rows to a table at once, you can replace the VALUES
clause with a SELECT statement—as long as the rows constructed by the SELECT statement have the same number and type of
columns as those found in the column name list (which follows the table name in the INSERT statement).

Thus, to INSERT rows from one table into another, use the INSERT statement syntax:
INSERT INTO <table name>
[(<column name> [...,<last column name>])]
SELECT <column name> [...,<last column name>]
FROM <table name>
[WHERE <search condition>]

As such, to insert all employees in the EMPLOYEE table into a second employees table, EMPLOYEEZ2, you could use the
INSERT statement:

INSERT INTO employee2 SELECT * from employee

Note In order for the SELECT * clause in the example INSERT statement to work, both EMPLOYEE and EMPLOYEE2 must
have the same number of columns in the same order. In the following paragraphs, you will learn how you can get
around this restriction by listing column names explicitly vs. using the column name list implicit in the SELECT * clause.
The important thing to know now is that you can copy data from one table into another either by listing the specific
columns whose data you want copied or by omitting the column list, in which case the DBMS assumes that you want to
copy all of the column values from one table into another.

If you have several queries to run against data from multiple tables, you will find that your queries are simpler and execute more
quickly if you first consolidate the data from multiple tables into one temporary table and then execute your SQL statements as
single table queries against the new aggregate table. Accumulating data into a single data avoids having the DBMS search
multiple tables multiple times, repeatedly reading and eliminating the same data that does not meet your search criteria.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2
http://www.colorpilot.com

PDF Pilot

For example, given CUSTOMERS, EMPLOYEES, and ORDERS tables defined as follows

CREATE TABLE customers

(customer_id INTEGER
last name VARCHAR
city VARCHAR
zip_code INTEGER
salesperson INTEGER

credit limit NUMERIC
CREATE TABLE employees

(employee id INT
last_name VAR
ssan CHA
low_quota SMA
high_ quota SMA
CREATE TABLE orders
(order_id INTEGER,

item number INTEGER,
customer_id INTEGER,
CREATE TABLE products
(product_id SMA
quantity on_hand SMA

first name
address VARCHAR (
state CHAR (2),
phone number CHAR(12),
net_due_days SMALLINT,

VARCHAR (30)

)

’

(30),
(20),

30),
35),

)

EGER,
CHAR (30) ,
R(11),
LLINT,
LLINT,

first name VARCHAR (30),
address VARCHAR (35),
salary NUMERIC,
medium quota SMALLINT,

sales_commission NUMERIC)

order_date DATETIME,
quantity SMALLINT,
salesman_id INTEGER)

LLINT,
LLINT,

description VARCHAR (40),
item_cost NUMERIC)

you can combine data into a single table defined by

CREATE TABLE temp_repor
(customer_ ID
cust_first_name
cust_last_name
salesman_ID
salesman_first name
salesman_last_name

t_table
INTEGER,
VARCHAR (30),
VARCHAR (30),
INTEGER,
VARCHAR (30),
VARCHAR (30),

order_date DATETIME,
order item number SMALLINT,
order_item_quantity SMALLINT,
order_total NUMERIC,

order_item_desc VARCHAR (40))

by using the INSERT statement:

INSERT INTO temp_report_table
(customer id, cust first name, cust last name,
salesman_id, salesman_first name, salesman_last_name,
order_date, order_ item number, order_ item quantity,
order total, order item desc)

SELECT
customers.customer_id, customer.first_ name,
customers.last_name, employee_id, employees.first_name,
employees.last name, order date, item number, quantity,
(quantity * item_cost), description

FROM orders, customers,
WHERE orders.customer id
AND product_id

AND employee id

products, employees
customers.customer_id
item_number
salesman_ id

Once you've combined the data from the four tables into one, you can use a single-table SELECT statement to display data from
one or more of the tables. For example, the SELECT statement

SELECT
cust_first_name, cust_last_name, salesman_first_name,
salesman_ last name, order item quantity, order total,
order_item_desc

FROM temp_ report table WHERE order item number

=5
will display the names of the salesmen that sold item 5; the names of the customers that purchased it; and the date, quantity,
total, and item description for orders for item 5.

You can also use the simple single-table query

SELECT salesman_id, salesman_first name,
salesman last name, order total

FROM temp_report_ table

WHERE order total
(SELECT MAX (order_total)

FROM temp_report_ table)
to display the amount of the largest order and the name of the salesman who sold it.

In both single-table query examples, you would have had to perform a SELECT and a multiple-table JOIN (as you will learn to do
in Tip 283, "Understanding Joins and Multi-table Queries") to display the same information, had you not first combined all of the

data you needed into a single table.
[1eam Lo [esvvious e]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus]fimxT ¥
72 Setting the MS-SQL Server SELECT INTO/BULKCOPY Database Option

to TRUE to Speed Up Table-to-Table Data Transfers

One of the strengths of the SQL relational DBMS model is its ability to perform transaction processing. By grouping sets of SQL
statements together as a single transaction, the DBMS can maintain data—even when an action requires the successful execution
of multiple SQL statements. If a portion of a transaction fails, the DBMS uses the database transaction log to "back out" the
partially executed transaction and restores pretransaction data values to the affected tables. Once uncommitted statements are
rolled back, the tables appear as if none of the SQL statements in the transaction was executed.

The ability to rollback partially executed and even successfully complete but erroneous transactions normally more than justifies
the overhead involved in maintaining the transaction log—just ask any database administrator who was able to "undelete" rows of
critical (and perhaps irreplaceable) data mistakenly removed by a user executing a DELETE statement with a faulty search
condition.

Although it is a critical safeguard for normal processing, maintaining the transaction log imposes unnecessary overhead when you
are consolidating large amounts of data from multiple tables into a single, redundant temporary table (as you did in Tip 71). After
all, if the SELECT statement fails partway through execution, you still have the original data values in the original tables. As such,
you can TRUNCATE (remove the data from) the temporary table and restart the data consolidation.

If many users are copying large numbers of rows into redundant (and many times, temporary) tables, you can improve the overall
performance of the DBMS (and speed up the data transfers) by setting the database SELECT INTO/BULKCOPY option to TRUE.
Setting the SELECT INTO/BULKCOPY option to TRUE tells the DBMS to treat table-to-table data transfers as bulk inserts. The
DBMS stores less information in its transaction log during a bulk insert, which reduces the overhead necessary to maintain the
transaction log and consequently lets the DBMS use additional resources to complete the table-to-table transfer in a shorter
period of time.

Note Setting the SELECT INTO/BULKCOPY option to TRUE has database-wide ramifications. While SELECT
INTO/BULKCOPY is set TRUE, the DBMS will store less than full transaction log information about all INSERT
statements that have a SELECT INTO clause. The abbreviated transaction log data will prevent you from performing
an undo or rollback for these INSERT statements. However, the lack of an "undo" option is not a problem since you still
have the data in the original tables, just in case.

To reduce the amount of information written to the transaction log during table-to-table data transfers, execute the sp_dboption
stored procedure using the syntax:

sp_dboption <database name>, 'SELECT INTO/BULKCOPY', TRUE

As such, to speed up the transfer of data between tables in the SQLTips database, you would execute the statement:
EXEC SP_DBOPTION SQLTips, 'SELECT INTO/BULKCOPY', TRUE

If you later want to maintain a full transaction log for all updates (including table-to-table data transfers), execute the statement:
EXEC <database name>, 'SELECT INTO/BULKCOPY', FALSE

Here, <database name> is the name of the database in which you wish to turn off the bulk copy treatment of INSERT statements
that include a SELECT INTO clause.

Note If you are loading table data from another computer system, from another DBMS, or from large sequential files, use the
MS-SQL Server BULK INSERT statement or BCP utility—they allow you to set transaction log and other options on an
individual table basis (vs. database-wide, as the SELECT INTO/BULKCOPY database option does). The BCP utility,
for example, lets you define the format of the source data and will load data into tables much more quickly than
repeated single-row INSERT statements. (See the MS-SQL Server "Books Online" documentation for more help on the

BCP utility.)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrviou]
73 Using the UPDATE Statement to Change Column Values

To change one or more data values in a database, execute an UPDATE statement. You can use a single UPDATE to change the
value of one or more columns of a single row or to change multiple column values in selected rows in a single table. Of course, in
order to modify the data in the table named in the UPDATE statement, you must have UPDATE access to the table. (You will
learn about SQL Object Privileges in Tip 142.)

The syntax of the UPDATE statement is:

UPDATE <table name | view name>
SET <column name> = <expression>

[..., <last column name> = <last expression>]
[WHERE <search condition>]

As such, when salesperson #3, Joe Smith, gets promoted to area supervisor, you can reassign all of Joe Smith's customers to
their new salesperson #9, Sally Fields, using the UPDATE statement:

UPDATE customers SET salesperson = 9 WHERE salesperson = 3

Or, you can set the credit limit to $10,000 and the payment terms to net 120 for customer Konrad King using the UPDATE

statement:

UPDATE customers

SET credit_limit = 10000, net_due days = 120
WHERE first name = 'Konrad' AND last name = 'King'

The WHERE clause in the UPDATE statement identifies the row or rows in the table (given by <table name>) whose column
values are to be modified. The SET provides the list of column values to be assigned to the rows that satisfy the search criteria in
the WHERE clause. In short, the UPDATE statement goes through a table (of customers, in the current examples) one row at a
time and updates column values in rows for which the search conditions yields TRUE. Conversely, the UPDATE statement leaves
column data unchanged in rows where the search condition (in the WHERE clause) evaluates to FALSE or NULL.

As you can see from the syntax of the UPDATE statement, the SET clause contains a list of column assignment expressions. A
table column name can appear as the target of an assignment only once in the assignment list. Moreover, the expression must
yield a value compatible with the data type of the column to which it is to be assigned. (You cannot, for example, assign a
character string to a column with a NUMERIC data type.) Moreover, the expression must be computable based on the values in
the columns of the row currently being updated, and it may not contain any subqueries or column functions (such as SUM, AVG,
COUNT).

Note Column values not referenced in the expressions or in the WHERE clause of an UPDATE statement, maintain the
value they had prior to any updates throughout the entire statement. Thus, the UPDATE statement

UPDATE employees

SET low_gquota = (low_quota * 2), medium_gquota =
(low_quota * 4), high quota = (medium_guota * 8)

WHERE low_quota = 1 AND medium_guota = 2

will set the LOW_QUOTA to 2, the MEDIUM_QUOTA to 4 (4 * 1, not 4 *2), and the HIGH_QUOTA to 16 (8 * 2, not 8 *
4).

Make sure you do not omit the WHERE clause unless you want to UPDATE all of the rows in a table. For example,
UPDATE employees SET low_quota = low_quota * 1.5

will increase the LOW_QUOTA value by 150 percent for all employees (rows) in the EMPLOYEES table.

Note Before executing a new UPDATE statement (especially one with complex selection criteria), execute a SELECT
COUNT(*) statement using the UPDATE statement's WHERE clause. For example, the statement

SELECT COUNT (*) FROM customers WHERE salesperson = 3

will tell you the number of rows the DBMS will modify when you execute the UPDATE statement:
UPDATE customers SET salesperson = 9 WHERE salesperson = 3

By seeing the number of rows the UPDATE statement will change, you're likely to catch mistakes in the selection
criteria—if you have some idea as to the number of rows that you expect to modify.

[oam 1o | [rmiviovs e o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« ervviou]
74 Using the UPDATE Statement with a Conditional Clause to Change
Values in Multiple Rows at Once

You can use the UPDATE statement to modify column values in one, some, or all of the rows in a table. The syntax of the
UPDATE statement is:

UPDATE <target table name | view name>
SET <column name> = <expression>...

[, <last column name> = <last expression>]
[WHERE <search condition>]

If you want to update columns in all of the rows in a table, use an UPDATE statement without a WHERE clause, such as
UPDATE employee SET YTD fed tax withheld = 0.00,

YTD_FICA Employer = 0.00, YTD_FICA Employee = 0.00,

YTD gross_pay = 0.00

which sets the value of the YTD_FED_TAX_WITHHELD, YTD_FICA_EMPLOYER, YTD_FICA_EMPLOYEE, and
YTD_GROSS_PAY columns to 0.0 in all of the rows in the EMPLOYEE table.

To modify the columns in only some of the rows in a table, add a WHERE clause to the UPDATE statement. When the DBMS
executes an UPDATE statement that has a WHERE clause, it selects the rows that meet the search criteria and then goes
through those rows one at a time, updating the column values as specified by the UPDATE statement's SET clause.

For example, the UPDATE statement

UPDATE employees SET low quota = 1, medium quota = 2,
high_quota = 4

WHERE low_quota IS NULL

will set the three columns LOW_QUOTA, MEDIUM_QUOTA, and HIGH_QUOTA to 1, 2, and 4, respectively, in those rows where
the LOW_QUOTA is NULL prior to the execution of the UPDATE statement.

The column names in the UPDATE statement's SET clause must be columns in the target table (the table named after the
keyword UPDATE). Moreover, expressions in the UPDATE statement's SET clause cannot include any subqueries or column
functions and must evaluate to a data type compatible with the data type of the columns to which they are to be assigned.

Do not worry about the order of the expressions in the SET clause. Since the value of each column used in an expression (and in
the WHERE clause) is set to the column's value before any updates are applied, changes to a column's value made by one
expression have no effect on any other expressions in the same UPDATE statement.

For example, suppose you were to execute the UPDATE statement

UPDATE employees

SET department = ' Main Room', sales = 0,
low_quota = sales, medium_quota = low_quota + 5,
high quota = medium quota + 5

WHERE sales > low_quota AND department ='Training'

on a table row where the SALES column has a value of 10 and LOW_QUOTA, MEDIUM_QUOTA, and HIGH_QUOTA columns
have values of 1, 2, and 4, respectively.

The UPDATE statement will set DEPARTMENT to Main Room, SALES to 0, LOW_QUOTA to 10, MEDIUM_QUOTA to 6, and
HIGH_QUOTA to 7. Even though it changed the value of LOW_QUOTA from 1 to 10, before it set the value of MEDIUM_QUOTA
to LOW_QUOTA + 5, the UPDATE statement uses the preupdate value of all columns (including LOW_QUOTA) throughout the
expressions in the SET clause. As such, the UPDATE statement sets the value of MEDIUM_QUOTA to 1 + 5, or 6, and
HIGH_QUOTA to 2 + 5, or 7—even though both LOW_QUOTA and MEDIUM quota have new higher values by the time the
DBMS evaluates the expressions.

(If you wanted to set the values of the quotas based on the value of the SALES column in the current example, you would use
SALES in each expression. The UPDATE statement

UPDATE employees

SET department = ' Main Room', sales = 0,
low_quota = sales, medium_gquota = sales + 5,
high_quota = sales + 10

WHERE sales > low_quota AND department ='Training'

would yield the desired quota values of 10, 15, and 20.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [+ rasvions
75 Using a Subquery in an UPDATE Statement to Change Values in Multiple
Rows at Once

ip 73, "Using the UPDATE Statement to Change Column Values," and Tip 74, "Using the UPDATE Statement with a Conditional
Clause to Change Values in Multiple Rows at Once," show example UPDATE statements using WHERE clauses that determine a
row's eligibility by using one of the comparison operators (=, >, <, <>, IS). The UPDATE statement will also let you use the results
of a SELECT statement to specify which rows you want to UPDATE in the target table.

For example, suppose you want to reassign employees with a less than average number of sales to the training department. You
could use the UPDATE statement:

UPDATE employees SET department = 'Training'
WHERE department <> 'Training'
AND sales < (SELECT AVG (sales)

FROM employees

WHERE department <> 'Training')

As another example, suppose you want to change the job title of all supervisors in charge of more than five employees to
manager. You could use the UPDATE statement:

UPDATE employees SET job_title = 'Manager'
WHERE job_title 'Supervisor'
AND 5 < (SELECT COUNT (*)

FROM employees WHERE reports_to

employee_id)

(In the current example, you could not omit the job_title = 'Supervisor' search condition because a vice president responsible for
more than five employees would have his job title changed to manager.)

You can nest subqueries in the WHERE clause to any level, meaning that the SELECT statement in the UPDATE statement's
WHERE clause can have a SELECT statement in its WHERE clause, which can have a SELECT statement in its WHERE clause,
and so on.

SQL-89 prevented the SELECT statement in the WHERE clause of an UPDATE statement from referencing the table being
updated at any level. SQL-92 eliminates this restriction by evaluating the references to columns in the target table as if none of the
rows of the target table were updated. As such, the SELECT statement in the first example will use the same average of SALES
for every row of the EMPLOYEES table, even though the average of SALES made by employees not in training changes as low-
producing employees are moved to the training department as the DBMS works it way through the table.

[+ rrinsus [omsi]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [« prvvious)
76 Using the UPDATE Statement to Change Column Values in Rows
Selected Based on a Computed Value

In Tip 75, "Using a Subquery in an UPDATE Statement to Change Values in Multiple Rows at Once," you learned how to
UPDATE specific rows in a table based on the single value returned by the SELECT statement's aggregate function (AVG). (You
will learn more about using an aggregate function in a subquery to return a single value in Tip 331, "Using an Aggregate Function
in a Subquery to Return a Single Value.") You can also use a computed value to select rows you want the UPDATE statement to
modify.

Suppose, for example, that you had an employee table defined by
CREATE TABLE employees

(employee id INTEGER,
first name VARCHAR (25),
last_name VARCHAR (30),
SSAN CHAR (11),
sales INTEGER,
status VARCHAR (30),
low_guota INTEGER,
medium_quota INTEGER,
high_quota INTEGER,
bonus INTEGER,

bonus_multiplier INTEGER DEFAULT 1)

and you want to reward employees whose SALES are greater than 150 percent of their high quota by doubling their bonuses. You
could use the UPDATE statement:

UPDATE employees SET bonus_multiplier = 2
WHERE sales > high quota * 1.5

In addition to using a computation on a column value, you can use the result of a computation using the value returned by an
aggregate function as your selection criteria. Suppose, for example, that you want to double the bonus of all employees whose
SALES exceed 150 percent of the average HIGH_QUOTA. You could use the UPDATE statement:

UPDATE employees SET bonus _multiplier = 2,
WHERE sales > (SELECT AVG(high quota) FROM employees) * 1.5

When using computed values as selection criteria, the important thing to know is that the DBMS evaluates any expressions in the
WHERE clause to a constant value and then uses that value to select the rows to be changed during the course of executing the
UPDATE statement.

(fean L R EEE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [« privious)
77 Using the UPDATE Statement to Change Values in One Table Based on
Values in Another Table

Although the UPDATE statement lets you change only the column values in a single table (whose name appears immediately
following the keyword UPDATE), you can use any table (or combination of tables) available to you in the UPDATE statement's
WHERE clause. As such, you can decide which rows in the target table to update based on the values in columns of other tables.

For example, suppose you sell auto parts from various vendors, and one of them, XYZ Corp, has gone out of business. You can
change the REORDER_STATUS column of all parts from XYZ Corp in your INVENTORY table using the UPDATE statement:

UPDATE INVENTORY SET reorder_ status = 'Discontinued'
WHERE vendor id IN (SELECT vendor_ id FROM vendors
WHERE company_name = 'XYZ Corp')

Of course, this example may be a bit of a stretch since you would normally know the VENDOR_ID and use it in the WHERE
clause in place of the subquery, writing the UPDATE statement as

UPDATE INVENTORY SET reorder_status = 'Discontinued'
WHERE vendor id = 5
if XYZ Corp's VENDOR_ID were 5.

