Mastering™
Active Directory for

Windows® Server 2003

Robert R. King

SYBEX®

Mastering

Active Directory for
Windows Server 2003

This page intentionally left blank

Mastering”

Active Directory for
Windows® Server 2003

Robert R. King

L

SYBEX San Francisco London

Associate Publisher: Joel Fugazzatto

Acquisitions Editor: Ellen Dendy

Developmental Editor: Tom Cirtin

Production Editor: Lori Newman

Technical Editor: James Kelly

Copyeditor: Anamary Ehlen

Compositor: Scott Benoit

Graphic Illustrator: Scott Benoit

Proofreaders: Dennis Fitzgerald, Emily Hsuan, Laurie O’Connell, Yariv Rabinovitch, Nancy Riddiough, Sarah Tannehill
Indexer: Jack Lewis

Book Designer: Maureen Forys, Happenstance Type-o-Rama

Cover Designer: Design Site

Cover Illustrator: Tania Kac, Design Site

Copyright © 2003 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this publication may be

stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy, photograph, magnetic, or other record,
without the prior agreement and written permission of the publisher.

An eatlier version of this book was published under the title Mastering Active Directory © 2000 SYBEX Inc.
First edition copyright © 1999 SYBEX Inc.

Library of Congress Card Number: 2002116886
ISBN: 0-7821-4079-3

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.
Mastering is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

Screen reproductions produced with Collage Complete.

Collage Complete is a trademark of Inner Media Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the

capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever possible.
Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no 1iability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged
to be caused directly or indirectly from this book.

Manufactured in the United States of America

10987654321

To my wife and best friend, Susan

Acknowledgments

I'M NOT SURE THAT Id call myself an “old hand” in the publishing game, but I've got a few books out
there. I'm still surprised by the number of people and the amount of work that go into producing any
kind of high—quality material. There are numerous people who heiped get this book into your hands—
and each of them was critical to the process.

First of all, I'm deeply indebted to Bob Abuhoff for contributing to Part 3 of the book and to
Marcin Policht for revising Chapters 11, 12, and 13. Without their expert heip, I couldn’t have
completed this project on time.

My farnily deserves the most thanks. Every time I start a new Sybex project, I promise them that
I'll “work a normal schedule,” and every time I end up working into the wee hours more often than
not. This book could not have been finished without their love and support.

I'd also like to thank James “Gibby” Gibson, who gave an inexperienced kid his first job in the
industry. This doesn't sound like much until you realize that my previous job had been owner/ oper-
ator of a small tavern in rural Wisconsin! Gibby: I was never sure if you saw some spark of inteﬂigence
or just wanted an experienced bartender for the company gatherings, but either way, thanks for taking
a chance on me.

I also would like to thank the fine folks at Sybex. I have never worked with a more supportive
and understanding group of peopie. Both Ellen Dendy, acquisitions editor, and Tom Cirtin, devel-
opmental editor, heiped guide me in terms of changes to this revision, and editor Anamary Ehlen
was insightful and reaHy heiped to ensure that I held to some sort of consistent styie! Production
editor Lori Newman and electronic publishing specialist Scott Benoit from Publication Services
made the final product look sharp. Finaﬂy, my technical editor, James KeHy, ensured that I didn't
embarrass myself—something I really appreciate! To these, and to all of those who helped put this
book together, Td like to say one big “Thank you.”

This page intentionally left blank

Contents at a Glance

INtroduction oo xvi
Part 1 e Network DirectoriesEssentialsccceeeeeeecccccccens 1

Chapter 1 ¢ An Introduction to Network Directory Services and Their Benefits . .. 3

Chapter 2 ¢ Anatomy of a Directory i 19
Chapter 3 ¢ Inside an X.500-Compliant Directory 39
Chapter 4 ¢ Accessing the Directory 53
Part 2 e Microsoft Active Directory Servicesccceeeeececcoscoscns 67
Chapter S ® Microsoft Networks without AD 69
Chapter 6 ¢ Active Directory Benefits 93
Chapter 7 * Network Support Services 113
Chapter 8 ¢ Designing the Active Directory Environment 153
Chapter 9 ¢ Implementing Your Design 197
Chapter 10 ¢ Creating a Secure Environment 249
Chapter 11 ¢ Implementing Group Policies 285
Chapter 12 ¢ Modifying the Active Directory Schema 327
Chapter 13 ¢ Understanding and Controlling AD Sites and Replication 349

Part 3 ¢ Advanced Active Directory Administrationccc0ece..377

Chapter 14 ¢ Active Directory Network Traffic 379
Chapter 15 ¢ Backup and Recovery of Active Directory 417
Chapter 16 ® Active Directory Design 437
Chapter 17 * Migrating to Active Directory 453
Chapter 18 ¢ Integrating Active Directory with Novell Directory Services 475

Contents

Introduction xvi

Part 1 e Network Directories Essentialscccceeeereeececcccosoccososconss 1

Chapter 1 ¢ An Introduction to Network Directory Services and Their Benefits . 3

What Is a Directory Service? 5
Why Use a Directory Service? oiuiuin i 5
Before There Were Network DIrectories. .. o oo v v v v v v v i i e e e e e 6
Traditional Networks vs. Network Directoriesot 9
Traditional Network Solutions for Common Administrative Tasks 9
Network Directory—Based Solutions 11
Benefits of Active Directory 13
The Active Directory Structureottt 14
The Hierarchical Designo 14
The Benefit of an Object-Oriented Structure 15
Multimaster Domain Replication o 15
The Active Directory Feature Set 16
In Short .o e 18

Chapter 2 e Anatomy of aDirectorycceeeeeecececocscsoseseslQ

Paper-Based Directories 19
Computer-Based Directories 20
Understanding DNS, WINS, and NDS Network Directories vovee e .. 22
Domain Name Service (DNS) o o o 22
Windows Internet Name Service (WINS) o o oo 28
Novell Directory Services (INDS) 32
In Short .o e 37

Chapter 3 ¢ Inside an X.500-Compliant Directory« cvcveveeecececess39

What Is X 5002 ..ot e 40
The X.500 Specificationsoouiii e 40
Guidelines to Using the X.500 Recommendations 41
Developing Uses for a Directory i 42

Designing a Directoryot 43
The Schema ... 43
Creating a Directory 44
Hierarchical Structures: X.500 and DOS 43
The X.500 Hierarchical SEructureot 50

I Short oo 52

Chapter 4 ¢ Accessing the Directorycceceeeeeecesesescsocnns 53

Making Information Available to Users (or Not!) 54

X

CONTENTS

Directory Access Protocol (DAP) o 55
Modifying the Directory i 57
Providing Access to the Directory i 57
What's the Cost? ..o e 59
DAP in Short ..o e 60

Lightweight Directory Access Protocol (LDAP) 61
How LDAP Differs from DAPo e 61
LDAP and DAP: The SImilaritieso v ittt ittt ettt e e 63

In Short o 64

Part 2 ¢ Microsoft Active Directory Servicescceeeeeeeececococsonosons 67

Chapter 5 Microsoft Networks without ADccc0teeeennenens 69

What Is a Domain? vttt 70
Authenticating in NT 4 and Earlier 73
Authentication Protocol e 74

Primary and Backup Domain Controllers 75
Member Servers . ..ot e 75
How PDCs and BDCs Work . ..o e 76
The Synchronization Process i 77

Trusts between Domains vttt vttt 78
Partitioning the Database 79
Establishing Trust 79

The Four Domain Models 81
Single Domain Model 81
Single-Master Domain Model i 82
Multiple-Master Domain Model o o 84
Complete Trust Model 86
Supporting a Single Logon Account i i 89
Allowing Users to Access Resources in Different Domains 90

I SRort o 90

Chapter 6 ¢ Active DirectoryBenefitscc0ivtitieeeeencnnnenns 93

How Networks Develop 94

The General Goals of AD 95

Enterprise Managementiuininititit 96
An Industry Standard L 97
Vendor ACCeptancet 97
User ACCEPLANCE . ot v vttt e 98

Uniform Naming Conventionoiuiiiiiiininiian.. 104
Namespace and Name Resolution i i 105
Active Directory Names 106

Active Directory in the Windows 2000/ Windows

Server 2003 Architecturettt e 107
The Security Subsystem 109
The Directory Service Module o i 110
The Internal Architecture of the Active Directory Module 112

In Short oo 112

CONTENTS

Chapter 7 * Network SUpport Servicesceeeeeececocscsocsons 113
Regarding Windows Server 2003 vs. Windows 2000 114
TCP/IP Basics . v v v v ettt e e e e e e e 115
The Development of TCP/IP .ot 115
Common TCP/IP Protocols and Tools . ..o oo v i 116
TCP/IP Addressing . ..o 117
IP Subnetting 118
Windows Internet Name Service (WINS) 120
WINS Processes . oottt e e e e e e e 121
Why WINS? L 122
Dynamic Host Configuration Protocol (DHCP) 123
Installing DHCP Service 124
How Does DHCP Work? o e 126
Domain Name System (DNS) 136
So What Exactly Is a DNS Domain? 137
Planning DNS Naming i 138
Integrating DNS with Active Directory i i 143
Installing and Configuring DNS on an AD Domain Controller 144
Combining DNSand DHCP i 149
In Short .o e 152
Chapter 8 ¢ Designing the Active Directory Environment 153
AD Building Blocks 154
Active Directory Domains i 155
Active Directory Trees 161
Active Directory Forests 168
AD Server FUNCHIONS . . o vttt e e e 171
Global Catalog Servers 171
Forestwide FUNCtions vttt e 176
Domain-Specific Functions 179
General Guidelines for Operation Masters i 180
AD Organizational Units 0 181
What Are OUs Used For? ..o vv v it 182
Designing the OU Model i 186
In Short o e 196
Chapter 9 * Implementing Your Designcvvveteeececocosnonas 197
Installing ADS ... oo 198
Before You Begin o 199
The AD Installation Wizard i 200
Creating Organizational Units i 213
Delegating Administrationc.uiiuiini 214
Creating Usersot 221
Creating a New User Accounto. i, 222
Adding Information about Users i 224
Creating GIOUPS . .. v vttt 231
Types of Groupst 231

Access ToKenS ..ottt 232

X1

X1 | CONTENTS

Scopes of Groupst 232
The Mechanics of Creating Groups, 233
Creating Printers i 236
Printers in Windows 2000/ Windows Server 2003o 236
Non—Windows 2000 Printers 242
Creating Other Objects 243
Computer ObjJects ... oot 243
Contact Objects . ..ottt 245
Share Objectso i 247
I SROTt oo e 248
Chapter 10 ¢ Creating a Secure Environmentcccceeeeeeecsas 249
Security COMPONENTS .« . .o\ttt e 251
System Identifiers (SIDs) 251
Access Control List (ACL) o 252
Ownership ..o 255
Trust Relationships o o 256
PermiSSIONS . o v v e ettt e e e e e 263
Real-World Implementations 271
Using the Defaults 272
AFew Examples 273
Authentication Securityttt 279
Kerberos Basics . oo v v vv v it it 280
Public-Key Security 281
CortfICAtES © v o v e e e e e e e e e 283
I SROrt oo 284
Chapter 11 ¢ Implementing Group Policiesccccvveieeneenness 285
What Are Group Policies? 286
Microsoft Management Consoleo 287
Policy Objects in AD o 290
Computer Configurationttt 290
User Configurationt i 291
Using Computer and User Configurationoiiiuinon..... 291
Software Settings Node 293
Computer Configuration Node i i 295
Computer Conﬁguration\Windows SEttings . oot 296
Computer Conﬁguration\Administrative Templates 299
User Configuration Node 302
User Configuration\Windows Settingsoetuuuneetrnunneennnnn... 303
User Configuration\Administrative Templates 303
Configuring Group Policy Settings i 304
The Three-Way Toggle o 304
Setting AMOUNES . .ottt 308
Creating Listso 306
Determining Which Policy Will Be Applied 306

The Order in Which Policies Are Applied 306

CONTENTS | X

Creating Policy Objects 308
Linking Policies to Containersc. it 312
Taking Control 313
Security Templateso o 320
Group Policy Management Tools 324
Resultant Set of Policies oo v ittt ittt e e 324
Group Policy Management Console 328

I Short o 326
Chapter 12 ¢ Modifying the Active DirectorySchemac... 327
Schema Basics . . 327
What's in a Schema? 327
The Active Directory Schema 329
Who Can Modify the Schema? o 330
What Can Be Modified? 331
What Cannot Be Modified? 333
Modifying the Schema o 333
What Happens When the Schema Is Modified? 333
Preparing for Schema Modifications 334
The Seven Types of Schema Modifications 340

In Short oo e 346
Chapter 13 ¢ Understanding and Controlling AD Sites and Replication 349
Understanding Active Directory Sites i 350
Determining Site Boundaries i 351
Domain Controller Placement Strategies, 3583
The Default Placement 355
Implementing Active Directory Sitesttt 356
Creating SIES . ot vt vt 358
Creating Subnets 359
Associating Subnets with Sites o 360
Creating Site Links o 361
Site Link Bridges 364
Connection ObJectsottt 366
Understanding Replication 368
Replication vs. Synchronization 368
Types of Replicationo 369
Behind the Scenes of Replication i 372
Update Sequence Numbers i i 372
Propagation Dampening 374

In Short oo e 376
Part 3 ¢ Advanced Active Directory Administrationccciieieeeceens 377
Chapter 14 ¢ Active Directory Network Trafficcc0cveuenn. 379
Active Directory and Bandwidth o L L L 380

Active Directory Naming Contexts 380

Xiv

CONTENTS

Global Catalog Serverst 381
Creating a Global Catalog Server 382
Active Directory SIEESo\ vt it 383
Sites and Replication i 383
Intra-Site Replication 384
Inter-Site Replication 385
Creating Site Connection Objects 386
One or Multiple Sites? 392
Forcing Replication i i 393
The File Replication Service (FRS) i 398
SYSVOL Replication i 398
Distributed File System Replication (DFS) 398
Operations Mastersttt 400
Forest Operations Mastersootninininit s 401
Domain Operations Masterso vtvt it 402
Placing Operations Mastersttt 402
Transferring Operations Masters o 403
Database Size ... v it e e 406
Database Fragmentation i 407
Linear Growth . .o oo v i e 407
Intra-Site Replication Traffic 408
Inter-Site Replication Traffic i 409
Global Catalog Replication Traffic 410
Microsoft Tools . .o vt e 411
Monitoring AD with Replication Administration (REPADMIN) 411
Performance IMONIEOL . o o v v vt v e e et et e e e 412
Event Viewer e 412
Active Directory Sizer 413
DOCDIAG ..o e e 416
In Short oo 416
Chapter 15 * Backup and Recovery of Active Directoryceceeeeus 417
Backup 101 ..o 418
Backup Hardware oo 419
Active Directory Files 419
System State Data 420
User Permissions . ..ot e e e e e 421
Using Windows Backup 422
Restoring Active DIrectory 429
Non-authoritative Restore ov vt 429
Authoritative Restoreo v v v i vttt 431
TombStOnes « . oottt 432
Primary Restore 434

I SOt oo e 435

CONTENTS

Chapter 16 ¢ Active DirectoryDesigncceceeeenececececocans 437
Elements of Planning and Design i i 438
Analyzing the Business Environment o oo oo 438
Technical Requirements 440
Active Directory Structure 442
Designing the DNS Namespace 447
SIS o e e e e e 448
Putting It Together 449
Business Analysis 449
OU SIUCTULES © v v v e 450
Multiple Domainsot 451
Forests oo 451
In Short o 452
Chapter 17 » Migrating to Active Directorycceeeeeecececacans 453
Options for MiIgrationt 454
NT to AD Migrationt 454
In-Place Upgradeo o 455
Over-the-Wire Migration oo i 455
Migrating from NetWare to AD oo o 471
Bindery Services 472
Novell Directory Service (NDS)o 472
Microsoft’'s Migration Path for NetWare o 472
In Short o 473

Chapter 18 ¢ Integrating Active Directory with Novell Directory Services . . . 475

Setting Up Client Services for NetWare (CSNW) oo o oL 476
Installing NWLink 477
Comparing Directory Servicesttt 480
The Development of Novell’s and Microsoft’s Directory Services 481
Microsoft vs. Novell 481
The Future of Directory Services, 486
Directory Enabled Networking 487
Microsoft Metadirectory Services 488
DirX ML o 488
In Short 489

XV

Introduction

EvEN THOUGH | HAVE written books revolving around Microsoft products, I have never tried to
hide the fact that I started out as a Novell guru (heck—I was even a Novell employee for awhile).
When Microsoft first released Windows NT, I was amazed at the number of people who bought
into that “New Technology” (NT') marketing line. Their “new technology”—or at least the net-
working portion of it—had been developed a good 10 years earlier for an IBM product named
LanManager. (A search through the Registry of any NT computer for the word “Lanman” will
prove this.) So Microsoft was releasing a product based on a 10-year-old networking philosophy
and which used a nonroutable communication protocol by default. It didn't seem all that “new”
to me!

Windows 2000/ Windows Server 2003 moved Microsoft networking away from the dated and
Iirniting domain-based architecture of earlier releases and toward the true directory service—based
architecture necessary in today’s complex networks. Microsoft provides this service through the
addition of Active Directory (AD), an open, standards-based, X.SOO—compIiant, LDAP-accessible
network directory. (Don’t worry—we’ﬂ talk about X.500, LDAP, and what seems like an endless
list of industry acronyms throughout this book.)

The first commerciaﬂy viable, directory service—based operating system to hit the networking
industry was Novell's NetWare 4 with NetWare Directory Services (NDS). At the time of its release,
I was working as a senior technical instructor for a company in Minneapolis, Minnesota. In order to
be one step ahead of the competition, my company sent me to the prep classes taught on the beta ver-
sion of the software. After two weeks of intensive training on NDS, I returned home and started to
reevaluate my career choices. It seemed as if everything I knew about networking was about to become
out-of-date, and I would be forced to master this new paradigrn known as a “directory service.” I have
to admit that when I first saw Novell’s directory service, I didn't get it, didn’t think I would ever get it,
and wasn't sure I wanted to getit, felt safe with earlier versions of NetWare, and I couldn’t under-
stand why anyone would want to add the complexity of a directory service to their network. In the long
run, however, the benefits of a directory service far outweighed the painful learning curve. With the
release of Active Directory as part of the Windows 2000 Server product, Microsoft finaﬂy provided
these benefits to its customer base. (And, 1 hope, this manual will help reduce the pain involved in
mastering the technology!)

AD provides the power and ﬂexibility you need in today’s changing computer world, but it pro-
vides these at a price. A Iarge portion of that price is the steep Iearning curve that administrators

INTRODUCTION | xvil

need to climb in order to fully understand and utilize the potential of Microsoft Windows 2000/ Win-
dows Server 2003 and Active Directory Services. However, the benefits of using Active Directory speak
for themselves:

A More Stable Operating System You will see far fewer “blue screens” than ever before in a
Microsoft environment. You can also say goodbye to the weekly (or more) reboots necessary to
keep an NT server up and running.

Group Policies Controlling the end user’s environment—what they can see, what they can change,
and what they can do—is critical as our operating systems become more and more sophisticated.

Software Distribution Statistics show that we (network professionals) spend more time installing
and maintaining end-user applications than any other aspect of our job. Automating these processes
will allow us to (finally) use some of that vacation time we have accumulated over the years!

I wrote this book to help you avoid being caught by surprise by Microsoft Windows 2000/ Windows
Server 2003 and Active Directory. While a network directory might be a new paradigm in networking
for you, try to remember that at its most basic, networking technology—whether Windows 2000/ Win-
dows Server 2003, AD, or anything else—is still just moving bits from one place to another. All of the
knowledge you have gathered about networking is still valid; you'll just have a few more options available
to you.

What’s in This Book?

When I was planning the table of contents for this book, I struggled with how best to present a
new paradigm for Microsoft networking—the concept of a network directory. It was suggested
that I just write about Active Directory Services and leave it at that, but I wanted to give you a
conceptual overview of the technology as well as a look at AD. I decided that a three-part book
would suit my goals. Read on to learn what’s in each part.

PART 1: NETWORK DIRECTORY ESSENTIALS

No matter what Microsoft would have you believe, network directories have been around for quite some
time. Understanding earlier implementations (both their strengths and weaknesses) can help us under-
stand why AD works the way it does—and perhaps help us realize some of its weaknesses. Part 1 is faitly
short, but it is filled with conceptual information that can really help you tie AD to your environment.
Part 1 contains four chapters.

Chapter 1: An Introduction to Network Directory Services and Their Benefits This chapter
gives a basic overview of what a directory is and what Active Directory is, and it compares directories
to older technologies.

Chapter 2: Anatomy of a Directory In this chapter, you will learn what a directory is by looking
at examples of existing technologies, starting with basic paper-based directories and working up to
the directories used in today’s networks.

Chapter 3: Inside an X.500-Compliant Directory = Read this chapter for an overview of the

X.500 recommendations, which are used to create the structure of the Active Directory database.

Xvii

INTRODUCTION

We also discuss the process of creating a directory service database from the ground up—a men-
tal exercise that can really help you understand what makes Active Directory tick.

Chapter 4: Accessing the Directory ~ Chapter 4 explains DAP and LDAP, the two protocols

used to access the information stored within the AD database.

PART 2: MICROSOFT ACTIVE DIRECTORY SERVICES

Once we have a firm grounding in directory technology, we can look at AD with a critical eye, trying
to find its strengths and weaknesses. With this information, we can better apply the technology
within our own environments. There are nine chapters in Part 2.

Chapter 5: Microsoft Networks without AD To fully appreciate Windows 2000/ Windows
Server2003, and especially Active Directory, it is important to understand earlier versions of NT.
If you are an N'T expert, this chapter will be a review. If you are a newcomer to the NT world,
this chapter should prepare you for some of the topics you will encounter later in the book.

Chapter 6: Active Directory Benefits Just as NT was originally designed to overcome the weak-
nesses of server-centric environments, Windows 2000,/ Windows Server 2003 with AD was designed
to overcome the weaknesses of domain-based environments. In this chapter, we will discuss how AD

fits into the overall Windows 2000/ Windows Server 2003 philosophy.

Chapter 7: Network Support Services While Microsoft 2000 /Windows Server 2003 can uti-
lize many different protocols for communication, AD depends on TCP/IP. Before you can begin
to install and configure an AD environment, you must have a strong foundation in TCP/IP tools
and techniques.

Chapter 8: Designing the Active Directory Environment In this chapter, you will read about
the theories of designing a stable AD structure that does not place undue stress on any single com-
ponent of your network.

Chapter 9: Implementing Your Design Read Chapter 9 to find out about the mechanics of AD
installation and buﬂding your AD structure,

Chapter 10: Creating a Secure Environment If the AD database is going to be of any real use
in a network, the information it contains must be secure. In this chapter, we will look at the various

security options available with Windows 2000/ Windows Server 2003.

Chapter 11: Implementing Group Policies ~ Group Policies are used to define user or computer
settings for an entire group of users or computers at one time. As such, they will be a very tmpor-
tant concept for administrators of networks based on Windows 2000 /Windows Server 2003. In
Chapter 11, we will discuss the concept of Group Policies and look at the procedures used to
irnplernent them.

Chapter 12: Modifying the Active Directory Schema The AD database contains object classes,
which define fypes of network resources, and attributes, which define parameters of those classes. The
default list of classes and attributes might not be sufficient in some environments. Chapter 12 dis-
cusses the process of eXtending the design of the AD database to include custom object classes and
attributes.

INTRODUCTION

Chapter 13: Understanding and Controlling AD Sites and Replication For any network

operating system, no matter how logical we make the structure or how graphical we make the

interface, when all is said and done, everything comes back to the plumbing—the “pipes” we use
to move data. This chapter looks at design issues with an eye on available bandwidth and commu-
nication costs.

PART 3: ADVANCED ACTIVE DIRECTORY ADMINISTRATION

So far we have gotten a history of the technology upon which Active Directory was built—sort of a
historical perspective, if you will—in Part 1. In Part 2, we looked at the basic structure of an Active
Directory environment—design strategies, traffic considerations, and the peripheral components found
in most Ad environments. In Part 3 we take an in—depth look at speciﬁc components of Active Direc-
tory implementations.

Chapter 14: Active Directory Network Traffic A complete description of devices and services
that generate traffic on your network. While no one could ever describe every bit that will pass
through a network wire, we'll look at those services that revolve around Active Directory: DNS,

WINS, DHCP, AD replication, and others.
Chapter 15: Backup and Recovery of Active Directory Everyone knows that good backups are

critical to job security—and just about everyone in the business can describe the basics of server
backup. ‘What many don't understand are the intricacies of backing up a complex database such as
Active Directory. We'll look at the theories and the tools involved in backing up and restoring Active
Directory.

Chapter 16: Active Directory Design There are more ways to design a hierarchical system
than there are people to describe them. We'll ook at some of the network and business details
that will impact your final AD design. We'll also provide a few “cookie cutter” designs that can
act as the foundation of your own network.

Chapter 17: Migrating to Active Directory ~ Very few of us have the luxury of starting from
scratch—we inherit a network and then want to upgrade it to match our perceived needs. In this
chapter we’'ll discuss the options available when you want to upgrade your existing network to

Windows 2000 and Active Directory.
Chapter 18: Integrating Active Directory with Novell Directory Services Novell still holds

a signiﬁcant portion of the business networking market. Some recent surveys have even shown
that NetWare’s market share might be increasing. Even in those companies where all new servers
are Microsoft-based, many still continue to support legacy NetWare servers. The odds are that
you will face a mixed environment at some time in your career. In this chapter we'll discuss the

tools and techniques available to help ease the pain of supporting two platforms: AD and NDS.

Who Should Read This Book?

This book was written for the experienced network administrator who wants to take a look at Micro-
soft's Active Directory Services. I'm going to assume a basic level of knowledge of networking in general,
but no (or little) knowledge of directory-based technologies. It seems as though whatever Microsoft is

XIX

XX

INTRODUCTION

doing is what the industry moves toward—and Microsoft is doing network directories in a big way! If
you run a Microsoft house, you'll need to come up to speed on AD quickly. If you run a non-Microsoft
house (or older versions of Microsoft NT), you can bet that sooner or later you'll need to understand
how Microsoft views network directories.

In my 10 years as a technical instructor, I found that there were basically two types of students—
those that just wanted to know the “how,” and those who also wanted to know the “why.” I feel that
this book will satisfy both types of computer professionals. We certainly delve into the theoretical—
discussing the history of network directories, the philosophy of management of directories, and the
environment-specific aspects of AD that will effect your final design. We also discuss and describe
many of the more common administrative tasks that you will be required to perform on a daily basis.
That mix of both theory and concrete should prepare you for the task of implementing and main-
taining an Active Directory structure in your work environment.

I guess the bottom line is this: if you are in networking today and you plan to be in networking
tomorrow, you will have to master the concepts of a network directory at some point in your career.
This book is designed to give you the information you need to understand and implement Microsoft’s
interpretation of that technology.

In Short
Microsoft Windows 2000/ Windows Server 2003 is the hottest technology in networking today. To

use 1t effectively, you rnight have to rethink how you characterize network resources and services. The
days of putting in the network and then considering the environment are long gone! With today’s

technologies, each network will have to be designed around a “total business solution"—providing

the resources and services necessary without unduly taxing the budget, staff, or infrastructure of the

host company.

One last word of advice: enjoy what you do. New technology can be exciting, challenging, and down-
right fun. If you spend more time cornplaining about the technology than being amazed by 1t, perhaps a
vacation is in order!

As with all my books, if you have questions or comments about the content, do not hesitate to
drop me a note at bking@royal-tech.com. I always look forward to hearing from you.

Part 1

Network Directories
Essentials

In this section you will learn how to:

L 2R 2K 2R 2

Evaluate network directory services and their benefits
Understand the critical features of directory systems
Design a generic directory

Access the directory

This page intentionally left blank

Chapter 1

An Introduction to Network
Directory Services and Their
Benefits

THE COMPUTER INDUSTRY, ESPECIALLY 1n the networking arena, generates more acronyms, terms,
phrases, and buzzwords than any other business in the world. The latest craze is the phrase nerwork
directories. Directories are nothing new—they have been around in one form or another since the late
’60s. Now, however, they have entered the mainstream with the release of Microsoft’s long-awaited
Active Directory Services in Windows 2000 Server and the Windows Server 2003 product line. To
get the most from this technology, you must have a firm understanding of what directories are, what
they are not, and how they can be used to ease the management of your network. That is the goal of
this book—to give you enough information to implement, manage, and utilize the services provided
by Microsoft’s Active Directory Services (ADS). (While this directory is just another feature of the
Windows 2000/ Windows Server 2003 environment, it has reached the status of some rock stars—
a shortened name. Microsoft’s directory service is usually referred to as just Active Directory or AD.
This is the terminology that I'll use throughout the book.)

PC-based networks have become an integral part of the business world. They started out as
simple solutions for the sharing of a few physical resources—hard disk space, printers, and so
on. Over time, though, networks have become quite complex—often spanning multiple sites,
connecting thousands of users to a multitude of resources. Today, networks control everything
from payroll information to e-mail communication, from printers to fax services. As networks
offer more services, they also demand more management. Easing the use and management of
networks is the real goal of a directory service.

This first chapter is more about setting the appropriate mood for the first section of the book
than it is about technology. Directories have the ability to ease (or sometimes even eliminate) some
of the most common IT administrative tasks. In this chapter we’ll look at a few of those tasks,
think about how we would perform them in a “traditional” network, and then imagine the ways in

4 CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

which a directory could make them easier to deal with. The bottom line here is that directories are
exciting technology—and I want you to start getting excited about them!To effect that excitement,
though, you need to have a firm grasp on the “concept” of a directory. The first part of this chapter
will define that term, explain the benefits of using a directory, and describe the basic structure used
by most network directories on the market today.

I've been in this business for a long time, and I know the typical work environment in an IT depart-
ment. First, I'T workers are often assumed to be nocturnal—we do our most important tasks (server
maintenance, data backups, upgrades, etc.) after everyone else has gone home for the day (or worse, for
the weekend or holiday!). Second, IT staff members are assumed to be workaholics. Why else would
they give us vacation time that we never seem to be able to use? I don't know how many times I've heard
of IT staffers who lose their vacation time at the end of the year because they could never use it—
there was always something going on that prevented them from leaving for a week or so. Lastly, we are
assumed to know everything (and while we like this image, it sometimes causes problems). How many
training classes have you attended in the last year? How many would you have liked to attend? If those
two numbers are equal (or even close), you work for a great company! Too often, IT workers are given
little training, and this results in more late hours, more headaches, and less opportunities to use vaca-
tion time.

Most administrators are overworked and underpaid. Most I'T departments are understaffed and
underbudgeted. This results in I'T professionals who never see their families, never have time to attend
classes (which just exacerbates the problem), and very seldom have time for relaxation—no wonder so
many of us switch careers during our midlife crisis!

When propetly installed and configured, Active Directory can often reduce the administrative
overhead of maintaining your network. Certain tasks are completely eliminated, many redundant
tasks are reduced to a single step, and most management processes are made easier to accomplish.
The bottom line is that your workday is made more productive—allowing you to accept more
responsibility, utilize your vacation time, and, just maybe, attend a few of the training events and
industry seminars that you have on your wish list. (Okay, that’s the optimistic view. More likely,
your company will see that the number of IT staff members required is not as great, and you end
up with a smaller I'T staff. This isn't all that bad though, because a smaller staff often results in
higher salaries. .. a win-win situation!)

Get excited about Active Directory! While it does require you to master a new paradigm (read
that as a learning curve to climb), it also provides you with the opportunity to work more efficiently!
This often results in the I'T department adding new (and exciting) technologies to their systems. If
you're like me, working with the latest and greatest technology is just another perk in the workplace!

In this chapter:

¢ What is a directory service?
¢ Why use a directory service?

@ Before there were network directories. . .

WHY USE A DIRECTORY SERVICE?

Traditional networks vs. network directories
Benefits of Active Directory

The Active Directory structure

® & o o

The Active Directory feature set

What Is a Directory Service?

In any business-level networked environment, there exists some sort of database of account informa-
tion. In Windows N, this database was known as the Security Accounts Manager (SAM) database,
and in early versions of Novell NetWare, it was known as the bindery. No matter what network
operating system you look at, there has to be a place in which information about valid users is
stored—things like names, passwords, and maybe even a little security information.

In many operating systems, this accounts database is server- or resource-centric. By this I mean
that the database only stores information about users who have access to the resources (files, printers,
applications, etc.) located within the sphere of control of the device upon which the database is stored.
Novell's bindery is a perfect example; it stored account information for users who could access a specific
server (the server in which the bindery files were located). While this type of system is workable in
smaller environments, it begins to fall apart as networks grow. Think about it: if every server has its
own accounts database, and I have 100 servers, then I have 100 accounts databases to manage.

A directory service is a networkwide database that stores resource information, such as user accounts.
In a directory-based environment, I create a single user account for each user, and that account is used
to manage all aspects of the user’s network (and sometimes desktop) environment. To put this another
way, a directory service provides a place to store information about network-based entities, such as
applications, files, printers, or people. Given the networkwide scope of such a database, it provides a
consistent way to name, describe, locate, access, manage, and secure information about those individual
resources.

The directory also acts as the central point of control and management for the network operating
system. It acts as the central authority to propetly identify and authenticate the identities of resources,
and it brokers the relationships between distributed resources, thus allowing them to work together.
The directory service must be tightly coupled with the underlying operating system to ensure the
integrity and privacy of information on the network.

In a Microsoft-based network, the Active Directory Service plays a critical role in an organization’s
ability to manage the network infrastructure, perform system administration, and control the user
environment.

Why Use a Directory Service?

When I first started in the networking industry, I worked on what, at the time, was a midsized
environment—we had four servers and about 200 users. The Internet was still a thing of the future,

6 CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

e-mail wasn't mission critical (heck, most people didn't even know what e-mail was), there was no
such thing as a “fax server” or any other kind of specialized server for that matter, and FedEx was
used to transfer documents from one site to another (no one would have thought to invest in a wide
area link for a medium-sized company—they were too expensive).

Today, a midsized environment can include 50 or more servers, support hundreds, if not thou-
sands, of users, and include numerous special services that run on dedicated servers. Wide area links
are common, and bandwidth demands are astronomic! Not to mention the dial-in, VPN, and other
“new” services that end users are demanding. In these complex networks, the task of managing the
multitude of network-based resources can be overwhelming.

Directories help administrators manage today’s complex environments by:

¢ Simplifying management. By acting as a single point of management (and providing a consistent
set of management tools), a directory can ease the administrative tasks associated with complex
networks.

¢ Providing stronger security. Once again, the fact that access and authentication is controlled
through a single service, administrators and users are only required to know a single set of
tools, allowing them to develop a better understanding of them. Directories, since they offer
a single logon facility, are usually able to provide a more secure authentication process (since
all logons are managed through a central service, that service can be made extremely secure).

¢ Promoting interoperability. Most of today’s commercially viable directory services (AD included)
are based upon a series of industry standards—2X.500 and LDAP to name a few (I'll describe
these in detail later). Sticking with a standards-based solution makes it easier to share resources in
a mixed environment or, better yet, to share resources with business partners without opening too
many doors into your network.

Directories can be thought of as both a management and a user tool. From a management per-
spective, having a centrally controlled and consistent interface to resource information can drasti-
cally reduce administrative costs. From a user’s perspective, a central service for authentication can
make accessing resources throughout the network a lot easier. Gone are the days when users had to
memorize (or worse, write on a Post-It note) multiple logon names and passwords!

Before There Were Network Directories...

To understand and appreciate the power and convenience of a directory-based solution, you must
have an understanding of the technologies that it will replace. Before the advent of directories, most
network operating systems (NOSs) were “server-based.” In other words, most account management
was done on a server-by-server basis. With older NOS software, each server maintained a list of users
(the accounts database) who could access its resources and the users’ permissions (the Access Control List,
or ACL). If a system had two servers, then each server had a separate accounts database, as shown

in Figure 1.1.

BEFORE THERE WERE NETWORK DIRECTORIES...

FIGURE 1.1
Server-based NOS

Accounts Accounts
database database

BKing
SKing

BKing

SKing

JDoe
GGovanus

GGovanus
KKing

As you can see, each server in Figure 1.1 maintains its own list of authorized users and manages
its own resources. While this system is simple and easy to understand, it becomes unwieldy once a
system grows past a certain point. Imagine trying to manage 10,000 users on 250 servers—the user
and resource lists would soon overwhelm you! To get around this limitation, some NOS software,
such as Microsoft NT 4, was configured so that small groups of servers could share one list of users
(called a central accounts database) for security and authentication purposes, as shown in Figure 1.2. This
central accounts database gave administrators a single point of management for a section of their
network, known as a domain. Once again, however, this system becomes cumbersome after it reaches
a certain size.

FIGURE 1.2
NT 4 security

accounts database

BKing
SKing
GGovanus
KKing
JDoe

Central
accounts
database

8

CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

The shift from server-based to domain-based networks was the first step in creating an envi-
ronment where all users and resources are managed through a single database. In a domain, all
user information is stored in a single place and managed with a single set of tools, and users can
access the network via a single account (no more having to remember multiple account names
and passwords). Network directories take this approach to the next phase: a single database to
hold all user and resource information across your entire network.

NOTE I'm using the phrase “user and resource” to refer to the records within a directory database because that is bow tra-

ditional administrators see their world: users accessing resources. In a directog)-based environment, however, users become

not})ing more than another resource. This subtle sbg‘t in pkilosopby is critical in undersmnding the sm’ngtbs gf a direttog)—

based network. This distinction should become clear as you become more familiur with direttmy concepls.

Network directories are just databases that hold network information. They can contain many
different types of information:

*

® & & o o

User account information (logon name, password, restrictions)

User personal information (phone number, address, employee ID number)
Peripheral configuration information (printers, modem, fax)

Application configuration (Desktop preferences, default directories)
Security information

Network infrastructure configuration (routers, proxies, Internet access settings)

If you can imagine it, a network directory can store it!

Once this information is stored in a centrally controlled, standards-based database, it can be used
in many different ways. Most commonly, administrators will use such information to control access
to the network and the network’s resources. The directory will become the central control point for

many different network processes. Here are examples of some of these processes:

*

When a user attempts to log on to the network, the client software will request authentication
from the directory. The directory service will ascertain whether the account name is valid, check
for a password, validate the password submitted, and check any restrictions on the account to
determine if the logon request should be granted.

Individual users can use directories to store personal preferences. Each time a user logs on to the
network, his Desktop settings, default printer, home directory location—even his application
icons—can be downloaded to whatever computer he happens to be at. Users will no longer have
to re-create their environment each time they use a new computer. All of their settings will be
centrally located to ensure a “universal environment” and, if you desire, centrally controlled to
lock them down.

As directories mature, you will also be able to use them to monitor and control traffic across
network devices. When a user attempts to access a remote network, for instance, the directory
could be used to determine whether the request is valid for that user. Imagine controlling
Internet access with the same tool you use to control other security settings. Or perhaps the

TRADITIONAL NETWORKS VS. NETWORK DIRECTORIES

directory could query various devices to determine the least congested network path to the
destination. You might even be able to grant higher network priority to certain users, groups,
applications, or services, allowing you to provide a guaranteed level of service.

Traditional Networks vs. Network Directories

Many network tasks can benefit from the capabilities of a network directory. Many of the hardest con-
figuration issues of earlier networks will become a piece of cake when you use a network directory as
the central controlling point for the network.

Traditional Network Solutions for Common Administrative Tasks

As food for thought, let’s consider a few common networking tasks and the nondirectory solutions to
them. Each of these scenarios is a “real-world” implementation that I have been asked to complete on
production networks. As you will see, the nondirectory—based solutions often border on the ridiculous.
In some cases, the service provided could not justify the time spent to provide the requested solution. In
other words, the constraints placed upon networks by traditional management techniques often limit
the services that a network can realisticaﬂy provide.

SCENARIO 1: TO TRUST OR NOT TO TRUST

Your company’s marketing department has a Color Wax Thermal Transfer Graphics printer, which is
used to create camera-ready art for the company that prints your sales brochures. Because of the cost
of consumables, which is somewhere in the neighborhood of $3.00 per page, you have been very
careful about who is allowed to print to this device. Luckily, the marketing department is its own
domain, so security has been fairly easy to maintain. Over in the engineering department, Susan has
decided that she needs to print drawings of prototypes on this printer. Your job is to arrange the
appropriate permissions.

In a multidomain environment, there are two basic ways to handle this situation:

@ You could create a trust between the marketing domain and the engineering domain, create a
global group in the engineering domain, place Susan’s account in the group, and then place
that global group in the appropriate local group in the marketing domain. While this solution
is great for Susan, it does mean that you now have to keep track of another trust relationship,
not to mention the associated local and global groups.

You could create a local account for Susan in the marketing domain and teach Susan to “Con-
nect As” to use the printer. Now, of course, you’ve lost one of the biggest benefits of the
domain concept —one user, one login.

SCENARIO 2: WHERE’S JOE?

An executive calls to inform you that a user named Joe in the sales department has been overheard dis-
cussing confidential information, including future product designs and marketing strategies. This exec-
utive would like a detailed explanation about where Joe has permissions and how they are acquired.
She would also like you to ensure that Joe only has rights to resources appropriate for salespeople.

9

10

CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

In a multidomain environment, this problem can be overwhelming. Your first inclination is probably
to delete Joe’s account and start from scratch—but you want to ensure that no other salespeople have
been granted inappropriate permissions. You'll have to track down every group that Joe is a member of
and then check the permissions of each group. For each global group, you'll have to check to see which
local groups it has been made a member of (including those local groups in other domains). You'll also
have to search for any local accounts that might have been created for Joe in the marketing and R&D
domains. Finally, you'll probably want to institute an auditing policy to track who is accessing the confi-
dential data.

NotE Of course, this scenario assumes that you have administrative rz"gbts in the other domains of your environment. If
not, you will have to coordinate your actions with those of the other administrators.

When you have completed your search, you will have to implement a corporatewide policy that
defines how permissions should be granted, who should be able to grant rights to various types of
resources, and the appropriate naming standards for things like global and local groups (this will
make the next search a little easier). In a multidomain environment, enforcing these policies can be
an administrative nightmare.

SCENARIO 3: THE SEARCH FOR INFORMATION

An expensive and mission-critical printer refuses to print. You know that the printer was purchased n
the last few months, but you need speciﬁc information for dealing with the vendor. In a traditional office,
you must contact purchasing. The purchasing agent will have to dig up the paper-based purchase order
using the serial number or approximate date of purchase. If all goes well, the purchase order will contain
the check number and date of purchase, as well as the name of the salesperson who sold you the device.
Once that information is at hand, you can call the vendor and negotiate repairs or replacement.

SCENARIO 4: SETTING LIMITS

Your company has just adopted a policy to control Internet access: certain users have unlimited access,
other users are allowed to surf the Web during nonbusiness hours, and some users are allowed to access
only an approved list of websites. It's your job to make sure this policy is implemented. Luckily, all of
this functionality is built into the new routers you have purchased. Unfortunately, those routers are not
“NT aware,” so you must enter all of the specifics (including usernames) in the vendor’s proprietary
format.

SCENARIO 5: COMPANY INFORMATION
You've been asked to design a database that can serve as a company phone book. The CEO would
like to have the foHowing information available for each employee:

* Company phone extension

¢ Home phone

TRADITIONAL NETWORKS VS. NETWORK DIRECTORIES

Company mail stop
Home address
Birthday

Hire date

* & o o

While all of this information is already in a series of databases controlled by the human resources
department, the CEO would like this to be a companywide application. She also realizes that some of
this data is confidential, so you must control access to certain fields based upon job function.

One solution might be to create a series of databases: one for nonsecure information and another for
secure information. Each user would access the database that is appropriate for his or her needs. Not an
elegant solution, but it is probably the quickest. The biggest problem will be keeping the information
up-to-date.

Network Directory—Based Solutions

Most administrative tasks can be broken down into two basic functions:
¢ Providing resources
& Securing those resources
With that in mind, let’s look at the five scenarios just described. You've been asked to:
1. Secure access to an expensive resource (a printer).
2. Provide security for confidential information.
3. Organize information (the purchase order for the printer).
4. Secure and control access to the Internet.
5. Provide (and secure) access to employee information.

Balancing the avaﬂabﬂity of resources with the need to secure those resources represents a Iarge
percentage of what LAN administrators do for a Iiving. The implementation of a network directory
service can help to make these tasks as straightforward as possible.

SCENARIO 1: TO TRUST OR NOT TO TRUST

Because a network directory provides a single logical database to manage all network resources, the
directory-based solution to this problem is fairly straightforward. The users and the printer are no
longer “separated” by any type of administrative grouping; in other words, both the user account
and the printer now exist in the same logical database. When you use a directory, the solution can
be as simple as giving Susan account permissions to use the printer.

11

12 | CHAPTER1 ANINTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

SCENARIO 2: WHERE’S JOE?

Once again, the single point of management provided by a network directory offers a fairly simple

solution to this problem. Since all groups exist in the same database, you can query that database for
a list of all groups of which Joeisa member. Rather than checking each group by hand, you can use
the database as a tool to limit your workload.

Once you’ve discovered the source of Joe’s extra permissions (and fixed the immediate problem),
you should be able to implement a directorywide policy to correct the errors that caused the problem
in the first place. You might, for example, limit the administrator of the sales department so that he
can only administer resources listed as belonging to the sales department. With this type of policy n
place, the sales administrator could never grant permissions to nonsales resources.

SCENARIO 3: THE SEARCH FOR INFORMATION
Many people get so hung up on the fact that a directory “manages the network” that they forget that
a directory is just a database. Why not store resource-related information as a part of that resource’s
record? A directory can easily store things like the serial number of a printer or any purchase informa-
tion that you might need later.

If this information is in your directory, the directory-based solution would be to query the data-
base for the printer’s record. You can base your query on any known attribute—since the printer is
not working, you probably have access to its serial number. Search the directory for a matching entry.

SCENARIO 4: SETTING LIMITS

Since there is an industry-standard protocol for accessing information in a directory (LDAP, which

I will discuss in Chapter 4), it should not be difficult to manage a multivendor environment from

a single point. You should be able to import the configuration information for things like a proxy
server or router right into your network directory. (This capability is actually part of a Microsoft-
suggested standard known as Directory Enabled Networks, or DEN.) Once such integration is
possible, you might be able to drag and drop user accounts onto the router and configure limits for
each user. Another option might be to create a series of groups in Active Directory Services and then
assign permission to various router functions to those groups. The router can then query the AD
database to determine what groups a particular user belongs to.

SCENARIO 5: COMPANY INFORMATION

The company phone book is probably one of the easiest tasks an administrator can accomplish in a
directory environment. Most directories (AD included) will store most of the information that the

CEO requests in this scenario. Directories also have built-in security so that users can be limited to

viewing only certain data from the directory.

AD is accessible by most of the industry-standard directory tools. Once you have imported the
information into the directory, you can use any of these tools to query for things like phone numbers
and addresses. The internal security will determine whether or not the request is honored.

Now you've seen a few examples of how a directory can be used to solve some common issues
administrators face every day. In the next section, I'll discuss the benefits of a specific directory
server—Microsoft Active Directory.

BENEFITS OF ACTIVE DIRECTORY 13

Benefits of Active Directory

If you work in a Microsoft “house”—in other words, your company uses Microsoft networking
products as their main network operating system—Active Directory either is, or will become, a
critical piece of your environment. If you are not working in a Microsoft house, then the strong
security, ease of implementation, and interoperability of Active Directory just might convince
you to move to a Microsoft-based networking solution.

Basically, Active Directory improves upon the domain-based architecture of Windows NT to
provide a directory service that is better suited to today’s distributed networks. AD acts as the
central authority for network security as well as the integration point for bringing diverse systems
together. AD consolidates management tasks into a single set of Windows-based management
tools, greatly reducing the management overhead inherent in many enterprise network operating
systems. As shown in Figure 1.3, AD can act as the “center” for management of all of your net-
work resources.

FIGURE 1.3

AD as the center
of your enterprise

Network Services
DHCP

DNS

Share Points
Policies

Windows Users
Account Info

Permissions/Rights
Profiles
Policies

Connectivity
Dial-Up Policies
VPN Configuration
Security Policies
Firewall Configuration

network

Messaging
Mailbox Information
Address Book

Distribution Groups

Active Directory Applications
Management Server Configuration
Security Single Sign-On
Interoperability App-Specific Policies

Other Directories
Synchronization
Security
Industry-Standard
Access

Delegation of Control
Hierarchical Design
Granular Delegation
Controlled Administrative,
Access

Device Configuration
Standard Configuration
Quality of Service
Security

Active Directory provides a single point of management for Windows-based user accounts, clients,
services, and applications. Its hierarchical nature allows network resources to be organized in a natural,
intuitive nature. Because it is based upon industry-standard protocols, 1t can help integrate diverse (non-
Microsoft) operating systems and applications into a cohesive whole, bringing management of those
resources Into a centrally controlled environment with a single set of management tools.

14 | CHAPTER1 ANINTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

The Active Directory Structure

Active Directory allows you to organize your network resources in a hierarchical, object-oriented
fashion, and in a manner that matches the way in which you manage those resources. While it is
still “domain-based,” replication between domain controllers has been redesigned, from the single
master model used in Windows NT to a multimaster model in which all domain controllers are
equal (or peers, to use the proper terminology). This means no more primary domain controller
(PDC) and backup domain controller (BDC) issues, allowing for a much more efficient replication
process and ensuring that no single point of failure exists within a domain.

The Hierarchical Design

Probably the most fascinating, and potentiaﬂy powerful, feature of Active Directory is your ability to

organize resources to match the IT management philosophy used in your company. This hierarchy, or
tree, structure is the backbone of an Active Directory environment. As shown in Figure 1.4, a graphical
representation of an AD tree looks much like a graphical representation of a DOS directory structure.

FIGURE 1.4
The AD tree allows

you to organize your

\
s

resources in a logical
manner.

[
§
[

Manufacturing

\
/

User: Bob Folder: Data

AD uses objects to represent network resources such as users, printers, or share points. It also uses spe-
cialized objects known as containers to organize your resources along the lines of your business needs. In
Figure 1.4, for instance, the company has three offices: Tampa, Atlanta, and Chicago. Given that most
users will utilize resources located physicaﬂy near them, it makes sense (usuaﬂy) to create containers that
represent physical sites. Within the Atlanta office, the network resources (notice that users are nothing
more than another resource on the network) are departmental, so the AD design reflects this through
the creation of departmental containers.

The best analogy for the AD tree structure is to look at the DOS file system. In DOS, you would
create directories and subdirectories to organize your files; directories were created for easier access (it’s
much easier to find your spreadsheets if they are all stored in a single directory) and to ease manage-
ment (if all of your data is within a Data directory, you can easily configure your backup software to

back up your critical data).

THE ACTIVE DIRECTORY STRUCTURE 15

AD containers are used to group objects that have similar attributes. You might, for instance,
want to apply a specific security policy to all salespeople. Grouping these user accounts together
will facilitate this type of management in your environment. Active Directory manages the rela-
tionships between objects within the tree, by default creates the appropriate trust relationships
between domains, and presents you with a consistent (and single) view of your network.

The Benefit of an Object-Oriented Structure

Take another look at Figure 1.4. You will notice that each object represents some “manageable”
aspect of the network. Each container represents a grouping of resources, and each individual
resource 1s represented by a unique AD object. Each of these object classes (container, user, printer,
etc.) 1s assigned a set of attributes that describe the individual resource. User objects, for instance,
have attributes that are pertinent to users: names, passwords, addresses, telephone numbers, and so
on. There are two major benefits of this type of object—oriented design.

First, since each object within AD is reaﬂy only a record in a database, it is possible to eXpand the
list of attributes to match the speciﬁc needs of your company. You rnight, for instance, work in an
environment in which almost all users travel for business. In this case, you rnight: (or might not) want
to store travel information (such as frequent flyer memberships, hotel preferences, and emergency
contacts) within the security of the AD database. Since AD is “extensible” (open to modification),
these types of changes are possible.

The second benefit of an object—oriented design is that each object represents an individual resource,
and each attribute represents a unique aspect of that resource. This means the system can include an
inherent security mechanism. In the case of AD, each object has an ACL that describes who has been
given permissions to access the object:. For example, you might want to allow your help desk personnel
to change passwords, but not to perforrn any other administrative tasks.

Multimaster Domain Replication

As in earlier versions of Microsoft network operating systems (namely Windows NT), the domain
represents a database of network resources. Each domain controller within a domain contains a com-
plete copy of this database. If a new object is created, or an existing object is modified, this informa-
tion must be replicated to all of the other domain controllers within the domain (in order to keep
their copy of the database up-to-date). In Windows NT; this replication process was accomplished
using what is known as a single-master model. There was one (and only one) PDC upon which all
changes were created. The PDC would then replicate those changes to BDCs in order to keep their
databases current.

The problem with the single-master model is that it produced a single point of failure. In the
event the PDC was unavailable, administrators were not able to complete any domain administrative
tasks. (They could promote a BDC to PDC status, but this was a manual process and required a full
understanding of the ramifications to the environment.)

Active Directory uses a multimaster replication model in which all domain controllers are able to
accept changes to the database and replicate those changes to all other domain controllers within the
domain. Gone are the days of PDCs and BDCs, and gone are the days of a directory’s single point of

failure!

16 CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

The Active Directory Feature Set

Opver the last few years, I've helped a lot of companies make the critical decision to either upgrade or
migrate to Windows 2000/ Windows Server 2003 and Active Directory. I've also faced a lot of people
who were resistant to this process—people who were comfortable with their existing network, confident
in their ability to maintain their current environment, and intimidated by the new paradigm inherent in
a directory-based network.

Many times administrators were just reluctant to change because they were not aware of the great
benefits they would reap once the process was complete. I don't know how many times I've heard
an administrator say, “AD doesn’t offer anything that I need.” My answer is always, “Hogwash!”
(Of course, as a self-employed consultant I usually find a more politic method of expressing my
opinion.) Most of the time, these I'T professionals are just not aware of the many features inherent
in an AD environment. If you are in the position of justifying a move to AD, perhaps Table 1.1 will
help. Table 1.1 provides a fairly complete listing of the main features of Active Directory. I've broken
the table into three main sections, representing the three areas in which a directory (especially Active
Directory) can be of benefit.

TABLE 1.1: ACTIVE DIRECTORY FEATURES

FEATURE DESCRIPTION
EASE OF MANAGEMENT
Central database Active Directory provides a consistent view of your network and a single set
of management tools.
Group Policy Group Policies allow administrators to take complete control of their users’

environment—controlling access to the ability to make changes, distributing
software, applying security settings, and redirecting system folders to a
network location. Once set up and assigned, Group Policies are maintained
and applied without administrative intervention.

Automated software distribution While this feature is a function of Group Policies, it warrants its own
discussion. Using GPOs (Group Policy Objects), you can automatically install
and update software used by your users. This software can be available at
any computer from which they work or only on specific computers.

Backwards compatibility When older clients connect to a Windows 2000/ Windows Server 2003, the
server will respond as if it were a domain controllerin an NT 4.0 domain.

Administrative delegation Given the granular nature of Active Directory’s security system, it is easy
to delegate specific administrative tasks or specific levels of control over
distinct areas of the AD tree.

Multimaster replication Using a multimaster model for domain controller replication improves
efficiency and eliminates the single point of failure inherent in NT
domains.

Continued on next page

THE ACTIVE DIRECTORY FEATURE SET 17

TABLE 1.1: ACTIVE DIRECTORY FEATURES (continued)

FEATURE

SECURITY

Kerberos v5 authentication

Smart card support

Transitive trust relationships

PK1/X.509 certificates

LDAP (over SSL)

Ability to mandate levels of authentication

Universal groups

Group nesting

DirSync

Active Directory Connectors

LDAP

DNS

Open APl set

DESCRIPTION

Kerberos v5 is considered to be the most secure method of
authentication commercially available. Because Microsoft’s
implementation is compliant with the Kerberos standards,
authentication with diverse environments is also possible.

Windows 2000/ Windows Server 2003 networks fully support
smart card authentication as well as other more sophisticated
technologies (such as biometrics).

The user of transitive trusts greatly reduces the administrative
overhead of managing a multidomain environment.

Windows 2000/ Windows Server 2003 includes a fully functional
PKIimplementation package that is capable of issuing and
managing X.509-compliant certificates.

LDAP is an industry-standard protocol for accessing the
information in network directories. Microsoft AD is fully
LDAP accessible. LDAP requests can also be tied to an SSL
security environment to provide security to network access.

Administrators can mandate the levels of authentication
required to access a Windows 2000/ Windows Server 2003/AD
network. Kerberos v5, certificate-based, or even NTLM processes
are supported.

Using groups across domains is easier than ever!

Groups can now be nested, allowing you to design a hierarchical
group strategy.

DirSync is a synchronization mechanism for exchanging
information between multiple directories.

ADCs provide directory synchronization with foreign (non-AD)
directories, allowing you to choose your method of managing a
diverse network.

LDAP is the accepted industry-standard protocol for accessing
the information in a directory.

Windows 2000/ Windows Server 2003 is TCP/1P-based, allowing
the use of DNS for name resolution (and allowing the removal of
WINS services).

Having an open set of APIs allows developers the option of creat-
ing Directory Enabled Applications (DEAs), thus facilitating the
use of AD programmatically.

Continued on next page

18

CHAPTER1 AN INTRODUCTION TO NETWORK DIRECTORY SERVICES AND THEIR BENEFITS

TABLE 1.1: ACTIVE DIRECTORY FEATURES (continued)

FEATURE DESCRIPTION
SECURITY
Extensible schema The basic layout of the AD database (the definition of objects and
attributes known as the schema) can be modified to meet specific
business needs.

