SAMS

(= NextChapter

Sams Teach Y ourself Database Programming
with Visual C++ 6in 21 Days

Introduction
Week 1 at a Glance
Chapter 1 Choosing the Right Database Technology
Chapter 2 Toolsfor Database Development in Visual C++ Developer Studio
Chapter 3 Retrieving Data Through Structured Query Language (SQL)
Chapter 4 Retrieving SQL Data Through a C++ AP
Chapter 5 Adding, Modifying, and Deleting Data
Chapter 6 Harnessing the Power of Relational Database Servers
Chapter 7 Database Design
Week 1in Review
Week 2 at a Glance
Chapter 8 Utilizing the Capabilities of Database Servers
Chapter 9 Understanding COM
Chapter 10 Database Client Technologies and the Secrets of ADO
Chapter 11 Multitier Architectures
Chapter 12 Using Microsoft Transaction Server to Build Scalable Applications
Chapter 13 Melding Object-Oriented Programming with Relational Databases
Chapter 14 Legacy Database APIs
Week 2in Review
Week 3 at aGlance
Chapter 15 The ODBC API and the MFC ODBC Classes

Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21

The Ultimate Database API: OLE DB

Accessing a Data Source with OLE DB

Querying a Data Source

Navigating the Result of a Query

Properties, Transactions, and Indexes

OLE DB Error Handling

Week 3in Review

Appendix A

Appendix B
Appendix C

Appendix D

Appendix E
Appendix F

[NextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Sams Teach Y ourself Database Programming
with Visual C++6in 21 Days

. Introduction
« Who Should Read This Book
o What You Will Need to Use This Book
. Acknowledgments
. About the Authors
. Tell UsWhat You Think!

| ntroduction

Welcome to Sams Teach Yourself Database Programming with Visual C++ in 21 Days. The 21
lessons presented in this book provide C++ developers with a much needed treatise on databases from
a C++ programmeris perspective.

C++ Windows devel opers already possess val uable knowledge of object-oriented programming in the
Windows environment. However, many C++ programmers lack knowledge of database technology.
Knowledge of database technologiesis crucial for building software for business applications, as well
as for many scientific applications.

A Windows application that is written in C++ and has a powerful database as its foundation can
perform amazing feats. With the advent of multitier architectures, C++ takes on amajor role as an
excellent language for building server and middle-tier software components. Writing multitier
software components frequently involves using C++ with database technology. Having knowledge of
C++ doneis often not enough for these modern applications. Y ou need knowledge of C++ database
programming if your skills are to be at the forefront of Windows software development.

This book builds on your knowledge of C++ Windows programming by teaching database expertisein
away that you, as a C++ developer, can really take advantage of it.

Hereisabrief rundown of what you will learn:

. How to choose the most appropriate database technology for each of your applications

. Evauations of direct file access, simple record managers, ISAM databases, relational database
servers, and object databases

. Database APIs, including ADO, OLEDB, ODBC, and DAO, and how to use them in C++
applications

. Relational database design principles and techniques

. Relational database programming and SQL

. COM programming for building and using software components

. Multitier application development, including Web-based development, and how to build and
use Microsoft Transaction Server (MTS) software componentsin C++

. How to take full advantage of relational database servers, such as SQL Server and Oracle

. How to meld relational databases with object-oriented programming

Who Should Read This Book

This book is designed to teach database programming to intermediate-level C++ Windows devel opers.
If you already know something about C++ Windows programming and want to expand your skillsto
include database programming, thisis your book.

What You Will Need to Use This Book

Most of the programming examplesin this book use Visual Studio 6 Enterprise Edition. The
Enterprise Edition has built-in tools for relational databases; these tools are very helpful for database
programming. Y ou can get by with the Professional Edition of Visual Studio if the Enterprise Edition
isnot available to you. This book also teaches programming for Microsoft Transaction Server (MTYS),
Internet Information Server (11S), and Internet Explorer version 4 (1E4), so you will need these
software packages as well. Y ou can use Microsoftis Personal Web Server (PWS) in place of 11Sif you
like. In terms of operating systems, Windows NT 4.0 makes an excellent platform running MTS and
11S. Y ou probably could make do with Windows 98 instead of Windows NT aslong as your machine
has sufficient memory to run Visua Studio, MTS, IIS (or PWS), and | E4 simultaneously.

Acknowledgments

Writing a book is something that 1've always wanted to do. | am very pleased that | have had the
opportunity to do so. There are many people who made it possible for me to complete this work and
who deserve my thanks.

Many friends and colleagues gave me much needed encouragement. | appreciate their helpful
feedback, which kept my motivation from sinking at critical times.

My wife and my three young sons made many sacrifices to give me the time | needed to write. My
sons endured the long hours of my absence from them with selflessness and maturity. My wife, Capri,
carried the burden of being virtually a single parent while | was holed up in the office, pouring my
best efforts into these pages. In addition, Capri produced the line drawings for this book and did some
initial editing aswell. Without a doubt, her help was instrumental in my completing it.

About the Authors

Lyn Robison is acareer software developer who specializes in database, COM, C++, and Java
development on the Windows platform. In addition to software development, Lyn enjoys writing,
speaking, and teaching new technologies to technical and non-technical audiences.

Lyn works as a developer at Webridge Inc., in Portland, Oregon. Webridge is a small software
company poised on the edge of greatness.

When he is not working, Lyn enjoys watching college football and playing basketball. He lacks just 12
inchesin hisvertical leap from being able to slam-dunk the basketball.

You can reach Lyn viaemail at LynRobi son@ol . com

K. David Whiteis a software devel oper with over 10 years experience developing control, database,
and user interface applications. He has been developing Windows NT applications for the last five
years. Dave can bereached at kdwhi t e@lonet . com

Tal UsWhat You Think!

Asthe reader of thisbook, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As the Executive Editor for the Advanced Programming team at Macmillan Computer Publishing, |
welcome your comments. Y ou can fax, email, or write me directly to let me know what you did or
didn't like about this book-as well as what we can do to make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or fax number. | will carefully review your comments and share them with the author and editors who
worked on the book.

mailto:LynRobison@aol.com"
mailto:kdwhite@donet.com

Fax: 317-817-7070
Email: adv_prog@mcp. com

Bradley L. Jones, Executive Editor, Advanced Programming,

Mail: Macmillan Computer Publishing, 201 West 103rd Street, Indianapolis,
IN 46290 USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

mailto:adv_prog@mcp.com

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Week 1...
At a Glance

Thisweek, you learn essential database application programming in Visual C++. You
learn the database tools that are included in Visual Studio 6. Y ou write database
applications and do some relational database programming. Y ou wrap up the week by
learning how to design a good relation database.

. Day 1 You examine the various database technologies at your disposal.

. Day 2 You learn about the relational database tools built into Visua Studio.

. Day 3 You learn about SQL and write some SQL queriesto retrieve datafrom a
database.

. Day 4 Youwriteyour first database application, using ADOOa C++ database
programming API.

. Day 5 Youwrite SQL and C++ code to add, modify, and delete datain relational
databases.

. Day 6 You learn client/server programming techniques and the power of
relational database servers.

. Day 7 You learn to design your own relational databases.

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 1
Choosing the Right Database Technology

. Deciding the Appropriate Database Technology for Your Visua C++ Applications
. Building Your Own Database in C++
o Defining Metadata
o A C++ Base Class to Handle the Database Work
o Problems with Building Your Own Database
« OLE Structured Storage
. Record Managers (Btrieve)
o Listing 1.3. Btrieve Example
. Desktop Databases (FoxPro and Access)
o Accessing ISAM Dataover aLAN
. Object Databases
. Relational Database Servers (Oracle and SOL Server)
. How Do the Database Technologies Compare?

. Summary

. Q&A

. Workshop
o0 Quiz

o EXxercises

The storing of datais an essential part of most software applications. Virtually all C++ applications
have the need to persist, or store, data of some kind.

Many applications also need to retrieve data efficiently. These applications typically need to search
through data that has been stored in order to retrieve specific information. This need to search for and
retrieve data means that an application must use a database.

A variety of database technologies are available to C++ programmers. Today you will explore these
database technol ogies and gain the knowledge you need to choose the appropriate technologies for
your applications.

Today you will learn

. How to choose the appropriate database technology for your Visual C++ applications

. Thedifficulties of trying to invent your own database system

. Thedifferent database technologies, including OLE structured storage, record managers (such
as Btrieve), desktop databases (such as FoxPro and Access), object databases, and relational
database servers (such as Oracle and SQL Server)

. How to take advantage of existing database technology to make your development efforts more
productive and successful

In addition to covering these topics, you will see how to write the code for implementing each of the
various database technol ogies available to C++ programmers.

Deciding the Appropriate Database Technology for
Your Visual C++ Applications

Choosing the right database technology means finding a technology that fills the requirements of your
application.

Without knowing the capabilities of the various database technol ogies, you can easily choose the
wrong one for your particular application. In the following sections, you will learn the capabilities of
each database technol ogy.

When choosing a database technology, you need to carefully consider the importance of your
application's data. It would be easy to think that the data needs to be used only by your application.
However, if you write your application with that thought in mind, you will end up creating an
application that has a closed, proprietary database that no one else can use or make sense of.

Y ou might think a closed, proprietary database is okay for your application because your application is
the only one that needs access to the data. Don't underestimate the value of the data and the need to
access the data through more than just your application.

NOTE

If your data isimportant to you, it's probably important to someone el se,
who will want access to the data through more than just your application.

Even if you are certain that others will never want to access your data except through your application,
what about future implementations of your application? What if your application is Windows
executable, and you need to produce a new version of it that runs behind a Web server and provides
information to users with Web browsers? Because of the nature of Web development tools, an open,
nonproprietary database can enable you to perform this conversion in much less time than a closed,
proprietary database.

In the end, if you do decide to write an application that has a closed database, you will ultimately
shorten the life expectancy of your own application. An application that has an open, accessible
database and can interoperate with other databases and applications will sooner or later replace yours.

Now you will go through the process of choosing a database technology for an imaginary application.
Y ou will examine each database technology and see what each one has to offer. Through this process,
you will learn the capabilities (and limitations) of each database technology and how to choose the
most appropriate technology for your applications.

The best way to learn to choose a database is by using an example and applying it to each technology.
Let's say that your job isto write an application for a company that sells products through television
advertising. The company advertises products such as a vegetable slicing machine, a bamboo steamer,
8-track love songs of the 70s, and so on, and offers them for the low, low price of $19.95. Each time
the TV commercial airs, the company's 800 line is flooded with calls from buyers.

The salespeople who take these calls have your application running on their computers. They use your
application to enter each order so that the product can be shipped and the buyer's money can be
collected.

This sounds easy enough. Y our application needs to present a window into which the salesperson can
enter the order, and then your application must write the information for the order to adatafile. This
being said, you might decide it would be easier to create your own database.

Building Your Own Databasein C++

A C++ programmer is usually confident of his ability to write software. After all, if you can master a
language as complex and powerful as C++, you can no doubt write any software tool you need,
including your own database system.

However, because of the maturity of existing database technology, writing your own database is rarely
a productive effort. Although an electrical engineer can perhaps build her own cell phone, doing so
makes little practical sense. Existing cell phones are plentiful and inexpensive and adhere to standards
that enable them to interoperate with cellular networks and other cell phones.

Likewise, a C++ programmer can build his own database system, but doing so makes little practical
sense. Existing databases are plentiful and inexpensive and adhere to standards that enable them to
interoperate with computer networks and other applications. Y ou should concentrate on building your
application, not on building its database.

Listing 1.1 shows what is required to store structured datain afile on disk to create a rudimentary
database. To create this application, run Visual C++ and create a new project as a Win32 console
application. You can call the new project anything you want. Calling it something like CPPDb would
be appropriate. Create a source file in the project, perhaps called main.cpp, and enter the following
codeinto it.

Listing 1.1. C++ Codeto Write Datato aFile

1. #include <fstream h>

2:

3: struct Date

4. {

5: int i Month, iDay, iYear;

6: };

7.

8: struct Product

9: |

10: i nt i PartNunber;

11: char szName[80] ;

12: doubl e dPri ce;

13: };

14:

15: struct Custoner

16: {

17: int ilD

18: char szName[50] ;

19: char szAddress[50];

20: char szCity[20];

21: char szState[20];

22: char szZip[9];

23 };

24:

25: void main()

26: {

27: Date dt = { 6, 10, 92 };

28: Product prod = {122, "Vegamatic", 19.95};

29: Custoner cust = {15, "Seynore Hoskins", "300 Cak St"
"Boring", "Oregon", "97203"};

30: of stream datafile("data.dat" , ios::binary);

31: datafile.wite((char *) &dt, sizeof dt);

32: datafile.wite((char *) &prod, sizeof prod);

33: datafile.wite((char *) &cust, sizeof cust);

34: }

Notice a couple of things about this code. First, you can see that data structures are defined in lines 3-
23. The structures are used to write data to the file in a predictable way (lines 31-33), in a pattern.
Other routines in the application can also use these structures to read the data from the file and make
sense of it.

Build the application. Y ou should receive no errors or warnings. When you run the application, it
creates afile called data.dat in your application's directory and writes the data to the file. If you open
data.dat with a hex file viewer, or even with Notepad.exe, you will see the datain thefile.

Defining M etadata

The structures used in Listing 1.1 are akind of metadata, or data about data. This metadata must be
defined somewhere, or the data in the file will be unorganized and totally inaccessible.

When building your own C++ database, you define the metadata within your source code.
Unfortunately, your C++ source code isn't the best place for the metadata to reside. Anyone who wants
to use this data must have access to your source code. Thisis one of the many limitations to building
your own database in C++.

This metadata should, ideally, reside with the data. That way, the data file can be self-describing, and
other routines can have easier accessto it.

NOTE

Metadata is what makes a database a database. A true database contains a
description of its own structure. A database contains both data and
metadata.

A C++ Base Classto Handlethe Database Work

The other thing to note is that the source code in Listing 1.1 is not very object-oriented.

Using C++, you can write a base class that handles the reading and writing of object datato fileson
disk. You can call this base classthe Per si st ent class. In the sample application, you can derive
an Or der s classfrom the Per si st ent class, thereby making instances of the Or der s class

automatically capable of persisting (or saving) themselves to disk.

Sounds great, doesn't it? Unfortunately, C++ has afew limitations that make this Per si st ent base
class approach unworkable. The Per si st ent base class can't know at runtime how big an object of
aderived classis, so it can't persist an object of a derived class to disk. There also can be data
membersin an object of a derived class that deal with runtime context or contain pointers. It would be
very difficult for aPer si st ent base class to have the intelligence to handle these data members

properly.

These problems ultimately mean that you can't write a C++ base class to handle all database work.
Some code for persisting data from a class must be contained in the class itself.

Problemswith Building Your Own Database

When building your own database in C++, you typically embed the metadata in your source code and
must build some code to store and retrieve objects into each and every class that needs persistence.

| haven't talked about how to handle multiple threads and multiple applications accessing the same
data file simultaneously. One application can be reading while another is writing, or two can write at
the same time and produce garbage in the file. Certainly this would be a common occurrence in our
sampl e application, with multiple salespeople receiving aflood of callseach timea TV commercial
airs. Believe me, the source code you need to write to handle the file locking and retrying is not trivial.

For our sample application, building your own database by using C++ and data files on disk forces
you to write alot of code, and no one could make sense of the data.

OLE Structured Storage

Within Microsoft's OLE technology is atechnology called OLE structured storage (the newer
documentation from Microsoft refersto it simply as structured storage). OLE structured storage
promises to give other applications the potential of exploring the internal structure of your files. OLE
structured storage is a storage architecture that enables afile on disk (as well as other storage
mediums) to be divided into a hierarchy of storages and streams. Storages are anal ogous to operating-
system directories or subdirectories. Streams are analogous to files in the operating system. These
storages and streams can all exist within asingle disk file.

Listing 1.2 shows how to create an OLE structured storage file, create a stream within it at the root
storage, and write your order information into the stream. The code in Listing 1.2 doesn't check return
values for errors to ensure code clarity and brevity.

To create this sample, run Visual C++ and create a new project as a Win32 console application. Y ou
can call the new project anything you want. Calling it OLESS might be appropriate. Create a source
file in the project, perhaps called main.cpp, and enter the following code into it.

Listing 1.2. OLE Structured Storage

37:
38:

39:
40:
41:
42:
43:
44

coNygRONMR

#i ncl ude <wi ndows. h>
#i ncl ude <ol e2. h>

struct Date

{
int i Month, iDay, iYear;

H

struct Product

{
i nt i PartNumber;
char szName[80];
doubl e dPri ce;

H

struct Customer

{
int ilD
char szName[50];
char szAddress[50];
char szCty[20];
char szState[20];
char szZip[9];

H

voi d main()

{

Date dt = { 6, 10, 92 };

Product prod = {122, "Vegamatic", 19.95};

Custoner cust = {15, "Seynore Hoskins", "300 Cak St",
"Boring", "Oregon", "97203"};

| St orage * pRoot St or age;
| Stream * pOrderl nfo;

Colnitialize(NULL);

St gCr eat eDocfi |l e(L"dat a. dat ",
STGM CREATE | STGM READVWRI TE | STGM SHARE EXCLUSI VE,
0, &pRoot St orage);

pRoot St or age- >Creat eStrean{L"Order | nformation”,
STGM CREATE | STGM WRI TE | STGM SHARE_EXCLUSI VE,
0, 0, &Oderlnfo);

pOrderinfo->Wite(&dt, sizeof (dt), NULL);
pOrderlnfo->Wite(&prod, sizeof(prod), NULL);
pOrderlnfo->Wite(&cust, sizeof(cust), NULL);

pOr der | nf o- >Rel ease();

45: pRoot St or age- >Rel ease() ;
46:

a47: CoUninitialize();

48: }

Within asingle datafile, you create a hierarchy of streams and storages (or files and directories). Lines
31 and 32 define pointers to two OLE interfaces (I St or age and | St r eam). Line 34 calls

Col nitializetoinitializethe COM libraries. Line 36 callsan API function,

St gCr eat eDocFi | e, to create the OLE structured storage file. This call creates an instance of

| St or age and returns a pointer to it in the last parameter, pRoot St or age. Line 38 callsthe

Cr eat eSt r eamfunction of the |l St or age class through the pRoot St or age pointer to create a
stream in the root storage. The Cr eat eSt r eamfunction returnsan | St r eamclass and returns a
pointer to it in the last parameter, pOr der | nf 0. Lines40-42 call thel st reamsW i t e function to
write our order datainto the stream. Lines 44 and 45 call Rel ease to deletethe pOr der | nf 0 and
pRoot St or age instances. Line 47 uninitializes the COM libraries.

Build the application. Y ou should receive no errors or warnings. When you run the application, it
creates an OLE structured storage file called data.dat in your application's directory and writes the data
to thefile.

Y ou still had to define the metadata for your order information. The metadata for the sample
application is too complex for OLE structured storage to represent. Y ou need to be able to specify that
an order includes an order date (with month, day, and year), a product (with product number, name,
and price), and a customer (with name, address, and so on). Also, you need to be able to specify the
data types and lengths. That level of detail cannot be represented using only a hierarchy of streams and
storages.

If you use OLE structured storage, another routine or application that wants to open your data file and
see the structure of the data won't be able to do so. The only thing it will seeisahierarchy of storages
and streams. Other routines and applications still would need access to your source code in order to
make sense of your data. Also, OLE structured storage has no inherent file-locking or record-locking
capability, so it wouldn't reduce the amount of locking code you would have to write.

OLE structured storage is primarily used by document-centric applications, such as Microsoft Word
and Excdl, to create data files for documents. Word and Excel files are not self-describing. Any
application that wants to access the datain an OLE structured storage file containing Excel data must
have knowledge of how the datainside the streams is organized.

If you used OLE structured storage for the sample application, you would still have to write alot of
code and no one else would be able to make sense of your data. Thiswould not be ideal for the
database in the sample application.

Record Managers (Btrieve)

Record managers on the market can simplify the data storage piece of the sample application. Let's
take alook at a popular record manager, Btrieve, to see what it does.

Btrieve provides a layer of insulation between your application and its data files. In other words, your
application doesn't directly talk to the data files. The application talks to Btrieve, and Btrieve talks to
the datafiles.

Btrieve provides an API (application programming interface) for record-based data access from your
application. This API enables your application to insert, edit, and delete records from data files.
Btrieve also enables your application to search the datafilesfor a certain record, such as an order
placed by John Smith on June 1. Y our application can tell Btrieve to position its record pointer at this
record and read, edit, or deleteit.

Listing 1.3 shows the code to open adatafile in Btrieve, find a certain record, and display it. Thisisa
code snippet only and will not compile as shown.

Listing 1.3. Btrieve Example

1. #define FILEL NAME "c:\\data.btr"
2: typedef struct
3 |
4: BTI _LONG 1D
5: BTI _CHAR FirstName[16];
6: BTI CHAR Last Nane[26] ;
7: BTI _CHAR Street[31];
8: BTI _CHAR City[31];
9: BTI _CHAR State[3];
10: BTI _CHAR Zip[11];
11: BTI _CHAR Country[21];
12: BTI _CHAR Phone[14];
13: '} PERSON_STRUCT;
14:
15: typedef struct
16: {
17: BTl _CHAR net wor kAndNode[12] ;
18: BTI _CHAR applicationl D 2];
19: BTI _WORD t hr eadl D,
20: } CLIENT_ID;
21:
22: CLIENT_ID clientlD
23: PERSON STRUCT personRecord,;
24:
25: strcpy((BTlI _CHAR *)keyBuf1, FILE1 NAME);
25:
27 keyNum = 0;
28: datalLen = 0;

29:
30: status = BTRVI X
B_OPEN,
posBIl ock1,
dat aBuf,
&dat alLen,
keyBuf 1,
keyNum
(BTl _BUFFER_PTR) &cl i ent | D) ;
31:
32: printf("Btrieve B OPEN status (c:\\data.btr) = %\ n", status);
33:
34: [* get the record with key 0 = 263512477 using B GET_EQUAL */
35: if (status == B_NO _ERROR)

36: {
37: filelOpen = TRUE;
38: menset (&per sonRecord, 0, sizeof (personRecord));
39: dataLen = si zeof (personRecord);
40: personl D = 263512477, /* this is really a social security
Anunber */
41: *(BTI _LONG BTl _FAR *) &eyBuf 1[0] = personl D;
42: keyNum = 0;
43:
44: status = BTRVI X
B _GET_EQUAL,
posBIl ock1l,
&per sonRecor d,
&dat alLen,
keyBuf 1,
keyNum
(BTl _BUFFER_PTR) &cl i ent | D) ;
45:
46: printf("Btrieve B_GET_EQUAL status = %\ n", status);
a47: if (status == B_NO _ERROR)
48: {
49: printf("\n");
50: printf("The retrieved record is:\n");
51: printf ("D % d\ n", personRecord.|D);
52: printf (" Name: % 9%\n", personRecord. FirstNane,
per sonRecor d. Last Nane) ;
53: printf("Street: 9%\n", personRecord. Street);
54: printf("Gty: %\ n", personRecord.City);
55: printf("State: %\ n", personRecord. State);
56: printf("Zp: %\ n", personRecord. Zip);
57: printf("Country: %\n", personRecord. Country);
58: printf("Phone: %\ n", personRecord. Phone);
59: printf("\n");
60: }
61: }

In Listing 1.3, line 1 defines the data filename. Lines 2-23 define two structures and declare an

instance of each. The PERSON_STRUCT structure is the definition of the meta-data for a data record.
The CLI ENT _I Dstructureis used internally by Btrieve to identify the application. Line 25 copiesthe
filenameinto avariable. Lines 27 and 28 initialize a couple of variables, and then line 30 uses those
variablesin acall to the Btrieve record manager API to open the datafile.