As another example suppose you wish to identify each salesperson with customers who have placed more than $1,000,000 worth
of orders as a "Key Account Manager." Given tables created with the statements

CREATE TABLE employees

(employee_id INTEGER,
first name VARCHAR (25)
last_name VARCHAR (30) ,
SSAN CHAR(11),
total sales MONEY,
status VARCHAR (30))

CREATE table customers
(customer number INTEGER,
company_name VARCHAR (50),
salesperson_id INTEGER)

CREATE table orders
(customer id INTEGER,
order_number INTEGER,
order_date DATETIME,
order_total MONEY)

you can identify salespeople with individual customers whose orders total more than $1,000,000 using the UPDATE statement:

UPDATE employees SET status = 'Key Account Manager'
WHERE employee id IN
(SELECT salesperson_id FROM customers
WHERE customer number IN
(SELECT customer id FROM orders
GROUP BY customer_ ID
HAVING SUM(order total) > 1000000))

Note You did not use the value in the TOTAL_SALES column as the selection criteria because a salesperson can have
more than $1,000,000 in TOTAL_SALES and still not have any customers that have made purchases totaling more
than $1,000,0000. For example, if the salesperson had 100 accounts, each of which purchased $20,000 in goods, the
TOTAL_SALES would be $2,000,000, but none of the customers would be "key accounts" since none made purchases
totaling over $1,000,000.

The important thing to understand is that you are not restricted to using only the target table in the UPDATE statement's WHERE
clause. To the contrary, you can also use any other tables (to which you have SELECT access) whose columns you need to
formulate the statement's selection criteria.

= oo o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [Craivivusfiie +]
78 Using the UPDATE Statement to Change Table Data Through a View

As you learned in Tip 73, "Using the UPDATE Statement to Change Column Values," the UPDATE statement lets you change
column values in a single target table. Using the syntax
UPDATE <target table name | view name>
SET <column name> = <expression>...
[, <last column name> = <last expression>]
[WHERE <search condition>]

you can modify one or more values in one or more rows, and you can base row selection on values in any tables to which you
have SELECT access. However, the UPDATE statement can have only one target table, meaning that the UPDATE statement
can change values in only one table at a time.

In Tip 65, "Using the MS-SQL Server Enterprise Manager Create View Wizard to Create a View," you learned that a view is a
virtual table-it does not contain any data, but it references data columns in one or more underlying tables. Since a view is a single,
albeit virtual, table, it would seem that you could use a view based on multiple underlying tables to get the UPDATE statement to
modify columns in multiple tables at once.

Unfortunately, the DBMS checks the view to make sure the view's SELECT statement includes only a single table. As such, if you
attempt to execute the statement

UPDATE cust_rep
SET employee status ='Terminated', cust sales rep = 2
WHERE employee_id = 6

where CUST_REP is a view based on columns from multiple underlying tables, the DBMS will fail to execute the UPDATE

statement and respond with an error message similar to:

Server: Msg 4405, Level 16, State 2, Linel
View 'CUST_REP' is not updateable because the FROM clause
names multiple tables.

The two advantages for using a view in place of the underlying table in an UPDATE statement are that you can make column
names more descriptive, and that you can limit the columns the user can update in the underlying table.

Suppose, for example, that you had a table created with the statement
CREATE TABLE employees

(emp_id INTEGER PRIMARY KEY IDENTITY,
fname VARCHAR (25),

lname VARCHAR (30),

addr VARCHAR (30),

SSAN CHAR (11),

dept VARCHAR (20) ,

badgno INTEGER,

sales INTEGER,

tot_sales MONEY,

status VARCHAR (30),

low_quota INTEGER,
med_gquota INTEGER,
high quota INTEGER,
bonus INTEGER,
bonus mult INTEGER DEFAULT 1)

and you only wanted a user to be able to update the name, address, Social Security number, and badge number for employees in
the marketing department. You could use the CREATE VIEW statement:

CREATE VIEW vw _marketing sup emp update
(employee_number, first name, last_name, address,
social security number, badge number)

AS SELECT emp_id, fname, lname, addr, ssan, badgno

FROM employees

WHERE dept = 'Marketing'

Given UPDATE access to the VW_MARKETING_SUP_EMP_UPDATE view, the user could then UPDATE a marketing
employee's personal information and badge number without being able to change (or even display) the employee department,
status, count, volume, quotas, and bonus information.

For example, to assign (or change) employee 123's badge number, the marketing supervisor could use the UPDATE statement:
UPDATE vw_marketing sup_emp_update

SET badge_number = 1123

WHERE employee number = 123

When the DBMS receives an UPDATE statement that uses a view as the target table, the DBMS builds the virtual table using the
SELECT statement in the view definition. Thus, in the current example, the DBMS builds a temporary (virtual) table by selecting
employees in the marketing department from the EMPLOYEES table. The virtual (view) table has only the columns listed in the
view's SELECT statement, and the additional data in each row of the EMPLOYEE column is excluded.

After it builds the view table (VW_MARKETING_SUP_EMP_UPDATE in the current example), the DBMS uses the selection
criteria in the UPDATE statement's WHERE clause to determine which row (or rows) in the virtual (view) table it is to UPDATE.
(Thus, if employee 123 is in the EMPLOYEES table but not in the marketing department, the UPDATE command will fail because
employee 123 does not exist in the target table, VW_MARKETING_SUP_EMP_UPDATE.)

Finally, the DBMS applies the updates specified in the UPDATE statement's SET clause to the columns in the underlying table,
not the virtual (view) table. In the current example, the DBMS will set the BADGNO column of the row where EMP_ID is 123 in the
EMPLOYEES table to 1123.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

You will learn all about creating views and how the DBMS handles them in Tips 206-215.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LB | [« Frrvisu]
79 Using the DELETE Statement to Remove a Row from a Table

While the INSERT statement adds one or more rows to a table, the DELETE statement removes them. In order for the database

to remain an accurate model of the real world, you must remove rows of data that represent physical entities that no longer exist.

For example, if a customer cancels an order, you need to remove one or more rows from an ORDERS table. After you terminate

an employee, you need to remove a row from the EMPLOYEES table. When you discontinue a product, you need to delete a row
from the PRODUCTS table—and so on.

A single row is the smallest unit of data that the DELETE statement can remove from a table. (To remove a column from all of the
rows in a table, use the ALTER TABLE statement with a DROP COLUMN clause, as you learned in Tip 58, "Using the MS-SQL
Server ALTER TABLE, DROP COLUMN Clause to Remove a Table Column.")

Suppose, for example, that you have an e-mail database that has users and messages tables created by
CREATE TABLE hotmail users

(user_id VARCHAR (25) PRIMARY KEY,
name VARCHAR (50),
address VARCHAR (50),
phone number VARCHAR(30),
password VARCHAR (20)

CREATE TABLE hotmail messages

(user_id VARCHAR (25),
date time received DATETIME,
subject VARCHAR (250),
sent by VARCHAR (25),
date_time_sent DATETIME,
priority CHAR (1),
message TEXT

CONSTRAINT recipient account_id
FOREIGN KEY (user_ id) REFERENCES hotmail users)

The syntax of the DELETE statement is:
DELETE from <table name> [WHERE <search condition>]

Therefore, if user KKI decides to discontinue use of his e-mail account, you could use the DELETE statements

DELETE FROM hotmail messages WHERE user id = 'KKI'
DELETE hotmail users WHERE user_id = 'KKI'

to remove KKI from the HOTMAIL_USERS table and all of his e-mail messages from the HOTMAIL_MESSAGES table.

The WHERE clause in the DELETE statement identifies the row or set of rows that the DELETE statement is to remove from the
table whose name appears immediately following the keyword DELETE.

As such, the first DELETE statement in the example will remove multiple rows from the HOTMAIL_MESSAGES table if user KKI
has more than one e-mail message on file. Conversely, the second DELETE statement will DELETE a single row from the
HOTMAIL_USERS table since USER_ID's are unique. (The PRIMARY KEY constraint on the USER_ID column of the
HOTMAIL_USERS table specifies that all rows in the table must have a unique, non-NULL value in the USER_ID column.)

Note When removing rows from multiple tables, the order in which you execute the DELETE statements will be of
consequence if the PRIMARY KEY in one of the tables is referenced by the FOREIGN KEY constraint in another table.
In the current example, the PRIMARY KEY (USER_ID) in the HOTMAIL_USERS table is referenced by the FOREIGN
KEY constraint (RECIPIENT_ACCOUNT_ID) in the HOTMAIL_ MESSAGES table. As such, if you attempt to DELETE
the HOTMAIL_USERS row with USER_ID KKI before you remove all of the e-mail messages stored for USER_ID KKI
from the HOTMAIL_MESSAGES table, the DELETE statement will fail to execute and the DBMS will display messages
similar to:

Server: Msg 547, Level 16, State 1, Line 1

DELETE statement conflict with COLUMN REFERENCE constraint
'recipient account id'.

The conflict occurred in database 'SQLTips', table
hotmail messages', column 'user_id'.

The statement has been terminated.

As you will learn in Tip 174, "Understanding Referential Integrity Checks and Foreign Keys," the FOREIGN KEY constraint
specifies that the value in the column(s) defined as the FOREIGN KEY (USER_ID, in the current example) must exist as one of
the PRIMARY KEY values in the table name in the FOREIGN KEY's REFERENCES clause (HOTMAIL_USERS, in the current
example). Therefore, to successfully DELETE the user KKI and all of his messages, you must first DELETE the messages with
USER_ID KKI from the HOTMAIL_MESSAGES table. Then you can DELETE the row with USER_ID KKI from the

HOTMAIL_USERS table.
[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrvisu]
80 Using the DELETE Statement with a Conditional Clause to Remove
Multiple Rows from a Table

In Tip 79, "Using the DELETE Statement to Remove a Row from a Table," you learned how to remove one or more rows from a
table based on a column's contents being equal to a certain value. You can also use the DELETE statement to remove rows from
a table based on column values being in a set of data values or satisfying the search condition based on conditional operators
(such as <, >, <=).

Suppose, for example, that a group of the financial counselors left your brokerage firm and took all of their clients with them. You
could use the DELETE statement

DELETE FROM clients WHERE fc_id IN (1001, 1005, 1010, 1015)
to remove all client records (table rows) taken to another firm by financial counselors with IDs 1001, 1005, 1010, and 1015.

To base row removal on a conditional operator, simply use the operator in the DELETE statement's WHERE clause. For example,
to delete all back orders placed prior to January 2000, you could use the DELETE statement:

DELETE FROM orders
WHERE order_date < '01/01/2000' AND ship_date IS NULL

Although the syntax or the DELETE statement
DELETE from <table name> [WHERE <search condition>]

shows the WHERE clause as optional, you must omit the WHERE clause only if you want the DBMS to remove all of the rows
from a table. Stated another way, if you omit the WHERE clause, the DBMS will, without warning, delete all of the rows from the
table. As such, the DELETE statement

DELETE FROM clients

will delete all of the rows from the CLIENTS table. Therefore, be positive that you really want to remove all of the data in a table
before you execute a DELETE statement without a WHERE clause.

Note If you are planning to remove all of the rows from a table, check to see if your DBMS has a special command for
clearing a table while leaving its structure intact. MS-SQL Server, for example, provides the Transact-SQL TRUNCATE
TABLE statement, which you will learn about in Tip 82, "Using the TRUNCATE Statement to Remove All Rows from an
MS-SQL Server Table." Typically, specialized table-clearing facilities will complete their tasks more quickly (and
efficiently) than using the DELETE statement to remove all of the data from a table one row at a time.

As with the UPDATE statement, always reread your DELETE statement twice before you click your mouse on the Execute or
Submit button. If you have some idea as to the number or rows you expect to remove, use the DELETE statement's WHERE
clause in a SELECT COUNT (*) statement, such as:

SELECT COUNT (*) FROM orders
WHERE order date > '01/01/2000' AND ship date IS NULL

If you know there are very few old back orders on the system, but the count comes up as a large number, look at the WHERE
clause again, and perhaps change the SELECT statement to display some of the columns in the rows it counted. Doing so may
help you to avoid a possibly costly error in executing a DELETE statement based on an erroneous search condition.

(In the current example, the large row count returned by the SELECT COUNT (*) statement may have alerted you to the fact that
you were about to delete all rows for unshipped orders placed after 01/01/2000 vs. prior to the beginning of the year.)

= [« recvioos [vax o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [sravioor
81 Using the DELETE Statement with a Subquery to Remove Multiple Rows
from a Table

ip 79, "Using the DELETE Statement to Remove a Row from a Table," and Tip 80, "Using the DELETE Statement with a
Conditional Clause to Remove Multiple Rows from a Table," showed you how to select rows to DELETE based on column values
in the target table's row. Sometimes, however, that you don't know the value in any of the columns in the row(s) you want to delete
and must base the selection on values in columns of other tables. By adding a subquery to a DELETE statement, you can delete
selected rows in one table based on values in another table.

Suppose, for example, that you wanted to remove all customer records for those customers who have not placed on order in over
two years. You could use the DELETE statement

DELETE FROM customers

WHERE (SELECT COUNT (*) FROM orders
WHERE customer_ ID = ordered_ by
AND order date > '05/30/1999') = 0

or, you could write the same DELETE statement as:

DELETE FROM customers

WHERE NOT EXISTS (SELECT * FROM ORDERS
WHERE customer ID = ordered_ by
AND order_date > '05/30/1999")

You can name only a single table in the DELETE statement's FROM clause. As such, the statement
DELETE FROM hotmail messages, hotmail_users

WHERE hotmail messages.user_id hotmail users.user_id
AND name = 'Konrad King'

is illegal since a multi-table join is not allowed in the FROM clause of a DELETE statement. If you want to remove all e-mail
messages the username Konrad King has on file, use this DELETE statement instead:
DELETE FROM hotmail messages
WHERE user_id = (SELECT user_id FROM hotmail_ users
WHERE name = 'Konrad King').

When you include a subquery in a DELETE statement, the DBMS first executes the subquery to create a result set (of rows or
columns values). The DBMS then uses the result set from the subquery in the search condition specified by the DELETE
statement's WHERE clause. Thus, when executing the DELETE statement
DELETE FROM salesreps
WHERE 1000 >
(SELECT SUM(order total) FROM orders
WHERE soldiby7= salesrep id))

the DBMS will evaluate the SELECT statement first. As such, it will use the SOLD_BY and ORDER_TOTAL columns of the
ORDERS table to create a result set that contains a list of SALESREP_ID and total sales pairs. The DBMS will then work its way
through the SALESREPS table one row at a time, deleting those rows where the total sales for the sales rep is less than $1,000.

s ervvons Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lo [+ rassus]
82 Using the TRUNCATE Statement to Remove All Rows from an MS-SQL
Server Table

Although you could use a DELETE statement without a WHERE clause to remove all rows from a table, the Transact-SQL
TRUNCATE TABLE statement will execute the task more quickly and efficiently. The syntax of the TRUNCATE TABLE statement
is:

TRUNCATE TABLE <table name>

If you use the DELETE statement
DELETE FROM employee

the DBMS will go through the EMPLOYEE table one row at a time, noting the row deletion and writing the values of the columns in
the row to be deleted into the transaction log prior to removing the row from the table.

When you execute the TRUNCATE TABLE statement
TRUNCATE TABLE employee

the DBMS removes pages of information at once. Each page of data contains multiple rows. Thus, the TRUNCATE TABLE
statement will remove multiple rows of data from the table at once (vs. one row at a time, the way the DELETE statement does).
Moreover, the TRUNCATE TABLE statement does not update the transaction log. As such, if you remove rows from a table using
the TRUNCATE TABLE statement, you will not be able to ROLLBACK (undo) the row deletions, even if you execute the
TRUNCATE TABLE statement as part of a transaction.

Note The TRUNCATE TABLE statement is especially handy if your transaction log is full and the DBMS cannot expand it
because there is no more room on the hard drive on which it is stored. If you try to use the DELETE statement to
remove rows from a table to free up disk space, the statement will fail because the DBMS cannot write any more
information to the transaction log. You can, however, use the TRUNCATE TABLE statement to remove all rows from a
table to free up disk space, since it does not write any information to the transaction log as it permanently deletes table
rows.

[oam Lo | [+ erevious Lt s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [rasvioos
83 Using the DELETE Statement to Remove Table Rows Based on a
Computed Value

Tips 79-81 showed you how to use the DELETE statement to remove a row from a table based on a value stored in one or more
of the row's columns. As you now know, you can select the rows to delete either by checking the value of the column(s) directly or

by checking to see if the column value(s) in question are part of a result set returned by a subquery in the DELETE statement's
WHERE clause.

In addition to using the value stored in a column, you can select rows to delete based on a computed value. Suppose, for
example, that you had CUSTOMER TABLE defined as

CREATE TABLE customers

(cust_id INTEGER PRIMARY KEY,
first _name VARCHAR (25),
last_name VARCHAR (35),

address VARCHAR (40),

phone number VARCHAR (20),
total_purchases MONEY,
last_order_date DATETIME,

order count INTEGER)

and you want to remove all customers who have not made a purchase within the year prior to 05/30/99, unless the customer's
previous average purchase amount exceeds the overall average purchase amount by 75 percent. You could use a DELETE
statement similar to the following:

DELETE FROM customers

WHERE last_order_date < CONVERT (DATETIME, '05/30/99"). - 365

AND total_purchases / order_count <

(SELECT (SUM(total_purchases) / sum (order_count)) *
1.75 FROM customers)

Notice that you can use computed values both inside and outside a subquery (if any) in the DELETE statement's WHERE clause.

Moreover, SQL-92 lets you use the target table in the subquery's FROM clause by evaluating the subquery as if none of the
table's rows has been deleted. As such, although the DELETE in the current example changes the value of the overall average
order as it removes customers from the table, the DBMS will use the same value for the average order for every row it checks—
because it uses the overall average computed before any rows (TOTAL PURCHASES and ORDER_COUNTSs) were removed

from the table.
[« rxvvions foaxi o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team Li | [raivisus]fiie +]
84 Using the DELETE Statement to Remove Table Rows Through a View

In addition to using a view to insert a row (as you learned to do in Tip 68, "Using the INSERT Statement to Insert Rows Through a
View") or change the value of one or more columns in a row (as you learned to do in Tip 78, "Using the UPDATE Statement to
Change Table Data Through a View"), you can also use a view to DELETE rows from a table. As you know, a view is a virtual
table whose actual, physical data is stored in one or more underlying tables. As such, insertions, modifications, and deletions
performed on a view are actually done to the underlying tables. As such, when you use a DELETE statement to remove a row
from a view, you are actually removing a row from the table on which the view is based.

As was the case with the UPDATE statement, if you want to use a view as the target table in a DELETE statement, the view must
be based on a single underlying table. The view need not display all of the columns in the underlying table, and it can display
computed columns. The only restriction is that the view's SELECT statement must reference only a single table—the DELETE
statement's target table.

Suppose, for example, that your company closed the Tulsa shipping department, and you want to remove all Tulsa shipping
department personnel. Given a view named VW_TULSA_EMPLOYEES and created by

CREATE VIEW vw_tulsa employees AS

SELECT employee_id, first_name, last_name, SSAN, department
FROM employees

WHERE location = 'Tulsa'

you can use the DELETE statement
DELETE FROM vw_tulsa_employees WHERE department = 'shipping'

to remove rows from the EMPLOYEES table where the value of the LOCATION column is Tulsa and the value of the
DEPARTMENT column is shipping.