While the feature set can certainly be used to justify the move to AD, I find that the following
aspects of Windows 2000/ Windows Server 2003 and AD seem to be the deciding factors for my

clients:

¢ A more stable operating system. (This one 1s especially useful when working with estab-
lished NT environments. NT blue-screens and needs to be rebooted a lot more often than

Windows 2000/ Windows Server 2003.)
¢ Group Policies. Unlike the system policies found in NT, AD Group Policies actually work as

advertised! The ability to take control of the users’ environment can greatly reduce ongoing
SUpport Costs.

¢ Software distribution. One of the major costs of supporting PCs in the workplace 1s keeping
them up-to-date—both on the operating system (by applying patches and fixes) and on user
applications (ever tried applying the latest MS Office service pack on 2500 computers?).

In Short

In this chapter we took a high—level view of directory services and the benefits that they provide
to network administration. You'll find that many of your common tasks can be made easier in a
directory—based environment,

As you can see from the scenarios presented in this chapter, moving to a directory—based environ-
ment should make administration of large networks a lot easier. The directory can act as:

¢ The central point of management for the network
¢ The central point of access for users
* A repository for administrative information that would otherwise be hard to manage

As we discuss the capabilities of AD, you will probably come up with some solutions for your
own administrative nightmares.

In Chapter 2, we will dig a little deeper into the internal workings of network directories. There
are many directories currently being used throughout the networking world, and we'll take a look at
a few of them. As we examine these other directories, we'll build a “wish list” for AD. Later, we'll
see how closely the reality of AD matches the potential of directory-based networks.

Chapter 2

Anatomy of a Directory

I DON’T KNOW ABOUT you, but over the years T've had to learn a whole bunch of new technol-
ogies—ﬁrst CPM (rernember that?), then DOS, then NetWare (aﬂ kinds of versions), then Win-
dows, followed by Windows for Workgroups, NT, Windows 2000, XP, and now the Windows
Server 2003 product family. (This list doesn't even touch upon the various user and server appli-
cations, network services, and Unix—type stuff. .’) I have to admit that there have been times when I
wasn't sure I would learn the latest technology; sometimes the changes seemed too great.

Whenever I hit a mind-block, and it seems that perhaps I should consider a career in lawn main-
tenance, I try to find out what brought the technology to its current state. In other words, if I can
understand the series of technologies that resulted in this new product, I can cut through the mar-
keting propaganda and find the core value. That core value (What I call the “critical features list")
often gives me an understanding of what the technology 1s supposed to do. Once I know what it’s
supposed to do, I can usually figure out how to make it work.

That’s what this chapter is all about—taking a look at the technologies that preceded and
helped form the features list of Active Directory. We'll start simple—looking at paper-based
directories to geta feel for what a directory is. We'll then discuss a few of the limited direct-
ories that have been in use for quite some time in our industry‘ Last, we'll look at a competing
network directory—Dboth as an example of what a network directory can do and as a yardstick
for comparison with Active Directory.

This chapter covers:

L 4 Beneﬁts and drawbacks Of paper and cornputer—based directories

* Understanding DNS, WINS, and NDS network directories

Paper-Based Directories

‘We all use directories on a daily basis. Perhaps the most common directory is the plain old phone
book. You might not see the telephone directory as a marvel of technology, but consider the services
it provides.

20

CHAPTER2 ANATOMY OF A DIRECTORY

The telephone directory acts as a repository of information, storing the names, addresses, and
telephone numbers of the residents of your town (or state or nation, depending on the book you
are using). This information is presented in an easy-to-use format—in most cases, as a paper-based
book that can be used by anyone with a basic level of literacy. The book’s information is organized in
an easily understood manner: an alphabetical listing. All in all, as a directory, the telephone directory
fulfills its purpose admirably, as evidenced by how long it’s been around and how little its design has
changed.

The telephone directory has become a standard piece of our culture: consider how many companies
now offer such directories to the public. Many of these offerings are specialized—business-to-business
listings, neighborhood directories, and even restaurant listings organized by type of food. Having such
specific directories means that you don't have to search through page after page of information in order
to find that great Mexican restaurant or a pizza parlor near your home.

An example of a common directory that is specific in scope would be the list of physicians in
a particular health-care system. This is an example of a directory that is a little more “directed”: a
list of physicians, their specialties, their locations, and sometimes even their office hours. This
information targets a specific audience. If you do not participate in the appropriate health-care
plan, this information would be of no use to you. If, however, you belong to the plan, the infor-
mation is critical to the health of your family. Once again, this information is presented in a
manner that is appropriate for its use: usually a paper-based solution where the physicians are
listed alphabetically by specialty.

The biggest problem with both of these examples—the telephone directory and the physician
directory—is that a paper-based solution is usually out-of-date before you receive it. Think about
the number of times you have dialed the listing for a local pizza parlor, only to find that it has
gone out of business. While the list of physicians might be correct and current, wouldn't it be nice
to have a list of physicians who are currently accepting new patients? Better yet, wouldn't you pre-
fer to have a list that is so up-to-the-minute that you could check to see how far behind schedule
the doctor is running today?

Computer-Based Directories

Paper-based directories illustrate the kinds of services that a network directory can provide, but they
fall short of explaining the true benefits of a real-time, software-based solution.

A better example of a directory would be a personal information manager (PIM), such as Microsoft
Outlook. PIMs store, organize, and display information that is specific to an individual. You can use a
too] like Outlook to hold your addresses, keep track of appointments, and even warn you about impor-
tant dates such as birthdays or anniversaries. PIMs are starting to take the place of paper-based address
books because they store more information, they can display that information in more convenient ways,
and they can be customized (and all without forcing you to write really small in the margin of the page).

It is not unusual for someone to use a PIM to organize a day’s activities, add a list of friends’
birthdays to her to-do list, send a copy of a good joke to all her friends, and automatically fax a sales
announcement to her clients. A good PIM not only stores information but also makes information
usable in real-world applications. With Outlook, for instance, you can use your contacts list (which
contains names, addresses, telephone numbers, and other information about people) as the data list
for a mail merge into a document created in a word processor.

COMPUTER-BASED DIRECTORIES

While PIMs are convenient, they do have their drawbacks. To retrieve the information in your
PIM, you must have access to both the software and a computer. Also, stand-alone PIMs, such as
the software that runs on Palm Pilots, are not convenient for sharing information because their
information is not stored on a central server. If your schedule is stored on your laptop or sitting
in your pocket, your colleagues can't access it to find out whether you can attend an important
staff meeting.

These limitations are being overcome by moving PIMs from the status of stand-alone applications
to groupware products. Groupware can be defined as an application that is specifically designed to allow
users to share and/or collaborate on projects or data. Most of today’s groupware packages started out
as e-mail applications and have grown from there. This makes sense; e-mail is a basic way to share infor-
mation, and most collaboration is just that—shared information.

Microsoft has entered the groupware market in a big way with Microsoft Exchange Server. As an
e-mail package, Exchange is about par for the course, although some might argue that Microsoft’s tradi-
tional graphical interface makes it easier to configure and manage than many others on the market, such
as Lotus Notes and Novell's Group Wise. Exchange really shines, though, in its collaborative tools. In an
Exchange system, the administrator (or any user with the appropriate permissions) can create public folders
that hold data. That data can be in just about any form you desire—from traditional e-mail messages to
form-based, threaded conversations to executables. All of this data can be made available to users of the
system based upon an internal security system.

Exchange was Microsoft’s first attempt at a directory-based system. The Exchange system is man-
aged through a series of containers and subcontainers—just like most network directories. Its access
features include the following:

¢ It has an internal security system so that only specific individuals can access certain data.

¢ It can be accessed from various types of clients (from mail clients like Outlook, from Internet
browser software, and even from LDAP-enabled applications).

NoTE [Ill talk about dirertog) organization later in this [baptef

COMPARING EXCHANGE SERVER TO ACTIVE DIRECTORY

If you’ve worked with earlier versions of Exchange Server (version 5.5 and earlier), you’ll be comfortable
with the Active Directory paradigm. If you can think of the mailboxes as “user accounts,” then the phi-
losophy of management is almost identical. “Accounts” represent real resources, and these accounts
are grouped within containers. There are also other types of objects within the Exchange directory—
objects that represent manageable aspects of the messaging system, things like connectors (the name
implies its function) to foreign mail systems, or the web-access protocols. The bottom line here is that
Microsoft produced an X.500-compatible directory (I’ll talk about X.500 later, but for now, it’s just an
industry-standard method of organizing directories) to manage their messaging software. While this is
just conjecture on my part, 1 believe they concentrated on Exchange in an effort to clarify their vision of
how a directory should work (and used it as a test environment to work through any technical problems).
They could then take the expertise they developed and use it to develop Active Directory. For adminis-
trators, this just means that Microsoft’s development staff had years of experience in putting together a
working directory before they released Active Directory.

21

22

CHAPTER2 ANATOMY OF A DIRECTORY

While all of these examples—the telephone directory, a listing of physicians, a personal information
manager, and even Microsoft Exchange Server—indicate the kinds of services that a network directory
can provide, none exemplifies the true depth of the service that such a system can provide. A network
directory encompasses all of these examples—and offers even more.

Understanding DNS, WINS, and NDS Network Directories

As you learned in Chapter 1, a network directory is a database that contains information used to
access, manage, or configure a network. As thus defined, network directories have been in use for
quite some time. Some examples of mature network directories include:

¢ Domain Name System (DNS)
¢ Windows Internet Name Service (WINS)
¢ Novell Directory Services (NDS)

Each of these directories holds information that is used to access or manage a network (or
some aspect of a network), and each works in a slightly different manner. Let’s look at each of
them to determine what each does, how it is configured, and how it accomplishes its tasks. Each
of these examples will include good traits and bad traits: things to be embraced or avoided by
any new directories that enter the market, such as Active Directory. From each example, we will
build a list of desired capabilities in a directory service which we can then use as a set of guide-
lines when considering Active Directory.

Domain Name Service (DNS)
The basic function of DNS is to resolve user-friendly domain names into IP addresses (called name reso-
lution), but as such it barely qualifies as a true network directory. It does, however, include some features
that can be useful in a true directory, or even useful fo a true network directory. Active Directory utilizes
DN as its name resolution utility, SO you must have a good understanding of how DNS works before
you begin working with AD.

When a client enters a fuﬂy qualified domain name (FQDN), the DNS server is queried for the
IP address of the corresponding server. DNS is the tool most commonly used to find resources on
large IP networks such as the Internet. While DNS has been working as the main name-resolution
service on the Internet for quite some time, it does have a few weaknesses. For our discussion, we'll
look first at how DNS is structured, then at a few of its weak points.

WHY DNS?

Before the Internet was created, there existed a network known as the ARPAnet. This network tied
together a few university and Department of Defense sites so that they could share research material.

NOTE This is a bit simplistic, but it will suffice for our discussion. For an overview of Internet history from the
perspective of network security, see Active Defense: A Comprehensive Guide to Network Security by
Chris Brenton (ISBN 0-7821-2916-1, Sybex, 2001).

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES | 23

Since the network was small, each computer on the net had a small text file, known as a hosts file, that
listed a user-friendly name for each host (computer) and its IP address. When another host was added
to a site, the hosts file on each computer that might need to communicate with the new computer was
updated with its address.

As an example, suppose that two networks were tied to this network—KingTech and PS Consulting,
Each of these networks has five hosts that must be accessed across the network. The hosts file for each

client device must include a “friendly name” and the IP address of all 10 hosts. A sample hosts file is
shown in Table 2.1.

TABLE 2.1: SAMPLE HOSTS FILE

IP ADDRESS HosT
131.107.2.100 Localhost1
131.107.2.101 Localhost2
131.107.2.102 Localhost3
131.107.2.103 Localhost4
131.107.3.100 Remotehost1
131.107.3.101 Remotehost2
131.107.3.102 Remotehost3
131.107.3.103 Remotehost4
131.107.3.104 Remotehosts

Each computer needing to access hosts on these two networks needs a hosts file with the IP address
p g

of all of the hosts it might access. In other words, keeping these “simple” text files up—to—date could

require quite a bit of management.

WHAT ARE DNS DOMAINS?

DNS was created to alleviate some of this management overhead. Basically, DNS is this text file, broken
into logical units known as domains and distributed across multiple computers known as DNS servers. The
logical domains are organized in a hierarchical structure, much like the DOS file system. There is a very
specific format for the names used in a DNS system, known as the namespace of the DNS system. The
concept of a namespace will be very important in understanding how AD is accessed by clients, so let’s
define the term for future reference:

A namespace is a set of rules Loverning how objerts (DNS records in this case) are rgferenced (name@ within
a directogi,

On the Internet, domain names are registered with a central consortium to ensure that they are
unique and that their format follows the namespace rules set forth for the Internet. This consortium,

24 CHAPTER2 ANATOMY OF A DIRECTORY

known as InterNIC (short for Internet Network Information Center), controls the last section, or
“upper level,” of domain names and has created a specific set for use on the Internet. Domain names
on the Internet will end with some standard name. Below you'll find the traditional first-level domain
names, although the standard list has been expanded lately.

.edu
.com
.org
.het
.gov
.mil
.num
.arpa

XX

Educational institutions

Commercial organizations

Nonprofit organizations

Networks

Nonmilitary government organizations
Military government organizations
Telephone numbers

Reverse DNS

Two-letter country codes (such as .ca for Canada)

TiP Any dimtog) service must include a set of flearly dg‘ined, standard rules for naming the objefts that it contains—

tke namespafe‘

NOTE A[tually, this list is not really fomplete. Most of us are used to typing in domain names like
www. royal-tech.com, and we are tcmgkt that this is the resource’s fomplete name. In this case, www represents
the host (my web server), and royal-tech.com is the domain. In reality, tkefull name of any domain ends in a
period. The period represents the root of the domain namespace, much like DOS patks should really start with C:\
but are rarely typed that way.

When a domain name is registered, InterNIC will determine if the requesting agency has chosen the

appropriate upper-level domain. If so, and if the name is not already in use, InterNIC will reserve the
name for the requesting party and add a record to DNS for the new domain.

NOTE The InterNIC was established in 1993 by the National Science Foundation (NSF) and is operated by Network
Solutions, Inc. and AT&T. Tor more information and a wonderful bistory of the Internet, try their “15 Minute Series”
at http://www.medizin.fu-berlin.de/medbib/15min/index2.html.

The following steps show how a DNS request is translated into an IP address during a typical query:

1. The client requests a resource; for our example, let’s assume it's the web page ww. royal-tech. com.
One of the configuration parameters for IP clients is the IP address of a DNS server. The client
software will query this server for the IP address of the corresponding resource.

2. The DNS server will process the query, first checking to see if information for the

royal-tech.com domain is included. If not, it will check a local cache. The local cache
contains the IP addresses of resources that have recently been resolved to IP addresses. If the IP
address for www. royal-tech.com is in the cache, the server will return this information to the client.

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES | 25

NOTE The DNS cache is a physical file that holds the IP addresses that the DNS server bas resolved; if someone
accesses a site once, he might want to do so again. Caching the IP addresses speeds up response time, since the DNS
server will not have to query any other servers for the information the second time. Because the Internet is a dynami(
environment, these cached entries are given a time to live (T TL) so that they will be re~resolved every so often. In the

Microsoft implementation of DN, the default TTL for cached entries is 60 minutes.

3. If the information is not available locaﬂy, the DNS server will forward the query to a root
server. Each DNS server on the Internet contains a publit cache file that holds the IP addresses
of the root servers for each top-level domain tree (.com, .edu, .org, and so on).

4. The root DNS server will search its database for the record of a DNS server registered for the
.com domain. If such a record exists, it will return the IP address to the local DNS server.

5. The local DNS server will then query the .com DNS server for the IP address of a resource
named royal-tech. If such a record exists, the remote DNS server will return the IP address

to the local DNS server.
6. The local DNS server will query the royal-tech.com DNS server for the IP address of a

host named www. If such a record exists, the remote DNS server will return the IP address
of the www server to the local DNS server.

7. The local DNS server will then return the IP address to the client. The client will then begin the

process of connecting to the royal-tech.com web server. This process is depicted in Figure 2.1.

FIGURE 2.1 4) Returns .com Server IP Address

A typical Internet

DNS query D

Query for I l) -
! WWV)\//.RoyaI-Tech.com 3) Queries Root ~—[Royal-Tech.co
= Server iP Address
H %.com Root server DNS

5 | Returns DNS Server Address
Local DNS server for Royal-Tech.com

Returns IP Address \
2) Checks Local Cache ‘jj [E

—

—

oL
\\ = _ IP Address
Royal-Tech.com DNS
Local Cache DNS Server

Steps 5 and 6 result in local DNS servers walking the DNS structure until the proper
IP address is returned.

26 CHAPTER2 ANATOMY OF A DIRECTORY

THE DNS STRUCTURE
The example in Figure 2.1 demonstrates both the distributed nature and the hierarchical design of
DNS. Each DNS server contains only records for resources in the domains for which it is responsible.
If the DNS server receives a request for information that it does not contain, it will pass that request
up or down the structure until the appropriate DNS server is found.

You could see DNS as a DOS-like structure—a series of directories (or domains) organized in a
tree-like format, as shown in Figure 2.2.

FIGURE 2.2 DNS “Tree” Structure

The DNS

hierarchical Root

structure | l | |
.org .com .edu .mil

b

Microsoft Royal-Tech XYZ

The hierarchy of domains within the DNS structure allows the database to be broken into smaller
sections, which can, in turn, be distributed across multiple servers. This reduces the hardware required
at any given server, as well as the network bandwidth required to support queries.

Imagine a system that was not broken into smaller pieces. First, the database would be huge (a record
for every resource on the Internet). Few companies would be able to afford the kind of equipment that
would be required: Jarge hard drives, tons of memory, and multiprocessor servers would be mandatory.
With fewer DNS servers available, each would have to handle more queries from clients. This would
result in more network traffic, which would, in turn, require more bandwidth on the link to the Inter-
net. Without the ability to distribute the workload across multiple servers, DNS would probably not
work for name resolution on large IP networks.

This ability to break the database into logical pieces and distribute those pieces across servers is
critical to any network directory that hopes to serve in medium or larger environments.

TIP A network directory should include the ability to split the database (this is called partitioning) in order to distribute
the maintenance and access overbead across multiple computers.

DNS RECORDS

Due to the various services that can be listed in the DNS database, the format of each record can
get quite complex, but the bottom line is that DNS is a series of text files containing IP addresses
for hosts in an IP-based network. This text file must be created and maintained manuaﬂy—a task
that can consume a lot of time in a Iarge environment. If a company is forced to change its [P
addressing scheme, the DNS records for each resource must be updated in DNS. If a resource is
added (another mail or web server, for instance), a record must be added to the DNS database.

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES 27

The manual nature of DNS management is both a blessing and a curse. On one hand, the simplicity
of a text file offers advantages in a mixed environment. On the other hand, a database that does not offer

any automation will require a lot of person-hours in a large environment.

TIP A network dz‘mtooz should have the ability fo dynamimlly confirm the validity of some of the information it contains.

To be quite honest, the drawback of manual maintenance has been overcome in the latest releases
of DNS. DNS has also been expanded so that the database records are not limited to resolving IP
addresses for hosts; recent versions support a new type of record known as an SRV record that resolves
an IP address for a service (in other words, my DNS request can ask for a “domain controller” rather
than a particular host). Both of these additions are critical to an Active Directory installation. If you
are using a BIND-based (Berkeley Internet Name Domain) DNS solution (used by most Unix and
Unix-like operating systems), then you will have to ensure that you are using DNS version 8.1.1 or

later to support these newer functions.

DNS FAULT TOLERANCE
In order to provide fault tolerance, DNS defines two types of DNS servers:

¢ Primary servers

& Secondary servers

Primary servers copy the domain information that they contain to secondary servers on a regular
basis. Clients can be conﬁgured with the IP addresses of multiple DN servers. If the client attempts
to contact a DNS server and receives no response, it will proceed to the next DNS server in its list.
This ensures that clients will continue to function norrnally even if the network loses a DINS server

to some catastrophe, as shown in Figure 2.3.

FIGURE 2.3 1) Contact Primary DNS Server =
Primary and — —
secondary DNS _ (v) Request
servers ~ w tl(r)T:ﬁS D
Primary
DNS Server
2) Attempt Secondary DNS Server =
Secondary
DNS Server

‘While the primary/ secondary arrangement of servers provides a level of redundancy, it is configured
in a limited manner known as a single-master environment. All changes to the DNS database must occur at the
primary (or master) DNS server and be propagated to the secondary. If the master DNS server should
fail, no changes can be made to the database until one of the secondary servers has been promoted to the

status Of master.

28

CHAPTER2 ANATOMY OF A DIRECTORY

TIP A network dirertmy ina Zarge environment must be fompletely fault tolerant. The loss gf a single server should in no
way affect network functionality.

There are certain shortcomings to the traditional DNS primary/ secondary system. First, because
all changes must occur on the primary server, the system hasa single point of failure. In the event that
the primary goes offline, no updates can be made to the domain information. The biggest problem
with this system is that it really does not provide any fault tolerance. If the secondary servers do not
receive an update (or at least some sort of “hello” message) from the primary server in a given time
period, they assume that their data is out-of-date and begin refusing to service client requests. In other
words, even though we have a complete copy of the domain information, it cannot be used unless the
primary is online. (This simplifies the overall concept, but it works for our purposes.)

In order to eliminate these problems, Microsoft has conﬁgured their DNS software so that it
can store the DNS database within Active Directory. Since AD utilizes a multimaster replication
process, all AD-integrated DNS servers are consider to be primaries. (They can all accept changes
and update all other DNS servers with the new information.) The loss of a single DNS server does
not affect the overall system since all DNS servers consider themselves to be authoritative for the
domain.

DNS IN SHORT

The Domain Name Service is a database used to resolve host names into IP addresses. The name-
space it defines follows a set of rules, which is the industry standard. The database can be broken
into smaller pieces (domains) and distributed across multiple servers. The service provides a mecha-
nism for combining these separate files into a logical whole. Using a series of primary and secondary
servers, the service adds a limited amount of fault tolerance to the database by replicating domain
information to multiple servers.

All in all, DNS is a success. It has fulfilled its purpose in a large environment (the Internet) for
quite some time. While there are a few things that might need improvement, for our purposes it acts
as a very good example of a working directory.

You might be wondering, “If DNS is so great, why don't we use it as our network directory
instead of implementing Active Directory Services?” The answer to this question revolves around
functionality. DNS was designed for a specific purpose: resolving a host name into an IP address.
DNS handles its intended function very well—so well, in fact, that AD incorporates DNS into its
own design—Dbut DNS could not handle the extra functions that would be placed upon it in an
expanded role. DNS is based on a series of text files that are seen as a flat-file database. Adding
additional functionality (holding the configuration information for a router, for instance) would
stretch the limits of such technology.

Windows Internet Name Service (WINS)

WINS is another network directory currently used in Windows NT environments. Like DNS, WINS
is used to resolve names into IP addresses. Unlike DNS, though, WINS is used to resolve NetBIOS

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES 29

names rather than host names. NetBIOS names are the unique identifiers, or computer names, given to
resources on an NT (this includes N'T, Windows 95 /98, Windows Me, Windows 2000, XP, and even
Windows Server 2003) network. Since these names identify computers on the network, each com-
puter must have a unique NetBIOS name assigned to it.

NOTE NetBEUI was retired” with XE but the DLLs are included with a README file for puiting it on an XP
machine. Microsoft bas made an attempt to move away from NetBEUI and WINS altogetbex

REGISTERING A NAME
NetBIOS is a broadcast-based prototol. By default, as each client is initialized, NetBIOS sends out a

broadcast announcing the name it intends to use. If another station is aiready using the intended
name, that station will return a negative acknowledgment to the newcomer. Basicaﬂy, this boils
down to the first station yeﬂing, “I intend to join the network as WSl—anyone mind?” If no
response is returned, the station will assume that the name is unique on the network and will
continue its initialization.

NOTE While this sounds like a simple but effective tec/migue, it is of limited use in a routed network. Most of today’s
routers are configured so that they do not pass broadcast packets. In effect, this means that the NetBIOS station is limited to
confirming the uniqueness of its name to the local network. Conceivably, there could be another station with the same name
on a different network.

The first function of a WINS server is name registration. In a WINS environment, clients are con-
tigured with the IP address of a WINS server. Instead of using the broadcast method to announce
itself (and determine if its name is unique), each client sends a registration request directly to the
WINS server. The WINS server builds a database of the names of those workstations that have
registered themselves. When the server receives a new request, it compares the requested name to
those that have been registered. If the name is unique, it sends back a positive response; if not, it
sends back a negative response. Since all of the traffic is made up of directed packets, routers will
pass the request to a WINS server on another network.

Unlike DNS, the WINS server builds the database dynamicaﬂy, adding records as workstations
register with the service. The net effect is that the database is updated without intervention from a
network administrator, greatly reducing the administrative overhead for networking staff.

Figure 2.4 depicts the four steps in the name registration process:

1. The client sends a message to the WINS server requesting registration.
2. The WINS server checks its database to ensure that the name is unique.

3. The WINS server sends a positive response to the client and adds the client’s name and IP
address to the database.

4. The WINS server adds the NetBIOS name and IP address to its database.

30

CHAPTER2 ANATOMY OF A DIRECTORY

FIGURE 2.4 1) I'd like to be WS1—ok? 2) WINS checks for
WINS name > [D duplicate name
registration -

3) OK—you are WST. WINS server

4) Add record

WS1 1P to database
Address

WINS Database

TiP Ina lm:ge environment, a a’irectog; service should have some mechanism Sfor dynmnimlly adding information to the

dambase,

NAME RESOLUTION
Once a station has determined that its name is unique, it can begin to communicate on the network.

In a traditional NetBIOS-based network, names are resolved to IP addresses using broadcast packets
Basically, a workstation yeHs on the wire, “Hey.’ I'm Iooking for a station named WS2—are you out
there?” If WS2 is on the wire, it will respond with a packet that contains its IP address. Once again,
though, because this process is broadcast-based, most routers will not forward the packets to other
networks. In effect, this limits communication to the workstations within a single network segment.
The WINS server also provides a name-resolution service. Instead of using the broadcast method,

clients send their request to the WINS server. The WINS server checks the requested name against
its database of registered names. If the name is available, the WINS server will return the IP address
to the requesting workstation. Once again, because this communication is performed using directed
packets, rather than broadcast packets, routers do not interfere with the process. Figure 2.5 shows the
name resolution process in a WINS environment, which occurs in the foﬂowing steps:

1. The client queries the WINS server for the IP address assigned to a NetBIOS name.
2. The WINS server checks the database for a matching record.
3. The WINS server returns the requested information or an error indicating that the requested

resource is unavailable.

FIGURE 2.5 1 I'm looking for WS7. 2 | Checks database
WINS name > = D
resolution

WINS Serve

3) Returns IP Address
of WS7

WS7 IP
Address

WINS Database

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES 31

Lastly, WINS clients send a notification to the WINS server when they are about to go offline.
This notification tells the WINS server to remove the record corresponding to the client from its
database. (It a client shuts down without sending this notification, WINS has a mechanism that will
delete the record automatically if it hasn't heard from the client in a specified period of time.) From
an administrative perspective, this means that the WINS database is both built and maintained
dynamically—without intervention from the network administrators.

TiP Wherever possz’ble, network directories should have mechanisms that automatimlly update and maintain the

iry‘ormation that t};ty contain.

WINS ACROSS A WAN

WINS includes one last mechanism that warrants discussion here. Imagine a WINS network that
includes wide area network (WAN) links, as shown in Figure 2.6. Because WINS uses directed,
rather than broadcast-based, communication, the router can pass the requests across the WAN

from City 2 to the WINS server in City 1.

FIGURE 2.6 City 1 City 2

WINS across a
‘WAN link

WAN Link

Y

Client 1 Client 2

—|
==

2L

WINS Server

Client 1 IP-Address

Client 2 IP-Address

WINS Database

While this configuration is possible, it might not be appropriate to send all of the WINS regis-
tration and resolution traffic across the WAN link. Bandwidth is usually limited (and expensive)
across this kind of line. WINS includes the ability to set up a partnership between WINS servers,
overcoming this limitation. With a configuration like the one in Figure 2.7, there is a lot less traffic

across the WAN link.

32 |CHAPTER2 ANATOMY OF A DIRECTORY

FIGURE 2.7 QNS Partnersp
WINS partnership %
—

Ll waNLink

Client1 WINS Server WINS Server Client 2

4
\

Client 1 IP-Address Client 2 IP-Address

Client 2 IP-Address Client 1 IP-Address

WINS Database WINS Database

When two WINS servers are configured as partners, they exchange their databases on a regular
basis. They can be configured to exchange information based on the number of changes to the data-
base or on a timed basis. In either case, there will be less traffic across the link, and the administrator
has more control over when that traffic is generated.

TIP A network directory should include a mechanism that allows control over the update traffic generated to keep the
information current.

WINS IN SHORT

Unfortunately, WINS alone cannot provide the level of service demanded of a true network direc-
tory (although much of the WINS technology can be found in AD). Microsoft learned a few valu-
able lessons from the design and implementation of WINS—and these lessons have added to the
functionality of AD.

Luckily, WINS is a technology on the decline. Microsoft has put forth a lot of effort to reduce
dependence on WINS for name resolution and registration. The new solution is to rely upon DNS
to provide these services.

Novell Directory Services (NDS)

With the release of NetWare version 4, Novell introduced what is arguably the most commerciaﬂy
successful network directory to date. NDS was intended to act as the central point of control for all
network services in a NetWare environment. NDS is a fuﬂy functional, mature, and stable example
of the kind of services that a network directory can provide. As such, it merits close examination
here—if for no other reason than to serve as an example of a well-designed directory.

NOTE There have been numerous rumors concerning the demise of NetWare as a viable product. To paraphrase Mark
Twain, the rumors of its death are greatly exaggerated! Case in point: Novell has recently released NetWare 6. NDS becomes
more stable and provides more functionality with each release. Don’t be surprised if the networks of the future are a mix of

NDS and AD working together to provide network services!

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES

THE NDS STRUCTURE

The NDS database is critical to the proper functioning of a NetWare network. NDS is queried each
time a network resource is accessed. When a user attempts to log on to the network, for instance, the
client software submits the user’s name to NDS for authentication. Later, this user might try to access
some resource, such as a printer, and NDS would again be queried: first to determine whether the user
had the necessary permissions and then to find the physical location of the resource. NDS is accessed
during all network functions.

The best way to understand NDS (or any network directory) is to think of it as a database. Many
administrators are intimidated by the “network” functions of a directory and forget that a network
directory is nothing more than a database. The NDS database contains records, or objects, that represent
network resources. There are many different types, or dasses, of resources that can be managed through
the NDS database. The record type for each class of object has a different set of fields, or properties. You
wouldn't, for example, need a logon name property for a printer object, because printers do not log on
to the network.

Table 2.2 lists a few of the more common classes of objects that exist in an NDS database.

TABLE 2.2: NDS OBJECT CLASSES

CLASS DESCRIPTION OF OBJECT
User Holds information specific to a user, such as logon name, password, account restrictions,

telephone number, and address.

Printer Holds information about a network printer. This object class contains properties such as
network address, name, and amount of printer memory.

Group Represents a set of users with similar resource needs. All members inherit permissions
assigned to the group.
Volume Acts as a pointer to a discrete portion of storage space (hard disk, optical, CD-ROM, and so on).

This object has properties that pertain to storage devices: network address, the server upon
which it resides, and certain permission information.

Print Queue Represents a directory used to store print jobs until the system is ready to release them to a
printer.
Alias Acts as a pointer to an object that exists elsewhere in the NDS structure.

There are many other classes of objects that can exist in the NDS database. NDS is also extensible: cus-
tom object classes can be created to store information specific to a particular environment. The definition
of the object classes contained within a directory is known as its schema. The ability to extend the schema
to include new or custom object classes s critical for any directory to remain viable in the future.

TIP A network direttory contains information about network resources. The deﬁnition of a dz'reztog}’s resource records is
known as the schema. For a directog) to be a viable long-term solution, it must be able to adapt to new tecbnologies. In other
words, it must be msily extended to include new object types.

33

34 |CHAPTER2 ANATOMY OF A DIRECTORY

GLOBAL DISTRIBUTED REPLICATED DATABASE

NDS is marketed as a “global distributed replicated database” used for the management of net-
work resources on a NetWare network. While most marketing phrases are more hype than sub-
stance, this phrase actuaﬂy does a fairly good job of describing how NDS works on a network.
By breaking the phrase down into its components, we can understand the basic functionality of
the directory.

Global

In earlier versions of NetWare, each server held its own “accounts database” known as the bindery.
When a user accessed a given server, this bindery (a flat database) would be queried to determine
if the username and password submitted were valid. From an administrative perspective, this meant
that a user account had to be created at each server that the user might need to access. Users were
often required to submit to the logon process multiple times as they accessed different resources on
different servers.

One of the many functions of any network directory is to centralize control of network functions.
In an NDS-based system, thete are no bindery files. Instead, the NDS database is used for all authenti-
cation processes. Notice that this implies that there s only one database for the network—no matter
how large or geographically dispersed the network. This is what is meant by the term global database.
When user Wu in Tokyo logs on to the network, he accesses the same database as user Bob in Chicago.

Distributed

Given that an object represents each network resource and each object is really only a record in a
database, the NDS database in a global environment could grow into a large file. The next logical
question is, “Where is NDS stored?>”

Since NDS is critical to most network functions, it might be best to place it in a central location,
as shown in Figure 2.8. Placing the database in the middle of your environment seems to put it in the
“fairest” location. This placement actually mirrors other kinds of corporate access—it always seems
that the offices farthest from the center are the last to know anything.

FIGURE 2.8

Centrally located
NDS database

Clients Clients

NDS Server
= —

- s

NDS Database

UNDERSTANDING DNS, WINS, AND NDS NETWORK DIRECTORIES 35

While this arrangement might look good on paper, what if Site 1 is in Tokyo, Site 2 is in Chicago,
and Site 3 is in London? Do we really want users in Tokyo accessing a server in Chicago every time they
need to utilize a network resource? Probably not! This configuration would not only be inconvenient for
the user (imagine how long it would take to log in across the WAN link), it would also generate an unac-

ceptable amount of traffic on what is probably an expensive link.
Since a centrally located database is not a good idea, another design would be to place the data-

base on all servers in the network, as shown in Figure 2.9.

FIGURE 2.9
NDS on all servers

in the network

Chicago London

L]

NDS Server

[3

NDS Database

L]

NDS Server

[3

NDS Database

NDS Server

[3

NDS Database

While this configuration would ensure local access to NDS for authentication, it is still not a
viable solution. Imagine the traffic that would have to be generated to keep the multiple copies

synchronized!
These two scenarios demonstrate the value of a distributed database. NDS can be divided into

chunks—the technical term is actually partitions—that can be located on servers throughout the net-
work, as shown in Figure 2.10. A good design would be to place the partition that contains records
for Tokyo resources (including user accounts) on a server near those resources. This design has the
added benefit of distributing the workload of maintaining the database across multiple servers so

that no single server is overworked.

FIGURE 2.10 =
A distributed = b1
NDS database

Server 1 Server 2 Server 3 p2

JI3fy -

P1 of NDS P2 of NDS P3 of NDS Overall NDS Database

36 CHAPTER2 ANATOMY OF A DIRECTORY

Replicated
While the design shown in Figure 2.10 does solve the problem of where NDS should be located, it

does not provide any fault tolerance for the critical information stored in the database. Suppose that
Server 1 were to go offline. Since the server that contains her authentication information is not avail-
able, user Susan in Chicago would be unable to access any network resources.

To solve this “single point of failure” problem, each partition of the database can be copied, or
replicated, to multiple servers, as shown in Figure 2.11. In the event that Server 1 becomes unavailable,
the system can still authenticate user Susan, because her account information is still available on

Server 2.
FIGURE 2.11 = = =
Replication of = = =
partitions to
multiple servers = > ——
Server 1 Server 2 Server 3
o —— _—
| S S
P1 P2 P3
P3 P1 P2

SCALABILITY

Figure 2.11 shows another important feature of NDS. Notice that we now have complete fault tol-
erance of the database: each partition exists on more than one server. To provide this fault tolerance,
though, no server has to hold more than two-thirds of the database. As a network grows, each server
will have to hold less and less of the database—and therefore spend less and less time managing
NDS—but we will still have complete fault tolerance. This is known as scalability. As the number
of servers increases, the amount of overhead placed on each server decreases. In other words, NDS

becomes more efﬁcient as the network becomes larger.

NDS IN SHORT

NDS is a mature, stable, and efficient network directory. It can be used as the measuring stick for all
other directories. The only real weakness of NDS is its proprietary nature. When NDS was released,
there were no other viable directories on the market, thus no industry standards were in place to guide
Novell's development team. This resulted in a directory that is not as accessible to non-Novell environ-
ments as administrators might like. Given the track record of Windows 2000 and Microsoft, in the
long run it is more likely that developers will be working on AD add-ons than NDS add-ons.

INSHORT| 37

In Short
Each of the solutions that we have discussed—DNS, WINS, and NDS—offers lessons in how a

directory should be implemented (and in a couple of cases, how one should nor function). The
“wish list” can act as our yardstick as we compare AD to these other directories:

& Any directory service must include a set of clearly defined, standard rules for naming the
objects that it contains.

¢ A network directory should include the ability to split the database in order to distribute the
maintenance and access overhead across multiple computers.

¢ A network directory should have the ability to dynamically confirm the validity of at least
some of the information it contains.

¢ A network directory in a large environment must be completely fault tolerant. The loss of a
single server should in no way affect network functionality.

¢ Inalarge environment, a directory service should have some mechanism for dynamically
adding information to the database.

& Wherever possible, network directories should have mechanisms that automatically update
and maintain the information the directories contain.

¢ A network directory should include a mechanism that allows control over the update traffic
generated to keep the information current.

A network directory contains information about network resources. For a directory to be a viable
long-term solution, it must be able to adapt to new technologies. In other words, it must be easily
extended to include new object types.

In Chapter 3, we will discuss the ways that information can be organized within a database.
Network directories serve a very specific function, so they use a very specific form of organization.

This page intentionally left blank

Chapter 3

Inside an X.500-Compliant
Directory

IN THIS CHAPTER WE'RE going to look at the basic structure of a generic network directory. Why,
you might ask? Well. .. I could say because I'm a geek and I think it’s interesting. While that answer
would indeed be truthful, it wouldn't justify your time in reading this chapter. The real reason to
understand the basic building blocks of the directory database is that you are going to be working
with it on a regular basis. Understanding how it is built (from the ground up) can help explain
some of the issues you will face during your implementation. It can also help you design an AD
structure that is stable and able to pass the test of time.

On a more practical note, the AD database is designed to be extensible. By that I mean you can
add new types of objects and attributes. Okay, I know I haven't talked about these things yet; let’s
just say you might want to customize the information that is stored within the directory database.
You might, for instance, want to differentiate between your full-time, permanent employees and
your contractors or temporary staff. Perhaps you want to store different information about these
users—the brokerage firm from which you hired them or their hourly rates. The bottom line here
is that you might have management needs that are not met by the standard information stored
within the AD database. You have the ability to change the basic data stored within AD (although
the process is not as straightforward as you might like!).

A big part of understanding how a network directory works means understanding the X.500
recommendations for designing a directory. In the preceding chapters, we discussed network direc-
tories as repositories for network information. For this information to be of any use, it must be
organized in a manner that makes it easy to access and secure. So, based on the specialized needs of
a network directory, the industry developed the X.500 recommendations for organizing directories.
Consider that a flat-file database would not work for a large directory. Imagine how large the file
would be in a global network. The size limitations would confine its usefulness to networks so
small that they don't really need a directory. Beyond even the physical limits, imagine trying to
define a record type that could manage everything from user accounts to router configuration. A
relational database also would not handle the needs of a full-fledged network directory. Given the
diversity of the information that a network directory must store, the number of related files would
grow so large that just the index of relationships would soon overwhelm even the fastest computers
on the market. And so the X.500 recommendations were created.

40

CHAPTER 3

INSIDE AN X.500-COMPLIANT DIRECTORY

Microsoft has adopted the X.500 recommendations in its design of the AD database. A firm under-
standing of these recommendations is necessary before any discussion of AD can continue. Since X.500
is a recommendation and not a standard, incompatibilities exist between the implementations of X.500.
For example, Microsoft’s implementation differs from Novell’s, but since the namespace is consistent, the
information stored in the directory can be accessed from either implementation.

If you are going to make changes to the structure of any database, you had better know how that
database is put together! That’s what this chapter is all about.

In this chapter:

& What is X.500?

@ Designing a directory: the schema and hierarchical structures

What Is X.500?
Before I discuss what X.500 is, I should define what it is nor. X.500 does not define the implementation

of network directories. X.500 is instead a model upon which vendors can build their own products. In

this, it resembles the seven-layer OSI (Open Systems Interconnection) networking model, which simply
defines the functions that must be performed by networking software at each layer, without defining

direct implementation techniques.

The X.500 Specifications

The X.500 specifications were originally developed in conjunction with the OSI networking model
(the same seven-layer model that many of us learned, and then forgot, while studying for various
networking certiﬁcations). The goal of the specification was to provide a mechanism that would
allow products from different vendors the ability to access and share information. Exactly what type
of information is not defined; that is left up to the implementation of the vendor. What is defined
is a common method of organizing, naming, and accessing that information—in other words, a
standard definition of the format that the directory will take to facilitate interoperability. Two
international standards organizations—the ISO (International Standards Organization) and the
IEC (International Electrotechnical Commission)—created a joint committee, the International
Telecommunications Union (ITU), to oversee a set of technical documents with this goal in mind.
The documents that make up the X.500 recommendations are listed below.

NOTE If you are overly curious or suffer from insomnia, the followz'ng nine documents make up the core of the X.500
technical suite. While most administrators will not need this level of expertise, these documents do give a wondmj’ul feel for
the goals of the international committee. It’s interesting to note that if you read these documents and then work with any
product on the market, you will have a firm understanding of the difference between compatible and compliant.

¢ ITU-T Recommendation X.500 (1993) ISO /IEC 9594-1:1993, Information Technology—COpen
Systems Interconnection—The Directory: Overview of Concepts, Models, and Services. This is probably the
best read of the bunch. It provides a great overview of what a directory is all about.

WHAT IS X.500?

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-2:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Models. Provides a series of models to be used in the other
documents.

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-3:1993, Information Technology—
Open Systems Interconnection— The Directory: Abstract Service Definition. Defines, in an abstract way, the
externally visible services provided by a directory (such as Read or Write services to the data).

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-4:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Procedures Sfor Distributed Operations. Speciﬁes ways in which the
distributed components of a directory can interoperate.

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-5:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Protocol Specifications. Defines various protocols used by or to
access the directory.

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-6:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Selected Attribute Types. Defines various attributes for the data
stored in a directory, such as the naming of objects.

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-7:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Selected Object Classes. Defines a series of common types of
data that might be stored. These classes can act as the starting point for vendors when creating
their products.

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-8:1993, Information Technology—
Open Systems Interconnection—The Directory: Authentication Framework. Defines two methods of
authentication:

¢ Simple, in which passwords are exchanged

¢ Strong, which can take advantage of credentials formed using cryptographic techniques

¢ ITU-T Recommendation X.500 (1993) ISO/IEC 9594-9:1993, Information Technology—CQOpen
Systems Interconnection—The Directory: Replication. Defines methods for replication of the data
within the directory to various directory servers and provides for automatic updates.

Guidelines to Using the X.500 Recommendations

Asa guideline (rather than a detailed speciﬁcation), the X.500 recommendations act as a frame
upon which vendors can build their own implementation. The members of the ITU agency (here-
after referred to as the X.500 committee) had no idea what the scope of such products would be,
but to help focus their efforts they did make a few assumptions about the environments in which
directories would be used:

¢ The networks would be Iarge and subject to constant change. Think of a large network: how
many resources are completely static? Users move from place to place; devices are added,
removed, or moved on a regular basis; and the attributes of objects (passwords, telephone
numbers, or even network addresses) are extremely variable.

42 | CHAPTER3 INSIDE AN X.500-COMPLIANT DIRECTORY

¢ While the overall rate of change will be high, the useful lifetime of the information will not
be short. Stated another way, the information stored in the directory will be accessed by users
more often than it changes.

¢ Most network resources are identified by some “address” that is chosen for efficiency rather
than user convenience.

NOTE As you read over this list, you migbt assume that directories don’t seem to offer much Sfor small or midsized
businesses. Remember that the X. 500 committee was Zoo/ez'ng at the overall picture and had to create a set of recommendations
that would scale up to the lmgest environments. Directories in smaller networks prove their worth tknmgb lower administrative
costs and easier management.

The overall goal was to provide users (users can be either people or other computer programs)
with information about network resources, while insulating them from the mechanics of the net-
work. At the same time, the directory should allow for the maintenance, distribution, and security
of that information. Network resources can be just about anything that can attach to a network—
from users to computers to printers.

Since a primary goal of the directory is to insulate users from the mechanics of the network, the
information stored must be presented in a user-friendly manner. Each resource must be given a user-
friendly name and the interface should be intuitive (or at least as intuitive as possible). This name can
be thought of as a pointer to the resource. Since the name is just a pointer, it can remain the same
even if something has changed on the networking side. A printer named ColorLaser, for instance, can
still be named ColorLaser even if it is upgraded to the latest model or moved to another area of the
office. From the users’ perspective, these changes have no bearing on their access to the resource.

Developing Uses for a Directory
During the creation of the recommendations, the X.500 committee envisioned three generic, practical
uses for a directory. These generic examples were intended to inspire developers to more complex uses.

Interpersonal Communication ~ The directory can play a role in many forms of interpersonal com-
munication (such as e-maﬂ) by providing the information necessary for users (or their software-based
agents) to communicate with their counterparts in another system. Imagine a worldwide directory
that includes things like telephone numbers and addresses. A user would have a single point of access

to all of that data.

Intersystem Communication The directory could also be used to provide the information
necessary for one service to talk to another. A prime example would be one mail server trying to
deliver mail to another mail server. Today, we use another database (DNS) for this type of mail
delivery across the Internet. As you saw in Chapter 2, DNS is a great tool, but it does have its
limitations.

Authentication Services The directory could also act as a primary source for identification
and authentication of users to resources. By using passwords or some other form of identifier,
the directory could act as a single point of control over access to information and services.

DESIGNING A DIRECTORY 43

Designing a Directory

Designing any database is really more a logical exercise than a technical one. First you must decide
the purpose of the database, then you decide on an overall structure. For an X.500-compliant net-
work directory, such as AD, these two steps are predetermined:

¢ Its purpose is to store information about network resources.
¢ Its structure is hierarchical.

With most databases, the next step would be to define records and fields. This is where the design
of a network directory becomes a little more complicated than the Microsoft Access databases that
most of us are comfortable with.

The Schema

One of the first tasks involved in designing any type of database is deﬁning the types of records that
exist within it and the information that each record will contain. Within an X.500 directory, there can
be many different types of records. A record is called an object, and each type of record is known as a
class. Each class of object is made up of different fields known as attributes. A record for a user would be
of the class “user,” have various attributes (like telephone numbers or passwords), and be known as a
user object. The definition of the object classes and attributes available for any given directory is known
as its schema.

Since the X.500 recommendations are just a model and not an implementation, there are very
few object classes predefined. There is, however, a well-documented set of rules for how objects and
attributes should be created to allow for interoperability between various vendors’ directories. While
an in—depth discussion of this process is beyond the scope of this book, an overview can be helpful
when implementing a directory on a network.

The X.500 committee assumed that certain types of information might be made available through
the directory. These include the following generic types:

¢ Information about people, such as e-mail addresses, telephone numbers, and public key
certificates

¢ Information about servers and services, such as network port addresses
¢ Information about the directory itself, used to perform consistency checks and replication

You should note a couple of things about the list. First, it is eXtremely generic; there is very little
detail provided about the class of objects that should exist. Second, the list is open to expansion
should the need arise.

DETERMINING THE SCOPE

When designing a directory-based product, a vendor must first define the scope of the directory. That
is, they must first decide the various classes of objects they wish to support. Basically, the vendor must
decide which aspects of the physical world should exist in the directory database. The directory for a

network operating system, for instance, would have to include things like user accounts, groups, servers,

44

CHAPTER 3

INSIDE AN X.500-COMPLIANT DIRECTORY

storage devices, printers—in other words, the various pieces of information that would be involved in a
network. A manufacturer of network equipment, however, might have a completely different list. Here,
it might be more appropriate to store things like routers, bridges, and gateways.

As you can see, deciding the scope determines what information will be available within the directory.
The goal of the X.500 recommendations is that these different types of directories will be able to share
information because they are based upon the same design framework.

WHICH ATTRIBUTES?

Once a vendor has determined the scope, the next step 1s to decide what attributes should be stored for
each class of object. The attributes are a second step because the format of the directory allows multiple
classes of objects to use the same attribute definitions. The name attribute, for instance, would be used
for all records regardless of class. An IP address attribute, however, might only be used by physical
devices or user accounts (documenting where the user is logged on to the system). It would probably
not be a necessary attribute for a group object.

After these decisions have been made, a vendor can begin the process of building the schema of the
database. The schema holds the definition for the object classes in the database and their attributes. The
first step in building a schema is to define the attributes for objects. Then the developers combine attrib-
utes to build object: classes.

Creating a Directory
Microsoft has claimed that the AD schema is easily extensible; in other words, you are able to define
your own attributes and object classes. We're not going to get into the actual coding process, but it

might be helpful to explore the thoughts behind building a schema.

DETERMINING THE DIRECTORY’S SCOPE

Begin by determining the scope of your directory. Microsoft has ambitious plans for Active Directory:
at some point it will probably contain records for users, routers, applications, printers, and just about
everything else you might associate with your networks.

DIRECTORY ENABLED NETWORKS

At one point Microsoft was touting a concept known as Directory Enabled Networks (DEN). This concept
revolved around various vendors of network hardware (and some software) defining their own classes and
attributes for the Active Directory database and creating an application that would add these new com-
ponents to the schema. While the concept has not disappeared, Microsoft had a hard time convincing a
few key (and major) players to actually join the “Microsoft Team.” Many thought that by tying their prod-
ucts to Windows 2000/ Windows Server 2003 (and Active Directory) they would lose market share in other
arenas (most notably those networks that are Unix- or Linux-based). It will probably be a while before we
see “router” objects in the AD schema, but once it happens, network administration will change drasti-
cally. Imagine installing a new router and configuring it by cutting and pasting the configuration from an
existing device on your network!

DESIGNING A DIRECTORY 45

For our purposes, let’s keep your directory simple. You should design a few user-related object
classes and leave the highly technical network components to the experts at Microsoft.
First, let’s define the classes of objects to include the following:

User Represents the network user to the system

Group Represents a number of users for administrative purposes

Printer Represents the physical device on the network

Storage Space Represents some form of storage, such as hard drive, CD-ROM, or tape drive

Service Represents some service provided to the network, such as e-mail, DHCP, or DNS

NOTE This list is not fomplete enougb to act as an actual network dz'reftory, but it will suffice for our purposes.

The next step is to define the information that you would like to store for each object class—in
other words, the attributes that will be needed for each object.
For a user object, you might want to store some of the following attributes:

Name: a unique identifier

Password

Security certificate: a place to store advanced security certificates

Telephone number

E-mail address: multiple forms for Exchange, SMTP, or other mail systems

Mail stop

Department

Network address: multiple values to hold current IP, MAC, or other network addresses
Description: a text field to be used for any nonstandard information

Class: the type of object

® ¢ 6 O 6 6 O o o o o

Location: physical location of the user

This list could go on and on. If your users do a lot of traveling, for instance, you might want to
store things like frequent-flyer memberships, seating preferences, or rental car company preferences.
Your human resources department might like your directory to store items such as benefits package
options or dates of hire.

For the group object, your list might include these:

¢ Name: a unique identifier

¢ E-mail address: multiple forms for Exchange, SMTP, or other mail systems for all members to
use as a built-in distribution group

46

CHAPTER 3

INSIDE AN X.500-COMPLIANT DIRECTORY

*® & & o o

Telephone number: perhaps for the person responsible for the group’s activities
Description: a text field to be used for any nonstandard information

Class: the type of object

Member list: a list of all user accounts associated with this group

Purpose: a text field used to describe the function of the group

Once again, this list could have numerous options. You might, for instance, want to store a pointer

to a group web page on your intranet server.
group pag ¥y

Things should be a little simpler for your printer object:

® & 6 6 o o

*

*

Name

Network address: the IP or MAC address of the device
Make/model: the manufacturer and model number for the device
Serial number

Date of purchase

Warranty information: a text field describing any warranties in effect for the printer—perhaps
you could even add a date option to alert you when the warranted time has expired

Memory
Fonts

Client print drivers: multiple drivers for various clients that might use this printer

Your storage device object should also be fairly straightforward:

® & 6 O 6 0 0 0o o

Name

Network address

File system: FAT, NTES, CDEFS, etc.
Configuration: RAID, mirrored, etc.
Date of purchase

Warranty information

Size

Writable media: Yes/No

Removable media: Yes/No

DESIGNING A DIRECTORY | 47

Finally, we come to your service object. This object might be a little more complex. There are so
many network services that coming up with a standard format might not be possible, but you can
add attributes as needed later. Here are some attributes to get you started:

¢ Name

¢ Network address
¢ Description

¢ Location

As you can see, planning the information that should be held within the directory can be a com-
plex job. You have to include any critical information (how would you find a print device without
some sort of address?) as well as any information that might reduce either the management or user-
access overhead.

DEFINING ATTRIBUTES

Once you have created your list of object classes and attributes, the X.500 recommendations deter-
mine how you should define these items. First, you should combine all of your attributes into one
list and cross-reference those that can be used for more than one object class, as shown in Table 3.1.

TABLE 3.1: DIRECTORY ATTRIBUTE LIST

USER GROUP PRINTER STORAGE SPACE SERVICE

Name X X X X X
Password X

Security Certificate X

Telephone Number X X

E-mail Address X X

Mail Stop X X

Department X X X X X
Network Address X X X X
Description X X X X X
Object Class X X X X X
Location X X X X
Member List X X
Purpose X X

Continued on next page

48

CHAPTER 3

INSIDE AN X.500-COMPLIANT DIRECTORY

TABLE 3.1: DIRECTORY ATTRIBUTE LIST (continued)

USER GROUP PRINTER STORAGE SPACE SERVICE

Make/Model X X

Serial Number X X

Date of Purchase X X

Warranty Information X X

Memory X

Fonts X

Print Drivers X

File System X

Configuration X X X
Size X

By creating the attribute definitions first, developers can save themselves a lot of redundant work.
Objects are “built” by adding various attributes to a frame, rather than by buﬂding each object from
the ground up. There are certain attributes that will be common to all object classes. Each object
needs a unique name, for example, so that it can be referenced as a separate entity. Each object will
also have to be classified as a member of a class, so that the system can properly identify the resource
or service to users.

Hierarchical Structures: X.500 and DOS

X.500 presents a method of organizing the data stored within a directory that is easy to manage
and that also makes it easy for users to access the information they need. The recommendations
define the model as a hierarchical structure, often referred to as the directory tree. For some reason,
many experienced network administrators have a hard time with the concept of a directory tree
structure. For years, networks have had a server-centric design: each server was an island of services
in a sea of connectivity.

The X.500 recommendations present a new paradigm for network management that can take
some getting used to. While it is different, the concept is nothing new. Computer professionals
have been working with a hierarchical system for quite some time—DOS! Since both DOS and
an X.500 directory tree are based upon a hierarchical structure, the management of each is very
similar. Let’s review a few simple DOS basics before we look at the X.500 structure—basics that
will help us understand a hierarchical network directory structure.

DESIGNING A DIRECTORY

DEFAULT DIRECTORY

The first term to review is dg‘?mlt dirertogz. In DOS, the default directory is the directory in which you are
currently working. Here’s another way of looking at itz if you were to save a file (Without specifying a
path), it would be placed in your default directory. This is quite a bit different from Windows 98 and
NT, which hold a default “save” location (usually a directory named My Docurnents) in the Registry.
Because many DOS activities revolved around the default directory, we often conﬁgured our prompt to
display the default directory. (Remember the C:\ prompt?) Figure 3.1 shows a common DOS directory

structure. Let’s review a few more basic DOS recommendations before we go on.

FIGURE 3.1 C:\
DOS directory |

structure | | |

APPS DATA GAMES

-]

WP Quake

NAMING DOS FILES

First, let’s review how DOS files are named. Most of us are probably used to simply typing in just the
filename to start a program. In the example in Figure 3.1, for instance, we would probably start a game
of Quake by typing Quake. In reality, though, that is not the full name of the file. The full name of
the file includes the path back to the root of the drive: In this case, the full name of the file would be
C:\games\quake\quake.exe. As a convenience, DOS includes the path function so that we don't have
to type in the complete name to start a program.

NOTE The concept of a “complete” name will be very important when we start looking at X. 500 directories.

MOVING AROUND IN DOS

In DOS, we use the CD (Change Directory) command to move around the structure. If your default
directory were C:\ and you wanted to move to the Quake directory, you would enter the following
command:

CD games\quake

In the background, DOS would perform an append action, adding what you typed to your default
directory to end up with your destination. If the named destination exists, you are moved there. If not,
DOS will return an error.

49

50

CHAPTER 3

INSIDE AN X.500-COMPLIANT DIRECTORY

If your default directory were C:\apps\wp and you wished to move to the C:\data directory, you
would enter the following command:

CD \data

The backslash character (\) indicates the root in this command. DOS moves to the root and appends
the path you have entered. Once again, if you have entered a correct path, you will be moved there.

For most of us, moving around a DOS file system 1is second nature. Luckﬂy, this means that moving
around an X.500 directory structure is also second nature!

The X.500 Hierarchical Structure

The structure of a directory specifies how the information within the directory will be organized.
There are two main goals for the design of any network directory structure:

¢ Object identification
¢ Object organization

Both goals are critical to the proper functioning of any directory.