If there are no problems opening the datafile, lines 37-42 initialize some variables to use in searching
for aparticular record in the datafile. Line 44 calls the Btrieve record manager API to find the record.
Line 47 tests to see whether the record was found in the datafile. If it was, lines 49-59 display the data
contained in the record.

Btrieve uses aform of data storage known as the Indexed Sequential Access Method (ISAM). Btrieve
ISAM files are a highly advanced version of the datafiles created in Listing 1.1.

Btrieve can index the datain the datafiles to enable very fast record searches. Btrieve can also handle
record locking, so multiple threads and applications can simultaneously access the datafiles.

Using arecord manager is much easier than writing all that code from scratch. In fact, many
commercial software packages use the Btrieve record manager. It provides excellent performance
(compared to what you can probably write yourself) and is easy to distribute with acommercia
application.

However, record managers such as Btrieve do have limitations and can leave some important database
work undone. Asyou seein Listing 1.3, the metadata is defined in your source code. Btrieve doesn't
store the metadata within the ISAM files. A Btrieve datafile isn't self-describing. No one else can
make sense of a Btrieve data file without some outside knowledge of its structure.

NOTE

Btrieve provides away to store metadata in separate files named DDF files.
Thisisn't ideal because the files can be changed or deleted independent of
each other. No mechanism ensures that the metadata is accurate or in sync
with the actual data.

The Btrieve record manager never makes use of metadata. Btrieve interprets arecord in adatafile
only as a collection of bytes and doesn't recognize discrete pieces of information within arecord. To
Btrieve, a product number, name, and price don't exist inside arecord. The record issimply a
collection of bytes. Because Btrieve doesn't use the metadata, the application must handle all
information about the format and type of datain a Btrieve datafile. Btrieve does nothing to ensure the
integrity of the data within arecord. Y our application must do all the work of validating the data
beforeit's stored in the datafile.

Another limitation of arecord manager is alack of set-based operations on the data. The application
must touch each and every record that isinvolved in any given operation. For example, in the sample
application, to discover the total sales volume in dollars, the application needs to iterate through the

records of all the orders, adding up the sales amount of each one.

Set-based operations, however, like those found in true databases (as opposed to record managers),
can enable the application to issue a single command to ask the database for the total sales volumein
dollars. Y ou will learn more about set-based operations in the sections "Desktop Databases' and
"Relational Database Servers."

NOTE

Btrieve has produced an open database connectivity (ODBC) driver and
data-base engine that sit on top of the Btrieve record manager and provide
set-based operations through an ODBC API. Applications can use this
ODBC API to access Btrieve data files. However, the Btrieve ODBC AP
doesn't provide the same level of performance that the Btrieve record
manager APl provides.

Using arecord manager for the sample application would be easier than creating your own C++
database and easier than using OLE structured storage. The location of the metadata still isn't ideal,
however. The lack of integrated metadata can limit the capability of other applications to read the data
file. For instance, this might prevent the manager from being able to analyze sales data from the
database in a spreadsheet. Y ou need to consider these questions regarding this technology and the
sample application: Will the record manager provide sufficient open access to the data for other
applications? Will the data file become too large for the record manager to handle? Will the
performance of the record manager be fast enough, especially with multiple users over a network?

Desktop Databases (FoxPro and Access)

Desktop databasesis a class of database software, sometimes called | SAM databases because they use
|SAM files. Several desktop databases are on the market. These include Microsoft Access, Microsoft
FoxPro, and Borland Paradox. These database products differ from each other in many ways, but they
all have certain features and characteristics in common.

Desktop databases store the metadata within their ISAM data files. The data files are self-describing.
This enables avariety of applications to readily access the data in desktop databases. Desktop
databases have their own languages and data types and include an interpreter to run programs written
in their language. Y ou can use the language of a desktop database to build database applications.
(These interpreted database languages typically aren't used to build complete commercial applications
because of their many limitations.)

The desktop databases are designed to provide standard DBM S (database management system)
functionality such as data definition, data manipulation, querying, security, and maintenance. The
desktop databases are built specifically to run on personal computers.

C++ programs can use the ODBC (open database connectivity) API to talk to desktop databases. For
instance, a C++ program can call ODBC API functions to store and retrieve datain a Microsoft
Access database file. Y ou can even use ODBC to send language statements to the Access interpreter
(also called the Jet database engine) and then retrieve any data that Access (Jet) might return asa
result of that operation.

Listing 1.4 shows some ODBC API function calls. Thisis a code snippet only and will not compile as
shown.

Listing 1.4. ODBC API Function Calls

1: long | Resul t;
2: SDWORD cbResul t;
3. HSTMI hst nt ;
4: CDat abase nf cdb;
5:
6: nfcdb. OQpenEx(" DSN=MyDat aSour ce; U D=MyUser Logi n; P\D=MyPasswor d; ") ;
7.
8: AFRX_SQL_SYNC(::SQ.Al Il ocSt nt (nfcdb. m hdbc, &stnt));
9:
10: AFX _ODBC CALL(::SQ.ExecDi rect(hstnt, (UCHAR FAR*)
"SELECT * FROM Orders", SQL_NTS));
11:
12: while (::SQFetch(hstnt) !'= SQL_NO DATA FOUND)
13: |
14. c:SQLGetData(hstnmt, 1, SQL_ C LONG & Result, 0, &cbResult);
15: }
16:
17: AFX _SQL_SYNC(:: SQLFreeStnt (hstnt, SQ._CLCSE)) ;
18:

19: nfcdb. d ose();

Line 4 declares an instance of the MFC CDat abase class. CDat abase encapsulates and simplifies
the code for connecting to ODBC databases. Line 6 callsthe Cdat abase's OQpenEx function to
connect to (or open) a database. Line 8 allocates a statement handle, which enables SQL language
statements to be sent to the database to be interpreted. Line 10 calls SQLExecDi r ect to send a SQL
statement, " SELECT * FROM O der s", to the database to be interpreted and executed. Lines 12-
15 retrieve the information that the database returns as a result of the SQL statement in line 10. Line
14 places the value of the first field in each record that was returned into thel Resul t variable. Line
17 frees the statement that was allocated in line 8. Line 19 closes the database connection that was
opened inline 6.

Desktop databases index the data and use | SAM for fast record searches. Desktop databases can also
handle record locking, so multiple threads and applications can access the data files simultaneously.

NOTE

A key difference between the ISAM files used by Btrieve and the ISAM
files used by desktop databases is that desktop databases store metadata
inside the ISAM files with the data. This means other programs can make
sense of the data without having to obtain your source code.

Desktop databases provide type checking of the data within the records. Whenever an application
sends data to a desktop database, the database checks the values and data types to make sure they are
appropriate. Thus, the database itself can help ensure the integrity of the data.

Desktop databases provide set-based operationsin their programming model. With a single command,
an application can perform operations that affect potentially thousands of records. For example, in the
sample application, to discover the total sales volume in dollars, the application need issue only a
single command to the database-for example,

SELECT SUM price) FROM Orders

Desktop databases do have some limitations. The raw performance of desktop databases is generaly
not as good as the performance of straight record managers such as Btrieve.

NOTE

The Btrieve record manager islean and fast but doesn't provide the
programming functionality and data openness that the desktop databases
provide. In choosing between arecord manager such as Btrieve or a desktop
database, you have to balance your need for execution speed, which arecord
manager can provide, with your need for speedy development time and data
openness, which a desktop database can provide).

Accessing | SAM Data over aLAN

|SAM data files from a desktop database can be accessed from aremote machine over alocal area
network (LAN). (The machine running the application is usually called the client machine, and the
machine where the data file resides is usually called the server machine.) However, the capacity and
efficiency of accessing ISAM filesover aLAN islimited.

When an ISAM datafile is accessed over aLAN, the datais processed on the client machine. All the
data and indexes must travel from the server machine over the network to the client machine to be
processed. Thisis because all the logic for processing the records exists in the application running on
the client machine.

Because all the data and indexes must travel over the network, desktop databases can't be used to build
high-capacity client/server applications. | talk more about client/server architecturesin the section
"Relational Database Servers."

Desktop databases are designed to run on persona computers, so their capacity and throughput is
limited. The client/server limitations of ISAM files hinder the capacity of desktop databases. The
documentation for desktop databases typically specifies that they are limited to a dozen or so
concurrent users and to datafiles of 100MB or so in size.

Using a desktop database for the sample application provides many advantages over creating your own
database, using OLE structured storage, or using Btrieve. The programming model for desktop
databases is more advanced and requires less code. Desktop databases store the metadatain the data
file, so the data can more easily be queried by other applications, such as spreadsheets. However, you
need to consider these questions regarding this technology and the sample application: If the
application uses a desktop database, will the database run fast enough, especially over a network with
multiple users? Will the data file become too large for the desktop database to handle?

For raw speed, arich programming model, data openness, and client/server capability, you need to use
arelationa database server. I'll explain more about relational database servers after | talk about object
databases.

Object Databases

Primitive database technol ogies store only raw data (bits and bytes) with no metadata in the datafile.
Desktop and relational databases store data and metadata together to make the data files self-
describing. Object databases go one step further. Object databases store data, and the code to act on
that data, in the datafile. Several object databases on the market provide a broad range of features and
capabilities.

Object databases are typically tied to a particular programming language. C++ object databases
directly support the type system of the C++ language. In other words, you can use a C++ object
database to store instances of C++ classes right in the database.

Listing 1.5 shows how to use a C++ object database to store product information. Thisis a code
snippet only and will not compile as shown.

Listing 1.5. An Object Database

#i ncl ude <string. h>

/1 Header file for the Object Database
/1 Managenent G oup (ODM5 object nodel.
#i ncl ude <odng. h>

AN

6:

7: |/ Derive our Product class fromd_Object

8: /] so Product can persist itself in the database.
9: class Product : public d_nject

10: |

11: public:

12: i nt iPartNunber;

13: char szName[80];

14: doubl e dPri ce;

15: private:

16: d_Ref<Product> next; [// For iterating instances of Product
17: /1 in the database.

18: };

19:

20: d_Dat abase db; /'l dobal instance of the object
dat abase.

21: const char * const db_nane[] = "Products”;

22:

23: void main()

24: {

25: db. Open(db_nane) ; /'l Opens the Products database.
26: d_Transaction tx; /'l Create and begin a transaction.
27 t x. begin();

28:

29: /'l Create a new product instance in the database.

30: Product *prod = new(&b, "Product") Product;

31: prod->i Part Nunber = 122;

32: strcpy(prod->szNane, "Veganmatic");

33: prod->dPrice = 19. 95;

34:

35: tx.commt(); /1 Commt the additions to the db.
36: db. cl ose(); /1 Cose the db.

37: }

In Listing 1.5, line 5 assumes that the object database vendor has provided a header file called

odnyg. h, which contains the declarations for thed _(bj ect class. Thed (bj ect classisaC++
base class that enables instances of derived classes to be persisted to the object database. Line 9
derivesthe Pr oduct classfromthed Cbj ect class, which enablesinstances of Pr oduct to be
persisted. The Pr oduct classhasad Ref <Pr oduct > member (line 16). d _Ref <> isasmart
pointer class provided by the object database vendor that enables references (or pointers) to objects to
be stored in the database.

The new operator in line 30 has been overloaded ind_Obj ect totakeapointer toad_Dat abase
instance as a parameter. The call to newin line 30 creates a persistent instance of Pr oduct inthe
database. Lines 31-33 change the values of the data membersin thisinstance of Pr oduct (inthe
database). Line 35 commits the changes to the database, and line 36 closes the database. Asyou can
see, using an object database, you get database functionality for your C++ objects with very little extra
code.

This tight integration with the C++ programming language provides great power for designing and
building applications that have complex information models. Y ou can use the full power of C++ with
encapsulation, inheritance, and polymorphism to reduce complexity.

If you use an Object DBMS, your application has a database that can handle great complexity. C++
classes enable you to model elaborate data entities and their relationships, and an Object DBMS
enables you to store instances of those elaborate C++ classes right in the database. However, object
databases have limitations, too. Because object databases are so tightly integrated with the
programming language of the application, the data tends not to be open or accessible to other
applications.

NOTE

Some Object DBM S vendors pledge that their object databases support (or
will support in the future) open technologies such as COM, CORBA, XML,
and ODBC/OLEDB. Support for these technologies will make object
databases more open and accessible. However, support for these open
technologiesis neither universal nor uniform among Object DBMS vendors.
So caveat emptor (let the buyer beware).

Also, with a C++ object database in a client/server environment, the object functionality executes
primarily in the client application. Like desktop databases, C++ object data-bases will do most of their
processing on the client machine. This varies between object database implementations, but object
databases tend to be client-centric and do not fully take advantage of the server machinein
client/server applications.

Relational database servers, however, tend to be better able to take advantage of client/server
architectures. The next section talks about relational database serversin more detail.

Using an object database for the sample application could be easier than using your own database,

OLE structured storage, Btrieve record manager, or a desktop database. However, consider these
guestions regarding this technology and the sample application: Would an object database be overkill
for the application? |s the data model sufficiently complex and intricate to require a direct mapping of
C++ classes into the database? Would this capability justify the added time you would have to spend
researching the capabilities of the various object databases? Would the database be open to other
applications? Would the performance with multiple users over a network be sufficient? Would
performance degrade significantly as the amount of data in the database increases?

Relational Database Servers (Oracle and SQL Server)

Relational database servers are in some ways similar to desktop databases. Relational database servers
have their own programming languages, interpreters, and datatypes. They integrate data and metadata.
C++ programs can talk to them through ODBC. The code in Listing 1.4 operates with arelational

database server as well as a desktop database.

NOTE

C++ applications that use the ODBC API can interoperate with desktop
database as well as with relational database servers.

Relational database servers provide the rich functionality and data openness of desktop databases
while far exceeding desktop databases and record managers in capacity and throughput. Relational
database servers can capitalize on client/server architectures much more than desktop servers, record
managers, and object databases. They provide true set-based operations.

NOTE

With set-based operations, a relational database can process thousands, even
millions, of records at the server machine and then send only a small result
set to the client computer. Set-based operations are a powerful tool to make
your applications highly scalable. Set-based operations at the server enable
relational database serversto do the heavy lifting in large client/server
applications.

Relational database servers are also built to take advantage of server hardware, such as large amounts
of RAM and high-performance disk subsystems. If you put arecord manager on a RAID disk system,
the record manager probably wouldn't know what to do with it. However, if you put arelational
database server on aRAID system, it takes advantage of the RAID drives to provide phenomenal
throughput and reliability.

Relational database servers have their downside, too. They tend to be more expensive than record
managers and desktop databases. (Of course, some relational database servers are more expensive than
others.) Relational database servers also are more difficult to integrate with commercial applications.
They might have stringent hardware requirements and complex installation processes. Relational
database servers also require the periodic attention of a database administrator to tune and maintain
them. This aso varies between database servers.

Also, compared to object databases, relational database servers are limited in the complexity of the
data model they can support. For an application with a highly complex data model, the process of
converting from C++ to the relational database server's type system and language interpreter can be
very difficult.

Using arelational database server for the sample application would be easier than using your own
database, OLE structured storage, or the Btrieve record manager. However, consider the following
questions regarding this technology and the sample application: Would the fact that the relational
database might be more time-consuming to implement than other technologies be a problem? Is a

relational database overkill for the application? Does the application require the capacity and
throughput arelational database server provides? Would the cost of the licensing fees for the database
server be prohibitive?

How Do the Database Technologies Compar e?

Table 1.1 illustrates the relative strengths and weaknesses of the various database technologies. In
Table 1.1, aplussign (+) indicates a strength of the technology, a minus sign (-) indicates a weakness,
ablank indicates no particular strength or weakness, and a question mark (?) indicates that it varies
between vendors or implementations of the technology.

. Openness of the Data refers to the capability of other routines or applications to make sense of
the data file without access to your source code.

. Complex Data Models refers to the technology's capability to handle applications that have
complex data entities and relationships.

« Multiuser refersto the capability of multiple threads, applications, and users to access the data
simultaneously.

. Performance refersto the speed with which data can be read from and written to the database.

. Scalability and Capacity refers to the database's capability to sustain good performance as the
amount of dataincreases.

. Set-based Operations in Code indicates whether the technology offers set-based operationsin
Its programming model.

. Set-based Operations at the Server refers to the capability of the technology to process data at
the server without having to send it all to the client machine to be processed.

. Embeddable with Your Application indicates how easy or difficult it would be to ship this
technology with a commercial application.

. Data Validation/Integrity refersto the database's capability to validate the data to ensure the
integrity of the data.

« Code-to-Functionality Ratio refers to how much code you have to write compared to the
database functionality you get from that code.

Table1l.1. How Do the Database Technologies Compare?

OLE | Record | Desktop |Object RDBMS
C++ | sS | Mor Db Db | Server

Openness of the Data - - +) +
Complex Data Models - - - +

Multiuser - - +? ¥
Performance - - + +? +
Scalability and Capacity - - +? +
Set-based Operations in Code - - - + + +
Set-based Operations at the Server - - - - -? +

Embeddable with Y our Application + + ? -
Data Validation/ Integrity - - - + + +
Code-to-Functionality Ratio - - - + ++ +

Asyou can see from the table, the appropriateness of each of these technologies depends on the
requirements of the application. If you need your commercial application to write a small amount of
simple data to atemporary file, your own C++ database would probably work fine. If, however, you
need to store moderately complex datato afile with

multiple threads or multiple applications using it, consider one of the more advanced database
technologies.

Summary

Today's database technology offers a broad spectrum of functionality. Choosing the right database
technology means finding one that fills the requirements of your application.

In choosing a database technology, don't underestimate the importance of the data. Consider carefully
which database technology is the best steward of the data. A database should ensure the data's integrity
and provide appropriate open access to the data for other routines and applications, now and in the
future.

Q&A

Q It lookslikel will haveto learn so much beforel can even start using data-bases.
Shouldn't | just write a database myself so that | can get up and running more
quickly?

A For al but the very simplest applications, it doesn't make sense to invent your own
database. Y ou must realize that the time you spend writing your database is time spent
not writing your application. It's best to learn once how to use real databases and then
apply this valuable knowledge over and over.

Q If | decideto use a desktop database for my application, which one of the desktop
databases (Access, Paradox, FoxPro, and so on) should | use?

A Which desktop database you should use depends on the requirements of your
application. Microsoft Access offers one advantage over the other desktop data-bases,
however. Access does the best job of mimicking the functionality of arelational
database server: It uses aversion of Structured Query Language (SQL), it can have
multiple tables per file, and it can store predefined queries.

Q Doesn't ODBC provide asingle API that can be used with all ODBC data-bases? If
my application uses ODBC, why should | care which database is used underneath?

A The capabilities of the various database technologies differ fundamentally from each
other, and these differences are reflected in the way that the technologies implement the
ODBC API. Some databases support a superset of the ODBC API, whereas other
databases support only a subset of it. Also, some technologies provide excellent
performance through ODBC, whereas others provide very poor performance with
ODBC. Y ou need to select the database for your application based on the database's
capabilities. If you plan to use ODBC, you need to consider how well the database you
want to use supports it.

Q Object databases ook likethey provide excellent power and flexibility. Why would
| userelational database serverswhen object databases seem to integrate so well
with C++?

A Relational database servers and object databases each have their own strengths and
weaknesses. Be aware that object databases are not yet fully mature, and the capabilities
of the different object databases vary greatly. Also remember that relational database
servers provide open and accessible databases, whereas object databases generally do
not. The need for open access to the data shouldn't be underestimated and might
outweigh the other areas in which object databases can be superior.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the primary benefits of using arecord manager (such as Btrieve) rather than invent
your own database routines?

What do the desktop databases provide that record managers do not?

What are the benefits of using a database technology that provides open, accessible data stores?
Which database technol ogies provide open, accessible data stores?

What is the significance of server-side processing of set-based operationsin a client/server
architecture?

agbkrwd

Exercises

1. Thecodein Listing 1.1 creates a data file that contains order information. Write a program that
reads the order data from that file.

2. Decide which database technology would be most appropriate for the sample application
described earlier. Create alist of capabilities that the database for this application needs to
provide. Justify your decision by comparing the database requirements with the capabilities of
the database technology that you have chosen.

| ¢ Previous Chapter (% MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 2
Toolsfor Database Development in
Visual C++ Developer Studio

. How to Build a Perfect Database Every Time
. Support for the Relational Database Model in the Visual C++ Developer Studio
o Installing the Database Components for Visual C++
o Setting Up an ODBC Data Source for the Sample Database
. Components of a Relational Database
o Tablesin aRelational Database
o Fieldsin aRelational Database Table
o DataTypesin Relational Database Systems
o Recordsin aRelational Database Table
o Primary Keysin aRelational Database Table
o Relationships Between Records in Different Tables
. Summary
. Q&A
. Workshop
0 Quiz

o EXxercises

Today you will learn how to create and manage database applications by using the Visual C++
Professional and Enterprise Editions. With the Visual C++ Professional or Enterprise Editions, you
can retrieve data and modify the contents of databases. With the Enterprise Edition, you can also

create and modify the structure of the database (the database's metadata).
Today you will

« Learn how to build a perfect database.
. Exploretherelational database model inside the Visual C++ Developer Studio.
. Work with the components of arelational database.

How to Build a Perfect Database Every Time

Building a good database is not rocket science. It is, however, computer science. If you can learn C++,
you already possess enough computer science savvy to learn the science of building good databases. A
good database has a flexible design, speedy performance, and efficient capacity and is adaptable to
meet today's, and future, requirements.

Y our first design decision is to choose which database model to use for your application. There are
severa database models to choose from, including flat file, object, and relational.

CAUTION

Neglecting to make a definite choice of a database model for your
application means that you are choosing to invent your own. Inventing a
database model is harder than it looks. If you try to invent your own
database model, you will severely handicap your database.

One particular database model offers a unique combination of power, flexibility, and universal
acceptance. That model isthe relational model.

The relational model enables you to build databases that can be implemented on all popular computing
platforms, including mainframes, servers, PCs, and even some handheld machines. Most popular
programming languages can communicate with databases that adhere to the relational model.

The relational model also provides enough abstraction to enable you to add elements and features to
the database without having to recompile and redistribute the code for the applications that useit. This
level of abstraction also enables you and your customers to retrieve combinations of data from the
database that you hadn't anticipated needing at the time that the database was created.

Support for the Relational Database Model in the
Visual C++ Developer Studio

E.F. Codd, acomputer scientist from IBM, first formulated relational theory in 1970. The first

commercially available relational database system (RDBMS) was Oracle. Many relational database
systems have become commercially available since then. It isinteresting to note that the relational
database systems commercially available do not fully implement Codd's relational theory.