When you use a view as the target table for a DELETE statement, you can remove only rows that satisfy the search criteria in the
view's SELECT clause. Thus, in the current example, the DELETE statement will remove rows where the location column has the
value Tulsa, even though the location is not specified in the DELETE statement's WHERE clause. Thus, employees that work in
the shipping department at other locations will remain in the table.

In short, you can DELETE only existing rows from the target table. (To restate the obvious, you cannot remove a row from a table
if the row is not in the table.) As such, you can use a view to DELETE only rows that meet the view's selection criteria, since those
are the only rows in the view.

Because a table row is the smallest unit of data that a DELETE statement can remove, a DELETE statement with a view as the
target table will remove an entire row from the underlying table—even if the view displays only some of the table's columns. For
example, suppose the EMPLOYEES table in the current example was created with:

CREATE TABLE employees

(employee_id INTEGER,
first name VARCHAR (25),
last_name VARCHAR (30) ,
SSAN CHAR(11),
location VARCHAR (20) ,
department VARCHAR (20),
total sales MONEY)

Then, the DELETE statement
DELETE FROM vw_tulsa employees

will remove all rows where the LOCATION column has a value of Tulsa, even though the VW_TULSA_EMPLOYEES view has
only the columns EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SSAN, and DEPARTMENT.

Although the DELETE statement will remove an entire table row (including columns not defined in the view), you can reference
underlying only table columns that are part of the view's definition in the DELETE statement's WHERE clause. Thus, the DELETE
statement

DELETE FROM vw_tulsa_employees WHERE total_sales < 1000

will fail because TOTAL_SALES is not a column in the VW_TULSA_EMPLOYEES view (virtual table). If you try to refer to an
underlying table column that is not defined as a column in the DELETE statement's target table (the VW_TULSA_EMPLOYEES
view, in the current example), the DBMS will respond with an error message similar to:

Server: Msg 207, Level 16, State 3, Line 1

Invalid column name 'total sales'.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« rrnvinus]flveixt ¥
Chapter 4: Working with Queries, Expressions, and Aggregate

Functions

85 Understanding What to Expect from a SELECT Statement

When executed, a SELECT statement always returns a table. The table may have only one column and no rows, but every
SELECT statement returns its query results as a table. Moreover, when a SELECT statement appears within another SELECT
statement as a subquery, the inner SELECT statement returns a results table that serves as the input table for the outer (or main)
SELECT statement.

If you are using interactive SQL (such as the window-oriented MS-SQL Server Query Analyzer or the command-line MS-SQL
Server ISQL application), the SELECT statement displays its query results in tabular form on your computer screen. If you are
using a program (such as Visual Basic, C, or C++) to send a query (SELECT statement) to the DBMS, the DBMS will use a cursor
(which you will learn about in Tip 415, "Understanding the Differences Between Buffers and Cursors") to hold the tabular query
results while it passes the rows of column values to your application program's (host) variables.

The syntax of a SELECT statement is:
SELECT [ALL | DISTINCT] <select item list>
FROM <table list>
[WHERE <search conditions>]
[GROUP BY <grouping column list>

[HAVING <having search conditions>]]
[ORDER BY <sort specification>]

You will explore each and every element of the SELECT statement in great detail as you read the next group of Tips. The
important thing to know now is that a SELECT statement always returns its results in the form of a table.

Thus, the SELECT statement

SELECT employee_id, first name, last_name, total_sales

FROM employees

will display the EMPLOYEE_ID, FIRST_NAME, LAST_NAME, and TOTAL_SALES column values in each row of the
EMPLOYEES table, in a manner similar to:

employee id first name

Konrad King 125258.2200
Sally Fields 83478.2500
Wally Wallberg 14258.1200
Sam Kelleher 6012.5900

Sam Walton 748252.2000
Helen Eoff 45587.6600
NULL Gomez 49258.7500

Note Since the SELECT statement in the example has no WHERE clause, the DBMS will display all of the rows in the
EMPLOYEES table.

A SELECT statement with a WHERE clause will still return a table, but the results table will include only those rows from the input
table(s) (list in the FROM clause) that satisfy the search condition in the WHERE clause. Thus, in the current example, the
SELECT statement

SELECT employee_id, first name, last_name, total_sales
FROM employees
WHERE first name = 'Sam'

will return a table of two rows:

employee id first name last name total sales

4 Sam Kelleher 6012.5900
5 Sam Walton 748252.2000

If none of the rows in the underlying table(s) satisfies the search condition in its WHERE clause, a SELECT statement will return a
table with headings and no rows. For example, the SELECT statement
SELECT employee_id, first name, last name, total_sales

FROM employees
WHERE first_name IS NULL

will display the results:

employee_id first_name last _name total_sales

Note When a column has a NULL value, the DBMS must treat its value as "unknown." As such, the DBMS cannot make any
assumptions about the value of the column—it cannot even assume that it is equal to another NULL value. As you will
learn in Tip 317, "Understanding Why the Expression NULL = NULL Evaluates to False," the predicate NULL = NULL
is always FALSE in SQL. To check for a NULL value in a column, use the predicate <column name> IS NULL.

When you use an aggregate function in a SELECT statement to display a single value, the SELECT statement still returns its
result as a table. For example, based on the sample data in the current example's EMPLOYEES table, the SELECT statement

SELECT SUM(total sales) FROM employees

will return the table:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SUM(total sales)

1072105.7900

The results table has only one column and one row, but it is a table nonetheless. (Note that the column heading you see may be
"1," "Coll," or "Sum(total_sales)" as returned by MS-SQL Server in this example.)

Thus, the import thing to know now about the SELECT statement is that it always produces a table. Moreover, because they are
always returned in a table, you can store SELECT statement results back into the database as a table; combine the results of one
SELECT statement with another to produce a larger, composite table; and use the results of one SELECT statement as the target

(or input) table for another SELECT statement.
[« revvious]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
86 Understanding the Structure of a SELECT Statement

A SELECT statement is often called a query because it tells the DBMS to answer a question about the data stored in one or more
database tables. For example, if you want to query (or ask) the DBMS for a list of purchase dates, item descriptions, and costs on
orders placed by Bruce Williams, you could execute the SELECT statement:

SELECT order date, description, cost

FROM orders,icustomers

WHERE ordered by = customer id

AND first_ngme = 'Bruce' AND last_name = 'Williams'

As you learned in Tip 85, "Understanding What to Expect from a SELECT Statement," the syntax of the SELECT statement is:
SELECT [ALL | DISTINCT] <select item list>
FROM <table list>
[WHERE <search conditions>]
[GROUP BY <grouping column list>
[HAVING <having search conditions>]]
ORDER BY <sort specification>]

Thus, the parts of a SELECT statement are:
= The keyword SELECT followed by the list of items you want displayed in the SELECT statement's results table.

= The FROM clause, which lists the tables whose column data values are included in the item list for display or are
part of the search criteria in the optional WHERE clause.

= An optional WHERE clause, which lists the search criteria to use in selecting the rows of data to display from the
tables listed in the FROM clause. (If the SELECT statement has no WHERE clause, the DBMS assumes that all
rows in the target table[s] [listed in the FROM clause] satisfy the selection criteria.)

= An optional GROUP BY clause, which tells the DBMS to combine subtotal query results based on the values in one
or more columns listed in the <grouping column list>. (You will learn how to use the GROUP BY clause in Tip 270,
"Using a GROUP BY Clause to Group Rows Based on a Single-Column Value," and Tip 271, "Using a GROUP BY
Clause to Group Rows Based on Multiple Columns.")

= An optional HAVING clause, which lists additional row-selection criteria to filter out rows based on the results
(subtotals) produced by the GROUP BY clause. (You will learn about the HAVING clause and how it differs from the
WHERE clause in Tip 276, "Using a HAVING Clause to Filter the Rows Included in a Grouped Query's Results
Table," and Tip 277, "Understanding the Difference Between a WHERE Clause and a HAVING Clause.")

= An optional ORDER BY clause, which tells the DBMS how to sort the rows in the SELECT statement's results table.
(If there is no ORDER BY clause, the DBMS will display data in the order in which it finds it within the (unsorted)
input table(s).)

Thus, the example SELECT statement
SELECT order_date, description, cost FROM orders, customers

WHERE ordered by = customer_id
AND first name = 'Bruce' AND last name = 'Williams'

tells the DBMS to list the values found in the ORDER_DATE, DESCRIPTION, and COST columns.

The FROM clause tells the DBMS that it will find columns listed in the SELECT clause in the ORDERS and/or CUSTOMERS
tables.

Meanwhile, the WHERE clause tells the DBMS to return only those rows (from the virtual table formed by a CROSS JOIN of the
ORDERS and CUSTOMERS tables) where the ORDERED_BY column (from the ORDERS table) contains the same value as the
CUSTOMER_ID column (from the CUSTOMERS table), and where the FIRST_NAME column (from the CUSTOMERS table)
contains the value Bruce and the LAST_NAME column (from the CUSTOMERS table) contains the value Williams. (You will learn
about cross joins in Tip 298, "Using the CROSS JOIN to Create a Cartesian Product," and you will learn how the DBMS uses
them to produce a virtual, composite table to which it applies the SELECT statement's selection criteria in Tip 87, "Understanding

the Steps Involved in Processing an SQL SELECT Statement.")

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB |
87 Understanding the Steps Involved in Processing an SQL SELECT

Statement

To have the DBMS display the values in a table, you need only execute a SELECT statement with a FROM clause, such as
SELECT * FROM employees

which displays all columns and all rows in the EMPLOYEES table.

In practice, almost all SELECT statements include a WHERE clause that forces output data to satisfy certain criteria. Moreover,
many SELECT statements involve the selection of column data from multiple tables.

As you learned in Tip 85, "Understanding What to Expect from a SELECT Statement," and Tip 86, "Understanding the Structure
of a SELECT Statement," the syntax of a SELECT statement is:

SELECT [ALL | DISTINCT] <select item list>

FROM <table list>

[WHERE <search conditions>]

[GROUP BY <grouping column list>

[HAVING <having search conditions>)]
[ORDER BY <sort specification>]

When executing a SELECT statement, the DBMS performs the following steps:

1. Creates a working table based on the table or tables in the FROM clause. If there are two or more tables in the
FROM clause, the DBMS will execute a CROSS JOIN to create a table that is a Cartesian product of the tables
in the <table list> (in the SELECT statement's FROM clause). For example, if the SELECT statement lists two
tables in its FROM clause, the DBMS will create a table that consists of each row of the first table concatenated
with each row of the second table. After the DBMS builds it, the cross-joined working table contains all possible
combination of rows that can result from combining a row from the first table with a row from the second.

Note No DBMS product actually uses a CROSS JOIN to construct the intermediate results table—the
product table would be too large even when the <table list> in the FROM clause contains only a few
rows. For example, if you have two 1,000-row tables, the resulting Cartesian product would be a table
with 1,000,000 rows! The important thing to understand is that although it never really actually exists,
the product table is a conceptual model that correctly describes the behavior of the DBMS when it
executes a multi-table query.

2. If there is a WHERE clause, the DBMS will apply its search condition to each row in the composite (Cartesian
product) table generated in Step 1. The DBMS keeps those rows for which the search condition tests TRUE and
removes those for which the search condition tests NULL or FALSE. If the WHERE clause contains a subquery,
the DBMS executes the subquery on each row that satisfies the selection criteria of the main query.

3. If there is a GROUP BY clause, the DBMS breaks the rows in the results table (from Step 2) into groups where
columns in the <grouping column list> all have the same value. Next, the DBMS reduces each group to a single
row, which is then added to a new results table that replaces the one at the beginning of this step.

Note All of the columns in the <grouping column list> in the GROUP BY clause must appear in the <select
item list> in the SELECT clause.

Note The DBMS treats NULL values is if they were equal and puts all of them into their own group.

4. If there is a HAVING clause, the DBMS applies it to each of the rows in the "grouped" table produced in Step 3.
The DBMS keeps those rows for which the <having search conditions> tests TRUE and removes those rows for
which the <having search conditions> tests NULL (unknown) or FALSE. If the HAVING clause has a subquery,
the DBMS performs the subquery on each row of the "grouped" table that satisfies the <having search
conditions>.

Note You cannot have a HAVING clause in a SELECT statement without a GROUP BY clause because
the HAVING clause filters the results of the GROUP BY clause. Moreover, any columns in the
<having search conditions> must be included in the <grouping column list> of the GROUP BY clause.

5. Apply the SELECT clause to the results table. If a column in the results table is not in the <select item list>, the
DBMS drops the column from the results table. If the SELECT clause includes the DISTINCT option, the DBMS
will remove duplicate rows from the results table.

Note The <select item list> in the SELECT clause can consist of constants (numeric or character string),
calculations based on constants or table columns, columns, and functions.

6. If there is an ORDER BY clause, sort the results table as specified in the <sort specification>.

7. Display the results table to the screen for an interactive SQL SELECT statement, or use a cursor to pass the
results table to the calling (or host) program for programmatic SQL.

Suppose, for example, that you have two tables created with
CREATE TABLE employees

(emp id INTEGER PRIMARY KEY,
last_name VARCHAR(25),

trainer VARCHAR (25)

sales INTEGER)

CREATE TABLE sales
(cust_id INTEGER PRIMARY KEY,
sold by INTEGER,
sales amt MONEY)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

that have the following data:

EMPLOYEES table SALES table
id last_name trainer sales cust_id sold by sales_amt
1 Hardy Bob 3 1 1 $6,000
2 Wallace Greg 3 2 1 $6,000
3 Green Bob 2 3 4 $8,000
4 Marsh Andy 2 4 2 $4,000
5 Brown Greg 0 5 2 $6,000
6 3 $7'000
7 4 $4,000
8 1 $6,000
9 2 $7,000
10 3 $9,000

To get a report on how well your trainers were doing in preparing your salesmen for the field, you could use a query similar to:

SELECT last_name trainer, COUNT(*) AS num_trainees,
SUM (sales_amt) AS gross_sales, AVG(sales_amt)

FROM employees, sales

WHERE sales > 0

AND emp_id = sold_by

GROUP BY last name, trainer

HAVING AVG (sales_amt) > 6000

After performing Step 1 of SELECT statement execution for the example query, the DBMS will create the following CROSS JOIN
working table based on the data in the two tables (EMPLOYEES and ORDERS) listed in the example SELECT statement's FROM

clause.

CROSS JOIN Working Table

EMPLOYEES ORDERS

emp_id last name trainer sales cust_id sold by sales_ amt
1 Hardy Bob 3 1 1 $6,000
1 Hardy Bob 3 2 1 $6,000
1 Hardy Bob 3 3 4 $8,000
1 Hardy Bob 3 4 2 $4,000
1 Hardy Bob 3 5 2 $6,000
1 Hardy Bob 3 6 3 $7,000
1 Hardy Bob 3 7 4 $4,000
1 Hardy Bob 3 8 1 $6,000
1 Hardy Bob 3 9 2 $7,000
1 Hardy Bob 3 10 3 $9,000
2 Wallace Greg 3 1 1 $6,000
2 Wallace Greg 3 2 1 $6,000
2 Wallace Greg 3 3 4 $8,000
2 Wallace Greg 3 4 2 $4,000
2 Wallace Greg 3 5 2 $6,000
2 Wallace Greg 3 6 3 $7,000
2 Wallace Greg 3 7 4 $4,000
2 Wallace Greg 3 8 1 $6,000
2 Wallace Greg 3 9 2 $7,000
2 Wallace Greg 3 10 3 $9,000
3 Green Bob 2 1 1 $6,000
3 Green Bob 2 2 1 $6,000
3 Green Bob 2 3 4 $8,000
3 Green Bob 2 4 2 $4,000
3 Green Bob 2 5 2 $6,000
3 Green Bob 2 6 3 $7,000
3 Green Bob 2 7 4 $4,000
3 Green Bob 2 8 1 $6,000
3 Green Bob 2 9 2 $7,000
3 Green Bob 2 10 3 $9,000
4 Marsh Andy 2 1 1 $6,000
4 Marsh Andy 2 2 1 $6,000
4 Marsh Andy 2 3 4 $8,000
4 Marsh Andy 2 4 2 $4,000
4 Marsh Andy 2 5 2 $6,000
4 Marsh Andy 2 6 3 $7,000
4 Marsh Andy 2 7 4 $4,000
4 Marsh Andy 2 8 1 $6,000
4 Marsh Andy 2 9 2 $7,000
4 Marsh Andy 2 10 3 $9,000
5 Brown Greg 0 1 1 $6,000
5 Brown Greg 0 2 1 $6,000
5 Brown Greg 0 3 4 $8,000
5 Brown Greg 0 4 2 $4,000
5 Brown Greg 0 5 2 $6,000
5 Brown Greg 0 6 3 $7,000
5 Brown Greg 0 7 4 $4,000
5 Brown Greg 0 8 1 $6'000
5 Brown Greg 0 9 2 $7,000
5 Brown Greg 0 10 3 $9,000

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

In Step 2 of the procedure, the DBMS will apply the search criteria in the SELECT statement's WHERE clause, which includes two
predicates in the current example. The first predicate, sales > 0, will remove rows with a zero in the SALES column from the
working table; the second predicate, emp_id = sold_by, will remove rows where the value in the EMP_ID column is not equal to
the value in the SOLD_BY column to produce the working table:

CROSS JOIN Working Table After WHERE Clause Filter

EMPLOYEES

emp_id last_name trainer sales

Hardy
Hardy
Hardy
Wallace
Wallace
Wallace
Green
Green
Marsh
Marsh

BB W WwWNDNDN R

Bob
Bob
Bob
Greg
Greg
Greg
Bob
Bob
Andy
Andy

NDNDNONWWWWWW

ORDERS

cust_id sold_by sales_amt

~ Wk oW O N
BB W WNDNDN R

$6,000
$6,000
$6,000
$4,000
$6,000
$7,000
$7,000
$9,000
$8,000
$4,000

Note If any of the predicates in the WHERE clause use only one of the tables listed in the FROM clause, the DBMS
optimizer will normally use the predicate to remove rows from the table prior to performing the CROSS JOIN. In the
current example, the optimizer would have removed employee 5 from consideration since the employee has no sales,
thereby eliminating 10 rows from the cross-joined working table.

In Step 3, the DBMS will use the GROUP BY clause to group the working table by trainer and then compute values for the
aggregate functions in the SELECT clause.

CROSS JOIN Working Table After WHERE Clause Filtering and Grouping

EMPLOYE

emp_1id last_name trainer sales

BAE NN WWR P

ES

Hardy
Hardy
Hardy
Green
Green
Wallace
Wallace
Wallace
Marsh
Marsh

Aggregate Functions

trainer

num__

Bob
Bob
Bob
Bob
Bob
Greg
Greg
Greg
Andy
Andy

trainees gross_sales

$34,000
$17,000
$12,000

NN WWWNDNDWWwWw

ORDERS
cust id sold by sales amt

WO U N

BA N NN WWR P

AVG (sales_amt)
$6,800.0000
$5,666.6666
$6,000.0000

$6,000
$6,000
$6,000
$7,000
$9,000
$4,000
$6,000
$7,000
$8,000
$4,000

Next, the DBMS will apply the search condition in the HAVING clause to eliminate working table rows with average sales of

$6,000.00 or less.