Object identification ensures that each object within the structure has some sort of unique identifier.
Each unique identifier must map direcdy to some resource. Think of it this way: without some unique
name, you would be unable to ask for information about a particular resource. At best, you could ask
for information about all similar objects. Imagine that you needed to print a document. Instead of
identifying the printer near your desk, you would have to present a request for all “HP printers in my
building,” or some other, less specific grouping. In this case, you wouldn't know whether your job would
print at the nearest printer or at some HP printer on another floor. The unique identifier allows you to
specify a particular object within the directory database.

Object organization allows the data within the directory to be broken into subsets for administrative
purposes. Suppose you wanted a local administrator at the Tampa office to be able to create new user
objects within a certain area of your structure. Without some sort of organizational plan, it would be
difficult to limit the access of the administrator.

The X.500 recommendations not only fulfill these two requirements quite well (as you’ﬂ see in
the next section) but actually exceed them. The X.500 structure defines a uniform way to uniquely
name objects and provides a framework that can be used to organize those objects once they are
created. It also provides for other necessary services: distribution of the database to multiple servers,
replication of pieces of the database to more than one server, and various protocols to be used when
accessing the directory.

THE X.500 TREE

As I stated earlier, there are many similarities between the DOS file structure and the X.500 directory
structure. In DOS, you organize your files by creating directories and subdirectories. In an X.500 struc-
ture, we have the equivalent of directories, called containers. Instead of using containers to organize files,
you use them to organize the objects within your database.

DESIGNING A DIRECTORY 51

You may have heard the DOS structure referred to as a “tree” because of the way subdirectories
branch oft from the root of the drive. Since the X.500 structure acts in much the same way, we refer
to it as the free. You use the tree to organize your objects for ease of management or ease of access (just
as youd use directories to organize files for the same reasons in DOS). In an X.500 tree, we refer to
the objects as leaves. A leaf object can be defined as any object that does not contain any other object.
This can get complicated, so let’s start with the container objects and ignore leaf objects for now.

In DOS there is no real difference between a directory and a subdirectory, except that subdirectories
are beneath some directory in the structure. Unlike DOS, the X.500 structure does define different
types of container objects. Each has a specific purpose and certain limits on placement within the tree.

X.500 defines the following types of containers:

Country Represented as a C object. The highest container object in the schema as defined by
the X.500 committee. It can only exist at the top, or root, of the tree.

Organization Represented as an O object. These containers can only exist oft the root of the
tree or below a country.

Location Represented as an L object. A grouping object that can exist at any level of the tree
except directly below the root.

Organizational Unit Represented as an OU object. Another grouping object. Basically, this is
the equivalent of a subdirectory in DOS. OUs can exist under Os or other OUs,

WARNING Microsoft’s X.500 direftogi (AD) does not neressarz'ly implement all of these container classes.

Figure 3.2 presents a graphical representation of an X.500 structure for the company King Tech-
nologies. King Technologies has offices in Tampa, Florida, and Berlin, Germany.

FIGURE 3.2 [ROOT]

Directory tree
structure for

King Technologies

| L=Tampa | | L=Berlin |

|OU=Sales|] [OU=Educ| |OU=Sales|

As with a DOS disk, there is no right way to organize a network directory. Many of the principles
are the same, though. In DOS you create a directory for one of two reasons: to ease access or to ease
management. The same holds true when creating containers in a network directory. Unnecessary
levels only add to users’ confusion and to management overhead.

52 | CHAPTER3 INSIDE AN X.500-COMPLIANT DIRECTORY

Once you have planned the structure, the next step is to populate it with leaf objects. Within the
directory, leat objects are represented by CN, as shown in Figure 3.3.

FIGURE 3.3 [ROOT]
A populated
directory
[c=us | | C=DE |
|
| L=Tampa | | L=Berlin |

OU=Sales OU=Sales
CN=Bob CN=Printer 1
CN=Susan

CN=Katie

In Short

An X.500 network directory is nothing more than a complicated database. The database holds objects,
which in turn have attributes (records and their ﬁelds). Because of the complicated nature of its job, the
directory 1s organized in a hierarchical fashion. The structure is defined as a series of container objects
connected in a tree-like manner.

There are numerous types of container objects and rules about their use, as you can see in Table 3.2.

TABLE 3.2: CONTAINERS IN AN X.500 DIRECTORY

NAME REPRESENTATION VALID PLACEMENT IN THE TREE

Country C Can exist only at the top, or root, of the tree

Organization [0} Can exist only directly below the root or a country
container

Location L Can exist anywhere except directly off the root

Organizational Unit ou Can exist only under an organization object or another
organizational unit

In this chapter, we discussed how a directory is designed, the types of information it can hold, and
how that information is organized. Once any directory has been populated with data (user accounts,
groups, peripherals, and so on), it must be made accessible if it is to have any value. In the next chapter,
we will discuss an industry-standard set of protocols specifically designed to access information stored
in a directory database.

Chapter 4

Accessing the Directory

SO FAR, WE HAVE concentrated on the structure of directory databases. Once you have defined the
schema, the next step 1s to populate the database with objects.The mechanics of creating objects and
ﬁlling the database with data will be discussed in detail in later chapters. For the moment, let’s assume
that you have created your environment. Now you can just sit back and relax, right? Hardly! You have
entered a lot of useful information—the next step 1s making that information available to the right
people. After all, Why did you spend hours typing in addresses, phone numbers, and locations if that
information was never going to be used?

If you were going to do all the administration of your AD environment and your users were going
to access it at the server, then a discussion of accessing the directory would really just be an overview of
the user interface. Of course, there are a couple of small problems with such an environment. First
(and foremost), we do not want users sitting, logging 1n, or even touching our servers! Second, most
companies place their servers in locked rooms, so even we (as administrators) rarely sit at the server to
perform our administrative functions.

The reality is that users sit at their own computers, and those computers can be spread out from
one end of the company to the other (and if you consider the mobile workforce, your users might be
spread out across the entire globe). This means that users must access the information in the directory
in a remote fashion. The same is true for administrators—who wants to go to the “server room” every
time a change must be made to the directory? I guess that might not be a problem for much of the
day-to-day management of a network directory; you could conceivably walk to the server once or
twice a day to create new user accounts or add a new printer. But what about the ad hoc support that
we all provide? You get a call from a user in accounting who has locked out their account because “the
system screwed up." (This 18 usually a euphemism for “1 fat-ﬁngered my password six times and now
the system says my account is locked out” or “Someone stole the Post-It note that had my password
on it.”) Do you want to leave whatever you are working on to go to the server room to fix each of the
100 small problems that crop up each day? We all know that the answer is “NO!”

That's what this chapter is all about. How, exactly, is the datain a directory database accessed?
This question is especially important if you manage a heterogeneous environment. You might, for
instance, have both Novell NDS and Microsoft AD running within your network. Since both are
X.500 compliant, information placed in one directory can be made available to the other. There
are a couple of industry-standard protocols used for accessing (and managing) the data stored
within an X.500-compliant directory.

54

CHAPTER4 ACCESSING THE DIRECTORY

Understanding these protocols gives you an advantage when configuring various remote access
tools and when trying to bridge the gap between dissimilar operating systems. Back to our example
of NDS and AD: knowing the access protocols used to communicate between the two environ-
ments can make it much easier to install and configure the various product add-ons that facilitate
this communication.

The first half of this chapter is more of a history lesson than anything else. Sometimes it helps to
review what has been tried before to explain the current processes. In the case of directory access, the
first protocol used (DAP) was proprietary in nature and placed a lot of overhead on the client computer
(essentially limiting the types of hardware that could access the directory; full PCs could handle it, but
other devices didn't have the necessary horsepower). While DAP is really a dead technology, knowing
its background will help you understand the way that the current industry-standard access protocol
(LDAP) works, and why.

In this chapter:

¢ Making information available to users
¢ Directory Access Protocol: modifying the directory, providing access, and analyzing the cost

¢ Lightweight Directory Access Protocol: comparing DAP and LDAP

Making Information Available to Users (or Not!)

At first, your users will not even be aware of the directory. Of course, if not for the splash screens of
modern operating systems, many users wouldn't even know they were working on a network (until it
goes down). They will log on to the network, access necessary resources, and fulfill their job functions
without giving a second thought to the underlying mechanism of the network.

NOTE In the early days of networks, administrators tried to hide the “plumbing” of networks so that users could do their
jobs without baving to be concerned with the mechanics of networking. The highest compliment an administrator could
receive was a user’s unwitting question, “Network, what network?” Of course, with today’s operating systems this goal is
impossible—it seems that users are fonsmntly being presented with splasb screens adveﬁising the network software.

As time passes, users will begin to see the directory as a source of useful information, asking,
“What’s Joe’s phone number?” or “What’s the mailing address of the marketing department?” or
even "I need to e-mail the receptionist in the sales group—what is his name?” The answers to all
of these questions can be stored within your directory and made available to users. Not only can
you make the information available, you will be able to control access to specific attributes. Perhaps
everyone should be able to access the e-mail addresses, but only managers should be able to access
home telephone numbers.

The fact that this information can be made available implies that there must be some mechanism
used for access. The design and capabilities of the directory itself will influence the methods used to

DIRECTORY ACCESS PROTOCOL (DAP)| 55

access the data it contains. Certain aspects of a network directory must be taken into account when
choosing an access method:

Hierarchical Database Structure An X.500 directory follows a hierarchical structure. Hierar-
chical databases organize data much differently than standard databases. In a flat-file or relational
database, each record has some unique field (or combination of fields) that differentiates it from
every other record in the database. In a hierarchical database, each object is identified by its place
in the structure. The tools used to access information from an X.500-compliant database must
understand the structure of the schema and must format requests appropriately.

Presentation Scheme A directory’s presentation scheme defines the methods that can be used for

accessing information stored in the directory. Without a well-defined presentation scheme, the

data would be inaccessible. The X.500 specifications provide a standard set of access capabilities
for presenting directory information to users. Access is accomplished through the use of a Direc-
tory User Agent (IDUA) built into an application designed for directory access. The DUA interacts
with a Directory Service Agent (IDSA) at the directory server, as shown in Figure 4.1.

FIGURE 4.1
Client access to

the directory Directory

Client Directory

Two protocols are available for use in accessing an X.500 directory:
¢ Directory Access Protocol (DAP)
¢ Lightweight Directory Access Protocol (LDAP)

DAP was defined as a part of the X.500 specification. LDAP, on the other hand, was defined
independently of X.500 as a method for accessing both X.500 and non-X.500 directories. Each
has its strengths and weaknesses, but LDAP has become the preferred method of access because
of its less proprietary nature and lower overhead on the client. LDAP clients with the proper
permissions can search, add, delete, and modify objects and attributes within a directory. LDAP
tunctionality consists of a series of calls, or functions, used for directory management.

Directory Access Protocol (DAP)

During the development of the X.500 recommendations, the X.500 committee spent time considering
the ultimate use of the directory. There are certain functions that are standard with any database and

56 CHAPTER4 ACCESSING THE DIRECTORY

other uses that would be specific to the function of the directory. Users of any database need to be
able to perform the following tasks:

Lookup This is the basic information retrieval used by users. Users request specific information
about a known resource (such as “What is Bill's phone number?”).

Searching and Filtering A user can use information associated with resources to locate individual
resources (such as “List all users in the Sales department™).

Browsing A DAP call can be used to present information in some sort of list from which users
can choose specific resources. (“I don't remember the name of the object, but I will recognize it
when I see it.”)

Other tasks will be more directory oriented. These tasks are not normal database functions—they
are applicable only to the purpose of a network directory:

Name Resolution Resources can be located based upon easily remembered names. This can be
thought of as a special case of lookup. (The corporate standard for user accounts is last name,
first initial. Knowing this standard, and knowing the name of the person I'm looking for, allows
me to easily find his object in the directory.)

Authentication Authentication involves some type of security system used to positively identify a
user in order to determine permissible access to resources. A user proves her identity by providing a
password (or some other trusted identifier). Resource access can be based upon this “proven” identity.

The five tasks just listed—lookup, searching and filtering, browsing, name resolution, and
authentication—are the end result of some action taken by the client software. They all revolve
around the ability to interrogate the directory. DAP provides four functions that a client can initiate
when accessing the database for information:

Read A request aimed at a specific object. This action will return the values of some or all of
the attributes of the object in question. If a limited set of attributes is to be returned, the client
software (DUA) supplies the list of desired attributes to the server (DSA). A client might, for

instance, request the phone number attribute of a particular user object.

Compare This is a request aimed at a particular attribute of a particular object. In some
implementations, a user might be able to compare an attribute without having the ability to
actually read it. An example of this functionality might be security software that checks for
the existence of a password without being able to read the passwords themselves.

List This action will return a list of objects in the directory. A user might, for instance, request
a list of all printers within (or below) the Tampa container in the directory tree.

Abandon This action informs the directory to stop an action requested by a user. If a user is
performing a search on a large directory, for instance, the desired information might be presented
before the entire search has been completed, or the search is taking too long and has been termi-
nated by the client, or the search has timed out. Issuing an Abandon request would cause the DSA
to stop the search.

DIRECTORY ACCESS PROTOCOL (DAP) 57

Client software will use these four basic functions to make the information stored within a
directory available to users or network services. Users, for example, can search the database for
the telephone numbers stored within it, basically eliminating the need for a special-purpose data-
base for this task (or worse—a paper-based solution that is never up-to-date). Network services
can query the database as part of their function. An e-mail package might query the database to
determine whether a user is currently connected to the network, and if so, to find the address of
the user’s station. Once the database is made accessible, its uses are limitless!

Modifying the Directory

Reading the information is only half the story, though. While some of the information within the
directory will be automaticaﬂy maintained, much of the information must still be entered and main-
tained rnanually. This implies that there must be another set of functions that provide the abiiity to
modify the directory. DAP defines four specific functions for modifying the directory:

Add Entry This request adds a new object to the directory.
Remove Entry This request deletes an object from the directory.

Modify Entry This request 1s used to change an existing object. This function is used to change
attributes such as telephone numbers or addresses.

Modify Distinguished Name This request 1s used to rename objects within the directory (as
well as any subordinate objects).

As you can see from the descriptions, these four functions allow complete management of the
directory. Objects can be created, deleted, and manipulated using the DAP protocol and an appro-
priate tool.

Providing Access to the Directory

Once you have implemented a directory, it can become critical to the proper functioning of your
network. Since it can be used to authenticate users during the logon process, for instance, there can
be absolutely no question about the integrity of the information that the directory stores. Each DAP
request can be configured so that security mechanisms can be included in the process.

To put it another way, consider that the directory can contain information that is either confi-
dential (such as user passwords or other security certificates) or critical to network functionality
(such as the address of a network printer). Cleatly, you want to protect such information against
inappropriate access or manipulation. Each of the requests defined in the DAP specifications can
include security information that can be used to determine whether the requesting user is allowed
to perform the function. Normal users, for instance, would not have the rights required to change
the database—this ability would be reserved for administrative personnel.

NOTE Network directories must have some sort gf internal security that can be used to limit access to the irzformation tbey
contain.

58 CHAPTER4 ACCESSING THE DIRECTORY

In a typical scenario, the directory will be used to authenticate the user during the logon process.
The user will have supplied some unique fact, such as a password, that ensures his identity. Passwords
are the most common method of authentication used today, but other methods are on the horizon.
There are numerous hardware- or software-based tools that can use much more specific information
to identify a user. Some of the options available either today or in the near future include:

¢ Hardware that accepts a magnetic ID card (much like a credit card) that contains a user’s
identification credentials

¢ Hardware that can scan a user’s fingerprints or retinal patterns and match them against a
stored value

& Software that uses a camera to “sense” a user’s face and matches it against a stored picture

¢ Certificate software that uses a series of encrypted values to ensure identity (much like the
software used to secure web-based transactions)

Whatever the method used for identification, an X.500 directory can be used to store the unique
information necessary for authentication. During the logon process, the security subsystem can com-
pare a value submitted by the user’s client software against this particular attribute of the user account,
as shown in Figure 4.2.

1. The user supplies identification information to the logon software (this can be a password, a
certificate, or some other, more sophisticated identifier).

2. The client software then submits this information to a directory server.

3. The directory server finds the user’s object and compares the information against the value of
a security attribute.

FIGURE 4.2 2) Logon software

User authentification Logon Software submits information
to directory server

Directory]
Client Server Directory

Object - Joe
Attribute - Password

1) User provides 3 | Directory compares submitted
unique identifier information to an attribute of
to logon software the user object

DIRECTORY ACCESS PROTOCOL (DAP) 59

Once the user has been propetly identified, this identification can control access to information
within the directory. Each attribute of each object can contain a list of the users who are allowed to
read or manipulate its value. DAP requests can pass the user’s identity to the directory service with
each request.

What’s the Cost?

Any time you add another service to your network, it costs money. First there is the cost in person-
hours. You will need to be trained in the capabilities and tools of any new technology. Users will also
need training if they are going to see any benefit from the implementation. All of this training adds up
to lost person—hours for your company. The hope is that the cost will be offset by higher productivity
in the future. Such costs are hard to quantify and therefore hard to justify. They are also (thankfuﬂy)
beyond the scope of this material. There are also, however, tangible costs associated with new services;
these costs are within the scope of this book.

As anyone who has ever had to work with a large, complex database can confirm, performing complex
searches can eat up server resources. The larger the database and the more complex the queries, the better
your hardware will have to be to provide adequate performance. AD is no different from any other large
database in this respect. DAP has defined a set of standard capabilities to help with this issue.

DAP is defined as a client-intensive protocol. Most of the “up-front” work is performed at the
client computer. The client software is responsible for the proper formatting of any requests, which
means that any client software must have a complete understanding of the directory it 1s designed to
query. Moving these functions to the cient reduces the overhead at the server, but it does have a few

drawbacks.

CLIENT OVERHEAD

Because the client must fully understand the directory, the programs tend to be large and resource-
intensive. The more complex the directory becomes, the more complex the client software must be to
access it.

NOTE Client overhead might seem like an unimportant issue given the power of today’s computers. Acmally, it is
critical to industry acceptance of X.500 directories. DAP was developed to allow remote access to the information
stored within a directory. DAP works fine if a user is sitting at bis high-powered work station, but it might not work
so well Sfor a user who is away from her desk. Consider the type of information stored in the direttory: user names
and addresses, phone numbers, e~-mail addresses—exaftly the kinds of things stored in most electronic Rolodexes or
palmtop computers. It would be great if a user could access the dirzttory from his Palm Pilot! Unformnately, most of
these types of components have limited resources—usually not enough to handle the overbead of DAP client software.

60

CHAPTER4 ACCESSING THE DIRECTORY

PROPRIETARY SOFTWARE

Since any client software must understand the directory that it will query and since the X.500 stan-
dards are a model, not an implementation, vendors will need to produce proprietary client software
to access their directory. In effect, this will either limit networks to a single-vendor solution or force
users to master multiple programs to access the information in different brands of directories.

LIMITING USE OF RESOURCES

As well as moving much of the work to the client, DAP also includes the ability to limit the server
resources used by any request. Users can set limits for the actions they take, as in the following
examples:

Time Limits DAP client software can set a limit on the length of time to be spent on a given
request. In a large database, this can prevent a client from performing a search that “spans the
globe.” If a request exceeds its time limit, the server will abandon the action.

Limits on the Size of the Results DAP client software can also limit the size of the returned
information set. If a user inadvertently asks for all “User” accounts, for instance, this could
restrict the amount of information returned.

Limits on the Scope of the Request These limits allow a user to conﬁgure the query so that
only a portion of the directory is searched. When asking for a “Printer” object, for example, the
user could limit the search to the local portion of the directory tree.

Setting Priority DAP client software can be configured so that certain requests have a lower priority
than others. For example, looking up a telephone number should not have the same priority as finding
the address of the nearest WINS server.

These limits can be implemented in various ways. During the installation of the client software,
default maximum values for each limit could be set—thereby limiting any user who performs a query
from that computer. The directory itself could easily hold limits on an individual or group level. Using
the directory to hold limits would mean that users would have their default maximums set any time they
perform a query (the directory would check the “query limits” attributes of a user when she accessed
the database). Another option would be to limit queries on a server-by-server basis. This option would
allow administrators the option of reducing the workload on servers that are already overworked.

DAP in Short

In an effort to standardize the methods used to access an X.500 directory, the X.500 committee
created a protocol specifically designed for this purpose: the Directory Access Protocol. DAP defines
the methods used to both read and modify the directory database.

DAP has a few built-in design features that merit discussion. Knowing that a directory must
contain internal security, each DAP function is capable of including security information in its
requests. This security can be as simple as using the logon credentials of the user’s account (in
other words, trusting the directory to have properly identified the user at first access using some
sort of password-security scheme) or as complex as including various industry-standard security
certificates.

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) 61

Since the X.500 directory recommendations allow for many types of security (simple password
authentication, X.509 certificates, or even more complex identification like fingerprint or retinal
matches), DAP is extensible so that it can take advantage of any of these security procedures.

DAP was specifically designed to reduce the workload at directory servers by moving much of the
functionality to the client computer. While this design benefits the directory, it does mean that client
computers must have the necessary horsepower to perform these functions. Another feature is the
ability to limit resource usage at the server. User queries can be limited in the time, size, scope, or
priority of the searches they perform.

All in all, the DAP specifications achieve their goal—defining a standard method of accessing an
X.500 directory. As you will see in the next section, however, the weaknesses of DAP have forced the
development of another protocol—one that is better designed for real-world applications.

Lightweight Directory Access Protocol (LDAP)

While DAP is the access protocol defined within the X.500 specifications, it is not the access method
that is getting the most press. That honor goes to the Lightweight Directory Access Protocol, a proto-
col that is nor defined within the X.500 recommendations. LDAP was developed in direct response to
the major weaknesses of DAP:

¢ Using DAP-based software places a tremendous amount of overhead on the client computer.
Many client machines, especially PCs or Macintosh-based computers, lack the resources nec-
essary to support any DAP services.

& DAP was designed specifically to communicate with X.500 directories. This means that many
vendor-specific products will not be accessible using DAP-enabled software.

These two limitations of the DAP protocol have hindered the implementation of X.500 directories
on production systems. While the X.500 specifications are a great model, they are limited by the fact
that they are only a model. Most commercial products will be X.500 compatible but will not conform
100 percent to the model set forth by the standard. In effect, this lack of a multivendor access protocol
has made X.500 directories an interesting theory but not a real-world solution. Combine this with the
fact that even if you take a chance and implement an X.500 directory, many of your client computers
will lack the necessary horsepower to access the database—and you end up with a great idea whose time
has not yet arrived!

LDAP was developed to overcome these limitations. Rather than becoming part of the X.500
recommendations, LDAP has been developed through a series of RFCs (Requests for Comment).
This ensures that the protocol is developed as an open standard, available to anyone wishing to
develop a directory-based product.

How LDAP Differs from DAP

The major difference between DAP and LDAP is that LDAP is not a client-based service. Yes,
clients will use LDAP-enabled client software to communicate with a directory server, but they
will communicate with an LDAP service on a server instead of directly with the DSA (Directory
Service Agent) of the network directory. The LDAP service will interpret a client request and
pass it along to the DSA.

62 |CHAPTER4 ACCESSING THE DIRECTORY

In eftect, this means that a vendor can build into their directory software an LDAP service that can
accept standard LDAP requests and convert them into whatever format is necessary for the vendor’s
product. It also means that one client software package will be able to access information from the
directories of multiple vendors. In addition, each software developer can develop their own LDAP
server-side service, and these services can run side-by-side with those of other developers. This is a
major selling point for LDAP-compliant directories. We'll talk about the specific services in a little bit,
but you can see the basic process in Figure 4.3.

1. The client sends a Read request to the LDAP service on a network server. This service can be
running on a directory server or on any server that can connect to a directory server.

2. If necessary, the LDAP server can authenticate the user to whatever operating system is in use.
This allows the user access to cross-vendor directories. (LDAP can even query the directory
for authentication.)

3. The LDAP service then converts the request into a format appropriate to the directory being
accessed. If the directory were X.500 compliant, for example, the LDAP service would convert
the request into a DAP request.

4. The LDAP service submits the request to the DUA at the directory server.
5. The directory server returns the requested information to the LDAP service.

6. The LDAP service returns the requested information to the client.

FIGURE 4.3 2 LDAP can authenticate request
The LDAP through operating system (or directory)
communication 1 Submits request T
process to LDAP Service
Eﬂ —— Eﬂ 3 Request is converted to
— -« — proper format
= &) LDAP returns = |
Client answer LDAP
Service Request is sent to

Directory Server

Directory 5

returns answer Directory

Server

Cross-vendor support is not the only benefit of an LDAP implementation. Take another look
at Figure 4.3 and notice that the overhead has been moved from the client to whatever server is
supporting the LDAP service. This allows users with limited resources access to the information
within the directory. Don't be surprised to see some geek at the ballpark using a palmtop com-
puter with the capability to access a directory remotely through use of an LDAP solution.

LIGHTWEIGHT DIRECTORY ACCESS PROTOCOL (LDAP) | 63

DIRECTORY-ENABLED APPLICATIONS

Actuaﬂy, the reduction in client-side resource use opens up a slew of possibilities for directory—based
applications. One of the more basic uses might be the set-top box for a cable company. The cable
company could easily configure a directory-based application that would provide current schedules
or authenticate users to view special programming, as shown in Figure 4.4. For example, this would
allow the cable company to demand authentication for a viewer to watch shows intended for mature
audiences. The user account could store the birthdates of everyone in your household. When you
chose a program to watch, the cable’s directory server could compare your age against the age require-
ments of the program.

FIGURE 4.4 Cable Company Directory
LDAP set-top cable Set-top Box Directory Server

ol ; =] — Schedule Program
implementation Attribute—TUMA

Directory compares
User chooses Set-top Box user age with
program submits request program rating

NOTE Why stop at the obvious—rhow about a din’ft01y~enabied refrigerator? Imagine a refrigerator that could scan the
bar codes on the products it beld and build a shopping list for you. Using LDAE, that list could then be sent to a directory
at your market, and your weekly groceries could be waiting for you when you arrived at the store. I'm not sure I'd want a
refrigerator that is quite so intrusive, but the possibility is interesting!

These types of directory-enabled applications are available only because of the low demands
that LDAP places on the client device. LDAP can be used by just about any device that can hold

a MICrOProcessor.

LDAP and DAP: The Similarities

While the methods of their implementations differ, LDAP is really nothing more than a subset of the
functions available in DAP. The development of LDAP centered around five design considerations to
reduce the load on the client device:

¢ Implementing only a subset of the functions provided by DAP
Offloading the complex operations necessary to locate resources in a distributed environment
Simplifying the encoding of attribute types and values

Using ordinary strings to represent data

* & o o

Using standard communication protocols (such as TCP), instead of complex, function-
specific protocols

64

CHAPTER4 ACCESSING THE DIRECTORY

Whereas DAP has five “Read” functions defined, LDAP only defines three actions:

Compare Works just like the DAP Compare function. The client can compare object attributes
for a match to given criteria.

Search Works just like the DAP Search capability. The client can search all or some of the
directory for objects that have attributes matching a given set of values. LDAP also uses the

Search function to emulate the DAP Read and List functions. (Basically, the “search” is con-
ducted using predefined search conditions.)

Abandon Works just like the DAP Abandon function. The client can use this request to inform
the LDAP service that it no longer needs to continue the query.

LDAP also defines functions that can be used to modify the database:

Modify This is the equivalent of the DAP Modify request. LDAP simplifies the language

involved by supporting three operations:
¢ Add values
¢ Delete values

¢ Replace values

Add This request is used to add a new entry to the database.

Delete This function allows the deletion of an entry from the database.
Modify RDN This function requests that the name of an object be changed.

While LDAP defines a more modest list of functions than DAP, it has sufficient functionality
to satisfy most user or administrative needs. LDAP has become the access protocol of choice for
most directories on the market. Having an industry de facto standard provides a lot of benefits to
network administrators. Software vendors can develop a single LDAP application that can access
multiple types of directories, giving them the time (since they only have to write one version) to
add functionality that they might otherwise not add. LDAP also makes administration a whole
lot easier when supporting a mixed network. Since LDAP can act as a common communication
method across different vendors’ directories, we can build tools to either search across or manage
data across multiple directories.

In Short
LDAP provides most of the functionality of DAP while avoiding its weaknesses. First, LDAP puts a lot

less overhead on the client device. This allows almost anything with a microprocessor the opportunity
to access and use the information in a directory. Second, by making LDAP a more server-centric service,
you can use this standard to communicate with vendor-specific directories.

These two facets of LDAP (less client overhead and multivendor support) have made it the de facto
standard of the directory industry. Most, if not all, directories on the market include an LDAP service
as part of the basic package. Using LDAP-enabled software, a client could easily pull information from

an AD server, as well as from most other directory services available.

INSHORT| 65

Part 1 of this book has given you a non-vendor-specific overview of network directories—in other
words, a view of the technology without reference to specific Microsoft solutions or products. The
Microsoft marketing department has already flooded the market with AD product propaganda. As you
weed through the press releases on Windows 2000/ Windows Server 2003 and AD, this background
should help you separate the sales pitch from the technical information. (Not always an easy task!)

Part 2 will discuss the Microsoft-specific directory service—AD. We'll look at how Active Directory
has changed the way NT networks are accessed, managed, and designed. We'll also take a peek at the
tools and techniques used in a Windows 2000/ Windows Server 2003 environment based upon Active
Directory Services.

This page intentionally left blank

Part 2

Microsoft Active
Directory Services

In this section you will learn how to:

¢ Understand Microsoft networks before Active Directory
¢ Understand the benefits of Active Directory

¢ Understand the Services Windows 2000 can provide to
the network

Design the Active Directory environment

Implement your own design

Create a secure environment

Implement Group Policies

Modify the Active Directory schema

Understand and control Active Directory sites and
replication

L 2R 2R 2K 2R S 2

This page intentionally left blank

Chapter 5

Microsoft Networks
without AD

NOW THAT WE HAVE discussed the theories behind directories, we can begin our discussion of
Microsoft’s Active Directory Service. Microsoft has utilized many of the time-tested methods used in
current directory technologies.You will find pleces of DNS, WINS, and even NDS in AD. You will
also find that Microsoft has taken great pains to remain open to industry standards. AD is modeled
after the X.500 directory recommendations, is accessible using industry—standard protocols, and has
the ability to incorporate cornplex authentication technologies.

Given Microsoft’s position in the computer industry, AD will probably become a de facto
standard within a short period of time. The extensible nature of the schema, combined with a
large base of N'T-based application developers, should produce new tools and techniques that
will benefit the entire networking industry.

Microsoft Windows NT has been a major network operating system for quite some time. Before
the release of AD, NT used a domain-based solution for network management., While domains were
nothing new, they did provide solutions to many of the problems inherent in server-based operating
systems. Three major benefits that NT’s domain structure provided were as follows:

* Single login capability for users
¢ Central management of users, groups, and network resources
¢ Universal access to resources

NT’s domain structure was often difficult to manage, especially on larger networks, but it did
(and does) support some very large networks. The success of earlier versions of NT has had an
influence on the design of Windows 2000/ Windows Server 2003. First, Microsoft needed to
provide a level of backward compatibility so that existing clients could leverage their current
investment in Microsoft technologies. Second, those components that did work well have not
been discarded—they have carried over into the latest version. Some of these components are
now “new and improved,” but others have come across unchanged.

70

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

When my friends read the first (and second) editions of this book, a few asked, “Why should I care
about how NT worked? I'm studying Windows 2000/ Windows Server 2003; just show me Win-
dows 2000/ Windows Server 2003 stuff!” Well, that's a great theory, but unfortunately it’s not very
realistic. First, Microsoft’s operating systems are an ongoing development project at Microsoft. In other
words, each revision (starting way back in Windows for Workgroups, or WEWG) has contributed a little
to the operating systems that followed. Windows 2000/ Windows Server 2003 is no different; you will
find aspects of all of Microsoft’s preceding products within its environment, although there’s very little
WEWG left! From an administrator’s view, this is both good and bad. It’s good because much of what
you already know (assuming that you've worked with earlier Microsoft operating systems) is still valid. It’s
bad because many of your preconceived notions about Microsoft products will have changed, and that
can cause some confusion.

In answer to my friends’ confusion, there are two very important reasons to understand how
Windows NT worked. First, most companies are not going to jump headfirst into a fully Win-
dows 2000/ Windows Server 2003 world. We, as I'T professionals, will probably be supporting
Windows NT (and Windows 95 /98, Me, and XP) for quite some time. Few consultants get the
chance to build a new network from the ground up—we usually inherit an existing infrastruc-
ture—and we add to or modify that existing system as appropriate.

The second reason to understand Windows INT is because Microsoft included a certain level of back-
ward compatibility in Windows 2000/ Windows Server 2003. Many of the underlying technologies of
AD are based upon technologies developed in Windows N'T. In fact, much of what you may have learned
when working with N'T will be directly applicable to your work with Windows 2000/ Windows Server
2003. That's the good news! Of course, any good news is usually balanced by some not-so-good news.
There are certain aspects of AD that are close enough to what you may have seen in NT in appearance,
but different enough in actual deployment, that you might face some confusion.

In short, to fully appreciate Windows 2000/ Windows Server 2003—and especially Active Direc-
tory Services—it is important to understand the strengths and weaknesses of earlier versions of N'T.
If you are an NT expert, this chapter will be a review. If you are a newcomer to the NT world, this
chapter should prepare you for some of the topics we will discuss later.

In this chapter:

¢ What is a domain?

¢ Primary and backup domain controllers
¢ Trusts between domains
4

The four domain models

What Is a Domain?

Microsoft has defined a domain as a logical grouping of users and computers. Unfortunately, this def-
inition can also be applied to workgroup (or peer-to-peer) networks. A better definition would be:

A domain is a logical grouping of users and computers managed through a central shared accounts
database.

WHAT IS A DOMAIN?

The idea of a centrally located management database is the key to understanding domains and
their functions. In older technologies, each computer that provided a service to the network had its
own database of accounts. As you can see in Figures 5.1 and 5.2, this could result in a single user
having accounts located on several computers.

gl / Computer 1 Printer
— >

User
Susan

FIGURE 5.1
Typical user needs

\Data

Computer3 \Applications

Susan needs access to the printer attached to Computer 1, the data located on Computer 2, and
the shared applications located on Computer 3.

FIGURE 5.2

Accounts databases

Computer 1 Accounts

Computer 3 Accounts

Susan needs to have an account created on each computer that contains resources she must access.

For Susan, this might mean remembering multiple passwords and logging on numerous times. For the
system administrator, this means that “Susan” must be managed in multiple locations. The bottom line
is that this arrangement mandates redundant work for both the user and the administrator.

In a domain, the accounts database is located on a central server. This server, known as a domain
controller, handles all logon attempts, authentication to resources, and management tasks. Remember
the three big benefits of a domain?

¢ Single login capability for users
¢ Universal access to resources

¢ Central management of users, groups, and network resources

71

72

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

The central location of the accounts database is the key to these functions, as shown in

Figures 5.3, 5.4, and 5.5.

FIGURE 5.3
Single logon
for users

When Susan wants to log on to the network, her workstation (or whatever computer she is sitting
at) sends the authentication request to a domain controller. The domain controller checks its accounts
database to determine whether Susan has a valid account and, if she does, whether there are any restric-
tions placed on her account that would prevent her from logging in at this time or from this location.
The domain controller then returns a yes/ no answer to her workstation. If the answer is yes, Susan is
allowed access to the network using this single logon procedure.

Domain Accounts
ontroller Database

FIGURE 5.4 Computer 1 Printer

Universal access
to resources

/ Domain
C
Susan m, Controller

s,
S Pery .
W
J’es/”o

When Susan attempts to print to the shared printer attached to Computer 1, as shown in
Figure 5.4, her request is authenticated using information from the accounts database located on
a domain controller. Computer 1 permits or denies access based on this authentication process.

NOTE A[tmzlly, this destription simply(ies the authentication process. We'll expand upon the process a little later in
this cbapter.

FIGURE 5.5
Central management

New User Domain Printer

Katie Controller/(

L3 \Data

Accounts
Database

\ Applications

WHAT IS A DOMAIN?

Account administration is managed through the central accounts database stored on a domain con-
troller. When a new employee is hired, such as Katie in Figure 5.5, her account is created at a domain
controller. This account is then granted permissions to use resources throughout the network.

To summarize, when I think “domain,” I think “database.” Perhaps it's because I started as a database
administrator. For me, it is easier to picture a database handling the authentication requests than it is for
me to picture some nebulous idea like a domain. In reality, my perspective is closer to the actual technol-
ogy than not. Seeing the domain as representing a database also helps in understanding various func-
tions that are inherent in domain functionality. The bottom line here is what I always tell my students in
the classroom: when you think of domains, think of a database that defines an area of responsibility (or
management or security, depending upon what aspect of NT you are currently considering).

Authenticating in NT 4 and Earlier

As a user Iogs on to the network, the authentication request 1s forwarded to a domain controller.
The domain controller determines whether the logon request is valid (checking passwords, time
restrictions, station restrictions, and other items that might limit a user’s access to the network>.
If the request is valid, the domain controller gathers that user’s system identifier (SID) and the
SIDs of any groups that the user belongs to, and passes them back to the client computer as a
security token. This token is used during authentication to network resources.

During the authentication process, the user’s security token is compared to the Access Control
List (ACL) of the resource. The ACL contains the SIDs of all users and groups that have been
assigned permissions to the resource. If this comparison of the SIDs in the user’s security token
with the SIDs in the object's ACL produces a match, the user is granted the appropriate level of
access. Hence the name Access Control List.

As you can see, our earlier description of the domain’s ability to provide universal access was an
oversirnpliﬁcation. The domain controller is not consulted each time a user attempts to use a net-
work resource. Instead, the domain controller is consulted only during the initial logon process. It
provides the user with a “set of keys” that can open the door to a distinct group of resources.

It is important to understand this distinction because it highlights a weakness of a domain-based
environment. Users are only authenticated to a resource during iogon. If a user’s permissions are
changed while that user is logged on, the change will not take effect until the next time he Iogs on to
the network. The foﬂowing diaiog represents a common exchange between users and administrators:

User: Ineed to change the data in the XYZ data area.
Administrator: Okay, T'll make sure you’ve got the rights to do that.
User (five minutes later): 1 still can’t get at that data I called about.

Administrator: Oh, did you try restarting your computer?

NOTE The user could have Just logged on again, but most administrators simply give the Sfirst rule of troubleshooting
NT—restart the fomputer—mtber than &xplaim’ng the process of logging back in.

73

74

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

One of the nice things about a directory service is that it is used for multiple purposes. Not only
does it contain the user’s SID, but it also is used by the user’s computer to locate the resource. Since
AD is being accessed to find the physical location, why not do an authentication process as well?
This means that changes to security are indeed effective immediately.

Authentication Protocol

As in any transaction between computers on a network, certain protocols are utilized. Remember that a
protocol is just a set of rules that govern how the transaction will occur—the order in which processes
will happen, the levels of encryption, what forms of identification will be utilized, etc. You are probably
already aware, for instance, that the typical communication protocol used on most networks today 1s
TCP/IP. You should already know the process used by TCP when opening a connection, a process
commonly referred to as the Three-Way Handshake.

The process of authentication also uses a speciﬁcfunftional (or service-level) protocol‘ In earlier
versions of Microsoft network operating systems, this protocol was NTLM (NT Lan Manager). In
Windows 2000/ Windows Server 2003, a new protocol is used by default: Kerberos v5 (Kv§). Win-
dows 2000/ Windows Server 2003 still uses NTLM for logging on to legacy systems (providing
backward compatibility), but Windows 2000 /Windows Server 2003 domain controllers prefer
using Kerberos.

A complete description of the differences between the two authentication protocols 1s not really
necessary (and T'll be discussing KvS in more detail in Chapter 10), so I won't get into the gory details
here. There are, however, a few things of which you should be aware.

The NTLM protocol has been around for a very long time. It relies upon the Netlogon service for
authentication. While this, in itself, doesn't sound so bad, a good number of the security breaches that
occurred in NT involved holes in the Netlogon service. In other words, NTLM is not necessarily the
most secure authentication method.

In a Windows 2000/ Windows Server 2003 domain environment, domain controllers will attempt
to use Kv5 authentication first. They will only fall back to NTLM if Ky5 is not an option; in other
words, KvS will be used in any Windows 2000/ Windows Server 2003 to Windows 2000/ Windows
Server 2003 authentication. In the event that one side of the process or the other is not running Win-
dows 2000/ Windows Server 2003, the system will downgrade to NTLM.

When you log on to a computer running Windows 2000/ Windows Server 2003 Professional or
Server, the following process occurs. (I know that this chapter is supposed to be about NT, but since
NTLM 1s an NT protocol, we'll discuss it here.)

1. You type your name and password‘

2. The Graphical Identification and Authentication (GINA) process collects this information and
passes your name and password (in a secure manner) to the Local Security Authority (LSA).

3. The LSA passes the information to the Security Support Provider Interface (SSPI). This
interface communicates with both the Kerberos and NTLM services. (This component is
very tmportant to developers; it allows them to develop security-aware applications without

having to master either Kerberos or NTLM.)

PRIMARY AND BACKUP DOMAIN CONTROLLERS 75

4. SSPI passes the information to the Kerberos Security Support Provider (SSP).

5. The Kerberos SSP checks to see if the target computer name is the local computer or the domain
name. If the name is local—in other words, the user is attempting to log on to the local computer
rather than the domain—the Kerberos SSP generates an error, and the process is handed back to
the GINA. If this is a domain logon attempt, the Kerberos SSP will continue to process it (I'll
discuss this process in Chapter 10).

6. If the logon attempt is local, then GINA will resubmit the request, and the system will fall
back to the NTLM authentication process. (The NTLM SSP will pass the request to the

Netlogon service for authentication against the local Security Accounts Manager database.)

Notice that the system will always attempt to use Kerberos v5 authentication first, only falling
back to NTLM if Ky5 fails.

What does this mean to us? Well, only Windows 2000/ Windows Server 2003 and XP clients sup-
port KvS authentication. This means that all of your Windows N'T, 95 /98, and Me clients will still be
using NTLM. You can increase the security of the process by installing the Directory Services client
software (found on the Windows 2000/ Windows Server 2003 CD-ROM) or installing the latest serv-
ice packs on your client computers. This will upgrade them to NTLM version 2, a more secure version

of NTLM.

NOTE For information about enabling NTLM version 2 on your Windows and NT clients, see the Microsoft article
0239869 on the support.Microsoft.com website.

Primary and Backup Domain Controllers

There are three types of servers in an NT network:
¢ Primary domain controllers (PDCs)
¢ Backup domain controllers (BDCs)
¢ Member servers

Each type of server has a function in the overall design of the network. Administrators must
decide what type of server a particular computer will be during the installation of the NT Server
operating system. After installation, domain controllers can switch roles (a BDC becoming a PDC,
for example). Member servers cannot become domain controllers without reinstalling the operating
system. Member servers can, however, move from one domain to another, while domain controllers
cannot.

Member Servers

Member servers are computers using N'T Server as their operating system that do not contain a copy of
the domain accounts database. There are many reasons why a server might be configured in this manner.
Perhaps the server will be dedicated to a task that places a heavy load on the device (such as an e-mail
application), In this case, you would not want to burden the server with the additional overhead of user
authentication.

76

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

Also, you might already have enough domain controllers for your environment. Each copy of the
domain accounts database that exists adds overhead to your network. Keeping a backup domain con-
troller synchronized with the primary domain controller produces network traffic and, once again,
adds overhead to your system. In any event, member servers are really irrelevant to our purpose. Since
they do not hold account information, they do not need to be discussed in this context.

How PDCs and BDCs Work

The copies of the domain accounts database for an NT domain are organized ma single~mmter environtment,
By this, I mean that changes to the database can occur at only one of the copies: the copy held by the
PDC. All other domain controllers are BDCs. BDCs receive updated information from the PDC for
their domain. In other words, there is one, and only one, master COpy of the database, as you can see in

Figure 5.6.

FIGURE 5.6

Single-master

BDC

environment
E’

Bob Bob Bob
Susan Susan Susan
Katie Katie Katie I
Copy of Domain Copy of
Domain Accounts Accounts Domain Accounts
Database Database Database

NOTE Ill discuss the single-master domain model in detail later in this chapter.

One drawback to the single-master environment is that it creates a single point of failure. Since
there can be only one master copy, and it resides on the PDC, this implies that there can be only one
PDC for each domain. In the event of the PDC going offline, no changes can be made to the domain
accounts database, as shown in Figure 5.7. While it is easy to promote a BDC to the status of PDC, it
is not an automatic process. In other words, the promotion requires administrative intervention.

FIGURE 5.7
Results of a PDC Pe
esults of a
going offline D L ‘
) |) = %
Sulan Susan
Kal Kati
. New User
Domain Copy of Kody

Accounts Domain Accounts
Database Database

PRIMARY AND BACKUP DOMAIN CONTROLLERS 77

On the plus side, though, a single-master environment does make synchronization of the backup
copies fairly straightforward. Since only one copy of the database can be changed, all updates originate
from this copy.

The Synchronization Process

Keeping the domain accounts database synchronized across multiple locations can consume a lot of
processing power and produce a lot of network traffic. While limiting changes to the copy stored on
the PDC does simplify the process, any procedure that is both automatic and occurring across a net-
work is going to be complex.

To understand the process used to synchronize the BDCs, we must delve a little deeper into the
structure of the domain accounts database and its supporting files. One attribute of each object n
the database is known as the version ID. Think of this value as an overall “change counter” for the
database. Each time a change is made, the version ID is incremented.

The PDC also creates a log file that documents the version ID for each change made to the database.
This process is shown in Figure 5.8.

FIGURE 5.8 PDC Domain Accounts Change
Version ID Database Log
Kody:
Version ID: 3

Password: XXX

If a new user is added to the domain, the information is placed in the database. The system’s version
ID is incremented, and this value is placed in the version ID attribute of the new user. The change log is
also updated with a record of the change.

The PDC keeps a record of the value of the system version ID at the time of last update for
each BDC. Every five minutes, the PDC checks the database to see if any changes have been made.
If any have, it then checks the value of the version ID for each BDC against its last update, as
shown in Table 5.1.

TABLE 5.1: VERSION IDS FOR EACH BDC

SERVER VERSION ID AT LAST SYNCHRONIZATION
BDC1 2
BDC2 3
BDC3 1

In our example, the current version ID is 3. Any BDC with a value of less than 3 would not have
received this change to the database. These servers will be notified that changes exist. The PDC only
notifies 10 BDCs at a time to avoid saturating the network with synchronization traffic.

78

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

NOTE Changes are documented only at the record level—not at the field level. This means that if user Bob changes only
his password, then Bob’s entire record will be sent to each BDC.

The change log is of a fixed size. By default, it can hold about 2,000 changes.When the change
Iog fills, the system will begin writing over the oldest records in the log file. This can lead to a situ-
ation where the PDC is not sure which changes have occurred since the last update of a BDC. As
an example, look at Figure 5.9.

FIGURE 5.9 PDC Change Log
Full change log 1 2001
1] |3
===/ :y 2004
E—E’ 5
6
7
8
*998
1999
2000

As changes occur, the system increments the value of the version ID. If a BDC was last updated
when the system version ID was 27, the PDC could not be sure how many changes had been over-
written in the change log. When this occurs, the BDC will be sent the entire database. This is known
as a full synchronization.

The bottom line is that the synchronization process generates overhead on many components of a
network. The PDC must check for changes, notify the BDCs of any changes, and then update the BDCs.
The BDCs must process the incoming changes on a regular basis. This can affect network bandwidth,
especially in an environment with frequent changes.

Trusts between Domains

Microsoft has defined a domain as a “logical grouping of users and computers organized for adminis-
trative purposes.” Unfortunately, this is also the phrase Microsoft uses to define the term workgroup.

Let’s take the definition to the next level. The major difference between a workgroup and a domain
is where users are authenticated to the resources they wish to access. In a workgroup, user accounts are
defined on the machine that holds the resource. In a domain, user accounts are defined and managed
in a central database. This database, called the Security Accounts Manager (SAM), is managed by NT’s
Directory Services. So a more accurate definition of an NT domain would be an administrative grouping
of users and computers, defined and managed through a single database.

The SAM is a secure database that contains information about the users, computers, global
groups, and local groups defined in a domain. Each of these is called an object in the database.
The maximum number of objects that can be organized in a single SAM is 40,000. The SAM is

stored on an NT server, which plays the role of domain controller for your network. A domain

TRUSTS BETWEEN DOMAINS 79

controller is an NT server that contains the domain accounts database. Domain controllers are
responsible for the authentication of users—in other words, for the logon process.

Although the accounts database can support up to 40,000 objects, a network might be designed
with multiple domains (accounts databases) for various reasons. These reasons include the following:

¢ Having more than 40,000 objects consisting of users, computers, and groups
¢ Wanting to group users or resources for management purposes

¢ Wanting to reduce the number of objects viewed in management tools (Yes, it's great to have
all users in one place, but do you really want to scroll through a list of 40,000 objects every
time you need to manage an account?)

Partitioning the Database

The act of splitting the users and resources into multiple domains is called partitioning the database.
There are two main benefits to this type of design:

¢ Youcan ddegate administration for each domain. This gives each department or location the
abﬂity to manage its own resources.

¢ It reduces the length of the list you have to scroll through to find a given object.

THE TERM PARTITIONING

When 1 wrote the previous editions of this book, my technical editor objected to my use of the term parti-
tion when referring to the NT database. His view was that 1 was too closely tied to my Novell background,
because partitioning is an important aspect of the NDS database. In a Novell environment, partitioning car-
ries with it a lot more meaning than it does in an NT-based environment. In both, however, the term refers
to the difference between the physical location of the database (on domain controllers in NT and Win-
dows 2000/ Windows Server 2003) and the logical view of the overall environment. The bottom line here is
that the term partitioning is used in many Microsoft white pages and other forms of documentation. If you
have a Novell background, you’ll just have to differentiate the term; it will have one meaning here and
another in your Novell system.

Establishing Trust

By default, each domain is a separate entity. By this I mean that domains do not share information,
nor are resources from one domain made available to users defined in another domain. To allow users
to access resources in another domain, a trust must be established between the domains. A trust can be
defined as a communications link between two domains. There are two domains involved in a trust:

¢ One that contains the user accounts that should have access to resources

¢ Another that contains those resources

80

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

The domain with the user accounts is called the trusted domain; the domain with the resources is
called the trusting domain.

TIP Deciding which domain should be the trusted domain and which should be the trusting domain can sometimes be
confusing. Think of it this way: You never hear the phrase “trusted computer,” but most companies do have “trusted
employees.”The domain where the employees are defined is always the “trusted” domain.

TRUST ISN’T ALWAYS A TWO-WAY STREET

When you are documenting your system, you should represent trusts with arrows. The arrows should
point to the trusted domain. When one domain trusts another, this is known as a one-way trust, and
you can see this in Figure 5.10.

FIGURE 5.10
One-way trust Domain A —_ Domain B

When each domain has users who need to access resources in the other domain, you will create
a two-way trust. As you can see in Figure 5.11, a two-way trust is really just two one-way trusts.

FIGURE 5.11
Two-way trust Domain A Domain B

NT 4.x trusts are nontransitive. This means that trusts are never inberited from one domain to another.
If Domain A trusts Domain B, and Domain B trusts Domain C, this does not imply that Domain A
trusts Domain C. This trust would have to be created manually.

NOTE Let’s say you are going on vacation. You give your house keys to Harry, a friend from work. In this scenario, you
have made Harry a trusted friend (and, as you'll find out, you are maybe just a bit too “trusting”). When you get back
from vacation, you find that Harry let bis friends Tom and Dick use your keys. You'd probably be angry, right? You didn’t
expect that Tom, Dick, and Harry would have access to your house! Giving your keys to Harry was a nontransitive trust.

You trusted Harry—rnot all bis wild friends/

AGLP is an acronym that describes the fundamental process for granting permissions to resources
across trusts: Accounts go into Global groups, which go into Local groups, which are then granted
Permissions.

The steps for granting these permissions are shown in Figure 5.12.

THE FOUR DOMAIN MODELS 81

FIGURE 5.12
AGLP Domain A Domain B

HCI‘C’S what the ﬁgure iHustrates:

1. In the domain where the users are defined (Domain A), either use an existing or create a new
global group and make the appropriate users members of this group.

2. In the domain that contains the resource (Domain B), create a local group with the necessary
permissions.

3. Make the global group from Domain A a member of the local group in Domain B.

The Four Domain Models

How you design your NT environment can have a big impact on its performance. A domain model defines
how you will use directory services in your environment. There are four basic domain models; each has
some definite advantages and disadvantages. The four models are as follows:

*

Single domain
¢ Single master

¢ Multiple master
L 4

Complete trust

Single Domain Model

The single domain model is the easiest of the four models to implement. In it, all users and computers
are defined in a single domain, as shown in Figure 5.13. The single domain model is most appro-
priate when there are fewer than 40,000 objects and you require central administration of the domain
environment.

82 |CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

FIGURE 5.13
The single

domain model

Printer

Since all resources are defined in a single accounts database, no trusts need to be established.
Users have access to all resources to which they have been granted permissions.

ADVANTAGES AND DISADVANTAGES
The advantages and disadvantages associated with the single domain model are listed in Table 5.2.

TABLE 5.2: ADVANTAGES AND DISADVANTAGES OF THE SINGLE DOMAIN MODEL

ADVANTAGES DISADVANTAGES

Simple to implement and manage. Performance can degrade as the number of resources increases.

Central control of user accounts. All users are defined in the same database: no grouping by location
or function.

Central control of all resources. All resources are defined in the same database: no grouping by
location or function.

No trusts are necessary. Browser performance will slow with large numbers of servers.

Single-Master Domain Model

A single-master domain model consists of at least two domains. In it, all user accounts are defined in a master
domain. The other domains are used to manage physical resources, as you can see in Figure 5.14. This

THE FOUR DOMAIN MODELS 83

design is most appropriate when you want central control of user accounts, but local administrators are
responsible for departmental or geographic control of physical resources.

The single-master domain model is also appropriate when the number of objects defined in the
database exceeds the maximum of 40,000. In this case, moving the computer accounts to another
domain spreads the object records over multiple domains. (Although in a company of this size, you
would probably start with the next model: multiple-master domains.)

NOTE If you think your company might grow into multiple locations or might grow past the 40,000~object limit, it is
best to start with the single-master domain desz('gn‘ This (yj‘l’rs more growtk options than the single domain model.

FIGURE5.14

The single-master
domain model

Master Domain

Resource Domain

Printer

NOTE In this model, each resource domain establishes a one-way trust with the master domain.

ASSIGNING RIGHTS
Use the AGLP process to assign users in the master domain permissions to the resources defined in
the resource domains, as demonstrated in Figure 5.15.

1. Create a global group in the master domain with the appropriate members.
2. In the resource domain, create a local group and assign it the necessary permissions.

3. Next, make the global group from the master domain a member of the local group from the
resource domain.

84 |CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

FIGURE 5.15

. Master Domain
Groups in a

single-master
domain model

[T =

\Data

ADVANTAGES AND DISADVANTAGES

You can see the advantages and disadvantages associated with the single-master domain model in

Table 5.3.

TABLE 5.3: ADVANTAGES AND DISADVANTAGES OF THE SINGLE-MASTER DOMAIN MODEL

ADVANTAGES DISADVANTAGES
Best choice if resources need to be Performance can degrade as the number of users defined in
managed by different groups. the master domain increases.
User accounts are centrally located. Local groups must be defined in each resource domain.
Resources are grouped logically (either by Administrators of resource domains must “trust” the
department or by geographic location). administrator of the master domain to set up global

groups correctly.

Global groups must be created only once.

Multiple-Master Domain Model

The multiple-master domain model is shown in Figure 5.16. It is the most scalable of the four models. It
looks quite a bit like the single—master model, except that there is more than one domain where user
accounts are defined. There are various reasons why you might choose this model:

¢ The accounts database is limited to a maximum of 40,000 objects (users, groups, and computer

accounts). If your environment were large enough, you might be forced to partition the database
just to stay within the defined limits.

THE FOUR DOMAIN MODELS 85

¢ Your company’s management strategy might also lead to this model. If each location or
department wants to manage its own user accounts, you might want to create separate
domains for management purposes.

¢ You might also create multiple master domains for ease of administration. Let’s face it—just
because the accounts database will hold 40,000 accounts doesn’t mean that you are going to

like paging through such a large list to find stuft.

¢ InaWAN (wide area network) environment, you might make multiple domains in an effort
to reduce the amount of network traffic that crosses the wide area links.

FIGURE5.16

Master 1
The multiple-master

Master 2

— (& &

domain model

Resource 1 Resource 2 Resource 3

[]

o= T

NOTE Master domains have two-way trusts between themselves, and each resource domain bas a one~way trust to
each master containing users who ng})t bave to access its resources. You can determine the number of trusts in a multiple~
master structure by using this formula: M x (M — 1) + (R x M), where M is the number of master domains and R

is the number g(resource domains. (This assumes that each resource domain trusts each master domain.)

ASSIGNING RIGHTS
Assigning rights in a multiple-master domain environment is a bit more confusing than in the preceding
models. You still use the AGLP method, but you might have to create the global groups in each of the

master domains, as shown in Figure 5.17.

86

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

FIGURE 5.17

Master 1 Master 2

-

The use of groups
in a multiple-master
domain model

3

L.
S e
3

Printer

Resource 1

ADVANTAGES AND DISADVANTAGES
The advantages and disadvantages of the multiple-master domain model are listed in Table 5.4.

TABLE 5.4: ADVANTAGES AND DISADVANTAGES OF THE MULTIPLE-MASTER DOMAIN MODEL

ADVANTAGES DISADVANTAGES

Best model for large environment with central Both local and global groups might have to be defined in

MIS department. multiple domains.

Scales to any size network. Large number of trusts to manage.