The relational model is based on relational calculus, a complex mathematics, but some fundamental
principles of the model make it easy to use. Y ou can get up and running right away with the basics of
the relational model and learn the advanced portions of it later as the need arises.

The Visual C++ Professiona and Enterprise Editions provide built-in support for the relational
database model. Y ou can view and modify the contents of relational databasesinside the Visual C++
Developer Studio.

I nstalling the Database Componentsfor Visual C++

First, you need to make sure that you have installed the necessary Visual C++ database components.
These components consist of ODBC drivers and OLE DB providers. To install these (or to verify that
they're already installed), run the Visual Studio 6 setup program. Y our first screen will look like
Figure 2.1.

Figure 2.1 : The Visual Sudio 6 Setup dialog. Click the Add/Remove button.

Click the Add/Remove button. Y ou will be presented with the Maintenance setup dialog, shown in
Figure 2.2.

Figure 2.2 : The Visual Sudio 6 Maintenance setup dial og.

Select Data Access from the list and click the Change Option button.
Select OLEDB Components from the list shown in Figure 2.3 and click the Change Option button.

Figure 2.3 : The Visual Sudio 6 Data Access dialog.

Check the boxes for the OLE DB providers, shown in Figure 2.4, that you will need. If you are unsure
which providers you will need, you can install al of them except those that you're certain you will not
use. You need to install the Microsoft OLEDB Jet Provider for the examplesin this book, so make
sure it's checked. Click the OK button to return to the Data Access dialog shown in Figure 2.5.

Figure 2.4 : The Visual Sudio 6 OLEDB Components dial og.

Figure 2.5: The Visual Sudio 6 Data Access dialog.

Select Microsoft ODBC Drivers from thelist and click the Change Option button. Y our screen will
look like Figure 2.6.

Check the boxes for the ODBC drivers you need. If you're unsure which drivers you need, install al of
them except those that you're certain you will not use. For the examples in this book, you need to
install the Microsoft Access ODBC Driver; make sure it's checked. Click the OK button to return to
the Data Access dialog.

Figure 2.6 : The Visual Sudio 6 Microsoft ODBC Drivers dialog.

Click the OK button on the Data Access dialog to return to the Maintenance setup dialog. The bottom
right of the dialog shows the number of components you are adding. If that number is zero, the
database components you need for this book are already installed. Y ou can click the Cancel button and
exit the setup program.

If the number of components to add isn't zero, click the Continue button. The setup program will
install the OLE DB providers and ODBC drivers you need for this book.

After the OLE DB providers and ODBC drivers are installed, you need to install the author's examples
from the CD-ROM included with this book. The examples include a Microsoft Access database file,
VCDb.mdb, which is used in examples throughout this book. Follow the installation instructions for
the CD in order to install the author's examples.

Setting Up an ODBC Data Sour ce for the Sample Database

Y ou need to set up the sample database VCDb.mdb as an ODBC data source on your machine. Thisis
done with the 32-bit ODBC applet in the Control Panel.

Run the 32-bit ODBC applet, which will display a dialog that enables you to create, edit, and delete
ODBC data sources (see Figure 2.7). An ODBC data source is also called a Data Source Name (DSN).

Figure 2.7 : The System DSN tab in the 32-bit ODBC Administrator applet.

The first three tabs along the top of the dialog enable you to create DSNs. A User DSN is accessible
only on thislocal machine and only by the current user. A System DSN is accessible on thislocal
machine by any user. A File DSN is afile-based data source that is accessible on alocal or remote
machine by any user.

Now you will create a System DSN for the sample database. Select the System DSN tab and then click
the Add button (see Figures 2.8 and 2.9).

Figure 2.8 : Secifying an ODBC driver for a new Systemn DSN. Select the Microsoft Access driver
and click the Finish button.

Figure 2.9 : The DSN setup for the Microsoft Access database.

Type in aname for the data source (such as Or der sDb). You can also type in adescription for the
data source. (This description is not used programmeatically.)

Click the Select button to specify the path and name of the database file. Make sure to specify the
VCDb.mdb file on your hard disk instead of the one on the CD-ROM. The one on the CD is read-only
and won't work for the examples in the book.

Click the OK button to create the ODBC data source. To open the VCDb.mdb database inside Visual
Studio, you need to create a database project. Run Visual C++ and select the File...New menu. Click
the Projects tab (see Figure 2.10) and select Database Project. Specify a directory and a project name
and click OK.

Figure 2.10: The New Projects dialog.

On the Machine Data Source page, you will be prompted to select the data source for this database
project, as shown in Figure 2.11.

Figure 2.11: Salecting the ODBC data source for a data-base project.

Select the ODBC data source you created earlier and click OK. Now click the Data View tab at the
bottom left of the Developer Studio main window.

Components of a Relational Database

The DataView in Developer Studio shows the components contained in the database. In the Data
View, you can double-click the elements (or click the plus sign [+]) to expand the tree view to display
the components of the database. Asyou can seein Figure 2.12, arelational database can consist of
many components and has considerable structure (or metadata).

Figure 2.12: The Visual C++ Data View.

The structure of arelational database might seem like too much overhead, but this structure provides
amazing benefits.

Asanillustration, you can liken the raw data and complex structure of arelational database to those of
ahuman body. A human body is more than raw chemical elements. A human body contains complex
structures such as proteins and enzymes. The abundance of structuresis what enables the chemical
elements to provide us much more value than they would if they were less highly structured.

A relational database is more than adata file containing raw bits and bytes. A relational database
contains a complex structure. Asin the human body, the abundance of structure in arelational
database is what enables the data to provide so much more value than it would if it were less highly
structured.

The structure is where the value lies. The raw elements (and the raw data) provide the building blocks,
but the structure is what makesit all valuable.

Thisis one reason why | advise developers not to attempt building their own database models. The
structure of a homemade database model can never be as good as the structure of arelational database.
A database that uses a homemade model is far less valuable than it would be if it used the relational
model.

Tablesin a Relational Database

The Microsoft Access database VCDb.mdb contains four tables and two views. Expand the Data View
so that it shows the tables in the database. Double-click the Pr oduct s tablein the DataView to see
the datainside the table, shown in Figure 2.13.

Figure 2.13: Opening a database table inside Visual C++.

The datain relational databases is arranged in tables. (In relational database parlance, tables are called
relations. | will refer to them as tables throughout this book.) These tables contain rows of like
information. The tables can be compared to arrays of structuresin C++. The columns in the database
table are like the data members of the structure. The rowsin the table are like the elements of the

array.

It's important to note that database tables are not like arrays of unionsin C++. Asyou might know, a
union is a user-defined data type that can hold data of different types at different times. In an array of
unions, the number of data members, their types, and their lengths can vary from one element of the
array to the next. A database table isn't like that. The number of columns, their type, and their length
do not vary from row to row.

In relational database parlance, the process of creating tables of like information is called
normalization.

Good table design is fundamental to a good database. If you don't properly design your tables, your
database will not be as functional asit could be. | will explain the rules of thumb for good table design
on Day 8, "Utilizing the Capabilities of Database Servers."

Fieldsin a Relational Database Table

The columns in a database table are called fields. (In relational database parlance, fields are called
attributes.)

A field isthe smallest element in a database. Each field in atable has a data type and alength. In the
DataView, click the plus sign by the Pr oduct s table nameto see thefieldsin thetable, asin Figure
2.14.

Figure 2.14: Fields in a database table.

Each field should contain one data element. For instance, rather than have asingle field to hold both
the first and last name of a customer, atable should have one field for the customer's first name and
another field for the last name. This enables easier searching and editing of the database.

Think carefully about the granularity of the datain the fields. Make each field as granular or precise as
possible. The usefulness of the database depends on the integrity of its smallest element-the field.

Data Typesin Relational Database Systems

As | described on Day 1, "Choosing the Right Database Technology," relational data-bases have their

own type systems. This means that the datatypesin C++ aren't the same as the data types in relational
databases.

In the Data View, click the plus sign by atable name to display the fields in the table. Right-click a
field name and select Properties from the Context menu (see Figure 2.15). The properties of each field
are name, data type, length, and precision. Look at the data types for several fields and note that
they're similar to but not the same as C++ data types.

Figure 2.15: The Column Properties window.

The ODBC API and the OLE DB API (explained on Day 15, "The ODBC API and the MFC ODBC
Classes," and Day 16, "The Ultimate Database API: OLE DB") provide atrandation facility between
C++ datatypes and database data types.

Many C++ datatypesreadily translate to and from database data types. However, some types do not.
When designing your database applications, you need to carefully read the appropriate documentation.

An interesting data value that fields can hold isNULL. In relational databases, NULL does not mean
zero. Zero isavaue, whereas NULL is undefined.

The use of NULL valuesis best illustrated with an example. Let's say you have atable that lists men
and the color of their hair. The hair color field would contain values such as Br own, Bl ack, Red,
and so on. What about men who are bald? Well, that would be an ideal placeto use NULL. A bald
man's hair color is undefined because he doesn't have hair.

Recordsin a Relational Database Table

The rowsin a database table are called records. (In relational database parlance, records are called
tuples.)

Records can be likened in C++ to elements of an array of structures. When interfacing a C++ program

to arelational database, you use records to store instances of C++ classes. The topic of mapping C++
objectsto relational databases is discussed in more detail on Day 14, "Legacy Database APIs." For
now, the basic ideais that the class definition corresponds to atable, the data members in the class
correspond to the fields, and each instance of the classthat is created at runtime can be persisted as a
record in the table.

The important thing about records in a database is that each record must be unique. It makes no sense
to have several records containing the same data. For example, if you had atable that listed your
customers, you would not want duplicates. Each customer would be listed once, and only once, in the
customer table. If there were duplicate customer records and you needed to change a customer's
address, you would not know which record to change.

The requirement that each record be unique can be fulfilled with good database design. Database
design is discussed further on Day 8.

Primary Keysin a Relational Database Table

Creating unique records raises the necessity of discussing keys. A key isafield, or combination of
fields, with which you can uniquely identify arecord.

It's easier to identify unique records by using asingle field instead of a combination of several fields.
That's why you frequently see things such as account numbers, customer numbers, part numbers, and
SO on.

Asyou can see in the sample database (and in Figure 2.14), there is a part number field in the
Pr oduct s table. This part number field uniquely identifies each product and is the key field in the
Pr oduct s table.

A good real-life example of akey isa Social Security number. If you know a person's Social Security
number, you can identify that person. A Socia Security number is akey attribute.

When you design a database, try to think carefully about what field or fields would constitute the key
for each table.

Relationships Between Recordsin Different Tables

A benefit of having a primary key, which uniquely identifies each record, is that keys can be used to
relate records to each other.

In the sample database, you have one table that lists your customers and another table that lists their
orders (see Figure 2.16). The Or der s table consists of an order number, the date of purchase, the
customer, the product purchased, and the price and payment information.

Inthe Or der s table, you don't need to store all the customer data with every order. That would be

redundant. Y ou simply store the customer number with each order. In C++ parlance, think of it as
storing a pointer to the customer with each order. That way you can easily tell which customer bought
what when, and the database will have no duplicate data.

Figure 2.16: Fields in the sample database.

The customer number isthe primary key in your Cust oner s table because it uniquely identifies the
customer. The customer number in the Or der s tableisaforeign key (see Figure 2.17). A foreign key
isaprimary key from another table. Again, in C++ you would think of aforeign key as a pointer to an
object.

Figure2.17: TheOr der s tablewith primary and foreign keys.

The same customer number could appear in the Or der s table several times. That's okay. Foreign
keys can repeat within atable, but primary keys cannot. The customer number must appear only once
inthe Cust oner s table but can appear in severa recordsin the Or der s table. Thereis aone-to-
many relationship between the customer numbersin the Cust oner s table and the customer numbers
inthe Or der s table.

The process of using primary keys and foreign keysis how the relationships between the data are
defined in arelational database. | will go into greater detail on this subject in the next few days.

Summary

The most widely used and accepted database model is the relational model. The relational model
provides great openness and flexibility. Applications in addition to a database's original application
can access the data. The database is sufficiently abstracted from the application so that the database
and the application can be independently updated.

A relational database consists of tables, which are arranged in columns and rows. Each column is
called afield. Each row is called arecord and is unique, based on some key field or fields. The records
in the tablesin arelational database are related to each other, based on key fields that are called
primary and foreign keys.

Q&A

Q DoesVisual Studio provide support for other database modelsor technologiesin
the sameway that it supportsrelational databases?

A No. The database integration that you find inside Visual Studio is based on ODBC.
ODBC is designed to work with relational databases only. Therefore, Visual Studio 6
provides direct support of and integration with only relational database technology.

Q What'sthe difference between Microsoft Accessand Jet?

A Jet isthe name of the database engine portion of Microsoft Access. Y ou can think of
Microsoft Access as a user interface (Ul) to the Jet database engine. The Jet database
engineisalso used in the Access ODBC driver. When you write a C++ application that
stores datain an Access MDB file, your application makes callsto the Access ODBC
driver, which calls the Jet engine, which talks to the MDB file.

Q Can't | build arelational database by using a record manager such asBtrieve or a
desktop database such as FoxPro?

A You can build a set of tables that use primary and foreign keys to relate records to each
other, using Btrieve or FoxPro. However, with Btrieve and FoxPro, each tableis stored
in a separate file. Also, Btrieve and FoxPro make no effort to help you enforce relational
rulesinside your database as arelational database server (and, to a certain extent,
Microsoft Access) does. With Btrieve and FoxPro, you will likely end up with a
database that is partly relational and partly your own model, which will be a handicap in
the future when you try to add new features or capabilities to your database.

Q Can't | use a spreadsheet such as Microsoft Excel asa database?

A Some spreadsheet applications do provide support for database-type functionality.
However, this functionality merely consists of storing rows and columns of datain a
manner akin to asingle tablein arelationa database. Spreadsheets provide no relational
capabilities. Some spreadsheets, such as Microsoft Excel, do enable usersto obtain data
from relational databases and analyze that data inside the spreadsheet. The data must be
formatted as a single table of data, however.

Q With all the overhead of arelational database, isn't a relational database going to
be slow when compared to alean and mean databasethat | create myself in C++ or
compared to arecord manager ?

A A desktop database such as Microsoft Access will probably perform much faster than
any database you can write yourself. A relational database server, with its capability to
take full advantage of multiprocessor servers and modern disk subsystems, will
outperform record managers in handling large quantities of data.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to

real-life situations.

Quiz

1. Which editions of Visual C++ enable viewing and editing datafrom relational databases inside
Visual Studio?

What isaDSN?

What gives a database its value and why?

What is the fundamental requirement for recordsin arelational database?

What mechanism is used to relate records in different tables to one another?

abkrwd

Exercises

1. Openthe Or der s tablein the database project you created today. Note the foreign keys that
appear in the table. Open the Cust oner s and Pr oduct s tables and see primary keys for
customers and products. Try to change one of the foreign key values, such as a customer
number, to a number that doesn't exist as a primary key. What happens? Does the database help
enforce the integrity of the data?

2. Openthe O der s tablein the database project you created today. Try to change one of the
order numbersin the table by typing in letters for the contents of the field. When you move the
cursor off that record, what happens? Does the database validate the data type you tried to
enter? (Y ou can press Esc to abort the edit.)

| ¢ Previous Chapter (% MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 3
Retrieving Data Through Structured
Query Language (SQL)

. Structured Query Language

. TheSOL SELECT Statement
o The ORDER BY Clause
o The WHERE Clause

. SOL Joins

. SOL Subqueries

. Resultsets and Cursors

. Summary

. Q&A

. Workshop
o Quiz

o EXxercises

Today you will learn how to capture data from relational databases by using Structured Query
Language (SQL). SQL is a powerful language designed specifically for manipulating data.

When you complete this lesson, you will be able to use SQL to transform arelational database's raw
datainto arich harvest of useful information. Y ou will appreciate how SQL queries and a properly
designed relational database enable you to fulfill requests for information that were unanticipated at
the time that the database was first created.

Today you will

. Learn about the Structured Query Language.

. Understand and use the SQL SELECT statement.
« Work with SQL Joins.

. Explore SQL subqueries.

. Useresultsets and cursors.

Structured Query Language

In Day 1, "Choosing the Right Database Technology," you learned that relational databases have their

own language interpreter. Thislanguage interpreter enables arelational database to interpret and
execute commands sent to the database. These commands are written in Structured Query Language, a
language specifically designed to work with data that resides in relational databases. The name for the
original version of this database language was Sequel. However, that name has been changed to SQL.

NOTE

When referring to the SQL language, the word SQL should be pronounced
ess-que-ell instead of sequel. The sequel pronunciation is sometimes used
when referring to Microsoft SQL Server and Sybase SQL Server. However,
when talking about the SQL language, use ess-que-€ll.

Just asthere is a standard for the C++ language, there is a standard for SQL. The most recent version
of the SQL standard is SQL-92 (ANSI Document Number X3.135-1992). Relational databases use
SQL. Each database vendor implements the SQL standard in its database but then adds its own
extensions. For instance, the ANSI SQL used in Microsoft SQL Server is essentially the same asthe
ANSI SQL used in Oracle. However, SQL Server and Oracle each add their own custom extensions to
the language.

SQL isnot aprocedural language. It's not like C++ or BASIC. In fact, SQL is probably unlike any
programming language you have ever seen. SQL is built to deal with sets of records. These records
can come from atable or from multiple tables inside arelational database.

With SQL, the whole ideaisto collect a set of records that match the criteria you specify and then to
perform some operation on these records. SQL has an amost English-like syntax (but with no accent).
SQL statements typically have averb, which indicates the action to be taken-a command such as
SELECT, UPDATE, DELETE, or | NSERT. The most common operation is to retrieve (or SELECT)
records.

TheSQL SELECT Statement

The SQL SELECT statement enables you to retrieve information from the database. The SELECT
statement begins with the SELECT command and is followed by the noun(s) indicating which field(s)
you want to SELECT. Y ou can use an asterisk to indicate that you want all the fields. Y ou have to tell
the database which table you are talking about, so you include a FROMclause that indicates the table.
The basic syntax looks like this:

SELECT which fields FROM whi ch table

An SQL query selects a set of records that match the criteria you specify. The preceding SELECT
statement would select all the records from the table. Y ou can see a SELECT statement like thisin
action right inside Visua C++.

Open the database project you created in yesterday's lesson (Day 2,"Tools for Database Devel opment
in Visual C++ Developer Studio"). Select the Data View tab on the Workspace pane. As you know,
this database rel ates to the sample application mentioned in Day 1-software for taking orders for

products advertised on TV commercials. Double-click the Cust oner s table (see Figure 3.1) to open
it and view all the records, shown in Figure 3.2.

Figure 3.1: The Visual C++ Data View.

Figure3.2: TheCust oner s table.

Click the SQL button on the Query toolbar (the third button from the right), and you will see an SQL
SELECT statement in the splitter window above the records in the table.

Figure3.3: TheCust oner s tablewith a SELECT statement.

The SELECT statement shown in the window retrieved those records from the database. The SQL
statement looks like this:

SELECT ' Custoners'.*
FROM ' Cust onmer s'

Visual C++ sent this statement to the database (in this case, the Access ODBC driver and Jet database
engine). The database interpreted the SQL statement, read the data from the MDB file, and returned
the set of records to Visual C++. Visual C++ displays those recordsin the window.

Y ou can see that the SQL statement follows the basic syntax for the SELECT statement described
earlier. However, this statement usest abl enane. fi el dnane syntax to indicate which fields
should be selected. The statement says SELECT ' Cust oner s' . * to select all thefieldsin the
Cust oner s table. It places single quotes around the table name in case the table name contains

spaces. The statement then says FROM ' Cust oner s' to indicate from which table to select the
records.

Because the statement says FROM ' Cust oner s' , the' Cust oner s' . * syntax might seem
redundant. (The table name is specified twice in the same statement.) However, the

t abl enane. fi el dnanme syntax comesin handy when you have two tables in your FROMclause
and the same field name existsin both tables. Thet abl enane. f i el dnanme syntax enables you to
indicate from which table you want the field.

This SELECT statement selects all the fields from all the records in the table. Try editing the SELECT
statement so that you don't get all the fields. Changethe' Cust oners' . * to
" Custoners' . cust | ast nane. Figure 3.4 shows the results.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. This ensures that the
syntax of your SQL statement is correct. It sends your SQL statement to the database's SQL
interpreterNin this case, the Jet database engineNto see whether it can properly run the statement. I
you haven't edited something you should have (or vice versa), you will receive the message that
appearsin Figure 3.5.

Figure 3.4 : Editing the SELECT statement.

Figure 3.5 : The SOL Syntax Verified message box.

Run the SQL statement by pressing the ! (run) button on the Query toolbar. WWhen you run your
SELECT statement, you will see only thecust | ast nane field of every record in the Cust oner s
table, asin Figure 3.6.

Figure 3.6 : The Last Namefield fromthe Cust oner s table.

It's disappointing to note that if you misspell the field name, the Jet syntax checker will not catch it.
When you run the query, you receive arather unhelpful error message (see Figure 3.7). Some
databases do a better job than others of verifying the syntax.

With certain SQL syntax errors, you receive a more descriptive error message, such asthe onein
Figure 3.8. However, if you ever need to track down some mysterious bug in your SQL statement, you
might feel that this error message isn't descriptive enough either.

Figure 3.7 : The error message from the Jet/Access ODBC driver.

Figure 3.8 : The error message from the Jet/Access ODBC driver.

Change the SELECT statement back so that it selects all the fields and run the query again to see the
whole table.

SELECT *
FROM Cust oner s

The ORDER BY Clause

Wouldn't it be nice to see the customers in aphabetical order? That's very easy to do with SQL. All
you have to do isadd an ORDER BY clause to the SELECT statement, like this:

SELECT *
FROM Cust oner s
ORDER BY cust| ast nane

When you run this query, you will see all the customer records, ordered by the Cust Last Nane field
(see Figure 3.9).

Figure 3.9 : Customer namesin order by last name.

Y ou can select the customersin reverse alphabetical order by adding DESC to the end of the ORDER
BY clause. Observe the resultsin Figure 3.10.

Figure 3.10: Customer names descending in order by last name.

The WHERE Clause

With SQL SELECT statements, you can collect a set of records that fit specific criteria. The SELECT
statements you have used so far select all the records. That's pretty broad criteria. To narrow that
down, you add a predicate to the SQL statement. The predicate takes the form of a WHERE clause that
indicates which records to select. Edit the SELECT statement to include a WHERE clause, like this:

SELECT ' Custoners'.*
FROM ' Cust oner s'
VWHERE cust nunber = 2

Y ou can type a lowercase WHERE. When you click the button to check the SQL syntax, this will
convert the WHERE to uppercase, asin Figure 3.11. Uppercase letters for SQL keywords are a standard

convention.

Figure 3.11: The customers\VWHERE Cust Nunber = 2.

Now change the WHERE clause to find all customers with alast name of Travolta. Use single quotes
around Tr avol t a to indicate to the database that it's a string data type. Case sensitivity varies
between different relational databases. Don't worry too much about it now. Nothing that you do with
this database is case sensitive.