Finally, the DBMS will apply the <select item list> in the SELECT clause to and display the query results in Step 7 as:

trainer num_tra
Bob 5
(1 Row(s) affec

inees

ted)

gross_sales

34000.00

AVG (sales_amt)

6800.0000

Of course, the actual DBMS product will not create and drop actual, physical tables on disk as it works through the query—that
would be very expensive in terms of system resources and processing time. The working tables in this tip model the way the
DBMS executes a SELECT statement.

If you conceptualize the interim table data as you add WHERE, GROUP BY, and HAVING clauses to your SELECT statements,
you will often avoid the frustration of having to say, "Well, it is syntactically correct and it looks right, but it just doesn't give me the

results | know | should

get!"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam LiE | [raivisus]fiie +]
88 Using the SELECT Statement to Display Columns from Rows in One or

More Tables

The simplest SQL query is a SELECT statement that displays the columns in a single table. For example, if you have a table
created by

CREATE TABLE customer
(customer_id INTEGER PRIMARY KEY,

first name VARCHAR (20),
last_name VARCHAR (30) ,
address VARCHAR (50),
phone number VARCHAR(20)

you can display its contents using the SELECT statement:
SELECT * FROM customer

The asterisk (*) in the query's SELECT clause tells the DBMS to display all of the columns in the table(s) list in the FROM clause.
As you learned in Tip 87, "Understanding the Steps Involved in Processing an SQL SELECT Statement," the syntax of the
SELECT statement is:

SELECT [ALL | DISTINCT] <select item list>

FROM <table list>

[WHERE <search conditions>]

[GROUP BY <grouping column list>

[HAVING <having search conditions>]]
[ORDER BY <sort specification>]

Thus, in the current example, the DBMS treats the asterisk (*) in the SELECT clause as if it were the list of all of the columns in
the FROM clause table. As such, the SELECT statement in the current example

SELECT * FROM customer

is equivalent to

SELECT customer id, first name, last name, address,
phone_number
FROM customer

If you want to display some (and not all) of the columns in a table, include only the columns you want to display in <select item
list> in the query's SELECT clause. For example, if you want to display only the customer's ID, first name, and phone number, use
the SELECT statement:

SELECT customer_id, first name, phone number FROM customer

The DBMS will go through the target table named in the FROM clause (CUSTOMER, in the current example) one row at a time.
As it reads each row in the input table, the DBMS will take the columns listed in the <select item list> and use them to create a
single row in a results table. Thus, the query

SELECT customer_id, first name, last name FROM customers

will produce a results table with four rows in the form:

customer_id first name last_name
1 Wally Cleaver
2 Dolly Madison
3 Horace Greely
4 Ben Stepman

All of the column names in the <select item list> must be defined in the table (or tables) listed in the SELECT statement's FROM
clause. For example, if you have two tables, CUSTOMERS and ORDERS, created by

CREATE TABLE customers
(cust_id INTEGER PRIMARY KEY,
first _name VARCHAR (20
last_name VARCHAR (30))

CREATE TABLE ORDERS
(order_number INTEGER PRIMARY KEY,
order_date DATETIME,
cust_id INTEGER,
description VARCHAR (25)
order total MONEY)

and you want to query the database for a list of the IDs and names of all of the customers, and the date, description, and total
amount of all of their orders, you can use the SELECT statement:

SELECT customers.cust id, first name, last name,
order_date, description, order_total

FROM customers, orders

WHERE customers.cust_id = orders.cust_id

Where the column values are unique to each table listed in the FROM clause, the DBMS will know which column value to display
from which table—that is, the columns FIRST_NAME and LAST_NAME appear only in the CUSTOMERS table, so the DBMS
knows to get the values for the FIRST_NAME and LAST_NAME columns from the CUSTOMERS table when it builds a row in the
results table. Similarly, the ORDER_DATE, DESCRIPTION, and ORDER_TOTAL columns appear only in the ORDERS table, so
the DBMS knows to retrieve these values from the ORDERS table when it adds them to a row in the results table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

When you want to display the value in columns that have the same name in more than one of the tables listed in the FROM
clause, you must use the qualified column name (<table name>.<column name>) to tell the DBMS which table's data to use. In
the current example, CUST_ID appears in both the CUSTOMERS and ORDERS tables. As such, to display the value of the
CUST_ID column from the CUSTOMERS table, you must type the name of the column as CUSTOMERS.CUST_ID in the query's
SELECT clause.

Similarly, if the WHERE clause contains ambiguous column names, you need to use qualified column names in the WHERE
clause as well, as is shown by the WHERE clause in the current example.

WHERE customers.cust id = orders.cust id

[Team LiB | [rrsvisus] [t 3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[+ ervvious Lt

89 Using the SELECT Statement to Display Column and Computed Values

In addition to using a SELECT statement to display column values, you can use it to display calculated columns and literals.
Suppose, for example, that you managed a restaurant and wanted to get a feel for how your patrons felt about the service based
on their tips. Since most people tip the customary 15 percent if the service is "okay," you are most interested in tips above and
below the customary amount.

Given a sales table created by
CREATE TABLE sales

(emp_id INTEGER,
meal total MONEY,
tip_rec MONEY)

you can use the SELECT statement
SELECT emp_id, meal_ total, '* 15% ="',
meal total * .15 AS standard tip, tip rec,
tip rec - (meal total * .15) AS over_under
FROM sales
ORDER BY over under

to produce a results table in the form:

emp id meal total standard tip tip rec over under

1 75.3300 * 15% = 11.2995 10.5000 -.799500
2 13.5700 * 15% = 2.0355 1.2500 -.785500
5 89.2500 * 15% = 13.3875 13.5000 .112500
7 110.4800 * 15% = 16.5720 17.2500 .678000
1 125.4400 * 15% = 18.8160 19.7500 .934000
3 271.2200 * 15% = 40.6830 47.5000 6.817000

Data items shown in the EMP_ID, MEAL_TOTAL, and TIP_REC columns are examples of using the SELECT statement to display
column values (which you learned about in Tip 88, "Using the SELECT Statement to Display Columns from Rows in One or More
Tables"). The * 15% = column, meanwhile, shows how you can include a literal string in a SELECT statement to have it displayed
as a column value in each row of the SELECT statement's results table.

Note Although literal strings can make each row in the results table read more like a sentence, the DBMS treats them as a
new column with a constant value (* 15% =, in the current example). This distinction is important when you are passing
results table data back to a host program by column position—literal strings in a SELECT statement add new columns
that the host program "knows about" and handles appropriately.

Like the literal (constant) string column (* 15% =), the final two columns in the results table (STANDARD_TIP and OVER_UNDER)
do not exist in the SALES table. The value of these columns in each results table row is the result of a computation on another
column in the same row.

The example shows that you can both multiply a column value by a constant and use columns in place of all of the operands in
mathematical expressions (such as subtraction and multiplication). In short, you can display the results of any mathematical
operation or string manipulation function available in your DBMS implementation as a column value in the SELECT statement's
results table.

Note When using column values in mathematical or string manipulation functions, you must pay careful attention to the
column's data type. If you try to perform a mathematical operation (such as division) with a column of type CHAR or
VARCHAR, the SELECT statement will fail to execute and the DBMS will display an error message.

If you need to mix data types, such as appending a numeric column onto a literal string, use one of the type conversion functions
available to your DBMS implementation. MS-SQL server, for example, has the STR function for converting numbers to character
strings, and the CONVERT function to convert character strings (with only numbers and a plus [+] or minus [-] sign) to numbers.

[+ eivious Lot]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [ravioos
90 Using the SELECT Statement to Display All Column Values

As a convenience, SQL lets you abbreviate an "all columns" list to use in a SELECT statement with an asterisk (*). The SELECT
statement

SELECT * FROM <table name>

tells the DBMS to list all of the columns and data values in the table named in <table name>. As such, if you have the table

created by
CREATE TABLE sales
(emp_id INTEGER,
meal total MONEY,
tip_rec MONEY)

then the SELECT statement
SELECT * FROM sales

will yield results in the form:

emp_id meal_ total tip_rec

1 75.3300 10.5000
2 13.5700 1.2500

5 89.2500 13.5000
7 110.4800 17.2500
1 125.4400 19.7500
3 271.2200 47.5000

Although SQL-92 specifies that a SELECT statement can use either the all columns abbreviation (*) or a selection list, but not
both, most commercial SQL products let you combine the two. MS-SQL Server, for example, treats the asterisk (*) as another
element in the select list. As such, the SELECT statement

SELECT *, meal_ total * .15 AS expected_tip FROM sales

WHERE NULL = NULL

yields the results:

emp_id meal total tip rec expected tip

(The NULL = NULL in the WHERE clause is a convenient way to get a column list without displaying data because NULL = NULL
always evaluates to FALSE.)

While the all columns list selection is convenient for interactive session, you should avoid using it in programmatic SQL.

When an application sends a query to the DBMS, it expects the results to be returned in a fixed number of columns of specific
data types. If the structure of the table is changed by rearranging its columns or by adding a column, the DBMS takes care of the
database-related details, but it cannot update the application program. As a result, the program will fail to function because the
output from the DBMS is no longer in the exact format in which the program expects to receive it.

Therefore, if you are using a program to submit queries and process results, list the column names instead of using the all
columns list selector (*). By listing the columns, you can keep the number of columns and their arrangement in the query results
table constant even after changes to the structure of the input table.

[Yoam L. [+ rrivisus Do

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L | [« Frrvisu]
91 Using the SELECT Statement with a WHERE Clause to Select Rows
Based on Column Values

Although the WHERE clause is optional, most SELECT statements have one. Using SELECT without a WHERE clause is useful
for browsing the data in database tables-and little else. If you are gathering information you need for a decision, or if you are
producing a report, you normally want to retrieve only some of the rows in one or more tables-that is where the WHERE clause
comes in.

The WHERE clause lets you specify which of the rows in the input table(s) you want included in the SELECT statement's results
table. For example, suppose you want to get a list of all salespeople who are below their quota of sales for the month. You could
use the SELECT statement

SELECT emp_id, first_name, last_name,
quota - monthly sales AS under_by
FROM employees
WHERE department = 'SALES' AND monthly sales < quota

to produce a results table in the form:

emp_id first_name last_name under_by

1 Sally Fields 6
7 Wally Wells 9
9 Bret Maverick 12

A WHERE clause consists of the keyword WHERE, followed by the search condition that specifies the rows to be retrieved. In the
current example, the WHERE clause specifies that the DBMS is to retrieve those rows in which the value in the DEPARTMENT
column is SALES and the value of the MONTHLY_SALES column is less than the value in the QUOTA column.

When processing a SELECT statement with a WHERE clause, the DBMS works its way through the input table, applying the
search condition to each row. It substitutes the column values from the table row for the column names in the WHERE clause. In
the current example, the DBMS substitutes the value in the DEPARTMENT column for "department" in the WHERE clause, the
value in the MONTHLY_SALES column for "monthly_sales," and the value in the table row's QUOTA column for "quota" in the
WHERE clause.

After performing the substitutions, the DBMS evaluates the WHERE clause. Rows with column values for which the WHERE
clause evaluates TRUE are included in the results table. Those rows whose column values cause the WHERE clause to evaluate
FALSE or NULL are excluded from the results table.

As such, you can think of the WHERE clause as a filter. Rows that satisfy the search condition in the WHERE clause pass
through the filter. Conversely, rows that do not satisfy the search clause get "stuck” in the filter and are excluded from the results

table.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [ervvious)
92 Using the SELECT Statement with a WHERE Clause to Select Rows
Based on a Computed Value

In addition to selecting rows by comparing column values to a literal string or number (as you learned to do in Tip 91, "Using the
SELECT Statement with a WHERE Clause to Select Rows Based on Column Values"), you can also use a WHERE clause to
select rows by comparing column contents to computed values. As you've learned, the general format of a SELECT statement
with a WHERE clause is:

SELECT <column list> FROM <table name>
WHERE <search condition>

As such, to SELECT columns based on a computed value, simply use the computed value in the WHERE clause in search
condition. For example, to list all salespeople whose sales are 20 percent or more below quota, you can use a SELECT statement
similar to:
SELECT emp id, first name, last name,
quota - monthly sales AS under_ by
FROM employees
WHERE department = 'SALES'
AND monthly sales < (quota * .80)

When formulating search conditions with computed values, you are not limited to performing mathematical operations on the
columns in a single table. In fact, you can base the selection on a computed value using columns from different tables. Suppose,
for example, that you want a list of customers who have exceeded their credit limit, and you have INVOICES and CUSTOMERS
tables created by:
CREATE customers
(customer id INTEGER PRIMARY KEY,
first name VARCHAR(25),
last_name VARCHAR (30) ,
credit limit MONEY)

CREATE invoices
(invoice_number INTEGER PRIMARY KEY,

ordered by INTEGER,
invoice_total MONEY,
total paid MONEY)

You can use the SELECT statement
SELECT customer_id, first name, last_name, credit_ limit
FROM customers, invoices
WHERE ordered by = customer_ id
AND credit_limit < (SELECT SUM(invoice_total - total_paid)
FROM invoices
WHERE ordered by = customer id)

to select customers who are currently over their credit limit.

In short, you can use a computed value in a WHERE clause as you would any other constant (literal string or number) or column
value. The only restriction on using column values is that column names used to generate a computed value in a WHERE clause
must appear in one of the tables named in the SELECT statement's FROM clause.

[« rrvvions frosr

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

YT IS SRR
93 Using the SELECT Statement with a Comparison Predicate to Select
Rows with Specific Column or Computed Values

You already learned how to use two of the six comparison operators to select rows when you used the equal to (=) and less than
(<) comparison tests to select rows in Tip 91, "Using the SELECT Statement with a WHERE Clause to Select Rows Based on
Column Values" and Tip 92, "Using a SELECT Statement with a WHERE Clause to Select Rows Based on a Computed Value."

able 93.1 lists the six SQL comparison operators. (There are seven entries in the table because some DBMS implementations
use alternate forms for the "Not equal to" operator.)

Table 93.1: SQL Comparison Operators

<

| Symbol H Meaning |
=		Equal to
<>		Not equal to
1=		Not equal to
>		Greater than
<		Less than
>=		Greater than or equal to

|| Less than or equal to

Note Table 93.1 includes only symbols that serve as operators. However, if you consider only the actions of a comparison
operator, you could include the keyword LIKE to the list. As you will learn in Tip 261, "Using LIKE and NOT LIKE to
Compare Two Character Strings," the LIKE keyword acts as a comparison operator when comparing character strings.

The equal (=) comparison operator retrieves rows in which a column is equal to a specific value or another column. For example, if
active employees have an A in the status column, you could use

SELECT * FROM employees WHERE status = 'A'
to display all columns for active employee rows in the EMPLOYEES table.

Use the not equal to (<>) comparison operator to retrieve all rows except those that contain a specific value. For example, to
display student information for all students except seniors, you might use the select statement:

SELECT * FROM students WHERE class <> 'Senior'

You can use the greater than (>) comparison operator to display rows in which the value of a column is more than that specified to
the right of the operator. For example, if you want to list citations in which the driver was traveling more than 50 percent over the
speed limit, you could use a SELECT statement similar to:

SELECT *, (speed - posted limit) AS mph_over_ limit

FROM citation WHERE speed > 1.5 * posted limit

To list those rows where a column value is less than a specific value, use the less than (<) comparison operator. For example, to
list the department number and budget of those departments that have spent less than their allotted budgets for the current year,
you could use the statement:
SELECT dept no, budget, total spent,
bud&et - total spent AS remaining
FROM dept_financials WHERE total_ spent < budget

The greater than or equal to (>=) operator will return those rows with a column value at least as great as that listed in the WHERE
clause. For example, to give the basketball recruiter a list of all seniors that are at least 6 feet, 6 inches tall (78 inches), you could
use the SELECT statement:

SELECT student_id, first name, last_name
FROM students WHERE class = 'Senior' AND height >= 78

Use the less than or equal to (<=) operator to select rows where a column's value is at most equal to that given in the WHERE
clause. For example, suppose you want to give out "good attendance" awards to students who have never been absent and who
have at most two tardies. You could use the SELECT statement:

SELECT student_id, first name, last name
FROM students WHERE absent_count = 0 AND late_count <= 2

Note Although the examples in this tip used numeric values with the comparison operators >=, <=, >, and <, you can use
them to compare literal strings as well. For example to display an alphabetical listing of all employees with last names
greater than or equal to King, you could use the SELECT statement:

SELECT employee id, last name
FROM employees WHERE_last name >= 'King' ORDER BY last_name

When performing a comparison operation on a column of type CHAR (or VARCHAR), the DBMS converts each letter in the strings
to its binary representation. The DBMS then compares the bit strings to see which is greater. The binary value for the K (in King),
for example, would be greater than the binary value of a name starting with J (and any letter appearing in the alphabet prior to J).
As such, only names beginning with K through Z would appear in the list of employees.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the first two letters of each string are the same, the DBMS compares the binary value of the next two letters, and then the next
two until there are either no more letters to compare (in which case the strings are equal) or until a letter in one string has a
different binary value than the letter in the other string (in which case one string will be either greater than or less than the other).
(The case where one string is longer than the other is covered by the binary value of a letter from one string [a nonzero value]
being compared to a different letter in a second string [the blank character whose binary value is less than all letters and

numbers].)
[« rxvvions fooi o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB | [« enivisun et o
94 Using Boolean Operators OR, AND, and NOT in a WHERE Clause

Boolean operators let you select rows using multiple search conditions in a single WHERE clause. When you want to select rows
that satisfy any one of several search conditions, use an OR operator to combine the clauses into a compound search condition.
Conversely, when you want to select rows that satisfy all of several search conditions, use an AND to combine search conditions
in the WHERE clause. Finally, use the NOT operator to introduce a search condition in the WHERE clause when you want the
DBMS to return rows that do not satisfy its criteria.

The general form of a SELECT statement including Boolean operator is:

SELECT <select item list> FROM <table name>
WHERE [NOT] <search condition>
[<comparison operator> [NOT] < search condition>]...
[<last comparison operator> [NOT]
<last search condition>]

Suppose, for example, that you are shopping for a car and would find any one of several models acceptable. You could use the

SELECT statement
SELECT year, make, model, cost FROM auto_inventory
WHERE make = 'Jaguar' OR make = 'BMW' OR make = 'Corvette'

to return a list of Jaguars, BMWs, and Corvettes in the AUTO_INVENTORY table. The OR operators used to combine the search
conditions in the WHERE clause tell the DBMS to display the columns in the selection list for each row where any one (or more) of
the search conditions evaluates to TRUE.

Use the AND operator to combine search conditions in a WHERE clause, if you want the DBMS to display only rows in which all
(vs. any, for the OR operator) of the search conditions are TRUE. As such, the SELECT statement

SELECT year, make, model, cost FROM auto_ inventory
WHERE make = 'Corvette' AND year > 1990 AND color = 'Red'

tells the DBMS you are interested only in rows where the MAKE column has the value Corvette, the YEAR column has a value
greater than 1990, and the COLOR column has the value Red. If any one (or more) of the search conditions evaluates to FALSE,
the DBMS excludes the row from the results table. Said another way, the AND operator tells the DBMS to include a row in the
results table only when all of the search conditions in the WHERE clause evaluate to TRUE.