Each domain can have a separate administrator. Not all user accounts are in one domain database.
Complete Trust Model

The romplzte trust model takes full advantage of directory services. In the complete trust model, each domain
has both user accounts and resources. Each domain must trust all other domains. This model, as shown

THE FOUR DOMAIN MODELS 87

in Figure 5.18, is perfect for a company where each department or location wants control over both its
physical resources and user accounts.

NOTE The rmlity is that most fomplete trust environments happen by accident. First, each department or location
installs NT for its own wuse. Somewhere down the line, tbfy realize that it would be nice if they could share resources. At
that point there are only two options: back up all data on all domain controllers and start from scratch with one of the other
domain models, or implement a complete trust model and deal with the large number of trusts to manage.

FIGURE5.18
The complete

trust model

Domain 1 Domain 3

=

_>
D ——
Domain 2 Domain 4
L] \~— []
Ol= T) =17 T

NOTE Ina [omplete trust model, all domains trust all other domains. Determine the number of trusts with the following
formulﬂ: Dx (D - 1)) where D is the number of domains in the network.

ASSIGNING RIGHTS

Assigning rights in a complete trust environment can be extremely confusing. In this model, you
must create both local and global groups in every domain, as shown in Figure 5.19.

88 CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

FIGURE 5.19
Groups in a Domain 1 Domain 3

complete trust
domain environment

Printer

Domain2 /X

ADVANTAGES AND DISADVANTAGES
The advantages and disadvantages of the complete trust domain model are listed in Table S.5.

TABLE 5.5: ADVANTAGES AND DISADVANTAGES OF THE COMPLETE TRUST DOMAIN MODEL

ADVANTAGES DISADVANTAGES

Works for companies with no central Large MIS department.
number of trusts to manage.

Scales to any number of users. More domains mean more points of management.

Each domain can have its own administrator. Each administrator must trust that all other administrators
know what they are doing.

Resources and user accounts are grouped into
management units.

THE FOUR DOMAIN MODELS 89

Supporting a Single Logon Account
In a traditional server-based network, each server maintained its own list of users who could access its
resources. Since there were multiple lists of users (one for each server), users often had to remember
several user account names and passwords. This could be confusing for the users. From an administra-
tive perspective, having users defined in multiple places added complexity and redundant management.
As an example, let’s imagine a small manufacturing firm in St. Paul, Minnesota. This firm has two
servers—one for engineering tasks and the other for accounting—each using a traditional server-based
operating system. If I were hired as the Head of Engineering, with both design and financial responsi-
bilities, the LAN administrator would have to create a user account for me on each server, and I would
have to remember both user account names and passwords.
This is clearly unacceptable in anything other than a small network. Microsoft Windows NT lets
you use a single user account to access resources on the entire network.

PASS-THROUGH AUTHENTICATION
A process called pass-through authentication makes it possible for users to log on from computers or domains
on which they have no account. When a user sits down at a computer defined in a domain that trusts her
“home” domain, she will have the option of choosing her domain from a drop—down list.

The NT server in the computer’s domain will then use the trust relationship to pass the authenti-
cation request to the user’s home domain. For example, if user Bob from Domain 1 attempts to log
on at a machine in Domain 2, the iogon process will use the procedure depicted in Figure 5.20.

FIGURE 5.20
Pass-through Domain 2 Domain 1
authentication Domain 1 Domain)
\Bob Workstation Controller CDomam
ontroller
Here’s what happens:

1. When the Windows NT machine boots, its Netlogon service locates a domain controller
in Domain 2. As part of this process, the computer receives a list of all trusted domains
to present in the logon screen.

2. When the user identifies himself as Bob from Domain 1, the Netlogon process passes the
request to a domain controller in Domain 2.

20

CHAPTER5 MICROSOFT NETWORKS WITHOUT AD

3. The domain controller in Domain 2 recognizes that the request is for a user defined in a
trusted domain, so it passes the request to a domain controller in Domain 1.

4. The domain controller in Domain 1 checks its accounts database to ensure that the username
is valid and the right password has been entered.

5. If the request to log on is valid, the domain controller in Domain 1 passes the user’s SID and
group information to the domain controller in Domain 2.

6. The domain controller in Domain 2 trusts that the authentication was done properly, so it
passes the information about user Bob back to the NT machine where Bob is trying to log
on, completing the logon process.

Allowing Users to Access Resources in Different Domains

To grant a user rights to a resource in a trusting domain, follow these steps:
1. Create a global group in the user’s home domain.

2. Create a local group in the trusting domain. Grant the local group permission to the
appropriate resource.

3. Make the global group a member of the local group.

NOTE I always picture the trust as a bighway between the two accounts. You can’t use a highway to travel unless you
have a vehicle. When using a trust, the global group is the vehicle; user accounts are the passengers.

In Short

Earlier versions of NT, based upon a domain environment, provided three main benefits over earlier
network operating systems:

* Single logon for users
¢ Central management for administrators
¢ Universal resource access through pass—through authentication

Before NT and the domain environment, most network operating systems were server-based, meaning
that each server was managed as a separate entity. This type of management scheme resulted in redundant
management and increased workload for both users and administrators.

The NT domain environment was Microsoft’s first foray into enterprise networking. While it does
alleviate many of the headaches of earlier network operating systems, it also introduces its own problems
to the network:

¢ The overhead of synchronizing multiple copies of an accounts database can overwhelm
servers and saturate network segments.

¢ The single—master synchronization scheme creates a single point of failure in the PDC.

INSHORT| 91

¢ Managing multidomain environments was basically the same as managing server-based
networks—each domain was seen as a separate entity.

¢ Trusts added administrative overhead and security risks to the network.

When all is said and done, Microsoft Windows NT versions 4 and earlier represented an attempt
to overcome the limitations of a flat-file accounts database. While they accomplished much of this
goal, the performance, security, and management capabilities left much to be desired.

Unfortunately, much of AD has been designed to be backward compatible with domain-based
networks. While most of these capabilities can be turned off or ignored, mixed environments will
be very common for quite some time. A mixed environment will not show AD in its best light—a
fact that might slow down its acceptance.

Now that we've taken a look at N'T withour AD (most of this chapter was probably a review for you),
we can begin to look at NT with AD. In Chapter 6, we'll discuss how AD overcomes the limitations
inherent in a domain-based environment. We'll also look at how AD fits into the overall Microsoft
product line and how AD has been added to the architecture of N'T. Once we've discussed how AD

is supposed to work, in later chapters we can look at how it actually does work.

This page intentionally left blank

Chapter 6

Active Directory Benefits

]UST As N'T was originally designed to overcome the weaknesses of server-based network operating
systems, Windows 2000/ Windows Server 2003 with AD was designed to overcome the weaknesses
of an N'T domain-based environment. While Microsoft is loath to admit it, NT domains created as
many problems as they fixed, especially in larger networks. Most of NT’s weaknesses revolved around
scalability. To put this another way, the NT domain structure was designed to overcome the limita-
tions of server-based operating systems, which it did in an admirable fashion. The problem was that
this domain model was designed with a “Workgroup” philosophy. NT’s domains were designed to
represent the resources of small groups within a company, not the overall network resources. This is
where Windows 2000/ Windows Server 2003 and Active Directory enter the picture.

Active Directory was designed, from the ground up, to support what Microsoft has labeled
"enterprise environments.” These enterprise environments can span huge physical areas, support
thousands (if not rnillions) of users, and can provide services that are critical to the overall success
of the company. For us, as network administrators, this scalability does come with a cost; we must
master a new technology. The benefits, though, are astounding!

While Active Directory was built for huge environments, most, if not all, of its features are also
applicable to small and medium networks. In fact, many of the new features built into Windows
2000/ Windows Server 2003 and Active Directory can ease the management of those smaller envi-
ronments that perhaps do not have a large IT staff or a staff with extensive networking expertise!

The bottom line here is that Active Directory is a great addition to any network—large or small.
IT professionals Working on any size network will benefit from the new utilities, technologies, and
features available once their network has become AD-based.

In this chapter we will discuss a few of the features of Active Directory as well as a few of the
fundamental technologies that you must master in order to take advantage of those new capabilities.

In this chapter:

& How networks develop
The general goals of AD
Enterprise management: vendor and user acceptance

Uniform Naming Convention

Active Directory in the Windows 2000/ Windows Server 2003 architecture

* 6 o o

94 | CHAPTER6 ACTIVE DIRECTORY BENEFITS

How Networks Develop

Very few networks are installed all at once, especially in medium to small companies. Most networks
grow over time—almost like a fungus! First the accounting department installs a server. They get it
configured properly (this can take some time) and start bragging it up around the company. The folks
in the production department see what the accountants are doing and decide to install their own
server, creating their own domain in the process. The sales department staff suddenly wants Internet
mail, so they bring in a consultant and have their own server installed, creating yet another domain.
Before you know it the company is NT-based, but there are no connections between the various
departments.

The next step in the development of the network is sharing resources between departments. First
someone in sales needs access to the quarterly accounting reports. Then someone in production decides
she wants to look over the marketing materials in order to stock inventory based upon what the company
is advertising. Departmental administrators start creating local accounts and trusts between domains to
allow for this unplanned resource-sharing. Before you know it, a complete trust domain structure is born!

Remember the three big benefits of domains over older, server-based networks?

¢ Single logon
¢ Universal resource access
¢ Central administration

The “network on the fly” scenario described above has the potential to provide all three. The question
is, do the benefits outweigh the costs? Management of a larger domain-based network with lots of trusts
can be overwhelming! In a complete trust design, the number of trusts is D X (D — 1), where D is the
number of domains involved. This doesn't seem like a lot—until you do the math for a few networks, as

shown in Table 6.1.

TABLE 6.1: TRUSTS IN A COMPLETE TRUST NETWORK

NUMBER OF DOMAINS NUMBER OF TRUSTS
2 2

3 6

4 12

5 20

6 30

7 42

8 56

9 72

10 90

THE GENERAL GOALS OF AD 95

As you can see, even a small company with five or six departments (or sites) will generate a relatively
large number of trusts. This is compounded by the fact that most small companies either have no staff
administrators or have an administrator without a lot of experience.

Of course, there’s really not a lot of management involved with trust relationships once they are
created—it is the global groups, local groups, global accounts, and local accounts that will turn you
in circles. As an example, look at the environment shown in Figure 6.1. Jim works in the Seattle office,
but he needs access to resources in Tampa.

FIGURE 6.1

Jim’s dilemma Seattle

Trust?

In a domain-based system, there are two possible solutions:
¢ Connect the two domains by a trust relationship.
¢ Create a local account for Jim in the Tampa domain.

In either event, the administrators have to decide which is the appropriate method. If they choose
to create the trust, they will have to remember that the Tampa domain now trusts the entire Seattle
domain. While NT's inherent security should protect against the abuse of this trust, that risk is still
a consideration. If the administrators decide to create an account for Jim in the Tampa domain, they
will have to train Jim in the skills necessary to connect to resources in Tampa. Either way, they will
have increased the potential amount of management required on their system.

The General Goals of AD

The overall goal of Microsoft Windows 2000/ Windows Server 2003 and Active Directory Services
can be stated simply:

Reduce both the user and administrative overhead associated with computer networks.

96

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

As a proposal, it’s fairly simple. As an implementation, it becomes much more difficult. This has
been the goal of most network operating systems since networking began. The biggest problem is
that this “goal” is really made up of two areas:

& User access
¢ Network administration

Often these two goals are at odds: Making a network easier for the user ends up creating more admin-
istrative overhead. Conversely, giving more responsibility to users usually means less work for the adminis-
trators. Placing higher demands upon system users is not a realistic expectation. Given the complex nature
of today’s networks, users cannot be expected to understand many of the necessary technologies.

The result is that the complexity of networks has forced both end users and administrative personnel
to become more network literate. Users are becoming more and more aware of the network, and admin-
istrators are being forced to master more and more complex technologies. At some juncture, this spiral
will reach a point of diminishing returns. Users will be forced to master technology at the expense of
their ability to perform their job functions (in other words, users will spend more time worrying about
the network and less time being productive). Network administrators will spend such a large amount of
time managing existing systems that no time will be left for improvement or optimization.

Since technological advances do not appear to be slowing (much to the relief of those of us
who make our living writing about them) and these advances have the potential to increase the
productivity of end users, something must be done to avoid that point of “diminishing returns.”
Network directories in general, and Active Directory specifically, attempt to accomplish this by
providing a simpler, more intuitive interface to the increasing complexities of a network. AD
attempts to provide two things:

¢ A common interface to network resources
¢ An intuitive interface to network resources

At first glance, these two goals might appear to be identical. The truth is, however, that we have
intuitive interfaces in many of today’s technologies. Almost every vendor realizes that easing access
and management—through GUI interfaces, online help systems, and the like—is critical to success.
The problem is that there is not a “standard” method of presenting information to end users,
administrators, or even other vendors.

Enterprise Management

AD aims to allow you to manage your entire network (and all of its associated resources) in a con-
sistent manner: more specifically, through a series of tools used to access configuration information
stored within the AD database. At first glance, this might not seem like such a revolutionary change
to network management. If you stop and think about it, though, a single set of tools to manage all
network resources—users, printers, servers, routers, switches—is indeed a lofty goal. If successful,
accomplishing this goal could change the way that network administrators approach their current
responsibilities.

ENTERPRISE MANAGEMENT | 97

Three prerequisites must be met before this goal can be reached:
¢ Design of an industry-standard method for storing and accessing configuration information
¢ Acceptance of this standard by third-party vendors of hardware and software

¢ Customer buy-in to the products created (and brought to market) by these vendors

An Industry Standard
AD is the embodiment of the first of these three prerequisites. In AD, Microsoft provides the framework
for an industry-standard method of storing, accessing, and using configuration information for network
resources. Through AD, Microsoft defines how information should be formatted. By embracing industry
recommendations and standards, such as X.500 and LDAP, Microsoft makes AD accessible to any ven-
dor who wishes to take advantage of it. More important, by creating a system for easily extending the
schema of the AD database, Microsoft creates an environment that all vendors can take advantage of.
I cannot overstress the importance of an open environment. By creating a directory service that is
easy to access and utilize, Microsoft brings the first truly “open” directory service to the networking
industry. While there have been other cornrnerciaﬂy successful directories (Novell’s NDS, for examp1e>,
none has been as easily accessible or extensible as AD. Developers can use simple tools to extend the
capabilities of AD to meet their needs. This openness 1s the first step in fulﬁﬂing the second of our
three prerequisites.

Vendor Acceptance

With an open environment, backed by Microsoft, the stage is set for the completion of the second
prerequisite: acceptance of a standard by product vendors. Given the clout that Microsoft wields in
the industry, it would seem that this is a foregone conclusion. In reality, however, AD must provide
some added value (over older, proven technologies) before products will be written to take advantage

of AD.

NOTE At a trade show soon after the release of Windows 2000, it was rumored that Microsoft offered incentives to any
vendor that would fly an “AD-ready” flag on its booth. While many booths had this logo, most were demonstrating products
that did nothing more than trust AD to perform user authentication. In other words, most of the products were not, in fact,

AD-based; rather, they were AD~friendly. A large difference!

This added value currently consists of products that utilize AD services to authenticate users to
control access, use information stored in AD, or automatically add data to standard attributes of an
object class. For instance, consider the following:

¢ Most so-called AD products accept the identity of a user once authenticated through the AD
database. This information is then used to control access to specific features of the product.

@ Other products access the information stored within the directory. A simple example is a
company directory (phone book) that gathers its information dynamically from user attrib-
utes and provides a user-friendly interface to LDAP queries of that data.

98 CHAPTER 6 ACTIVE DIRECTORY BENEFITS

¢ Some products have actually made the jump to placing data in the AD database. The installa-
tion software for a printer, for instance, can automatically fill in the make, model, and serial
number attributes of a printer object in the directory.

While each of these applications is an improvement over non-AD-enabled products, none of them is
really revolutionary in design. Before AD can become the industry standard, Microsoft must entice devel-
opers to create products in which AD s an integral component. Such products would depend upon AD
for a portion of their functionality. A few examples might include these:

¢ Devices that store their configuration in the directory database rather than in a local file. These
devices will have to include firmware that can find an AD server so that this information can be
gathered as they initialize.

¢ Software that stores a user’s preferences (things like default fonts, colors, or even the location
of stored data) in AD. By moving this information to a central database, a user’s preferences
will be available to her no matter where she is on the network.

NOTE Acmally much of this fumtionality is built into AD already—since a user’s prcy‘ile can be stored on a network
and since most applimtions now store user prg‘ermres in the user pnﬁl&

& Software that knows where other copies of itself are located. If a server becomes unavailable,
a user can be routed to another copy of the software—without any interruption of normal
network services.

Given the strength of a directory service, these few suggestions are just the tip of the iceberg. The
big question is, “What will Microsoft do to justity the costs involved in reengineering products to be
AD-aware?” Without this justification, third-party providers will not take a chance on this new tech-
nology. Three aspects of AD provide this justification:

¢ Microsoft’s large market share in both the desktop and networking arenas. Developers are con-
fident that any Microsoft product will be successful—and a large installed base increases their
own odds of success.

¢ Microsoft has made programming AD applications as easy as possible. AD applications can
be created using most of today’s prevalent tools, including Microsoft Visual Basic and C++.

¢ Microsoft has made AD easy to access through the use of industry-standard protocols such as
LDAP.

User Acceptance

The last of the prerequisites to the success of AD is user acceptance. There are two types of users
that must be considered:

¢ End users
¢ Administrators

Each type will have its own criteria for accepting any product.

ENTERPRISE MANAGEMENT

END USERS

A common maxim of older networks has always been: “The best networks are those of which the user
is unaware.” In a nutshell, this credo of network administration refers to the fact that end users should

not have to be concerned with the mechanics of networking. Users should see their computer as just

another tool—no different from a screwdriver—for doing their jobs.

With Windows 2000/ Windows Server 2003 and Active Directory Services, this credo might be
changed to: “The best networks are those that intuitively guide users to the resources they need.” As I
mentioned earlier, networks (and the resources they provide) have become much more sophisticated
over the last few years. Networks provide many more services than they used to, and this increase in
service has pushed users into becoming more computer (and network) savvy. Typical office workers
are now required to understand both the speciﬁc applications they use to manipulate information and
the networks that connect them. The argument over whether or not this is a good trend will probably
continue for years. The simple truth is that users must have a basic understanding of networks to
survive in today’s business world.

From an end-user perspective, some of the most basic aspects of AD might be the best selling
points. AD promises the following benefits to users:

¢ A single logon for all network resources. Many users are faced with multiple logons to access
the varied resources on their networks—one for the LAN, another for the mainframe, and
yet another for some legacy system down the hall. With AD, the user will be authenticated to
the Windows 2000/ Windows Server 2003 network, and this authentication should be valid

across multiple environments.
p

¢ Dynamic mapping to network resources. Users are often overwhelmed by the task of remem-
bering the locations and names of resources throughout a large network. Using AD to repre-
sent resources, such as applications, printers, and shared data, makes the process of accessing
resources as easy as clicking an icon.

¢ A consistent set of services on the network. Users are often confused by changes to their envi-
ronment. By providing a central database to store all of a user’s preferences, policies, and other
unique conﬁguration information, AD can re-create a user’s environment—no matter where
he logs on to the network.

For AD to become successful, Microsoft must make the information that the directory database
holds easily (and readily) available to end users. Moving toa graphical interface is a first step. The
simple fact that Microsoft owns the most popular end-user operating systems (the entire Windows

oS family—9x, NT, 2000, XP, and Windows Server 2003) gives AD a leg up on the competition.

Almost every end user will understand the process of using a Windows-based application.

NOTE The next step is to design the killer applimtion—in other words, some applimtz’on that becomes indispensable
to the average end user. We've discussed quite a few applz'mtions for di‘fettory services, everytking from an employee tele-
pkone di‘fectory to automatic configuration of network devices. None of these examples, however, is ‘fmlly indispensable
to the average end user. What is needed is a new applz’tation that insinuates z'tself 50 tkorougkly into business that it becomes
as fommonplafe as the calculator and as z'ndispensable as the fax machine. While P'm sure that this applifation will be
developed, there is no telling at this point what its purpose will be.

100

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

ADMINISTRATIVE USERS

While AD can provide numerous services to end users, its primary function is that of network resource

management. As such, AD will first and foremost have to be sold to network administrators—adminis-

trators who have little time or patience for new technologies that promise the world but do not deliver!

As a group, network administrators are mostly overworked and underappreciated (until an information

emergency, that is) but are fascinated by the possibilities of technology. Given the promises of AD, it

should be an easy sell to these individuals. For administrative personnel, AD can provide the following:

*

A single point of management for each user. Administrators will no longer have to create multiple
accounts for a user who needs to access multiple environments. The same account information (or
at least the same account object within the database) can be used to access many different types of
systems: N'T servers, Novell NetWare servers, mainframe systems, and even Unix boxes.

A single interface for managing products from multiple vendors. Since AD can be extended to
hold the configuration information for any type of object, a single set of tools should be able
to manage any resource that can be represented by an object within the database.

The ability to provide a uniform configuration for a like set of resources. AD provides the
ability to copy objects. From an administrative perspective, this means that like objects (for
instance, two routers) should have to be conﬁgured only once; the second can be conﬁgured

by copying the configuration of the first.

The ability to provide a standard set of policies across an entire network. For resources that are so
enabled, administrators can use AD tools to create policies of use. Such resources will accept the
identity of the user (as confirmed by the NT network> to enable or disable services. A router, for
example, might limit access to a particular route (the Internet, perhaps) based on membership n

an AD-defined group.

The ability to selectively delegate administrative responsibility based on an object’s location in the
tree structure. Earlier we discussed the concept of containers within an X.500-compliant direc-
tory structure. In AD, each container can act as a security boundary. In other words, if you have
created a “users” container, you can delegate the administrative tasks for the objects 1t contains.
This allows you to limit the areas in which a particular user might have administrative powers.

The ability to selectively delegate administrative responsibility based on an object’s attributes.
You can, for instance, allow all members of the Help desk group to change passwords for all
user objects, without allovving them any other administrative privileges.

The ability to distribute printer drivers from a central location. AD will store the drivers nec-
essary for a client to use a particular printer. When a user attempts to print, the driver can be
automatically installed (or upgraded) on her computer.

NotE This ability is not new—-both NT 4 and Novell NetWare also have this mpabz’lz’ty,

ENTERPRISE MANAGEMENT | 101

All in all, what administrators need is an environment where new technologies mesh easily with
old technologies, where management tasks do not consume every waking hour, and that can be cus-
tomized to fit the specific needs of the business. In other words, what administrators need is AD!
Active Directory includes many tools that bring it close to achieving these lofty goals, the most
important of which are discussed in the following sections.

Extensibility

One of the major features of the Active Directory database is that it can be extended to include any
information that might be necessary in a particular environment. Suppose, for instance, that Company
XYZ is in a business that requires employees to travel on a regular basis. In this type of company, each
office probably has one person who is responsible for arranging travei—ﬂights, hotels, auto rentals,
perhaps even tickets to activities like plays or baﬂgames.

If user Carrie is based in Grand Rapids, Michigan, the local travel personnel probably know
all about Carrie and her travel preferences‘ They know whether she likes window or aisle seats,
nonsmoking or smoking rooms. They are aware of the appropriate type of automobile for her—
e.g., whether she needs a van to carry equipment or whether a compact car can cover her needs.
‘When Carrie needs to travel, she just calls the local person and gives her destination and travel
dates, and everything is arranged for her.

If Carrie is away from home, though, this scenario changes a bit. Either Carrie calls her office
to arrange travel (Which means faxing itineraries, and lots of phone time) or she talks to the travel
person at the branch nearest her. The problem is that this travel person doesn’t know all of Carrie’s
preferences. He either has to ask Carrie—who is busy working on her project—or call her office
and have the material faxed to him (okay—he would probably be able to do this through e—mail).
Either way, information that should be readily available, based upon the type of company we have
described, is not!

In an AD-based environment, this scenario changes quite a bit. After analyzing the business needs of
the company, the administrators decide that the AD database should store travel preferences as properties
of the user account. Using fairly straightforward tools, they extend that property list of user accounts to
include things like airline of choice, frequent ﬂyer identification, smoking/ nonsmoking, special diet
needs, and perhaps even hobbies (so that entertainment arrangements can be made or suggested). Now,
wherever Carrie travels, her preferences are available to the local staff. If her plans change, they can make
arrangements easily. If she’s doing a really great job, they can check her entertainment preferences and
arrange tickets to a baﬂgame. In other words, the data that is needed is readily available,

The process of changing or adding to the properties of object:s is known as extmding the schema
of the database. Extensibility ensures that AD can be customized to fit the needs of any size or
type of business.

NOTE This scenario might not be a “real-world” solution. It might actually be easier to build a “travel” database using
your database application of choice (SQL Server, Access, ett.) and then share it across the network. The big news bere is that
with Active Directory, you have another choice! For information that must be available, AD might be the better option,
since that information will be replimted to all domain controllers within the domain automatimlly, ensuring availabilz’ty even

if the WAN links are down.

102

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

Integration with DHCP (Dynamic Host Configuration Protocol)

Since TCP/IP is the protocol of choice for Windows 2000/ Windows Server 2003 networks, and is
mandatory for Active Directory Services, many of the traditional TCP /1P tools have been improved
upon in Windows 2000/ Windows Server 2003. One of the most basic, yet critical, tools is that of
DHCP. DHCP is used to dynamically configure the TCP /1P protocol stack on clients—automati-
cally as they boot rather than manually at each computer.

Traditionaﬂy, as DHCP clients initialize, they broadcast a packet on the network requesting the
services of a DHCP server. This DHCP server responds with an offer that includes all of the perti-
nent TCP/IP configuration parameters. The DHCP server keeps a database of available IP addresses
and 1s responsible for ensuring that no duplicate addresses are given out.

In Windows 2000/ Windows Server 2003, DHCP services have been integrated with AD. First, the
DHCP database of IP addresses has been moved into the Active Directory database. This allows cen-
tral control of all DHCP services; more important, it also negates the necessity to implement DHCP
relay agents or configure routers to pass BootP broadcast packets.

Another benefit of integrating DHCP into the Active Directory database is that the IP addressing

information is moved to a more accessible forum. We'll see the benefit of this in the next section.

Integration with DNS (Domain Name System)

As we discussed in Chapter 2, DNS is used to resolve user-friendly names, such as ww. royal-tech. com,
into the IP address of a resource. The biggest drawback to DINS was its static nature—each entry had to
be created manually for each resource or service. This limitation meant that while DNS was great for
some resources (e-mail servers, web servers, and the like), it wasn't all that great as an all-around resource
locator. (This was why WINS was created.) For Windows 2000/ Windows Server 2003, Microsoft has
integrated a new version of DINS—Dynamic Domain Name System (DDNS)}—into Active Directory.
With DDNS, a resource can dynamically register itself in the DNS database. The bottom line here is
that the resource records can be created on the fly as each resource initializes. This turns DNS into a
dynamically maintained database of active resources—in other words, it replaces the DNS/WINS com-
bination that was used in eatlier versions of Microsoft networking,

Global Catalog Server

We've discussed the various protocols used to access the data in the Active Directory database—DAP
and LDAP. We've also discussed the various uses that this information can be put to—the company
phone book, holding parts of the Registry so that user preferences are available from multiple loca-
tions, even checking the settings on various types of hardware. What we haven't talked about is the net-
work traffic generated by these types of queries. Think about it: if T use the Active Directory database
to find phone numbers for users around the globe, the traffic generated could outweigh the benefit of
the central database.

ENTERPRISE MANAGEMENT

In order to reduce this network overhead, Windows 2000/ Windows Server 2003 includes a com-
ponent known as the Global Catalog. This service is installed by default on the first domain controller
in your environment.

The Global Catalog contains a partial replica of every object defined in every domain in your
forest—in other words, here is a list of everything in your environment, but with only part of the
actual data. Only selected properties of each object are stored in the Global Catalog, specifically
those properties that are most likely to be searched upon.

Let’s take my company phone book as an example. If my company’s network spanned the globe, I
would probably have created multiple domains. Remember that each domain represents a partition of
the overall Active Directory database. As such, if I were to search my local partition (domain database)
for the phone number of a fellow employee whose account resides in another domain, the information
would not be available (at least not from my local server). Without any additional components, my
local server would have to access a domain controller at the remote domain and perform the query on
my behalf, ultimately returning the information that I requested. The problem here is that my request
has now traveled across the WAN links that connect my network. The amount of traffic generated for
a single query would probably not affect the performance of my network, but if we extrapolate that
traffic for 1,000 users—well, suddenly we have a problem.

The Global Catalog acts as a reference point for these types of queries. In the scenario above, my
local server would forward my query to the Global Catalog server. There, we would hope, the requested
information would be found. The best part of this entire process is that I have complete control over
which properties are stored in the Global Catalog and who can access the information.

I can also designate multiple servers to hold the Global Catalog, thus ensuring that a catalog is
available Jocally to all of my users. (Of course, the more Global Catalog servers I have, the more
traffic is generated to keep the replicas up-to-date.)

Policy-Based Administration

Earlier versions of Windows NT had the ability to create policy files to control certain aspects of
a user’s environment. While this capability was useful, it was limited in scope—you could create
policies only for users, groups, or computers. The level of control was also limited to a very select
set of parameters, things like access to the display options on a computer or ability to disable the
Run option on the Startup menu. All in all, administrators had more control than was available
with earlier operating systems, but the capabilities were too limited.

In Windows 2000/ Windows Server 2003, policies have been expanded so that they can apply
across a site, domain, or organizational unit (OU) as defined in the Active Directory database. The
controls available have also been eXpanded so that administrators can now control just about every
aspect of a user’s environment.

Policies now include options that allow central administration of items like operating system
updates, installation of applications (either mandatory or user-controlled), user proﬁles, and the
traditional Desktop.

103

104

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

Uniform Naming Convention

Within the realm of networks and network applications, there are numerous ways to identify
resources. Within a single environment, administrators and users are often forced to understand
(and use) multiple methods for naming and finding the resources they need.

One common method of naming servers and share points is to use UNC (Uniform Naming Convention)
names. UNC names adhere to the following format:

\\<server name>\<share point>\<path to resource>

where:
® <server name> refers to the name of the device that holds the resource.
<share point> refers to the name given to the shared data area.

<path to resource> refers to the logical directory structure used to find the requested
information.

NoTE The acronym UNC is also z'nterpreted as Universal Naming Convention in many current texts. Since UNC'is
a Microsoft term and this book is about Microsoft tedmologyJ Dve decided to £ with the original

While users have grown accustomed to this format, it is not necessarily either intuitive or con-
venient. Users must know the entire UNC name to use an object on their network. This is one of
the reasons why graphical interfaces are so popular: users can click to an object rather than have to
remember its name.

Another confusing environment can be that of messaging systems. Exchange Server, for instance,
generates multiple names for each recipient created. These names follow the format of various stan-
dards and foreign mail systems (thus allowing mail to be routed to and from other environments). A
typical recipient will have names matching the following standards:

* Distinguished names (or X.500 naineS)
& X.400 names

¢ Lotus cc:Mail names
¢ Microsoft Mail names

For our purposes, we do not need to examine each of the naming standards in detail. Besides, most of
this is done behind the scenes, meaning that the mail administrator doesn't necessarily have to understand
each naming standard. There are, however, times when such knowledge is critical to troubleshooting a
message delivery problem. The problem with this type of system 1s that no one can be expected to have
detailed knowledge of all of these standards (especially not for systems one has never worked with).

With Windows 2000/ Windows Server 2003 and AD, each object in the directory has one unique
name that can be used to reference it. AD uses X.500 names to represent each of the objects that it
contains. In an X.500 environment, the complete, or distingmsbed, name of any objectis a complete path

UNIFORM NAMING CONVENTION | 105

to the top of the tree structure, as shown in Figure 6.2. From an administrative perspective, this means
that there is only one naming format in use on a network.

FIGURE 6.2 O = KingTech

Distinguished
object names

OU=Reno OU =Tampa

‘—I

OU = Sales

Bob <«—— DN =

Bob @ Sales.Tampa.KingTech

As you can see in Figure 0.2, there are certain similarities to all objects named within a particular
AD tree. At the very least, every object share’s name includes the name of the root object, much as all
members of a family share a common last name. Just as you can refer to my family as “the King family,”
you can refer to an AD tree by its topmost object (the root).

Namespace and Name Resolution

The root object of a tree defines the beginning of a namespace. The concept of a namespace is critical to
understanding AD. A namespace is a structure in which a name (in this case, the name of the root object of
the AD database) is applied to all of the objects it contains. In other words, a namespace is any specific
context in which a name can be resolved to a resource.

Name resolution is the process that uses the name of an object to find some information about that
object. Probably the most common name resolution process is using the telephone book. With a tele-
phone book, you use a name to find a telephone number or address.

In AD you can use the name, or even just a portion of the name, of an object to find the value of
its attributes, as shown in Figure 6.3. Susan is looking for the mail-stop of a user named Bob in the
sales department. She uses a tool to submit a query, and AD returns the resources that match her cri-
teria. This is the process of name resolution.

FIGURE 6.3

Name resolution

Susan
Query: Show me all Bobs in Result: Bob.Sales.Tampa.KingTech
the Sales Department Bob.Sales.Reno.KingTech

BobP.Sales. Tampa.KingTech

106

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

When you create the tree structure for an AD tree, its contents are organized in a hierarchical (and,
ideally, logical) manner. Each department, workgroup, or object class can be given its own container.
These containers relate back to the original Active Directory namespace, as shown in Figure 6.4.

FIGURE 6.4 KingTech
The AD hierarchical |

structure | I

Reno Tampa

[[| [[|
Consulting Education Sales Sales Education Consulting
The King Technologies tree has two regional containers, or organizational units:
& Tampa.KingTech
& Reno.KingTech

Each region is divided into three departmental OUs. For the Reno office, these are
Sales.Reno.KingTech, Education.Reno.KingTech, and Consulting.Reno.KingTech. In our
previous example, if Susan had known which office Bob worked in, she could have limited
her search to the appropriate area of the AD structure by specifying the Sales.Reno.KingTech
container. This shows the hierarchical nature of the AD tree structure. It also demonstrates the
concept of namespace: each object in the context KingTech can be resolved to a unique name.

Active Directory Names
Inan AD directory, each object has a unique name within the structure. There are three different
types of names used depending upon the function being performed:

* Distinguished names
¢ Relative names
& User principal names

I know that I said there was a single naming standard; as we discuss each of the three name types
in the foﬂowing sections, you will find that they are all derived from the same single namespace.

DISTINGUISHED NAMES

The distinguisbed name (DN) of any object identifies the entire path through the AD structure to find
that object. Every object within an AD tree has a DN. For example, Katie King, who works in the
Reno sales department of King Technologies, would have the following DN:

Katie King@Sales.Reno.KingTech.com
& Katie King is the actual name given to the object in the AD database.

¢ Sales is an OU within the Reno container.

ACTIVE DIRECTORY IN THE WINDOWS 2000/ WINDOWS SERVER 2003 ARCHITECTURE | 107

¢ Reno is an OU within the KingTech container.
& KingTech is the organization at the top of the structure.
& com represents the container in which the KingTech namespace is defined on the Internet.

A distinguished name is the most complete and accurate way to represent any object within the
AD tree. DNs can, however, be cumbersome to use in a productive manner—can you imagine typing
Katie’s entire DN each time you wanted to send her an e-mail or manage her object? Luckily, there
are a few shortcut naming standards that can reduce the length of names used to access resources.

RELATIVE NAMES

A relative name (RN) is made up of the parts of an object's DN that are attributes of the object itself.
For Katie, her RN would be Katie King because this is the only part of her DN that is specific to
her object. The rest of her name is made up of RNs of the containers used to make up her DN.
Sales, for instance, is the RN of her parent container.

NOTE The term parent is used to describe any ob]’ect above another in an AD tree.

USER PRINCIPAL NAMES

The wser principal name (UPN) is the name a user uses to log on to the network. Katie could use her DIN—
Katie King@Sales.Reno.KingTech.com—but this could be confusing for her. The UPN is a shortcut
made up of her RN and the DINS name of the domain in which she resides: Katie King@KingTech.com.

NotE Il discuss DNS naming in more detail in Chapter 9.

A major goal of AD is to simplify the process of finding information about resources on a net-
work. By using a standard set of rules to create DNs, RNs, and UPNs for objects, Microsoft begins
the process of removing multiple naming formats from large environments. This can help to reduce
both user and administrative confusion, easing the process of resolving names to resources.

Active Directory in the Windows 2000/ Windows
Server 2003 Architecture

When reading (or writing) a book about Active Directory, one tends to forget that AD is just one
small piece of the overall Windows 2000/ Windows Server 2003 environment—although a critical
small piece! Before we begin our discussion on the specifics of AD, we need to see how AD fits into
the overall architecture of Windows 2000/ Windows Server 2003.

As you can see in Figure 6.5, the Active Directory subsystem is contained within the security
subsystem of N T—more specifically, within the Local Security Authority (LSA) subsystem of the
security environment. The specific module that contains Active Directory within the LSA is the
Directory Service module. Understanding how these modules are organized can help when designing
your AD network for optimal efficiency and performance.

108

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

FIGURE 6.5

AD in the Windows Posix Win32 Active
2000/ Windows Application Application Directory
Server 2003

architecture 1 1
Posix
Subsystem ‘

Security
Subsystem
Local Security Authority

Directory
Service Module

_

A User mode

i

* * y Kemel mode

Executive Services

The modular design of Windows 2000/ Windows Server 2003 means that each component is a sep-
arate and distinct piece that is responsible for a particular function. These components work together to
perform operating system tasks. Active Directory is a part of the component called the security subsys-
tem, which runs in user mode. User mode is a separate section of memory in which applications are exe-
cuted. Applications running in user mode do not have direct access to the operating system or hardware;
each request for resources must be passed through various components to determine whether the request
is valid. One such component is the security subsystem. Access Control Lists (ACLs) protect objects in the
Active Directory structure. ACLs list who or what has been given permission to access the resource. Any
attempt to gain access to an AD object or attribute is validated against the ACL by
Windows 2000/ Windows Server 2003 access validation functions.

The Windows 2000/ Windows Server 2003 security infrastructure has four primary functions:

& It stores security policies and account information.

¢ It implements and enforces security models for all objects.
¢ It authenticates access requests to AD objects.

¢ It stores trust information.

The security subsystem for Windows NT is a mature, stable component. Using this subsystem to
manage AD ensures that the information stored within the AD database will be secure against unau-
thorized access.

NOTE There have been a few changes to the overall NT architecture with Windows 2000/ Windows Server 2003: the
addition of Plug and Play and power management modules; the addition of Quality of Service (QOS), asynchronous
transfer mode (ATM), and other drivers to the /O manager; and some low-level changes to the operating system kernel.

ACTIVE DIRECTORY IN THE WINDOWS 2000/ WINDOWS SERVER 2003 ARCHITECTURE | 109

The Security Subsystem

Active Directory is a subcomponent of the LSA, which is in turn a subcomponent of the security
subsystem. The LSA is a protected module that maintains the security of the local computer. It
ensures that users have system access permissions. The LSA has four primary functions:

& It generates tokens that contain user and group information, as well as the security privileges
for that particular user.

¢ It manages the local security policy.
¢ It provides the interactive processes for user logon.
¢ It manages auditing,

The LSA itself is made up of various components, each of which is responsible for a specific
function. These components are shown in Figure 6.6.

FIGURE 6.6 | NTLM | [SSL | |Kerberos |
LSA components

Secur32.dll

| NETLOGON Service —— LSA Server Service |

SAM

| Directory Service |

Netlogon.d11 Maintains the secure connection to a domain controller. It passes the user’s creden-
tials to a domain controller and returns the domain security identifiers and user rights for that user.
(In Windows 2000/ Windows Server 2003, the Netlogon service uses DNS to locate the domain
controller.) In the event that the environment is a mix of NT 4 and Windows 2000/ Windows
Server 2003, the Netlogon service also controls the replication process between the PDC and BDCs.

Msvl_0.d11 The Windows NT LAN Manager (NTLM) authentication protocol.
Schannel.d11 The Secure Sockets Layer (SSL) authentication protocol.
Kerberos.d11 The Kerberos v5 authentication protocol.

Lsasrv.d11 The LSA server service, which enforces security policies.

Samsrv.d11 The Security Accounts Manager (SAM), which enforces stored policies.

Ntdsa.d11 The Directory Service module, which supports LDAP queries and manages parti-
tions of data.

Secur32.d11 The multiple authentication provider, which manages the rest of the components.

110 |CHAPTER6 ACTIVE DIRECTORY BENEFITS

The Directory Service Module

The Directory Service module is itself made up of multiple components that work together to
provide directory services. These modules are arranged in the following three layers, which you
can see in Figure 6.7:

¢ Agents layer
¢ Directory System Agent layer
¢ Database layer

These three layers control access to the actual database itself, which is known as the Extensible

Storage Engine (ESE).

FIGURE 6.7

Directory Service LDAP Replication Outlook Exchange BDC
module components Clients Transports Clients Mgmt Tools Replication

I S A

| LDAP | | REPL | | NSPI | | xDS | | sAM |

| Directory System Agent (DSA) |

Database Layer |

| Extensible Storage Engine |

AGENTS LAYER

There are five interface agents that gain access to the directory through internal functions:

Lightweight Directory Access Protocol (LDAP) The industry-standard protocol for directory
access. This interface makes it easy for third-party developers to utilize the AD database.

Intersite and Intrasite Replication (REPL) Changes to the AD database must be replicated
throughout the environment. The REPL interface is used to facilitate this function.

Name Service Provider Interface (NSPI) This interface provides a uniform method of naming
objects.

ACTIVE DIRECTORY IN THE WINDOWS 2000/ WINDOWS SERVER 2003 ARCHITECTURE

Exchange Directory Service (XDS) This interface directly connects to an Exchange e-mail
system (if one exists).

Security Accounts Manager (SAM) This interface accesses the AD database as if it were the
accounts database in an NT environment.

Each of these interfaces uses a different method to access the information stored within the database.

DIRECTORY SYSTEM AGENT (DSA) LAYER

The DSA is responsible for creating a hierarchical tree-like namespace from an existing flat namespace.
This allows you to view objects in a more Iogical manner, rather than as a flat list. The database itself is

not reaﬂy a “tree”—the DSA uses the information found for containers to create the logical structure

that we see in the various management tools. The DSA has the following responsibilities:

¢ Enforce all Directory Service semantics
Process transactions

Enforce the common schema

Support replication between AD servers

Provide Global Catalog services

® 6 6 o o

Propagate security descriptors

DATABASE LAYER

The database layer provides the functionality needed to access and search the directory database. All
database access is routed through the database layer. It controls the ways in which the data is viewed.

EXTENSIBLE STORAGE ENGINE

The ESE is the actual database used to store the Active Directory database. It is a modified version
of the Jet database used in Microsoft Exchange versions 4 and §. The ESE enables you to create a
17-terabyte database that (theoretically) can hold up to 10 million objects.

The Jet database engine has been used for Microsoft Exchange Server for quite some time. The ver-
sion used by AD comes with a predefined schema (the definition of object classes and their attributes).
ESE reserves storage only for the space actually used. If you create a user object, for example, which could
have 50 predeﬁned attributes, but you only give values to four of them, then ESE will only use as much
storage space as needed for the four attributes. As you add values to other attributes for that user, ESE
will dynamicaﬂy allocate space for the growth in record size. ESE can also store multiple values for a
single attribute (such as telephone numbers). It will allocate space as needed for each telephone number
added to a user object.

112

CHAPTER 6 ACTIVE DIRECTORY BENEFITS

The Internal Architecture of the Active Directory Module

The rootDSA object is inside the DSA in the Directory Service module. It is the top of the logical
namespace defined by the AD database and therefore at the top of the LDAP search tree, as shown
in Figure 6.3.

FIGURE 6.8 rootDSA
AD internal

architecture

Configuration Container

T oS

The rootDSA object contains a configuration container, which in turn holds data about the

entire AD network. The information stored in the conﬁguration container provides the data neces-
sary to replicate the directory database, how this server relates to the overall namespace, and how
the database is partitioned. This information is known as the name context for the various types of
information. The following four name contexts are described under the conﬁguration container:

Schema Contains the definitions of all object classes and their attributes.

Sites Contains information on all of the sites in the enterprise network, the domain controllers
in those sites, and the replication topology.

Partitions Holds pointers to all of the partitions of the directory database.

Services Holds the configuration information for networkwide services such as Remote Access
Service, system volumes, and DNS.

In Short

Microsoft Active Directory Services is intended to tie together all of the diverse aspects of network
management within a single database, which can be accessed using a single set of tools. Once imple-
mented, AD should ease the administrative burdens placed upon network administrators.

Now that we've looked at the goals and the architecture of AD, we can turn our attention to
specific pieces of AD. In the next chapter, we’ll take a closer look at how domains exist in a
Windows 2000/ Windows Server 2003 environment and how AD implements backward com-
patibility with older NT systems.

Chapter 7

Network Support Services

ACTIVE DIRECTORY DOESN’T HAVE a lengthy history, but it has been around iong enough to
require a third update of Mastering Active Directory. The first edition of the book was based upon
the functionality of a few beta versions of Windows 2000 (and Active Directory). The goal was to
provide a good look at Active Directory as soon as possible after its release. The purpose of the
second edition was to correct any discrepancies between the beta releases of Windows 2000 and
the final product. In both cases, neither I nor anyone else had any real-world experience upon which
to base our comments because the product was so new. In other words, I (along with a host of other
authors) wrote material based upon experience with other directory services and the documentation
provided by Microsoft.

Needless to say, basing technical information upon Microsoft material often results in a book
with a pro—Microsoft slant. In this version of the book, I can begin to offer real-world, experience-
based assessments of the technologies and skills used in designing, instaliing, configuring, and main-
taining an Active Directory environment. When producing a new edition of a manual, an author is
torn between simply updating the salient information and rewriting large portions of the material,
depending upon the topic at hand. This chapter is the first in which I felt that signiﬁcant changes
needed to be made.

As much as I hate to use marketing terms, the release of Windows 2000 began a whole new
paradigm in Windows networking. While earlier versions of the NT product family included
support for TCP /IP and its associated services, they were in no way mandatory to a successful
implementation. With Windows 2000 /Windows Server 2003 and Active Directory, TCP/IP
and some of the TCP/IP-based technologies are critical to success. Earlier versions of NT also
revolved around domain-based technology. While domains still exist in Windows 2000 / Win-
dows Server 2003, there have been significant changes to the way they fit into an overall design.

One of the biggest, and possibly best, changes that we see in Windows 2000 revolves around the
demise of NetBIOS-based technology. Don't get too excited yet; NetBIOS is still integral to most
installations, but the new focus on TCP/IP (especially DNS) shows us a light at the end of the
tunnel. The foundation has been laid for a complete removal of NetBIOS traffic from our future
networks!

114 |CHAPTER7 NETWORK SUPPORT SERVICES

In this chapter we'll review a few TCP /1P basics—foundation material that you must understand
with implementing Active Directory. We'll also take a look at WINS (see, I told you NetBIOS was
still hanging around) and how it fits into the AD picture. Lastly, we'll look at DHCP and DNS and
see how these two technologies will soon replace NetBIOS and WINS in our networks.

In this chapter:

¢ Windows Server 2003 vs. Windows 2000
TCP/IP basics
The Windows Internet Name Service (WINS) processes

Dynamic Host Configuration Protocol: installing DHCP and examining how it works

® & o o

Domain Name System (DNS): planning DNS naming and integrating DNS and Active
Directory

Regarding Windows Server 2003 vs. Windows 2000

I'had a difficult decision to make when writing this edition: how much effort should I put into covering
the Windows Server 2003 release? From a strictly Active Directory perspective, the basic functionality
really hasn't changed much (although there are a few changes that I'll cover when appropriate). This refer-
ence is dedicated to an understanding of AD, and that reduces the importance of the operating system
version considerably! For those of you coming from a Novell NDS background, discussing this is like
the difference between NDS 4.1 and 5; sure, there are some changes, but the underlying concepts are
pretty much the same.

I also had to consider the real-life situations of most companies out there. Microsoft has released new
versions of its operating systems on such a regular basis lately that many companies are getting a little fed
up! Many of my own clients are currently running mixed systems—a few Windows 2000/ Windows
Server 2003 servers, a few NT 4.0 servers, and just about every client operating system since Win-
dows 95. Most of these companies have expressed the same thing about upgrades:

1. Upgrades will only occur when the benefit is clearly defined and documented.

2. New servers and workstations will be installed with a standard operating system (usually
Windows 2000/ Windows Server 2003), but existing servers and clients will remain until
number 1 (above) is met.

3. Given Microsoft’s track record, new operating systems (first releases) will be thoroughly tested
before being utilized in a production environment. (Many clients say they’ll let “someone else
beta-test Microsoft’s product in the field;” they'll wait until the smoke clears before adopting
any new technology.)

As you can see, this leaves me in kind of a bind. As an author, I have two directives: stay on topic
(Active Directory) and provide useful information. Personally though, it’s a lot more fun to write about
the “latest and greatest” than it is to discuss an operating system that is being replaced. To this end, I
have decided to include both operating systems—Windows 2000 and Windows Server 2003—wher-

ever appropriate. You'll find screen shots from both, whenever they differ enough to make a difference.

TCP/IP BASICS| 115

The bottom line is that our discussions will pertain to Active Directory—in both Windows

Server 2003 and Windows 2000—unless specifically noted.

TCP/1P Basics

The Transmission Control Protocol/Internet Protocol (TCP/ IP) is a suite of protocols specifically
designed to fulfill two goals:

¢ Allow communication across WAN (wide area network) links
¢ Allow communication between diverse environments

Understanding the roots of these protocols leads to an understanding of their importance in
today’s networks.

The Development of TCP/IP

In the late 1960s and early 1970s, the U.S. Department of Defense Advanced Research Projects
Agency (DARPA) conducted a series of tests with packet-switching networks. These tests had two

goals:

¢ The development of a network that would allow research facilities to share information (at the
time, DARPA discovered that numerous universities were conducting the exact same research
but did not have the ability to share their results)

* The development Of a network that WOuld actas a llnl(between defense sites in the event Of a
nuclear attack

NOTE The second of these goals might sound kind of silly in light of toduy’s global politiml situation, but at the time, the
threat of “nuclear bolocaust” was a fact of life. Many of today’s most important technologies were developed with the Cold
War in mind.

These experiments developed through numerous stages until they finally came together in what we
now call the Internet. The TCP/IP suite was developed as part of these experiments. The TCP/IP suite
itself is still developing to meet the needs of changing technology.

The development of TCP/IP is overseen by the Internet Society. The Internet Society is responsible
for the internetworking technologies and applications used on the Internet. The Internet Architecture
Board (IAB) is an advisory group of the Internet Society that is responsible for setting Internet standards.
Internet technologies are defined through a series of articles known as RFCs: Requests for Comments.

If a member of the IAB believes that she has a new technology for the Internet or an improvement
to an existing technology, she would write a Request for Comments that outlines her idea. This RFC
is submitted to the IAB and posted for discussion. (Hence the name Request for Comments.) If the idea
has merit, it might eventually become part of the standard definition of the TCP /1P suite. Having
each proposed change posted ona public forum for discussion fosters an environment of cooperative
development. This process also helps to ensure that any change is well thought out and tested before
implementation.

116

CHAPTER7 NETWORK SUPPORT SERVICES

Common TCP/1P Protocols and Tools

Opver the years, many RECs have been added to the standard definition of the TCP /1P suite. TCP/IP
has developed into a rich, if somewhat complex, set of protocols perfectly suited to the task of man-
aging a complex network. The mature status of most of the technologies is one reason that Microsoft
has selected TCP/IP as its protocol of choice for Windows NT networks. Table 7.1 lists some of the
more common TCP/IP protocols and the purpose of each.

TABLE 7.1: TCP/IP PROTOCOLS

PROTOCOL PURPOSE

Simple Network Management Protocol (SNMP) A protocol designed to be used by network management
software. Specifically designed to allow remote manage-
ment of network devices. This definition has been expanded
to include the management of just about any network
resource.

Transmission Control Protocol (TCP) A communication protocol that is connection-oriented and
provides guaranteed delivery services.

User Datagram Protocol (UDP) A communication protocol that uses a connectionless
delivery scheme to deliver packets. This is a nonguaran-
teed delivery protocol.

Internet Control Message Protocol (ICMP) A protocol used for special communication between
hosts, usually protocol management messages (errors
and reports).

Internet Protocol (IP) A protocol that performs addressing and routing functions.

Address Resolution Protocol (ARP) A protocol used to resolve IP addresses into hardware
addresses.

Simple Mail Transfer Protocol (SMTP) A protocol specifically designed to handle the delivery of
electronic mail.

File Transfer Protocol (FTP) A protocol used to transfer files from one host to another.

NOTE While this is not a complete list of the various protocols that make up the TCP /IP suite, it shows some of the more
important protorols in use. As we add fomplaxity to our networks, so must we add fomplexz'ty to the protorols that provide
network functionality.

There is also a standard set of TCP/IP-based tools that every network administrator should be
aware of. Table 7.2 lists a few of the more common utilities and their functions.

TCP/IP BASICS | 117

TABLE 7.2: COMMON TCP/IP UTILITIES

UTILITY FUNCTION

File Transfer Protocol This was listed as a protocol in Table 7.1, but it is also considered a critical
TCP/1P utility. FTP can be used to test the transfer of files to and from hosts.

Telnet Provides terminal emulation to a host running Telnet server software.
Packet Internet Groper (Ping) Used to test TCP/1P configurations and connections.

IPCONFIG Verifies the TCP/IP configuration on the local host.

NSLOOKUP A command-line tool used to read records in the DNS database.
TRACERT Used to display the route taken between two hosts.

You will need to be proficient with each of these tools in order to set up and troubleshoot an AD
environment.

TCP/1P Addressing

In a TCP/IP environment, each network host (any device that uses TCP /1P to communicate) needs
a unique identifier. This identifier is known as its IP address. IP addressing is well beyond the scope of
this book, but I will cover the basics just to ensure that we are speaking the same language.

Without getting into too much detail (I’H suggest some additional reading at the end of this chapter),
here’s an overview. Each IP address is made up of 32 bits. Since computers use a binary system to repre-
sent information, each of those bits has one of two values: O or 1. The arrangement of those bits must
be unique against all computers on any network that a host can communicate with. A typical IP address

would look something like this:
10000011.01101011.00000010.11001000

Notice that the 32 bits are divided into four octets (an octet is a grouping of 8 bits). Each octet is 1
byte of data. While this is actually what the computer “sees,” it is not how humans think (or at least
most of us don't think in binary). Rather than using the binary value, IP addresses are converted into
their decimal equivalent. We see IP addresses in a format known as dotted decimal. The dotted decimal
representation of the address shown above is

131.107.2.200

An IP address has two parts:
¢ The network address

¢ The host address

The network address is used to route information to the correct network segment, and the host address
identifies a particular device within that segment. This is really no different from the street addresses
used by the USS. Postal Service, as you can see in Figure 7.1.

118

CHAPTER7 NETWORK SUPPORT SERVICES

FIGURE 7.1
1P addresses

a
E. Third St.

: &
901 E. 3rd St.

Network: 131.107.2
131.107.2.200

The address line on a letter contains both the house number and the street name. This allows the
post office to sort the mail (using the street name) so that the appropriate carrier receives it and can
identify which house it should be delivered to. The same process is used with IP addresses: the net-
work portion allows routers to deliver packets to the correct network (city and street), and the host
portion identifies which host should receive them (building or apartment number).

IP Subnetting

IP addressing is a little more complex than I just described. When a company receives a network
address (either from the Internet authorities or from an Internet Service Provider), the company is
given a range of possible addresses. There are three main classes of addresses available: A, B, and C.

NOTE There are actually more than three classes of IP network addresses, but we will stick with the more common
classes bere.

THE ABCS OF IP ADDRESSES

Class A addresses begin with a first octet value between 1 and 120. In other words, there are only 126
class A networks available on the entire Internet. (Needless to say, there are no more class A addresses
available.) The first octet is the network portion of the IP address, and the last three octets represent the
host portion. Each class A network can support over 16 million hosts. Now you can see why only a few
of these addresses are needed—not many companies have that number of hosts on their networks.

TCP/1P BASICS | 119

NOTE How do you calculate the number of bosts a network can support? On a class A network, only the first octet
represents the network. This means that three octets—or 24 bits—are used to provide the host portion. In a binary
system, you can determine the number of unique combinations by raising 2 to the number of bits available. In this case,
2 raised to the 24th power equals 16,777,214—more than 16 million available combinations. Without going into
the binary math involved, two of the possible combinations are illegal, so really there are 16,777,212 hosts available
on a class A network.

Class B networks begin with a first octet value between 128 and 191. In a class B network, the
first two octets represent the network and the last two represent the node portion of an IP address.
This means that there are only 65,534 class B networks available, each of which can support 65,534
nodes (216—2)

Finaﬂy, class C networks begin with a first octet value between 192 and 223. On a class C network,
the first three octets represent the network and the last octet represents the host portion. This means
that there are a little over 16 million class C network addresses available, but each can only support a
maximum of 254 hosts.

SUBNETTING IP ADDRESSES

The problem with the standard address classes is that they assume no routers between the various hosts
on the network. In other words, if you were given a class B network address, it is assumed that you have
somewhere in the neighborhood of 65,000 hosts on a single network. In reality, this situation would be
intolerable. Even if you could find a topology that would support it, the amount of traffic on such a
network would slow performance to a crawl.

To overcome this limitation, IP network addresses can be subnetted. The process of subnetting can
be extremely confusing (especially since this is not something you consider every day), but the theory
is fairly straightforward.

When a company is given a network address, it is given the network portion of each valid IP address
for the network. In other words, if a company is given a class B address of 131.107.0.0, each IP
address on its network must begin with 131.107. This is the portion of the address used by network
devices to route packets to the network.