SELECT *
FROM Cust oner s
WHERE custl astnane = 'travolta’

Execute the statement and you will see that there really is only one John Travolta (see Figure 3.12).

Figure 3.12: ThecustomersWHERE Cust Last Nane ='Travolta'.

SQL Joins

Wouldn't it be interesting to see what products John Travolta buys from TV advertising? SQL lets us
find that information quite easily from our relational database. The first thing to do islook at John's
orders. Double-click the Or der s table to see all the orders, as shown in Figure 3.13.

Figure 3.13: The Or der s table.

You can seeinthe Cust oner s table that John Travolta's customer number is4. You can see a
Cust oner Nunber field inthe Or der s table. A couple of recordsin the Orders table contain 4 in
the Cust onmer Nunber field. You can rightly assume that those were orders placed by Mr. Travolta.

What you're doing islooking at the primary key in the Cust oner s table, which isthe Cust Nunber
field, and comparing it to aforeign key field in the Or der s table, which isthe Cust oner Nunber
field. Isthere some way to put this information together without having to eyeball it? Yep, thereis. It's
called an SQL join.

First, you change the SQL query so that you find only the fields you are interested in. Edit and run the
guery so that you obtain only the first and last name fields of records in which the last name equals

Travolta (see Figure 3.14).

Figure 3.14: Thefirst and last name fields for Travolta.

Y ou want to retrieve the part number from the Or der s table, so add par t nunber tothelist of
fieldsto select. You need to pull information from the Or der s table, so add the Or der s tableto the
FROMclause.

SELECT custfirstnane, custlastnane, partnunber
FROM Custoners, orders
WHERE custl astnane = 'travolta'

Here's the nifty part. Y ou want only the records from the Or der s table that have John Travolta's
customer number. Y ou specify thisin the WHERE clause. Y ou want records in which the

Cust oner Nunber field (inthe Or der s table) equalsthe Cust Nunber field (inthe Cust oner s
table). You still want only records from the Cust oner s table that have alast name of Travolta. To
do this, you add an AND to the WHERE clausg, like this:

WHERE custl astnane = 'travolta’
AND cust omers. cust nunber = orders. cust oner nunber

Run the query, and the results will look like Figure 3.15.

Figure 3.15: The part numbers purchased by John Travolta.

Y ou performed a two-table join to discover the part numbers of the products that John Travolta
purchased. However, having part numbersisn't sufficient. Y ou want to know the names of the
products he purchased. That means you need information from the Pr oduct s table, too. Double-
click the Pr oduct s tableto open it and view all the products, asin Figure 3.16.

Figure 3.16: The Pr oduct s table.

Y ou know that you want the product name instead of the part number, so change the SELECT
statement to select the Pr oduct Nane field instead of the Par t Nunber field. You aso know that
the Pr oduct Nane field comes from the Pr oduct s table, so add the Pr oduct s table to the FROM
clause.

Y ou want only product names that have the same part number as the ones you found inthe Or der s
table for John Travolta. Y ou specify this by adding another AND condition to the WHERE clause. Y our
SELECT statement will look like this:

SELECT custfirstnane, custlastnane, productnane

FROM Cust omers, orders, products

VWHERE custl astnanme = 'travolta’ AND
cust oners. cust nunber = orders. cust onmer nunber AND
orders. part nunber = products. part nunber

When you run the query, you can seein Figure 3.17 that Mr. Travolta has a particular penchant for 8-
track music from the 70s.

Figure 3.17: The product names purchased by John Travolta.

Now that you have the information you need, you can close the query windows. When you close the
Customers Query window, you will be prompted to save the query. Because you could probably re-
create this query in a heartbeat if necessary, you don't need to save it.

SQL Subqueries

SQL syntax can be elegant and powerful. SQL queries can be nested to perform operations requiring
lengthy code in a procedural language. Nested queries are called subqueries.

A subquery enables you, with very little code, to find all the customers who have placed orders since a
certain date, such as November 11, 1998.

Open a query window for the Or der s table by double-clicking the Or der s tablein the Data View.

Click the SQL button to view the SELECT statement that retrieved the records (see Figure 3.18).

Figure 3.18: The Or der s table.

Y ou need to find the customers who have ordered since November 11, 1998. Thefirst step isto find
the orders placed since then. Modify the query so that the window contains only order records after
that date. Y ou do this by adding a WHERE clause like this:

SELECT 'Orders' . *
FROM ' Or der s’
WHERE OrderDate > { d '1998-11-11"' }

The ANSI SQL convention isto use braces and the d, with single quotes around the date to indicate to
the database that thisis a date, as opposed to atext string or numeric type. When you run the query,
you will find only the orders placed since that date, as shown in Figure 3.19.

Figure 3.19: The orders since November 11, 1998.

Now that you have the orders since that date, you are going to find the customers who placed those
orders, by retrieving the customer numbers from the orders. Y ou need to change the query so that you
obtain only the customer numbers, as shown in Figure 3.20.

Figure 3.20: The customer numbers from orders since November 11, 1998.

Now you can use these customer numbers to find the customer information. Build a SELECT
statement that retrieves the customer records from the Cust oner s table in which the customer
number is among the numbers retrieved in the orders query. To do this, you can embed the orders
query into the WHERE clause of a new query, like this:

SELECT ' Custoners'.*
FROM ' Cust oner s’
VWHERE cust nunber I N
(SELECT ' Orders' . cust onmer nunber
FROM ' Or ders'
WHERE OrderDate > { d '1998-11-11"' })

The easiest way to create this new query isto open a new query window to the Cust oner s table.
Press the SQL button on the Query toolbar so that you can see the customers query. Add the WHERE
clause so the query looks like the following:

SELECT ' Custoners'.*
FROM ' Cust oner s'
VWHERE cust nunmber IN ()

Then select the text of the orders query, copy it to the Clipboard, and paste it inside the parentheses at
the end of the WHERE clause in the customers query, like this:

SELECT ' Custoners'.*

FROM ' Cust oner s'

VWHERE cust nunber IN (SELECT ' Orders' . custonernunber
FROM ' Order s’

WHERE OrderDate > { d '1998-11-11" })

When you run the query, you can see in Figure 3.21 that two customers have placed orders since
November 11, 1998.

The code you would have to write in C++ to retrieve this same information from a binary datafile, or
even from arecord manager, is considerably more complex. SQL is made to work with data, and that
iswhereit excels.

Figure 3.21: The customers with orders since November 11, 1998.

Another helpful query to learn is which order in the database is the most recent order. One way to find
thisisto select all the orders and include an ORDER BY Or der Dat e DESC clause.

SELECT ' Orders' . *
FROM ' Orders'
ORDER BY or der dat e DESC

Thefirst record is the most recent order.

Another way to find the most recent order isto ask the database for the order in which the date is equal
to the maximum date in the table. Asking for the maximum date in the tableiseasy. You do it like
this:

SELECT MAX(or der dat e)
FROM Or ders

MAX is an aggregate function, meaning that it operates on multiple records but returns a single value.
Y ou can embed this SQL statement as a subquery in another SELECT statement to find the most
recent order (see Figure 3.22).

Figure 3.22: The most recent order.

Y ou can also perform ajoin with the Cust oner s table to find the customer who placed the most
recent order.

Resultsets and Cursors

When an application issues an SQL SELECT statement to a database, the database interpretsit and
returns a set of records. Asyou know, thisiswhat happensin Visual C++ when you double-click a

tablein the Data View. Visual C++ sendsa SELECT * statement to the database and the database
returns the records. Visual C++ then displays those records in a query window.

MNevw TERM

The set of records that arelational database returns as the result of aquery is called the resultset.

SQL doesn't care whether that resultset contains one record or one million records. SQL cares only
about giving you a set of records that fit the criteria you specified. Most relational databases provide a
simple model for the application to retrieve data after a submitting query. Records are returned to the
application one at atime in the order specified by the query, until the end of the set is reached. SQL
has no provision for moving back to a previous record.

Applications often require the capability to move back and forth through a resultset, one record at a
time, and possibly edit or delete a particular record in the set. SQL was not originally designed to
provide that capability. Thisiswhere cursors comein.

MNew TERM

A cursor isamechanism that enables the individual records of aresultset to be processed one record at
atime. The mechanismis called a cursor because it indicates the current position in aresultset. Thisis
similar to the cursor on a computer screen, which indicates the current position of the input pointer in,
for example, a document.

New TeErm

A cursor that provides the ability to move only forward within aresultset is called a forward-only
Cursor.

MNew TeERm

A cursor that provides the ability to move forward and backward within aresultset is called a
scrollable cursor.

New TeErm

A cursor that enables a user to change or delete datain addition to scrolling is referred to as a
scrollable, updatable cursor.

Y ou can see that Visual C++ uses scrollable, updatable cursors when you open a query window. Y ou
can move back and forth through the records and edit the information in the records.

Summary

Today you learned that SQL is alanguage that excels at manipulating data. Y ou learned how to issue
SELECT queriesto retrieve records from asingle table in arelational database. Y ou learned how to
perform joins to retrieve records from multiple tables. You learned how to use subqueriesin SQL to
obtain information that requires alarge quantity of procedural code to retrieve. Last, you learned that
cursors are a mechanism that enables record-at-a-time navigation through a resultset.

Q& A

Q Isit possibleto write complete applications, using SQL ?

A It's not possible to write applications by using ANSI SQL as the only programming
language. ANSI SQL has no control of flow constructs, such as conditional 1oops and
| f statements. No user interface mechanisms or input/output routines (other than
SELECT, which provides output) are available. However, some relational database
servers, such as Microsoft SQL Server, do provide some control of flow extensions in
their SQL implementations.

Q IsSQL alwaysinterpreted? Wouldn't SQL run faster if therewereaway to
compilethe SQL statements?

A SQL is often interpreted, but there are ways to compile SQL statements to make them
run faster. Relational database servers have the capability to store SQL statementsin the
database with the data. The database server interprets, optimizes, compiles, and saves
the SQL statementsin their compiled form for speedy execution. These prepared SQL
statements are called stored procedures.

Workshop

The Workshop quiz questions test your understanding of today's material. The answers appear in
Appendix F, "Answers." The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is SQL?
2. What isan SQL join?

3. What iswrong with this SQL query?

SELECT custoners. *
VWHERE cust oners. cust nunber = 3

>

What is an aggregate function?
What does a cursor make possible?

o1

Exercises

1. Discover what happens when you add a table name to the FROMclause without mentioning that
table in the WHERE class of an SQL SELECT statement, like this:

SELECT custoners. *
FROM cust oner, orders
WHERE cust oners. cust nunber = 3

2. Add ajoin to the SQL query shown in Figure 3.22 to retrieve the name of the customer who
placed the most recent order.

| ¢ Previous Chapter (= Mext Chapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 4
Retrieving SQL Data Through a C++ API

. Relational Database APIs
. Microsoft Universal Data Access
. ActiveX Data Objects (ADQO)
o Techniguesfor Using ADO in C++ Applications
o Building C++ Applications That Use ADO
o Exception Handling for ADO
o Displaying Recordsin aList Control

. Summary

. Q&A

. Workshop
o0 Quiz

o EXxercises

Today you will learn how to retrieve data from relational databases by using an API for C++
programs. Using a database API in your C++ programs enables you to combine the strengths of C++
and SQL. When you complete today's work, you will know how to build applications in C++ that have
the data-handling power and elegance of SQL.

Today you will

. Retrieve data, using relational database APIsfor C++.
« Work with Microsoft Universal Data Access.

« Understand ActiveX Data Objects (ADO).

Relational Database APIs

On Day 1, "Choosing the Right Database Technology," you learned that relational databases have their
own language interpreters and type systems. On Day 3, "Retrieving Data Through Structured Query
Language (SQL)," you learned that relational databases use alanguage called SQL. You also learned

that SQL isfundamentally different from C++ (SQL isinterpreted, deals only with relational data, has
no procedural constructs, and so on).

C++ compilers don't know SQL, and SQL interpreters don't know C++. Therefore, you haveto use a
relational database API to act as atrandator for them.

Relational database APIs provide an interface between C++ and SQL. They offer away for C++
programs to communicate with relational databases. Database APIs provide a bridge between C++ and
SQL by translating between the type system of the database and the type system of C++. They provide
away to pass SQL code to the database to be run by the database interpreter and retrieve the resultset
into C++ program variables.

Some database APIs are database specific and are built to work only with a particular database from a
particular vendor. Other database APIs try to provide an open interface to multiple databases. ODBC
Is adatabase API that triesto provide an API to all relational databases.

OLE DB is supplanting the venerable ODBC. OLE DB is newer, more modern, and more feature-rich.
OLE DB encapsulates ODBC functionality for relational databases and also provides access to
nonrelational data sources, such as data from spreadsheets, VSAM data (from mainframes), email
systems, directory services, and so on.

M icrosoft Universal Data Access

OLE DB isthe foundation of Microsoft Universal Data Access. With Microsoft Universal Data
Access, you can access data through one API, regardless of where the dataresides. Y our application
speaks to a common set of interfaces that generalize the concept of data. Microsoft examined what all
types of data have in common and produced an API that can represent data from a variety of sources.

The Microsoft Universal Data Access strategy is based on OLE DB, alow-level C/C++ API designed
to enable an individual data store to easily expose its native functionality without necessarily having to
make its data look like relational data. The vendor for that particular data store needs simply to
provide an OLE DB driver for it. OLE DB drivers are actually called OLE DB providers. AsaC++
programmer, you can use the OLE DB API to gain access to any data source for which thereisan
OLE DB provider.

ActiveX Data Objects (ADO)

ActiveX Data Objects (ADO) isahigh-level database API that sits on top of OLE DB. Compared to
OLE DB, ADO programming is much simpler. ADO is suitable for scripting languages such as
VBScript and JavaScript and for programming languages such as Visual Basic (VB) and Java. You
can also call ADO from C++ programs.

ADO provides adual interface. This dual interface makesit possible to use ADO from scripting
languages, such as VB Script and JavaScript, aswell as from C++. ADO actually providestwo APIs
(hence the term dual). One API is provided through OLE Automation for languages that don't use
pointers, such as scripting languages. The other API is provided through avt abl e interface for C++
programming. Y ou will learn more about COM on Day 10, "Database Client Technologies and the

Secrets of ADO," and Day 11, "Multitier Architectures." Now you will jump right into learning ADO.

The programming model in ADO typically consists of a sequence of actions. ADO provides a set of
classes that simplifies the process of building this sequence in C++ code.

. Connect to adata source.

. Specify aquery of the data source.

. Execute the query.

. Retrieve the datafrom the query in an object that you can easily accessin C++ code.
. |f appropriate, update the data source to reflect the edits made to the data.

. Provide ageneral meansto detect errors.

A recordset isaresultset coupled with a cursor. ADO returns the data from a query in arecordset
object. A recordset object encapsulates the data that was retrieved from the database (which isthe
resultset) as well as functions for moving or navigating through records one at a time (which isthe
Ccursor).

Typically, you will employ all the preceding stepsin the ADO programming model. However, ADO is
flexible enough that you can use just part of the model if you need to. For example, you could create a
new recordset object and populate it from your code, without making a connection to a data source or
executing any queries. Y ou could even pass that recordset object to other routines or applications.

Thefirst step in accessing a data source with ADO is opening (or connecting to) the data source. With
ADOQO, you can open adata source through its OLE DB provider or through its ODBC driver. Y ou
installed the Jet OLE DB Provider on Day 2, "Tools for Database Development in Visual C++

Developer Studio.” You will use the Jet OLE DB Provider for the examples in this book.

With ADO, you can connect to ODBC data sources by using the OLE DB provider called MSDASQL.

In the Visual C++ setup program, it's called the Microsoft OLEDB ODBC Provider. Y ou can useit
with ADO for those data sources that have no OLE DB provider but do have an ODBC driver.

In ADO, you make a connection to a data source by using the ADO Connection object. The ADO
Connection object has data members for the OLE DB provider name, data source name, username,
password, and so on. The ideais to set the Connection object's data members and call the Open
member function to establish and the Cl ose member function to terminate the connection. Y ou use
the Connection object to handle transactions, which are often crucial in database applications. Y ou
will learn about transactionsin Day 6, "Harnessing the Power of Relational Database Servers.” You

can aso use the ADO Connection object's Execut e function to send SQL queries to and receive
resultsets from the data source.

An dternative to sending queries with the Connect i on's Execut e function isto create an ADO
Command object and use its Execut e function. The Command object enables more complex queries
and commands to be run against the data source. For instance, you could use a Command object to call
a stored procedure with parametersin SQL Server. You will learn more about stored procedures on
Day 6. A Command can create its own connection to the database or use a reference to an existing

Connection object for greater efficiency.

Techniquesfor Using ADO in C++ Applications

There are a couple of waysto use ADO in your C++ code. Y ou can use the ADO header files and
import library from the OLE DB SDK. Y ou include the ADO header files (adoid.h and adoint.h) in
your source and add the ADO import library adoid.lib to your linker input. This enables you to create
instances of the ADO objects and access their member functions. Using this method, the code to
connect to a data source and create a Command object could look something like Listing 4.1. The code
in Listing 4.1 doesn't check return values for the sake of code brevity. Thisis a code snippet only and
will not compile as shown.

Listing4.1. Using ADO viathe OLE DB SDK

1: ADOConnecti on* pi Connecti on;
2: ADCCommand* pi Comrand;
3:
4. CoCreatel nstance(CLSI D _CADOConnecti on, NULL, CLSCTX | NPROC SERVER,
1 D_I ADOCConnection, (LPVAO D *)&pi Connection);
5:
6: CoCreatelnstance(CLSI D CADOCCommand, NULL, CLSCTX | NPROC SERVER,
[1 D_I ADCCommand, (LPVA D*) &pi Comrand) ;
7:
8. pi Connection->Cpen(L"MyDSN', L"sa", L"bodacious");
9:
10: pi Conmand- >put ref Acti veConnecti on(pi Connecti on);

Lines 1 and 2 declare pointersto two ADO COM interfaces. Lines4 and 6 call

CoCr eat el nst ance to create instances of the ADO interfaces and assign the pointers to them.
(You will learn more about CoCr eat el nst ance and COM interfaces on Day 9, "Understanding
COM.") Line 8 uses the Open function of the ADO Connection object to open a connection with an
ODBC data source called My DSN. It uses a username of sa (system administrator) and a password of
bodaci ous. Line 10 callsthe ADO Command object'sput ref _Act i veConnect i on function
to tell it to use the connection that was opened in line 8. Later in your program you will need to call
the Rel ease function on pi Connect i on and pi Command to free those objects.

The other way to use ADO in a C++ application isto use the Visual C++ #i nport directive. Using
the #i npor t directive with the ADO library enables you to write less verbose code to accomplish the
same tasks with ADO. For instance, with #i npor t , the preceding code can be abbreviated to the
codein Listing 4.2. This code doesn't check return values for the sake of code brevity. Thisisacode
snippet only and will not compile as shown.

Listing 4.2. Using ADO via #import

_ConnectionPtr pConnecti on;
_CommandPtr pCommand;

pConnecti on. Creat el nstance(__uui dof (Connection));
pComrand. Cr eat el nst ance(__uui dof (Conmand));

pConnecti on->Qpen(L"MWDSN', L"sa", L"bodacious");

ecoNygRONMR

pCommand- >Act i veConnecti on = pConnecti on;

In Listing 4.2, lines 1 and 2 define instances of two ADO smart pointer classes. Lines4 and 5 call the
Cr eat el nst ance function of those smart pointer classes to create instances of the ADO classes.
Line 7 uses the Open function of the ADO Connection object to open a connection with an ODBC
data source called My DSN. It uses a username of sa and a password of bodaci ous. Line 9 setsthe
ADO Command object's Act i veConnect i on data member so that it uses the connection opened in
line7.

Later in your program, you should not call the Rel ease function on pConnecti on and
pConmand to free those objects. pConnect i on and pComrand are smart pointers, so when they
go out of scope, Rel ease will be automatically called. Also, using the #i npor t directive means
that you don't need to include the ADO header files (adoid.h and adoint.h) in your source, nor do you
need to link with the ADO import library adoid.lib. Article Q169496 in the Microsoft Knowledge
Base (KB) provides additional information on using the #i npor t directive with ADO. Y ou can
obtain KB articles from the MSDN subscription CDs. Also, you can send email to the KB email server

atnshel p@n crosoft.com

Asyou can see from the code listings, using the #i npor t directive enables you to write code that is
less verbose than OLE DB SDK code. Article Q174565 in the Microsoft Knowledge Base compares
the processes of using ADO viathe OLE DB SDK, viathe#i nport directive, and viathe OLE DB
SDK, using the MFC OLE classes. That Knowledge Base article recommends using ADO viathe

#i nport directive. Based on my personal experience in writing ADO applications, | have found that
the#i npor t directive hides some of the complexity of using ADO. Therefore, the ADO examplesin
thisbook use ADO viathe #i nport directive.

Article Q174565 in the Microsoft Knowledge Base compares the process of using ADO viathe OLE
DB SDK, viathe #i nport directive, and viathe OLE DB SDK using the MFC OLE classes. That
Knowledge Base article also recommends using ADO viathe #i nport directive.

If you are interested in exploring the process of using ADO viathe OLE DB SDK, thereis asample
application, ADOSDK, on the CD-ROM. It'san MFC application that gives you some idea of what
code you need to write in order to use ADO viathe OLE DB SDK.

NOTE

ADOisaCOM DLL. To cal ADO functions from your C++ programs, the
ADO DLL must be registered, which means that the location of the ADO
DLL must be recorded in your machine's registry. When you install the
Visual C++ data access components, ADO is automatically installed and
registered for you. If you ever need to register ADO manually, at the
command line you can run the following:

RegSvr 32 nsadol5. dl |

Y ou run RegSvr32 from the directory containing msadol15.dll; this directory
typicaly is

\program fil es\common fil es\system ado

Building C++ Applications That Use ADO

The best way to learn ADO isto build an application with it. Y our application needn't be an MFC
application in order to use ADONMFC is not required for ADO. However, the ADO examplesin this
book use MFC because MFC provides an application framework that you don't have to build from
scratch. Using MFC for the ADO examples enables you to concentrate on learning ADO, not on
building an application framework. It's also interesting to see how the ADO objects can map to the
objects in the MFC document/view architecture.

Thefirst step isto create anew MFC AppWizard (exe) project in Visual C++: Name it ADOVFCL.

Figure4.1: A new AppWizard exe.

Specify that the application should be a multiple document application, asin Figure 4.2.

Figure 4.2 : Choose Multiple Documentsin Sep 1.

Specify that AppWizard include no database or OLE support in the application. Y ou will add that code
yourself. Specify whatever you like on the AppWizard options for toolbars, status bars, and so on. In
AppWizard's last step (step 6 of 6, shown in Figure 4.3), make sure that the Vi ew class derives from
CLi st Vi ewinstead of CVi ew.

Let AppWizard generate the project and the source code. Run the application to make sure it builds
successfully with no errors or warnings.

Figure4.3: Derivethe Vi ew classfromCLi st Vi ew.

As mentioned earlier, the ADO library isa COM DLL. This means applications that use it must
initialize the OLE/COM libraries before making any ADO calls. In your MFC application, the call to
initialize the OLE/COM librariesis best doneinthel ni t I nst ance function of the application
class.