The NOT operator lets you select rows based on values not found in their columns. Suppose, for example, that your son or
daughter just turned 16 and will accept any car, as long as the cost to insure it is not more than $2,000 per year. To get a list of
acceptable vehicles from the AUTO_INVENTORY table, you could use the select statement:

SELECT year, make, model, cost FROM auto_inventory
WHERE NOT cost_to_insure > 2000

Although the previous examples used a single type of Boolean operator in each WHERE clause, you can combine multiple,
different Boolean operators in the same WHERE clause. For example, suppose that you will accept any Jaguar with a model year
after 1998, or any Corvette, or any BMW, as long it is not blue. You could use the SELECT statement:

SELECT year, color, make, model, cost FROM auto_inventory
WHERE (make '"Jaguar' AND year > 1998) OR

(make 'Corvette') OR

(make = '"BMW' AND NOT color = 'blue')

Note You can normally replace the comparison operator in a search condition instead of using a negated search condition-a
search condition introduced by the NOT operator. For example, if your search condition reads "not less than," you
could simply use the greater than or equal to (>=) operator. Similarly, if the search condition reads "not greater than,"
use the less than or equal to (<=) operator instead. The main reason for using the NOT operator is if you feel that it is
visually easier to understand than the equivalent comparison operator. Someone not used to mathematical symbols or
working with sets may not be familiar with the not equal to (<> or !=) operator and would find a WHERE clause in the
form

WHERE NOT <column name> = <value>

easier to read than

WHERE <column name> != <value>

or

WHERE <column name> <> <value>

[Toam 1o | [revvisus i o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [Crnivisus it +]
95 Using the ORDER BY Clause to Specify the Order of Rows Returned by a

SELECT Statement

When the SELECT statement builds the results table in answer to a query, it does not arrange the rows displayed in any particular
order. Normally, the DBMS displays query result in the order in which the selected rows were inserted into the input table. For
efficiency, some DBMS products will use one of the indexes when reading through the rows in the input table. As such, the results
table's rows may be arranged as they appear in the index used to traverse the input table.

If you want to control the order in which rows appear in the results table, add the ORDER BY clause to the SELECT statement.

The general form of a SELECT statement including an ORDER BY clause is:

SELECT <select item list> FROM <table name>
[WHERE <search condition>]
ORDER BY <sort specification>

where <sort specification> is defined as:

<column name | column number> [ASC | DESC]
[,...<last column name | last column number>
[ASC | DESC]}

You can use any of the columns from the <select item list> as part of the <sort specification>.

Suppose, for example, that you want to list student grades from lowest to highest. You could use a SELECT statement similar to

SELECT student_id, last_name, first_name, grade_received
FROM students
ORDER BY grade_received

that will yield a results table in the form:

student_id last_name first name grade_received

1 Smith Sally 65
8 Wells Wally 70
9 Luema Albert 75
12 Luema Abner 75
90 Davis Scott 96

If you omit the keywords ASC (ascending order) and DESC (descending order) from the sort specification, the DBMS will sort the
rows in the results table in ascending order. As such, in the current example, the DBMS sorted the rows in the results table in
ascending order based on the values stored in the GRADE_RECEIVED column.

To sort the results table by more than one column, simply include all of the columns you want to use for the sort in the <sort
specification>. (Remember, the only restriction on the columns listed in the <sort specification> is that they must all appear as
column names in the SELECT statement's <select item list>.)

Therefore, to sort the list of grades in descending order by GRADE_RECEIVED, then in ascending order by name, and finally in
ascending order by STUDENT_ID, you could use the SELECT statement
SELECT student_id, last_name, first name, grade_received
FROM students
ORDER BY grade_received DESC, last_name ASC, first_ name,
student id

which will yield a results table in the form:

student_id 1last_name first_name grade_received

90 Davis Scott 96
12 Luema Abner 75
9 Luema Albert 75
8 Wells Wally 70
1 Smith Sally 65

The second and subsequent columns listed in the ORDER BY clause act as "tie-breakers." If (as is the case in the current
example) two rows have the same value in the first column listed in the ORDER BY clause (a 75 for GRADE_RECEIVED, in the
current example), the DBMS will decide which of the two rows to display first by comparing the values in the column listed second
in the ORDERED BY clause. If the second column is also identical (as is the case in the current example-both LAST_NAME
columns have the value Luema), the DBMS will compare the values in the third column listed in the ORDER BY clause, and so
on.

Notice that you can mix ascending and descending sort orders within the same ORDERED BY clause. Obviously, a single column
must be arranged either in ascending or descending order-and not both. However, as is the case in the current example, if you list
multiple columns in the ORDER BY clause, each of them can be displayed in either ascending (ASC) or descending (DESC) order
without regard to the order (ASC or DESC) of the other columns in the clause.

In addition to using column names in the ORDER BY clause, you can refer to the <select item list> items by number. For example,
to sort the results in the results table of the previous example by GRADE_RECEIVED, LAST_NAME, FIRST_NAME, and
STUDENT_ID, you could have used the ORDER BY clause in the SELECT statement

SELECT student id, last name, first name, grade received

FROM students

ORDER BY 4 DESC, 2, 3, 1

instead of:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT student id, last name, first name, grade received

FROM students

ORDER BY grade received DESC, last name ASC, first name,

student_id

The number of the column in the ORDER BY clause is determined by its position in the <select item list>, not its position in the
input table. As such, in the current example, you would refer to the GRADE_RECEIVED, the fourth item in the <select item list>,
as column 4, whether GRADE_RECEIVED is defined as the first, tenth, or fiftieth column in the STUDENTS table.

You would use the column number in place of the column name in the ORDER BY clause when you want to sort by a computed
column that does not exist in the input table and does not have a column name. For example, to display the list of salespeople in
the EMPLOYEES table in order by the number of sales by which they exceeded (or missed) quota, you could use a SELECT

statement similar to:

SELECT employee_id, first name, last_name, quota,
sales, sales - quota

FROM employees

ORDER BY 6 DESC, last_name, first_name, employee_ id

The DBMS would return a results table in the form:

emp_id first name last_name quota sales

1 Sally Fields 3 7 4
7 Wally Wells 8 9
9 Bret Maverick 7 5 -2

Note If you add an AS clause to the sales-quota item in the select item list, you can use the name you give to the computed
column in the ORDERED BY clause. For example, if you execute the select statement (that titles the SALES-QUOTA

computed value as over_under)

SELECT employee id, first name, last name,
sales, sales - quota AS over_under
FROM employees

ORDER BY over_under DESC, last_name, first_name,

employee id

the DBMS will display the results table:

emp_id first _name last_name quota sales

1 Sally Fields 3 7
7 Wally Wells 8 9
9 Bret Maverick 7 5

Notice that the results table is still in the same order as before, but the computed column at the end of each row, now has a label:

over_under.

[+erevious Lt

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[1eam L | [crxevisus)
96 Using Compound Conditions (AND, OR, and NOT) in a WHERE Clause to
Select Rows Based on Multiple Column Values (or Computed Values)

Boolean operators AND and OR let you combine multiple, individual search conditions in a WHERE clause to form a compound
search condition. The NOT operator, meanwhile, lets you negate the result of evaluating a search condition to tell the DBMS to
select rows in which the search condition is FALSE (not TRUE).

Use the OR operator to combine search conditions when more than one may be TRUE but only one must be TRUE in order to
SELECT the row for inclusion in the results table. For example, to generate a table of golfers eligible for the U.S. Open golf
tournament, you could use the SELECT statement
SELECT first_name, last_name FROM golfers
WHERE previous us open winner = 'Y' OR
PGA tournaments won > 1 OR
quai_school_raniing <= 10

to allow a golfer to play if the golfer were a previous U.S. Open winner or if the golfer won one of the other PGA tournaments, or if
the golfer finished in the top 10 of the qualifying school.

When evaluating a compound search condition, the DBMS evaluates each individual search condition and then performs Boolean
math to determine whether the overall WHERE clause evaluates to TRUE or FALSE. Thus, in the current example, the DBMS will
evaluate each of the three search conditions (PREVIOUS_US_OPEN_WINNER="Y', PGA_TOURNAMENTS_WON > 1, and
QUAL_SCHOOL_RANKING <= 10) and then use the OR Truth Table shown in Table 96.1 to determine whether the SELECT
statement's WHERE clause is TRUE or FALSE.

Table 96.1: OR Truth Table

| OR || TRUE || FALSE “ NULL |
[TRUE || TRUE | TRUE |[TRUE |
[FALSE || TRUE || FALSE |[NULL |
[NULL || TRUE [NULL |[NuLL |

(If the WHERE clause evaluates to TRUE, the DBMS includes the <select item list> values from the current row in the results
table; if the WHERE clause evaluates to FALSE or NULL, the DBMS excludes the values.)

The AND operator lets you form a compound search condition by requiring that all of the individual search conditions listed in the
WHERE clause be TRUE in order for the overall WHERE clause to evaluate TRUE. For example, if you require that salespeople
who have sold more than $75,000 in goods and services have a cancellation rate below 10 percent and make more than 30 sales
in order to be eligible for a bonus, you can use the SELECT statement
SELECT employee id, first name, last_name, '$200' AS bonus
FROM employees
WHERE department = 'Sales' AND
gross_sales > 75000 AND
(cancellations / sales) < .1 AND
sales > 30

to generate the bonus eligibility table.

As was the case with the OR operator, the DBMS will evaluate the individual search conditions (there are four in the current
example) and then use the AND Truth Table shown in Table 96.2 to determine whether the WHERE clause is TRUE or FALSE.

Table 96.2: AND Truth Table

| AND || TRUE || FALSE || NULL |
[TRUE || TRUE || FALSE |[NuLL |
[FALSE || FALSE ||FaLsE || FaLSE |
[NULL [NULL ||FaLsE |[NULL |

(If the WHERE clause evaluates to TRUE, the DBMS includes the <select item list> values from the current row in the results
table; if the WHERE clause evaluates FALSE or NULL, the DBMS excludes the values.)

Finally, you can use the NOT operator to negate the Boolean (TRUE or FALSE) value of a search condition. For example, if you
wanted to get a list of salespeople who either did not have gross sales of more than $75,000 or did not have more than 30 sales,
you could use the SELECT statement:

SELECT employee id, first name, last name, gross_sales,

sales
FROM employees
WHERE department = 'Sales' AND

((NOT gross_sales > 75000) OR
(NOT sales > 30))

When determining the negated value of a search condition, the DBMS uses the logic given in the NOT Truth Table shown in Table
96.3.

Table 96.3: NOT Truth Table

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| NoT || TrRUE

| FaLsE

| NuLL

| ” FALSE

[TRUE

|| NULL

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lia [« Frivious)
97 Understanding NULL Value Conditions When Selecting Rows Using
Comparison Predicates

When writing a search condition, be sure to take into account the handling of NULL values. Since the results table will include only
those rows for which a search condition is TRUE, some table rows will remain "hidden" even if you display the rows that satisfy the
search criteria and then display the rows that satisfy the negated search criteria.

Suppose, for example, that you have an employees table with the following values:

first name last name sales quota
Sally Fields 8 5
Wally Wells 4 10
Sue Smith 10 NULL
Kelly Sutherland 7 7

The SELECT statement
SELECT first name FROM employees WHERE sales < quota

would produce a results table with one name: Wally.

Conversely, the SELECT statement
SELECT first name FROM employees WHERE sales >= quota

would produce a results table with two names: Sally and Kelly.

By adding the rows in the two results tables (employees with sales below quota and employees with sales equal to or above
quota), you might come to the mistaken conclusion that there are three employees in the EMPLOYEES table, when there are, in
fact, four.

The reason that one employee remains "hidden" from view is that no matter which of the comparison operators (=, >, <, <>, >=,
<=) you use, if one of the columns being compared is NULL, the value of the entire expression will be NULL. As such, the row will
be excluded from the results table because the results table includes rows for which the search condition evaluates TRUE-FALSE
and NULL (unknown) valuations are excluded. Thus, in the current example, employee Sue will never show up in the results table
generated from a search condition using a comparison operator with the quota column (which is NULL for Sue) as an operand.

Even the SELECT statement
SELECT first name FROM employees WHERE quota = NULL

will produce a results table with zero rows! (If any operand in an expression using a comparison operator is NULL, the DBMS
evaluates the overall expression as NULL and excludes the row in question from the results table.)

Note To get a list of rows in which the value of a search condition is NULL, use the NULL value test IS NULL. As such, to get
a list of employees with a NULL value in the QUOTA column, you could use the SELECT statement:

SELECT first name FROM employees WHERE quota IS NULL

[Yoam Lo T

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L8 | [« Frrviou]
98 Using Row Value Expressions to Select Rows in a Table Based on
Multiple Column Values

A row value constructor, as the name implies, is a list of literal values and expressions that, taken together, give the values for the
columns in a single row in a table. You learned about row value constructors when you used them in INSERT statements to add
rows to tables in Tip 67, "Using the INSERT Statement to Add Rows to a Table."

Similar to the row value constructor used in an INSERT statement, the row value constructor in a SELECT statement specifies the
values in a row's columns. However, unlike the INSERT statement's row value constructor, the row value constructor in a SELECT
statement is not used to add a row to a table. Rather, the row value constructor in a SELECT statement's WHERE clause is used
to specify the value a row's columns must have in order for the row to be included in the SELECT statement's results table.

For example, to display active employees in the sales department, you could use a SELECT statement similar to:
SELECT employee id, first name, last name, gross_sales

FROM employees
WHERE (status, department) = ('Active', 'Sales')

To process a select statement with a row value constructor, the DBMS goes through the input table one row at a time, substituting
the value of each column named in the row value constructor for its column name on the left side of the equals (=) sign. The
DBMS constructs a row from the substituted column values on the left side of the equals (=) sign and compares it to a row
constructed from the literal values (or expressions) given in the value list on the right side of the row value constructor's equals (=)
sign.

The comparison is accomplished by comparing each pair of columns in the two rows-that is, the first value in the list on the left
side of the equals (=) sign is "paired" with and compared to the first value in the list on the right side of the equals (=) sign. The
second value on the left side is compared to the second value on the right side, and so on.

A row value comparison for equality (such as that shown in the current example) is TRUE only if each of the "paired" columns has
the same value.

Note Not all DBMS products support row value expressions in a SELECT statement's WHERE clause. If your DBMS does
not, you can rewrite the row value expression using a WHERE clause with a compound search condition. For example,
the SELECT statement in the current example can be rewritten as:

SELECT employee id, first name, last name, gross_sales
FROM employees
WHERE status = 'Active' AND department = 'Sales'

As you learned in this tip, each column value in the row value constructor in the value list on the left side of the equals sign is
paired with and compared to each literal value or expression in the value list on the right side of the equals sign. As such, you can
reconstruct the row value equality as a set of "paired" column-to-value equality search conditions combined with the AND
operator, since all (and not some) of the search conditions must evaluate TRUE in order for the WHERE clause to evaluate
TRUE.

[oam 115 | [rmiviovs e o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
99 Understanding Subqueries

A subquery is a SELECT statement within a SELECT statement and is often referred to as either an inner query or an inner
SELECT statement. Conversely, the SELECT statement that contains the subquery is called the outer query, outer SELECT, or
main SELECT statement.

Subqueries are most often used in a SELECT statement's WHERE clause to generate a single-column virtual table that the main
SELECT statement will use in determining which of the input table's rows to include in the results table. Suppose, for example,
that you want a list of all products in the PRODUCTS table where quantity on unshipped orders in the ORDERS table is greater
than the amount currently in stock.

You can use a SELECT statement in the form

SELECT product_ id, description, gty in stock FROM products
WHERE gty _in_stock < "total to ship"

to generate the list of back-ordered items once you know the value of the total to ship.

A query in the form
SELECT SUM(quantity) FROM orders

WHERE orders.item_number = "item to total" AND
date_shipped IS NULL)

will return the quantity due to be shipped for each item whose item number you substitute for the item to total (given that
unshipped orders have a NULL value in the DATE_SHIPPED column).

Adding the second SELECT statement as a subquery to the first, you get:
SELECT product_id, description, gty _in_stock FROM products
WHERE gty in stock < (SELECT SUM(quantity)

FROM orders
WHERE orders.item number =
products.product id AND
date_shipped IS NULL)

When executing the new SELECT statement with a subquery, the DBMS goes through each row in the PRODUCTS table and
executes the subquery to determine the quantity of the product due to be shipped. Each subquery execution produces a virtual
table containing a single value that the DBMS compares to the quantity of QTY_IN_STOCK. Whenever the quantity in stock
(QTY_IN_STOCK) is less than the quantity due to be shipped (as returned by the subquery), the DBMS will include the values
from the PRODUCT_ID, DESCRIPTION, and QTY_IN_STOCK columns of the current row of the PRODUCTS table in the results
table.

The syntax of a subquery is:
(SELECT [ALL I DISTINCT] <select item list>
FROM <table list>
[WHERE <search condition>]
[GROUP BY <group item list>
[HAVING <group by search condition>]1])

Thus, other than being enclosed in parenthesis (()), a subquery looks (and functions) exactly like any other SELECT statement.
There are, however, a few rules a SELECT statement used as a subquery must follow:

= |f the subquery is to provide a value to a comparison operator (=, <>, >, >=, <, <=) in a WHERE clause, the
subquery most return a single value-that is, the subquery's results table must consist of a single column with at
most one row. (A subquery with no rows evaluates to 0, vs. an error condition.)

= [f the subquery is introduced by the keywords IN or NOT IN, the subquery must return a results table of one column;
however, the results table may have more than one row.

= The subquery cannot have an ORDER BY clause. (Since the subquery results table is not displayed to the user and
is used as the input table for its outer SELECT statement instead, ordering the rows in the subquery's results table
is of no practical value.)

= Column names appearing in a subquery must be defined either in the tables listed in the subquery's FROM clause
or in the tables listed in the outer SELECT statement's FROM.

= In most DBMS implementations, a subquery can consist of only a single SELECT statement and cannot consist of
the UNION of several SELECT statements.

In this tip, you learned how to use a subquery to generate a (virtual) table of values that the DBMS used as the search criteria in
the main SELECT statement's WHERE clause. Tip 336, "Understanding the Role of Subqueries in a HAVING Clause," will show
you how to use a subquery to generate the filter values in a SELECT statement's HAVING clause.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

100 Using Row Value Subqueries to Select Rows in a Table Based on
Multiple Column Values

Row value subqueries are inner SELECT statements whose results tables (like the row value expressions you learned about in
Tip 98, "Using Row Value Expressions to Select Rows in a Table Based on Multiple Column Values") consist of more than one
column. In Tip 99, "Understanding Subqueries," you learned that one of the restrictions on a subquery used to provide a value to a
comparison operator is that it must return a single column. However, this is true only because the majority of DBMS products do
not support SQL-92 row value expressions.

One of the row value operations included in the SQL-92 standard is a row value comparison. If your DBMS supports row value
comparisons, a subquery can return multiple columns of data that the DBMS will compare to the values in a row value constructor.