Another way to look at this is to see the network portion as mandated by some external entity
(the Internet, for instance). The local administrator owns the host portion, such as the last two
octets in our example. He can do what he likes with them. This means that with a class B license,
the local administrator has 16 bits to use as he sees fit. In order to control traffic, the local admin-
istrator might choose to use some of these bits to represent local network addresses. While this
does make the process of assigning IP addresses much more complex, it offers a few advantages
that cannot be ignored:

¢ Since internal routers will direct traffic to the appropriate local network, congestion is reduced.
Each network segment will carry only traffic intended for local hosts.

¢ Each topology has limitations on the number of hosts that can be physically attached to a single
network wire. Subnetting allows the administrator to control how many hosts are on each internal
network.

& Later we will see that we can define AD sites that are used to control directory database replication.
These sites are based upon IP subnet addresses.

120

CHAPTER7 NETWORK SUPPORT SERVICES

NOTE As you can see, TCP/IP addressing can be a complexc subject, well beyond the scope of this material. For more
information, I would suggest you read one of the books recommended at the end of this chapter.

That last bullet item—the ability to define AD sites—is a critical piece of the Active Directory
puzzle. Microsoft has claimed that the AD database is capable of handling millions of objects—
well beyond the capabilities of the NT domain database. While this allows a wider latitude when it
comes to designing your environment, it could result in an overabundance of replication traffic. AD
site objects are used to define areas of replication, and they are based upon grouping IP subnets.

Now that we've taken a look at some of the basic principles of TCP/IP, we can examine a few of
the utilities designed to make managing a network easier.

Windows Internet Name Service (WINS)

Let’s start our discussion of management tools with the one we'd really like to get rid of: WINS. WINS
is used to resolve user-friendly NetBIOS names to their associated IP addresses. While this sounds like
a fairly simple process—and a lot like DNS—you'll see that WINS is really yesterday’s news.

First, let’s talk about NetBEUL NetBEUI is an old, nonroutable communication protocol that was
actually designed quite some time ago to support an Application Programming Interface (API) set
named NetBIOS. When Microsoft first entered the network operating system business, they decided
to use NetBEUI as their default communication protocol. After all, their first networking product was
Windows for Workgroups (WEFW)—not a really robust or scalable product. WEW was designed for
small, departmental—sized environments—in other words, environments without niultiple IP networks
(and their associated routers). Most of Microsoft’s first networking endeavors revolved around the use
of NetBEUI to support NetBIOS.

NetBIOS was first designed to act as an API so that applications running on different computers
could share information or work together. It includes various processes to facilitate this communication.
Rather than rewrite a networking process from scratch, Microsoft incorporated NetBIOS into their
own networking scheme.

For our discussion, there are a few important NetBIOS functions you should know about:

NetBIOS Names NetBIOS names are the unique, user—friendly names associated with devices in
a NetBIOS-based environment. They are 16 bytes n Iength; the first 15 bytes are assigned during
the installation/ setup of the hardware, and the last byte represents services on the device.

NetBIOS Name Registration NetBIOS devices use (by default) a broadcast technique to ensure

that the name being used by the device is unique on the network. Basicaﬂy, the device sends out a
broadcast packet declaring its name. If no negative response 1s heard (in other words, some other
device is using the name and protests), then the device assumes its name is unique and begins using it.

NetBIOS Name Resolution While NetBIOS uses the user—friendly computer name, the lower layer
communication protocols use other identifiers. When one device wants to communicate with another,
it will broadcast the destination’s NetBIOS name. The destination device will respond with its IP
address. At that time, communication can commence.

NetBIOS Name Release When a device is properly shut down, it will broadcast a packet notifying
other devices on the network that it is going offline. This allows them to update any NetBIOS name
tables that they might have built.

WINDOWS INTERNET NAME SERVICE (WINS) | 121

Have you noticed the problem with this yet? Everything is broadcast-based. This works great in a
single-segment environment, but as soon as you add a router to the mix, it starts to fall apart.

WINS Processes

There are actually a few different ways to deal with the issues surrounding NetBIOS in a routed
network, but we’ll concentrate on the Microsoft solution: WINS. In a WINS-based environment,
NetBIOS clients use directed traffic rather than broadcasts to registet, resolve, and release NetBIOS
names. The processes involved are fairly straightforward. They include:

¢ Client setup

¢ Name registration
¢ Name resolution
¢ Name release
*

Server partnerships

CLIENT SETUP

Each client in a WINS environment must be configured with the IP address of a WINS server. Once
this configuration has been made, NetBIOS functions will use a directed (or unicast) IP process rather
than broadcasting over the local segment. You can configure your clients manually if desired, or you

can include the WINS options as part of your DHCP configuration.

NAME REGISTRATION

Once conﬁgured with the IP address of a WINS server, the client will send its proposed name to that
WINS server during operating system initialization. The WINS server builds a database of all names
that have been registered. ‘When it receives a new request, it checks this database to ensure that the name
1S not already in use. If it is not, an acknowledgement is sent to the client, and initialization can continue.
If the name is already in use, the WINS server will attempt to contact the original client, to ensure that it
is still online and using the name (this protects against a machine being accidentally rebooted and then
being denied its name because it is still in the WINS database). If the original client is still online, the
new client will receive a negative acknowledgement informing it that its proposed name 1s already n use.
(The user will see the dreaded message, “Computer name already in use. Please contact your network
administrator.”)

NAME RESOLUTION
In a traditional broadcast-based NetBIOS network, computers “find each other” by broadcasting a
request for a response. Basically, if computer A needs to talk to computer B, A will send out a broad-
cast packet with B’s NetBIOS name. In B’s response will be his IP address. Once A has obtained the
IP address of the destination, communication can begin.

When WINS is added to the network, the process changes a little. First, A no longer broad-
casts to find B’s IP address. Instead, computer A will send a directed packet to the WINS server
requesting the IP address of a computer named “B”. The WINS server will search its database

122

CHAPTER7 NETWORK SUPPORT SERVICES

(see “Name Registration” above) to see if computer B has been registered. If so, the WINS server
will send computer A the IP address of computer B.

NAME RELEASE

When a WINS client is properly shut down, one of the last things it will do is send a message to
the WINS server letting it know that it is going offline. This alerts the WINS server to remove all
of the records for the device from its database. Basicaﬂy, this ensures that the WINS database only
contains records for active devices—a dynarnicaﬂy created, self—rnaintaining, database of network
devices.

In the event that a computer is taken offline in an inappropriate manner (such as an unplanned
reboot or a user hitting the off button instead of propeﬂy shutting down the rnachine), each record
Is given a time limit. In effect, each device “leases” its name and must “re-lease” on a regular basis. If
a record reaches the end of its lease period without reestabhshing contact with the WINS server, the

record WIH be ﬂushed frorn the database.

SERVER PARTNERSHIPS

While WINS can definitely cut down on the amount of broadcast traffic on your network, and it

does alleviate the problems associated with a routed environment, there can be a few problems. Say,

for instance, that you have offices in London and Tokyo. If your WINS server is located in London,

the Tokyo computers would have to register themselves to a database located in London—not neces-
sarily the best use of expensive WAN bandwidth. They would also have to utilize the London service
to resolve the IP address of local devices, again placing unwanted traffic on the WAN link.

The solution is to put two WINS servers in place—one in London and one in Tokyo. Each
WINS server would service the needs of local clients. Of course, without some additional config-
uration, neither would have records for the computers in the other location. This would mean that
Tokyo clients would not be able to resolve the IP address of (or, in effect, communicate with)
clients in London (or vice versa).

WINS includes the ability to create partnerships between servers. In effect, the WINS servers
exchange databases on a regular basis. This allows each WINS server to hold records for all WINS
clients on the network. In our example, we would create a partnership between the two WINS servers.
After database synchronization occurred, clients in London could resolve the IP addresses of Tokyo
resources through their local WINS server.

Why WINS?
Okay, by now you are probably Wondering Why you should worry about WINS at all. All of the
Microsoft marketing material states that Windows 2000/ Windows Server 2003 uses DNS (which
we'll discuss later in this chapter) for name resolution. NetBIOS (and the NetBEUI protocol) was
probably one of the least-efficient components of Windows NT. Since Windows 2000/ Windows
Server 2003 uses DNS and defaults to TCP/IP, you should be able to shelve the whole WINS expe-
rience, right? Wrong!

While Windows 2000/ Windows Server 2003 can live without NetBIOS, none of the older

legacy operating systems (and their associated server-based applications) can. Until you eliminate

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)| 123

all legacy workstations and servers, as well as any older server-based applications, you will have to
deal with the limitations of the NetBIOS environment. In other words, WINS will probably exist
on your network for the foreseeable future.

Now, you might ask, why mention it in a book devoted to Active Directory? Surely AD doesn't
use such an antiquated technology, right? This time you are correct! Active Directory utilizes
DNS for all name resolution. So from a strictly AD perspective, NetBIOS and WINS are no
longer necessary. I mention them here, in passing, because they will probably be critical to your
environment.,

Dynamic Host Configuration Protocol (DHCP)

Each host on a typical routed IP network must have certain parameters set correctly in order to
communicate. These are the three most common parameters:

IP Address Used to uniquely identify the host

Subnet Mask Used to determine which portion of the IP address represents the network

address

Default Gateway Used to represent the IP address of the router to which all nonlocal traffic
will be directed

Traditionally, these parameters were configured manually on each device on the network. From a
management perspective, this meant that an administrator had to visit each device to configure its IP
parameters. Entering this information manually took a lot of time and was prone to error. While
there is a better way to accomplish this task, you can still opt for manual configuration of a Win-
dows 2000/ Windows Server 2003 computer if you desire.

TCP/IP addresses are configured in much the same way as they were in NT 4. There are, however, a
few changes to the interface. To access the configuration window, right-click the My Network Places icon
on the Desktop and choose Properties. You will be presented with the window shown in Figure 7.2.

FIGURE 7.2

NetworkConnections

124

CHAPTER7 NETWORK SUPPORT SERVICES

From this window, right-click the Local Area Connection icon and choose Properties. Highlight
the Internet Protocol (TCP/ IP) option and again choose Properties. At this point, you will be pre-
sented with the window shown in Figure 7.3. Check the box labeled Use the Following IP Address

and enter your pararneters‘

FIGURE 7.3

Internet Protocol
Properties window

Our discussion of how to manually configure the IP parameters on a Windows 2000/ Windows
Server 2003 computer is mostly academic. You will use this method mostly to configure static IP
addresses for special-case devices. Microsoft’s preferred method for configuring IP hosts is to use
Dynamic Host Conﬁguration Protocol (DHCP), which we'll turn to next.

Installing DHCP Service

DHCP uses the BootP protocol to automatically configure TCP/IP clients as they join the net-
work, DHCP services must be installed on a server. The basic premise of DHCP services is that
clients can be configured automatically as they join the network, rather than manually as the com-
puter is installed. Since configuration occurs each time the client computer attaches to the network,
changes to the configuration are dynamically updated on the client.

The DHCP installation process has been modified from the NT 4 process, so let’s take a good
look at it.

To install DHCP services on your Windows 2000/ Windows Server 2003, open your Control
Panel (by choosing Start > Settings > Control Panel) and click Add/Remove Programs. You will

be presented with a new interface, as shown in Figure 7.4.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)| 125

FIGURE 7.4
Add/Remove

Programs in
Windows 2000/
Windows
Server 2003

Click the Add/Remove Windows Components button. The Windows Components Wizard (A
wizard is just a graphical interface designed to accomplish a specific task.) will appear, as shown in
Figure 7.5. This window displays the various NT components that you can install on your server.
The DHCP service is part of the Networking Services selection. Make sure that Networking Ser-
vices is chosen and click Details. You will notice that there are numerous components to this option;
make sure that only the items you want installed at this time are chosen. Then click OK and press the
Next button and then the Finished button to complete the installation.

FIGURE 7.5

The Windows
Components Wizard

126

CHAPTER7 NETWORK SUPPORT SERVICES

Once DHCP services have been installed, you will find a new tool in your Administrative Tools

group: DHCP Server Management.

How Does DHCP Work?

There are two processes to consider when looking at DHCP services:
Configuring the DHCP server
* Conﬁguring clients as they attach to the network

The next couple Of sections diSCUSS these processes.

CONFIGURING THE DHCP SERVER

When configured properly, DHCP servers provide an important service to the network. As with most
important functions, though, an incorrectly configured (or worse, unplanned) DHCP server can wreak
havoc on your orderly world. Remember the major task of DHCP servers: to give IP addresses and other
configuration parameters to clients as they join the network. If a DHCP server is incorrectly configured,
it could conceivably hand out IP addresses that are either invalid or—worse—already in use on your net-
work. For this reason, each DHCP server must be authorized before it can function in an Active Direc-
tory environment.

Each server in an Active Directory environment will function in one of the following three roles:

Domain Controllers Contain a copy of the Active Directory database and perform account
management for domain members.

Member Servers Do not maintain a replica of the Active Directory database, but they have
joined a domain and have an associated record in the AD database.

Stand-alone Servers Do not hold a replica of the AD database and are not members of any
domain. Basically, stand-alone servers announce their presence as members of a workgroup.

Only domain controllers and member servers can act as DHCP servers in an AD environment. By
mandating that all DHCP servers be verified as legal, Windows 2000/ Windows Server 2003 provides
a level of security that was unavailable in earlier operating systems. Not only does this protect against
“industrial espionage” (I've always wanted to use that phrase in a book—of course, I had a spy novel
in mind), but it also epitomizes one of the biggest advantages of a directory service: central control.
The central information services department no longer has to worry about some hotshot in Cleveland
installing a DHCP server without understanding IP addressing or subnetting.

AUTHORIZING A DHCP SERVER

To authorize a server to act as a DHCP server, first install DHCP services as described earlier. Then
open the DHCP management tool located in the Administrative Tools group. You will be presented
with a screen similar to the one shown in Figure 7.6.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP) | 127

FIGURE 7.6
DHCP management

tool

From the opening screen, choose Manage Authorized Servers from the Action menu. You will be
presented with the screen shown in Figure 7.7.

FIGURE 7.7
Authorizing DHCP

servers

Type in the name or IP address of the server that you wish to add to the authorized DHCP

servers list.

Note Okay, let’s be realistic. While the authorization process does indeed prevent unauthorized Windows 2000/ Win-
dows Server 2003 DHCP servers from functioning on your network, it does not have any effect on DHCP servers
running some other operating system. Basically, the Windows 2000/ Windows Server 2003 DHCP server sends out a
request to proceed to Active Directory. Upon receiving the go-abead, the server will then initiate the DHCP service. Other
operating systems (such as Windows N'T), on the other hand, do not send the request; they just start doing their job. Don’t
count on this as the ultimate in security; it’s just a nice feature!

128

CHAPTER7 NETWORK SUPPORT SERVICES

CREATING A SCOPE

At the server a scope must be created. A scope is a database of the parameters that the DHCP server
will pass to clients as they initialize. The DHCP server can provide more than just an IP address,
subnet mask, and default gateway—there are numerous TCP/IP parameters that might need to be
conﬁgured on any given client, and DHCP can designate all of them!

To create a scope, open the DHCP management tool located in the Administrative Tools group.
There are two ways to complete most tasks: manually or with the aid of a wizard. Personally, I like the
wizards—even though I'm fairly comfortable with most items, Wizards ensure that I don't inadvertently
forget something. To start the New Scope ‘Wizard, first highlight the server you wish to add the scope to,
then from the Action menu choose New, then Scope. The opening screen is the standard “Welcome to
our wizard” message. Click Next and you will be presented with the window shown in Figure 7.8. Here
you will give your scope a name and perhaps add a few comments to document your system.

FIGURE 7.8

New scope name
and comments

TIP The scope name should be something that will remind you of the purpose of the scope, such as “KingTech Test Lab.”

You can also add an administrative comment, such as “IP addresses not valid on the Internet”

The first technical configuration option is on the next page of the wizard, shown in Figure 7.9.
Here you will be asked to give a range of addresses that should be given out by the DHCP server
when using this scope. (This is where knowledge of the IP addressing scheme discussed eatlier will
come in handy!) You should also configure the subnet mask for this network.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)| 129

FIGURE 7.9
Defining the range

of addresses

You will then be asked for a list of any IP addresses that should be excluded from the range, as
shown in Figure 7.10. You might need to exclude addresses if you have devices that are manuaﬂy
configured with an address from your range.

NOTE Manually fOf}ﬂgMTEd ﬂddﬂ’SSES are LZZSO /WlOW?l as static ﬂddTESSL’S Z)t’fﬂMSE l’bi,fy S})OMM never fbange.

FIGURE 7.10
Excluding IP

addresses

130 |CHAPTER7 NETWORK SUPPORT SERVICES

The next screen, shown in Figure 7.11, will ask you for the duration of IP address leases. When
a client receives an IP address from the DHCP server, the client “leases” it for this amount of time
(the default is eight days). This allows the DHCP server to free up the address if the computer goes

offline for an extended period of time.

FIGURE 7.11

Setting lease
duration

The last screen of the wizard reminds you that you will still have to conﬁgure any additional param-
eters that should be passed to clients by the DHCP server and that you will have to activate, or turn on,
the scope before it will function. By selecting the appropriate button, as shown in Figure 712, you can
choose either to configure these options now or to do so later.

FIGURE 7.12
Additional options

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)| 131

There are numerous options that can be added to a DHCP scope for inclusion in the configuration
of clients. Once you have finished creating the scope, it will be added to your view in the DHCP man-
agement tool, as shown in Figure 7.13.

FIGURE 7.13
KingTech Lab scope

To configure additional parameters, right-click Scope Options and choose Configure Options. The
window shown in Figure 7.14 will appear. A complete discussion of the options available is beyond our
purposes, but you should be aware that no scope is complete without a few additional options. As an
example, you will probably want to configure the default gateway option for most clients.

FIGURE 7.14
DHCP options

132 |CHAPTER7 NETWORK SUPPORT SERVICES

DHCP AUDITING
While DHCP is an established and reliable process, there might be circumstances where you need to
track the DHCP actions taken on a server. Perhaps you suspect that unauthorized computers are being
placed on your network, or you want to track who is utﬂizing your services. (Tracking who uses your
services can be used to “charge back” to other departments or to justify an increase in the IS budget.)
For these and other reasons, the version of DHCP services included with Windows 2000/ Windows
Server 2003 includes the ability to audit its services.

Once enabled, DHCP logging will create comma-delineated text files that document the actions
taken by the DHCP service. Administrators have quite a bit of control over the placement, size, and
use of DHCP auditing. You can set the following parameters for DHCP auditing:

¢ Placement of the log files.
¢ Maximum size limit (in megabytes) for all DHCP log files.

¢ How often the DHCP service checks for available disk space before writing new records to a
log file. (This one is useful for limiting the overhead on your server.)

¢ Minimum available space restriction that will be used to determine if there is enough disk space

available to continue logging. This prevents the DHCP auditing service from ﬁlling your hard disks.
To enable DHCP auditing, open the DHCP management tool, click the appropriate DHCP

server, and choose Properties on the Action menu. You will be presented with the window shown

in Figure 7.15. Make sure that the Enable DHCP Audit Logging option is selected.

FIGURE 7.15

Enabling DHCP
audit logging

On the Advanced tab, you will be able to set the path to the audit files. This allows you to place

them on a partition that has enough available disk space.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)| 133

Once logging has been available, you will want to check the audit files on a regular basis (and possibly
save and print them for record-keeping purposes). Below is the output from a sample log file:

Microsoft DHCP Service Activity Log

ID Date,Time,Description,IP Address,Host Name,MAC Address
00,11/26/99,13:34:12,Started,,,
55,11/26/99,13:34:43,Authorized(servicing), ,WORKGROUP,
01,11/26/99,13:51:10,Stopped, , ,

As you can see, each entry provides an event code that identifies the action taken, the date, the
time, and a short description. Notice the trailing commas in our sample—these represent other

fields that will be available when appropriate: IP address, host name, and MAC address. Our sample

is a very simple example of a DHCP log file. There are numerous event codes that you will want to

be familiar with. I've listed a few of the more important ones in Table 7.3.

TABLE 7.3: DHCP LOG FILE EVENT CODES

EVENT ID
00

01
02
10
11
12
13
14

15
50

51
52

53

NAME
Start

Stop
Pause
Lease
Renew
Release
Duplicate

Out of addresses

Denied

Unreachable domain

Authorization succeeded

Upgraded to Windows 2000/
Windows Server 2003

Cached authorization

DESCRIPTION
The log was started.

The log was stopped.

The log was paused due to insufficient disk space.
Anew IP address was leased to a client.

A lease was renewed for a client.

A client has released its IP address.

An IP address was found in use on the network.

A lease request was denied because the DHCP
server had no available addresses.

A lease request was denied.

The server was unable to find the domain in
which it is configured (probably followed by
more events).

The service was authenticated and started.

The service was recently upgraded to
Windows 2000/ Windows Server 2003 so
unauthorized DHCP server detection was
disabled.

The server was unable to contact AD but
used cached information to start.

Continued on next page

134 |CHAPTER7 NETWORK SUPPORT SERVICES

TABLE 7.3: DHCP L0OG FILE EVENT CODES (continued)

54 Authorization failed (Usually followed by more event records to
explain the problem.)

55 Authorization (servicing) Successful authorization occurred.

56 Authorization failure, stopped servicing The attempt to authenticate failed so DHCP
services were stopped.

59 Network failure The system was unable to communicate on the
network so services were stopped.

While this is not a complete list of the available event codes (more can be found in both the DHCP
help file and the Windows 2000/ Windows Server 2003 resource kits), it includes the more commonly

seen events.

DHCP AND CLUSTERING

In this book, we are concentrating on “Mastering” one very speciﬁc topic—Active Directory. Win-
dows 2000/ Windows Server 2003 includes many other new technologies, tools, and advances to make
your computing environment more efficient, easier to manage, and more reliable. We can only touchon a
few of those in this book. One noteworthy new technology 1s flustering. Clustering, available only with
Windows 2000/ Windows Server 2003 Advanced Server, allows a group of independent computers,

known as nodes, to work together as a single unit. There are many advantages to a clustering environment:

the ability to manage a group of servers as a single entity, improvement in workload distribution, and

fail-over in the event of hardware failure.

A basic cluster is made up of two or more computers attached to one or more storage systems. Each
of the nodes runs software that allows it to monitor the status of the other nodes in the cluster. In the
event of a failure, the cluster can be conﬁgured to restart the affected computer’s critical services or
applications on other computers in the cluster. The system can also be configured to spread the work-
load of an application OF Service across rnultiple machines.

The DHCP service can be configured to take advantage of a clustered environment. This configu-
ration allows you to ensure that DHCP services will be constantly available through cluster fail-over.
This type of fault tolerance is critical in today’s high-volurne, constant-use, mission-critical networks.

To conﬁgure DHCP to take advantage of clustering, certain prerequisites must be met. The cluster
itself must have a shared disk resource configured and working. You must then create an IP address
resource (to act as the IP address of the DHCP service) and a name resource (to represent the DHCP
service).

The IP address cluster resource represents the IP address that will be assigned to the DHCP service
(as opposed to a specific host). This “virtual IP address” must be staticaﬂy configured and must be
valid on your network. The DHCP service will bind to the virtual IP address instead of the address of
a physical device.

DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP)

Each node in the cluster must also be configured with its own IP address. The DHCP named cluster
resource is then configured with the IP address of the preferred node and the IP addresses of any node
that should take over in the event of failure. Since the cluster shares a disk subsystem, the DHCP data-
base is available even though the original DHCP server might be unavailable. In the event of a failure, the
clustering software will start the DHCP service on another node, and service will continue normally.

THE DHCP CLIENT CONFIGURATION PROCESS
There are four packets involved in the configuration of a DHCP client:

¢ Discover

¢ Offer

¢ Request

¢ Acknowledgment
The process is as follows:

1. Asa DHCP client initializes, one of the first things it does 1s send a discover pa[]eet out on the wire.
This packet is a broadcast, so all computers on the local network will pick it up to determine
whether they need to respond.

2. Any DHCP server that receives the broadcast discover packet will respond. Each such server first
checks its scope to determine whether it has an IP address available. If so, it marks an address as
temporarily in use and sends an offer packet to the client. The offer also uses a broadcast packet
because the client is not yet conﬁgured with an address.

3. The client accepts the first offer that it receives (there might be more than one DHCP server
that responds). It broadcasts a request packet on the wire. The client uses a broadcast for two
reasons:

& The client still has no IP address, so broadcasts are mandated.

¢ This informs all other DHCP servers that the client has made a selection.

4. Finaﬂy, the DHCP server broadcasts an a[/enowledgment pa[/eet and marks the client’s IP address
as beingr in use. Any other DHCP server that responded also recetves the broadcast and can
free up the address that it had ternporarﬂy marked as unavailable.

There are many different types of clients that can take advantage of the DHCP service—all of the
modern Microsoft operating systems (Windows 9x, Windows NT 4, Windows 2000/ Windows
Server 2003), of course, plus various other local operating systems currently on the market (e.g., various
flavors of Unix, LAN Manager). Each local operating system will be conﬁgured to act as a DHCP
client in a slighdy different manner. Most, however, will have certain things in common. For instance,
most will be conﬁgured in the same way as other network-related options (teXt files, some apphcat:ions,
or perhaps as part of the operating system installation). Microsoft products, for example, are config-
ured in the same place as the TCP/IP protocol is configured.

136 |CHAPTER7 NETWORK SUPPORT SERVICES

While DHCP does reduce administrative overhead by centralizing control over IP configurations,
there are a few problems with the traditional implementation. First and foremost, DHCP is a
broadcast-based technology. Most administrators tend to avoid broadcast-based technologies
for two reasons:

¢ Broadcast packets place unwanted overhead on the network. Every computer that receives a
broadcast packet must open it up to look inside and determine whether it needs to respond.
In effect, broadcast packets use processing power on every computer that receives these
packets.

¢ More important, most modern routers are configured to prevent broadcast packets from being
forwarded to other networks. This means that broadcast packets are limited to the home network
of the originating computer. With DHCP, this means you must have a DHCP server on each
segment or you must manage some other solution (either configuring your routers to forward

broadcasts or installing a DHCP proxy).

Microsoft has integrated AD, DHCP, and DNS to solve these problems, as you'll see later in this
chapter.

Domain Name System (DNS)
As we discussed earlier, DNS is the directory used by traditional TCP/IP environments (like the

Internet) to resolve user-friendly names into IP addresses. DNS is a group of name servers linked
together to create a single namespace.

NOTE Remember that a namespace is just a system in which all resources share a common trait. In the case of the Internet
DN, the common trait is the root object.

The namespace defined by the DNS system is logical in nature—in other words, it presents a
group of text files as a single entity. The servers that hold these data files are known as name servers.
Clients that query the name servers for name resolution are known as resolvers.

The DNS namespace itself is presented graphically as a hierarchical system, much like the system of
folders and subfolders that makes up a file system. In DNS, each folder would be considered a DNS
domain (not to be confused with an NT domain). Any domain that contains subdomains would be con-
sidered the parent of those domains, and the subdomains would be considered dhild domains. (A domain
can be both a child of one domain and the parent of another.) Each domain has one, and only one, par-
ent domain. At the top of the structure is the roor domain; this is the only domain that has no parent.
Planning the structure of domains and subdomains is a large part of planning any DNS installation.

Domains are named by the complete path to the root domain. In Figure 7.16, the complete name
of the Royal-Tech domain would be royal-tech.com.

NOTE Notice that the root domain is not included as part of the complete name. It is assumed that every DNS name
ends with the root domain.

DOMAIN NAME SYSTEM (DNS) | 137

FIGURE 7.16 [Root]

Royal-tech.com

com edu mil org

Royal-Tech

DNS is critical to an Active Directory environment because AD uses DNS to resolve host names
into IP addresses for internal functions, such as the replication of the directory database. Without a
properly functioning DNS system, AD will not function correctly. In other words, DNS is some-
thing that you will have to be very familiar with in order to properly plan your AD-based network.

So What Exactly Is a DNS Domain?
There are two ways to look at DNS domains:

¢ Physically
¢ Logically

You will need to understand both views in order to properly install and configure the DNS service
on your Windows 2000/ Windows Server 2003.

Physically, a DNS domain is really a piece, or partition, of a large distributed database. It exists
as a text file stored on a server that is running DNS services. The file that holds the records for a
domain is often called the zone file. The syntax used in the zone file is arcane—remember, the same
people who designed the original Unix interface created this technology. Luckily, Microsoft’s imple-
mentation of DNS uses a graphical interface to create the records in the zone file.

NoTE W&l look ar the DNS Manager tool a little later in this chapter.

Logically, a DNS domain represents a boundary of responsibility. Whoever controls the server on
which the zone file is located is responsible for the maintenance of the records within the file. Think of
this in terms of the Internet. If there were one big DNS file located on a server somewhere, whoever was
responsible for that server would also have to maintain the DNS records for all of the resources on the
Internet—a big job, to say the least!

Breaking the DNS namespace into domains allows for a distributed database. A distributed database
allows for delegation of responsibility. Even if your company is not connected to the Internet, you
can still use these principles to distribute both the overhead on your DNS servers and the adminis-
trative tasks.

138 |CHAPTER7 NETWORK SUPPORT SERVICES

Planning DNS Naming

When planning your DNS naming structure, you must answer a series of questions:
¢ Will this system be attached to the Internet?

¢ How heavily will DNS be used?
¢ How can the system best be organized to provide an intuitive environment for end users?
*

Which DNS design strategy will you use? (We'll ook at a few of the more common designs

as we discuss this question.)

We'll look at each question in turn.

WILL THIS SYSTEM BE ATTACHED TO THE INTERNET?

If your system will be attached to the Internet, certain aspects of the DNS namespace will be mandated
b Y P P

for you. You will need to register a domain with the Internet Society and follow certain rules governing

your configuration. More information about this process can be found at http://rs.internic.net.

NOTE If you are not connecting to the Internet, the same rules will apply, but you will have a little more freedom in
naming your domain. Just remember that the name must be unique if you are ever going to connect.

How HEAVILY WILL DNS BE USED?

If you expect your DNS system to be heavily utilized, you might want to consider setting up
multiple DNS servers. DNS has the ability to replicate zone files from a master DNS server to
secondary servers. While changes can be made only to the primary copy, the secondary servers
can act both as a fault-tolerant copy of the zone file and as another name server to split the
workload of resolving names. This consideration is not applicable if you decide to implement

DNS as a portion of AD, a choice we’ll discuss in a bit.

HoOWw CAN THE SYSTEM BEST BE ORGANIZED TO PROVIDE AN INTUITIVE ENVIRONMENT FOR

END USERS?

This is probably the hardest part of designing a DNS system. Creating multiple subdomains can
ease the overhead on each DNS server (since each server holds less of the database), but this can be
confusing for your users. Microsoft recommends that the DNS structure not be more than three to
five layers deep and that you keep names as short as possible. This reduces the users’ learning curve
considerably. Table 7.4 lists the common steps involved in designing a DNS domain structure.

TABLE 7.4: PLANNING YOUR DNS DOMAIN STRUCTURE

LEVEL EXAMPLE
Top .com
Top of local domain royal-tech

Child domains Sales.royal-tech.com

WHICH DNS DESIGN STRATEGY SHOULD YOU USE?

DOMAIN NAME SYSTEM (DNS) [139

CONSIDERATIONS

This level will usually be mandated by the Internet
Society. There are certain top-level names associated
with different types of businesses: . com for commer-
cial, . org for nonprofit organizations, . edu for edu-
cational facilities, and so on.

This should be descriptive of your company, such as
its name, product, or function. This is the domain
name you register on the Internet, and it is often
not exactly what you want. (My company’s name
is King Technologies, but the closest 1 could get was
royal-tech.)

The entire purpose of creating child domains is to
be able to delegate responsibility for administration
of the zone file. Usually these names will indicate
the department or organization that is responsible
for each.

IF DNS has a fault, it’s that it is too “public” in nature. Since DNS is used to located resources (or find
the IP addresses of those resources, to be more specific), the DNS database must be available to users
before they authenticate to that resource. To drive this point home, let’s look at an example of how DNS

is used.

Imagine you are managing a large corporate network for some company—Iet’s call it RT. RT has
registered a domain name on the Internet, RT.com. Your company has a public web server, an FTP site
for customers to download patches for your product, and a company e-mail server. We'll concentrate

on the e-mail service for this example. When mail needs to be delivered to your e-mail server, the orig-
inator of the message submits it to their e-mail server. That e-mail server does a DNS lookup to find a
special kind of DNS record: an MX (Mail Exchange) record. The MX record tells the server where to

send any messages destined for your domain. Once the other e-mail server has obtained the IP address

of your e-mail server, the message(s) can be sent.

So far this seems like a fairly good process, doesn't it? Here's the problem: if the other e-mail server
can read the DNS database (and it must to deliver mail to you), then the database must be open, or

140

CHAPTER7 NETWORK SUPPORT SERVICES

readable, to unidentified requests (unless you want to make a security entry for everyone who might
want to send you mail!). Many DNS implementations include another type of mail-related record
known as a Mail Information record. This entry contains the e-mail address of the person responsible for
maintaining the mail system. Hackers have been known to “read” this record and then impersonate that
person by sending e-mail messages with his or her return address, requesting information.

In a Windows 2000/ Windows Server 2003/ Active Directory environment, DNS can potentially
contain quite a bit of information that you might not want available to the public. Windows 2000/
Windows Server 2003 computers, for instance, use DNS to resolve names for other hosts on the
network. As each client initializes on the network, it creates its own DINS record so that other devices
can locate it. (We'll discuss this DNS feature in a little bit.) In effect, this creates a complete map to
your environment—nhost names, IP addresses, services offered, etc.—that is available to anyone who
can access the DNS server.

The bottom line here is that DNS is a necessary part of any Active Directory environment, but
its implementation must be given careful consideration. While a few variations exist, there are four
basic design strategies for the implementation of DNS in an AD environment that is attached to the
Internet:

¢ Single DNS structure

¢ Subdomains

¢ Separate, same-name DNS structures
¢ Separate DNS structures

Each design has its strengths and weaknesses (although some are weaker than others). We'll discuss
each of these choices in the following sections.

Single DNS Structure

Ina single DN structure model, you create and maintain a single DNS domain, named to match
the name your company registered for use on the Internet. In this implementation, your DNS server
(or servers) are directly accessible from the Internet. Foreign systems access, read, and utilize the
information stored with the DNS database to locate resources within your network.

While this is the easiest method to implement, there are some definite security issues inherent in
this design. First and foremost, in a Windows 2000/ Windows Server 2003 environment, each client
registers itself with DNS as it initializes. This means that the DNS database has the IP address of not
only your “service” providers (your web server, FTP server, mail server, etc.), but also the IP address of
each of your Windows 2000/ Windows Server 2003 clients.

Since DNS is by design an open database—accessible by anyone—this means that your internal IP
address scheme becomes public knowledge. The first thing that any hacker wants to gather is a list of
valid hosts and their associated IP addresses. You should also be aware that DNS is no longer limited
to providing IP address resolution for hosts; the relatively new SRV records now allow the resolution
of a service, such as domain controller, to an IP address.

Ina single DNS structure environment, your entire environment becomes an open book; anyone
can obtain a list of valid IP addresses, host names, and even the location of certain key services. Given

this, the single DN structure model is definitely not the suggested strategy for implementing DNS!

DOMAIN NAME SYSTEM (DNS) | 141

Subdomains

Another option is to use DNS subdomains to limit the DNS information that is available to the
public. In this scenario, you could either manage the public DN server yourself or have a service
provider maintain it for you.

If you had registered royal-tech.com for use on the Internet, you might have one server that held
the public records for that domain. You might then create a subdomain, such as HQ, to handle the
DNS records for local hosts (such as your client computers).

This design 1s usuaﬂy implemented in an environment that contains a DMZ, or screened subnet,
that contains their public servers, as shown in Figure 7.17.

FIGURE 7.17 External DNS

DMZ configuration @ d’ royal-tech.com

Internal DNS
HQ.royal-tech.com

[
Firewall
Server
Firewall
Screened Subnet Server
(DMZ)

Internal Network

In this type of strategy, the external DNS server resides in the DMZ. This server holds only
those records that are appropriate for resources accessible to the Internet: the web server, the mail
server, or other public resources. The internal DNS server supports a child domain, for our example,
HQ. royal-tech.com. It contains DNS records that refer to resources on the internal network.

Clients on the internal network are configured to use the internal DINS server for address resolution.
For any external resources, this internal DNS server would query the external DN server, which would,
in turn, query other DNS servers on the Internet.

While this DNS design strategy does work, you should be aware of a couple of drawbacks. First,
there is a certain amount of inconvenience for your users. They are probably used to accessing your
company’s website by using your publicly register domain name, www. royal-tech.com in our example.
In this scenario, the host names of internal resources would end in HQ. royal-tech.com. While this
might not be a big problem, it 1s something you should keep in mind.

Another, and potentially more serious, problem with this design revolves (once again) around the
public nature of DNS. The external DNS server, which is accessible to the general public, has a record
describing its child domain (HQ. royal-tech.com). A good hacker could use that information to query
the internal DNS server—potentially gathering information that you might rather remain private.

142 |CHAPTER7 NETWORK SUPPORT SERVICES

Separate, Same-Name Domain Structures
I have to admit that this model is my personal favorite. It combines the necessary security with a con-
sistent naming standard. In this scenario, you create two DINS servers, both servicing the same DNS
domain (usually the domain you registered for use on the Internet). You do not, however, configure
them as primary/ secondary. In other words, there will be no replication between the two servers. The
DN server that is accessible to the Internet contains only public DNS records—records that you
create and maintain manuaﬂy. The internal DNS server contains all of your internal resource records
(many of which are created dynamicaﬂy; we'll discuss that later in this chapter).

This design usually works best in an environment using a DMZ. It is set up as shown in Figure 7.18.

FIGURE7.18 External DNS
Same-name DNS) royal-tech.com
conﬁguration =rf’ /

-f/’ Internal DNS
=’f/ royal-tech.com
[
Firewall !
&
R
Screened Subnet Firewall
(DMZ)

Server

Internal Network

Clients register themselves with the internal DNS server and use it for all DNS queries. For local
resources, 1t provides the IP address to clients. For external (unknown) requests, it 1s conﬁgured to
forward to the external DNS server.

While this configuration requires some manual maintenance—you must manually create the DNS
records on the external server—the administrative overhead should be fairly low. After all, how many
public resources do most environments have? A web server, a mail server, maybe a VPN server—that’s
really about it.

The nice thing about this design is that it provides a consistent naming standard to your users. All
resources fall within the same DNS domain. This design is also great if you currently have an ISP sup-
porting the DNS entries for your registered domain. If that's the case, you reaﬂy don't have to make any
changes to the public side of your DNS strategy. Continue to let the ISP service your DNS records for
your public resources, and let them worry about security, hack attempts, Internet-spread viruses, and all
of the other issues involved in opening up a server to access from the Internet! You just put up your
internal DNS server and use theirs as a forwarder!

DOMAIN NAME SYSTEM (DNS) [143

Separate DNS Structures

Another philosophy toward a DNS design is to avoid giving anything away: have an external DNS
server that supports your registered DNS domain and another internal DNS server that supports a
completely different naming strategy, as shown in Figure 7.19.

FIGURE7.19 External DNS
Separate DNS J royal-tech.com
structures 9” /

=
[

Internal DNS
KingTech.local

Firewall !
e gj
Server 9”
Ly
Screened Subnet Firewall
(DMZ)

Server

Internal Network

As you can see in Figure 7.19, two different DNS domains are supported: an external domain to
handle public resources and an internal domain to handle internal resources.

This design is considered to be the most secure DNS design available. Your internal DNS server
is not available to, nor does it communicate with, your external DNS server (except to forward DNS
queries from your internal clients out to the Internet).

This model also fits well into another Microsoft suggested security conﬁguration—using a com-
pletely separate Active Directory forest (not connected to or involved in any kind of trust with your
internal AD forest) in the DMZ. We'll discuss overall design issues later, but for now, this might be
the overall best DNS model in the long run.

For those of you who are currently using an ISP’s DNS services, this design can be utilized without
changing your current DNS solution. Your ISP continues to support your registered domain, and your
internal DNS server supports your in-house needs.

Integrating DNS with Active Directory

‘When you deploy Microsoft DNS services in an AD environment, you have two choices:
¢ Use traditional, text-based zone files.

¢ Integrate the zone information with Active Directory.

144

CHAPTER7 NETWORK SUPPORT SERVICES

Microsoft suggests the latter option! When you integrate DNS with AD, all zone information is
stored in the AD database: a distributed, replicated, fault-tolerant database, which is then stored on
all of the AD servers within your organization.

AD can store one or more DNS zones. All domain controllers can then receive dynamic DNS
information sent from other Windows 2000/ Windows Server 2003 computers. Each Active Direc-
tory server can also act as a fully functional DNS authority, updating the DNS information stored
on all of your AD servers.

NOTE In other words, once DNS bas been integrated with AD, every AD server acts as a primary DNS server for all
zones. In fact, all zones stored by AD must be primary—if you need to implement old~fashioned secondary zones (perbaps
in a mixed DNS environment), you will have to stick with the old-fashioned text-file-based DNS.

In addition to integration with Active Directory, the Microsoft implementation of DNS provides
the following functionality:

SRV Resource Records These are a new type of record (defined in RFC 2052) that identifies

the location of a service rather than a device.

Dynamic Update Microsoft DNS is more properly called DDNS: Dynamic Domain Name
System. It is capable of allowing hosts to dynamically register their names with the zone, thereby
reducing administrative overhead. (More about this important feature in a little bit.)

Secure Dynamic Update Windows 2000/ Windows Server 2003 Server security is used to

authenticate hosts that attempt to dynamically register themselves within the zone.

Incremental Zone Transfer Only changed data is replicated to other AD servers, rather than a
complete replication of the zone as was the case in older versions of DNS.

Interoperability with DHCP A server running DHCP services can register host names on behalf
of its clients. This allows non-DDNS clients to dynamically register with the zone. (More on this
topic later, too.)

Active Directory uses DNS to locate domains and domain controllers during the logon process. This
is made possible by the inclusion of SRV-type records in the DNS database. Each Windows 2000/ Win-
dows Server 2003 domain controller dynamically registers an SRV record in the zone. This record repre-
sents the domain Netlogon service on that server. When a client attempts to log on, it will query its
DN server for the address of a domain controller. The bottom line here is that even if you are not
going to use DNS for anything else, you will have to install and configure it for the logon process to
work properly. Let me stress this one more time—DNS is critical to an AD environment! The worst
offender appears to be Microsoft's XP operating system. In some tests, the logon process took as long as
eight minutes to complete—try explaining that to your users!

Installing and Configuring DNS on an AD Domain Controller
If you are upgrading an existing N'T 4 server that has DN installed and conﬁgured, the installation
of AD will automatically upgrade DNIS for you. If not, you will have to install DNS as a separate
step (part of the Networking Services you installed with DHCP services).

If you have to conﬁgure a new DNS server, you will use the DNS Manager tool located in the

Administrative Tools group. Here you will see your server listed, as shown in Figure 7.20.

DOMAIN NAME SYSTEM (DNS) | 145

FIGURE 7.20
DNS Manager

To create a new zone, right-click your server and choose Create a New Zone. A wizard will walk
you through the steps involved. While the basic concepts of this process have remained the same,
Windows Server 2003 has brought a few changes. You will first be asked whether you would like to
have a traditional DNS system (stored in text files) or have DNS integrated into AD, as shown in
Figure 7.21. You can also create a stub zone, which is used to hold records (but cannot accept changes).
This type of server is useful for load-balancing your DNS query traffic. Also note the new option at
the bottom of the window: the DNS database can be integrated with Active Directory, but only if the
server is also a domain controller.

FIGURE 7.21
New Zone Wizard

146 |CHAPTER7 NETWORK SUPPORT SERVICES

The next screen allows you some very granular control over the replication of the DNS database—
whether it should be stored on all domain controllers or on only DNS servers, and in which AD
domain they should exist, as shown in Figure 7.22.

FIGURE 7.22

Active Directory
Zone Replication
Scope

If you are going to create a reverse lookup zone, you are asked for its network address, as shown in
Figure 7.23; otherwise you only provide the name for the new domain.

FIGURE 7.23

Configuring a reverse
lookup zone

DOMAIN NAME SYSTEM (DNS) | 147

A new addition to the process in the Windows Server 2003 product is the final screen, in which
you decide how the system should handle dynamic updates. Your choices are to allow only secure
(authenticated) updates, allow any updates, or allow no updates, as shown in Figure 7.24.

FIGURE 7.24

Dynamic updates

NOTE For more information about the specifics of DNS (such as reverse lookup zones), I suggest reading
MCSE: TCP/IP for NT Server 4 Study Guide, 4th ed., by Todd Lammle with Monica Lammle and James
Chellis (ISBN 0-7821-2725-8, Sybex, 2000).

DNS AND DYNAMIC UPDATES

One of the most exciting new features of Windows 2000/ Windows Server 2003 DNS is the ability to
configure the system to accept dynamic updates from clients. This allows clients to register and dynami-
cally update their DNS records as they boot or as their configuration changes. In older systems, especially
those where computers were frequently moved or reconfigured, keeping the DNS files up-to-date was a

full-time job. Windows 2000/ Windows Server 2003 clients and servers support dynamic updates as
defined in RFC 2136—in other words, through an industry standard method.

In Windows 2000/ Windows Server 2003 DNS servers, dynamic updates can be enabled or dis-
abled on a zone-by-zone basis. By default, all Windows 2000/ Windows Server 2003 clients will
attempt to dynamically register themselves with DNS as they boot or as changes occur. Enabling or
disabling dynamic updates is a fairly simple process. In the DNS Manager, right-click the zone,
choose Properties, and on the General tab configure the Allow Dynamic Updates? option as shown
in Figure 7.25.

148 |CHAPTER7 NETWORK SUPPORT SERVICES

FIGURE 7.25
Allowing dynamic
updates

Clients will register themselves using their fully qualified domain name (FQDN). The FQDN is the
NetBIOS computer name followed by the text placed in the Primary DNS Suffix of this Computer
configuration parameter. This parameter can be found in the Network Identification tab of the System
applet in Control Panel as shown in Figure 7.26. (Notice that the computer in the graphic is a domain
controller, so this parameter cannot be changed.)

FIGURE 7.26
Fully qualified

domain name

DOMAIN NAME SYSTEM (DNS)

The goal here is to replace the NetBIOS name resolution process that was inherent in earlier ver-
sions of Microsoft networking products with DNS name resolution. This brings us to a potential
problem: how do we ensure that all machines get registered in the DNS database, and how do we
ensure that the proper information is registered?

Combining DNS and DHCP

While the dynalnic registration of host records in the DNS database sounds like a great idea, a few
potential problems come to mind. First, how do I, as an administrator, ensure that all of my machines
(including my non-Windows 2000/ Windows Server 2003 clients) get registered? And second, how
do I ensure that the proper information is included (such as the correct domain name)?

The secret is to use DHCP. The version of DHCP included in Windows 2000/ Windows
Server 2003 has the ability to register DNS records on behalf of its clients as they are given their
TCP/1P configuration. The process happens as shown in Figure 7.27.

FIGURE 7.27
Dynamic DNS g
registration by =
bHCP DHCP
1. DHCP process 2. DHCP registers DNS

/ record foth‘

[(1
= | =
Client DNS

IE|

First, the client computer and the DHCP negotiate an [P conﬁguration as normal—the four—step
process we talked about earlier in this chapter—step number one in Figure 7.27. Once the client has
accepted an IP address from the DHCP server, it (the DHCP server) then registers a DINS record on
behalf of the client (step number 2 in Figure 7.27).

This system allows for the creation of host records for those clients that are unable to register
themselves, such as Windows 935, 98, etc. In other words, your legacy clients can be included in the
dynamic registration process.

Why is this important, you might ask? Well, remember our goal here. The goal 1s to remove
dependence upon NetBIOS functions. As long as the only method of resolving those older clients
is NetBIOS-based (either through broadcasts or a WINS server), we are stuck with the NetBIOS
traffic on our networks. For now though, you'll probably end up with both as you begin the switch
to an Active Directory environment.

149

150 |CHAPTER7 NETWORK SUPPORT SERVICES

CONFIGURING THE DHCP SERVER

There are only a couple of configuration issues to be concerned with when using the DHCP server
to register DNS records for its clients. The first involves the options you send down to the clients. In
a strictly NetBIOS-based environment, the host name and domain set at a client often didn’t matter.
If you are using DNS to resolve names, though, you have to ensure that the appropriate host name is
configured.

One of the options you should set (either at the server or scope level) is that of DNS Domain
Name (option number 015). With this option, you can correcdy set the DNS domain name that the
computer will register, ensuring that the correct name can be resolved to an IP address.

To set the DNS domain name, from within the DNS management tool, choose Scope (or Server)
Options. Scroll down the list until you find the DNS Domain Name option, and fill in the correct
domain information, as shown in Figure 7.28.

FIGURE 7.28

Configuring the
DNS Domain

Name option

To configure the DHCP server to create or update DNS records for clients, from within the DHCP
management tool, right-click the server and choose Properties. On the DNS tab, shown in Figure 7.29,
enable the appropriate options for your environment.

DOMAIN NAME SYSTEM (DNS) | 151

FIGURE 7.29

Enabling DHCP to
manage DNS host

records

The options available are fairly self-explanatory—the only thing to remember is that you must
configure a DNS server for the DHCP server; the system uses that configuration to determine which
DNS servers to update.

One Word of Warning

Microsoft has made a very strong case against installing DHCP on a domain controller if you plan on
having the DHCP register client host records. Doing so creates a potential security hole that can allow
an unscrupulous individual to modify records within your DNS database. DO NOT DO THIS!

The problem occurs because the DHCP server service runs under the computer services account of
the computer upon which it s installed. In such a scenario, this results in the DHCP server service run-
ning under the computer account of a domain controller. This account has access to all records within
the DNS zone that it supports. . . resulting in the security problem.

There are three ways to avoid this issue—two easy and one hard. The easy way is to do two things:

¢ First, do not install the DHCP service on a domain controller!

¢ Second, conﬁgure your DNS zones to require Secure Dynamic Updates (this only works if
you are using AD-integrated DNS).

The third, hard way:

¢ Youcan conﬁgure your DHCP service to impersonate another account. This can cause prob—
lems, so rather than describing the process, here’s the article number from the Microsoft Knowl-
edge Base: Q255134. Read the article, and the associated articles, before you decide to use this
method!

152 |CHAPTER7 NETWORK SUPPORT SERVICES

In Short
A basic level of TCP/IP knowledge is mandatory when configuring AD. Since none of this is really

specific Active Directory information, our discussion has been limited to an overview. For a more
detailed explanation of the technologies presented, I suggest you read the following title, available
from Sybex:

& ICP/IP JumpStart: Internet Protocol Basics by Andrew Blank (Sybex, 2002)

In the next chapter, we will take a look at NT domains in an AD environment: why they exist,
their function in today’s networks, and how to manage them.

Chapter 8

Designing the Active Directory
Environment

SO FAR IN THIS book, I've concentrated on “directory services” without an emphasis on Microsofts
Active Directory. In other words, I've tried to build a basic understanding of directory services in
general. I've also discussed a few of the additional network services that are required in a Microsoft-
based network, things like DHCP, DNS, and WINS. Now, finally, I think it’s time to turn our eyes
to Active Directory!

In my opinion, this chapter starts the “cool” stuff. Here we take our foundation (our basic
understanding of directory services) and put it all together to build a working environment—an
environment in which our I'T resources can provide their services in a secure and efficient manner.
As far as I'm concerned, designing a great network—whether I'm talking about the infrastructure,
the security policy, or the directory service—is where the fun starts!

In this chapter we will take a look at the basic building blocks of AD: domains, trees, and forests.
We'll look into a few specific components of every AD environment—specifically servers that per-
form AD functions. We'll also discuss how you can use AD to organize your network resources for
easier management.

By the time we're done with this chapter, you will be able to look over an environment and design
a great AD structure—one that works well, doesn't place too much of a burden on any of your net-
work segments, and will be easy to manage in the long run.

A few months ago, I was mentoring a medium-sized company through an upgrade to Win-
dows 2000/ Windows Server 2003 and Active Directory. My job was to provide “expert” opinions
during the design phase, steer the design team in the right direction, and then leave. If everything
went well, I'd never have to touch a keyboard or argue a point to upper management. That would
be left to the company’s internal I'T staff; I was just a resource.

During the project I got to know the IT staff fairly well; there’s something about designing
a system that forces you to get to know the people you work with—their strengths, their weak-
nesses, and their prejudices. (We had, for instance, one gentleman in our midst who wanted to

154 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

skip the whole process and go back to NetWare. While this was a valid opinion, it was not a serious
option in this case.) We discussed (or argued, depending upon the topic and the day) every aspect of
the AD design—structure, server placement, hardware requirements, client-side upgrades, everything!
I'made the mistake of allowing a few decisions to be made on the basis of “what Bob said” rather than

on a foundation of technical merit—a mistake that, as you'll see, I paid for later!

When we were done, I was invited to sit in on the presentation to upper management. The purpose of
the presentation was to describe the reasons for the upgrade, explain the benefits of the move, request a
budget for the project, present a tentative schedule, and present the AD design—nothing too technical
(this was upper management after all), but enough to make the accountants feel comfortable with the
expenses and time involved. I wasn't involved in the presentation; my presence was more of a courtesy
than anything else.

The presentation went well, until someone asked a “why” question: why did they need additional
servers at a remote site (we had decided on a separate domain for a particular location, mandating two
domain controllers to provide redundant authentication services). The I'T person who was making the
presentation understood why we wanted two servers, but not why we wanted a second domain. The end
result was that the project was delayed. The upper management team gathered for a second meeting, and
by then they were ready to tear everything apart, looking for ways to cut costs. The moral of this story
is, “Don't just talk; understand!”

That's my goal: by the time you are done reading this chapter, you will not only be able to choose
the correct (or most correct) design for your AD structure, you'll be able to explain why yours is the
best choice!

In this chapter:

¢ Active Directory building blocks: domains, trees, and forests
#® Active Directory server functions

¢ Active Directory organizational units: planning and designing an OU model

AD Building Blocks

Any discussion of Active Directory design must begin with a discussion of a few key components
and concepts. AD structures, or trees, start with the most basic of components: the AD domain. AD
domains can then be combined to create a more complex environment, known as an AD tree. AD

trees can be connected to create AD forests. Understanding each of these fundamental entities is
critical to making the correct design choices for any given environment.

AD BUILDING BLOCKS

Active Directory Domains

You might recall the definition of a domain from earlier versions of NT: a logical grouping of com-
puters and users managed through a central security accounts database. According to this definition,
a domain was:

¢ Logically, an organizational grouping of resources allowing central management of those
resources

& Physically, a database containing information about those resources

Combining the logical with the physical gave you a management or security boundary; administrators
for a domain could manage all resources in that domain (database) by default.

The definition of a domain has not changed in Windows 2000 or the Windows Server 2003 prod-
ucts. A domain still represents a group of resources and is still really just a logical description of a data-
base (the Active Directory database). But as we've already discussed, what have changed—and changed
considerably—are the types of information that the domain database can contain.

Domains now act as the basic building blocks of an AD environment. As such, AD design starts
here, at the domain level. It's imperative that you have a solid, secure, and efficient domain plan in
place before you move to any other aspect of creating your Active Directory tree.

THE ROOT DOMAIN
Tt all starts at the top of the structure with the creation of the first domain in your environment. This
domain, the first created, is known as the root domain. It acts as the beginning of your AD namespace.
All subsequent domains will be influenced by your choices here in the beginningl

The name given to the root domain will act as the base for the name of all domains created later. As
each subsequent domain is added to the structure, it will be added somewhere below the root domain.
Additional domains are always children of some other domain in the tree. The only domain that is not
a child is the root (topmost) domain. This concept is illustrated in Figure 8.1.

FIGURE 8.1

The root domain

KingTech.com

Root Domain

155

156 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

In Figure 8.1, the first domain for the company King Technologies has been named KingTech. com.
As the first domain added to the tree, it becomes the root domain. All subsequent domains will follow
the naming pattern of <something>.KingTech.com, as shown in Figure 8.2.

FIGURE 8.2

Subsequent domains

DN=Tampa.KingTech.com
\ Tampa Seattle

DN=Seattle.KingTech.com
-

DN=Sales.Tampa.KingTech.com

Figure 8.2 demonstrates the principle of hierarchical naming. Each subsequent domain adds the
names of all domains above it together to create a distinguished name.

THE DIFFERENCE BETWEEN DNS AND AD DOMAINS

For some reason, our industry often uses the same term to represent completely different things.
In Chapter 7 we discussed DNS (Domain Name System) domains. A DNS server is used to resolve
TCP/IP host names into IP addresses. A DNS domain represents a piece of the overall DNS name-
space. DNS is a service used to find resources: A process submits a host name, and DNS attempts
to find a record that matches. If a match is found, DNS returns the appropriate IP address to the
requestor. As such, we could define a DNS domain as a bounded portion of a DNS namespace used to ﬁnd P
host information.

In this chapter, we will discuss NT domains, concentrating on how they relate to Active Directory.
For our purposes, we can define an N'T domain as a bounded area of an AD namespace used to organize network
resources.

Comparing the two definitions, we can make two generahzations:

¢ DNS domains are for ﬁnding resources.

¢ AD domains are for organizing resources.

AD BUILDING BLOCKS | 157

I know that we have said that the Active Directory database is used to “find” resources, so let me clar-
ify. While AD holds information about resources on the network, it (or the client, depending upon the
process involved) uses DINS to find and resolve distinguished names into IP addresses. In other words,
AD and DNS work together to return connection information to users or to other processes that request
such information, as you can see in Figure 8.3.

FIGURE 8.3
AD and DNS work

together to provide
services.

Susan

\Data share

| need to
access the

point.

2 Request sent
to AD

——

L

!

53]|

3 | AD finds record
and calls DNS.