Listing 4.3. Initializingthe OLE/COM Libraries

1 BOOL CADOVFClApp: :Initlnstance()

2:

3: /! Add this function to initialize the OLE/COM | i brari es
4 Af xQ elnit();

Add the code shown in line 4 to initialize the OLE/COM libraries every time the application is |oaded.
Listing 4.4 shows some additions to StdAfx.h for ADO.

Listing 4.4. Changesto StdAfx.h

#i ncl ude <condef. h>

#inmport "C \programfiles\comon fil es\system ado\ nsadol5.dl|" \
no_nanespace \
renane("EOF", "adoEOF")

AN

The codein Listing 4.4 can be added to the end of the StdAfx.h file. The most important thing is to not
place the code inside the brackets in StdAfx.h that mark the autogenerated code. Line 1 includes a
header file that enables your application to use some special COM support classesin Visua C++.
These classes make it easier to work with OLE Automation data types, which are the data types ADO
uses. Lines 3, 4, and 5 use the #i npor t directive to import the ADO library class declarations into
your application.

As mentioned earlier, ADO isaCOM DLL and provides dual interfaces. The declarations of the ADO
classes are stored as aresource in the ADO DLL (msadol15.dll) inside what is called a Type Library.
The Type Library describes the automation interface as well asthe COM vt abl e interface for use
with C++. When you use the #i nport directive, at runtime Visual C++ readsthe Type Library from
the DLL and creates a set of C++ header files from it. These header fileshave. t1i and. tl h
extensions and are stored in the build directory. The ADO classes that you call from your C++ code
are declared in thesefiles,

Line4 in Listing 4.4 specifies that no namespace is to be used for the ADO objects. In some
applications, it might be necessary to use a namespace because of a naming collision between objects
in the application and objectsin ADO. Y ou can specify a namespace by changing line 4 to look like
the following:

rename_nanespace(" AdoNS")

Specifying a namespace for ADO enables you to scope the ADO objects using the namespace, like
this:

AdoNS: : ADO_(bj ect _Nane

Line 5 renames EOF (end of file) in ADO to adoEOF so that it won't conflict with other libraries that
define their own EOF. Microsoft Knowledge Base article Q169496 provides further information on
thistopic, if you need it.

Run your application to make sure it builds successfully with no errors or warnings. After the build,
you should seethe TLI and TLH filesin the build directory. They are the header files that the compiler
created from the Type Library in msado15.dll. Feel freeto have alook at them. They declare the ADO
classes you can call from your code.

As mentioned earlier, the typical ADO programming sequence starts with making a connection to the
database. A single ADO Connection object is normally shared and reused by multiple instances of
other ADO objects.

Thisisvery similar to the way an MFC Docunent classisused inan MFC application. Therefore, it
makes sense to place an ADO Connection object in the Docunent class of an MFC application.

When a document is opened in OnNewDocunent , you can call the ADO Connection object's Open
function to connect to the data source. In OnCl oseDocunent , you can call the Connection object's
Cl ose function to close the connection to the data source.

In an MFC application, the Docunent object is easy to access from the other objects (particularly the
MFC Vi ewobjects). By placing the ADO Connection object within that Docunent object, you
create a connection to the data source, which you can share and re-use and which automatically opens
and closes as the document(s) opens and closes.

Declare apointer to an ADO Connect i on object in your Docunent class's header file asapublic
member of the Docunent class. You also need to add a data member that you will use to indicate
whether the connection is open.

Listing 4.5. Changesto the Document Header File

BOOL m | sConnecti onQOpen;
_ConnectionPtr m pConnecti on;

1: class CADOWClDoc : public CDocunent
2: |

3: /] Attributes

4: public:

5:

6:

After making the additions shown in lines 5 and 6, your application should still build with no errors or
warnings. In your Docunent class constructor, initializethem | sConnect i onOpen member to
FALSE, likethis:

m | sConnecti onOpen = FALSE;

Open the connection to the data source in the Docunent class OnNewDocunent function.

Listing 4.6. OnNewDocument

hr = m pConnection. Createl nstance(__ uui dof (Connection));
i f (SUCCEEDED(hr))
{

1: BOOL CADOVFClDoc: : OnNewbDocunent ()
2: |

3. if (!CDocunent:: OnNewDocunent ())
4: return FALSE;

5:

6: HRESULT hr ;

7.

8:

9:

10: hr = m pConnecti on->Cpen(

11: _bstr_t(L"Provider=M crosoft.Jet. OLEDB. 3. 51;
Dat a Sour ce=c:\\tysdbvc\\vcdb. mdb; "),

12: _bstr_t(L""),

13: _bstr_t(L""),

14: adMbdeUnknown) ;

15: i f (SUCCEEDED(hr))

16: {

17: m | sConnecti onOpen = TRUE;

18: }

19: }

20:

21: return TRUE;

22. }

Line 6 definesan HRESULT variable, hr . ADO functions (and COM functions, in general) return
HRESUL Ts. Macros help you decode the meaning of an HRESULT. The SUCCEEDED macro on line 8
iIsagood example. Line7 callsthe _Connecti onPt r classCr eat el nst ance function to create
an instance of an ADO Connection object. If that succeeds, lines 10-14 call the Gpen function to
actually make a connection to a data source. Line 11 is location specific, so you need to verify that it
matches the location of the file on your machine. If it succeeds, line 17 setsm | sConnect i onOpen
to TRUE.

Lines 11-13 create (temporary) instances of the _bst r _t class, which are passed as parameters to the
Open function. Asyou know, bstr t(L"") calsthe bstr t classconstructor to create a
temporary instanceof _bstr _t. ThelL infront of the quote marks makes the string that is passed to
the _bstr _t constructor awide-character string.

The bstr _t classisoneof the COM support classes included with Visual C++. It isdeclared in
comdef.h, which you included in StdAfx.h (seeListing 4.4, line1). _bstr _t encapsulatesthe BSTR
datatype, which COM and ADO useto pass strings in function calls. Y ou will learn more about
COM, Dbstr _t,and BSTRIater. For now, know that _bstr t makesit easier to use BSTR from
C++ (using BSTRin C++ without the _bstr t classis somewhat involved). Y ou can passinstances
of bstr _t asargumentsto ADO functionsthat require BSTR.

Line 11 iswhere you tell ADO which OLE DB provider to use and how to find the database file. The
Pr ovi der = portion of the string specifies that you want to use the Jet OLE DB Provider. The Dat a
Sour ce= portion of the string specifies the location of thefile.

Line 12 specifies the username for logging on to the database. The sample database vcdb.mdb has no
users defined, so it can be an empty string. Line 13 specifies the password for logging on to the
database. Again, it can be empty because none are defined in vedb.mdb.

Now that you have the code to open a connection to the database when the document opens, you need
to add the code to close the connection when the document closes in the Docunent class

Ond oseDocunent function. You can run ClassWizard to do the work of adding the function to the
class (see Figure 4.4).

Figure 4.4: Using ClassWizard to override OnCloseDocument.

Specify the Docunent class, highlight the OnCl oseDocunent function, and press the Add
Function button. Then highlight the OnCl oseDocunent function in the Member Functions list box
and press the Edit Code button.

Listing 4.7. OnCloseDocument

voi d CADOVFClDoc: : OnCl oseDocunent ()
{
if (m.sConnectionQOpen)
{
m_| sConnecti onOpen = FALSE;

m_pConnecti on->Cl ose();

}

CDocunent : : OnCl oseDocunent () ;
}

LN RONE

H

Add the code so that your OnCl oseDocunent function looks like Listing 4.7. Line 3 looks at

m_| sConnect i onQpen to see whether the connection is open. If it is, line 5 setsthe flag to FALSE
and line 6 closes the connection. After you add this code, your application will build without any
errors or warnings.

Before running your application, however, you add some error handling code. One of the peculiarities
of using ADO with #i npor t isthat, rather than return errors from functions, ADO throws exceptions
. This means that you must add exception-handling code where you use ADO, or your application will
die an ugly death every time ADO encounters an error condition at runtime and throws an exception.

Exception Handling for ADO

The exception-handling code for ADO is easy to add to your code. Addtry. . . cat ch blocks where
your code calls ADO functions, asin Listing 4.8.

Listing 4.8. OnNewDocument with Exception Handling

1: BOOL CADOVFClDoc: : OnNewDocunent ()

2: |
3: if (!CDocunent:: OnNewDocunent ())
4. return FALSE;
5:
6: HRESULT hr;
7:
8: try
9: {
10: hr = m pConnecti on. Creat el nstance(_ uui dof (Connection));
11: i f (SUCCEEDED(hr))
12: {
13: hr = m pConnecti on->Cpen(
14: _bstr_t(L"Provider=M crosoft.Jet. OLEDB. 3. 51;
Dat a Sour ce=c:\\tysdbvc\\vcdb. mdb; "),
15: _bstr_t(L""),
16: _bstr_t(L""),
17: adMbdeUnknown) ;
18: i f (SUCCEEDED(hr))
19: {
20: m | sConnecti onOpen = TRUE;
21: }
22: }
23: }
24. catch(_comerror &e)
25: {
26: /[l Get info from _comerror
27 _bstr_t bstrSource(e. Source());
28: _bstr_t bstrDescription(e.Description());
29: TRACE("Exception thrown for classes generated by #i nport");
30: TRACE("\tCode = %08l x\n", e.Error());
31: TRACE("\t Code neaning = %\n", e.ErrorMessage());
32: TRACE("\tSource = %\n", (LPCTSTR) bstr Source);
33: TRACE("\tDescription = %\n", (LPCTSTR) bstrDescription);
34 }
35: catch(...)
36: {
37: TRACE("*** Unhandl ed Exception ***").
38: }
39:
40: return TRUE;
41: }

Addthet r y and the open bracein lines 8 and 9. Add the close brace and the cat ch blocksin lines
23-38. Thecat ch inline 24 catches_com er r or exceptions, which isthe type that ADO throws.
_com error isanother of the COM support classes declared in comdef.h.

If an error occurs at runtime-for example, if the mdb database file doesn't exist at the location
specified in the Open function, the Jet OLE DB Provider will createthe _com er r or object and fill
its members with information describing the error. The ADO Qpen function will throw the

_com error object. Lines27-33 caichthe _com er r or object, retrieve that error information, and

display it in TRACE output to the debug window in Visual C++. Without catching this exception and
displaying the error information, tracking down the error would be nearly impossible. With this code
to catch the exception, you can track down errors quite easily. Add asimilartry. . . cat ch block to
the OnCl oseDocunent function aswell.

Make sure your application builds with no errors or warnings; then run the application in debug mode
to see whether you can successfully connect to the database. Y ou can do this by setting three
breakpoints. Set one breakpoint on the Cr eat el nst ance cal in OnNewDocunent . Set another on
alineinsidethe cat ch block in OnNewDocunent . Set thethird in OnCl oseDocunent onthei f
statement that tests whether m_| sConnect i onOpen is TRUE. When you reach a break point, single
step to see what the code does. Y ou should create an instance of an ADO connection and open the
connection when the application loads. When you close the application, the ADO connection will
close aswell. If there are errors, you should see some indications of what caused the errorsin your
TRACE statements in the debug window in Visual Studio.

Displaying Recordsin aList Control

When your application can connect to the database, the next step isto display recordsin alist control
in your application. One easy way to create alist control istousetheC i st Ct r | Ex classthat is
included with the DAQVI

EW examplein Visual C++. TousetheCl i st Ct r | Ex class, copy three files-CtrlExt.cpp, CtrlExt.h,
and CtrlExt.Inl-from the DAOVIEW example into the source code directory for your application. Add
CtrlExt.cpp to the list of source code files and add CtrlExt.h and CtrlExt.Inl to the list of header files
in your project. Make the additions to StdAfx.h shown in Listing 4.9.

Listing 4.9. More Changesto StdAfx.h

#i ncl ude <condef. h>

#inmport "C \programfiles\comon fil es\system ado\ nsadol5.dl|" \
no_nanespace \
renane("EOF", "adoEOF")

#include <afxcerm. h> // if not already included

#i ncl ude <af xcvi ew. h>

#i nclude "ctrlext.h"

XN RWONRE

Lines 1-5 show the code you added previously. Add the include files shown in lines 6-8. Line 6
(afxcmn.h) might already be included, depending on the options you chose in AppWizard. These
include filesare required for the Cl i st Ct r | Ex class. After adding this code, your application
should build without any errors or warnings.

Use ClassWizard to override the OnCr eat e function in your application's Vi ew class.

Figure4.5: Using ClassWizard to override OnCr eat e.

Specify the Vi ew class, highlight the WM CREATE message, and press the Add Function button. Then
highlight the OnCr eat e function in the Member Functions list box and press the Edit Code button.

Listing 4.10. Overriding the View's OnCr eate

1 i nt CADOVFCLVi ew. : OnCr eat e(LPCREATESTRUCT | pCreat eStruct)
2: |

3: | pCreateStruct->style | = LVS_REPORT,;

4. if (CListView :OnCreate(l pCreateStruct) == -1)

5: return -1,

6

7 return O;

8: }

Listing 4.10 shows how the OnCr eat e function should look. The only code you need to add isline 3.
All the other code is already there. Line 3 givesthe list control aLVS_ REPORT style, which means
that the list control will display its columns.

Add some code to the Onl ni ti al Updat e function of the Vi ewclass. TheOnl ni ti al Updat e
function already existsin your code; AppWizard put it there when you specified that the Vi ew class
should derive from CLi st Vi ew. Add code like that shown in Listing 4.11.

LISTING 4.11. OninitialUpdate

1: void CADOVFCL1Vi ew. : Onl ni ti al Updat e()
2:
3: CListView:Onlnitial Update();
4:
5: CListCrlEx& ctlList = (CListCrl Ex& GetListCrl();
6:
7: ctlList.AddColum(" First Test Colum ",0);
8: ctlList.AddCol um(" Second Test Colum ", 1);
9: ctlList. AddColum(" Third Test Colum ", 3);
10:

11: ctlList.Addltem(0,0,"First Test Row');
12: ctlList.Addltem(1, 0, "Second Test Row');
13: }

Lines 7-12 use the AddCol unn and AddI t emfunctionsfromtheCl i st Ct r | Ex classdeclared in
CtrlExt.h. The AddCol umrm and AddI t emfunctionsintheC i st Ct r | Ex classmake it very easy
to add columns and rowsto alist control.

Y our application should build successfully without any errors or warnings. When you run the
application, it will look like Figure 4.6.

Figure 4.6: The application with a list control.

Querying Records from the Database

Y ou will now add code to execute a query and display the results in the list control every time you
right-click the View.

Use ClassWizard to override the WV RBUT TONDOWN message. In the OnRBut t onDown function,
add the code shown in Listing 4.12.

Listing 4.12. OnRButtonDown

1 voi d CADOVFCLVi ew. : OnRBut t onDown(Ul NT nFl ags, CPoi nt point)
2. A

3: _Recordset Ptr pRecordSet;

4. CADOVFC1Doc * pDoc;

5: pDoc = Get Docunent () ;

6

7 _bstr_t bstrQuery("SELECT * FROM Custoners");

8

: _variant _t vRecsAffected(OL);
9:

10: try

11: {

12: pRecor dSet = pDoc->m pConnecti on->Execut e(bstr Query,
& RecsAf f ect ed,

13:

adOpt i onUnspeci fi ed);

14: if (!pRecordSet->Get adoEOF())

15: {

16: CListCtrl Ex& ctlList = (CListCrl Ex& GetListCrl();
17: ctlList.DeleteAllltens();

18: whi |l e(ctl Li st. Del et eCol um(0));

19:

20: ctlList.AddColum(" First Name ",0);

21: ctlList.AddCol um(" Last Nane ", 1);

22:

23: int i = 0;

24. _variant _t vFirstNane;

25: _variant _t vLast Nane;

26: whil e (! pRecordSet - >CGet adoECF())

27: {

28: VFirst Nane = pRecordSet->Get Col | ect (L" Cust Fi r st Nane") ;
29: ctlList.Addlten(i,O, (_bstr_t) vFirstName);

30: vLast Name = pRecor dSet - >Get Col | ect (L" Cust Last Nane") ;
31: ctlList.Addlten(i, 1, (_bstr_t) vlLastNane);

32: i ++;

33: pRecor dSet - >MoveNext () ;

34 }

35: }

36:

37: pRecor dSet - >C ose() ;

38: }

39: catch(_comerror &e)

40: {

41: /[l Get info from _comerror

42: _bstr_t bstrSource(e. Source());

43: _bstr_t bstrDescription(e.Description());

44. TRACE("Exception thrown for classes generated by #i nport");
45: TRACE("\tCode = %08l x\'n", e.Error());

46: TRACE("\t Code neaning = %\n", e.ErrorMessage());

a47: TRACE("\tSource = %\n", (LPCTSTR) bstr Source);

48: TRACE("\tDescription = %\n", (LPCTSTR) bstrDescription);
49: }

50: catch(...)

51: {

52: TRACE("*** Unhandl ed Exception ***").

53: }

54:

55: CLi st Vi ew. : OnRBut t onDown(nFl ags, point);

56: }

Line 3 defines a smart pointer to aRecor dset class. Lines4 and 5 define and initialize a pointer to
the MFC Docunent . Line6 constructsa _bst r _t that contains the SQL query string to select
records from the Cust oner s table. Line 7 constructsa_var i ant _t that is passed as a parameter
to the Connection's Execut e functioninline 12. This variable is used to show how many records
were affected. The Jet OLE DB Provider apparently does not use this variable. Other OLE DB
providers might useit. In any case, you are required to pass the address of the variable as a parameter
to the Execut e function.

The vari ant _t classisanother of the COM helper classes declared in comdef.h. The

_variant _t classencapsulatesthe OLE Automation VARI ANT datatype. Usingthe vari ant _t
classis much easier than trying to use the VARIANT data type directly in C++. See the explanation of
lines 28-31 for examples of usingthe vari ant t class.

Line 12 (and line 13) calls the Connection object's Execut e function through the MFC Docunent

object. The Execut e function returnsaRecor dset object that contains the resultset from the query
and a cursor pointing to the first record. Line 14 tests for an EOF file condition of the cursor in the
Recor dset . An EOF condition immediately after the Recor dset object is created indicates that
the query returned no records. If the query did return some records, the cursor would be positioned at
thefirst record inthe Recor dset .

If the query returned records, lines 17-21 delete the existing rows and columns from the list control
and add a last name column and a first name column.

Line 26 startsawhi | e loop that tests for the EOF condition in the cursor of the Recor dset . Line
33 callsthe MoveNext functioninthe Recor dset to scroll the cursor forward one record at atime.
The loop executes until the cursor moves beyond the last record in the Recor dset .

Lines 24 and 25 create two instances of _var i ant _t, for the customer first name and last name.
Lines 28 and 30 call the Get Col | ect function from the Recor dset class. The field name from the
table in the database is passed as a parameter to the Get Col | ect function. The Get Col | ect
function returns a VARI ANT containing the contents of the field in the current record.

The current record is the record on which the cursor is currently positioned.

Lines 28 and 30 store the VARI ANT data from the field in the instances of _vari ant _t that were
created inlines 24 and 25. Lines29 and 31 cast these _vari ant _tsas_bstr _t sand passthem to
thelist control's AddIl t emfunction to display their contents in the window.

The vari ant _t classisvery handy for dealing with data from fields in a database. Y ou can simply
cast the contentsof a_vari ant _t, whether it is numeric or string or date/time data, to C++ and
COM datatypes. See the Visual C++ documentation under *_var i ant _t Extractors' for further
information.

There you haveit. Your application is now capable of displaying data from the databasein alist
control. Run the application and right-click the View window. The list control will display the
contents of first and last name fields in the Customers table.

Summary

To access a database that has a different type system from C++ and has its own language interpreter,
it's necessary to use a database API. Severa database APIs are available to C++ developers.

The future of al data accessin Microsoft Windows is OLE DB. The easiest way to use OLE DB isto
use ADO. ADO provides an object model that encapsulates the process of communicating with
databases from within C++ programs as well as from other programming languages.

Q& A

Q What isthe best database API to usefor my application?

A The database API you choose depends on the particular database you have chosen for
your application. If you are using a popular relational database, the most modern and
robust APIsare OLE DB and ADO.

Q I've heard that ODBC and OLE DB are slow. Shouldn't | use my database's native
API?

A The speed of the driversfor ODBC or OLE DB depends largely on the quality of the
vendor's implementation. For at least a couple of the popular databases, namely SQL
Server and Access, ODBC and OLE DB are highly optimized.

Q Wheredo | find an OLE DB provider for my database?

A Y ou should check with your database vendor. If the vendor doesn't offer an OLE DB
provider, it might know of athird party that does. Y ou can also check the Microsoft
Web site for alist of available OLE DB providers.

Q Usingthese variant _tsand bstr _tslooksalittleweird. Isn't therean API
that lets me use C++ data types?

A Databases typically don't use C++ datatypes. It'sthe job of the database API to translate
between these datatypes. The variant_t and _bstr _t classes provide great functionality
for translating between database types and C++ types, so don't be afraid of them.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What does a database APl do?

2. What database APIs work with nonrelational data sources?
3. What does an ADO Connection object do?

4. What does the current record mean?

Exercises

1. Changethe codein Listing 4.12 so that the customers are sorted by last name.
2. Changethe codein Listing 4.12 to display the customer number as well as the customer first
and last name.

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 5
Adding, Modifying, and Deleting Data

« Cursor Typesin ADO Recordsets
. The ADO AddNew, Update,and Delete Functions
o The AddNew Function
o The Update Function
o The Delete Function
. The SOL INSERT, UPDATE,and DELETE Statements
o The SOL INSERT Statement
o INSERT INTO Products (partnumber, productname) VALUES('xxX', 'yyy"
o The SOL UPDATE Statement
o The SQOL DELETE Statement
. Summary
. Q&A
. Workshop
o Quiz

o EXxercises

One reason for the existence of database applicationsisto modify datain databases. Y ou will learn
how to modify datain relational databases by using ADO functions, as well as SQL statements, in
your C++ programs. When you complete today's work, you will know how to create applications that
alter the datain relational databases.

Today you will

. Learn about cursor typesin ADO Recor dset s.
. Usethe ADO AddNew, Updat e, and Del et e functions.
. Use SQL | NSERT, UPDATE, DELETE statements.

Cursor Typesin ADO Recordsets

Asyou know, an ADO Recor dset object encapsulates a resultset, which contains records from a
guery, and a cursor, which enables you to move through those records. There are four different types
of cursor in ADO--dynamic, keyset, static, and forward only--each with unique capabilities and
attributes.

A dynamic cursor enables you to view additions, changes, and deletions made by other users while the
recordset is open. A dynamic cursor also enables all types of movement through the Recor dset ,
including the ability to move n number of records forward or backward, move to the first record, and
move to the last record.

A keyset cursor enables you to see changes made by other users. However, you can't see records that
other users add, nor can you access records that other users delete. It enables all types of movement
through the Recor dset .

A static cursor provides a static copy (or snapshot) of a set of records and enables al types of
movement through the Recor dset . Additions, changes, or deletions by other users are not visible.