Suppose, for example, that you want a list of customer IDs from people who purchased the highest-priced car in your automobile
inventory. You first need to submit a query such as

SELECT manufacturer, make, model FROM auto_inventory
WHERE sticker price = (SELECT MAX (sticker price)
FROM auto_inventory)

to determine the manufacturer, make, and model of the highest-priced car in the inventory. Then have the DBMS compare the
MANUFACTURER, MAKE, and MODEL of each car purchased to the MANUFACTURER, MAKE, and MODEL of the highest-
priced car, include the example SELECT statement as the subquery in the SELECT statement:

SELECT customer_id, order_date, price_paid
FROM auto_purchases
WHERE (manufacturer, make, model) =
(SELECT manufacturer, make, model FROM auto_inventory
WHERE sticker price = (SELECT MAX (sticker price)
FROM auto_inventory))

In the current example, the right side of the equals (=) sign in the WHERE clause contains a subquery that, when executed, will
return three columns: the MANUFACTURER, MAKE, and MODEL of the highest-priced car in the automobile inventory. By
comparing the subquery's results to the values in the row value constructor on the left side of the equals (=) sign, the DBMS can
decide whether or not to include the CUSTOMER_ID, ORDER_DATE, and PRICE_DATE values from the AUTO_PURCHASES
(input) table in the outer query's results table.

If the column values returned by the subquery on the right side of the equals (=) sign are equal to the column values in the row
value constructer on the left side of the equals (=) sign, the DBMS will include the CUSTOMER_ID, ORDER_DATE, and
PRICE_PAID from the current row of the AUTO_PURCHASES table in the SELECT statement's results table.

If your DBMS does not support row value constructors as operands in a comparison, you can break the multiple-column
comparison down into single-column search conditions joined by AND operators. In the current example, you can rewrite the
SELECT statement with a row value subquery as the SELECT statement:

SELECT customer id, order date, price paid
FROM auto_purchases
WHERE manufacturer = (SELECT DISTINCT manufacturer
FROM auto_inventory
WHERE sticker price
(SELECT MAX (sticker_price)
FROM auto_inventory))
AND make = (SELECT DISTINCT make FROM auto_inventory
WHERE sticker price =
(SELECT MAX (sticker price)
FROM auto_inventory))
AND model = (SELECT DISTINCT model FROM auto inventory
WHERE sticker_price =
(SELECT MAX (sticker price)
FROM auto_inventory))

The query in this example uses three scalar subqueries to produce the same results table as that produced by the previous
SELECT statement, which used a single row value constructor to make the same query.

Note A "scalar" subquery is one that returns a single value (that is, the subquery's results table consists of a single column
and, at most, a single row). If the scalar query's results table has no rows, then its value is 0. The current example
assumes that the maximum sticker price of each car is unique by manufacturer, make, and model. If more than one
model, for example, has a sticker price equal to the maximum sticker price, the SELECT DISTINCT MODEL subquery
will no longer return a scalar value, and the SELECT statement will fail to execute.

Comparing the length and structure of the last two SELECT statements in the current example, you can see that the SELECT
statement with the row value subquery is more compact and easier to understand because it more closely follows the English-

language description of the query.
[PRRviaE]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[oam L [+ rriisus [oesr]

101 Understanding Expressions

The SQL-92 standard defines four arithmetic operators you can use in expressions: addition (+), subtraction (-), multiplication (*),
and division (/). Additionally, SQL-92 lets you use parenthesis (()) to combine operators and operands into complex expressions.

The order or precedence for mathematical operations is familiar: multiplication and division in the order in which they are found,
and then addition and subtraction in the order in which they occur. Thus, to evaluate the expression: A+ B/ C - D * E, the DBMS
would:

1. Divide Bby C

2. Multiply D by E

3. Add the result of Step 1 to A

4. Subtract the result of 2 to the result of Step 3

Reading the equation in the example from left to right, you might think the DBMS would add A to B first and then divide the sum by
C. However, the mathematical order of precedence dictates that the division and multiplication operations be performed first,
followed by the addition and subtraction operations.

If you want to change the order of the operations or make an expression easier to read, use parenthesis to group its operations.
For example, if you rewrite the expression A+B/C-D*EasA+(B/C)- (D *E), itis easier to see which operands and results
will be affected by which mathematical operations. Moreover, if you want to change the order of operations so they occur from left
to right (as you would read them), rewrite the expression as (A+B)/C -D) *E.

In SQL, expressions serve three main functions:

= To calculate values to be returned in a SELECT statement's results table. For example, to list employees and the
revenues they generate per hour they work and per dollar they are paid, you could use the SELECT statement:

SELECT employee_id, first name, last_name, gross_sales,
gross_sales/ hours AS revenues per hour,
gross_sales / amount_paid AS

revenues_per dollar paid
FROM employees

= To calculate values used in search criteria. For example, to display those employees whose sales are more than 50
percent below quota, you could use the SELECT statement:

SELECT employee id, first name, last name, quota, sales
FROM employees WHERE sales < .50 * quota

= To calculate values used to update data values in a table. For example, to increase the sales quota for all senior
reps by 25 percent, you could use the UPDATE statement:

UPDATE employees SET quota = quota * .25
WHERE department = 'Marketing' and status = 'Senior'

Note Although SQL-92 specifies only four mathematical operators, your DBMS will most likely include
trigonometric functions (SIN, COS, TAN, and so on), and other operators such as exponentiation,
rounding, square roots, and so on. Check your system documentation for the full list of mathematical
operations your DBMS supports.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L [o]

102 Understanding Numeric Value Expressions

Numeric value expressions are expressions that apply one of the four SQL standard arithmetic operators (+, _, /, *) or additional
(implementation-specific) operators and functions to produce a numeric results. To be a numeric expression, the operands and
result must be numeric.

Individual operands in a numeric expression may be of different numeric data types. As such, you can mix numeric literals
(integers and real numbers) and columns of any of the numeric data types (INT, SMALLINT, NUMERIC, DOUBLE PRECISION,
REAL, and so on) in a single expression. The SQL-92 standard does not specify the data type that results from the various
combinations of operand data types. As such, you will need to check your system manual to determine whether you get a real
number or an integer when multiplying a real number by an integer, for example.

Examples of numeric expressions include:

-37.89

378.95 + 458.3 - 37.9
(59.6 * 10) / (58.3 / 4)
quota * .10

gross_sales - costs

[+erivious Pt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Toan Lo [+ervvious Lt]

103 Understanding String Value Expressions

A string value expression is one in which all of the operands are either literal character strings or SQL objects such as columns of
data type CHARACTER, CAST expressions, CASE expressions, set functions, or scalar subqueries that return a result of type
CHARACTER. SQL-92 defines only a single operator for use in a string value expression-concatenation, which lets you combine
two character string operands into a single character string result. The concatenation operator attaches the characters in a second
character string to the end of the characters in the first string.

Note Your DBMS product may include additional data types that are equivalent to data type CHARACTER and can therefore
be used as operands in string value expressions. MS-SQL Server, for example, lets you abbreviate the data type
CHARACTER as CHAR and includes a variable-length CHARACTER string type named VARCHAR. Check your
system documentation for a list of the string (CHARACTER) data types available to your DBMS.

Thus, SQL-92 defines a string value expression as one or more operands of a character string data type concatenated together to
produce a result that is also a character string. The simplest string value expression is a single string. More complex string value
expressions involve concatenating operands of data type character using the concatenation operand-either a pair of vertical lines (
11') or the plus (+) sign in some DBMS implementations.

Examples of string value expressions include:

'City!

'Peanut butter ' || 'and Jelly'
'Time' + 'shares'

first name || ' ' || last name

Note Although SQL-92 specifies concatenation as the only operation available for string value expressions, your DBMS
product will most likely have additional functions and operators you can use for string manipulation. As an example,
able 103.1 lists some of the string functions provide by MS-SQL Server.

Table 103.1: Example MS-SQL Server String Manipulation Functions

| String Function ” Description |
| LOWER ” Converts uppercase letters in a string to lower case |
| UPPER ” Converts lowercase letters in a string to upper case |
| LTRIM ” Removes leading spaces from a string |
| RTRIM ” Removes trailing spaces from a string |
| CHARINDEX ” Returns the starting position of the first character of one string in another |
| STR ” Converts numeric data to a character string |
| STUFF ” Inserts one character string into another |
| SUBSTRING ” Returns a part of a character string I

Check your system documentation for the string manipulation functions available to your DBMS.

IECTSImT R

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Tean L [o]

104 Understanding Datetime Value Expressions

Use datetime value expressions to work with operands of type DATE, TIME, TIMESTAMP, or INTERVAL to produce a result that
is also of one of the datetime data types (DATE, TIME, or TIMESTAMP).

Before working with datetime data objects, you will need to determine the proper data type names used by your DBMS
implementation. MS-SQL Server, for example, uses TIMESTAMP to data type a column you want the DBMS to update with the
current system date and time each time a row is inserted into the table. Conversely, DATETIME is MS-SQL Server's solitary
datetime data type, and consists of the date and time elements defined for the SQL-92 standard TIMESTAMP data type. Thus,
while some DBMS implementations let you define datetime objects as data type DATE, TIME, or TIMESTAMP, MS-SQL Server
reserves the TIMESTAMP keyword for "other" purposes (not to define objects you can use in datetime value expressions) and has
only the single DATETIME data type for use in defining all columns that will hold either dates or times, or both dates and times.

In addition to unique datetime types, each vendor's DBMS product has unique functions you can use in datetime value
expressions. The only rules that all must (and do) follow is that the functions in a datetime expression must accept operands that
are either an interval (integer value) or one of the datetime data types, and evaluating the datetime value expression must yield a
result of type datetime.

MS-SQL Server datetime expressions include:

'06/09/2000"

'06/09/2000 14:52:52"'
start_date + 7

DATENAME (weekday, start date)
DATEDIFF (stop_date, start_date)
GETDATE ()

DATEPART (day, (GETDATE())

The bottom line is that you must check your system documentation to see which datetime data types and functions are available

for datetime value expressions in your DBMS.
[« ravvions frosr

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

= [« revvious)
105 Understanding SQL Predicates

The ANSI/ISO standard refers to search conditions as predicates. As such, you already know what predicates are and how to use
them since you've seen predicates in tip examples with SQL statements that have a WHERE clause.

For example, the SELECT statement

SELECT student id, first name, last name FROM students
WHERE gpa = 4.0

uses the comparison predicate gpa = 40 to tell the DBMS to "filter out" or SELECT those rows in the STUDENTS table that have a
value of 4.0 in the GPA column.

Predicates are the portion of the WHERE clause (or search condition) that describes the data values of interest to the DBMS.
Because SQL is a data sublanguage designed to let you describe the data you want but not how to retrieve and store it, you will
find SQL predicates (which describe data to the DBMS) in almost all SELECT, UPDATE, and DELETE statements.

There are seven basic SQL predicate classes:
= Comparison predicates (=, <>, >, >=, <, <=), used to compare the value of two expression or table columns.

= Range test predicate (BETWEEN), used to check if the value of an expression or table column falls between two
values, the upper and lower bounds of the range. The range includes the end points.

= Set membership predicate (IN), tests to see if the value of an expression or table column is found within a list (or
set) of values.

= Pattern-matching predicate (LIKE), used to check whether the value of a column of type CHARACTER has a
character string that matches a specified pattern of characters.

= NULL value predicate (IS NULL), used to check whether a column contains a NULL or unknown value. (Some
DBMS products use the keyword ISNULL in place of IS NULL.)

= Quantifier predicates (ALL, SOME, ANY), which let you use a comparison predicate to compare the value of a
column or expression to the values found in a set or list of values.

= Existence predicate (EXISTS), used in conjunction with a subquery to determine if a table contains any rows that
meet the subquery's search condition(s).

When executing an SQL statement with a predicate, the DBMS performs actions on those table rows where the predicate
evaluates TRUE, and takes no action on rows for which the predicate evaluates to FALSE or unknown.
[« exsviou]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [Erwivisus]five +]
106 Understanding SQL Logical Connectives AND, OR, and NOT

In Tip 105, "Understanding SQL Predicates," you learned that an SQL predicate lets you specify the conditions under which the
DBMS is to perform an action on a specific row or set of rows in a table. For example, the predicate in the DELETE statement

DELETE customers WHERE customer since date < '01/01/1995'

will remove the table rows for all customers added prior to 1 January 1995. If your intent in executing the DELETE statement in
the example is to delete old, inactive customers, you certainly don't want to remove customers that currently making purchases-
especially those that have been doing business with you for more than five years. As such, you need to limit the action of the
DELETE statement by adding an additional condition to the predicate: Delete only inactive customers.

Unfortunately, a single, simple predicate will not let you specify multiple search conditions-that is where the logical connectives
(AND, OR, NOT) come in. By using one or more logical connectives, you can combine two or more simple predicates into a
compound predicate. A compound predicate can have as many search conditions as you need to identify the table rows on which
you want the DBMS to act.

In the current example, you can add the logical connective AND to have the DBMS eliminate only those customers added to the
database prior to 1995 who have not placed an order since 1997, as follows:

DELETE customers
WHERE customer_since_date < '01/01/1995"' AND
last order date < '12/31/1997'

The AND logical connective lets you specify multiple search conditions that must ALL evaluate TRUE in order for the DBMS to
take action on the row being tested. In the current example, there are two search conditions, both of which must be true in order
for the DBMS to DELETE the row being tested from the CUSTOMERS table.

If you have multiple search conditions and you want the DBMS to act on a row where any one or more of the search conditions
evaluates to TRUE, use the logical connective OR to combine them. For example, if you want to remove all customers added to
the system prior to 1995 and any who last ordered something prior to 1997 (regardless of when they were added to the database),
you could use the DELETE statement:

DELETE customers
WHERE customer_since_date < '01/01/1995' OR
last_order_date < '01/01/1997'

Use the NOT logical connective to negate the result of evaluating a search condition. For example, if you want to remove all
customers added after 1/1/1995, you could use the DELETE statement:

DELETE customers
WHERE NOT customer_since_date < '01/01/1995"'

Although the examples used thus far in this tip use a single logical connective, you can use multiple AND, OR, and NOT
connectives in the same compound predicate. For example, the DELETE statement

DELETE customers

WHERE customer_ since_date < '01/01/1995' AND
last order date < '12/31/1997' OR
total_paid = 0.00 AND
NOT total orders > 100000.00

will remove those rows where the customer was added prior to 1995, has not placed an order since 1997, or has never paid for an
order-regardless of when the customer was added to the database as long as the total value of orders placed by the customer is
less than $100,000.00.

Note The DELETE statement in the example will remove any customers added prior to 1995 who have not placed an order
since 1997-even if the customers placed more than $100,000.00 in orders. The final AND in the example adds only the
TOTAL_ORDERS > 100000.00 test to the TOTAL_PAID = 0.00 search condition.

Logical connectives, like mathematical operators, have a specific order of precedence. The DBMS applies the NOT first, next it
applies ANDs, finally, it uses the ORs. Use parenthesis (()) if you want to change the order of evaluation.

For example, if you want to keep all customers that have placed more than $100,000.00 in orders-regardless of the total amount
they actually paid, when they were added to the system, or whether they placed an order since 1997- rewrite the example
DELETE statement as:
DELETE customers
WHERE (customer_ since date < '01/01/1995' AND

last order date < '12/31/1997' OR

total_paid = 0.00) AND

NOT total orders > 100000.00

The parenthesis (()) tell the DBMS to evaluate the search conditions and apply the conditions inside the (innermost) parenthesis
(()) first and work outward.

The reason why you would execute a DELETE statement based on the search conditions and logical connectives used in the
example is not important. The important thing to know is that logical connectives let you combine multiple, simple (single search
condition) predicates into one compound (multiple) search condition predicate that the DBMS will use to decide whether or not to

take the action specified by the keyword at the start of the SQL statement.
[« exsviou]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam 1o | [eiviovs [o]

107 Understanding Set (or Column) Functions

In addition to the data you can extract from the values in the individual rows of a table, you sometimes need information based on
all of the values in a column taken as a set. SQL-92 has six set or column functions that let you do just that. (Set [or column]
functions are sometimes called aggregate functions, since they "aggregate" or accumulate values stored in a column across
multiple rows into a single value.)

The SQL Set (aggregate) functions are:
= COUNT(*), which returns the number of rows in a table that satisfy the search condition(s) in the WHERE clause
= COUNT(<column name>), which returns the number of (non-NULL) values in a column
= MAX, which returns the maximum value in a table column
= MIN, which returns the minimum value in a table column
= SUM, which returns the sum of the values in a column
= AVG, which returns the average of the values in a column

For example, to count the number of employees in an EMPLOYEE table, you could use the SELECT statement:
SELECT COUNT (*) FROM employees

Or, to display the count of employees who live in Nevada (state abbreviation NV), you could use the SELECT statement:
SELECT COUNT (*) FROM employees WHERE state = 'NV'

When you need the count of table rows that have non-NULL value in a particular column, use the SELECT (<column name>)
aggregate function in place of the SELECT(*) function. For example, the SELECT statement

SELECT COUNT (quota) FROM employees WHERE state = 'NV'

will display the number of employees from Nevada who have a non-NULL value in the QUOTA column. The difference between

SELECT COUNT (*) FROM employees WHERE state = 'NV'
and
SELECT COUNT (quota) FROM employees WHERE state = 'NV'

is that the second statement does not count any rows that have a NULL value in the <QUOTA> field. As such, when you need a
count of the rows in a table that meet a search criteria, use SELECT COUNT(*). When you want the count of only rows that meet
a search criteria and that have a non-NULL value in a particular column, use a SELECT COUNT (<column name>) statement.

To determine the minimum or maximum value in a column, use the MIN or MAX function. For example, to display the employee ID
and name of the oldest employees, you could use the SELECT statement:

SELECT employee id, first name, last name, age

FROM employees

WHERE age = (SELECT MAX (age) FROM employees)

Conversely, if you want a list of the youngest employees, use the MIN function in a SELECT statement, similar to:
SELECT employee id, first name, last name, age

FROM employees

WHERE age = (SELECT MIN (age) FROM employees)

When you need to add up the values in a column, use the SUM function. For example, to display the total sales made in May
2000, you could use the SELECT statement:
SELECT SUM (order_ total) FROM sales
WHERE date_sold >= '05/01/2000' AND
date _sold <= '05/31/2000"'

In order to SUM the values in a column, the column must, of course, be defined as one of the numeric data types. Moreover, the
result from adding up all of the values in a column must fall within the range of the data type. As such, if you attempt to determine
the SUM of a column of type SMALLINT, the resulting total cannot be any larger than the upper limit of the SMALLINT data type.

The AVG function returns the average of the values found in the rows of a numeric data type column. For example, to display the
average order cost in addition to the total sold for May 2000, add the AVG function to the previous SELECT statement:
SELECT SUM (order_total), AVG (order_total) FROM sales
WHERE date sold >= '05/01/2000' AND
date sold <= '05/31/2000"'

Note NULLs have no determinable value-by definition, the value of a NULL column is "unknown." As such, any row with a
NULL value is ignored by both the SUM and AVG functions and has no effect on the sum or average computed for a
column.

[Team LiB | [puivisus fir=t o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [raivisus]fiie +]
108 Understanding the CASE Expression

As you learned in Tip 17, "Understanding the Difference Between SQL and a Programming Language," SQL is a data
sublanguage, not a full fledged programming language. Because SQL was designed to let you specify the data you want and not
how to get at the data, the original SQL specification did not include block (BEGIN, END) statements, conditional (IF) statements,
branch (GOTO) statements, or loop (DO, WHILE, FOR) statements. To reduce its reliance on external source programs to
manipulate intermediate query results, many DBMS vendors have added block and statement flow control add-ons to SQL. (MS-
SQL Server extensions are called Transact-SQL, and Oracle extensions are found in SQL*PLUS and PL/SQL.) One common
"programming language" structure, the CASE expression, has even found its way into the SQL-92 specification.