AD Database

Data.Tampa.KingTech.com
on Server

<
<

5 AD returns
IP address

4

FSI.Tampa.KingTech.com

Y

DNS Server for
Tampa.Kingtech.com

DNS returns
IP address

FSI 131.007.2.200

In Figure 8.3, Susan uses the AD database to find a share point. Here is what happens:

1. Susan browses the directory and clicks the \Data resource.

2. The client software sends a request to an AD server.

3. The AD server searches the directory database for the resource record. In the record, it finds
the DNS name of the server on which the share point is located. AD queries DNS for the IP

address of the appropriate server.

4. DNS searches its database for the record for server FS1.Tampa.KingTech.com. Once it finds
this record, DNS returns the IP address to AD.

5. AD returns the IP address of server FS1.Tampa.KingTech.com to the client.

158

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

At this point, the client software can establish a connection with the server using the appropriate

TCP/IP technologies.

NOTE DN is a critical piece of the AD puzzle. Without DNS, AD cannot resolve user requests into IP addresses
of resources. To put this into perspective, AD will not allow itseb‘ to be installed without DNS: either by access to an
existing DNS server or through the installation of DNS on the first AD server. For this reason, you must have a good
grounding in DNS before installing and configuring Active Directory.

USING DNS TO FIND A DOMAIN CONTROLLER
One of the most important uses of DNS in an Active Directory environment is that of locating
domain controllers. Remember that one of the goals of moving to a DNS-based name resolution
process was to reduce or eliminate our dependence on NetBIOS broadcast technology. On a network
that consists of only Windows 2000 /Windows Server 2003 (or newer) computers, NetBIOS and
WINS traffic can be completely eliminated.

Since finding a domain controller is critical to the process of logging in, let’s take a closer look at
the process.

1. First, the client runs a process called the Locator, which initiates a DsGetDcName query at
the local Netlogon service. This is done through a Remote Procedure Call (RPC) that passes
information about the client’s conﬁguration (dornain membership and IP conﬁguration) to
the Netlogon service.

2. The Nedogon service uses this information to look up a domain controller for the speciﬁed

domain. This can be done in a couple of different ways, depending upon the type of name
submitted—DNS or NetBIOS.

¢ If the name presented to the Nedogon process is a NetBIOS name, the older name resolu-
tion process 1s used. This allows backwards cornpatibility in environments that have not yet
upgraded to Active Directory. In this case, either a broadcast is performed or, if configured,
a WINS server 1s queried. In either event, this is not the process we prefer—rernember, we're

trying to get rid of NetBIOS-based procedures!

¢ If the name presented to the Nedogon process is a DNS host name, then the Netlogon
service queries the DNS server for SRV and A records for the appropriate domain. The
query takes the following format:

_service._protocol.DnsDomainName

¢ Since Active Directory services utilize the Lightweight Directory Access Protocol (LDAP)
services over TCP, the query identifies that service and protocol:

_Tldap._tcp.DnsDomainName

3. After receiving a list of domain controllers from the DNS server, the Netlogon service sends a
datagram to each domain controller.

AD BUILDING BLOCKS

4. The domain controllers respond by sending their operational status to the Netlogon service on
the client computer. This information is cached by the Netlogon service so that the process will
not be required on subsequent requests. (This helps to ensure the consistent use of the same
domain controller.)

5. The client establishes an LDAP session with a domain controller. As part of that process, the
domain controller identifies which AD site the computer belongs to (based upon the IP subnet
of the client). If the domain controller is in the same site as the client, authentication begins. If
not, the client again queries DNS, looking for a domain controller in its site. That query follows
the format:

_LDAP._TCP.dc.msdcs.DomainName

The bottom line here is that the client uses DNS to find a list of domain controllers for its domain.
Part of the process attempts to locate a domain controller “near” the client, using AD site information
(which is based upon IP subnetting). Once an appropriate domain controller has been located, commu-
nication has been established, and any secure channels have been created, the logon and authentication
processes can begin.

S0, WHAT EXACTLY IS A DOMAIN?
It seems that every book I read about NT and Windows 2000/ Windows Server 2003 wants to side-

step this question: what is a domain? The answers are often mystical—a “grouping of computers and
resources”’ begin the most common—and they really don't give you any concrete information. Different
authors also have different definitions and uses for domains. Well, here’s mine:

A domain represents a database. That database holds records about network resources—ibings like computers, users,
groups, and other things that use, support, or exist on a network. In Windows 2000/ Windows Server 2003 and
later releases, the domain database is, in effect, Active Directory.

Simple? I hope so. Taking this view of Active Directory makes it easier (and less intimidating) to
work with. I've never liked those references that try to make AD into some magical management envi-
ronment. The bottom line is that AD is a database—a complex, secure, and replicated database—Dbut
just a database.

Things to Consider about Domains

As with any component of a complex system, you have to consider certain key concepts when dealing
with domains. These include:

¢ Number of objects
Replication traffic
Domains as security boundaries

Language

* & o o

Security policies

159

160

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

While some of these might not make sense right now, they will when put in context with our
upcoming discussions.

Number of Objects Domains really have no limit to the number of objects they can support. To put
this another way, the domain database in N'T 4.0 had a physical limit to the number of records that it
could hold—approximately 40,000. While the limit could be expanded under the right circumstances,
the 40,000-object limit was the Microsoft-approved maximum number of objects that the database
could efficiently contain. In reality, in most circumstances, 40,000 users, computers, and groups in a
single NT domain would not have been realistic; the “workable” limit was much lower!

The Active Directory database, on the other hand, has no real limitations to the number of
objects (records) it can contain and efficiently support. Tests have been conducted in which the
Active Directory domain contained millions of user objects and the associated support objects,
such as computers and groups. In all of these tests, the database performed efficiently. Of course,
the hardware required to manage such a large database is extreme, but if you've got millions of

users, you probably have a fairly large budget anyway!

Replication Traffic All domain controllers within a domain must contain the same database. In
other words, a replication process is used to synchronize any changes made to the database to all
domain controllers for the domain. The net effect is more network traffic.

The larger the database (meaning more user, computer, group, and other types of records), the
more potential replication traffic will be generated. A corollary to this is that the more domain con-
trollers you have, the more replication traffic will travel through your network.

Domains As Security Boundaries Since a domain represents a separate database, the domain boundary
is often seen as a built-in security boundary. Administrators of a domain are limited (by default) to the
management of resources within their own domain.

While administrative accounts can be given privileges in more than one domain, this is a manual
configuration—in other words, a conscious decision, rather than a default.

Language Considerations Within a domain, servers can be configured for a single language: French,

German, etc,, although English is supported by all installations. This means that if your company crosses
international boundaries, you might need additional domains so that local administrators can manage
their resources in their native tongue.

Security Policies W hile we haven't discussed security policies yet (that's coming up in Chapter 11), we
need to touch upon them in our discussion of domains. Certain policy elements are “domainwide.” In
other words, certain security decisions must be made with an eye toward the entire domain, rather than
a subset of the domain. These include some very common settings, things like password policies (com-
plexity, length, and lifetime), account lockout policies (when and for how long an account will be locked
due to unsuccesstul logon attempts), and Kerberos v5 policies (ticket lifetimes, renewal, and logon
restrictions).

The bottom line here is that if you have different areas of your environment in which these policy
elements need to differ, you might be forced to create multiple domains.

AD BUILDING BLOCKS | 161

Active Directory Trees

The general philosophy of directory service—based environments is to see the directory as a network-
wide component. Our discussion so far of directory services has always implied a single database
holding information about resources throughout the network. In some cases, maybe even most, this
“single database” approach will make sense. Let’s face it, the AD database can easily hold hundreds
of thousands of records. Most of us will never work in an environment in which the physical capa-
bilities of the database itself are pushed even close to its limits. What I'm trying to say here is that in
a majority of environments, a single AD domain will be sufficient. This is a big difference from the
days of Windows NT!

There are, however, certain conditions in which multiple domains will be mandated. As we saw
earlier, the X.500 recommendations (upon which Active Directory is based) specify a method of
breaking the database into smaller pieces, known as partitions, and distributing them across multiple
servers. The X.500 recommendations also include a methodology for replicating changes to copies
stored on multiple servers. Logically, we can still see the database as a cohesive whole, containing
information about resources throughout our entire network. Physically, though, each domain acts as
a partition of the overall “logical” database, as shown in Figure 8.4.

FIGURE 8.4 St. Paul Domain

Each domain is

St. Paul SAM

a partition of the System
logical AD database. WS 1
Seattle Domain
Logical View of Tampa Domain

AD Environment

St. Paul D

Susan
WS 1 2 =

Seattle SAM

. Seattle
0
WS 1 5\?Sb 1 Tampa SAM

Katie
Tampa WS 1

Katie
WS 1

162

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

Breaking the database into smaller pieces places less overhead on each Active Directory server. It
also grants the administrator more control over the amount and route of traffic generated by the data-
base replication process. Consider the environment depicted in Figure 8.5. Since there is only one
domain defined, each AD server holds records for every resource in the enterprise. If a new printer is
installed in Seattle, information about that printer will have to be updated on every AD server in the
entire company. The same holds true for every change made to the database. If user Katie in Tampa
changes her password, that change will have to be replicated to every AD server across the entire net-
work. While this design is functional, it is probably not the best design possible for the network.

FIGURE 8.5 Domain XYZ
Company XYZ

domain structure

= —|
=

L =

AD Server in AD Server in

Seattle St. Paul

AD Server in
Tampa

The thing to remember here is that within a domain, all changes to the database must be replicated
to all domain controllers. Conversely, there is no replication between domain controllers in different
domains. Limiting the scope of the domain would limit the impact of any changes made.

The KingTech Company has come up with a much better design, as you can see in Figure 8.6. In
this design, each server contains records only for objects that are in its own geographic area. Notice

that this design has two benefits:
¢ It limits the amount of traffic generated between the two locations.

¢ It ensures that no server is overburdened by holding records that are of no real value to its

purpose.

We'll look at various design strategies in more detail later in this chapter.

AD BUILDING BLOCKS

FIGURE 8.6 Reno Domain Fresno Domain
KingTech domain

structure

) 54 Ozl

AD Server AD Server AD Server AD Server

This concept of creating multiple domains brings us to the topic of this section: creating Active
Directory trees. We've already discussed the importance of the first, or root, domain. It sets the
beginning of the namespace for the AD tree—in other words, the name given to the topmost, or
first, domain in the structure will impact the name of all subsequent domains. As you create addi-
tional domains, they will join the AD tree somewhere below the root domain, forming a treelike
structure (with the root at the top).

Remember that each domain represents a separate directory database. Each database also acts as a
security boundary and is individually protected against unwanted access (we'll discuss AD security in
Chapter 10). As I mentioned earlier, for instance, administrators of one domain are not necessarily
administrators of any other. But you can set up your system so that a small group of administrators
have security privileges over the entire structure, or you can give a group administrative abilities in a
select few domains. You can also give users permission to access resources throughout the tree. This
implies that there is some mechanism that allows security to be managed and maintained between
domains. This mechanism is known as a trust.

TRUSTS BETWEEN DOMAINS

Domains not only act as partition boundaries for the database; they also act as boundaries for var-
ious administrative functions. In our review of NT 4 domains, we discussed the concept of trusts
between domains. Put simply, a trust is a secure connection between two domains. Without some
sort of trust, domains will not communicate and cannot share resources. This is also true in Win-
dows 2000/ Windows Server 2003—except that trusts are created automatically and they work a
little differently.

The creation of a trust does not imply any specific permissions—only the ability to grant per-
missions. This is an important concept. Many NT administrators were overly concerned about the
security ramifications of creating trusts; they assumed that once the secure path had been created,
some “rights” would inherently exist. This is not true. The trust itself grants nothing. All it does is
allow the trusting domain’s administrator access to the domain accounts database of the trusted
domain (so that accounts from the trusted domain can be granted permissions to resources in the
trusted domain).

163

164 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

Trusts in NT 4 and Earlier

Asa quick review, let’s take a look at how trusts worked in N'T 4. In version 4 there were two types of
trusts: one-way and two-way. In Figure 8.7, the Tampa domain trusts the Reno domain. In effect, this
means that accounts that exist in the Reno domain can be granted permissions to access resources in
the Tampa domain. But not vice versal A one-way trust implies that oniy one of the domains is trusted

and only the trusted domain can access resources in the other.

FIGURE 8.7 Tampa Reno

One-way trust

In Figure 8.8, a two-way trust has been established between the Tarnpa and Reno domains. In this
conﬁguration, accounts from both domains can be granted permissions in either domain.

FIGURE 8.8 Tampa Reno

Two-way trust

In NT 4 and earlier, trusts were nontransitive. This meant that trusts had to be explicitly defined
between any two domains. As an example, look at Figure 8.9. In this figure:

¢ The Tampa domain trusts the Reno domain.
¢ The Reno domain trusts the St. Paul domain.

¢ The Tampa domain does not trust the St. Paul domain.

NOTE To put it simply, if A trusts B, and B trusts C, this does not imply that A trusts C.

AD BUILDING BLOCKS

FIGURE 8.9 St. Paul

Nontransitive trusts

m NT 4

Trusts in Windows 2000/Windows Server 2003

In Windows 2000/ Windows Server 2003, trusts have changed quite a bit from what we've just seen.
First, in earlier versions of NT, no trusts were defined automaticaﬂy. All trusts had to be set up man-
uaﬂy. In Windows 2000/ Windows Server 2003, a two-way trust is established between every domain

and its parent domain in the tree, as shown in Figure 8.10.

FIGURE 8.10

Windows 2000/

Windows KingTech:com
Server 2003 Domain

default trust
configuration

Tampa Reno
Domain Domain

Sales
Domain

165

166

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

The second (and probably more significant) change in trust relationships in Windows 2000/ Win-
dows Server 2003 is that trusts are now transitive. To put it another way, if A trusts B, and B trusts C,
then A trusts C. Take another look at Figure 8.10.

NOTE With transitive trusts, every domain in the tree trusts every other domain by dg‘ault.

The result of these changes is that every domain within the tree trusts every other domain. This
rids administrators of the headache of designing and manually configuring an environment in which
users can be given permissions to all resources within the enterprise.

SPECIAL TRUSTS

While the default trusts will suffice in most Active Directory environments, a few conditions might
mandate the manual creation of what I call “special trusts.” These manually created trusts act just

like the trusts in Windows NT 4; they are nontransitive in nature, must be manually created and

maintained, and imply a one-way agreement (although you can create two one-way trusts between

domains to allow for a two-way trust relationship).

Explicit Trusts

Explicit, or short-cut, trusts help to alleviate one of the drawbacks to a hierarchical database structure.
Take another look at Figure 8.10. Notice that for a user in the sales domain to access resources
in the Reno domain, the request must pass through a series of trusted relationships: the trust
between sales and Tampa, the trust between Tampa and KingTech. com, and, finally, the trust between
KingTech.com and Reno.

This path of trusts actually defines the path that a request must take between the two domains.
Let’s say that a user in sales wants to print to a printer in Reno. The user is authenticated to a local
(sales) domain controller. To “find” the printer, the user opens their network neighborhood and
begins searching through the AD structure. Ultimately, they submit a request for the printer in
Reno—Ilet’s call it P1.Reno.KingTech. com.

The uset’s request is submitted to their local domain controller (a domain controller for the
sales.Tampa.KingTech.com domain). This domain controller has no information about the resource
(remember, domain controllers only have records for resources defined within their own domain).
The sales domain controller recognizes, however, that the distinguished name includes the name of
its parent domain (Tampa.KingTech.com). It submits the request to a domain controller in the Tampa
domain. The same process occurs there; the Tampa server does not recognize the resource, but it real-
izes that the name includes the name of its parent domain and submits the request to a server in the
KingTech.com domain. This server, in turn, submits the request to a domain controller in the Reno
domain.

As you can see, the process of authenticating a sales user to a printer in Reno involves communication
with at least four domain controllers—one for each domain between the user and the resource. (This
process is often called “walking the tree.”)

If users in sales use resources in Reno on a regular basis, you might want to eliminate this network
overhead by creating an explicit trust between sales and Reno. Now, when the request is submitted to the
sales domain controller, it knows about the Reno domain, through the establishment of the explicit trust.
It can submit the request for authentication directly to the Reno domain controller.

AD BUILDING BLOCKS

The creation of explicit trusts is not a common design feature. Let’s face it, one of the precepts of
“g00d” design is to place users and their resources in the same domain whenever possible. In reality,
the creation of a short-cut trust does not reduce network or server overhead by much, but in a busy
environment (where the domain controllers are overworked or network bandwidth is limited), they
can help to create a more efficient environment.

Explicit trusts should only be created when resources from one domain will be accessed on a regular
basis by users from another domain. An explicit trust is not necessary between two domains that share a
parent-child relationship, since the default trust is already in place between them.

External Trusts

External trusts allow access from domains that are not part of your AD environment. They function
exactly as Windows NT domains: they are manually conﬁgured, nontransitive, and one-way in nature
(although, once again, two one-way trusts—one in each direction—form a two-way trust).

There are two major uses for an external trust. The most common is to create a trust between
your “new” AD domain and your legacy NT domains. The trust can go in either direction, or
both. Most of the time, this is a temporary situation that is implemented during the upgrade to
Windows 2000/ Windows Server 2003 and Active Directory. You upgrade a central domain (or cre-
ate a new Windows 2000/ Windows Server 2003 domain) and then create two-way trusts between
your new environment and your old N'T domains. This allows you to slowly upgrade your domains
without losing access to resources. Most commonly, you upgrade your account domains first, so the
trusts are one-way, with the old NT resource domains trusting the accounts in the new AD domain.

Another use for an external trust is to grant external environments access to your AD resources.
Say, for instance, a certain vendor makes parts for your Widget. Traditionally, you would have to let
them know how many parts you need each time you place an order. If they have an AD tree (or a
legacy NT domain environment), you can create a one-way trust in which your domain trusts their
domain. After the trust is established, you can give their users permissions to your resources—yper-
haps to your production schedule so that they can proactively monitor your stock, sending you a
new shipment when appropriate.

This concept of “extranets” has become quite popular lately, Personally, I'm not sure I like giving
some external entity permissions to my resources. [have no idea about their environment’s security
policies, the trustworthiness of their employees, or even what types of connections they allow. Per-
sonally, I prefer a nice authenticated-access website, with pages that are dynamically created through
calls to my (secured) SQL server.

I had a client who created a trust between their AD domain and a vendor’s AD NT domain. It
took about a month before they realized that the vendor’s I'T staft (or whoever was managing their
network) had no idea how security should be implemented. Tt wasn't long before everyone—~not just
employees of the other company—was accessing my client’s production databases. Needless to say,
one of my first actions was to kill the trusted relationship and come up with another way for them
to access the information they needed. We ended up using an authenticated website, with SSL con-
nections—just as easy to accomplish, and less susceptible to unauthorized use.

WHEN TO USE A NEW DOMAIN

A Windows 2000/ Windows Server 2003 domain can grow to one million objects, or until the data-
base takes more than 17 terabytes of storage space. This means that most companies will not be

167

168 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

forced into a multiple-domain configuration by the limitations of the directory. Multiple domains
will be used to facilitate solutions to common network problems. Here are the primary reasons for
creating an additional domain:

*

*

*

When you need decentralized management of users or resources where administrators do not

want to share control of a domain. In other words, in an environment in which the administra-
tive tasks are distinctly split between areas. You might, for instance, have a corporate I'T staft

that handles most administrative tasks, but the research and development department wants

complete and autonomous control over their own resources (and has their own IT staff).

When you want to make delegation easier in cases of diverse environments, such as a network in
which different languages are spoken. Remember that Windows 2000/ Windows Server 2003 is
available in many languages. Servers within a single domain must be of the same language version
(other than the English version that can be mixed with any other language).

If unique, domain-level security policies are mandated. Certain security policies are applied to
a domain as a whole—password, account lockout, and Kerberos policies must apply to an
entire domain as opposed to a subset of a domain.

When you want to control directory replication traffic (for instance, across a WAN link with
limited bandwidth). Replication traffic only occurs between domain controllers within the
same domain. If you want to limit replication traffic across a link, have the servers on each
side be members of different domains.

If you will have over one million objects in the database. Even this limit has been stretched in
the lab; in reality, this is not a common reason to create additional domains. (How many busi-
nesses have more than a million objects?)

When you are upgrading from an earlier version of NT that was configured as a multidomain
environment. Even this is usually a temporary fix; in most cases, the additional domains will
be merged into larger AD domains at a later time.

When you are preparing for future changes to the company.

If the default trust relationships do not meet your needs.

To be truthful, new domains will usually be created to control network traffic. A prime concern
in most wide area networks is bandwidth limitations on the wide area links. Controlling the traffic
placed on these links is the driving force behind most directory designs. Once this consideration is
taken into account, the administrator is left with the task of designing the OU model for each
domain. We'll discuss OU models a little later in this chapter.

Active Directory Forests

In our discussions so far, we have limited ourselves to environments with only one AD tree. In a single—

tree environment, each domain is added to the structure as a new partition of a single database to create
the tree, as shown in Figure 8.11.

AD BUILDING BLOCKS

FIGURE 8.11
Single-tree
environment

KingTech.com
Domain

Reno Tampa
Domain Domain

Education
Domain

Sales
Domain

This conﬁguration works well in most environments, but it has one big limitation: all objects
within the structure must be a part of the same namespace.

NOTE Remember that within a namespace, all objects have some common component to their name.

In the case of KingTech, the name of every object will end in .KingTech.com. Therein lies the
problem: what if a company has a reason for some objects to belong to one namespace and other
objects to a different namespace? Such a situation might occur when an environment requires a
substantial amount of separation between domains that must still share resources. For instance,
partnerships or joint ventures might require that two distinct businesses share resources. These
two companies would each have a unique namespace, so both could not fall under a single root
domain.

Two separate AD trees can establish a relationship, thereby forming an AD forest. A forest is just a
collection of trees that share a common schema and Global Catalog server (I'll discuss the Global
Catalog in a few pages). The trees establish a two-way transitive trust relationship between their root
domains, as shown in Figure 8.12.

FIGURE 8.12
An AD forest

Paradigm
KingTech.com —_— Shift.com

St. Paul Orlando

169

170

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

Once you've established this relationship, you have formed a forest. A forest allows you to do the
following:

¢ Search across all domains through a common Global Catalog server.

¢ Maintain existing DNS names (during an acquisition, for instance).

WHEN TO CREATE A FOREST INSTEAD OF A SINGLE TREE

This is actually a fairly simple decision. If your company requires multiple namespaces, then separate
trees are mandated. Once this decision has been made, you must then decide if the trees should create
a formal relationship (create a forest) orif a single external trust will suffice. Remember, an external
trust is nontransitive,

Ask yourself how much interaction occurs between the two environments. If the two namespaces
represent two divisions or separate companies that fall under the umbrella of a single controlling
company, then a forest is the best way to go. If the entities represented by the two namespaces are in
fact completely separate companies—for example, business partners—then an external trust might
suffice.

Here’s the crux of the problem: the trees within a forest must share a couple of things—a common
Global Catalog and a common schema. We've discussed the function of the AD schema; it defines the
structure of the AD database. Since trees within a forest must share a common schema, then any changes
to the schema must be replicated to all domains within the forest. This doesn’t sound like too big an 1ssue
until you realize that someone must have Schema Admin rights to the schema of the overall structure. If
all the domains fall within a single parent company, this is usually not too big an issue. If, however, the
domains truly represent separate business entities, then this often becomes a bone of contention. Not
many IT departments want some “outside group" of administrators to have that level of access to their
environment. We'll discuss the function of the Global Catalog in a little bit, but the same issue exists
there—within a forest, the common Global Catalog must be accessible to someone.

Microsoft’s rnarketing literature suggests creating a forest of the AD trees of your company and one
or more trees of your business partners or vendors. I've tried this a couple of times in the field, and it
usually becomes a political minefield. Neither company wants to give the other company’s 1T departrnent
the ability to change their schema. If one company, for instance, decides to install Microsoft Exchange
2000 Server (a program that requires changes to the standard AD schema), then those changes must be
replicated to the schema of all other trees in the forest. If those changes are done incorrectly, then the
schema of all trees within the forest can be adversely affected.

NOTE Exchange 2000 Server was probably a bad example here since its schema change routine is extremely stable.
Instead, imagine some hotshot administrator who decides to create their own ol)jett class—without having the expertise to do
50 fom’ftly. If that administrator is a member of the Schema Admins group, then their mistake could bring down every AD
tree in the forest!

Don't let me scare you away from creating forests when appropriate! If your company needs to
support rnultiple namespaces and wants to delegate administration between the various trees (or
wants to be able to search for objects across the entire enVironrnent>, then separate trees in a forest
configuration is your only option.

AD SERVER FUNCTIONS

AD Server Functions

In general, from an administrative perspective, servers fall into three broad categories: stand-alone,
member, and domain controller. Stand-alone servers are not a member of any domain, so they are
not really pertinent to a discussion of Active Directory. Member servers do not hold a copy of the
AD database, so they too are not all that pertinent to our discussion. Domain controllers are where
the AD action happens. They hold a copy of the AD database, can accept changes to the information
within that database, and can replicate those changes to all of the other domain controllers within the
domain.

So far, so good, right? We've discussed the concept of a replicated, distributed database. We've also
discussed the concept of a multimaster environment—an environment in which each of the replicated
copies can accept changes and pass those changes to all other copies (domain controllers) through the
process of replication. The AD replication process does indeed utilize a multimaster strategy, but
there are certain functions that are server-specific.

If you think about it, it makes sense that certain functions in such a complex operating system must
be managed through a single point. Maintaining unique SIDs for objects, for instance, has to be centrally
controlled. If every server “randomly” created a SID for each object they created, duplicate SIDs could
be “randomly” issued. Numerous functions within the AD environment are managed through a single
server; some of these functions are forestwide and others are domain-specific. There are also servers that

hold the Global Catalog; we'll discuss these first since they have a fairly large impact on AD design.

Global Catalog Servers

A Global Catalog server is an AD server that holds a partial replica of the entire tree. This replica holds
a limited amount of information about every object within the forest, usuaﬂy those properties that
are necessary for network functionality or those properties that are frequently asked for or searched
against. The Global Catalog is referenced when a user “looks” for an object outside of their domain,
thus eliminating the call to a domain controller at the destination domain.

The list of properties is different for each class of object‘ User objects, for instance, need to store cer-
tain information for network functions—a great example is their “Group Membership” list. During the
logon process, the user’s object is checked to retrieve this list. AD then confirms the user’s membership
with each group using information stored in the Global Catalog‘ Once membership is confirmed, the
Security IDs for each group can be added to the user’s security token. The Global Catalog might also
contain various properties that are frequently searched upon—telephone numbers, for example. On the
other hand, the Global Catalog will probably store less information about Printer objects because fewer
of their properties are needed on a regular basis.

For those of you with a curious nature, Table 8.1 lists the properties stored (by default) in the
Global Catalog. You can change this list, but remember that any additions to the Global Catalog

properties list can have a great impact on your network.

NOTE To be honest, my search for this list was quite confusing. A search of Microsoft’s support website returned
multiple bits; unfortunately, each page offered a different list of attributes as the default list in the Global Catalog. The
list Dve included in Table 8.1 seems to be fairly fomplete, although if you want the nitty gritty, you’ll have to search
the Microsoft website.

171

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

TABLE 8.1: DEFAULT GLOBAL CATALOG CONTENT

NAME

alt-Security-1dentities
common-Name
display-Name
given-Name
group-Type
keywords

1
IDAP-Display-Name
legacy-Exchange-DN
location

mail

mSMQ-Digests
mSMQ-Label
mSMQ-Owner-1D
mSMQ-Queue-Type
mS-SQL-Alias
mS-SQL-Database
mS-SQL-Name
mS-SQL-Version
name

netboot-GUID
object-Category
object-Guid
object-Sid
organizational-Unit-Name

primary-Group-1D

DESCRIPTION
Alt-Security-1dentities

Common-Name
Display-Name
Given-Name
Group-Type
Keywords
Locality-Name
LDAP-Display-Name
Legacy-Exchange-DN
Location
E-mail-Addresses
MSMQ-Digests
MSMQ-Label
MSMQ-Owner-1D
MSMQ-Queue-Type
MS-SQL-Alias
MS-SQL-Database
MS-SQL-Name
MS-SQL-Version
RDN

Netboot-GUID
Object-Category
Object-Guid
Object-Sid
Organizational-Unit-Name

Primary-Group-1D

Continued on next page

AD SERVER FUNCTIONS

TABLE 8.1: DEFAULT GLOBAL CATALOG CONTENT (continued)

NAME DESCRIPTION
sAM-Account-Name SAM-Account-Name
sAM-Account-Type SAM-Account-Type
service-Principal-Name Service-Principal-Name
sID-History SID-History

surname Surname

uNC-Name UNC-Name
user-Account-Control User-Account-Control
user-Principal-Name User-Principal-Name
uSN-Changed USN-Changed
uSN-Created USN-Created

The reality is that this list is not that important. I cannot think of a single reason to remove one
of the default attributes from the list. If you decide to do so, however, test the change in a lab envi-
ronment first. Many of these attributes are included to provide specific functionality to the Win-
dows 2000/ Windows Server 2003 environment. You might, however, want to add an attribute to
the Global Catalog. Remember, the Global Catalog is used to perform searches of the Active Direc-
tory database. If a user tries to search on an attribute that is not included in the Global Catalog,
then the search must access domain controllers in each domain—adding network traffic, processing
overhead to the servers involved, and increasing the time necessary to perform the search. We'll dis-
cuss this process a little later in this section.

By default, the first domain controller created in the AD forest is made a Global Catalog server.
This is the only Global Catalog server that is created automaticaﬂy. If you desire more than one
Global Catalog (and you probably Wiﬂ), you have to manually conﬁgure them. The process 1s fairly
straightforward.

CHANGING THE ATTRIBUTES STORED IN THE GLOBAL CATALOG

As I mentioned earlier, you can control which attributes of object types are stored in the Global Catalog,
The partial list of attributes stored by default includes those attributes that are most frequently used in
search operations—things like common name, location, or e-mail address. By adding attributes, you can
speed up search queries. If your company uses a lot of interdepartmental faxes, for instance, your users

will probably spend a lot of time searching for the fax number of other departments. Adding the fax

number attribute to the Global Catalog will speed those searches up.

173

174

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

It is important for you to note, however, that in Windows 2000 adding a new attribute to the Global
Catalog causes a full synchronization of all object attributes—not just the information that changed.
Since the Global Catalog holds information about every object in the forest (not just a single domain),
this one-time synchronization process can generate a significant amount of network traffic! This has
been changed in the Windows Server 2003 operating system: Windows Server 2003 replicates only the
new information. Of course, for backward compatibility, if the Windows Server 2003 communicates
with a Windows 2000 Global Catalog, a full replication will occur.

If you are going to customize the content of the Global Catalog, remember that static data causes
less synchronization traffic in the long run than data that changes on a regular basis. The fax number
attribute is a perfect example; fax numbers for departments usually do not change very often. Once
the data has been synchronized to all of the Global Catalog servers, very little additional replication
traffic relating to this attribute will be generated. The only time synchronization traffic will be gener-
ated is when a fax number changes.

The content of the Global Catalog is managed through the Active Directory Schema snap-in to the
MMC. If this snap-in is not available, you must install the Windows 2000/ Windows Server 2003
Administration Tools from the Windows 2000/ Windows Server 2003 CD-ROM. Since it is copied
during a default installation, you can just run Adminpak.msi from the %systemroot%\System32 folder.

To modify the AD schema, you need to be a member of the Schema Admins group. First open
the MMC and add the Active Directory Schema snap-in, as shown in Figure 8.13.

FIGURE 8.13

Adding the Active
Directory Schema
snap-in to the MMC

Expand the Active Directory Schema folder and click on the Attributes folder. You will see a list
of all the attributes available within the AD schema, as shown in Figure 8.14.

AD SERVER FUNCTIONS | 175

FIGURE 8.14

Attributes within
the AD schema

Right-click the attribute you want to add to the Global Catalog and click Properties. On the
resulting window, ensure that the Replicate This Attribute to the Global Catalog option is selected,
as shown in Figure 8.15.

FIGURE 8.15

Adding an attribute
to the Global
Catalog

176

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

That's all there is to it! You'll also want to take note of another option in Figure 8.15: Index This
Attribute in Active Directory. As with most databases, AD has the ability to index certain “fields,” which
increases the efficiency of queries. If you are adding an attribute to the Global Catalog, the odds are that
the attribute you are selecting will be searched upon quite often. You can increase the efficiency of the
process by selecting this option. AD will, however, create an index file for the attribute—increasing the
size of the AD database files marginally. (This is usually not a problem, and since you are going to search
on the attribute, you accept the slightly larger file size in exchange for lower processing requirements on
the server.)

THE B1G DIFFERENCE BETWEEN WINDOWS 2000 AND WINDOWS SERVER 2003 GLOBAL CATALOG
While there really aren’t a lot of AD-related differences between Windows 2000 Server and the
Windows Server 2003 product line, one of the most important differences impacts the use of
Global Catalog servers during the logon process.

In a Windows 2000 environment, a Global Catalog is critical to the logon process. ‘When a user
Iogs on to the network, a security token is created for them. This token includes information about
the groups of which t:hey are a member. If a Global Cat:alog server is not available during the logon
process, the user will not be able to log on to the network—instead they will be limited to logging
on to the local computer.

NOTE Members of the Domain Admins group can log on to the network without accessing the Global Catalog. If this
wasn'’t the case, a malfunftioning Global Catalog server could [onfeivably prevent an administrator from logging on to fix

t})é’ L oblem.

In Windows Server 2003 the requirement of contacting a Global Catalog has been eliminated.
The domain controller closest to the user caches the user’s complete group memberships. The cache
populates at the first logon, and subsequent logons use this cached information. The cached infor-
mation is refreshed periodically from a Global Catalog.

This is a major change to the way logons are processed! It rnight actuaﬂy justify the cost of moving
to Windows Server 2003. Many Windows 2000 environments experience extreme performance issues
during periods of heavy logon (like Monday morning when everyone logs on at the same tirne). Most
of this slowdown is caused by the dual access involved—first a domain controller is accessed, and then
the domain controller accesses a Global Catalog.

In a Windows 2000 environment, it is recommended that each physical location have at least one
Global Catalog server, otherwise the logon process will include accessing the Global Catalog over
whatever WAN links are in place—not a pretty picture!

Forestwide Functions

As I mentioned in the beginning of this section, certain functions within a multimaster database just
do not lend themselves to the multimaster model. Some things need to be controlled through a single

AD SERVER FUNCTIONS | 177

point to provide a level of consistency that is just not available if “any old domain controller” was
allowed to do them. Let’s call these functions single master functions. Some of these functions are specific
to a domain, while others affect the entire forest. Let’s start our discussion with those that have the
widest possible impact: the forestwide functions.

NOTE I've had a couple of Novell guys laugh when we talk about the single-server functions. They seem to believe that
NDS is multimaster in all functions. Notbing could be fwtker from the truth! Any complex, replimted, and multimaster
database bas certain things that need to be tightly controlled—even NDS. I started off with Novell products, and I still like
them. Heck, I'm even a_former Novell employee. Read the documentation: Novell will tell you, in no uncertain terms, that
certain management tasks (usually those that involve changes to the structure of the directory tree) need to be performed by
specific servers.

For these operations, one server is designated as the operation master. All updates or changes occur at
the operation master, and this server is responsible for synchronizing the changes to all other servers.
Because these responsibilities can be moved from server to server (as best fits your network), Microsoft

refers to them as flexible single-master operations (FSMOs).

NOTE Do not let the word “flexible” confuse you—ibis is mostly a marketing phrase. These operations are truly
“single~master”” They are “flexible” only in the fact that you can determine which server will perform them.

There are two forestwide operation master roles:
¢ Schema master
¢ Domain naming master

These two roles are fairly straightforward, but once again, let me stress that only one server in the
entire forest performs these tasks. You must ensure that this server is reliable and has enough horse-
power to perform them. You should also place it in a physical location where any outside links are
fairly reliable. If these servers or the links to them are unavailable, certain administrative functions
will not be accessible.

The schema master controls the structure of the AD database. Any updates or modifications made
to the database structure must be made on this server first. It will then replicate these changes to the
rest of the AD servers in your forest. This ensures that all AD servers are “speaking the same language.”
There should never be a case where one server knows about a new object class or property but another
server does not.

By default, the first server installed in the Active Directory forest (your first domain controller)
assumes the role of schema master. To change the server that is performing this role, or to confirm
which server is performing this function, use the Active Directory Schema snap-in to the MMC.,
Right-click Active Directory Schema in the left pane of the window and choose Operations Masters.
You will be presented with the dialog box shown in Figure 8.16.

178 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

FIGURE 8.16
Locating or changing
the schema master
server

You should note something else in Figure 8.16. You must manually configure a server to allow schema
changes by selecting the modification option near the bottom of the figure. Until this option is selected,
you will be allowed to look at the schema, but changes will not be accepted. It is suggested that only one
server in the forest have this option selected!

The domain naming master is responsible for adding or removing domains from the forest. It ensures
that each domain is given a unique name when added to the forest and that any reference to a removed
domain is cleaned up.

Once again, only one server in the AD forest performs this function. To locate or change which
server is acting as the domain naming master, run the Active Directory Domains and Trusts applica-
tion located in the Administrative Tools group. Right-click Active Directory Domains and Trusts in
the left pane of the window and choose Operation Masters. You will be presented with the dialog
box shown in Figure 8.17.

FIGURE 8.17

Locating or changing
the domain naming
master server

AD SERVER FUNCTIONS

Domain-Specific Functions

There are three domainwide operation master roles:
¢ Relative ID master
¢ Primary domain controller (PDC) emulator
¢ Infrastructure master

Once again, only one server in each domain performs each of these tasks. These servers will need
to be both powerful enough to handle the extra workload and reliable enough to be available when
necessary.

The relative ID master controls the creation of security IDs for new objects created in the domain. Each
object has a security ID that is made up of a domain identifier (the same for every object in the domain)
and a unique relative ID that differentiates the object from any other in the domain. To ensure that these
IDs are indeed unique, only one server in each domain generates them. To ensure that new objects can be
created even if the relative ID master is offline, each domain controller is given 10,000 unique identifiers
when they join the domain. If all 10,000 unique identifiers are used, the domain controller requests
another 10,000 from the relative ID master.

The PDC emulator master has the ability to act as a PDC for non—Windows 2000/ Windows
Server 2003 clients and NT 4.0 (and earlier) BDCs. This allows for a mixed environment of Win-
dows 2000/ Windows Server 2003 and earlier NT version servers on the same network. Even in a
completely Windows 2000 /Windows Server 2003 AD environment, though, the PDC emulator
performs an important function. When a user changes their password, whichever domain controller
accepts the change will first pass the change to the PDC emulator operation master. This server then
uses a high-priority function to replicate this change to all of the other domain controllers in the
domain.

Each domain controller in a domain knows which server is acting as the PDC emulator. If a user
tries to log on to the network but provides an incorrect password, the domain controller will first
query the PDC emulator to ensure that it has the latest password for the user before denying the
request to log on. This prevents a denial of service in the event that a user attempts to use their new
password before it has had a chance to be replicated to all of the domain controllers in the domain.

The infrastructure master is responsible for updating group-to-user references when group members
are renamed or relocated. It updates the group object so that it knows the new name or location of
its members.

All of the domain-specific operation master servers can be confirmed and changed from the
Active Directory Users and Computers application located in the Administrative Tools group.
Right-click the domain in the left pane of the window and choose Operations Masters. You will
be presented with the dialog box shown in Figure 8.18.

NOTE There was confusion in our “beta~readers” of this chapter: they felt I gave the same instructions for checking the
domain naming master and the infrastructure master. Here's the dgj‘erenfe: when loo/eing for forestwide information, you
rigbt-dick Active Directory Domains and Trusts. When workz'ng on domain-spety(ic items (mtb as the infrastructure
mastmj, you rzg})t-flifk the domain in question.

179

180 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

FIGURE 8.18
Locating or changing
domain-specific
functions

Notice that the system automatically selects another domain controller (if you have more than
one, which I don't in the figure) that acts as the “standby” server. Do not get your hopes up here. In
the event that the original master server becomes unavailable, the role does not automatically switch
to the backup; you still have to click the Change button. This makes sense: you wouldn't want it to
change automatically every time a server was temporarily unavailable! That would also require some
sort of timed communication to manage, which would just add more traffic to your network.

General Guidelines for Operation Masters

You should be aware of certain facts and suggestions when planning for the location of your opera-
tion master servers. While I've never had a problem related to a malfunction of or even the inability
to connect to an operation master server, I'm always careful to follow the guidelines for placement
within the environment.

First let’s review what happens by default: The first domain controller in the AD forest is
assigned all five roles: schema master, domain—naming master, relative ID master, PDC emulator,
and infrastructure master. This makes sense; because there is only one domain controller, it must
assume all five roles. Each time a new domain is created, the first domain controller in the new
domain is assigned the three domain—speciﬁc roles: relative ID master, PDC emulator, and infra-
structure master.

Microsoft also makes the following recommendations:

¢ Place the relative ID and the PDC emulator roles on the same domain controller. Since Iegacy
clients target the PDC emulator for services, it is usuaﬂy a large consumer of relative IDs, so
the two services communicate quite a bit.

AD ORGANIZATIONAL UNITS

& If the workload justifies placing the relative ID and PDC emulator roles on different domain
controllers, make sure that the two computers are in the same AD site, and that the connection
between them is reliable.

¢ In general, the infrastructure master role should not be assigned to a server that is acting as
a Global Catalog server. The reason for this limitation is a little confusing. Remember that
the Global Catalog contains a record for every object in the forest. Also remember that the
infrastructure master is responsible for updating things like group membership changes to
other domain controllers. The infrastructure master will only replicate changes for objects
that it does not hold. Since the Global Catalog holds “all objects,” the infrastructure master
will not update any records on other domain controllers. (Weird little gotcha, huh?) There
are two exceptions to this rule:

¢ In asingle-domain forest, all domain controllers will be updated through the AD replica-
tion process anyway (the infrastructure master really has no work in a single-domain envi-
ronment), so it does not matter where you place this role.

¢ In a multidomain forest in which all domain controllers are Global Catalog servers, this
role can be placed anywhere. Once again, since all domain controllers know about all
objects, the infrastructure master has no real work to do.

¢ The schema master and domain-naming master roles should be placed on the same server
(remember these are the two forestwide functions). They actually do little work and so add
very little overhead to the server, but they are critical services that should be tightly controlled.
In addition, the server acting as the domain-naming master should also be a Global Catalog
server.

AD Organizational Units

So far in this chapter, we've discussed Active Directory domains, trees, and forests. We've also dis-
cussed a few of the AD roles that servers can be assigned to provide directory functionality. Let’s
think for a minute of what some of our discussions so far imply in a real-world environment.

First, I've said that an AD domain can support more than a million objects—users, computers,
groups, etc. I've also suggested that you limit the scope of a domain, either to reduce the overall
number of objects within the database or to control replication traffic between physical locations.
After our discussion of AD trees—multiple domains tied together with transitive trusts—the next
logical step was to tie these trees together to form forests, usually to support multiple namespaces
while still retaining the ability to centrally manage the environment. So far, so good, right?

In your mind’s eye, you should be visualizing a series of domains tied together to represent your
company’s network resources. If you are, then you are on the right track, and you have the proper
mindset for AD—it’s all just a graphical representation of the things you need to manage on your
network. See any problems yet?

Think about managing the AD tree of a large company. You've got multiple locations, so you create
multiple domains. Maybe you've got a few independent business units that demand you support their
established naming standards, so you create multiple trees and bring them together into a single forest.

181

182

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

Okay, great, but now what? In a large company, a single site can easily have thousands of users. In AD
terms, this would result in thousands of user objects, their associated computer objects, a large number
of group objects, and tons of other objects created in a single domain.

Now imagine trying to manage that number of objects. In your mind, see yourself opening the Active
Directory Users and Computers tool. What do you see? An endless list of thousands of objects—hope-
fully at least sorted alphabetically—from which you need to pick and choose when managing? In reality,
this type of representation of your resources would be unmanageable, and it’'s one of the reasons that an
NT environment needed so many domains.

When we talked about the X.500 recommendations, we discussed the use of container objects to
organize the resources represented in the directory. These container objects did not represent physical
resources; instead they acted as tools to organize the resources into logical groupings. Since they are
used to organize your resources, it makes sense that they are called organizational units (OUs).

In many ways, planning the structure of the OUs in your environment is more complex than
designing the domain, tree, and forest structure. Since domains usually represent physical locations
or separate business units, finding the scope of any given domain is usually fairly straightforward.
Likewise, AD trees are just groupings of domains—again, fairly easy to visualize. The same holds
true for forests: each represents a unique namespace; finding its limits is easy!

OUg, on the other hand, are used to organize actual resources—user accounts, printers, servers,
etc. While the scope of a domain is usually easy to find, creating OUs can be confusing. OUs tie
resources into logical groupings; as we'll see later, these groupings can represent departments, loca-
tions, or even projects. Placing your resources into the appropriate OUs can greatly ease long-term
administration—it’s planning the groupings that cause the headaches. Take printers, for instance. In
most companies printers are used by whichever users are located near them. If your OU structure
mirrors the departmental structure of your company (sales, marketing, production, administration,
etc.), which OU should contain the object of a printer? The printer might be used by people from
many of these departments, but the printer can have only one record in the tree.

Okay, you say, then I'll create OUs to represent locations. That will fix the problem; now the
printer object goes in the OU that represents its location. But what if you need to manage user
accounts by department?

See what I mean? Planning an OU structure that helps you manage your resources can be kind of

tricky.

What Are OUs Used For?

OUs form Iogical administrative units that can be used to delegate administrative privﬂeges within a
domain. Rather than add another domain to an existing structure, It 1S often more advantageous to
just create another OU to organize objects.

Organizational units can contain the following types of objects:

& Users
¢ Computers
¢ Groups
*

Printers

AD ORGANIZATIONAL UNITS

Applications
Security policies
File shares

Other OUs

* & o o

NOTE Remember that the AD schema is extensible, so the pn’[fding list ngbt fbcmge if you fbcmge the schema of your tree.

NOTE There is only one type of object that an OU cannot contain, and that is any objeft from another domain.

EASIER ACCESS, EASIER MANAGEMENT

You could define an OU as a container object designed to allow organization of a domain’s resources.
An OU is used in much the same way as a subdirectory in a file system. There is an old adage about
creating subdirectories in DOS:

be?’f are only two reasons to create a SMbdi?’E[tO?yl to ease access or to ease management‘

You might, for instance, create the DOS structure shown in Figure 8.19. Most of us would find
this type of layout: comfortable (and famﬂiar). If you take the time to analyze Why this structure works
so well, you'H find that all subdirectories were created for one of two reasons: management or access.

FIGURE 8.19
Typical file structure

A

APPS DATA

WP SS DB Docs Sprshts

APPS Naming a directory APPS lets a user know exactly where to find applications, making access
easier. It also lets an administrator know where to place any applications stored in the file system,
rnaking management easier.

183

184

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

DATA Again, the name helps both access and management. Placing both the APPS and DATA direc-
tories directly oft the root of the drive makes navigation easier for users. Separating the data from
the applications also simplifies setting up backup programs (you can back up everything under DATA
rather than all . doc files in \apps\wp and all .x1s files in \apps\ss, and so on).

OUs in Active Directory have even fewer “rules” than in DOS. In DOS, your structure had to make
sense to end users. They had to be able to use the directory names to “walk” through the structure to find
the files they were looking for. In AD, organizational units are created strictly to ease the administration
of the environment. In a properly designed and implemented Active Directory environment, users should
not even be aware of the existence of the AD hierarchical OU structure!

OUs are created for one of two reasons (in most cases): either to facilitate the delggation of adminis-
trative privileges or to facilitate the assignment of Group Policies. Let me expand upon these two choices.

Delegation
While certain administrative tasks must be centrally managed (mostly concerning the management
of the AD domain structure), most administrative tasks can easily be delegated to speciﬁc individuals
or groups. In other words, you have the ability to choose specific sets of administrative privileges and
assign them to specific people or groups of people.

As an example, you might have a help desk group that supports most calls for support. While this
group of people needs to have access to the information in AD, and maybe even make changes, they
should not have full control over the entire tree or domain. One common task that most help desks

perform is changing passwords. You've probably had this type of call at your workplace:
User: “The network won't let me log on.
Support: “Can you explain what is happening?"

User: “I type in my name and my password, and it says something about incorrect username or
password. Why won't it let me in?”

Support: “Are you sure you're typing in the right password?”
User: “Of course!”
Support: “Is the light on above the words Caps Lock?”

This conversation usually ends up with the support person changing the user’s password to some-
thing sirnple (like “password"), forcing them to change it the next time they log on.

In Microsoft NT, it was actually quite difficult to give your help desk personnel the ability to
change passwords without also giving them way too many other permissions in your system. In Win-
dows 2000/ Windows Server 2003, it’s quite easy! (We'll discuss security in Chapter 10.) Even bet-
ter, with a proper OU structure, you can limit the scope of the assignment to a select set of resources
within your domain.

When planning for delegation, you create OUs that represent administrative areas of responsibility.
If you have an administrator for a remote office who is supposed to handle all management tasks for
the resources in that office, create an OU that represents the location, place the appropriate resource
records (objects) within the OU, and delegate the necessary privileges to that administrator.

AD ORGANIZATIONAL UNITS

Group Policies

I haven't discussed Group Policies yet; I'm saving that for Chapter 11. Yet Group Policies can influence
your OU structure, so T'll have to introduce them here and finish the discussion later. Group Policies
are basically a set of rules that can be applied to a client workstation; these rules influence, or control,
the environment presented to users. While that is a fairly good definition, it sounds a little vague. Per-
haps an example would start things off on the right foot.

Have you ever had a user who just couldn’t seem to stop tinkering with their computer? They read
an article in some magazine, believe everything they read, and try whatever the author suggests. While
the authors of these articles might know what they are talking about, they do not know your particu-
lar environment. Often the suggestions they make cause problems or are at odds with your preferred
conﬁguration. A Group Policy can let you take control of that user’s environment, limiting their
options to what you decide they should be able to access. One of the most common settings, for
instance, allows you to determine which of the configuration tabs should appear on the Display
applet. You can allow users to set their backgrounds or screen savers, but you can completely remove
the Display Settings tab.

Group Policies are so powerful that you can literally control every aspect of the user environment,
even locking their machine down so that they cannot do anything you have not speciﬁcally allowed
them to do! Conversely, a Group Policy can be created to limit their access to just those functions
that have been causing the most help desk calls. Either way, you, as the administrator, decide how
much control users should have over their Desktops.

As T said, we'll continue this discussion in Chapter 11. We'll look at the options available and how
to implement them. For now, though, you need to know how Group Policies are assigned.

First, policies can be assigned to either users or computers. Think of it this way: you might have a
user, Bob, who is constantly calling the help desk to correct problems of his own making. You could
create a Group Policy Object (GPO, the actual AD object that holds your configuration decisions)
and assign it in such a way that it implements every time Bob logs on to the network—no matter
which computer he sits at! Conversely, you might have a computer that is located in a public place.
This computer needs to run one, and only one, application. You could create a GPO that accom-
plishes this level of control and then apply it to that particular computer (or group of computers).

T've used both techniques, and both are effective, depending upon your needs. Just recently I designed
an attendance sign-in system for a vocational school. They had an Access database located on a server and
a series of computers in their classrooms and computer labs. They wanted to track their students—take
attendance and track lab use—without placing an additional burden on their instructors. We placed
“kiosk” computers in each classroom and lab. These computers were assigned to a Group Policy that lim-
ited them to running the front-end for the database. In effect, we created a machine dedicated to a partic-
ular task. Now students “sign in” when they enter a room. The application tracks the time of sign-in and
attendance records for every class—without any additional burden placed on the teachers. (If you've been
Watching the news lately, you know how underfunded our schools are. Automating basic administrative
tasks can free up teachers so that they can spend more time with their students.)

Group Policies can be assigned at the OU level (as well as at a few other places that we'll talk about
later). In other words, you can create an OU and assign (or link, to use the proper term) the GPO to the
container, and it will be applied (by default) to all users and computers within that OU. Since GPOs
are a very big part of the management capabilities of AD, planning your OU structure to efficiently use
them is a big part of a good AD design!

185

186

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

THINK AHEAD

When designing the OU structure for your domains, you must plan ahead. If you are going to use them
as administrative boundaries (to facilitate delegation of administrative privileges), then you must know

who will be responsible for what resources before you create the structure.

If you are going to design your QU structure to facilitate GPO assignments, once again, you must
know what GPOs you plan to use, and who (or which computer) they should affect, before creating
the OUs and populating them with objects.

While OUs are a great way to logicaﬂy organize your resources for easier management, you can

have too many! Remember our DOS analogy? In DOS we use directories to organize files. Have you

ever sat down ata computer Where the user had created Way too many subdirectories? If the structure

is too complex, it can be impossible to find specific resources. Utilize OUs, but do not create a struc-
p p P

ture that is so coniplex you can't find things later!

TiP The bottom line is: if a container does not belp you manage a set of resources, then you probably don’t need that OU!

CREATING CONTAINERS

With that said, there are a few good business reasons why you should create containers:

¢ To delegate administrative control, allowing an individual the ability to add, delete, or modify
objects in a limited portion of the tree.

¢ To ease management by grouping like objects. You might, for instance, create a container to
hold users with similar security requirements.

¢ To control the visibility of objects.
To make administration more straightforward, assigning permissions once to the OU rather
than multiple times for each object.

¢ To make administration easier by limiting the number of objects in a single container. Even
though the limit on the number of objects within a single container is large (well over a mil-
lion), no one wants to page through a huge list every time they need to manage one object.

¢ To control policy application. We'll discuss changes to the system policy process later, but for
now just be aware that policies can be set at the OU level.

¢ To be used as a holding container for other OUs. This would be the same as the APPS direc-
tory in our DOS example. The APPS directory does not really hold any files; it just acts as an
organizer for other directories.

¢ Toreplace NT 4 domains. In earlier versions of NT, delegation of administration was achieved
by creating multiple domains.

Designing the OU Model

Organizational units provide structure within a domain. This structure is hierarchical in nature, just like
the structure built by adding domains together. Each OU acts as a subdirectory to help administrators

AD ORGANIZATIONAL UNITS | 187

organize the various resources described within the directory. This structure must be meaningful to your
administrators for it to be of any value to the network. A structure designed without people in mind
can be of more harm than good, as demonstrated in Figure 8.20.

FIGURE 8.20 KingTech.com Domain
Bad OU structure

There are a couple of problems inherent in this design:

¢ Many of the OU names are not user friendly. A name of 1 might mean something to the
administrator who created it, but it will probably mean nothing to anyone else.

¢ Naming containers after people might make things easier for a while, but as soon as there is a
change in personnel or business structure, all such containers will need to be renamed.

WHAT MAKES A GOOD OU MODEL?

There are various models of good OU structures. A model defines categories of OUs and the relation-
ships between them. The model you create for your tree should follow the business practices of your
company. More than in any other form of network, a directory-based network demands that adminis-
trators understand the business practices and workflow of their company before designing the system.

Creating an OU model can be a difficult task—especially on your first attempt. Since a good design
makes your life (and the lives of your fellow administrators) easier in the Iong run, you would like to
come up with a good, stable design the first time! With this in mind, some “cookie-cutter” models have
been designed to act as guides during the planning stage of your own design.

Microsoft suggests seven different basic models for OU structures:

¢ Geographic

& Object-based
¢ Cost center
L 2

Project-based

188

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

¢ Division or business unit
¢ Administration
¢ Hybrid or mixed

In the sections that follow, we will take a look at the advantages and disadvantages of each design
model.

Geographic Model

A geographic model structures its OUs by geographic location, as shown in Figure 8.21. The KingTech
Corporation has created a first level of OUs to represent continents and a second level to represent
countries. This type of conﬁguration 1s helpful if each country has its own administrator; you can easﬂy
grant administrative privileges to a local user account.

FIGURE 8.21
Geographic model

Root Domain
KingTech.com

North
America

A geographic model offers a number of advantages:

¢ OUs will be fairly stable: most companies sometimes reorganize internal resources, but the
locations of their offices are usually stable.

Corporate headquarters can easily dictate domainwide policies.
It is easy to determine where resources are physically located.

A geographic naming standard is easy for both users and administrators to understand.

AD ORGANIZATIONAL UNITS | 189

A geographic model also has some disadvantages:

*

*

This design does not mirror the business practices of KingTech in any way.

The entire structure is one large partition (single domain). This means that all changes to all
objects must be replicated to all AD servers worldwide.

NOTE In most cases, the replication traffic on the wide area links will outweigh any of the benefits of using this model.

Object-Based Model
The design of an OU structure can also be based on object types, as illustrated in Figure 8.22. A

first-level container would be created for each class of object that exists in the tree. Below this first

level, a geographic Iayout might make administration easier.

FIGURE 8.22
Object-based model

Root Domain
KingTech.com

Here are some advantages of the object-based model:

*

*

Resource administration is easier because each OU represents a specific class of object.

Permissions are based upon OU. It's easy to create OU-wide permissions, such as “All users
should be able to use all printers.”

Administration can easily be delegated by resource type. For example, you can create a Printer
Administrator who has permissions to add, delete, and modify all printers in the enterprise.

A company reorganization should have little effect on the design. The same resources (with
the possible exception of users) should exist no matter how the company is organized.

Distinguished names are consistent for all objects in a class.

190

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

¢ It resembles the DNS structure, so it may lessen the learning curve for some administrators.
Disadvantages of the object-based model include the following:

¢ It is harder to define OU-based policies because all users are in the same containers.

¢ This flat structure will have to be created in each domain.

¢ There are too many top-level OUs. This can make navigating the administrative tools more

difficult.
& If the schema is extended to accept new object types, new OUs will have to be created.