A forward-only cursor enables you to see changes made by other users and to scroll only forward
through records. Thisimproves performance when you need to make only a single pass through a
Recor dset.

The type of cursor you choose depends on your requirements. However, bear in mind that queries
execute much faster if you use aforward-only cursor. In database applications, performance is always
an issue. Therefore, you should typically use forward-only cursors and save dynamic, keyset, or static
cursors for when you need the features they offer.

Y ou specify the cursor type in ADO before opening the Recor dset , or you passaCur sor Type
argument with the Recor dset Open function. Some providers don't support all cursor types. Check
the provider's documentation. If you don't specify a cursor type, ADO opens a forward-only cursor by
default.

The ADO AddNew, Update, and Delete Functions

One way to add, change, and delete records in adatabase isto create aRecor dset object and call its
member functions to add, change, and delete the records in the Recor dset . The changes made to the

Recor dset are applied to the database. In other words, if you change the records in the
Recor dset , you change records in the database.

The ADO Recor dset class has three member functions that enable you to modify the recordsin the
Recor dset . These functions are AddNew, Updat e, and Del et e.

Create anew Recor dset menu with three itemsfor AddNew, Updat e, and Del et e, as shown in
Figure 5.1.

Figure5.1: Thenew Recor dset menu.

To view the changes you will make to the database today, it would be handy to add a database project
to your current project. Select the Project Add to Project New... menu. Select the Project tab and
specify a database project, as shown in Figure 5.2.

Figure5.2 : Add a database project.

When you click the OK button, you are presented with a dialog window where you specify the ODBC
DSN for the database project, asyou did in Day 2, "Tools for Database Development in Visual C++
Developer Studio” (refer to Figures 2.11 and 2.12). After you specify the DSN, the database project
will be added to your current project. Y ou need to select the Project Set Active Project menu to
specify that your current project should be the active one, not the database project. (Otherwise, you
will not be able to build or debug your application.)

The AddNew Function

The process of adding records by using the AddNew function involves creating two arrays and passing
them as parameters to the AddNew function. The first array is an array that contains the names of the
fields that will contain the datain the new record. The second array is an array of valuesto assign to
each field.

The tricky part of using AddNew s that the two arrays you pass as parameters must be VARl ANT
arrays. The code to produce and manipulate VARI ANT arrays in C++ can be involved. Because you
are using MFC for the sample applications in this book, your code can be ssmplified by using the MFC
Col eSaf eArr ay class.

Listing 5.1 shows the code for adding a new record by using the AddNew function. Use ClassWizard
to add a handler function to the Vi ew class for the AddNew menu choice. In the AddNew handler
function for that menu item, add the code in Listing 5.1.

Listing 5.1. Usingthe ADO AddNew Function

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22.
23:
24.
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

XNk E

voi d CADOVFC1Vi ew. : OnRecor dset Addnew()

{

_RecordsetPtr pRecordSet;
CADOVFC1Doc * pDoc;

pDoc

Get Docunent () ;

HRESULT hr;

_bstr_t bstrQery("SELECT * FROM Products WHERE Part Nunber

t
{

ry

hr

NULL") ;

_variant _t vNull;

vNul I . vt = VT_ERROR,

vNul | . scode = DI SP_E_PARAMNOTFOUND,;

pRecor dSet . Creat el nst ance(_uui dof (Recordset));

i f (SUCCEEDED(hr))

{

'S

pRecor dSet - >Put Ref Acti veConnecti on(pDoc->m pConnecti on);

hr

i f
{

= pRecordSet - >Open(_variant _t(bstrQuery), vNull,
adOpenForwar dOnl 'y, adLockOptim stic, adCrdText);
(SUCCEEDED(hr))

/[l Create an array for the list of fields in
/1 the Products table.
CA eSaf eArray vaFieldlist;
vaFi el dl i st. Creat eOneDi n{ VT_VARI ANT, 3) ;
[l Fill in the field names now.
I ong | Arrayl ndex[1] ;
| Arrayl ndex[0] = O;
vaFi el dl i st. Put El enent (| Arrayl ndex,
& _variant _t(OPartNunber"))):
| Arrayl ndex[0] = 1,
vaFi el dl i st. Put El enent (| Arrayl ndex,
& _variant _t("ProductNane")));
| Arrayl ndex[0] = 2;
vaFi el dl i st. Put El enent (| Arrayl ndex,
& _variant _t("Price")));

I/l Create an array for the list of values to go in
/1 the Products table.
CA eSaf eArray vaVval ueli st;
vaVal uel i st. Creat eOneDi n{ VT_VARI ANT, 3) ;
[l Fill in the values for each field.
| Arrayl ndex[0] = O;
vaVal uel i st . Put El enent (| Arrayl ndex,
& _variant t("8TRACK-003")));
| Arrayl ndex[0] = 1,
vaVal uel i st . Put El enent (| Arrayl ndex,
& _variant _t("Bell BottomHits")));
| Arrayl ndex[0] = 2;
vaVal uel i st. Put El enent (| Arrayl ndex,
& _variant _t((float)19.95)));

54 pRecor dSet - >AddNew(vaFi el dl i st, vaVal uelist);

55: pRecor dSet - >C ose() ;

56: }

57: }

58: }

59: catch(_comerror &)

60: {

61: TRACE("Error: %8l x.\n", e.Error());

62: TRACE("ErrorMessage: %s.\n", e.ErrorMessage());
63: TRACE("Source: %.\n", (LPCTSTR) _bstr_t(e.Source()));
64: TRACE("Description:%.\n", (LPCTSTR)
_bstr_t(e.Description()));

65: }

66: catch(...)

67: {

68: TRACE("\ n*** Unhandl ed Exception ***\n");
69: }

70 }

In Listing 5.1, line 3 defines a smart pointer to aRecor dset . Lines4 and 5 obtain a pointer to the
MFC document, which will enable you to get to the ADO Connection object that was opened with the
document.

Line8 definesa_bstr t object that contains a SQL SELECT statement. This SQL statement will be
passed to the Recor dset OQpen function and will open arecordset that contains no records. The
VWHERE clause specifies records wherethe Par t Nunber 1S NULL. Part Nunber isthe primary
key inthe Pr oduct s table and will never be NULL. You want to usethisRecor dset only for
adding new records to the database, so you don't need the Recor dset to contain any records. In
other words, you want an empty Recor dset .

Lines9-11 definea _vari ant _t object named vNul | and set two of its data members. vNul | will
be passed as the second parameter to the Recor dset Open function. This parameter can contain a
string for connecting to the database during the Open call. Rather than passaconnect string, you
passvNul | and (in line 18) specify that the Recor dset should use the connection already opened
in the MFC document.

Line15callsthe Recordset Ptr Creat el nst ance function to instantiate the Recor dset
object. If that succeeds, lines 18-20 set the connection and open the Recor dset . The Open function
specifies aforward-only cursor (adOpenFor war dOnl y) with optimistic record locking
(adLockOpti m sti c).

Optimistic locking means that just before the record is added, it is locked so that no other users can
muck with it while you're trying to write it to the database. Another option for locking is pessimistic
locking, which holds the lock for alonger time in the database. Y ou will learn more about optimistic
and pessimistic locking later today in the section on the Updat e function.

In line 20, the last parameter for the Open call isadCndText , which tells the database that you are
passing the text of a SQL statement, which it needsto interpret.

Lines 23-37 create an array of VARI ANTSs, called vaFi el dl i st, which contains the field names of
the new record. Lines 39-52 create another array of VARI ANTS, called vaVal uel i st , that contains
the actual data values you will place in the fields of the new record. If you were adding multiple
records, you would probably define these arrays once and simply change the values of the

vaVal uel i st array before calling AddNewto add each record.

Line 54 passes these two arraysin the AddNew call to add the record to the database. Line 55 closes
the Recor dset object. The rest of the code does exception handling.

Y ou should be able to build the application with no errors or warnings. When you run the application,
set a breakpoint on line 5 or so and another breakpoint in the exception-handling code, such asline 61.
When you run the application and take the AddNew menu choice, you will receive no exceptions, and
it will add the new record to the Pr oduct s table. If you try to add the same record twice, you will
receive an exception from the database, telling you that the changes were not successful because they
would create duplicate valuesin theindex or primary key. Thisis an example of the database ensuring
the integrity of the data.

This might seem like alarge amount of code for adding merely one record to the database. It is.
However, you must realize that the | nser t performance (the speed with which you can add records
to adatabase) is often a critical factor in database applications. The ADO AddNew function is highly
optimized so that it executes very efficiently (when used with an empty, forward-only Recor dset ,
asin Listing 5.1). To reduce the amount of code you must write, you could encapsul ate the code in
Listing 5.1 into afunction that builds the VARI ANT arrays and takes the values of the data for the new
records as parameters.

The Update Function

The ADO Updat e function enables you to edit an existing record. The ideaisto open aRecor dset
that contains the record you want to edit. Position the cursor at the appropriate record (if it is not there
already). Change the datain the field(s) you want to edit. Then call Updat e to commit the changesto
the database. (An alternative to calling Updat e isto move the cursor off the record. This has the
effect of implicitly calling Updat e.)

Use ClassWizard to add a handler function to the Vi ew class for the Recordset Update menu; then add
the codein Listing 5.2.

Listing 5.2. Using the ADO Update Function

1: void CADOVFCL1Vi ew. : OnRecor dset Updat e()
2: |

35:
36:

Recordset Ptr pRecordSet;
CADOMFC1Doc * pDoc;
pDoc = Get Docunent () ;

HRESULT hr;
bstr_t bstrQuery(
"SELECT * FROM Products WHERE Part Number = '8TRACK-003"'");
variant _t vNull;
VNul' | . vt = VT_ERROR;
VNul | . scode = DI SP_E PARAMNOTFOUND;

try
{

hr = pRecordSet. Creat el nstance(_uui dof (Recordset));
i f (SUCCEEDED(hr))
{
pRecor dSet - >Put Ref Act i veConnect i on(pDoc->m pConnecti on);
hr = pRecordSet->Qpen(_variant t(bstrQuery), vNull,
adOpenForwar dOnl 'y, adLockOptim stic, adCndText);
if (!pRecordSet->CGet adoEOF())
{
pRecor dSet - >Put Col | ect (L" Pr oduct Nane",
L"Bell Bottons and Bass Guitars");
pRecor dSet - >Updat e(vNul I, vNul I);
pRecor dSet - >C ose() ;

}
}
}
catch(_comerror &e)
{
TRACE("Error: %98l x.\n", e.Error());
TRACE("ErrorMessage: %.\n", e.ErrorMessage());
TRACE("Source:%.\n", (LPCTSTR) _bstr_t(e.Source()));
TRACE("Description: %.\n", (LPCTSTR)

bstr_t(e.Description()));

37:
38:
39:
40:
41:
42:

}
catch(...)

{
}

TRACE("\ n*** Unhandl ed Exception ***\n");

Lines 3-7 areidentical to the code in Listing 5.1 and merely initialize some variables you will need.
Line 8 definesaninstanceof _bstr t that containsa SQL SELECT statement that selects the record
you added in Listing 5.1. Lines 10-19 are the same as Listing 5.1. Line 20 opensthe Recor dset .
Line 22 tests whether the EOF file condition istrue. If it isn't, that means you have the record you are

looking for.

Lines 24 and 25 call the Recor dset Put Col | ect function to change the product name for this
record to Bell Bottoms and Bass Guitars, which is obviously a much groovier title than Bell Bottom

Hits. As an aternative to calling Put Col | ect , you could pass an array of field names and an array
of valuesto the Updat e function. Line 26 calls Updat e to commit the change, and line 27 closes the
Recor dset.

This code will build with no errors or warnings. It will run with no exceptions or errors and will
update the product name in the database. To ensure that this code runs properly, set some breakpoints
when you execute this function. After you run it, you can open the Pr oduct s table in Developer
Studio and see whether the Pr oduct Nane field for that record changed, asit should.

| mentioned locking earlier. The difference between optimistic and pessimistic locking consists
primarily in the length of time the lock is held in the database. With pessimistic locking, thelock is
initiated as soon as you modify the contents of afield in the record (in this case, by calling

Put Col | ect). Thelock isheld until after you call Updat e or move the cursor off the record to
commit the change.

With optimistic locking, the lock isinitiated and held only when the change is committed to the
database during the Updat e call. This meansthe lock is held for avery short time. However, if
another user modifies the record during the time between your Put Col | ect call and your Updat e
call, your Updat e call will fail (the database will reject your change to the record). If that happens,
you need to retry to make the change.

Optimistic locking generally supports larger numbers of concurrent users than pessimistic locking.
However, with optimistic locking, the users might have to try to commit their changes more than once.

The Delete Function

The ADO Del et e function enables you to delete an existing record from the database. Theideaisto
open aRecor dset that contains the record you want to edit. Position the cursor at the appropriate
record (if it isn't already there). Then call the Del et e function to remove the records from the
database.

Use ClassWizard to add a handler function to the Vi ew class for the Recordset Del ete menu; then add
the codein Listing 5.3.

Listing 5.3. Using the ADO Delete Function

1 voi d CADOVFC1Vi ew. : OnRecor dset Del et e()
2: A

3 Recordset Ptr pRecordSet;

4. CADOVFC1Doc * pDoc;

5: pDoc = Get Docunent () ;
6.

7

8

HRESULT hr;
bstr_t bstrQuery(

9: "SELECT * FROM Products WHERE Part Nunmber = ' 8TRACK-003"");

10: variant _t vNull;

11: VNul' | . vt = VT_ERROR;

12: VNul | . scode = DI SP_E_PARAMNOTFOUND;

13:

14: try

15: {

16: hr = pRecordSet. Creat el nstance(_uui dof (Recordset));
17: i f (SUCCEEDED(hr))

18: {

19: pRecor dSet - >Put Ref Act i veConnect i on(pDoc->m pConnecti on);
20: hr = pRecordSet ->0pen(_variant _t(bstrQuery), vNull,
21: adOpenForwar dOnl 'y, adLockOptim stic, adCrdText);
22: if (!pRecordSet->Cet adoECF())

23: {

24 pRecor dSet - >Del et e(adAf f ect Current);

25: pRecor dSet - >Cl ose() ;

26: }

27: }

28: }

29: catch(_comerror &)

30: {

31: TRACE("Error: %8l x.\n", e.Error());

32: TRACE("ErrorMessage: %s.\n", e. ErrorMessage());

33: TRACE("Source:%.\n", (LPCTSTR) _bstr _t(e.Source()));
34: TRACE("Description:%.\n", (LPCTSTR)
_bstr_t(e.Description()));

35: }

36: catch(...)

37: {

38: TRACE("\ n*** Unhandl ed Exception ***\n");

39: }

40: }

In Listing 5.3, lines 3-23 are identical to the codein Listing 5.2. You are opening aRecor dset that
contains the record that you added to the database in Listing 5.1. If the record isthere, line 24 calls
Del et e and passesadAf f ect Cur r ent asaparameter so that only the current record is deleted
from the database.

The code will build with no errors or warnings and run with no exceptions. It will delete the record
that you added in the AddNew section earlier today.

The SQL INSERT, UPDATE, and DELETE Statements

So far, you have used the ADO Recor dset to make changes to records in the database. Y ou can
also use SQL statements to make changes to records.

Y ou've aready learned about the SQL SELECT statement for retrieving data from the database. Now
you will learn about three SQL statements that enable you to modify the data in a database. Y ou could
use the Execut e statement in the ADO Connection object to send these statements to the database,
but the easiest way to learn these statements is to use Developer Studio. Y ou will now learn how to
send these statements to the database by using Developer Studio.

The SQL INSERT Statement

The SQL | NSERT statement enables you to add records to the database. The basic syntax looks like
this:

| NSERT | NTO whi ch table(list of colums) VALUES(|ist of val ues)
Now you will usethe | NSERT statement to add arecord to your database. Switch to the Data View

and double-click the Pr oduct s table to open it. Click the SQL button on the Query toolbar so that
you can view and edit the SQL query. Change the query so that it looks like the one in Figure 5.3.

Figure5.3: Thel NSERT statement.

Visual Studio can help you by building the basic structure of the | NSERT statement. If you click the
Change Type button on the Query toolbar and then select Insert Values from the drop-down list,
Visual Studio will create abasic | NSERT statement for you. All you need to do isfill inthefield
names and their values.

NOTE

In SQL statements, text field values are bounded by single quotes () and
numeric values are not. This enables the database engine to properly
interpret these data types.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (1) button on the Query toolbar to execute the statement and insert the record.

After you run the query, a message box will appear, telling you that one record was affected. Also, the
area below the SQL | NSERT statement in the query window will become empty. Asyou know, the
guery window displays the records that the database returned as a result of the SQL statement. The
window is empty because the SQL | NSERT statement doesn't return data. To view the contents of the
table, you must change the query back to a SQL SELECT statement (which does return data).

Edit the SQL query so that it lookslike this:

SELECT Products.* FROM Products

Visual Studio can help you easily create the SELECT statement. If you click the Change Type button
on the Query toolbar and then select Select from the drop-down list, Visual Studio will create most of
a SELECT statement for you. All you need to do is add the table name and an asterisk after SELECT.

When you run the query, you should see all the records, including the one you just added to the table
with your | NSERT statement.

Y ou can use an incompletefield list in an | NSERT statement to add data to only some of thefieldsin
the new record. For example, in the Pr oduct s table, you could use a statement such as the one
below to add a record without specifying the price.

INSERT INTO Products (partnumber, productname) VALUES(' xxx',
yyy')

Y ou can perform more advanced operations by using the SQL | NSERT statement, such as inserting
multiple records that were retrieved from other tables with a SELECT statement. Y ou will learn more
about advanced | NSERT operations tomorrow on Day 6, "Harnessing the Power of Relational

Database Servers."

The SQL UPDATE Statement

The SQL UPDATE statement enables you to modify the datain existing records in the database. The
basic syntax lookslike this:

UPDATE which table SET which field = new value, which field = new
value, ... VWHERE condition

Now you will use the UPDATE statement to modify the record you inserted into your database.
Change the query in the query window so that it looks like the one in Figure 5.4.

Figure5.4: The UPDATE statement.

Visual Studio can help you by building the basic structure of the UPDATE statement. If you click the
Change Type button on the Query toolbar and then select Update from the drop-down list, Visual
Studio will create a partial UPDATE statement for you. All you need to do isfill in the field names and
their values and add a WHERE clause.

CAUTION

Make sureto include aWHERE clause in your UPDATE statement! An
UPDATE statement that does not contain a\VWHERE clause will modify
every record in the table.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (!) button on the Query toolbar to execute the statement and update the record.

A message box will appear, telling you that one record was affected. The portion of the query window
that displays the data will be empty because the UPDATE statement doesn't return any data. Change
the SQL statement to a SELECT statement so that you can view the records, including the one you just
modified. The record should reflect the changes you specified in your UPDATE statement.

Asyou can see from Figure 5.4, you can use an incomplete field list in an UPDATE statement to
modify only some of the fieldsin the record. Y ou can also do more advanced operations with the
UPDATE statement, such as replacing numeric data with the results of a mathematical operation. Also,
you can use a SELECT statement in the WHERE clause to modify records that match very complex
criteria. Tomorrow you will learn more about advanced operations with the UPDATE statement.

The SQL DELETE Statement

The SQL DELETE statement enables you to delete existing records in the database. The basic syntax
looks like this:

DELETE FROM whi ch tabl e WHERE condi ti on

Because you are deleting an entire record, the DELETE statement doesn't require you to specify alist
of fields. You tell it which table you want to delete arecord from and the criteriafor the record.

Now you will use the DELETE statement to remove the record you inserted into your database.
Change the query so that it looks like the onein Figure 5.5.

Figure5.5: The DELETE statement.

Visual Studio can help you by building the basic structure of the DELETE statement. If you click the
Change Type button on the Query toolbar and then select Delete from the drop-down list, Visual
Studio will create a DELETE statement for you. In fact, Visua Studio will remember the WHERE
clause from the UPDATE statement and use that for your DELETE statement.

CAUTION

Make sureto include aWHERE clause in your DeLETE Statement! A
DELETE statement that doesn't contain a WHERE clause will delete every
record in the table.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (!) button on the Query toolbar to execute the statement and del ete the record.

A message box will appear, telling you that one record was affected. The portion of the query window
that displays the data will be empty because the DELETE statement doesn't return any data. Change
the SQL statement to a SELECT statement so that you can view the records. The record you added
should no longer exist inthe Pr oduct s table.

Summary

Today you learned two methods for manipulating records in a database. Y ou learned how to

manipul ate records from C++ code by using the ADO Recor dset member functions to insert,
update, and delete records. Y ou also learned how to manipulate records from SQL, using the | NSERT,
UPDATE, and DELETE statements.

Q& A

Q Isit possibleto present a Ul that lets usersedit the contents of recordsin the
database?

A Of course. It would be a matter of positioning the cursor on the appropriate record and
callingthe ADO Recor dset Get Col | ect function to read the values of the data
from the record's fields. Y ou could place those data values in edit controls for the users
to change if they want. Then, if users specify that they want to commit the changesto
the database, your code could call the Put Col | ect and Updat e functionsto make
the changes in the database.

Q I need to optimize the query performance of my database. What isthe fastest
cursor typefor queries?

A As| mentioned, forward-only cursors are the fastest for query processing. For even
greater speed, you could specify aread-only, forward-only cursor. Y ou make a cursor
read-only by specifying adLockReadOnl y asthelock typeinthe ADO Recor dset
Open function. Y ou cannot insert, update, or delete records in a read-only cursor, but
select performance will be optimal and significantly faster than other cursor types.

Q When should | usethe ADO Recor dset AddNew, Updat e, and Del et e
functions, and when should | usethe SQL | NSERT, UPDATE, and DELETE
statements?

A If you need to modify data from within a C++ program, you could use the ADO
Recor dset functions. You could also execute a SQL | NSERT, UPDATE, or DELETE
statement from within a C++ program by using the ADO Connection Execut e
function. Typicaly, you would use the ADO Connection to execute a SQL statement
only when you need to build the SQL statement dynamically at runtime and submit it to
database for processing. If you know at design time what the operations on the database
will be, you should usethe ADO Recor dset functions because they generally give
better performance.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What isaforward-only cursor?

2. What function do you use to place avaluein afield of the current record in an ADO
Recor dset ?

3. What iswrong with this SQL statement?

DELETE FROM cust oners

s

What are the two arguments that you must pass to the ADO Recor dset AddNew function?
What happens if you specify only one field/value pair in the SET clause of the SQL UPDATE
function?

o1

Exercises

1. Discover what happensinthe Pri ce field when you specify only the Par t Nunber and
Pr oduct Nane fieldsin a SQL | NSERT statement for the Pr oduct s table, likethis:

| NSERT | NTO Product s(Part Nunber, Product Nane)
VALUES (' xxx', 'yyy')

2. Modify the codein Listing 5.1 so that it doesn't specify a price for the new record.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 6
Harnessing the Power of Relational
Database Servers

. Multitier Applications
. How to Process Data at the Server
. SOL Statements for Processing Data at the Server
o The SOL INSERT Statement
o The SOL UPDATE Statement
o The SOL DELETE Statement
o SQL Stored Procedures
. C++ Toolsfor Processing Data at the Server
o Calling Stored Procedures with ADO Command Objects
o Calling Stored Procedures That Take Parameters
. Summary
. Q&A
. Workshop
o Quiz

o EXxercises

Database servers have the capacity to process huge amounts of data at the server while requiring very
little processing from client applications. This enables you to use database servers as backend data-
processing engines for large client/server applications and for database-driven Web sites.