CASE expressions are similar in function to the IF-THEN-ELSE statements found in almost all programming languages. The
CASE expression reduces SQL's reliance on external programs for processing results table data by giving the data sublanguage
limited decision-making capability. As such, you no longer have to retrieve data and run a separate, external program to modify
the output data (results table) if the desired, modified results can be determined from current row or aggregate data values and as
long as those changes are triggered by the value of a column in the current table row.

For example, if you have an employees table created with
CREATE TABLE employees

(id CHAR (3)
name VARCHAR (35),
address VARCHAR (45) ,

phone_number CHAR (11),
department SMALLINT,
commission MONEY,
bonus_level VARCHAR(35),
total sales MONEY,
hourly rate MONEY,

sales calls SMALLINT,
sales_count SMALLINT)

you could use the SELECT statement

SELECT id, name, department FROM employees
ORDER BY department

to display the table contents:

id name department
3 William Silverman 1
Walt welinski 1
Carry Grant 2
Michael Lancer 2
Sally Fields 3
Walt Frazier 3
Melissa Gomez 4

<o UN s

If you wanted to convert department numbers to character (string) descriptions, you would have had to use an external program to
convert the data prior to SQL-92. The SQL-92 CASE expression lets you modify the output on the fly based on the value of a
column in a table row.

An SQL-92 CASE expression takes on one of two forms, depending on whether the CASE expression is simple or searched. A
simple CASE expression is based on a straight equality between the value that follows the keyword CASE and the value that
follows each keyword THEN in the CASE expression. Meanwhile, the searched CASE expression has a comparison operator in
an expression right after the keyword CASE.

The syntax of a simple CASE expression based on the <value to test> (which follows the keyword CASE) being equal to the
<value> that follows each WHEN keyword is:

CASE <value to test>
WHEN <value> THEN <expression> | NULL
[WHEN <value> THEN <expression> | NULL]...
[WHEN <last value> THEN <last expression> | NULL]
[ELSE <expression> | NULL]
END

Thus, to convert department numbers to literal strings in the results table of the current example, you could use the SELECT
statement

SELECT id, name, CASE department
WHEN 1 THEN 'Marketing'
WHEN 2 THEN 'Customer Service'
WHEN 3 THEN 'Collections'
WHEN 4 THEN 'Customer Relations'
END AS dept_name
FROM employees
ORDER BY dept_name

to produce the results table:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

b
Q.
=}
o
=2
[0

dept name

5 Sally Fields Collections

6 Walt Frazier Collections

7 Melissa Gomez Customer Relations
1 Carry Grant Customer Service

2 Michael Lancer Customer Service

3 William Silverman Marketing

4 Walt Welinski Marketing

The syntax of a searched case expression is

CASE WHEN <search condition> THEN <expression> | NULL
[WHEN <search condition> THEN <expression> | NULL]...
[WHEN <last search condition> THEN
<last expression> | NULL]
[ELSE <expression> | NULL]
END

and you can rewrite the simple CASE expression in the current example as a searched CASE expression, as follows:

SELECT id, name,
CASE WHEN department =
WHEN department =
WHEN department =
WHEN department =
END AS dept_name
FROM employees
ORDER BY dept name

THEN 'Marketing'

THEN 'Customer Service'
THEN 'Collections’

THEN 'Customer Relations'

=S w N

Although you can use a searched CASE expression to check for a column's contents being equal to a specific value, the real
power of the searched CASE expression is that it lets you use subqueries and comparison operators in search conditions that test
for something other than equality. Suppose, for example, that you assign your salespeople to bonus pools with increasing
commission scales based on their total sales. You can use the SELECT statement with the searched CASE expression

SELECT id, name, total sales,

CASE WHEN total sales < 10000) THEN 'Rookie'
WHEN (total sales >= 10000) AND
(total_sales < 100000) THEN 'Associate'
WHEN (total sales >= 100000) AND
(total_sales < 1000000) THEN 'Manager'
WHEN (total sales >= 1000000) THEN

'Vice President'
END
FROM employees
ORDER BY name, id

to display the ID, name, and bonus pool name based on the bonus range into which the salesperson's TOTAL_SALES falls.

[+ erivious Lot]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L | [« Frrviou]
109 Using the CASE Expression to Update Column Values

An SQL CASE expression differs from the CASE statements you find in most programming languages because it can be used
only as part of an SQL statement and is not a statement in its own right. Said another way, SQL CASE expressions can appear in
SQL statements almost anywhere a value is legal. However, SQL CASE expressions, unlike programming language CASE
statements, cannot stand alone.

Tip 108 "Understanding the CASE Expression," showed you how to use the CASE expression in a SELECT statement to change
the values in the results table based on the value of a column in one of the input tables. As you know, the "results table" is not a
physical table on disk. Rather, it is a conceptual table that correctly models the way in which a SELECT statement returns the
results of a query and how the DBMS can use those query results as an "input" or "target" table for another SQL statement.

In addition to altering the virtual results table, a CASE expression can modify the data stored in a physical table if the CASE
expression appears in an UPDATE (vs. a SELECT) statement. For example, if you want to update the BONUS_LEVEL column in
the employees record (vs. the values displayed in the virtual results table, as shown in Tip 108), you could use an UPDATE
statement with a CASE expression similar to:
UPDATE employees
SET bonus_level =

CASE WHEN total sales < 10000 THEN 'Rookie'
WHEN (total_sales >= 10000) AND
total sales < 100000) THEN 'Associate'

total_sales < 1000000) THEN 'Manager'

(
(
WHEN (total sales >= 100000) AND
(
(total sales >= 1000000) THEN 'Vice President'

WHEN
END

When processing a CASE expression, the DBMS takes the column values in a row that satisfies the SQL statement's search
condition and uses them to determine if the first condition in the CASE expression is TRUE. If so, the CASE expression receives
the value in the first THEN part. If not TRUE, the DBMS evaluates the second WHEN (search) condition in the CASE expression.
If TRUE, the CASE expression receives the value in the second THEN part. If not TRUE, the DBMS tests the third search
condition, and so on.

If none of the CASE expression's search conditions evaluates to TRUE, the CASE expression receives the value given in the
CASE expression's optional ELSE clause. A CASE expression that has no ELSE clause returns a NULL if none of its SEARCH
conditions evaluate to TRUE.

When used in an UPDATE statement, the value returned by a CASE expression (and subsequently used to update a table
column) must be of the same data type as the column to be updated. As such, if you have a literal (character) string in the CASE
expression's THEN clause, the DBMS will return an error if you are attempting to update a numeric type data column.

In addition to using literal strings, you an use column names and mathematical expressions to compute the value returned by a
CASE expression. For example, once the BONUS_LEVEL column in the EMPLOYEES table has a correct value, you can use the
UPDATE statement
UPDATE employees
SET commission =
CASE bonus_level

WHEN 'Rookie' THEN total_sales * .01
WHEN 'Associate' THEN total sales * .05
WHEN 'Manager' THEN total_sales * .15
WHEN 'Vice President' THEN total sales * .25

END

to set the value of the COMMISSION column based on the commission level associated with the employee's BONUS_LEVEL and
TOTAL_SALES.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[ream L | [ravioos
110 Using the CASE Expression to Avoid Error Conditions

In addition to modifying results table values and updating data values in physical tables, you can use a CASE expression to avoid
computations that are mathematically invalid or that would violate data type range constraints.

For example, if you want to display the percentage of times that a salesperson's calls result in a sale, you might use the SELECT
statement:
SELECT id, name, (sales calls / sales count) * 100.00
AS closing_percentage
FROM employees
WHERE department = 1

However, the DBMS will raise an error (and halt statement execution) if the value of SALES_COUNT is NULL or 0 (since dividing
by zero is an illegal mathematical operation).

You can avoid the mathematical exception raised by dividing by zero or a NULL value by adding a CASE expression to the
SELECT statement. For example, the SELECT statement

SELECT id, name, CASE WHEN sales_count > 0 THEN
sales_calls / sales_count * 100.00
ELSE 0
END AS closing percentage
FROM employees
WHERE department = 1

will prevent the system from trying to divide SALES_COUNT by a zero or a NULL value. When SALES_COUNT is greater than 0,
the DBMS will perform the division of the SALES_COUNT into the SALES_CALLS. Conversely, when the SALES_COUNT is 0 or
unknown, the DBMS will skip the division and return a value of 0.

Sometimes mathematically legal computations can result in results that violate range constraints. Suppose, for example, that you
deduct the cost of health insurance from an employee's GROSS_PAY using the UPDATE statement:

UPDATE payroll records
SET net_pay = gross_pay - health_ins_deduction

You would violate a user-defined data range constraint if the amount of the HEALTH_INS_DEDUCTION is greater than the
GROSS_PAY. After all, the NET_PAY amount on a check cannot be less than zero!

To avoid trying to write a check for a negative amount, you could add a CASE expression such as

UPDATE payroll records
SET net_pay = CASE WHEN gross_pay >= health_ins_deduction
Then gross pay - health ins deduction
ELSE gross_pay
END

to the UPDATE statement. In the current example, the DBMS would "take" the HEALTH_INS_DEDUCTION out of the
GROSS_PAY only if the employee earned at least the amount of money due to be deducted.

[Team LiB | [rrsvisus] [t 3]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam L33 [« rrsvisus]
111 Understanding the NULLIF Expression

The NULLIF function is the inverse of the ISNULL function you learned about in Tip 31, "Understanding the MS-SQL Server
ISNULL() Function." While the ISNULL function is used to replace a NULL with a non-NULL value, the NULLIF is used to replace
a non-NULL value with a NULL.

Suppose, for example, that someone set the value of the SALES_QUOTA column in the EMPLOYEES table to -1 for new
employees who have not yet been assigned a quota. The NULLIF expression in the SELECT statement
SELECT employee_id, first name, last_name,
NULLIF (SALES_QUOTA, -1) as Quota
FROM employees

lets you more accurately display the sales quotas in a virtual results table by replacing any values of -1 in the SALES_QUOTA
column of the results table with a NULL

The syntax for the NULLIF expression is:

NULLIF (<expression 1>, <expression 2>)

When evaluating a NULLIF expression, the DBMS will return a value of NULL when <expression 1> and <expression 2> have the
same value. If <expression 1> and <expression 2> have different values, the DBMS will return the value of <expression 1> as the
value of the expression. Thus, in the current example, the NULLIF expression will evaluate to NULL whenever the value in the
SALES_QUOTA column is equal to -1. Otherwise, the NULLIF expression will return the value in the SALES_QUOTA column of
the current row.

Either one (or both) of the expressions in the NULLIF can be literals (numeric, datetime, or character constants); numeric, string,
datetime or CASE expressions; or column names. However, using a literal for both <expression 1> and <expression 2> is of little
practical value. For example, the SELECT statement
SELECT

NULLIF ('match', 'match'), NULLIF ('no match', 'match')

which generates the results table

tells you only that the NULLIF expression for two identical literals evaluates to NULL, while the NULLIF expression for two different
literals returns the value of the first literal.

Besides altering the contents of a SELECT statement's virtual results table, you can use a NULLIF expression in an UPDATE
statement to change the values in an actual (physical) table. For example, suppose that you close one of your sales offices, office
6. You can use the UPDATE statement

UPDATE employees SET office = NULLIF (office, 6)

to put a NULL in the OFFICE column of all employees previously assigned to office 6.

[+evvious [s

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team L | [« Frrviou]
112 Using the COALESCE Expression to Replace NULL Values

A COALESCE expression gives you a simple way to replace NULL (or missing) data with non-NULL values Although you can use
a CASE expression to do the same job, the syntax of the COALESCE expression
COALESCE (<first expression>, <second expression>
[,...<last expression>]

is compact and perhaps easier to read (and understand) than the equivalent CASE expression.

The DBMS sets the value of the COALESCE expression to the first non-NULL value in its expression list. As shown by the
expression's syntax diagram, the COALESCE expression, unlike the ISNULL expression (which is also used to replace a chosen
expression with NULL values) can more than two expressions in its expression list.

To compute the value of a COALESCE expression, the DBMS starts by evaluating the first expression in the list. If the first
expression evaluates to a non-NULL result, the DBMS returns its value as the value of the COALESCE expression. If the first
expression evaluates to NULL, the DBMS evaluates the second expression in the list. If the second expression evaluates to a
non-NULL result, the DBMS returns the value of the second expression as the COALESCE expression's value. If the second
expression also evaluates to NULL, the DBMS goes on to evaluate the third expression, and so on.

In the end, the DBMS returns the first non-NULL value in the list of expressions, reading from left to right, as the value of the
COALESCE expression. If all of the expressions in the expression list evaluate to NULL, the COALESCE expression returns a
NULL value.

As an example of how the DBMS computes the value of COALESCE expression, assume that you want to list the appointment
quotas for your sales representatives. Moreover, assume that you want to use the minimum appointment quota in the employee
table as the quota for any rep that has not yet been assigned an appointment quota. To produce the list, you could execute the
SELECT statement:

SELECT employee id, first name, last name,

COALESCE (appt_guota,
(SELECT MIN (appt_gquota) FROM employees), 0) AS quota
FROM employees
WHERE department = 'Marketing'

After evaluating the COALESCE expression, the DBMS displays the value in the APPT_QUOTA column if it is not NULL. If the
APPT_QUOTA is NULL, the DBMS evaluates the MIN aggregate function on the APPT_QUOTA column and displays the
minimum appointment quota as the employee's quota-as long as at least one marketing representative has a quota. If all of the
quotas are NULL, the MIN aggregate function will return a NULL and the DBMS will display the final value in the expression list, 0,

as the employee's appointment quota.
[« rxvvions foaxi o)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrovious |
113 Using the COUNT(*) Aggregate Function to Count the Number of Rows
in a Table

COUNT(*) is an aggregate function that returns the number of rows that satisfy the search criteria in the SELECT statement's
WHERE clause. As such, the SELECT statement

SELECT COUNT (*) FROM employees

will display the numbers of rows in the EMPLOYEES table. Similarly, the UPDATE statement
UPDATE managers SET employees_managed =

(SELECT COUNT (*) FROM employees
WHERE manager = managers.employee id)

will set the EMPLOYEES_MANAGED column in the MANAGERS table to the number of rows in the employees table where the
value of the MANAGER column (in the EMPLOYEES table) is equal to the value of the EMPLOYEE_ID column in the
MANAGERS table. Thus, the UPDATE statement in the example tells the DBMS to set the EMPLOYEES_MANAGED column in
each row of the MANAGERS table to the count of the employees that the manager manages.

Note If the COUNT(*) function's SELECT statement has no WHERE clause, then all of the rows in the table satisfy the
"search condition." As such, the SELECT statement in the first example will return the count of all rows in the table
because every row in the table satisfies the SELECT statement's omitted search condition.

If the DBMS stores the number of table rows in its system tables, COUNT(*) will return the row count of even large tables very
quickly because the DBMS can retrieve the row count directly from the system table (and doesn't have to read through and count
the rows in the physical table). On those systems that do not maintain row counts in the system tables, you may be able to count
table rows more quickly by using the COUNT() function with an indexed NOT NULL constrained column as a parameter.

When counting the rows in a table by using the COUNT() function instead of the COUNT(*) function, bear in mind that the value
returned by the COUNT() function is equivalent only to the result of executing the COUNT(*) function if the column you pass to
COUNT() has no NULL values in any of its rows.

For example, the COUNT() function in the SELECT statement
SELECT COUNT (employee_id) FROM employees

will return only the same value as the COUNT(*) function in the SELECT statement
SELECT COUNT (*) FROM employees

only if none of the rows in the EMPLOYEES table has a NULL value in the EMPLOYEE_ID column.

The value returned by the COUNT() function is best described as the count of non-NULL values in the column passed to the
function. COUNT(*), on the other hand, is most accurately defined as an aggregate function that returns the count rows in a table.
Therefore, since COUNT() returns the correct count of rows in a table only if none of the values in the column passed as a
parameter is NULL, use COUNT() in place of COUNT(*) only if the column parameter is restricted by a NOT NULL constraint.

[+erevious [t]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« ravisor [ooxi s
114 Using the COUNT(*) Aggregate Function to Count the Number of Data
Values in a Column

While the purpose for using the COUNT(*) function is to count the number of rows in a table, the COUNT() function is used to

count the number data values in a column. Unlike the COUNT(*) function, which ignores all column values, the COUNT() function
checks the value of one (or more) columns and counts only those rows in which the value is not NULL.

For example, given the following data values in an EMPLOYEES table

employee id first name last name quota manager

1 Lancer Michael 5 NULL
2 Michael Lancer 5 1
3 William Silverman NULL 2
4 Walt Wellinski 8 1
5 William Silverman 8 2
6 NULL Gomez 10 2
7 Walt Frazier 10 NULL
the SELECT statement

SELECT COUNT (*) AS Row_Count,
COUNT (last_name) AS Last_Name_Count,
COUNT (manager) AS Manager_Count
FROM employees

will return the results table:

Row_Count Last_Name_ Count Manager_Count

Thus, in the current example, the COUNT(*) function returns the number of rows in the EMPLOYEES table-without regard for the
values in any of the table's columns. Conversely, the two COUNT() functions return the number of rows with non-NULL values in
columns passed (LAST_NAME and MANAGER) as the parameter to each function.

Since the LAST_NAME column has no NULL values, the COUNT (last_name) function returns the same value as the COUNT(*)
function. Conversely, two of the table rows have a NULL in the MANAGER column, which causes the COUNT(manager) function
to return the value 5, which is 2 less than the total number or rows in the EMPLOYEES table as reported by the COUNT(*)
function.

The syntax of the COUNT() function is:
COUNT ([ALL | DISTINCT] <expression>)

Because the DBMS defaults to ALL when neither ALL nor DISTINCT is specified, the ALL qualifier is normally omitted when using
the COUNT() function. Tip 115, "Using the COUNT (*) Aggregate Function to Count the Number of Unique and Duplicate Values in
a Column," will show you how to use the DISTINCT qualifier in the COUNT () function to count the number of unique data values in
a column.

The important thing to understand is that the COUNT() function will accept a column name, a literal string, a numeric value, or an
expression that combines column contents into a single value. As such, in the current example, you can use the SELECT
statement

SELECT COUNT (first_name + last_name) FROM employees
to count the number of rows in which both the FIRST_NAME and LAST_NAME columns are not NULL.

Note If your DBMS implementation uses the double vertical lines (||) operator instead of the plus (+) operator for string
concatenation, you would write the query as:

SELECT COUNT(firstiname || last_name) FROM employees

If you wanted to count only the number of non-NULL data values in a column based on rows that satisfy a search condition, add a
WHERE clause to the SELECT statement. For example, if you want to know only the number of non-NULL values in the
FIRST_NAME column for table rows with a 2 in the MANAGER column, you could use the SELECT statement:

SELECT COUNT (first_name) FROM employees WHERE manager = 2

Note The syntax of the COUNT() function lets you pass a character string or numeric literal (string or numeric constant) as
the <expression>. Using a literal value (vs. a column name or expression involving a column) will always cause the
COUNTY() function to return the number of rows in the table. After all, a non-NULL constant value will never be NULL as
the DBMS evaluates the function for each row of the table. As such, the DBMS will count each row as having a non-
NULL value for the "column” (the constant value) it is to test. Thus, executing the SELECT statement

SELECT COUNT ('constant value') FROM employees

for example, will always return the number of rows in EMPLOYEES, since the literal string "constant value" will be non-
NULL for each row in the table.