I've been working with directory-based networking for quite some time, and I've never liked the
object-based design. It offers the administrator little opportunity for customizing the environment
to meet a particular business need. I might, for instance, have a printer that should be visible only to
a particular group of users. While this goal is possible with the object-based model, accomplishing it
is more work than it might be in other models.

Cost Center Model

A company may decide that the OUs within its AD tree should reflect its cost centers, as shown in
Figure 8.23. This model might be used in a company where budgetary concerns outweigh other con-
siderations. A nonproﬁt organization, for example, might have separately defined divisions, each of
which is responsible for its own management and cost controls.

FIGURE 8.23

Cost center model

Root Domain
KingTech.com

Injection

The cost center model has one main advantage: Each division or business group manages its own

resources.

AD ORGANIZATIONAL UNITS | 191

This model also has some disadvantages:

¢ Users might not be grouped together in a way that reflects their resource usage. A color printer,
for instance, might belong to one department but might also be used by other departments as

needed.
¢ Delegation of administrative privileges can be confusing.

The cost center design does not really take full advantage of the power of Active Directory. Most
companies have departments, and each department might have its own budget—but there is usually
some overlap of resources.

Project-Based Model

Some companies might prefer an OU structure that is based on current project teams. A manufacturing
firm, for instance, might want to create an OU for each resource group in a shop floor manufacturing

process. The project—based model is shown in Figure 8.24.

FIGURE 8.24
Project-based model

Root Domain

For certain environments, the project—based model offers some definite advantages:

¢ This model works well in an environment where resources and costs must be tracked.

¢ Because each project group is a separate oy, security between groups Is easy to maintain.
Project-based design also has a couple of disadvantages:

¢ Projects often have a finite lifetime, so many OUs will have to be deleted and the resources
redistributed on a regular basis. (Of course, consultants love this design since it requires that
they come back to shuffle resources.)

¢ If projects change frequently, this type of structure will require a lot of maintenance.

I've found that a project-based structure will work for smaller companies with a limited product
line. As a company grows (along with the number of active projects), the workload of maintaining a
project-based design gets out of hand.

192

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

Division or Business Unit Model

The OU structure can also reflect a “well known” business structure if such a structure exists. A typical
well-known structure would be the various departments within a law enforcement agency. You can see
an example in Figure 8.25.

FIGURE 8.25

Division or business
unit model

Root Domain
City Offices

Here are some advantages of the division or business unit model:

¢ This structure is very user friendly, because it is based upon a structure with which users are

already familiar.
¢ For the same reason, it is easy to locate resources.

And here is a disadvantage: although the structure is based on a “well-known” environment, there
is always the chance that the business divisions will change. Any such change would force a redesign
of the OU structure.

TiP This model works very well in environments that are defined in a very rigid fashion, such as police departments and
government offices.

Administration Model

One of the more frequently used models is a structure based upon common administrative groupings
within a company, as shown in Figure 8.26. This model works well because it is based upon the actual
business structure of the particular company.

AD ORGANIZATIONAL UNITS | 193

FIGURE 8.26

Administration
model

Root Domain
KingTech.com

Human
Resources

The administration model offers these advantages:

¢ This model is designed from the perspective of the network administrator and makes the
administrator’s job easier.

¢ Since most companies are departmental—from both a physical and a logical perspective—
this model fits most enterprises.

It also has these disadvantages:

¢ Since this model is division oriented, all resources from a single division or department will be

grouped under a single OU. This might be confusing for users.

¢ In companies where many resources are shared between departments, this model might not
reflect the business model of the company.

This is one of the more commonly implemented OU models. It works reasonably well for most
companies.

NOTE Probably the biggest advantage of the administration model is that in most companies this design matches the
organizational chart. In other words, the design has already been created—all the network administrator bas to do is
implement it!

The administration model also matches the way many NT 4 networks wete created. First one depart-
ment would install an NT server, creating its own domain and user accounts. Later, another department
would see the benefits enjoyed by the first department and would in turn install its own NT server. In the

194

CHAPTER 8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

process, this department would create its own domain and SAM (Security Accounts Manager) database.
Next, the two departments would see the potential benefits of sharing resources and would create trusts.
The end result is a network already modeled on the administrative groupings within the company.

During the upgrade to Windows 2000/ Windows Server 2003, the administrator has the option
of redesigning the structure, but since the users are already familiar with the “departmental” concept
of multiple domains, it makes sense to keep the structure as it is. This results in less confusion for
end users, less retraining, and less productivity lost due to confusion.

Hybrid or Mixed Model
MOS[companies W].H settle on a l’lybtld structure t:hat: combines two Oor more Of the “standard” models‘

TiP Remember [lﬁﬂt a structure wzll Z)E more Stﬂblf and needfewer ﬂdj%S[ﬂ’lff’ltS y(it ﬂC[Mﬂltfly f?fZECfS t})f I)MSif’lESS
structure g(yom' (ompany, T}JE S[Llﬂdﬂfd models are (zftfﬂ too flgld to dO I}JiS.

A typical hybrid structure is shown in Figure 8.27.

FIGURE 8.27
Hybrid model

Root Domain
KingTech.com

65 @ ED\EDED

Advantages of a hybrid model follow:

¢ The structure can be customized to closely match the way in which business is conducted by
the company.

¢ Employees are usually comfortable with the design, since it reflects the way they actually work.

This model does have one disadvantage: it requires a greater understanding than the other models
do of the company for which it is intended. For this reason, many outside consultants will avoid

hybrid models.

AD ORGANIZATIONAL UNITS | 195

Because of its flexibility, the hybrid model is probably the best overall design. It does, however,
require more planning before implementation than the other models. Administrators of a hybrid
model AD will have to create a set of rules governing when, why, and where new containers will be
created. Here are some questions to ask yourself during this process:

¢ Which resources are departmental?
¢ Which resources are regional?
¢ Which resources are dedicated to a specific project?

Once you have answered these questions, you can start designing a structure that closely mirrors
the way in which your business is structured.

NOTE The blggest problem with the kybrz‘d model is that most businesses are dynamia In other words, the way that
they do business changes as the market changes. Such changes could result in a design that no longer meets the needs of the
organization.

OTHER ASPECTS OF PLANNING AN OU MODEL

After you have chosen the overall structure that you will use for your OU model, there are a few other
things to consider before you start implementation. Most of the following topics are administrative
concerns. Proper pianningr of these details will make adrninistering your network easier down the line.

Name Standards

The names you give to OUs are used internally within the domain and can be seen when searching
for particular objects. It is important, therefore, that the names you choose are meaningful both to
your users and to your administrators.

NOTE OU names are not part of the DNS namespace. Users do not use DNS services to ’j‘ind" an OU. This makes

sense, since OUs are not pkysical resources—ihey are logical structures used to organize the objetts in your database.

OUs are identified by a distinguished name—also known as a canonical name—that describes their
location in the hierarchical structure. Basically, this is the X.500 name for the object in the tree. An
OU named Tampa that is located in the KingTech container would be known as Tampa.KingTech.
These names are used most often for administrative tasks.

OU Ownership
Each OU in the structure has an object that acts as its owner. The owner of an OU can:

& Add, delete, and update objects within the container

¢ Decide whether permissions should be inherited from the parent container
¢ Control permissions to the container
*

Decide whether permissions should be propagated to child containers

196 |CHAPTER8 DESIGNING THE ACTIVE DIRECTORY ENVIRONMENT

NOTE By default, the user who creates an OU is its owner.

Delegating Administration of OUs

For every OU in a domain, there is a set of permissions that grant or deny Read and Write access to the
OU. This allows for a delegation of administrative privileges down to the lowest level of your structure.
Any permissions assigned at the OU level pertain to all objects within that OU. There are various levels
of authority that you might want to delegate to other administrators:

Changing Container Properties Administrators can change OU-wide properties, such as OU
policies and other attributes.

Creating, Deleting, and Changing Child Objects These objects can be users, groups, printers,

and so on.

Updating Attributes for a Specific Class of Object Perhaps your help desk personnel should

only be allowed to change users’ passwords (but not any other attributes of a user account).

Creating New Users or Groups You can limit the class of objects that an administrator has the
permission to create.

Managing a Small Subgroup of Objects within the Tree You might want an administrator to
manage only objects in a particular office.

In Short

Designing the structure of your Active Directory is an important task that should be completed before
implementation. As you have seen, proper planning of domains and organizational units can make life
easier for both users and administrators. Here are some suggestions for your design:

& Use as few domains as possible. Windows 2000/ Windows Server 2003 greatly increases the
capacity of a single domain. You should use multiple domains only when there is a specific
need for such a configuration.

¢ Limit the number of OU levels. As with the file system, the deeper things are hidden, the
harder they are to find! Because of the way AD searches for objects, deep structures are less
efficient than shallower ones.

¢ Limit the number of child objects for any given OU. While a Windows 2000/ Windows
Server 2003 domain can now support up to a million objects, no one wants to page through
that many objects to find a specific user or printer.

¢ Remember that administrative privileges can be delegated at the OU level. You no longer have
to create a new domain in order to limit administrative power.

In Chapter 9, we'll look at the actual implementation of AD: creating domains, OUs, and other
objects.

Chapter 9

Implementing Your Design

MANY PEOPLE WHO READ reference manuals such as this one often want to start “doing” right
away, rather than read through the explanations until a complete understanding 1s In place before
taking any action. To placate those of you who are getting impatient, this chapter describes the
mechanics of creating various objects within the AD forest. We'll look at the tools and techniques
used to install Active Directory, create organizational units, delegate administrative privileges, create
users, create groups, create printer objects, and describe the process for creating a few other types of
objects.

A few people have asked me (people who have read the first and second editions) why I put
this chapter in the middle of the book. Some of those people wanted the “how to” stuff in the
beginning, and others thought it should wait until the end. Those who wanted it in the beginning
complained that there was too much theory without any real “hands-on” descriptions. Those who
wanted it at the end said that I talked about the creation of a few objects before talking about the
implications of their use.

I have no defense against either complaint, Both groups are correct: this is not necessarily the
ideal location for the “hands-on” chapter. Nevertheless, I placed it here for two main reasons:

¢ Idon't want you to concentrate on the mechanics of management before you have a firm
grasp of the theory of directory services. Installing and populating Active Directory takes a
little thought, and I want you to have the basics before you start clicking through the tools.

¢ T also realize that many of you have a home lab in which you practice. Many of you said
that you wanted to create obj ects while you were reading to get a visual reference for the
topic being discussed. This makes perfect sense to me! Hear, see, do is the basic learning
process. In a book this translates to read, see (the figures), do (in a home lab environment).

The bottom line here is that this chapter will present the mechanics of creating objects within the
AD environment—where to click and a few short discussions of the consequences. Most of the com-
plete discussions, though, take place in later chapters. As we move into the later chapters, I want you
to have enough information to practice the techniques so that I can concentrate on the discussion

at hand.

NoTE This fbapter also makes a pretty good njerenfe point for later. [f you forget how to do somet/aing ﬂi/ee creating
a printer), you know this ckapter is most lz’kely to have a 5tep~by~step guide.

198 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

With that said, we can now move into the meat of the chapter. We've discussed most of the variables
involved in designing an AD structure; now we can look at the mechanics.
In this chapter:

¢ Installing Active Directory
Creating organizational units
Creating users

Crating groups

Creating printers

* & 6 o o

Creating other objects

Installing ADS

In earlier, domain-based versions of Windows NT; the accounts database (the Security Accounts
Manager) was stored on special servers known as domain controllers. There were two types of domain
controllers:

¢ One primary domain controller (PDC) for each domain

¢ An unlimited number of backup domain controllers (BDCs)

NOTE As you will recall, the PDC was responsible for synchronizing changes to the database to all of the BDCs.

One of the biggest problems with this older system was the inability to reconfigure servers “on the
fly” While you could promote a BDC to the position of PDC, it was impossible to demote a domain
controller or promote a member server (any NT server that was not acting as a domain controller)
without reinstalling Windows N'T. In other words, once you chose a role for an NT server—domain
controller or member server—you were stuck with that role. The only way to change a server’s role was
to pull out the NT CD-ROM and reinstall the operating system.

One of the biggest “incidental” advances that Microsoft has made to Windows 2000/ Windows
Server 2003 is that AD can be installed or removed without affecting the underlying operating sys-
tem. If you decide that a certain server should act as an AD server, only to learn later that the server
just doesn’t have the necessary horsepower to perform the task, you can remove AD. If you install a
Windows 2000/.NET server without AD and later decide you need to add the service, all you have
to do is run an Administrative Wizard.

AD has become “just another network component” of the Windows 2000/ Windows Server 2003
operating system. This flexibility allows network administrators the opportunity to make mistakes with-
out fear of losing network functionality while yet another reinstallation takes place.

INSTALLING ADS | 199

Before You Begin

Before you can begin the actual installation of the Active Directory service, you must complete certain
preliminary tasks. Specifically, DNS must be configured and working properly before you begin the

installation process. You should verify the following:
@ You have decided on and configured DNS names for each of your Active Directory servers.
¢ DNS is installed and working.
You have configured DNS for your environment. Specifically, ensure that:
¢ Lookups work properly.
¢ Al DNS servers are configured for forward lookups as needed.
& Your reverse lookup zones are working propetly.

¢ You have configured DNS to allow dynamic updates.

TESTING DNS
Testing DNS 1s beyond the scope of this book, but here are a couple of suggestions:

¢ Use Ping to confirm communication between all Active Directory servers. If you ping each
server by its host name, you will also test DNS at the same time.

¢ Use NSLOOKUP to test functionality for forward lookup, reverse lookup, and root zones.

NOTE Ior more information on these tools, I suggest Mastering Windows 2000 Server, 4th ed., by Mark
Minasi, Christa Anderson, Brian M. Smith, and Doug Toombs (ISBN 0-7821-4043-2, Sybex, 2002) or MCSE:
TCP/IP for NT Server 4 Study Guide, 4th ed., by Todd Lammle, Monica Lammle, and James Chellis (ISBN
0-7821-2725-8, Sybex, 2000).

MIXED MODE OR NATIVE MODE?

You must also decide on one other facet of your AD environment: whether your AD server should
be configured to run in mixed or native mode.

A mixed-mode AD server can interact with domain controllers running eatlier versions of NT.
Basically, the AD server becomes the PDC for the existing NT domain, and it will update the older
servers in a manner similar to that of an NT 4 server. This allows you to update your servers one at
a time without having to be concerned about backward compatibility issues. While this process is
certainly not as efficient as moving everything to AD, it does allow you a gradual upgrade of your
environment.

200

CHAPTER9 IMPLEMENTING YOUR DESIGN

NOTE Unfortunately, terminology in the Microsoft world is often a little confusing. A Windows 2000/ Windows
Server 2003 acting as an AD server bas the ability to emulate the functions of a domain controller from earlier versions
of Windows NT. Since it is performing the same functions as an N'T domain controller, many documents will refer to it
as just another domain controller. You should be aware that there is a subtle difference between old and new—and an

AD server, performing the role of PDC emulator, just acts like a PDC.

A native-mode AD server does not have the ability to act as part of an older environment. As soon
as all of your older servers have been upgraded to Windows 2000/ Windows Server 2003 and AD,
you should switch your servers to native mode. Mixed mode basically refers to a process running on
your Windows 2000 server, using processor power and memory.

NOTE It is not necessary to use mixed mode if all of your domain controllers are running Windows 2000/ Win-
dows Server 2003. It is perfectly acceptable, however, to have older member servers still running Microsoft NT. The only
servers that force you to run mixed mode are domain controllers (PDC, BDC).

While mixed mode is certainly convenient during the implementation of Windows 2000 / Windows
Server 2003, there are certain limitations to the environment. Depending upon the size of your environ-
ment and the functionality that you need, mixed mode can end up being a mixed blessing! While a Win-
dows 2000/ Windows Server 2003 environment is running in mixed mode, certain administrative
capabilities are disabled. Probably the one with the most far-reaching effects is the disabling of universal
groups. You are also unable to nest group membership (placing global groups within other global groups
or domain local groups within other domain local groups). We'll discuss the various types of groups and
their functions a little later in this chapter.

Of course, running in native mode also has its limitations. Once a domain has been conﬁgured to
run in native mode, no Windows N'T 4.0 BDCs can exist in the environment. If you plan on running
a mixed environment (with NT and Windows 2000/ Windows Server 2003), you either have to sep-
arate the domain controllers into distinct domains (NT and Windows 2000/ Windows Server 2003

dornains) or run in mixed mode.

The AD Installation Wizard

AD is installed by using the Active Directory Installation Wizard (the actual file is named DCPromo. exe
and is located in the <windows_root>\System32 directory). The wizard leads you through the entire
installation process, asking you for information on the first domain controller, domain, site, and other
configuration information. AD must be installed on a volume that has been formatted with NTES S or
higher.

The wizard itself is fairly straightforward. It starts with the obligatory Microsoft Welcome screen to
identify what you are about to do (just in case you ran the wrong program). On the second screen, you
are asked to select your server type, as shown in Figure 9.1.

There are two choices on this screen:

Domain Controller for a New Domain This server will be the first domain controller. Make
this choice if this is the first AD server for a domain.

Additional Domain Controller for an Existing Domain Use this option if there is already an
AD server within this NT domain. This server will receive a replica of the local domain’s partition.

INSTALLING ADS | 201

In Windows 2000, the next screen also has two choices, as shown in Figure 9.2. You must decide
whether to create a new domain tree or add this domain to an existing tree.

FIGURE 9.1

Domain
controller type

FIGURE 9.2

Create a tree or
child domain in

Windows 2000

On Windows Server 2003, this dialog box offers more options, as shown in Figure 9.3. The first
option, Domain in a New Forest, creates a new AD forest, with this server acting as the first domain
controller (and thus accepting all of the operation master roles). The second option, Child Domain in
an Existing Domain Tree, adds a new domain to your existing domain. The last option, Domain Tree
in an Existing Forest, creates a new AD tree and adds it to your existing forest (remember this is usually
used to support an additional namespace). If you choose either of the last two options, this server will
assume all of the domain-specific operation master roles.

202 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.3

Create a tree or child
domain in Windows

Server 2003

We discussed the tree and forest issue in the last chapter. Here you make decisions that will affect
the number of domains in your environment and how their namespaces will interact.

FINISHING YOUR INSTALLATION

If you choose to create a new child domain, you are asked for an administrative account and password
for an existing domain in the tree, as shown in Figure 9.4.

FIGURE 9.4

Establishing network
credentials

If you choose to create a new tree, the next screen asks you for the full DNS name for the new
domain, as shown in Figure 9.5. Remember that this name must be resolvable through DNS.

INSTALLING ADS | 203

FIGURE 9.5
Naming the

new domain

You are also asked for a NetBIOS-compatible domain name, as shown in Figure 9.6, that legacy
operating systems (such as Windows 95/98, Me, and NT) can use to refer to the domain. This
provides backward compatibility for those computers that have not been, or will not be, upgraded.

FIGURE 9.6

Setting a
NetBIOS-compatible

domain name

The next dialog box asks you where to store the NDS database and log files. As we'll see in
Chapter 15, placing the database and Iog files on separate physical hard disks is recommended.
Notice, in Figure 9.7, that the default places both on the local system partition.

204 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.7

Storing the database
and log files

The next dialog box asks you to decide where the SYSVOL folder should be located, as shown in
Figure 9.8. The SYSVOL folder contains all of the domain’s publicly accessible files. Its contents are

replicated to all domain controllers in the domain.

FIGURE 9.8

Locating the
SYSVOL folder

In the event the DCPROMO application cannot resolve the domain name through an existing DNS
server, the dialog box shown in Figure 9.9 will appear. As you can see, the error message dearly describes
the problem. You are presented with a few choices: fix the problem now, have the system automatically
install and conﬁgure DN on this computer, or fix the problem later. Notice that not addressing the
problem at some point is not an option! Without DNS, AD cannot function.

INSTALLING ADS | 205

FIGURE 9.9
The DNS
Registration
Diagnostics
window

If you decide to have DNS automatically installed and configured at this time, you should confirm a
couple of configuration options before continuing! Failure to do so can result in an incorrectly configured
DNS environment, and that can be a real headache to correct. First, ensure that the primary DNS suffix
for this computer is correctly configured. You can confirm this by right-clicking the My Computer icon
on the Desktop. On the Computer Name tab, click the Change button. On the Computer Name
Changes dialog box, shown in Figure 9.10, click the More button.

FIGURE 9.10
Confirming the

configuration of the

primary DNS suffix

The next dialog box, the DNS Suffix of and NetBIOS Computer Name, is where this option is
confirmed. Ensure that the Primary DNS Suffix of This Computer option lists the DNS domain

for which this computer will be a domain controller, as shown in Figure 9.11.

206 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.11

Confirming the
DNS domain

The second configuration you should confirm can be found in the properties of the TCP/IP
configuration. Right-click the My Network Places icon on the Desktop and choose Properties.
Highlight and right-click the LAN connection, then choose Properties. Highlight Internet Protocol
(TCP/IP) and click the Properties button. Click the Advanced button and access the DNS tab on
the Advanced TCP/IP Settings dialog box, as shown in Figure 9.12. Ensure that the appropriate
DNS domain is listed in the DNS Suffix for This Connection option.

FIGURE 9.12
Setting DNS
options in the
Advanced TCP/IP
Settings dialog box

INSTALLING ADS | 207

NOTE I learned the hard way not to skip these steps. It is much harder to fix an incorrectly [onfigmed DNS domain than
it is to avoid the problem in the first place.’

The next decision to be made concerns security, as shown in Figure 9.13.If you run server-based
applications (such as a database or messaging program) on pre—Windows 2000/ Windows Server 2003
or if you run server-based applications on Windows 2000/ Windows Server 2003 that are members of
pre—Windows 2000 / Windows Server 2003 domains, then you need to configure your environment to
be compatible with the needs of those older environments. This description can be confusing, so I'll
explain the reasoning, Older server-based applications often used an unauthenticated (or Null) session
for server-to-server or server-to-client connections. These types of connections present a security hole
that has been removed from Windows 2000/ Windows Server 2003. To provide backward compati-
bility, though, you can configure your server to support them. If at all possible, I recommend utilizing
the newer, tighter security configuration available in Windows 2000/ Windows Server 2003. If you
must provide backward compatibility, I recommend doing SO as a temporary solution—until you can

upgrade any applications that require them.

FIGURE9.13

Allowing backward
compatibility

The next dialog box, as shown in Figure 9.14, asks you to provide a password that is used when
starting the computer in Directory Services Restore Mode. This password allows the recovery of AD
from a backup. Knowing this password grants you the ability to overwrite AD with an older version
(from a backup set). Use a complex password, store it in a secure location, and limit the number of

individuals who know it!

208 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.14
Setting the Restore
Mode administrator
password

The last window, shown in Figure 9.15, provides a summary of the choices you have made in the
DCPROMO process. Now is a great time to review your actions—avoiding mistakes, rather than
correcting them, is always an easier route!

FIGURE 9.15

Reviewing your
choices

That's all there is to the installation of AD. So far, so good! Actuaﬂy, creating a good design is
the hardest part of moving to a directory-based environment—the mechanics are just knowing
where to click.

INSTALLING ADS

WHAT DOES THE WI1ZARD CREATE?
The foHowing items are created during the AD installation process:

Database This is the directory database for the new domain. The default location for the database
and its associated log files is <systemroot>\Winnt\Ntds.

Shared System Volume All Windows 2000 domain controllers have a share point used to store
scripts that are part of the Group Policy objects for both the local domain and the enterprise. The
default location for these files is <systemroot>\SysvoTl\sysvol.

Domain Controller The first domain controller for the domain is created during the first
installation of AD.

First Site Name A siteis a Iogical grouping of servers. By default, the first site contains the first
domain controller.

Global Catalog Server The first domain controller in a site becomes the Global Catalog server.
The Global Catalog server holds a partial replica of every domain in the forest. This replica holds
a subset of the attributes for each object—those attributes most commonly used for searches. The
Global Catalog server facilitates forestwide searches for objects.

Root Domain If you create a new tree (rather than join an existing 0ne>, this domain will become
the root domain for the new tree.

The installation also creates a series of organizational units:

Built-in Container This contains default security groups, such as Account Operators, Admin-
istrators, and so on.

Foreign Security Principals Container When a trust is made with a domain outside of the
tree, this container is used to hold references to objects from the outside environment that have
been granted local permissions.

Users Container This is the default location for user accounts.
Computers Container Likewise, this is the default location for computer accounts,

Domain Controllers Container I bet I don't even have to tell you. (]ust 1n case, though, this
container is the default location for domain controller accounts.)

After your installation is complete, all components are ready to go. The process even creates
an OU structure for you, as shown in Figure 9.16. The original containers created are not reaﬂy
intended to be the final location for your resource objects. For instance, from a security perspec-
tive, it does not make sense to leave user objects in a container named Users. Not only does the
name give away too much information to anyone who manages to hack their way 1n, it is also a
known default. Staying with known defaults makes a hacker’s job easier—they already know the
name of the object.

209

210 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.16
The default OU

structure

You'll notice a difference between Windows 2000 and Windows Server 2003 in Figure 9.16. In
a Windows Server 2003 installation, a folder named Saved Queries is created. Right-dicking this
folder and choosing New Query, opens the dialog box shown in Figure 9.17. Here you can define a
set of search parameters for querying the AD database. Figure 9.18 shows the interface for defining
the parameters. These predefined queries can be a great aid when managing AD.

FIGURE 9.17
Defining a new

query in Windows
Server 2003

INSTALLING ADS | 211

FIGURE 9.18

Finding common
queries

Notice the two available check boxes: Disabled Accounts and Non Expiring Passwords. Both of
these are commonly searched (for AD cleanup and security). You can search for the name of objects or
the value of attributes. You have options to search for partial names (for instance, all users whose names
begin with BK or end with KING), for exact matches or nonmatches (all user accounts whose company
does not equal Royal Technologies), or even for the existence or nonexistence of an entry (all users who do
not have a telephone number entered). All in all, learning to use the query tool can make managing your
AD environment quite a bit easier!

The installation process also creates a log file that lists the results of each step in the process. This
log file is located in the \winnt\debug folder. Figure 9.19 displays the beginning of one such file.

This file is a great beginning for your documentation of the server!

FIGURE9.19

The DCPROMO
log file

212

CHAPTER 9

IMPLEMENTING YOUR DESIGN

VERIFYING YOUR INSTALLATION

Once you have completed the installation of AD, it is a good idea to confirm that everything went as
planned. The only real problem with wizards is that you click, they do, and you are never sute if they
have done what you wanted them to do! The most important process that must be completed during
the installation is the addition of the service records, or SRV records, to the DINS database.

NOTE Since AD uses DNS to find domain controllers, it is imperative that each server has a record in the database.

To confirm that DNS has been updated correctly, you need to do two thmgs.

First, check the local DNS file to ensure that the proper entries have been made. This file is located
in the \<systemroot>\System32\Config folder and is named Netlogon.dns. The first record you should
see is the server’s LDAP service record. The LDAP SRV record should look something like this:

_Ldap._tcp.<Active_directory_domain_name> IN SRV 0 0 389 <domain_controller_name>
Here’s an example:
_Ldap._tcp.KingTech.com IN SRV 0 0 389 ADS1.KingTech.com

You can also use the DNS Management tool, located in the Administrative Tools group. Within
this tool, expand your DNS domain and highlight the _tcp folder. In the right pane you will see the
record, as shown in Figure 9.20 (I've highlighted the appropriate record in the figure).

FIGURE 9.20

Confirming the
LDAP record
in DNS

Second, to ensure that the SRV records in the DNS database are working correctly, use the
NSLOOKUP tool. The following steps will confirm their functionality:

1. At the command prompt, type NSLOOKUP and hit the Enter key.

2. Type SET TYPE = SRV and press Enter.

CREATING ORGANIZATIONAL UNITS | 213

3. Type Tdap.tcp.<Active_directory_domain_name>, where <Active_directory_domain_name> is
the name of your company’s Active Directory domain. Press Enter.

If this process returns the server name and IP address, the SRV records are performing correctly.

Creating Organizational Units

To review: organizational units are used to organize the objects within your tree and to act as
administrative boundaries. Many different types of structures can be created using OUs as the

building blocks.

NOTE The only real limitation is that no OUs can be created within the default OUs created during the installation
of ADS.

A user must have the appropriate permissions to create OUs within the tree. By default,
members of the Administrators group have the permissions necessary to create OUs anywhere
within a domain.

To create an OU, use the Active Directory Users and Computers tool, located in the Admin-
istrative Tools group. Expand your domain, and you will see the default containers shown in

Figure 9.21.

FIGURE 9.21

The Active
Directory Users
and Computers tool

NoTE We'll discuss the uses of the default containers in Chapter 10.

Right-click the level where you want to create a new OU and choose New, then Organizational
Unit, as demonstrated in Figure 9.22.

214 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.22
New

organizational unit

You will see the window shown in Figure 9.23.

FIGURE 9.23

Creating a new
organizational unit

Provide a name for your new organizational unit and click the OK button. As you can see, creating
new organizational units is about as easy as creating new directories in a DOS file system. Just as in
DOS, there will be those people who create too many and those who create too few. In either case, we
have a name for them: future consulting customers. Take the time to plan your structure (and play with
a few test systems) before implementation!

Delegating Administration

One reason to create multiple OUs is to delegate administrative tasks. While the mechanics of dele-

gation are straightforward, you will need to be aware of how permissions work in the AD structure.
Permissions granted to an AD container flow down the structure in the same way they do in the

NTFES file system, as you can see in Figure 9.24.

CREATING ORGANIZATIONAL UNITS | 215

FIGURE 9.24 \
Permissions (—\&\\Q’Q‘\“Q ou= KingTech
inheritance G@(\\/V

_,..
=}
=
w

Susan

A
Z
%
%
/‘0/
ou= Tampa

If Susan is granted Full Control to the KingTech container, by default that set of permissions will
flow down the AD structure so that she has Full Control in every container below KingTech. As you
will see when we walk through the process, you can limit the flow if you desire.

DELEGATING CONTROL OF A CONTAINER

To delegate control of a container, right-click the container in the Active Directory Users and Com-
puters tool and choose the Delegate Control option. This starts the Delegation of Control Adminis-
trative Wizard. As with all wizards, the first screen is a Welcome screen. Clicking Next brings you to

the window shown in Figure 9.25. Here, you are asked to choose which users or groups should be
given permissions.

FIGURE 9.25

Users or groups

216 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

In Windows 2000, clicking Add brings you to a list of available users and groups, as shown in
Figure 9.26.

FIGURE 9.26

User or group
selection in

Windows 2000

The Windows Server 2003 interface, however, has changed quite a bit, as shown in Figure 9.27.
The new look is more than just a pretty face; you have quite a few more options than were available
in Windows 2000—options that can make your life easier!

FIGURE 9.27

Selecting users or
groups in Windows
Server 2003

Let’s work through the options one at a time. First, the Object Types button allows you to control
which types of objects should be shown, as you can see in Figure 9.28. This allows you to filter the
list to match your needs.

CREATING ORGANIZATIONAL UNITS | 217

FIGURE 9.28

Controlling
object types

The Locations button allows you to control the list of objects by their placement in the AD
structure, as shown in Figure 9.29.

FIGURE 9.29

Finding locations

To actually choose the person or group to whom you want to delegate permissions, you have the
option of either typing them in or using the Advanced button. Notice the “examples” link; it brings
up a list of the types of names that are acceptable and their formats, as shown in Figure 9.30.

FIGURE 9.30
The Examples

window

The Advanced button is where this utility reaﬂy shines. You can run some very sophisticated
searches to find the accounts or groups you need. First, you can type in the first few letters and be
shown all matching records, or you can specify that only exact matches be displayed. The Columns

218 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

button allows you to customize the information about each object shown in the display box. In Figure
9.31, I have entered nothing in the Name box, so the entire content of my AD domain is displayed.
I've also added the Employee ID column to the output.

FIGURE 9.31

Searching with the
Advanced options

The next screen in Windows 2000, shown in Figure 9.32, lets you either choose from a list of
commonly delegated tasks or create a custom delegation. The list of available common tasks has
been expanded for the Windows Server 2003 environment, as shown in Figure 9.33.

FIGURE 9.32

Tasks to delegate in
Windows 2000

CREATING ORGANIZATIONAL UNITS | 219

FIGURE 9.33
Tasks to delegate
in Windows
Server 2003

If you choose to create a custom delegation task, in Windows 2000, you will be presented with the
window shown in Figure 9.34. Here you can either allow management of all objects in the container
or limit the delegation to certain object classes.

FIGURE 9.34
Managing
object types in
‘Windows 2000

A couple of convenient check boxes have been added to the Windows Server 2003 interface, as
shown in Figure 9.35. While you could manually choose the appropriate permissions to accomplish
these two tasks in Windows 2000, it is very convenient to just select a check box to allow the user or
group to create or delete the selected object types.

220 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.35
Managing object
types in Windows
Server 2003

In the next window, shown in Figure 9.36, you determine exactly what administrative powers you
wish to grant. Notice that there are three check boxes.

FIGURE 9.36

Permissions

The General check box gives a basic set of permissions as options. These permission are:

Full Control =~ Grants all other permissions (and the ability to take ownership) to all objects in
the container

Read Allows the recipient to read the Access Control List (ACL) of all objects

Write Allows the recipient to write to the ACL of all objects within the container

CREATING USERS

Create All Child Objects Allows the creation of any class of object within the container
Delete All Child Objects ~ Allows the deletion of any class of object within the container

Read All Properties Allows the recipient to read the properties of objects within the container
Write All Properties Grants the ability to change all properties for objects within the container

In reality, the list of permissions above should be sufficient in most cases. Actually, most companies
will not even be as specific as this first list allows—most companies will give administrators Full Control
and leave it at that. You have, however, the ability to micromanage the delegation of administrative per-
missions. If you check the “Property-specific” option (shown back in Figure 9.36), the list will expand to
include a list of all of the various properties available. As an example, the list will include Read Street and
Write Street, allowing you to determine if the recipient can see or change the Street property of objects
within the container. This level of granularity allows you to easily grant a person in human resources the
ability to change user information such as addresses and phone numbers without having to give that person
rights to any other properties.

Lastly, it you check Creation/Deletion of Specific Child Objects, the list will expand to include
the various classes of objects that can be created. Now you can control exactly what types of objects
an assistant administrator can create. Perhaps you've got a person who is in charge of all printers in
the company. You can easily give this person the ability to create printing-related objects without giving
them the permission to create anything else.

The last screen of the Administrative Wizard confirms the changes that you are about to make.
Clicking Finish will implement these changes.

Creating Users

Once you have created your AD structure, the next step is to populate it with objects representing the
resources on your network. While many different classes of objects are available, there are a few that every
network requires. To tell the truth, most objects within the directory are created in a similar manner. In
the Active Directory Users and Computers tool, right-click the container in which you wish to create the
object and choose New; you will be presented with a list of valid object classes, as shown in Figure 9.37.
Choose the object class that you wish to create and enter the required information.

FIGURE 9.37

Creating new objects

221

222

CHAPTER 9

IMPLEMENTING YOUR DESIGN

Without a doubt, the most important class of object is that of user. User accounts are the backbone
upon which all network functionality is built—without them, no one accesses resources.

You are probably pretty comfortable with the concept of a user account. User accounts of one sort or
another have been used since the dawn of networks to allow users to identify themselves to the network.
Networks also use user accounts to authenticate access to resources. When a user—Iet’s call him Tom—
attempts to access the network, he will be asked for his logon name (Tom’s user account). The network
operating system will then check to see whether the account he provides exists and, if so, whether there
are any restrictions that would mandate denying his request (such as time or station restrictions). If Tom
successfully logs on to the network, his account information will be used to authenticate his requests for
resource access. Every action that Tom takes on the network will be allowed or denied based on informa-
tion in a user account (although not necessarily his own—many processes are accessed through system
accounts, such as many web-based resources).

Creating a New User Account

To create a user account, access the Active Directory Users and Computers program located in the
Administrative Tools group. Right—click the container in which you wish to place the user account,
then choose New > User. You will be presented with the screen shown in Figure 9.38. Here you will
enter the user’s first, last, and logon names.

FIGURE 9.38

Creating a user
account

Click Next to move to the next window in the process, shown in Figure 9.39. Here you can assign
the user’s first password and make a couple of choices regarding this account. Your choices are explained
in the following list:

User Must Change Password at Next Logon The next time the user logs in to the network, she
will be forced to change her password. This forces the user to change her password from the one
provided by the administrator, so that the user is the only person who knows her password.

User Cannot Change Password Some companies use a centrally controlled list of passwords, set
by the administrator. If this is the case, this option will prevent a user from changing her password.

CREATING USERS | 223

Password Never Expires Most companies force users to change their passwords periodically.
This option overrules that policy.

Account Is Disabled This option can be used to disable an account.

TIP Umally

)
In a seasonal business, however, you might want to create user accounts for seasonal employees before your busy season,

the Account Is Disabled option is used when an employee bas been terminated or goes on an extended leave.
disable them, and then just reenable them as the employees come online.

FIGURE 9.39

User account setup

The process ends with a screen that confirms the choices you have made, as shown in Figure 9.40.
Clicking Finish will create the account.

FIGURE 9.40
Finishing the

creation

224 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

Adding Information about Users

Once you have created a user account, there is still a lot of information that you can add. To perform
searches based on such criteria as location, department, or manager, you will have to enter that infor-
mation into the user’s attributes. To do so, double-click the user account in the Active Directory Users
and Computers tool. You will be presented with the User Properties window shown in Figure 9.41.

FIGURE 9.41

General tab of the
User Properties
window

Most of the attributes are self—explanatory; the e-mail attribute, for instance, is the user’s e-mail
address. Other attributes will need some explanation; for example, phone number and home page
are both multivalue attributes. Clicking the Other button allows you to add multiple values for
these attributes.

Figure 9.42 shows the Address tab of the User Properties dialog box. This tab contains parameters
that pertain to the user’s mailing address.

Figure 9.43 shows the Account tab. Notice that you can use this tab to set an expiration date for
a user account. This option is handy if you hire a lot of temporary or seasonal personnel and do not
want their accounts to be valid indeﬁnitely. You can also provide values for the following:

Logon Hours One of the initial access securities is the ability to limit when users can log on to
the network.

Log OnTo Controlling which computers a user logs on to can help to control those “social

butterflies” who flit from desk to desk, logging on but never logging off!

Account Options This area allows you to set parameters for controlling password security.

CREATING USERS | 225

FIGURE 9.42

The Address tab of
the User Properties
window

FIGURE 9.43

The Account tab of
the User Properties
window

226 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

Figure 9.44 shows the Profile tab. This tab contains attributes pertaining to the placement of
network files. There are two distinct areas of configuration:

User Profile Here you can set the location of a user’s profile and login script.
Home Folder This lets you control the placement (local or network) of a user’s home

directory.

FIGURE 9.44

The Profile tab of
the User Properties
window

Figure 9.45 shows the Telephones tab, which contains contact information for the user.

NOTE The attributes on the Telepbones tab are all multivalue ﬁelds—clif/eing the Other button allows you fo enter
multz'ple values.

Figure 9.46 shows the Organization tab. This tab contains attributes that allow you to document
the organizational hierarchy of your company. You can set the foﬂowing values:

Title
Department
Company

Manager This refers to the employee’s manager (as opposed to the next attribute, Direct
Reports).

Direct Reports This refers to the people who are managed by this user.

CREATING USERS | 227

FIGURE 9.45

The Telephones
tab of the User

Properties window

NOTE At this time, AD does not use the information stored on the Organization tab except for LDAP searches. Later,
we can expect other applications to take advanmge of this information. For example, imagine an e-mail system—fxckange
Server, perbaps—that lets you send messages to “All users whose department attribute is Sales.”

FIGURE 9.46

The Organization
tab of the User

Properties window

228 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

The Member Of tab is shown in Figure 9.47. On this page you can add or remove users from
Windows NT security groups.

FIGURE 9.47

The Member Of
tab of the User

Properties window

The Dial-in tab, shown in Figure 9.48, is used to configure a user’s dial-in privileges. This tab is
only valid if RAS has been configured.

FIGURE 9.48

The Dial-in tab of
the User Properties
window

CREATING USERS | 229

The Environment tab (Figure 9.49) allows you to configure the user’s initial network environment
as they log in. This is useful for users who move from computer to computer. Settings here will take
effect no matter where the user is sitting,

FIGURE 9.49

The Environment
tab of the User

Properties window

The Sessions tab, shown in Figure 9.50, allows you to configure connections for clients utilizing

the Terminal Services capabilities of Windows 2000.

NOTE Terminal Services is really beyond the scope of an AD book. In short, it allows you to use less powerful PCs or
dumb terminals to connect to Windows 2000/ Windows Server 2003. All applications actually run on the server, with
only screen updates being sent to the client machine. We use this quite effectively in the training industry—it allows us to
move out~g‘~date equipment from technical classrooms into applitation training rooms. Here, t})ey can run Windows 9x
or NT applications without baving to have the horsepower necessary to run those operating systems.

The Remote Control tab also pertains to Terminal Services. As shown in Figure 9.51, you can
configure aspects of observing or controlling a user’s session from a remote location.

NOTE This can really save time for belp desk personnel. They can call a user on the phone and walk bim through the process
he is having trouble with—without ever leaving their own desks!

230 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.50

The Sessions tab of
the User Properties
window

FIGURE 9.51

The Remote
Control tab of

the User Properties
window

Lastly, the Terminal Services Profile tab, shown in Figure 9.52, allows you to configure the location
where Terminal Services clients should find their session profile and to assign the folder they should
use as their home directory.

CREATING GROUPS

FIGURE 9.52
The Terminal

Services Profile
tab of the User

Properties window

I know that this seems like a lot of information about a user—especiaﬂy when compared to
earlier network operating systems. Remember the big difference here is that in AD we are not just
creating a user account for network access, we are trying to create a database of user information.
This information, once entered, can be utilized in many ways.

Creating Groups

Groups are a means to organize individual user or computer accounts. They are used for security and
distribution purposes. Most of your management should be done through groups, rather than to
individual users or computers. The scope, or area of influence, for a group can be limited to a single
domain, to multiple domains (through trusts), or to the entire network. Group objects are named
in the same way as any other object in the directory.

TIP Take spea'al care to give each group a name that describes its purpose. lf a group is used to grant access to accounting
information, for instance, its name should imply that, such as AcctInfo.

Types of Groups
New to Windows 2000/ Windows Server 2003 are two types of group objects, each used for a specific

function:

Security Groups These are used to grant permissions to resources. Computers, users, and other
groups can be members of a security group. If you wanted to grant users permissions on a share

231

232

CHAPTER 9

IMPLEMENTING YOUR DESIGN

point, for instance, you could create a group, grant that group the appropriate permissions, and
then add users (or other groups) as members of that group.

Distribution Groups These groups are used for nonsecurity functions, such as e-mail. Distribution
groups cannot be assigned permissions or rights.

In reality, you will probably create only security groups unless a compelling reason to use distribu-
tion groups arises. Here’s the bottom line: distribution groups can act as “mail recipients” but cannot
be assigned permissions. Security groups can be assigned permissions and act as mail recipients. Since
the security groups can perform both functions, it is usually better to use them, even if all you want
is for the group to act as a mail distribution point. If; at a later date, you decide that the members of
a group should be assigned permissions, you can do so without having to create a second group.

Access Tokens

When an object is created in the directory database, it is given a unique identifier known as a SID
(system identiﬁer). Rather than the user—friendly X.500 names, the operating system uses SIDs to
identify objects. SIDs are used to control access to all resources on the network.

When a user logs in to the network, the system requires that she provide a valid login name (and
password if one exists for her account). NT then puts the SID for the user, and the SIDs of any
groups that she is a member of, into an object known as the access token and sends the access token
back to the user.

As the user attempts to access resources, she will send her access token to the resources for authenti-
cation. The SIDs in the token are compared against a list of SIDs for objects that have permissions to
the resource. This list, known as the Access Control List (ACL), controls who may access the resource.
If the user’s access token contains the SID of an object that has been granted the necessary permissions
to use the resource, the user’s request is granted.

Scopes of Groups

Windows 2000/ Windows Server 2003 provides the ability to limit the area of influence for a group.
A group can be one of the following three types:

Domain Local Groups Limited to a single domain. They can be used to grant permissions to
resources only within that domain, but can have members from any domain. These groups should
be used when the permissions are to be granted specifically within a domain: domain local groups
are not visible outside of their own domain.

Global Groups Used to grant permissions to objects in multiple domains and are visible to all
trusted domains. Global groups, though, can have as members only users and groups from within
their own domain. If your AD database is configured for native-mode operation, global groups can
be nested; in other words, a global group can contain other global groups.

Universal Groups ~ Similar to global groups in that they can be used to grant permissions across
multiple domains. The big difference is that universal groups can contain any combination of user

CREATING GROUPS

and global group accounts from any trusted domain in the forest. Microsoft suggests the following
procedure for granting permissions across multiple domains:

1. Create a global group in each domain and add the appropriate users as members.
2. Create a universal group and grant it the appropriate permissions.
3. Add the global groups as members of the universal group.

Adding groups to other groups is known as nesting. Each group “deep” into a nest is called a layer,
as shown in Figure 9.53. Group 1 is a member of Group 2; this is one layer. Group 2 is a member of
Group 3; this is another layer.

NOTE While there is no limit to the number of layers that can be appliea’, tracing permissions becomes much more fomplex
as the depth increases.

FIGURE 9.53

Nesting groups Group 3

Group 2

The Mechanics of Creating Groups

Groups are created using the Active Directory Users and Computers tool located in the Administrative
Tools group. Right-click the container in which you wish to create a group, choose New, and then choose
Group. This will bring up the Create New Object - Group screen depicted in Figure 9.54. Here you will
name your group, choose a type (Security or Distribution), and choose a scope (Domain Local, Global,
or Universal). The Universal option will be available only in a multidomain environment (in other words,
in AD structures where trusts exist).

233

234 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.54

Creating a group

Once you have created the group, you can manage the object’s properties by double-clicking the group
object in the AD Management tool. You will be presented with the Properties page for the group. As you
can see in Figure 9.55, the Properties page for a group object has four tabs:

¢ General
¢ Members
¢ Member Of

¢ Managed By

On the General tab, you can change a group’s type, scope, and name, and even provide an e-mail
address for addressing mail to the group.

FIGURE 9.55

The General tab
of the Group

Properties window

CREATING GROUPS | 235

The properties on the other three tabs are fairly straightforward.
The Members tab, shown in Figure 9.56, lists those users and groups that are members of this group.

FIGURE 9.56

The Members tab
of the Group

Properties window

The Member Of tab, which you can see in Figure 9.57, lists the groups that this group is a member
of. (I've added the guest group as an example.)

FIGURE 9.57

The Member of
tab of the Group

Properties window

236

CHAPTER9 IMPLEMENTING YOUR DESIGN

Figure 9.58 shows the Managed By tab, which allows you to document who is responsible for
management of this group.

FIGURE 9.58

The Managed By
tab of the Group

Properties window

Creating Printers
There are two types of printers that you might create in your Windows 2000/ Windows Server 2003

environment:
¢ Those that are attached to Windows 2000/XP/Windows Server 2003 computers
& Those that are not

Since Windows 2000/ Windows Server 2003 is tully AD enabled, publishing a printer in the AD
database is as simple as creating a new printer. For printers attached to non—Windows 2000 /Win-
dows Server 2003 computers, use the Active Directory management tool to create a printer object.

Printers in Windows 2000/ Windows Server 2003

Printers are created on a Windows 2000 computer in the same manner that they are created in earlier ver-
sions of NT. There have, however, been a few interface changes in the Windows Server 2003 products.
Let’s start with a look at creating printers in Windows 2000. Access the Printers folder and double-click
the Add Printer icon. This will run the Add Printer Administrative Wizard. The wizard opens with a
Welcome screen. Clicking Next brings you to the first configuration window, in which you determine
whether you are adding a local printer or attaching to a printer across the network. If you are adding a
local printer, the next window, shown in Figure 9.59, asks you which port the printer is attached to.

CREATING PRINTERS | 237

FIGURE 9.59

Port selection

The next screen, which you can see in Figure 9.60, asks you to identify the make and model of
your printer. This ensures that the appropriate printer drivers are installed.

FIGURE 9.60

Choosing a printer
model

The next screen asks you to name the printer. After you have done that, you are asked if you want
to share the printer, and if so, what the shared printer should be named.

A new option for Windows 2000 Server (when compared to NT) appears in the next screen, shown
in Figure 9.61. Here you can add a few comments about the printer. These comments will be available

to users through an AD query.

238 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.61
Supplying a location

and comments

The rest of the Wizard is standard. It asks whether you want to print a test page and shows you a
review of the choices you have made. Clicking Finish on the last page completes the process.

Once the printer has been created, you can right-click it and access its properties. On the Sharing
tab, shown in Figure 9.62, you will see that the List in the Directory option is selected by default. In
other words, this printer will automatically be listed in the AD database.

FIGURE 9.62

Printer properties

CREATING PRINTERS | 239

Now let’s take a look at the process on Windows Server 2003. The first difference is that the
title of the group on the Start menu has changed from Printers to Printers and Faxes. (The inclu-
sion of a fax server service is a great addition to the core components of the operating system, but
it doesn't impact our topic, Active Directory. We'll concentrate on objects that are more central to
AD.) Take a look at Figure 9.63. Notice that the interface is much more useful—with a series of
collapsible menus in the right pane on the window. At the top of the list is a menu offering the var-
ious options available in the printer and fax group: adding a printer, accessing print server proper-
ties, and setting up faxing. Below that is a direct link to the printer section of the help and support
system (this is very handy when you are having trouble with your print environment), and below
that is a list of other system-related groups that you might need to access. At the very bottom is a
general description of the folder in which you are working. This new interface is common to most
of the system folders on your Start menu, and makes working with the operating system more con-
venient than ever!

FIGURE 9.63
The Printers and

Faxes group

Clicking the Add a Printer option brings up the obligatory Welcome screen for Microsoft wizards
(what I call the “Aren’t you glad you bought Microsoft?” dialog box). Clicking Next brings you to
your first choice, as shown in Figure 9.64. This is the same choice that is available in Windows 2000:
installing either a local printer or a printer attached to another computer.

240 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.64

Installing a local or
network printer

If you choose to install a network printer, the next screen determines which printer is chosen, either
by searching Active Directory, connecting to a printer by NetBIOS name, or connecting to a printer by
URL, as shown in Figure 9.65. In any event, once your choice is made, the wizard attempts to commu-
nicate with the print server supporting the printer. If this communication is successtul, you will have

added the printer.

FIGURE 9.65
Specifying a printer

If you are adding a local printer, the next screen, shown in Figure 9.66, asks you where the printer is
attached. Notice that it defaults to LPT1. The drop-down list, however, lists all of the available ports

on the local machine (as well as an option to print directly to a file).

CREATING PRINTERS | 241

FIGURE 9.66

Selecting a
printer port

If necessary, you can choose to create a new port for this printer. The drop-down list will vary,
depending upon which components you installed with the operating system, but by default it con-
tains the options to create a local port or a standard TCP/IP port. Since TCP/IP printing is very
common in today’s networks, let’s look at that option. This process is very simple; the only dialog
box, shown in Figure 9.67, asks you to provide the printer name or IP address of the print device.

FIGURE 9.67
Adding a
standard TCP/IP
printer port

From this point forward, the process is much like adding a printer in Windows 2000 (or 95 /98,
Me, or XP for that matter). You choose a driver, give the printer a name, decide if you want to share it,
add your comments, print a test page, and click Finish. The same properties exist for Windows 2000
as shown in Figure 9.62.

242

CHAPTER 9

IMPLEMENTING YOUR DESIGN

One great new feature in the Windows Server 2003 operating system is the change to the options
available in the Printers and Faxes window, once you highlight a printer. Look at Figure 9.68. Notice
that I've highlighted the printer that I just added. Look at the left pane of the window. The list of
options in the Printer Tasks menu has expanded to include common printer management tasks. Also
notice that the See Also menu now contains a link to the manufacturer’s website! This doesn’t seem
like a big deal, but is sure makes managing printers a lot more convenient.

FIGURE 9.68

Managing printers
and faxes

Non—-Windows 2000 Printers
To add to your directory any printers that are attached to computers not running Windows 2000,
you must use the Active Directory Users and Computers management tool. Before you begin, ensure
that the printer is properly configured on the host computer. Document the make, model, and name
of the printer for use in this process.

In the Active Directory Users and Computers tool, right-click the container in which you want
the printer created. Choose New and then Printer. You will be presented with the Create New
Object—Printer dialog box, as shown in Figure 9.69. Provide the UNC path to the printer, and you

are done!

CREATING OTHER OBJECTS

FIGURE 9.69

Creating a printer

in AD Manager

Creating Other Objects

While OUg, users, groups, and printers will be the mainstay of most directories, AD defines numerous
other types of objects: computers, contacts, shares, and more. Some of these object types are for special
use and beyond the scope of this book, but others will become an integral part of your environment as
you get more and more comfortable with Windows 2000 Server. As an introduction to some of the

other types of objects available, we'll take a look at the following classes:

¢ Computer
¢ Contact

¢ Shared folder

Creating each of these objects starts in the same way: in the Active Directory Users and Computers
tool, right-click the appropriate container, choose Properties > New, and then choose the class of
object you wish to create.

Computer Objects

A computer object is used to represent computers that have joined the domain. Creating a computer object
requires one screen, shown in Figure 9.70. Here you provide the computer name and the DNS name of
the host, and you identify the type of computer (Windows 2000 workstation, member server, or
domain controller). Notice the two check boxes at the bottom of the dialog box. The first option,
Allow Pre—Windows 2000 Computers to Use This Account, allows computers that are running legacy

243

244 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

operating systems to register themselves as the computer for which this account has been created. The
second option (which is available only in Windows Server 2003 operating systems) lets you control
whether the account can be utilized by an N'T BDC. This option is a great way to ensure that no new
NT servers are added to your environment. (Notice the default is that the check box is cleared.)

FIGURE 9.70

Creating a
computer object

Once you have created a computer object, you can configure the properties of the object by double-
clicking it. Figure 9.71 shows the tabs that are available for configuration in Windows 2000 / Windows
Server 2003.

FIGURE 9.71
Configuring a

computer object

CREATING OTHER OBJECTS | 245

Each tab represents a different type of information:

General This tab shows the information given during the creation of the device, names, and
roles.

Operating System This tab documents the name and version of the operating system running
on the machine, as well as any service packs that have been applied to the operating system.

Member Of This tab shows the ADS security groups of which this computer is a member.

Location This tab allows you to document the physical location of the computer—Tampa
Building 1, for instance.

Managed By This tab shows properties that describe who is responsible for this computer.

The Windows Server 2003 operating systems offer an additional tab, as shown in Figure 9.72.

The Dial-in tab is used to control whether this computer is allowed to utilize dial-in services.

FIGURE 9.72
Controlling dial-in

services in Windows

Server 2003

Contact Objects

A contact 1s an object designed to hold information about a person who is not a part of the local
forest. Users can then access this information using an LDAP-enabled tool. The creation process
involves providing first, last, and full names for the contact, as shown in Figure 9.73.

246 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

FIGURE 9.73

Establishing a new
contact object

Once created, the contact has numerous properties. The Properties page of a contact object is

shown in Figure 9.74.

FIGURE 9.74
Configuring a

contact object

Each tab represents a different type of information:

General This tab contains generic contact information such as names, phone numbers, and
e-mail addresses.

Address This tab shows the mailing address of the contact.

Telephones / Notes This tab lets you record more contact information.

CREATING OTHER OBJECTS | 247

Organization This tab shows title, department, and company information.

Member Of This tab shows the AD security group of which this contact is a member.

Share Objects

Share points can also be published through the AD database. Once the share has been created at the host
computer, you create a share object in AD. Configuring a share is just a matter of providing the UNC
path to the actual share point, as shown in Figure 9.75.

FIGURE 9.75

Creating a
share object

Share objects do not have a lot of properties, as you can see in Figure 9.70.

FIGURE 9.76
Configuring a

share object

248 |CHAPTERY9 IMPLEMENTING YOUR DESIGN

The most interesting property of a share object is the ability to create a list of keywords that can
later be used to find this share with an LDAP query, as shown in Figure 9.77.

FIGURE 9.77

Creating a keyword
list for a shared
folder

In Short

Instaﬂing and populating an Active Directory database is really just a matter of knowing where to
click. More important than the mechanics is a firm understanding of the design principles discussed
n Chapter 8 and the function of each object class, as discussed in this chapter.

Now that you have created your AD structure, the next step is to ensure that it is secure. In
Chapter 10, we will discuss the theory and techniques of securing an AD directory database.

Chapter 10

Creating a Secure Environment

SECURITY IS PROBABLY THE hottest topic in our industry today. Everywhere you turn, there
are stories about this leak or that hole; it seems that every operating system and every application
1s being compromised on a regular basis. It’s impossible to keep up with the service packs, hot
fixes, and suggested practices for all of the diverse environments in which we work; and when
you finally think you are ahead of the game, some 13-year-old kid finds another area of vulnera-
bility or writes a newer version of some destructive code. There are actuaﬂy “virus” kits available
on the Internet that make creating a sophisticated virus as easy as dragging and dropping!

Luckily, Windows 2000/ Windows Server 2003 was created, from the ground up, using the
latest in security enhancements. That is not to say, however, that it is inherently a secure operating
system. It certainly has the potential to be secure, but not without some careful consideration by
the person or group configuring the system.

Let me put this rumor to rest: Windows products have fared no better or worse than most of the
products released to the market in the recent past. Yet we seem to see an inordinately large number of
“Microsoft” security holes in every trade magazine. I was around when Novell was just taking off, and
T've worked with various flavors of Unix—heck, I even work with Linux. None of these products was
“perfect” upon release. Most provide security by either being so proprietary that it’s hard to develop
malicious code for them (Which means it’s also hard to write productive code for them) or by using
the same methods used by Microsoft: release, listen, patch.