When you complete today's work, you will understand how to use relational database servers as
backend data-processing engines.

Today you will

. Learn about multitier applications.

. Discover how to process data at the server.

. Create SQL statements that process data at the server.
« Use C++ toolsfor processing data at the server.

Multitier Applications

In aconventional C++ application, all the logic for the application isimplemented in C++ code, and at
runtime a single process executes the code. If the database for the application is merely afile on disk,
the database is basically inert. The database has no life of its own because all the logic and processing
are done inside the application's C++ code.

Thisisaclassic single-tier system. The application consists of one process that does all the work. (As
you know, a process in Win32 is one instance of arunning program.)

In amultitier system, the application consists of more than one process. These processes run
simultaneously and cooperate with each other to accomplish the work of the application. The
processes can be running on different machines. Each process typically has certain tasksthat it is
optimized to perform. The different processes in the application are organized into tiers, based on the
type of tasks they perform and the machine on which they are running.

A relational database server is aprocess that is optimized to handle large amounts of data and can do
this without any help from the other processes in the application.

Keep in mind that in amultitier application, the database server is not inert. The database itself has
logic and processing power. Y ou can write code that is executed by the database. Thetrick isto build
your database code so that the database fulfills the task of handling large amounts of data without
burdening the other processes in the application.

To avoid burdening other processes in the application, the database server code must do all the heavy
lifting when it comes to processing records from the database. The database code must reduce records
from the database into information, information that has been processed and summarized into bite-size
pieces that the other processes in the application can easily swallow. To accomplish this, you must
learn how to process data at the server.

How to Process Data at the Server

The programs you have thus far created for this book have processed records one at atime. Relational

database servers are capable of processing many records at atime. In fact, they are built to do just that.
Using arelational database to process one record at atimeislike using a dump truck to haul one
shovelful of dirt at atime. You can do it, but it's wasteful .

Y ou need to know how to do two things to create multitier applications that take advantage of
relational database servers. Y ou need to learn how to use SQL statements that process more than one
record at atime and how to call those SQL statements from within a C++ program in such away that
the database server (instead of your C++ program) does the heavy lifting of the data.

SQL Statementsfor Processing Data at the Server

Y esterday you learned how to use the SQL | NSERT, UPDATE, and DELETE statements. The SQL
statements you worked with yesterday added, modified, and deleted single records.

In your work yesterday, the SQL | NSERT, UPDATE, and DELETE statements were underutilized. A
single | NSERT, UPDATE, or DELETE statement needn't be limited to one record. The statement can
affect literally millions of records in the database, and the database will execute these statements
without any need for help or intervention from other processes.

The SQL INSERT Statement

Asyou will recall, the SQL | NSERT statement enables you to add records to the database. The basic
syntax to add a single record looks like this:

| NSERT | NTO whi ch table(list of colums) VALUES(|ist of val ues)

However, you can extend this syntax to add multiple records by using one | NSERT statement. Y ou
can add multiple records to atable by replacing the VALUES clause with a SELECT statement that
selects multiple records, like this:

| NSERT | NTO which table(list of colums) SELECT * FROM whi ch table

Y ou can use this technique yourself in the VCDb.mdb database. Open your ADOMFC1 project, select
the Data View, and open a Query window on the Or der s table. Y ou will see that three orders are
recorded in the table. Let's say a customer named Bill Clinton wants to order all the 8-track tapes the
company sells. (Remember that in the sample application from Day 1, "Choosing the Right Database

Technology," you are writing a C++ program that salespeople use to record these orders.)

Asyou know, the products are listed in the Pr oduct s table. Open a Query window on the

Pr oduct s table, and you will see that the company sells two 8-track tapes. Y ou added a third 8-track
yesterday when you learned about the SQL | NSERT statement. Y ou also removed it when you learned
about the DELETE statement. To make this exercise more interesting, again add the third 8-track into
the Pr oduct s table by using the following | NSERT statement:

| NSERT | NTO Products (partnunber, productname, price)
VALUES(' 8TRACK-003', 'Bell Bottons and Bass CGuitars', 29.95)

Mr. Clinton wants to order all the 8-tracks the company sells. That means that to record the order, you
need to insert three records into the Or der s table. Y ou could issue three | NSERT statements, one for
each record. Thefirst | NSERT statement would look like Listing 6.1.

Listing 6.1. ThelNSERT Statement to Add a Single Order Record

1 | NSERT | NTO Orders (ordernunber, orderdate,

2: cust oner nunber, partnunber, price,
3: shi ppi ngandhandl i ng, paynent net hod)
4: VALUES (4, { d '1998-11-16"' }, 5, '8TRACK-001',

5 19.95, 4, 'MC 1223 9873 2028 8374 9/99')

Y ou would need to issue two more | NSERT statements, one for each additional 8-track. Issuing these
| NSERT statements from your C++ program (using ADO) would mean three calls from your program
into the database. If your C++ program and the database were running on different machines, it would
require three network round trips between machines just to add one order.

For your application to be efficient, the database needs to do the bulk of the work with the data. There
needs to be some way to add an order for all the 8-tracks by using just one call from your C++
program: You use asingle | NSERT statement to add multiple records. To do this, you must replace
the VAL UES clause of the | NSERT statement with a SELECT statement.

First, you need to create a SELECT statement that produces output that can be inserted into the
Or der s table. The output from the SELECT must produce data that matches the fields in the
O der s table. The SELECT statement in Listing 6.2 does this.

Listing 6.2. The SELECT Statement That Matches Order Records

1. SELECT 4, { d '1998-11-16" }, 5, PartNunber, Price, 4,
2: "MC 1223 9873 2028 8374 9/99

3: FROM Products

4 VWHERE (Part Nunmber LI KE ' 8TRACK%)

In the Data View, click the plus sign next to the Or der s table so that you can seeits fields and can
compare them with the SELECT statement in Listing 6.2. The SELECT statement beginsin line 1 by

selecting 4, which will be the order number for this order. The 4 is hard-coded into the SELECT
statement, so every record that the SELECT produces will begin with a numeric 4. The next value the
SELECT producesis adate of November 16, 1998. Thisisfollowed by a5, whichis Mr. Clinton's
customer number. Then it selectsthe Par t Nunber and Pr i ce fields (you can seein the FROM
clausein line 3 that these fields come from the Pr oduct s table). Last, the SELECT statement
produces another numeric 4 (for the Shi ppi ngAndHandl i ng field in Or der s) and a credit card
number (for the Payment Met hod fieldin Or der s).

The WHERE clausein line 4 usesthe LI KE keyword and the %wildcard character to find all product
records that have a part number that begins with " 8 TRACK" . Issue this SELECT statement against the
Pr oduct s table, and it will return three records.

Y ou now have a SELECT statement that produces output that can be inserted into the Or der s table.
Y ou can use this SELECT statement inside an | NSERT statement to add an order for all the 8-tracks
the company sells, asin Listing 6.3.

Listing 6.3. TheINSERT Statement with SELECT for Adding Multiple Records

1: INSERT I NTO Orders (ordernunber, orderdate, custonernunber,
part nunber,

2: price, shippingandhandl i ng, paynent nmet hod)

3: SELECT 4, { d '1998-11-16" }, 5, PartNunmber, Price, 4,

4: "MC 1223 9873 2028 8374 9/99

5: FROM Products

6: WHERE (Part Nunber LIKE ' 8TRACK%)

I ssue this statement from a Query window; then open the Or der s table and see that it added three
records.

Now you have asingle SQL statement that adds multiple records. Y our C++ program no longer needs
to issue three | NSERT statements to the database to add this order. Y our C++ program can send this
single | NSERT statement to add all three records. The database is handling all the processing of the
data, with only one call from the client application.

Thisisthe essence of multitier database application development. The ideais to take advantage of the
power of the relational database servers to reduce the number of round trips between the client and
Server processes.

The SQL UPDATE Statement

The SQL UPDATE statements you wrote yesterday updated only one record. As you might have

guessed, though, the UPDATE statement can update multiple records in asingle call. The syntax for
doing thisis straightforward. Asyou recall, the syntax for UPDATE is

UPDATE whi ch table SET which field = new value, which field = new
value ... VWHERE condition

Suppose you need to change the price of al the 8-tracks in the database. Despite salesto Mr. Travolta
and Mr. Clinton, the company is not selling enough 8-track tapes. To spur demand, management has
decided to reduce the price of each 8-track by $10.

Asyou know, there are three 8-track recordsin the Pr oduct s table. Y ou could issue three UPDATE
statements, or you could issue a statement like the following:

UPDATE products SET price = (price - 10) WHERE (PartNumber LIKE
' 8TRACK%)

This statement will update every record where the Par t Nunber field startswith " 8TRACK" ,
replacing the Pr i ce field with $10 less than the current price listed in that record. Execute this
statement to make sure it works the way you would expect.

The SQL DELETE Statement

Now suppose, even after the price decrease, that sales of the 8-tracks still aren't sufficient. Therefore,
the company has decided to discontinue selling 8-tracks.

Y ou must delete the three 8-track records from the Pr oduct s table. Should you issue three DELETE
statements? | think not. Y ou should issue a single DELETE statement with the WHERE clause written
so that it affects al the 8-track records, like this:

DELETE FROM Products WHERE (Part Nunber LI KE ' 8TRACKY)

However, if you try to issue this command, you will receive an error from the database (provided the
Access database is set up to enforce referential integrity, like the database on the CD-ROM). The
DELETE statement is correct, but what you are trying to do will cause orphaned datain the Or der s
table. Y ou can't delete these records from the Pr oduct s table because their part numbers are
included in orders recorded in the Or der s table. If you delete these product records, you would not
be able to obtain complete information on past orders that include these products. The orders would
show a part number only. Y ou would not be able to look up the name of the product because that
information would no longer exist in the Pr oduct s table. In relational database parlance, deleting
these records would violate the referential integrity of the data.

A less-than-relational database would let you make the mistake of deleting these product records.
Relational database servers such as SQL Server and Oracle prevent this type of mistake and help you
preserve the referential integrity of your data. Microsoft Access, which does the best job of applying
the relational model in desktop databases, also prevents this mistake. When using other database

technologies, caveat developer (let the developer beware).

Rather than del ete these records, a better approach might be to add afield to the Pr oduct s tableto
indicate whether the product is currently for sale. You will learn more about relational database design
in the next few days.

SQL Stored Procedures

| mentioned earlier today that a database server is not inert. The database itself haslogic and
processing power. Asyou know, client programs can send text strings containing SQL statements to
the database, and the database will interpret the statements and return any data that they produce. It is
possible for relational database serversto save SQL statementsin a compiled form.

Sored procedures are compiled SQL statements, which are stored inside arelational database. Each
stored procedure is given a unique name so that client programs can call it.

Stored procedures provide two important benefits. They enable SQL code to run in compiled instead
of interpreted form. The benefit of compiled SQL code is faster execution. In addition, stored
procedures execute at the server and require no resources from a client program. The second benefit
derives from stored procedures providing alayer of abstraction that can hide the details of the database
design. The benefit of this abstraction is that client programs need not know the details of how the
various tables and fields in database are constructed. The client code can be simpler, and the database
design can be modified without breaking the client code.

A stored procedure may be a straight SQL statement that sSimply executes asit iswritten, or it may
accept parameters from the calling program for more dynamic execution, as you will see later today.

Relational database servers (such as Oracle and SQL Server) are the only databases that provide true
stored procedures. Microsoft Access provides something similar to stored procedures, called Queries.
These Queriesin Access are in some ways similar to stored procedures. They can be called by name

from client programs, they can accept parameters, and they can abstract the details of the database.

However, Queriesin Access are not compiled like stored proceduresin relational database servers.
Queries also do not execute at the server (because Access applications are file based, as described in
Day 1). Another differenceisthat Visual Studio treats Access Queries as Viewsin the Data View
window. Thisis unfortunate because, as you will see later, it prevents you from executing Queries that
take parameters from inside Visual Studio. By contrast, SQL Server stored procedures appear in a
folder titled Stored Procedures in the Data View window. If you execute a SQL Server stored
procedure that takes parameters from inside Visual Studio, you will be prompted to enter the
parameters, and the stored procedure will execute properly.

Despite their shortcomings, Queriesin Access do provide a place to begin your exploration of stored
procedures. In fact, two Queries are included in VCDb.mdb. The first Query is called

Cust oner Wt hvbst Recent Or der and consists of asimple SELECT statement. The text of the
SELECT statement is shown in Listing 6.4.

Listing 6.4. The Customer WithM ostRecentOrder SQL Statement

1: SELECT 'Custoners'.*

2. FROM Custoners

3: VWHERE custnunmber I N

4. (

5: SELECT ' Orders' . cust oner nunber
6: FROM ' Orders'

7: VWHERE or derdate =

8: (

9: SELECT MAX(or der dat e)
10: FROM Or ders
11:)
12:)

Thisisthe same query you saw in Day 3, "Retrieving Data Through Structured Query Language
(SQL)," that returns the customer who placed the most recent order. Because it's now stored as a
Query in the Access database, you can run it without having to send all the SQL code to the database
from aclient program. A client program can simply call the Query. One way to call Queriesin Access
(and stored procedures in arelational database) isto use an ADO Command object. Y ou will learn
about ADO Command objects later today. Y ou can execute this Query in Visua Studio by double-
clicking it in the Data View.

The second Query iscalled Cust onrer sWt hOr der sSi nceDat e and consists of a SELECT
statement that takes a date as a parameter. The text of the Query isshown in Listing 6.5.

Listing 6.5. The Customer sWithOrder sSinceDate SQL Statement

SELECT ' Custoners'.*

FROM Cust oner s
VWHERE cust nunber | N

(

SELECT ' Orders' . cust oner nunber
FROM ' Orders'

VWHERE OrderDate > [paramd]

);

NN R

The Cust oner sWt hOr der sSi nceDat e query shown in Listing 6.5 selects the customers who
have ordered after a certain date. What date? Well, the database | ets the client application (or the
human user) specify that date at runtime. Unfortunately, if you try to run this query from inside Visua
Studio, you will receive an error message indicating that it was expecting one parameter. However,
you will be able to execute this query from C++ code that you will write in the next section of today's
work.

If thiswere a stored procedure in arelational database server, the SQL code would look like Listing
6.6.

Listing 6.6. The CustomerswWithOrdersSinceDate Stored Procedure

CREATE PROCEDURE Cust oner sWthOrdersSi nceDate @aranil datetine AS
SELECT Custoners.*
FROM Cust oners
VWHERE cust nunber I N
(
SELECT Orders. cust oner nunber
FROM Or ders
WHERE OrderDate > @aranl

NN E

)

Line1lin Listing 6.6 uses the SQL CREATE PROCEDURE statement to cause the stored procedure to
be compiled and saved in the database. Line 1 aso specifies the parameter name (prefixed by an @
and type immediately after the stored procedure name. Y ou execute this SQL code to create and store
the stored procedure in the database. When the stored procedure is stored in the database, client
applications can call Cust onmer sWt hOr der sSi nceDat e and pass it a date as a parameter to
obtain aresultset of customers who have made purchases since that date. A client program can do this,
using an ADO Command object.

Note that a client program that uses Cust oner sW t hOr der sSi nceDat e doesn't try to obtain all
the orders and all the customers and then process all that data to find the customer records. Rather, the
client program makes a single request to the database and retrieves only the data that is relevant.

Asyou'll seein the next section, the programming models are identical, whether the client program is
using Access or arelational database server. Y ou can use an ADO Command object to call Access
Queriesaswell as SQL Server stored procedures. The difference between Access and SQL Server is
that, with Access, al the records are brought into the client process. This happens behind the scenes,
so you don't deal with it in your code. It happens because Access applications are file based (as
described in Day 1) and because the Jet database engineisaDLL that runsinside the client program's

address space. With SQL Server, only the data that the client program requested is brought into the
client process (because the server processes all the records and returns only the resultset).

C++ Toolsfor Processing Data at the Server

Y esterday, you created ADO Recordsets and used the AddNew, Updat e, and Del et e functions.
These functions work well when you are dealing with single records or when the number of recordsin
the resultset is very small.

However, there will likely be occasions when you need to perform an operation that affects thousands
or millions of records. The following is a programming sequence you should not follow in your client
program when you need to perform an operation on alarge number of records:

. Create a Recordset that contains all the records that will be affected.

« Pull al the records into the client process by starting at the first record in the Recordset and
calling the MoveNext function to scroll to the last record.

« Process each record singly (by evaluating the contents of the fields in each record or by calling
Updat e or Del et e on each record).

Using a programming sequence like this to deal with alarge number of records would be slow and
could hog the network's bandwidth and consume the client computer's memory. The solution in cases
where you have alarge number of records to processisto write a stored procedure so that all those
records can be processed at the server. You call the stored procedure by using an ADO Command
object.

Open your ADOMFC1 project and add a menu for Commands with two choices, as shown in Figure
6.1.

Figure 6.1 : Menus for ADO Commands.

Calling Stored Procedureswith ADO Command Objects

Use ClassWizard to create a handler function for the Most Recent Order menu choice. In the handler
function, add the code shown in Listing 6.7.

Listing 6.7. The ADO Command Object to Call M ostRecentOrder

1 voi d CADOVFCLVi ew. : OnCommandMost r ecent or der ()
2: |

3: _CommandPt r pConmand;

4.

5 pCommand. Cr eat el nst ance(__uui dof (Command)) ;

6:
7. CADOMFC1Doc * pDoc;
8 pDoc = Get Docunent () ;

10: try

11: {

12: pCommand- >Act i veConnecti on = pDoc->m pConnecti on;
13:

14: pCommand- >CommandType = adCndSt or edPr oc;

15:

16: pCommand- >CommandText =

_bstr_t("Custonmer WthMst Recent Order");
17:

18: _variant _t vNull;

19: VNul' | . vt = VT_ERROR;

20: VNul | . scode = DI SP_E PARAMNOTFOUND:

21:

22: _Recordset Ptr pRS;

23:

24. pRS = pCommand- >Execute(&vNull, &vNull, adCrdUnknown);
25:

26: if (!pRS->GetadoECF())

27 {

28: CListCtrl Ex& ctlList = (CListCrl Ex& GetListCrl();
29: ctlList.DeleteAllltens();

30: whi |l e(ctl Li st. Del et eCol um(0));

31:

32: ctlList.AddCol um(" Custonmer Nunber ",0);

33: ctlList.AddColum(" First Name ",1);

34 ctlList.AddCol um(" Last Nane ", 2);

35:

36: int i =0;

37: _variant _t vCust Nane;

38: _variant _t vFirstNane;

39: _variant _t vLast Nane;

40: while (!pRS->Get adoEOF())

41: {

42: vCust Nane = pRS->CGet Col | ect (L" Cust Nunber");
43: ctlList.Addlten(i,O,(_bstr_t) vCustNane);

44. VFirst Nane = pRS->Cet Col | ect (L" Cust Fi r st Nane") ;
45: ctlList.Addlten(i, 1, (_bstr_t) vFirstName);
46: vLast Name = pRS->CGet Col | ect (L" Cust Last Nane") ;
47: ctlList.Addlten(i,2,(_bstr_t) vLast Nane);

48: i ++;

49: PRS- >MoveNext () ;

50: }

51: }

52:

53: PRS- >Cl ose();

54 }

55: catch(_comerror &e)

56: {

57: TRACE("Error: %8l x.\n", e.Error());

58: TRACE("ErrorMessage: %s.\n", e.ErrorMessage());

59: TRACE("Source: %.\n", (LPCTSTR) _bstr_t(e.Source()));

60: TRACE("Description:%.\n", (LPCTSTR)
_bstr_t(e.Description()));

61: }

62: catch(...)

63: {

64: TRACE("\ n*** Unhandl ed Exception ***\n");
65: }

66: }

Lines 3 and 5 of Listing 6.7 create an ADO Command object. Line 12 tells the Command object to use
the existing database connection stored in the MFC Document. Lines 14 and 16 tell the Command
object that you are going to call a stored procedure; also, lines 14 and 16 tell the Command object the
name of the stored procedure. Line 22 creates a Recordset pointer, and line 24 calls the Command
object's Execut e function to execute the stored procedure and place any resulting datain a Recordset
object (which is pointed to by the Recordset pointer). Lines 26-51 display the contents of the
Recordset in the list control in the View. (The code in lines 40-50 uses awhi | e loop, whichis
probably unnecessary because this stored procedure returns only one record.)

Note that the C++ code in Listing 6.7 does not retrieve a Recordset containing all orders, find the most
recent order by looking at every record, and then finally retrieve the customer for that order. This code
issues asingle call to the database, enables the database to process the records, and retrieves only the
customer information it's looking for.

This approach is elegant and harnesses the power of arelational database server. It could handle
millions of records without hogging network bandwidth or consuming memory in client process space.

In this example, Microsoft Access appears to be processing the records at the server, just like a
relational database server. However, with Access, al the records are brought into the client program
address space to be evaluated by the Jet database engine (which residesin a DLL mapped into the
client program address space). The programming model isidentical to arelational database server, but
the actual execution model doesn't utilize true client/server capabilities.

Calling Stored Procedures That Take Parameters

Use ClassWizard to create a handler function for the Ordered Since Date menu choice. In the handler
function, add the code shown in Listing 6.8.

Listing 6.8. The ADO Command Object to Call OrderedSinceDate

1. void CADOVFC1Vi ew. : OnConmandOr der edsi ncedat e()
2: |

3 _CommandPt r pConmmand;
4:
5: pCommand. Cr eat el nst ance(__uui dof (Conmand)) ;
6:
7. CADOVFC1Doc * pDoc;
8: pDoc = Get Docunent () ;
9:
10: try
11: {
12: pCommand- >Act i veConnecti on = pDoc->m pConnecti on;
13:
14: pCommand- >CommandType = adCndSt or edPr oc;
15:
16: pCommand- >CommandText =
_bstr_t("CustonmersWthOrdersSi nceDat e") ;
17:
18: pCommand- >Par anet er s- >Append
19: (
20: pComrand- >Cr eat ePar anet er
21: (
22: _bstr_t("ParanbDate"),
23: adDBTi nmeSt anp,
24. adPar am nput ,
25: 0,
26: _variant _t(Cd eDateTi nme(1998, 10, 1, 0, 0, 0))
27)
28:);
29:
30: _variant _t vNull;
31: VNul | . vt = VT_ERROR;
32: VNul | . scode = DI SP_E PARAMNOTFOUND;
33:
34 _Recordset Ptr pRS;
35:
36: pRS = pConmmand- >Execute(&vNull, &Null, adCrdUnknown);
37:
38: if (!pRS->GetadoECF())
39: {
40: CListCtrl Ex& ctlList = (CListCrl Ex& GetListCrl();
41: ctlList.DeleteAllltens();
42: whi |l e(ctl Li st. Del et eCol um(0));
43:
44. ctlList.AddCol um(" Custoner Nunber ",0);
45: ctlList.AddColum(" First Name ",1);
46: ctlList.AddCol um(" Last Nane ", 2);
47:
48: int i =0;
49: _variant _t vCust Nane;
50: _variant _t vFirstNane;
51: _variant _t vLast Nane;
52: whil e (!pRS->Get adoEOF())
53: {
54 vCust Nanme = pRS->CGet Col | ect (L" Cust Nunber");

55: ctlList.Addlten(i,O,(_bstr_t) vCustNane);

56: VFirst Nane = pRS->Cet Col | ect (L" Cust Fi r st Nane") ;

57: ctlList.Addlten(i, 1, (_bstr_t) vFirstName);
58: vLast Name = pRS->CGet Col | ect (L" Cust Last Nane") ;
59: ctlList.Addlten(i,2,(_bstr_t) vlLast Nane);
60: i ++;

61: PRS- >MoveNext () ;

62: }

63: }

64:

65: PRS- >Cl ose();

66: }

67: catch(_comerror &e)

68: {

69: TRACE("Error: %8l x.\n", e.Error());

70: TRACE("ErrorMessage: %s.\n", e.ErrorMessage());
71: TRACE("Source:@&.\n", (LPCTSTR) _bstr _t(e. Source()));
72: TRACE("Description:%.\n", (LPCTSTR)
_bstr_t(e.Description()));

73: }

74. catch(...)