(Toam Lia | I

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« rrovious |
115 Using the COUNT(*) Aggregate Function to Count the Number of
Unique and Duplicate Values in a Column

If you insert the DISTINCT constraint ahead of the expression passed as a parameter to the COUNT() function, the function will
count the number of unique, non-NULL data values in a column. For example, given the following data values in an EMPLOYEES
table

employee ID first name last name quota manager

1 Lancer Michael 5 NULL
2 Michael Lancer 5 1
3 William Silverman NULL 2
4 Walt Wellinski 8 1
5 William Silverman 8 2
6 NULL Gomez 10 2
7 Walt Frazier 10 NULL

the SELECT statement
SELECT COUNT (first_name) AS Total_ First_ Names,

COUNT (DISTINCT first name) AS Unique First Names
FROM employees

will return the results table:

Total First_Names Unique_ First_Names

Note A simple way to display the number of unique rows in a table is to pass the table's PRIMARY KEY to the COUNT()
function because the table's PRIMARY KEY column contains a unique, non-NULL value in every row of the table.

You can also count the number of unique values across multiple columns by using the string concatenation function to combine
column values into a single, composite value (which is then passed as the parameter to the COUNT() function).

Suppose, for example, that you want to count the number of unique employee names in the EMPLOYEES table. Executing the
previous SELECT statement would yield inaccurate results since the COUNT() function in the statement checks for only unique
values in the FIRST_NAME column. As such, the DBMS treats the second WALT as a duplicate name and does not count it, even
though the full name Walt Wellinski is not the same as Walt Frazier.

To accurately count the number of unique employee names, then, you need to combine the contents of the FIRST_NAME and
LAST_NAME columns into a single string and then pass that string as the parameter to the COUNT() function. In so doing, the
SELECT statement
SELECT COUNT (first name) AS Total First Names,
COUNT (DISTINCT first_name) AS Unique_ First_Names
COUNT (DISTINCT first name + last_name) AS
Unique_Full Names
FROM employees

will return the results table:

Total First Names Unique_ First Names Unique_ FullNames

Note If any one of the concatenated columns has a NULL value, the result of the concatenation is NULL and the current row
will not be counted by the COUNT() function. In the current example, the row in which the FIRST_NAME column is
NULL and the LAST_NAME column is Gomez is not counted by the COUNT() function since the result of the
expression (the concatenation of first and last names) passed as the parameter to the COUNT() function is NULL.
Remember, the COUNT() function counts only those rows in which the parameter passed to the function is not NULL.

SQL does not have a special function to count the number of nonunique (or duplicate) values in a column. You can, however
compute the count of duplicate column values by subtracting the count of unique column values from the total count of column
values, as shown in the SELECT statement:
SELECT COUNT (first name + last name) -
COUNT (DISTINCT first name + last_name)
AS Dup Name_ Count
FROM employees

If you want to include the count of NULL values in the duplicate column data count, use the COUNT(*) function in place of the first
COUNTY() function in the SELECT statement. For example, the SELECT statement

SELECT COUNT (*) - COUNT(DISTINCT first_name + last_name)
AS Dup_Name_ And_ NULL_Count
FROM employees

will display the count of duplicate and NULL data values in the composite FULL_NAME (FIRST_NAME + LAST_NAME) column.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

| Toam LiB | [Faivisus] fimxt]
116 Using MS-SQL Server CUBE and ROLLUP Operators to Summarize

Table Data

The SQL GROUP BY clause lets you summarize table data based on one or more columns. MS-SQL Server provides two
operators, CUBE and ROLLUP, which enhance the GROUP BY clause's totaling capabilities. By adding a WITH ROLLUP clause
(or a WITH CUB clause) to a SELECT statement, you can tell MS-SQL Server to generate additional subtotals and grand totals
for columns listed in the statement's GROUP BY clause.

Suppose, for example, that you have the following data in an INVOICES table:

inv_date inv_no cust_id product code qty
2000-01-01 1 1 1 1
2900-01-01 1 1 6 1
2000-01-01 1 1 3 1
2000-01-01 1 1 5 6
2000-03-01 2 9 1 5
2000-03-01 2 9 2 4
2000-02-01 3 7 2 4
2000-05-01 4 7 5 1
2000-05-01 4 7 4 3
2000-05-01 4 7 2 8
2000-01-01 5 4 5 3
2000-01-01 5 4 6 3
2000-06-01 6 1 5 4
2000-06-01 7 5 5 4

To generate a summary report of products purchased by customers 4 and 5, use a SELECT statement with a GROUP BY clause
similar to

SELECT cust_id, product_code, SUM(gty) AS quantity

FROM invoices WHERE cust id IN (4, 5)

GROUP BY cust_id, product_code

ORDER BY cust_id

which, will produce the results table

cust_id product code quantity

4 5 3
4 6 3
5 5 4

for the current example's data. Thus, the GROUP BY clause tells the DBMS to "group” (or summarize) the nongrouped items in
the SELECT list into the "categories" (or columns) listed in the GROUP BY clause.

In the current example, the sum of the QTY column is the only nongrouped item. As such, the GROUP BY clause tells the DBMS
to compute the sum of the QTY column's values for each unique combination of CUST_ID and PRODUCT_CODE in the
INVOICES table. The WHERE clause tells the DBMS to display only the data for customers 4 and 5.

If you are using MS-SQL Server, you can tell the DBMS to display the total products each customer purchased (without regard to
product code) and the total number of all products purchased by all customers by adding a WITH ROLLUP clause. For the current
example data, the SELECT statement (WITH ROLLUP)

SELECT cust_id, product_code, sum(gty) AS quantity

FROM invoices WHERE cust_id IN (4, 5)

GROUP BY cust_id, product code

WITH ROLLUP

ORDER BY cust_id

will generate the results table:

cust id product code quantity

NULL

Each additional results table row with a NULL value is a subtotal generated by the ROLLUP operator. The NULL denotes the
column being subtotaled-or, said another way, a NULL value in a column means "for all values" of that column. For example, the
first row, which has a NULL in both the CUST_ID and PRODUCT_CODE columns, tells you that the QUANTITY column contains
the total purchases made by all customers for all product codes. Similarly, the fourth row in the results table has a NULL only in
the PRODUCT_CODE column. As such, the QUANTITY column in the fourth row shows the total of all PRODUCT_CODEs
purchased by customer 4.

Notice that the results table for a SELECT statement WITH ROLLUP has only one row with a NULL value in the CUST_ID
column. The ROLLUP operator "rolls up" the subtotals for the first column in the GROUP BY clause based on the remaining
columns listed in the clause into a single grand total, which represents the quantity in the nongrouped column for "all" values of all
columns in the GROUP BY list.

If you want to display subtotals for the first column in the GROUP BY clause for each unique combination of column values listed
in the remainder of the clause, use the WITH CUBE clause in place of the WITH ROLLUP clause. For the current example, the
SELECT statement

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

SELECT cust id, product code, sum(qty) AS quantity
FROM invoices WHERE cust_id IN (4, 5)

GROUP BY cust id, product code

WITH CUBE

ORDER BY cust_id

will generate the results table

cust _id product code quantity

NULL NULL 10
NULL 5 7
NULL 6 3
4 5 3
4 6 3
4 NULL 6
5 5 4
5 NULL 4

which includes two additional rows (rows 2 and 3) that show the total of all product 5 and product 6 purchases made by all
customers.

Note The examples in the current tip use SELECT statements with only two columns listed in the GROUP BY clause. This
was done to reduce the size of the results table. The MS-SQL Server CUBE and ROLLUP operators will accept
GROUP BY clause with up to 10 columns listed.

Toan Lo [+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[ream L | [+ rasvioos
117 Using the MAX() Aggregate Function to Find the Maximum Value in a
Column

When you need to know the maximum or largest value in a column, use the MAX() aggregate (or set) function. The column
passed to the MAX() function can be a numeric, a character string, or a datetime data type. As such, if you want to display the
datetime of the most recent invoice for customer 1, you could use the SELECT statement

SELECT MAX(invidate) AS 'Date Last Inv for Cust 1'
FROM invoices WHERE cust id =1

which will produce a results table similar to:
Date Last Inv for Cust 1

2000-06-01 00:00:00.000

Similarly, if you want to display the highest ITEM_COST in the PRODUCTS table, you would use the SELECT statement
SELECT MAX (item cost) AS 'Max Item Cost' FROM products

to produce a RESULTS table similar to:
MAX Item Cost

1844.5100

The MAX() function will return a single value of the same data type as the column it is passed. Thus, in the first example, the
MAX() function scanned the values in the INV_DATE column (of type datetime) and returned its largest datetime value found in
the column. Similarly, the MAX() function in the second example scanned a numeric column and returned the highest MONEY
data type value in the ITEM_COST column.

Note When determining the maximum value in a column, the MAX() function ignores NULL values. However, if all rows in
the column have a NULL value, the MAX() function will return a NULL value for that column.
[« ravvions foor

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[ream L | [« exvvionn fawsi]
118 Using the MIN() Aggregate Function to Find the Minimum Value in a
Column

When you need to know the minimum or smallest value in a column, use the MIN() aggregate (or set) function. The column
passed to the MIN() function can be a numeric, a character string, or a datetime data type. As such, if you want to display the
datetime of the oldest invoice for customer 1, you could use the SELECT statement

SELECT MIN(inv_date) AS 'Date First Inv for Cust 1'
FROM invoices WHERE cust id =1

which will produce a results table similar to:
Date First Inv for Cust 1

2000-01-01 00:00:00.000

Similarly, if you want to display the least expensive ITEM_COST in the PRODUCTS table, you would use the SELECT statement
SELECT MIN(item cost) AS 'Min Item Cost' FROM products

to produce a RESULTS table similar to:
Min Item Cost

258.2300

Note If you are working with a numeric column that contains negative values, the value returned by the MIN() function may
not be the number closest to 0. For example, if a numeric column has the values 15, 5, 100, 0, -456, -10, and 200, the
MIN() function will return the value -456. Remember, the larger the negative number, the smaller its value.

The MIN() function will return a single value of the same data type as the column it is passed. Thus, in the first example, the MIN()
function scanned the values in the INV_DATE column (of type datetime) and returned its smallest datetime value. Similarly, the
MIN() function in the second example scanned a numeric column and returned the lowest MONEY data type value in the
ITEM_COST column.

Note When determining the minimum value in a column, the MIN() function ignores NULL values. However, if all rows in the
column have a NULL value, the MIN() function will return a NULL value for that column.
[« exsviou]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[ream L | [rasvioos
119 Using the SUM() Aggregate Function to Find the Sum of the Values in a
Column

The SUM() aggregate (or set) function returns the sum of the data values in a column. Because SUM() adds the values in the
rows of a column together, the column passed to the SUM() function must be one of the numeric data types you learned about in
Tip 21, "Understanding SQL Numeric Integer Data Types," and Tip 22, "Understanding SQL Numeric Floating-Point Data Types."

For example, to display the total sales commissions for all employees in the EMPLOYEES table, you could use a SELECT
statement similar to

SELECT SUM(sales_commission) AS 'Total Commissions'
FROM employees
to produce a results table similar to:

Total Commissions

1072105.7900

While the MIN() and MAX() functions each return a value that has exactly the same data type as the column passed to the
function, the SUM() function returns a numeric data type that is either the same or a higher precision than the column passed. For
example, to prevent an "overflow" error, the SUM() function may return a value of data type INTEGER when called upon to add up
the values in a SMALLINT column-if the resulting sum is greater than 32,767.

Note The SUM() function ignores NULL values when adding up the numbers in a column. However, if all of the values in a
column are NULL, the SUM() function will return NULL as its result for that column.

The syntax of the SUM() function is:
SUM([DISTINCT] <expression>)

As such, you can have the SUM() function give you the sum of all unique (distinct) values in a column. For example, the SUM()
function in the SELECT statement

SELECT SUM(DISTINCT quantity on_ hand) FROM products

will return 27 if the values in the QUANTITY_ON_HAND column are 1, 5, 9, 12, 9, and 5. Conversely, the SUM function in
SELECT SUM(quantity on hand) FROM products

will produce a sum of 41 for the same data values in rows of the column.

[+ervvious Lt]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam L33 [« rrsvisus]
120 Using the AVG() Aggregate Function to Find the Average of the Values
in a Column

The AVG() aggregate (or set) function returns the average of the data values in a column. Because the AVG() function adds up
the data values in a column and divides the sum by the number of non-NULL values, the column being averaged must be one of
the numeric data types you learned about in Tip 21, "Understanding SQL Numeric Integer Data Types," and Tip 22,
"Understanding SQL Numeric Floating-Point Data Types."

To display the average cost of the items (ITEM_COST) in a PRODUCTS table, you would a SELECT statement similar to:
SELECT AVG(itemicost) FROM products
Like the SUM() function, the AVG() function may not return the exact data type of the column that it is passed. For example, if you
use the AVG() function to determine the average age of the employees in an EMPLOYEE table, such as
SELECT AVG(age) FROM employees

the AVG() function may return a floating-point numeric value, even though the AGE column is of one of the integer data types
(either INTEGER or SMALLINT).

Note Check the system documentation to determine the type of conversions that may occur on your specific DBMS. MS-
SQL Server, for example, will round the result of an AVG() function executed on an INTEGER column so that it returns
an INTEGER result, while other DBMS implementations will return the computed average as an unrounded floating-
point number.
When computing averages, the AVG() function ignores NULL values. As such,
SELECT SUM(sales_price) / COUNT (*) FROM products

is not equivalent to
SELECT AVG(sales price) FROM products

if the SALES_PRICE for any product in the PRODUCT table has not yet been set and is set to NULL as a result. Although the
SUM() function ignores NULL values, the COUNT(*) function does not.

Like the SUM() function the syntax of the AVG() function
AVG ([DISTINCT] <expression>)

gives you the ability to average only unique (or distinct) values in a column. As such, if the AGE column in the EMPLOYEES table
contains the values 26, 55, 34, 37, 34, and 55, the SELECT statement (for the average of unique values)

SELECT AVG(DISTINCT age) FROM employees

will display 38 as the average age, while the SELECT statement (for the average of all values)
SELECT AVG (age) FROM employees

would report an average age of 40.

Note As mentioned previously, the AVG() function ignores NULL values when computing a column's average value.
However, if all rows in the column have a NULL value, the AVG() function will return a value of NULL for the column.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Lis | [« errviou]
121 Using the WHERE Clause with the AVG() Function to Determine an
Average Value for Select Rows in a Table

As you learned in Tip 120, "Using the AVG() Aggregate Function to Find the Average of the Values in a Column," the AVG()
aggregate (or column) function returns the average of the data values in a table column. If you do not want to average all of the
values in a column, you can use the search condition in a WHERE clause to limit the rows (and, therefore, the data values) the
DBMS will include in the computation of the aggregate function.

For example, to display the average gross sales for all salespeople in the company, you would use a SELECT statement similar
to:

SELECT AVG(gross_sales) AS 'Avg Gross Sales' FROM salesreps

To compute the average gross sales for only those assigned to Nevada (vs. all salespeople companywide), you would limit the
GROSS_SALES data values passed to the AVG() function to only Nevada salespeople by adding a WHERE clause such as the
one in the SELECT statement:

SELECT AVG(gross_sales) AS 'Avg NV Gross Sales'
FROM salesreps
WHERE sales_territory = 'NV'

When executing a SELECT statement, the DBMS evaluates the search conditions in the WHERE clause for each row in the table.
Only data values from those rows for which the search condition evaluates to TRUE are passed to the aggregate function. (By
default, every row in the table satisfies the "search condition" if the SELECT statement has no WHERE clause.)

In the current example, only the GROSS_SALES from the rows in which the SALES_TERRITORY is equal to NV (the
abbreviation for Nevada) are included in the average calculated by the AVG() function and displayed in the results table under the
Avg NV Gross Sales heading.

In addition to displaying the average value in a column for some or all of the rows in a table, you can use the AVG() function as
part of a search condition in the SELECT statement's WHERE clause. Suppose, for example, that you want to display the average
QUOTA and GROSS_SALES for salespeople whose GROSS_SALES are above the average for all employees overall. The
SELECT statement

SELECT AVG(quota) AS 'Avg Quota for Above Avg Sales',
AVG (gross_sales) AS 'Avg Above Avg Sales'
FROM salesreps
WHERE gross_sales > (SELECT AVG(gross_sales)
FROM salesreps)

will determine the average of the GROSS_SALES for all salespeople and then compare each salesperson's GROSS_SALES
against that average. Only QUOTA and GROSS_SALES values in those rows in which a salesperson's GROSS_SALES amount
is above the overall average GROSS_SALES amount will be passed to the AVG(quota) and AVG(gross_sales) functions.

[evvious st]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Toam Li | [raivisus firex +]
122 Understanding How Aggregate Functions in a SELECT Statement

Produce a Single Row of Results

In Tips 113-120, you learned about the SQL aggregate functions COUNT(), MAX(), MIN(), SUM(), and AVG(). Although each
performs a different function, all have the characteristic of aggregating (summarizing) a column's value from multiple table rows
into a single value. The value returned by an aggregate function can then be used in a search condition or expression, or
displayed as a column in a SELECT statement.

When executing a SELECT statement to display the values computed by one or more aggregate functions, the DBMS performs
the following steps:
1. Generates a virtual interim table that represents the product (or CROSS JOIN) of the tables in the SELECT
statement's FROM clause.

2. If there is a WHERE clause, evaluates its search condition(s) for each row in the interim table. Eliminates those
rows for which the WHERE clause evaluates as FALSE or NULL (unknown)—that is, keeps only those rows for
which the search condition evaluates to TRUE.

3. Uses the values in the updated interim table to calculate the value of the aggregate function(s) in the SELECT
statement's select clause.

4. Displays the value computed by each aggregate function as a column value in a single-row results table.

Perhaps the best way to conceptualize the way in which the DBMS produces the results table for a summary query is think of the
query's execution as having two distinct phases. In the first phase, the DBMS performs the steps in the detail query processing
(which you learned about in Tip 87, "Understanding the Steps Involved in Processing an SQL SELECT Statement"). The resulting
interim multi-row, multi-column input table has all of the columns from all of the tables in the SELECT statement's FROM clause,
and all of the rows that satisfy the search criteria in the WHERE clause. In the second phase, the DBMS uses the aggregate
functions in the query's select clause to summarize the multi-row interim input table into single values that it can display as
columns in a single-row results table.

If you think of an aggregate function in a select clause as directing the DBMS to summarize data to produce a single line of
results, you can understand why the SELECT statement

SELECT dept, COUNT(*) FROM employees

is illegal. After all, the column reference DEPT tells the DBMS to provide a multi-row listing—one virtual table row showing the
department number for every employee in the EMPLOYEES table. Unfortunately, this directly contradicts the direction of the
second item in the select list. The aggregate function, COUNT(*) tells the DBMS to provide a single-row results table (with a
column that displays the number of rows in the input table).

Thus, a SELECT statement with column and aggregate functions listed in the select clause is illegal when the columns listed tell
the DBMS to perform a detailed query at the same time that the aggregate functions tell the DBMS to perform a summary query.

Note Mixing a column list and aggregate functions in a select clause is legal if all colum