The reason that more security issues are found in Microsoft products (When compared to other
vendor’s offerings) is quite simple: Microsoft owns a larger share of the overall market. Think about
it—if you were going to write a virus that would propagate through a network, which network oper-
ating system or product would you choose to attack? Linux with five percent of the market or NT
with S0 (or better) percent?

That’s not to say that Microsoft products are perfect, or that they are the “best” available. First,
nothing’s perfect. I had a college professor who said, “There’s no such thing as perfect code, only code
that hasn't experienced the unique set of circumstances necessary to break it.” Second, the term “best”
is open to interpretation; too much depends upon the use to which a product will be put to be able to
define “best” in any simple manner.

250

CHAPTER 10 CREATING A SECURE ENVIRONMENT

No matter what the “experts” say, there is no way (short of taking a bunker approach and cutting
yourself off from the world) to stop a determined and professional attack on your system. You can,
however, slow it down. That’s the secret to most successful security implementations; they place
enough roadblocks in the way of an attack that they can discourage the amateurs and slow down the
professionals.

The focus of this book is Active Directory, with the specific goals of helping you understand how
AD works, how to install and configure it, and how to use it to your advantage. Given the tight integra-
tion of AD into all aspects of the Windows 2000/ Windows Server 2003 networking environment,
however, our discussion of security will need to include some non-AD topics. We'll touch upon the
fundamental security components of all Microsoft networking operating systems since the first versions
of NT; we'll discuss the difference between rights and permissions; we'll talk about permissions within
the AD structure; we'll look at the proper uses of group, user, and computer objects; we'll analyze the
default objects in AD; and we’ll talk about delegating administrative privileges. Lastly, we'll discuss the
various ways to authenticate to an AD environment.

The first question you might ask is, why bother with securing the AD database? After all, most of
the information stored within the AD directory database is specifically designed to be for public con-
sumption: things like telephone numbers, departments, and company names. There are, however, cer-
tain attributes of objects that you might not want to be published to the world at large. A user object,
for instance, has certain properties that could be considered confidential (depending upon the types
of data you store). For example, in some companies the human resources department uses “job titles”
to describe employees’ salary ranges. In such a case, federal, state, or local legislation might mandate
that salary information (and thus the data in AD) be kept confidential.

One way to avoid this problem is to ignore the title attribute of all user accounts—after all, if
the information is not there, it most certainly is not at risk of disclosure. Another way to approach
this issue is to secure the title attribute so that only members of the appropriate groups can see this
information.

Another issue, one that we touched upon earlier, is that of delegating administrative privileges.
The ability to limit administrative capabilities is one of the most important security features of
Active Directory. We'll revisit this topic in this chapter, not so much for new information as to
drive home the concepts presented earlier.

NOTE Although this is not one of those “test preparation” manuals, if you are considering chasing your Microsoft Certified
System Engineer (MCSE) certificate, you should understand the concept of administrative delegation inside and out!
Microsoft is pushing this feature very hard—and they are known for testing on the features that they are most proud of.

We'll begin this chapter, though, with a discussion of the basics of security. While most of the
Windows 2000 Server security features work the same as they did in NT 4, there are a few subtle
differences, as well as a few new features pertaining to Active Directory.

When you are done with this chapter, I hope to have given you enough of a grounding in security
so that you can design and implement a secure Active Directory—based network. Be aware, though, that
security does not end with AD, nor does it end at your server. Security is one of those topics that must
(if it is to be effective) include every aspect of your business, from the servers to the routers, from

SECURITY COMPONENTS | 251

controlling hard copy output to training your users in dealing with questions on the phone. This
chapter should only be a small part of your research into securing your network!
In this chapter:

#® Security components: SIDs, ACLs, ownership, and trust relationships
@ Permissions

¢ Authentication security: Kerberos, public-key, and certificates

Security Components

The security systems in use in the Windows 2000/ Windows Server 2003 products are, in most
respects, the same as those that were used in Windows NT. NT, in turn, followed a security model
that was created in the ’60s for mainframe environments. Because this model is a mature technol-
ogy, we can rest assured that Windows 2000/ Windows Server 2003 security is stable and well sup-
ported in the industry. This does not mean, however, that it is intuitive or simplistic. Security can be
extremely complex, but that is the price we usually pay for sophisticated and powerful systems.
You must understand two main concepts to fully appreciate the strengths (and weaknesses) of

Microsoft security:

¢ System identifiers (SIDs)
@ Access Control Lists (ACLs)

SIDs and ACLs work together to provide security for the resources on your network. We'll look at
each in turn.

System Identifiers (SIDs)
As each object is created in the directory database, it is assigned a unique value known as its SID. The
SID is used by internal operations to identify that object when it attempts to access some resource.

NOTE For our purposes, we will limit our discussion to the use of SIDs for user and group objerts, but you should be
aware that every object in the tree bas a unique identy‘ier assigned to it.

Any discussion of how SIDs are used starts with the Iogon process. As a Windows 2000/ Windows
Server 2003 computer boots, a series of processes starts. One of these processes is the NETLOGON
process. Among its tasks, the NETLOGON process is responsible for the act of “logging on” (hence
the name) to the network.

The NETLOGON process, Working in conjunction with a few other components, opens a secure
communication channel to a domain controller. The user provides a username and password, and is
either granted or denied access to the network. If the user is granted access, the domain controller
will gather together the user’s SID and the SIDs of all groups that the user is a member of. These

SIDs are placed in an access token and sent back to the user, as shown in Figure 10.1.

252 |CHAPTER 10 CREATING A SECURE ENVIRONMENT

FIGURE 10.1
Acquiring the

access token

Active Directory Database

Tom-SID : 123
Member of: Acct
== Managers
1S|2%Sxyz Domain Montana
ABd, DE!F Controller
Acct SID = xyz

Managers SID = ABC

Montana SID= DEF

NOTE Many people picture the access token as a set of keys. Each key opens a different aspect of some network resource.
If you attempt to read a file and you have the “read key” for that file, for example, you will be granted access.

The system identifier is only half the story. For it to have any value, there must be a mechanism
for connecting SIDs to resources. That mechanism is the Access Control List.

Access Control List (ACL)

The record for each object in the directory database (as well as the file system) has a header known as
the security desmptor. The security descriptor defines the access permissions that have been granted to the
object. To be more specific, the security descriptor contains:

& The SID of the owner of the object
¢ A group SID (used only by the POSIX subsystem and Services for Macintosh)
¢ Two Access Control Lists

You can see the contents of a security descriptor in Figure 10.2. The object being granted rights
is known as the security prinfipal. Security principals recetve rights Of Permissions.

SECURITY COMPONENTS | 253

FIGURE 10.2 Security Descriptor

Security descriptors for a Container Object

Access Gontrol Entries

Owner SID Grant Owner Full Control
Group SID Grant World List
Discretionary AGL Grant Joe Create Child
System ACL

The Discretionary Access Control List (DACL) contains the SIDs of objects that have been granted
permissions to the object and the specific permissions granted. The objects within the DACL are
referred to as access control entries (ACEs). All permissions and rights are assigned through ACEs. The
System Access Control List (SACL) contains systemwide policies, such as the settings for auditing. As
such, it is not reaﬂy relevant to our discussion.

ACCESS CONTROL ENTRIES
Access control entries are part of the DACL and are designed to protect the object. There are many
levels of ACEs available:

Object Class You might set an ACE for every instance of a class of object in the tree. You
might, for example, want to create an ACE that allows your help desk personnel to change user
passwords.

Object You can create ACEs that apply only to a specific object in the tree. You might, for
instance, want to protect a particular application object from being tampered with.

Object Properties You can also protect specific attributes of an object. For example, you might
want to limit the anonymous user account’s ability to view the configuration parameters of your
e-mail server.

This combination of abilities lets administrators get as granular as they want in their management
practices. You can make assignments that are sweeping in nature (affecting large numbers of objects,
such as all user objects), more controlled (such as the ability to read and write to all properties for a
specific printer), or very specific (such as the ability to read all properties of user Joe except his title

property).

254

CHAPTER 10 CREATING A SECURE ENVIRONMENT

APPLYING ACES TO A REQUEST FOR ACCESS

ACE:s are applied to requests in the same manner in which ACEs are applied to requests in the NTES
file system (both the newest version that ships with Windows 2000/ Windows Server 2003 and earlier
versions). We'll look at a standard request first and then at the exception that makes the rule.

In a standard request, a user—Tom, for instance—wants to change the value of the telephone number

property of user Susan. Tom’s computer will send his request, along with his access token, to the Active
Directory server, as shown in Figure 10.3.

FIGURE 10.3
Request for

| need to
change Susan's
telephone number.

information

ﬁ

|

=
AD Server

The AD server finds Susan’s object and compares the SIDs in Tom's access token with the SIDs in
Susan’s DACL. You can see this in Figure 10.4.

FIGURE 10.4 Tom's Access Token
Authenticating Susan's DACL
_—
A request Compare SIDS
SIDS Permissions
Tom'sSID = 123
WorldSID = ABC
ABC Read All
Everyone's SID = BCD
DEF Write All
Managers SID = DEF

SECURITY COMPONENTS | 255

AD will search for a matching SID that allows Tom to change the attribute in question. If a match is
found, Tom can make the change. If not, Tom’s request will be denied. Note, though, that the system will
stop searching once a relevant match is found. It doesn't look for all of the records that might affect Tom,
only the first ACE that will have an effect on this request. This point becomes important a little later in
our discussion.

There is one exception to the statement “AD will search for a matching SID.” If the access token
contains a SID for an object that has been granted the Deny Access permission, the object will be
denied access. Notice the blank space at the beginning of Susan’s DACL in Figure 10.4. All Deny
Access permissions are placed at the beginning of the DACL. Let’s change the scenario a bit and see
what happens. Tom will still be a member of the Managers group, but we'll also make him a member
of the Security Problems group. (Either Tom is a manager who knows just enough to be dangerous or
his position is such that he shouldn’t be granted excessive permissions.) In Figure 10.5, the graphic has
been updated to reflect this small change.

FIGURE 10.5 Tom's Access Token
D:r?rynifgfs —_— Susan's DACL
P Compare SIDS
SIDS Permissions
Tom'sSID = 123 234 Deny Access
World SID = ABC
ABC Read All
Everyone's SID = BCD £d
DEF Write All
Managers SID = DEF
Security Problems SID = 234

Figure 10.5 shows the Deny Access permission at the top of the DACL. When the comparison is
made, ADS will see that Tom is a member of a group that has been denied access. Even though Tom
is a member of another group with the appropriate permissions, his request will be denied. ADS will
search no further once it finds a Deny Access permission.

The bottom line here is that the system will work its way through the SIDs in the ACL, looking
for an entry that should be applied to Tom’s request—either an explicit “deny” or a record allowing
him to perform the requested action. As soon as it finds a match, it stops looking. Since all denies are
at the beginning of the list, any deny associated with Tom will be found first, effectively ending the
process.

Ownership

Every object in the AD database has an owner. The person who creates an object becomes the owner
of that object. The owner has complete control over an object. The owner has the ability to control
how permissions are set for an object and to whom permissions are granted. In short, ownership of
an object delegates administrative responsibility of that object to the listed owner.

256

CHAPTER 10 CREATING A SECURE ENVIRONMENT

If a member of the Domain Administrators group creates an object, the group (rather than the
individual) is listed as its owner. Members of the Domain Administrators group also have the ability
to take ownership of any object within their domain.

Taking ownership of an object is as simple as right-clicking the object in Active Directory Users
and Computers, choosing Properties, choosing the Security tab, and then clicking Take Ownership.

From a security perspective, it is important to note that anyone with the Take Ownership permission
can assume ownership (and thus all permissions) to an object. Controlling who has the Take Ownership
permission is critical to an effective security strategy. Also note that members of the Domain Adminis-
trators group can always take ownership of any object within their domain.

Also important is that fact that ownership can be taken, but not given. Say, for instance, that a mali-
cious administrator wants to look at the contents of a file to which they have been denied access. That
administrator can easily take ownership of the file and then peruse its contents. They cannot, however,
change the ownership back to the original owner—jyou can take, but you cannot give! In the event that
the administrator’s actions are noted, it will be easy to see that ownership has been changed. (Of course,
you still won't know which administrator was to blame since the Administrators group will be listed as
the owner; that's where auditing comes in handy.)

Trust Relationships
As we discussed in Chapter 3, two-way transitive trusts are created between each domain in an AD
tree and its parent domain. When we extend our view to a forest environment, the same type of
trust is automatically established between the root domains of all the trees within the forest. This
mechanism allows users to be granted permissions and rights throughout the entire structure, with-
out forcing administrators to be concerned with the various trust relationships necessary. All in all,
this is a great process. Trusts, in and of themselves, do not grant permissions or rights; they only
create a connection so that these assignments can be made. We also discussed the creation of special
trusts in Chapter 8—shortcut trusts to reduce the number of domain controllers involved in con-
necting to a resource in another domain within the forest, and external trusts to establish a relation-
ship with a foreign environment (another forest or a legacy NT 4 domain). Once again, these types
of trusts are convenient mechanisms used to facilitate the sharing of resources, but they do not grant
permissions or rights.

What we didn’t cover in Chapter 8 are the mechanics of managing trusts: how do we modify the
defaults, how do we create shortcut or external trusts, and what are some of the security issues that
must be considered? We'll discuss those mechanics now.

SECURITY ISSUES

As I've said before, and I want to stress again, trusts, in and of themselves, do not constitute much of a
security threat. They do not inherently give users permissions nor do they grant any types of rights. They
do, however, create a path, or connection, over which those actions can be taken. From a security perspec-
tive, controlling who has the ability to grant those privileges becomes the critical key to creating a secure
environment

It goes without saying that controlling membership in those groups that have administrative privileges
is important. I've actually seen environments in which every user was made a member of the Domain

SECURITY COMPONENTS

Admins group, because it was “easier.” If that sounds like an acceptable strategy for your network, then
you might as well skip this chapter (and any other reference manual that uses the word security within its
pages!). In particular, watch membership in both the Domain Admins and Enterprise Admins groups,
although only membership in the Domain Admins group is necessary to begin the process of creating a
trust relationship. I said “begin the process” because it takes membership in the Domain Admins grou

p g P p group
of both domains to complete the process.

MANAGING TRUSTS

Let’s start with the basics—where do we go to confirm the current trust relationships in our envi-
ronment? In the Administrative Tools group, open the Active Directory Domains and Trusts tool.
Right-click the domain you are interested in and choose Properties. On the Trusts tab is a list of
all trusts in which the domain is included, as shown in Figure 10.6.

FIGURE 10.6

Domain trusts

Any changes to the trust environment for the domain are accomplished from this dialog box. The
figures in this section were created using a Windows Server 2003, but the principle is the same in
‘Windows 2000.

To delete a trust, highlight the trust you wish to delete and click the Remove button. You will see the
dialog box shown in Figure 10.7. Here you decide whether to remove only the local side of the trust or
to remove both sides. As the dialog box states, you must have administrative privileges in both domains to
perform the latter choice. (Notice that you can identify an administrative account on the other domain
during the process.) You will be presented with one more dialog box—the obligatory “Are you sure you
want to remove the ... ?” one—click Yes to continue.

258

CHAPTER 10 CREATING A SECURE ENVIRONMENT

FIGURE 10.7

Removing a trust

To create a trust, use the Active Directory and Trusts utility. You'll have the following four options:
¢ Create a trust with another domain in the same forest or in another forest.

¢ Create a trust with an NT 4.0 domain.

¢ Create a trust with another Kerberos v5 environment (known as a realm).

¢ Create a trust with another AD forest.

The process is identical for each of the options; the design implications, however, are quite different.
First let’s look at the mechanics, and then we'll discuss the reasoning behind each of the four choices.
Follow these steps:

1. Right-click the appropriate domain, choose Properties, and select the Trusts tab. Click the
New Trust button to start the New Trust Wizard. The first window is the mandatory “Wel-
come” screen, shown in Figure 10.8, which reviews your four options.

FIGURE 10.8

The New Trust
Wizard

SECURITY COMPONENTS | 259

2. After the Welcome screen, you are asked to identify the domain, realm, or forest to which you
wish to create a trust relationship. As shown in Figure 10.9, you can enter the NetBIOS name
or DNS name of the target. To create a trust to a forest, you must use the DNS name.

FIGURE 10.9

Entering a
trust name

3. Once you have identified the target, you must determine the scope of the relationship. Should
it be a two-way trust, one-way in which the target domain trusts your domain (your users can
be granted permissions to resources in the target domain), or one-way in which your domain
trusts the target domain (their users can be granted permissions to resources in your domain)?
You can see these choices in Figure 10.10.

FIGURE 10.10

Choosing the
direction of the
trust

260 |CHAPTER10 CREATING A SECURE ENVIRONMENT

4. In the next dialog box, shown in Figure 10.11, you can create both sides of a two-way trust, if

you have the appropriate permissions. If not, the administrator of the target domain will have
to configure that end of the relationship.

FIGURE 10.11

Creating both sides
of the trust

5. Next you must choose a password for this trust, as shown in Figure 10.12. If the administrator
of the target domain is going to conﬁgure the other side of the relationship, they will have to
enter the same password. Even if you are conﬁguring both sides, you must still choose a pass-
word for the trust. Active Directory modifies this password autornaticaﬂy ona regular basis.
This password is then used as part of the authentication process between the domains.

FIGURE 10.12

Setting the trust
password

SECURITY COMPONENTS | 261

6. Finally, you review a summary of the choices you have made (shown in Figure 10.13). Read
this carefully as it describes the results of the selections. This is a great way to ensure that you
didn't inadvertently create a trust in the wrong direction!

FIGURE 10.13

Reviewing your
trust selections

Now that you know where to click, let’s take a look at the issues you must consider when creating
the four different kinds of relationships.

Creating a Trust with Another Domain in the Same Forest or in Another Forest
From both an administrative and an AD perspective, these two options are functionally identical. In
the overall design process, however, they are used for quite different purposes.

You create an explicit trust between two domains within the same AD forest as a tool to reduce the
number of servers that will be impacted by users in one domain accessing resources in another. As you
may recall, when a user attempts to access a resource in another domain, multiple domain controllers
can be involved in the pass-through authentication process. To sum it up, the user submits their request
to a domain controller within their own domain. This domain controller looks at the distinguished
name of the resource and determines if it exists in a domain that is below it in the AD structure, above
it in the structure, or on a completely different branch of the AD tree. As an example, let’s look at user
Bob, whose distinguished name is CN=Bob,0U=Sales, DC=Farmington,DC=Royal Tech, DC=com as
he tries to access a shared resource named CN=Resource, OU=Education,DC=Tampa,DC=Royal-
Tech,DC=com.

Looking at the two names, you can see that both objects exist in the same AD tree (whose root
domain is named royal-tech.com). They are located, however, in different domains—Bob exists
in the Farmington domain, and the resource exists in the Tampa domain. Whatever domain con-
troller Bob submits his request to will look at the names and realize that both objects are under
the royal-tech.com domain. The request will be passed from Bob’s domain controller to a domain
controller in the royal-tech.com domain. From there it will be passed to a domain controller in

262

CHAPTER 10 CREATING A SECURE ENVIRONMENT

the Tampa domain. This final domain controller will trust that the preceding domain controllers
have authenticated Bob, and it will check Bob’s access permissions (and those of groups to which
Bob belongs) to determine if he has the appropriate permissions necessary to access the resource.
In this small example, the request is processed by at least three domain controllers. In a larger AD
structure (one with more domains), the request might be processed by numerous domain controllers.

To avoid the overhead of the pass-through process, an explicit trust can be created between the Tampa
and the Farmington domains. Bob’s domain controller will then have a direct path to a domain controller
in the Tampa domain, avoiding the pass-through path completely.

Creating a trust between two domains that are located within different AD forests has a completely
different function. This can be seen as an “extranet” connection, and it is usually implemented to grant
permissions to external entities (perhaps a vendor or another independent business unit within your
parent company). The trust created works exactly like the nontransitive trusts in Microsoft NT 4.0.
The bottom line here is that one domain will trust accounts from another, even though they are located
in different forests.

I've always found this second option (creating trusts between domains from different forests) to
have more security issues than business benefits. In most cases I will look for another technology
before creating this type of trust. The bottom line is that some external users need access to your
internal resources. I will often suggest a dedicated web server, utilizing server and client certificates
to control access. Using a web-based solution allows me to grant access without having to trust the
IT staff in control of the other forest.

Creating a Trust with an NT 4.0 Domain

Many companies move to Windows 2000 and Active Directory from an existing Windows NT
environment. In most cases the upgrade is planned as a gradual process, both to spread out the
costs involved and to limit the tmpact of any unforeseen problems‘ There have also been reports
of server-based applications that do not migrate well to the Windows 2000 operating systems (in
my experience, these applications have almost always been custom programs written by the in-
house development staf@. In any event, if you have a mixed environment of Windows 2000 and
Windows NT domains, you will probably want to create a trust between those two environments.
As we've seen, the process is straightforward. There are no real issues involved—except, perhaps,
that you will become disenchanted with the management capabilities of NT once you start Working

with Windows 2000.

Creating a Trust to Another Kerberos v5 Realm

While Microsoft’s implementation of the Kerberos authentication process is compliant with the indus-
try standards—specifically, Microsoft wrote their implementation to RFC 1510—it is not exactly easy
to implement. If you are looking for some in-depth information about Kerberos, RFC 1510 has a lot
of interesting information; unfortunately, it is also a great cure for insomnia. Luckily, most administra-
tors will never need to create a trust between Windows 2000 and a foreign Kerberos implementation.
Even in the unlikely event that you are forced to create such a trust, you can accomplish this task with-
out having a deep understanding of the underlying protocols. Let’s go over the basics—enough to
understand the process, but not enough to put you to sleep!

PERMISSIONS

A Kerberos environment is often referred to as a realm. The Kerberos realm acts, in many ways,
much like a Windows domain. Users belong to a realm, applications and services use the Kerberos
services of a realm for authentication, and users are “known” (or have a unique identity) within a
realm.

A trust can be created between a Windows 2000 domain and any standards-based Kerberos realm.
The mechanics of the process differ depending upon the needs of the foreign operating system. The
bottom line is that either or both environments can be configured to trust the session tickets generated

by the other.

Creating a Trust with Another AD Forest

There is a new option available in the Windows Server 2003 product line: the creation of a transitive
trust between domains within two different AD forests. In earlier releases of Active Directory, trusts
between domains in different forests were, by definition, nontransitive trusts to a foreign environment.
These trusts worked exactly the same as Windows NT 4.0 trusts. With the release of the Windows

Server 2003 environment, two AD forests can be tied together with a transitive trust between any two

domains. In effect, this creates a large structure in which users can be granted permissions to resources
n any domain in either forest. Because of the potential scope of this type of trust relationship, you
must be very sure of the nature of the relationship before creating this type of trust! Since the trust
will tmpact all domains in both forests, convention is to create the trust between the root domains,

tying the two (or more) forests together at their roots.

Why, you might ask, would I want to tie two forests together in this manner? Isn't the whole point
of creating separate forests to limit the administrative or user crossover between the environments?
Remember: we create trees to support multiple namespaces, and forests to create separate entities.

Microsoft’s marketing department sells this idea on, what I consider to be, a siﬂy premise. They sug-
gest that you might want to tie together your AD forest with the AD forests of your business partners,
such as vendors or customers. This would allow you to share resources with these foreign environments,
Personaﬂy, I believe this to be rather risky. I don't trust the IT department of my customers (or ven-
dors) enough to want to do this! There is, however, a plausible reason for this capability‘

Remember that all of the trees (and hence the domains) within a forest share two things: a com-
mon schema and a common Global Catalog. You might create multiple forests within your company
to limit the size of the Global Catalog or to reduce the impact of schema modifications. Doing this,
however, has always limited the ability to share resources—you were forced to manage trusts between
the forests as if you were still running Windows N'T. Now you can create the single trust between the
forests, share your resources across the environments, and even delegate administrative privileges but
still control the Global Catalog and the scope of schema changes.

Permissions

If you think about it, the list of actions you might want to take regarding any given type of network
resource is pretty limited. Let’s say, for instance, that you have a file (your resume, perhaps) located
on a network server. You, of course, want to be able to do anything to your file; after all, it’s yours,
isn't it? (Let’s ignore the legal side of this question: if you place it on a company server, is it really
still yours?) There are other people, though, who might need to take certain actions with regard to
your resume,

263

264

CHAPTER 10 CREATING A SECURE ENVIRONMENT

You might ask your buddy in human resources to look your resume over and, based upon her
expertise, make a few adjustments to increase its effectiveness. You might also want your good friend
in sales to look it over—he meets with a lot of clients, maybe someone will mention an opening that
matches your qualifications. There’s your friend in marketing who volunteered to redo your resume in
PageMaker, punching up its appearance. Lastly, your current boss might be a little perturbed to find
your (freshly updated) resume being circulated; you want to make sure that she can't even see the file
in the folder.

Each of these actions—to see that your resume exists, to look at its contents, to correct or add
to it, and even to copy it into another format—can be controlled through NTES file permissions.
Permissions control the actions you can take upon a resource. Active Directory includes its own
set of permissions that control the actions you can take upon objects and their attributes within
the AD database.

Microsoft uses two terms in its security descriptions that can be unclear, especially to anyone coming
from a Novell background. Novell calls the controls listed above rights, as in you have certain rights to
perform actions on a resource. Microsoft, as I've already indicated, calls these permissions. Unfortunately,
Microsoft uses the word rights to describe another set of security functions, and this is where the confu-
sion begins. To set matters straight: In a Microsoft world, the term rights refers to the ability to perform
system-related actions (things like login, changing the time or date, or even downing the server). The
word permissions refers to the ability to access and/or change static network resources (AD objects or
files).

For our discussion, we'll concentrate on the permissions available within the AD database. This
becomes a tricky subject because Microsoft has gone to great pains to make this function as straight-
forward as possible—and when Microsoft tries to make something “simple,” the results are often
confusing. Securing the contents of a complex directory services database can be a daunting project;
there are numerous types of records (objects), each record has various types of fields (attributes), and
we really want the ability to control each aspect in a granular manner if necessary. (You might, for
instance, want to allow your help desk personnel the ability to change passwords but not any other
aspect of user objects.) Since each object class differs in its attributes, the security options available
must also be different—in other words, the list of available “permissions” will vary from object class
to object class. Talk about your convoluted environment! The more object classes that are added to
the AD schema (remember, the schema can be extended to include new classes and attributes), the
more security options you will have available.

You must also understand the difference between assigning permissions to manage the object as
opposed to managing specific attributes of the object. Some permissions affect the overall object. You
might, for instance, want your help desk to be able to look at or change all of the attributes of a user. In
this case, you could assign the help desk users the Read permission to the object, thus allowing them to
read all information (including attributes) about the user. On the other hand, you might want to limit
your help desk personnel to certain attributes—the address, phone numbers, and group membership
attributes, for instance—but not allow them access to any other information. In this case, you would
assign them permissions to the specific attributes you want them to either see or change.

At this point, you are probably wondering if a career in I'T is really the best choice you can make.
Rest easy; it is actually easier to do than to describe! The best way to get a handle on this is to see it
in action, so I'll be making liberal use of screen captures from this point on!

PERMISSIONS | 265

In an effort to reduce the confusion (an effort that is partially successful), Microsoft gives us
two views of security: a view based upon overall functionality and a granular view. The easiest way
to discuss the difference between the two is to take a look at a couple of screen captures—one of
each view. Our example will use a user object—the list of security options (permissions) will be
different for other classes of objects.

First we'll look at the functionality view. Figure 10.14 shows the contents of the Security tab of a
user’s Properties pages. As you can see, the list of permissions scrolls out of the dialog box.

FIGURE 10.14
Security page for

user objects

Tables 10.1 and 10.2 list the permissions available for a user object (with a default installation
of the schema—remember, this list might change if you have extended the schema manuaﬂy or
through the installation of an application). They also provide a short description of what each
permission allows (Where the name does not adequateiy describe its purpose).

TABLE 10.1: GENERAL PERMISSIONS AVAILABLE FOR A USER OBJECT

PERMISSION DESCRIPTION

Full Control Just what the name implies: a combination of all the other permissions.

Read Allows the viewing of all attributes of the user object (see the address or phone
number).

Write Allows the ability to write to the attributes of an object (change the address or
phone number).

Continued on next page

266

CHAPTER 10 CREATING A SECURE ENVIRONMENT

TABLE 10.1: GENERAL PERMISSIONS AVAILABLE FOR A USER OBJECT (continued)

PERMISSION
Create All Child Objects

Delete All Child Objects

Change Password

Receive As

Reset Password

Send As

DESCRIPTION
Allows the ability to create AD objects below this object in the AD tree.

Allows the ability to delete AD objects below this object in the AD tree.

In most environments, users have this permission to their own user object. It
allows them to change their own password, but does request that they enter the
old password before allowing the change.

Applies to Microsoft Exchange environments. It allows the user to receive mail
as a given mailbox. In other words, the user assigned this permission can receive
mail addressed to the user account.

Grants the ability to change a user’s password without knowing the original
password. (This is often assigned to help desk personnel so that they can change
passwords for those users who forget theirs.)

An Exchange mail attribute; allows the recipient to send mail as if they were this
user. (An administrative assistant, for instance, could send mail with the name
of their boss in the From field.)

TABLE 10.2: PERMISSIONS THAT ALLOW FOR THE VIEWING OR CHANGING OF SPECIFIC TYPES OF
INFORMATION ON A USER ACCOUNT

PERMISSION

Read Account Restrictions
Write Account Restrictions
Read General Information
Write General Information
Read Group Membership
Write Group Membership
Read Logon Information
Write Logon Information
Read Personal Information
Write Personal Information
Read Phone and Mail Options
Write Phone and Mail Options

Read Public Information

DESCRIPTION
Self explanatory.

Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.

Self explanatory.

Continued on next page

PERMISSIONS | 267

TABLE 10.2: PERMISSIONS THAT ALLOW FOR THE VIEWING OR CHANGING OF SPECIFIC TYPES OF
INFORMATION ON A USER ACCOUNT (continued)

PERMISSION DESCRIPTION

Write Public Information Self explanatory.

Read Remote Access Information Self explanatory.

Write Remote Access Information Self explanatory.

Read Web Information Self explanatory.

Write Web Information Self explanatory.

Special Permissions This option is used if none of the above choices provides

the degree of control you desire. (This is our next topic.)

The lists of permissions in Tables 10.1 and 10.2 are really just the tip of the iceberg! In reality,
these are not the “permissions” at all; these “tasks” are really combinations of the real permissions
that are necessary to perform common administrative functions. As an example, think about the
Read Phone and Mail Options permission. This option gives you a single place to click to grant
someone (perhaps someone in human resources) the ability to look at (but not change—that’s the
Write permission) the information entered in all of the phone and mail attributes. You could, how-
ever, be more specific. Perhaps your human resources personnel are not supposed to look at mail-
related information. In this case, you would have to utilize the Special Information option to grant
more granular permissions.

The special permissions option is accessed by clicking on the Advanced button. This opens the
Advanced Security Settings dialog box shown in Figure 10.15.

FIGURE 10.15

Advanced security
options

268 |CHAPTER 10 CREATING A SECURE ENVIRONMENT

Click the Add button and choose the appropriate user to grant the permissions to. This opens the
Permission Entry for <User> dialog box, as shown in Figure 10.16.

FIGURE 10.16

Granting object
permissions

Here is where things can get a little confusing. For some reason, most documentation for directory
services (whether it be Active Directory, Novell Directory Services, or whatever) use similar terms at
this point in the process. Look at Figure 10.16 again. Take note of the two tabs available in this dialog
box: Object and Properties. As we'll see, these two tabs refer to: (1) management of objects as they exist
in the AD tree, what I call “Tree Management,” and (2) management of the properties of the object,
what I call “Object Managernent." For me, the two terms “Tree Management" and “Object Manage-
ment” make more sense—although be aware that they are my own terms and are not found in any
Microsoft documentation. Let’s look at what I mean.

The Object tab of the Permission Entry dialog box (for a user object) includes the following

permissions, as shown in Table 10.3.

TABLE 10.3: OBJECT PERMISSIONS

PERMISSION DESCRIPTION
Full Control Just what the name implies—a combination of all the other permissions.
List Contents This allows you to view any objects that are subordinate to the object

within the hierarchical structure of the database.

Continued on next page

PERMISSIONS

TABLE 10.3: OBJECT PERMISSIONS (continued)

PERMISSION
Read All Properties

Write All Properties
Delete
Delete Subtree

Read Permissions

Modify Permissions

Modify Owner
All Extended Rights

Create All Child Objects

Delete All Child Objects
Change Password
Receive As

Reset Password

Send As

DESCRIPTION

Read (and Write below) allows you to quickly give sweeping
administrative powers, without having to check every single
property. Both properties are available for every class of object
within AD.

See above.
Self explanatory.
Allows you to delete this object and everything below it in the AD tree.

Allows you to see the contents of the ACL for this object (basically the
information shown in Figures 10.14, 10.15, and 10.16).

You can only grant permissions equal to what you have been granted.
In other words, if 1 am given the Read All Properties and Modify
Permissions properties, | cannot grant another user the Write All
Properties permission.

This permission allows you to take ownership of the object.
Self explanatory.

Create any class of object that can exist under this object within the AD
tree structure.

Self explanatory.
Self explanatory.
Self explanatory.
Self explanatory.

Self explanatory.

As you can see, most of the permissions on the Object tab refer to managing the object within the

AD structure—create, delete, permissions, ownership. A few permissions refer to properties (read all,

write all, reset password, etc.), but they are mostly just common administrative tasks placed here for

convenience.

The Properties tab, shown in Figure 10.17, lists each and every property of the object, and it

allows you to set permissions on each. That list includes over 225 properties for the user class of

object on a default installation of Active Directory (remember: certain applications will extend the

schema to include new object classes and properties). In other words, if you want you can spend

your entire life taking eXtremely granular control over your AD environment!

270 |CHAPTER 10 CREATING A SECURE ENVIRONMENT

FIGURE 10.17
The extensive
Properties tab for
the user object

Unlike the permissions listed on the Object tab, I'm not going to build a table with all of the prop-
erties of the user class of object. First, the list is way too long, and second, the list is only pertinent to
user objects. Youd have to memorize a different list for every class of object. There are, however, a few
things you should note about this list:

¢ Every manageable property of the object class is listed. If you want to control access to a
specific property, you can do so.

¢ Permissions are matched: read and write. You can grant someone the ability to read the value
of any property without giving them the ability to change it.

¢ You can control the scope of the assignment with the Apply Onto drop-down list. (We'll

discuss this list next!)

The Apply Onto drop-down list lets you control how much of your AD tree is included when you
grant administrative permissions. Look at Figure 10.18; it lists the objects that will be affected by your
action. Notice that it defaults to applying this permission to the object and everything below it in the
AD tree. Microsoft does not expect you to control every property of every object individually. You can
apply your assignment to this object and everything below it, to this object only, or to every instance of
a particular object class. This last option comes in real handy. You might, for instance, want to grant
your human resources department the permissions necessary to update the phone and address informa-
tion of all users. We'll look at some specific uses of these tools a little later in this section.

PERMISSIONS

FIGURE 10.18
The Apply Onto
list lets you control
the scope of the
permissions
assignment.

Real-World Implementations
So now that we've looked at the security system on a theoretical level, let’s switch gears and apply
what we've seen to a few real-world scenarios. I've always believed that a security system is only as
good as you make it—the most sophisticated system on the market isn't worth anything unless you
can use it to your advantage.

Before we start, though, let’s talk about a real-world approach to security. I follow a few rules and
guidelines when Working with my clients:

Ensure that you have indeed secured that which you want to protect. Don't rely upon your “theory;”
audit resources to ensure compliance. Implementation doesn’t mean much if you don't test
your process beforehand and monitor its success in the long run.

Security has a cost; spend your resources wisely. I've had many an argument with technologists who
always want the “best” or “most secure” solutions. In reality, you should implement a level of
security that meets both the needs and budget of your environment.

If curiosity kills the cat, complexity kills the administrator. 1f your security plan 1s SO complex that

you can't keep track of it, it will fall apart sooner or later. I firmly believe in the KISS system:
Keep It Simple and Secure. (You might have your own definition for KISS, but I didn’t want

to offend anyone.)

Less is better. This guideline has a lot of meanings:

& Users should be granted the minimum set of permissions necessary to perform their
j ob—nothing more!

271

272

CHAPTER 10 CREATING A SECURE ENVIRONMENT

& Security should be implemented with the least number of actions (in other words, the fewer
times you have to grant permissions, the better—use group objects so that a permission is
granted once, rather than granting the permission to each individual user object).

¢ The lower the number of administrators over any given set of resources, the better (too
many cooks spoil the broth, and make it harder to keep track of who can do what, and
where).

Fewer domains (usually) means fewer headaches.
Fewer Group Policies (usually) means easier management.

¢ And the more controversial meaning: fewer freedoms mean fewer help desk calls (lock em
down as much as possible).

NOTE My “Less Is Better” philosophy has been developed over years in the field. I find that the more administrative
actions I have to take, the harder it is to manage the system. In systems where every little aspect of the environment is
managed sepamtely, the level of fomplexity soon rises to the point where troublesbooting a saurity-based issue becomes a
nightmare.

Using the Defaults

Traditionaﬂy T've been a firm believer in liVing with the defaults—rnaking changes after circumstances
warrant. Unfortunately, Microsoft makes this theory kind of hard to live with. Whoever heard of giving
the Everyone group Full Control by default? Up until the latest releases of their operating systems, Tve
been inclined to say scrap the defaults and start from scratch. Until now, that is!

The default security implementations in the Windows Server 2003 operating system—at least those
that pertain to Active Directory—actuaﬂy make sense for most environments. For those of you who
were Wondering, this is good news! This means that in many cases, you can set up an AD structure and
not have to spend a lot of time conﬁguring security—notice that I didn't say you could ignore it!

My basic philosophy when it comes to AD security has been to live with the defaults and then plan
for any exceptions given the needs of my client’s speciﬁc environment. With that said, it becomes neces-
sary to understand the default assignments so you'll know when you can live with them and when you'll
need to make some changes.

This is another of those areas where the default permissions will depend upon the class of
object n question—in other words, the default permission assignments differ when looking at a
group object or a user object or an OU object. It’s not important that you memorize the default
assignments for each type of object; there are too many classes and too many default assignments
(that’s Why GUIs were invented!>. If you did take the time to memorize them, the list would likely
change the first time you installed a high—end server-based application—something like Exchange
Server 2000—since many high-end applications are now extending the schema to fit their needs.
What you want to do, however, is get a feel for the thought process that went into choosing the
defaults, and then look at each object class as you use it on your network.

Without getting into specifics (remember, the specifics will change, and there are too many to
remernber), the bottom-line default is that the Domain Admins group can pretty much do what
it wants within a given domain, the Enterprise Admins group can do pretty much what it wants

PERMISSIONS

throughout the entire forest, and the Schema Admins group can modify the Active Directory
schema—a dangerous ability, to say the least!

Normal users, on the other hand, have a much more limited range of permissions in a default instal-
lation. Every user can read the properties of all objects within the tree. This facilitates their use of the
AD database, but it does mean you have to either be careful about what information you store in AD or
change the defaults to protect any information that should have controlled access. In the phone number
property for a user object, for instance, if you enter a user’s business phone number, you probably do
not have to worry too much about security. In most companies (and for most users), a business tele-
phone number should be public knowledge. In this case, the default permissions work just fine! If, on
the other hand, you decide to store the user’s home phone number in Active Directory, you will have to
take steps to safeguard that information against unwanted access.

I follow two basic rules when deciding which information should be stored in AD:

1. The information should not be confidential. Not because of a lack of security, but because
the AD database is the perfect vehicle for accessing basic, public information. Any LDAP tool
can be used to access the Active Directory database—in other words, you have a ready-made
company “phone book™ without designing a database on your own.

2. The information should be fairly static in nature. While Active Directory’s replication process
is fairly efficient, I don't want to store data that changes on a regular basis. Constant changes
will result in constant replication.

A great example of the importance of static information occurred on a recent consulting job. My
client has one of those dynamic environment in which the emphasis is on projects rather than tradi-
tional departments. A user, for instance, might have multiple managers in any given year, depending
on the number of projects upon which they worked. The client developed their own LDAP utility to
query the AD database to determine the project to which a user was assigned, their manager, and
anyone who reported to them. The client thought AD was the perfect vehicle since each user object
has properties to store all of this information. The company has around a thousand employees, and
we took the time to enter in all of the information for each of them—and updated it every time
someone moved from one project to another. Since moving between projects was a common occur-
rence, we ended up flooding their frame network with AD replication traffic on a regular basis. It
wasn't long before I was called back to the client site and asked to implement my original suggestion:
using AD as a repository for static information (phone numbers, mailing addresses, etc.) and using a
web-based solution for the more dynamic information (pulling information out of a series of data-
bases managed by the human resources department).

A Few Examples

Let’s take a look at a couple of real-world examples of how Active Directory security can be used to
facilitate real-life management of network resources. When I talk to my clients, a few requests seem
to be common across just about every type of business environment:

¢ The help desk needs to change passwords, but not be given excessive administrative permissions.

¢ The human resources department wants to manage all employee record keeping, including any
“HR” information stored within the AD database.

274

CHAPTER 10 CREATING A SECURE ENVIRONMENT

Let’s use these examples for learning the flexibility built into the AD security system.

PASSWORD CONTROL
One of the most common issues that I faced with NT revolved around giving help desk personnel
enough power to do their job, but not enough power to mess things up. The biggest issue was granting
them the ability to change or reset user passwords, without having to give them full administrative privi-
Ieges. In an AD environment, this is actuaﬂy a sirnple delegation; as a matter of fact, you can choose
exactly what properties the help desk group should be able to access!

Let’s take a look at the process. I ask myself three simple questions to help me focus my security
assignments: Who? What? Where? Let’s apply my three questions to our current issue:

Who?

To whom will I grant more power or permissions? In this case, the answer depends upon the com-
pany involved. In some companies, the help desk is a separate group of 1T professionals—people
who spend their days answering end-user questions and solving end-user problems. In this type of
environment, | create a group with an imaginative name—something like “Help Desk”—and add
the appropriate users to the group.

In other companies, the help desk is the entire I'T staff—in which case, I have to determine if there
are certain individuals who should or should not have this level of administrative power. Once again, I
create a group (or use an existing group) and assign the permissions.

In a more distributed management type of environment, the help desk might be made up of an
individual in each location. This makes the decision a little more tricky, and I might have to answer
the “Where?” question before I can decide on my implementation. In any event, I create a security
group that represents each location (or area of responsibility) and add the appropriate user(s) as
members.

The bottom line to answering the “Who?” question is to create a security group or set of security
groups that represent the individuals who should be granted the privilege.

What?

Now I consider exactly what the group(s) should be able to do. In this case, the privilege to be granted
is very speciﬁc: these groups should have the ability to reset user passwords.

Where?
The answer to this question revolves around the management philosophy of the company. Does it have
a centrally controlled management system? If yes, I'm going to assign this privilege so that the users have
the power throughout the entire AD structure. If, on the other hand, I am working with a distributed
management environment, each group might need to be assigned the ability to change passwords in a
specific area of the AD structure (either within a specific tree, domain, or even OU).

Once I've answered my three questions, I'm ready to begin implementation. First I create any security
groups and add the members. I then assign the permissions to the group or groups. For our example,

PERMISSIONS | 275

let’s assume that the company has a distributed management philosophy with a small number of IT
support personnel for each physical region. Since the regional I'T staff members are responsible for the
management of resources within their area, they must have the appropriate permissions. The basic AD
structure looks like that shown in Figure 10.19.

FIGURE 10.19
The AD structure
of a company
with distributed
management

Each of the regional organizational units contains the account of the local I'T administrator. This
account should be given the permissions necessary to manage user passwords‘ The St. Paul container
is shown in Figure 10.20. Notice that I have created a security group named “St. Paul Admins”—
not very imaginative, but functional. The local IT person’s account has been made a member of this

group.

FIGURE 10.20
The St. Paul OU

My next task is to assign the St. Paul Admins security group the appropriate privileges. Within
Active Directory Users and Computers, I right-click the St. Paul OU and choose Delegate Control—
notice that by choosing the correct OU, I've basically used the answer to my third question, Where?
This starts the Delegation of Control Wizard. The first screen is the usual “Welcome to the wizard”
and “Aren’t you glad you bought Microsoft” message. Clicking Next opens the window shown in
Figure 10.21.

276 |CHAPTER10 CREATING A SECURE ENVIRONMENT

FIGURE 10.21

Choose users
or groups.

As you can see in Figure 10.21, the first step is the answer to my first question, Who? I've added
the St. Paul Admins group to the list. Clicking Next opens the window shown in Figure 10.22. As
you can see, the wizard actually makes our task very easy. Microsoft has included some common
administrative tasks in a built-in list that we can choose from. I've checked the appropriate option:
Reset User Passwords and Force Password Change at Next Logon. In other words, the answer to my
second question, What? We'll see a more complex choice later.

FIGURE 10.22
Assigning the
appropriate
privileges

That’s all there is to it! Now any member of the St. Paul Admins group has the power to reset
user passwords.

PERMISSIONS

MANAGING HUMAN RESOURCE INFORMATION

To be truthful, I'm not all that thrilled with the following example. It is based upon the assumption
that I trust someone in the human resources department enough to allow them administrative (no
matter how limited) access to Active Directory. Tl present my personal preference to this issue at the
end of our example. I include this case because I have actually been asked to provide this type of sce-
nario for numerous clients. Not surprisingly, I also talked all but one of those clients into using my
workaround (described later).

So the scenario is this: the HR department wants to (or has been assigned to) manage any per-
sonal data stored within AD—things like phone numbers, titles, departments, etc. While this frees
you from the task of entering this information, it means that someone in HR must be given the
appropriate permissions (and no more!).

The mechanics of this process start the same as they did for the preceding example. Within Active
Directory Users and Computers, right—click the appropriate container (in this case, the top of the struc-
ture) and choose Delegate Control. The first few screens will be familiar—the Welcome screen and the
Choose the User or Groups screen. The first change will be apparent on the third window. Instead of
picking one of the prebuilt tasks, you will create a custom task to delegate. Notice in Figure 10.23 that
I have checked the appropriate option.

FIGURE 10.23

Create a custom task.

The next dialog box, shown in Figure 10.24, allows you to choose which types of objects the user or
group should be given control of—users, printers, groups, etc. In our case, HR should only have access
to user objects, so I have selected the option that limits their access to chosen object types. Notice that I
have also nor checked the options to allow the creation of new or the deletion of existing user objects.
Some would argue that the HR department should have the ability to create user objects. Me, I'd rather
have them call me or my staff so that I can enforce corporate standards for setting up users (like “last

name, first” in the display field.)

277

278 |CHAPTER 10 CREATING A SECURE ENVIRONMENT

FIGURE 10.24

Choose the
object types.

Next I choose which properties the HR group should have permission to, as shown in Figure 10.25.
Here is where I must carefully consider which properties should be considered “HR™ and which should
not. This usually entails creating a list of available properties and then presenting it to HR—and letting
them choose what they feel they should manage.

FIGURE 10.25
Choose the

properties.

AUTHENTICATION SECURITY

That's all there is to it! Once again, delegating control of specific aspects of AD is fairly easy.

I promised you a more real-world solution to this issue. Let’s face it: First, we probably don't want HR
personnel making changes to our AD database, nor do we really want the responsibility of training them
to do so correctly. To be honest, the HR department is probably overworked as it is, so they probably
aren't all that thrilled with the prospect either.

Luckily, there is a tool called Addusers.Exe that allows you to import information from a text file
into AD. While the specifics are beyond the scope of this book, the basic concept is fairly simple. First,
most HR departments have some sort of existing database of employee information—a database that
they keep up-to-date as part of their job. Second, every database I've ever seen has the ability to export
data in some sort of text file (usually comma-delimited at the very least). Addusers.exe has the ability
to create new objects, add new values to existing properties, and overwrite the values in existing proper-
ties. Using a text file generated from the existing HR database, you can update the information in AD
on a regular basis. This is also a great way to create user accounts in a new system; rather than typing
them in by hand, you can contact HR and get a list of employees in a text file!

Authentication Security

The initial security that any user encounters is the security involved in the logon, or authentication,
process. Windows 2000/ Windows Server 2003 supports multiple protocols for network security and
authentication. In a perfect world, one—and only one—security protocol would be used to access the
network. Unfortunately, in the heterogeneous networks of today’s business market, most networks
must use multiple security protocols. Rather than force administrators to make a choice, and in an
effort to provide an open architecture, Microsoft has designed a security architecture that is both
modular and extensible. Windows 2000/ Windows Server 2003 will support the following network

security protocols:

Windows NT LAN Manager (NTLM) NTLM is the security protocol used by eatlier versions
of Windows NT. NTLM will continue to be supported to provide backward compatibility with

these operating systems.

Kerberos Version 5 The Kerberos protocol replaces NTLM as the primary security protocol
for access to resources within or across NT domains. Kerberos provides:

¢ Mutual authentication of both client and server (in other words, authentication becomes
a two-way street)

& Less overhead on the server during authentication

¢ Support of delegation of authority from clients to servers through the use of proxy
mechanisms

NOTE W&l take a closer look at Kerberos in the next section of this chapter.

279

280

CHAPTER 10 CREATING A SECURE ENVIRONMENT

Distributed Password Authentication (DPA) DPA is the shared secret authentication protocol
used by some of the largest Internet membership organizations, such as CompuServe and MSN. It
was specifically designed to allow members to use the same username and password to access multiple
Internet resources that are part of the membership organization. In other words, a user can access dif-
ferent resources without having to enter (and remember) multiple usernames and passwords.

Public-Key-Based Protocols ~ Secure Sockets Layer (SSL) is the de facto standard for secure connec-
tions between Internet browsers and Internet servers. These protocols use public-key certificates to
authenticate clients.

Note WZll discuss [erty(imtes in more detail later in this [lmptex

The ability to mix and match security mechanisms as needed is critical in any large organization.
Microsoft has implemented a modular security architecture known as the Security Support Provider Interface

(SSPI) to provide this functionality. This SSPI architecture is shown in Figure 10.26.

FIGURE 10.26
The Security RuF:]E[’i?ne SMB IE/IIS
Support Provider
Interface architecture
SSPI
NTLM Kerberos SSL DPA

SSPI is a Win32 system API that acts as an interpreter between application protocols (such as
those used by Internet Explorer) and security protocols (such as Kerberos).

Kerberos Basics
Kerberos version S has been implemented in numerous systems and can be used to provide a single
point of authentication to mixed resources. Kerberos provides a common protocol that allows a single
account database to authenticate users across a heterogeneous environment. As such, utilizing Kerberos
security can greatly reduce the administrative overhead involved in supporting a mixed network.
Kerberos security uses a computer designated as the Key Distribution Center (KDC). Kerberos is
known as a shared secret authentication protocol because both the client and the KDC know the user’s password.
The KDC acts as the middleman between clients and resources during the authentication process. You

can see this process in Figure 10.27.

AUTHENTICATION SECURITY | 281

FIGURE 10.27
The Kerberos
authentication APS
database ————
process S=LJJ
(]
[]
Resource Server
/:resent ticket
Client
Here’s what happens:

1. The client authenticates to the Key Distribution Center computer, using a valid username
and password. In Windows 2000/ Windows Server 2003, this account information is held
in the Active Directory database. In other words, Kerberos is fully integrated into the AD
environment.

2. The client requests a session ticket for the target server. The Kerberos session ticket identifies
the user. In a Windows 2000/ Windows Server 2003 environment, the session ticket con-
tains the user’s SID as well as the SIDs of any groups the user is a member of. The session
ticket also contains an encrypted key that the target server can use to ensure that the ticket

was generated by the KDC.

3. The client then presents the session ticket to the target server. The target server checks whether
the ticket is valid and grants or denies access as appropriate.

The session ticket is stored on the client computer for a random amount of time (between five min-
utes and eight hours) so that it can be used to request access to that resource in the future. If the ticket
expites, it is flushed from memory and the process is repeated at the next access attempt.

Kerberos is a great technology—secure, dependable, and mature. It is not something that most
administrators will, under normal circumstances, have to concern themselves with. The Kerberos
authentication process happens in the background as users attach to network resources, much as the

NTLM authentication process did in earlier releases of NT.

Public-Key Security
Windows 2000/ Windows Server 2003 also supports the use of public—key schemes, the most

common being X.509, for granting resource access to users who do not have Kerberos credentials.
g g g

282

CHAPTER 10 CREATING A SECURE ENVIRONMENT

Most commonly, this scenario will involve granting access to someone outside of the organization.
You might, for instance, wish to allow clients the ability to access an inventory database, rather than
forcing them to call a salesperson for information. Another potential X.509 certificate user would
be a company that uses contractors to perform internal functions. Rather than create an internal
account for the contractors, an administrator could use certificates to authenticate contractors to
the resources they need. Whatever the purpose, using public-key security, or certificates, for authen-
tication is common practice in today’s world.

PUBLIC KEY BASICS
Public—key security is based on the science of ﬂyptogmpby. Cryptography uses mathematical algorithrns

that combine input (plain text) and an encryption key to generate encrypted data, known as fz‘pkeﬁaxt.
With a good algorithm, it is rnathernatically infeasible (notice I did not say “irnpossible”) to reverse
the encryption process with only the ciphertext; some additional data is needed to perform this task,
namely an encryption key.

In traditional cryptography, the same key is used to encrypt and decrypt messages. You have proba-
bly seen such encryption in some spy novel you have read. The spy steals the master code for all commu-
nication from the enemy, and the hero is one step ahead of the enemy from that point on. Usually, the
master key is stolen during its transfer from one party to another. This is the biggest weakness of tradi-
tional cryptography: both parties must have the key, so some secure method of transferring that key 1s
crucial.

In public-key cryptography, the encryption and decryption keys are related, but different. An encryp-
tion key is used to encrypt data, but it has no place in the decryption process. A different key (rnathe—
rnatically related but not identical), known as the demyptz‘on]eey, is used for decryption. Ina public-key
environment, every user hasa pair of keys: a public key (to encrypt) and a private key (to decrypt). By
rnaking the public key available, you can enable others to send you data that is encrypted in such a way
that only your private key can decrypt it Public—key encryption schemes avoid the biggest weakness of
older systems: the key used to decrypt data does not have to be transferred and thus can be kept in a
secure location.

This separation of public and private keys has allowed the creation of a number of new technologies
that are becoming a part of today’s networks:

¢ Digital signatures
¢ Distributed authentication
¢ Bulk data encryption without prior shared secrets

The following sections give an overview of these technologies.

DIGITAL SIGNATURES

A digital signature is used to validate the authenticity of a message by the receiver. Using the private key,
the client creates a small piece of data that can be decrypted only with the use of the corresponding
public key. This electronic signature provides the following benefits:

& It ensures that the data is from someone who possesses the matching private key (either the
originator of the message or a trusted certificate server).

AUTHENTICATION SECURITY

¢ Anyone with access to the public key can verify the signature.

¢ Any change to the data (as small as modifying a single bit) invalidates the signature—letting
the recipient know that the message has been tampered with or corrupted in transit.

Using digital signatures can provide a high level of confidence in the integrity of transferred data.
Not only is this a good security mechanism, it can also be used to ensure that network problems have
not corrupted data in transit.

DISTRIBUTED AUTHENTICATION

Public—key security can also be used as a form of authentication security. The pubiic/ private key combi-
nation can be used to guarantee the identity of the sender of data, much like using the digital signatures

described in the previous section. This allows an NT/2000/2003 system to grant access to users out-
side of its environment. As long as both parties (the operating system and the user) trust a third-party

key provider or certificate server, users can use their public/ private key mechanism to identify themselves

to an N'T/2000/2003 server.

BULK DATA ENCRYPTION WITHOUT PRIOR SHARED SECRETS

Current public-key technologies are processor intensive compared to more traditional cryptographic
methods. They are secure, though, because the decryption key does not need to be passed from sender to
recipient. Bulk encryption takes advantage of the security of public-key mechanisms without incurring
the greater processor overhead. If two computers need to transfer data, the sender will use the recipient’s
public key to encrypt a master key and send it to the recipient. Since only the recipient has the private key
to decrypt this message, we can trust that the master key has arrived securely. Now that both parties have
the master key, traditional encryption can be used during the actual transfer of data.

Certificates

A service known as the Certificate Authority (CA) issues certificates that guarantee the binding between
a public key and the originator of data. In other words, both the sender and the recipient trust that

the CA will correctly authenticate the certificate that the sender transfers to the recipient. If it does

so, the recipient can trust that the certificate is from whom it is supposed to be from, and the rest of

the public/ private key security mechanism can proceed.

Another way to look at this is to think about the process of sending a signed message. The sender
creates a message and attaches the digital signature. The recipient performs the algorithrn against the
signature to determine whether the message has been tampered with. What the recipient cannot guar-
antee is that the message came from the appropriate sender. In other words, the recipient can use the
public key to Verify the message, but what do they use to verify that the public key belongs to the
appropriate sender? In other words, anyone can request a public/ private key pair from a KDC using
any name at all. How does the recipient know that some other user hasn't generated a key pair under
a false name?

This is where CA services enter the picture. CA services guarantee the binding between the origi-
nator and the public key. As Iong as the recipient trusts the CA to do its job correctly, the recipient
can rest assured that the sender is indeed who they claim to be.

283

284

CHAPTER 10 CREATING A SECURE ENVIRONMENT

In a large environment, the recipient might need to verify the CA server by using another CA
server. This second CA server might also need to be verified using a third server. Ultimately, the
recipient will build a chain of “trusts” back to a CA server that the user implicitly trusts, known
as a trusted root certificate server.

Microsoft Windows 2000/ Windows Server 2003 ships with the software to build a Microsoft
Certificate Server. This software is compliant with the industry’s leading certificate standard—2X.509.
Once in place, an Active Directory server can trust X.509 certificates and thus allow outside accounts
access to internal resources.

In Short
The