75: {

76: TRACE("\ n*** Unhandl ed Exception ***\n");

77 }

78. }

The codein Listing 6.8 is nearly identical to Listing 6.7. One crucia differenceisinline 16 where the
name of the stored procedure is specified. Another important differenceisin lines 18028. The ADO
Command object contains a Parameters collection, which stores the parameters that will be passed to
the stored procedure when Execut e iscalled. The pConmand- >Par anet er s- >Append call in
line 18 appends a new parameter to the Parameters collection for this Command object. The argument
passed to the Append function is the result of the pConmmand- >Cr eat ePar anet er cal inlines
20-27.

Line 22 names the parameter (so you can access it to change its value later if you want). Line 23
specifies the data type for this parameter, which isadDBTi meSt anp. The available data types are
declared in the Dat aTy peEnumin msadol5.tlh, which is one of the files created when you use
#i nport onthe ADO typelibrary. Line 24 specifies that thisis an input parameter, meaning that
this client program is giving this parameter to the database. The parameter directions (input, output, or
both) are declared in the Par anet er Di r ect i onEnumin msadol15.tlh. An output parameter would
be one where the value of the parameter is changed by the stored procedure and then read by the client
program after executing the stored procedure. Line 25 specifies the length of the parameter data. This
isnot used for adDBTi neSt anp types but is used for numeric and string types. Line 26 isa

_vari ant _t containing the datavalue for the parameter that will be passed to the stored procedure.
Inthiscase, aCO eDat eTi e isused because it encapsulates the VARI ANT date/time stuff and
makes it easier to use. Y ou need to pass data of the appropriate typetothe vari ant _t constructor
in line 26, based on the data type you specify in line 23.

That'sit. When you run the application and take this menu choice, you will see displayed in the list
control the customers who have made purchases since the date specified. The parameter value needn't
be hard-coded. Y ou could, of course, expand this code to let the user enter a date, and then you could
pass that date to the stored procedure.

NOTE

If you specify aCO eDat eTi ne of 11/ 1/ 1998 0: 0: 00, you will see
that the stored procedure returns customers who made purchases on
11/1/1998. This might seem strange because the SQL code specifies

Or der Dat es that are greater than the parameter value. However, you
must realize that this a date/time data type. It will take the time into account,
aswell asthe date. If you specifiedaCO eDat eTi ne of 11/ 1/ 1998
23:59: 59 instead, you probably wouldn't see any customers who placed
orderson 11/1/1998.

Summary

Today you learned how to harness the power of relational database servers. Y ou saw how the SQL
| NSERT, UPDATE, AND DELETE statements can be used to process many records at atime. Y ou
also learned about stored procedures and how to call them by using ADO Command objects.

Y ou wrote code that illustrated methods for processing data at the server. Y our ability to write code
that processes data at the server will enable you to create applications that can handle huge amounts of
data and work efficiently over aLAN, aWAN, or the Internet.

Q& A

Q What's the difference between client/server applications and multitier
applications?

A Client/server applications typically consist of client machine(s) running a Windows
application, connected over aLAN to arelational database server on a network server
machine. Thisisatwo-tier system (client and server). Multitier applications typically
consist of more than two tiers. The client tier consists of machine(s) running some kind
of athin client program, such as a Web browser or asimple application. Thereis often a
middle tier, consisting of machine(s) running a Web server, such as Internet Information
Server (11S) and/or an Object Request Broker (ORB) such as Microsoft Transaction
Server (MTS). The server tier typically consists of a server running arelational database.
Client tier programs typically communicate with programs on the middle tier, which
then communicate with the database at the server tier. The clients do not communicate
with the database directly, only through the middle tier programs.

Q When should | usethe ADO Recordset AddNew, Updat e, and Del et e functions
instead of stored procedures?

A For inserting records, the ADO Recordset AddNew function can be faster than calling a
stored procedure to insert records. For summarizing, updating, and/or deleting records, it
depends on the number of records you need to work with. If the number of recordsis
small, you can get by with pulling the records into a Recordset at the client to process
them. If, however, the number of recordsisn't small, you should consider using a stored
procedure called from an ADO Command object. The only caveat for ADO Command
objects seems to be that the process of changing parameter values in the Parameters
collection can be CPU intensive at the client. Y our mileage might vary, so write some
test code and benchmark the performance for your own applications.

Q Can | create Access Queriesfrom within Visual Studio?

A No, the only way to create new Queriesin an Access database (.mdb file) isto run
Microsoft Access and create the new Queries through the Access Ul.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to

real-life situations.
Quiz

What is asingle-tier application?

How do you make the SQL | NSERT statement insert multiple records?

What databases help you preserve the referential integrity of your data?

How is a stored procedure in arelational database different from a Query in Microsoft Access?
Where can you find the data types available for use in ADO Parameter objects?

agbkrwdpE

Exercises

1. Modify the SELECT statement in Listing 6.2 so that the customer number is not hard-coded.
Make it so that the customer number is retrieved based on the customer's last name.

2. Add codetothe Or der edSi nceDat e handler shown in Listing 6.8 to change the value of
the parameter after it has been appended to the command but before the Command has been
executed.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 7/
Database Design

. Database Normalization
o Rules of Thumb for Relational Database Design
o Normal Forms of the Relational Database M odel
. SOL Data Definition Language
. Using Constraints and Indexes in a Relational Database
. Tools and Technigues for Managing Relationships in a Relational Database
o Using Constraints to Enforce Relationships
. Summary
. Q&A
. Workshop
o Quiz

o EXxercises

A good database design pays big dividends. A database that is properly designed is easy to write code
for, provides good performance, and furnishes useful information that you had not anticipated needing
at the time the database was first designed.

Today you will learn

. How to normalize a database to ensure ready access to the data
. SQL Data Definition Language (DDL) for creating and altering the structure of databases
. How to use constraints and indexes in arelational database to manage relationships and

Improve performance
. Tools and techniques for managing relationships among the tables in your database

Designing a good database is harder than it looks. It is also more important than many developers
realize. In other words, designing a database takes time and effort, but it istime and effort well spent.

Database Nor malization

Even though designing a database can be difficult, afew rules of thumb simplify the process. In
addition, there are some sound scientific principles for designing relational databases. These scientific
principles of database design are called the normal forms of relational databases.

Normal forms are database design rules that specify levels of conformance to the relational model.
There are six levels of conformance, beginning at the first normal form (1INF), progressing through the
fifth (5NF), and concluding with the highest level of conformance, which is the domain/key normal
form (DKNF).

Database normalization is the process of designing the tables in a database so that they conform to the
normal forms of the relational database mode.

The normal forms are essentially a measure of how well the tables in your database conform to the
relational model. The normal forms are nested. If atable in your database conforms to the 3NF, it
automatically conformsto the 2NF and the INF as well.

Building a database that conforms to the normal forms of the relational model takes effort, but it isa
worthwhile effort. If your database conforms to the relational model, everyone who uses your database
(now and in the future) will be assured of having access to the datain a way that makes the database
open and therefore valuable.

Rules of Thumb for Relational Database Design

Before delving into the normal forms, | will explain the rules of thumb that simplify the process of
database design. There are three of them, and | call them Robison's Rules of Database Design, or
R2D2 for short.

TIP

R2D2 #1 (thefirst rule): The number of recordsin your database should
mirror the number of objectsin real life.

If one instance of an object existsin redl life (IRL), one and only one record (one row in atable)
should exist in your database. If exactly twenty instances exist IRL, exactly twenty records should
exist in your database.

For example, if your database stores information about customers, the database should have one, and
only one, record for each customer. The database should not hold more than one customer per record,
nor should it split a customer across multiple records.

R2D2 #1 is fundamental to designing arelational database and will make your application more
valuable because it helps ensure that your database is open and accessible. | worked on a commercial
application that, to optimize performance, stored more than one IRL object per record in the database.
The result was amarginal gain in the performance of the database. However, because of itslack of
conformance to the relational model, the database could not be accessed outside the application. This
l[imitation proved to be a detriment to the application's commercia success.

TIP

R2D2 #2: The fields in each record should represent the attributes of the
objectsin red life.

If you use R2D2 #1 and make each record represent an object IRL, you can use R2D2 #2 to figure out
what fields those records should contain. Y ou can also deduce what the data types of those attributes
should be.

TIP

R2D2 #3: The relationships between objectsin real life should be mirrored
In the relationships between records in the database.

If a customer can place more than one order, thisis a one-to-many relationship. The database must be
built to store more than one order record for each customer record, thus mirroring the one-to-many
relationship between customers and orders IRL. The other types of relationships are one to one and
many to many.

The relationships between records in various tables in arelational database are called the entity
relationships.

There are tools and techniques for implementing one-to-one, one-to-many, and many-to-many
relationships in relational database. Y ou will learn about these tools and techniques | ater today .

Nor mal Forms of the Relational Database M odel

In addition to Robison's Rules for Database Design are the normal forms of the rela-tional model.
Based on sound scientific principles and ensure that your database will be accessible and valuable,
now and in the future.

The First Normal Form

Thefirst normal form (INF) requires that, in a given table, the data type of each field must not change
from record to record. In C++ parlance, a database table must be like an array of structures; the data
structure does not vary from element to element in the array. A database table must not be like an
array of unions, in which the data structure can vary from element to element.

Each column must have a unique name. Each field in each record must contain a single value,
meaning it must describe a single attribute and cannot contain a compound data type that holds more
than one attribute.

There can be no repeating fields. A record cannot contain any repeating data, such as multiple fieldsin
the record that contain the same type of attribute. (This would be a one-to-many relationship and
should be represented in two tables.)

Each record must be unique; there can be no duplicate records in the table. Creating a primary key for
the table (such as a Social Security number for people, a part number for products, and so on) usually
ensures the uniqueness of recordsin atable. The primary key cannot contain a NULL in any records.

Sometimesit's necessary to create a composite key, which is made up of two or more fields in the
record.

A composite key is a key that consists of two or more fields in a database table.

For example, you might have atable that records the dates that products were shipped. Y ou might
specify the part number field and the ship date field as the primary key. The fields are separate fields,
but the combination of the two fields constitutes a composite key.

In anutshell, INF requires that your tables be simple two-dimensional tables with no repeating fields
and with the fields containing no compound data types.

The Second Normal Form

The second normal form (2NF) requires that all the fields in the database contain data that depends on
the entire primary key. If atable usesasinglefield asitskey and isin INF, it isautomatically in 2NF.

If you were to apply 2NF to atable with a composite key of the part number field and the ship date
field, you couldn't have any fields in the table that apply only to the ship date field or only to the part
number field. For instance, in this table you wouldn't want afield for the total number of all products
shipped that day, such asthe Quant i t y field shown in Figure 7.1. In this example, three products
were actually shipped on 11/16/98 (one each of the three 8-tracks).

Figure 7.1 : A table showing the quantity of all products shipped daily.

TheQuant i ty field contains the total of all products shipped that day. Supposedly, you could select
any record that has a ship date you are looking for and use the Quant i t y field from that record to
discover the total number of products shipped that day. However, the Quant i t y field violates the
2NF. TheQuant i t y field applies only to the ship date field, not to the part number field. This results
in duplicate data (multiple records with 3 for the quantity for 11/16/98).

All the non-key fields in the record must apply to the unique combination of ship date and part
number. Therefore, you could have afield in the table that contains the total number of each particular
product that was shipped that day. This field would depend on both the part number and the ship date,
astheQuant i ty field now doesin Figure 7.2.

Figure 7.2 : Atable showing the quantity of each product shipped daily.

TheQuant i ty field shown in Figure 7.2 applies to both the part number field and the ship date field.
The part number field and the ship date field make up the entire key, so thetable isin 2NF. One way
to discover the total number of products shipped on a given day is to use an aggregate function to add
up the quantity field of all the records for that date. Y ou will learn more about aggregate functions in
the next few days.

The Third Normal Form

The third normal form (3NF) requires that there be no transitive dependencies, in which onefield
depends on another field, which in turn depends on another field. When atable violates 3NF, lack of
records in one table can result in loss of information.

For example, look at the following table with the Par t No as the key:

PartNo Description Artist Gender

000001 8-TrackTape Hendrix Male

The Gender field dependson afield (Arti st) rather than the Par t No key.

Technicaly, if you have the zip code, city, and state in an address record, it probably isn't in 3NF,
because an argument can be made that the city and state depend on the zip code.

Lack of normalization does not necessarily ruin the design, however. The higher levels of
normalization (4NF, 5NF, and DKNF) prevent any loss of information. As you progress to higher
levels of normalization, you end up creating more and more specialized tables. However, conforming
to the higher levels of normalization can have a negative effect on performance because of the
increasing number of tables and the complexity of the SQL joins you have to write.

Y ou should design your tables to conform to the highest normal form asis practical. Violating the
normal forms should be the exception rather than the rule in your database designs. The optimum
database design is often slightly denormalized (but only dlightly).

SQL Data Definition Language

Open your ADOMFCL1 project, select the Data View, and open a Query window on the Cust oner s
table. You will seethat the Cust oner s table does conform to R2D2 #1; there is one customer per
record. Does it conform to the normal forms? Well, aimost. There are two address fields. Strictly
speaking, thisisaviolation of 1NF because the records have repeating fields. However, you could
make the case that the two address fields are not repeating data but are two distinct elements that make
up a street address. With this possible exception, the Cust oner s table conformsto the INF, 2NF,
and 3NF.

Open the Pr oduct s table. Y ou will see that it conforms to the R2D2s and the 3NF as well.
Open the Or der s table. You will seethat it does not conform to R2D2 #1.

Figure7.3: TheOr der s table.

Thistable is supposed to store orders, but as you can see in Figure 7.3, there are multiple records in
thistable for single orders IRL. Notice that there are two records for order number 2 and three records
for order number 4.

The primary key for the Or der s tableisthe Recor dNunber field. Thisfield has no real relevance
to an order; arecord number is not an attribute of an order. ThisOr der s table does not conform to
the normal forms.

To bring the database into conformance with the relational model, you need to create an Or der s
table that contains orders as single records.

Y ou need to identify the single attributes of an order. These single attributes would include an order
number, an order date, the payment method, and the customer number for the customer who placed the
order. You might want to store the shipping address as well. Y ou might be able to obtain the shipping
address from the customer's address field(s) in the Cust oner s table. However, the address to which
each order was shipped is actually an attribute of the order and could be different than the customer's
address.

Multiple products can be purchased in a single order. That means the products for the orders need to
be moved to a separate table.

The new table that contains products for orders could be called the Pr oduct sPur chased table.
Each product purchased would have a single record in this table. The attributes of each product
purchased would be the product number, the order number under which this product was purchased,
the price that the product sold for, the quantity of the product purchased, and the shipping charge for
that product.

Y ou could make a case for not including the pricein the Pr oduct sPur chased table. Y ou might be
able to obtain the price by using the product number and looking up the price in the Pr oduct s table.
However, the pricein the Pr oduct sPur chased table could change. This would cause the price the
product sold for on past ordersto be lost. Therefore, it's best to treat the price that the product sold for
as an attribute of the products purchased and make it afield in the Pr oduct sPur chased table.

The question of which table should contain the shipping charge field depends on how the company
assesses shipping charges. If a shipping charge is dependent on each product shipped, the shipping
charge should be afield in the Pr oduct sPur chased table. If the shipping chargeisaflat fee for
each order, it should be afield inthe Or der s table. In the sample application, the shipping chargeis
assessed for each product purchased. Thereforeitisafield inthe Pr oduct sPur chased table.

One place the shipping charge should not be stored isin your application source code. Y ou might
assume that the shipping charge is afee that's always added to each product. Y ou might hard-code the
shipping charge into your application source code and not storeit in the database. That would be a bad
idea because the shipping charge might change. The logic to add the shipping charges to the price of
the order should be written into your application source code. However, the amount of the shipping
charge should be stored in the database because it could change over time.

TIP

K eep the business formulas separate from the business variables. In your
application source code, place the formulas you use to make calculations.
Place the variables for those formulas in your database.

Perhaps a more precise name for the Pr oduct sPur chased table would be the
Or der Li nel t ens table because each product purchased IRL doesn't necessarily have its own

single record in this table (as specified in R2D2 #1). If a customer purchased three of a particular item
in one order, only one record would be in the table, and that record would contain a quantity of three.
However, | prefer to cal the table Pr oduct sPur chased because that name denotes that you can
use it to obtain information on what products were purchased and when.

Click the SQL button with the Or der s table open. Change the SQL statement so that it looks like the
codein Listing 7.1.

Listing 7.1. The CREATE TABLE Statement for the ProductsPurchased Table

1: CREATE TABLE Product sPurchased(Order Nunber | NTEGER,
2: PartNunber varchar(10), Price CURRENCY,
3: Quantity I NTECER, Shi ppi ngAndHandl i ng CURRENCY)

Data Definition Language (DDL) consists of those SQL statements that create or alter the structure of
adatabase. This structure consists of database tables, indexes, constraints, and so on.

The structure of the entire database is called the schema of the database.

The DDL codein Listing 7.1 is a statement that will create atable called Pr oduct sPur chased.
Notice that the fields are listed in the CREATE TABLE statement, followed by their datatype.
Microsoft Access supports the CURRENCY data type. Other databases might not have this datatype
but will have other type(s) that can store decimal numbers such as monetary values. Consult your
database documentation for information on the specific data types that it supports.

Run this statement against your database by clicking the Run (!) button. Click the minus sign by
Tablesin the Data View to contract the list of tables. Click the plus sign to expand the list of tables,
and you will see your new table in the Data View.

Now you need to move the datafrom the Or der s table into your new Pr oduct sPur chased table.
Closethe Or der s table and open it again so that you get a SELECT statement for the Or der s table.
Modify the SELECT statement so that it looks like Listing 7.2.

Listing 7.2. ThelNSERT INTO Statement for the ProductsPurchased Table

1 | NSERT | NTO pr oduct spurchased

2 (ordernunber, partnunber, price, quantity,
3 shi ppi ngandhandl i ng)

4: SELECT ordernunber, partnunber, price, 1,

5 shi ppi ngandhandl i ng

6 FROM Orders

Execute the statement in Listing 7.2. It should insert the six records from the Or der s table into the
Pr oduct sPur chased table. Open the Pr oduct sPur chased table to make sure.

Now you need to normalize the Or der s table. SQL makesit easy to add new columns to atable.
However, most relational databases do not enable you to delete columns. The surest course isto create
anew table. You could call the new table NewOr der s. Enter the DDL code shown in Listing 7.3 into
a Query window and execute it to build the NewOr der s table.

Listing 7.3. The CREATE TABLE Statement for the NewOrders Table

1: CREATE TABLE NewOr der s(Order Number | NTEGER,
2: OderDate DATETI ME, Custoner Number | NTEGER,
3: Paynent Met hod VARCHAR(50))

Y our next task is to move the appropriate records from the Or der s table into the NewOr der s table.
You candothisby using an| NSERT | NTO, and SELECT, statement, as shown in Listing 7.4.

Listing 7.4. ThelNSERT INTO Statement for the NewOrders Table

1: I NSERT | NTO NewOr ders

2 (ordernunber, orderdate, custonernunber,
3: paynent net hod)

4. SELECT DI STI NCT

5: order nunber, orderdate, custonernunber,
6 paynment net hod

7 FROM or der s

Line 4 of Listing 7.4 usesthe DI STI NCT modifier with the SELECT statement. This causes only
unique records to be returned by the SELECT statement. In other words, no duplicate records will be
returned by the SELECT statement. Without the DI STI NCT modifier, all the recordsinthe Or der s
table (six records) would be inserted into the NewOr der s table. Using the DI STI NCT modifier, only
three records are inserted, which is the actual number of orders IRL. Figure 7.4 shows the records
inserted into the NewOr der s table.

Figure7.4: The NewOr der s table.

Y ou can seein Figure 7.4 that there were actually three orders IRL: order numbers 1, 2, and 4. The
NewCr der s table conforms to R2D2 #1 and to the 3NF.

Now that you have split the data from the Or der s table into two normalized tables, you can get rid of
the Or der s table. Thisis done with the following DROP TABLE statement:

DROP TABLE Orders

Open a Query window and execute this statement to delete the Or der s table. In the Data View,
contract and expand the list of tables or right-click the data source and select the Refresh menu to see
that the Or der s tableis now just a memory.

Using Constraints and Indexesin a Relational Database

Relational databases have built-in mechanisms to ensure the integrity of the data in the database. One
of these mechanismsis called a constraint.

Congtraints are rules for valid data that the database enforces for you.

Y ou can place different kinds of constraints on the database. For instance, you can place a primary key
constraint on afield to enforce the primary key. The constraint makes sure that the data in the primary
key field(s) isunique. In other words, it prevents duplicate records in the table by not allowing new
records to have the same data in the key field as other records.

Y ou need to specify primary keys in the new tables you added to the database. Add a primary key to
the NewOr der s table by issuing the SQL statement shown in Listing 7.5.

Listing 7.5. ThePrimary Key Constraint for the NewOrders Table

1: ALTER TABLE NewOrders
2: ADD CONSTRAI NT Order Nunber | ndex
3: PRI MARY KEY (ordernunber)

LinelinListing 7.5 usesthe ALTER TABLE statement and specifies the NewOr der s table. Line 2
tells the database to add a constraint called Or der Nunber | ndex. Line 3 specifiesthisis aprimary
key constraint on the Or der Nunber field. Thismakesthe Or der Nunber field the primary key in
the NewOr der s table. The constraint will enforce the uniqueness of the Or der Nunber field.

Add aprimary key to the Pr oduct sPur chased table by issuing the SQL statement shown in
Listing 7.6.

Listing 7.6. ThePrimary Key Constraint for the ProductsPurchased Table

1: ALTER TABLE Product sPurchased
2: ADD CONSTRAI NT Product sPur chasedl ndex
3: PRI MARY KEY (ordernunber, partnunber)

The codein Listing 7.6 adds a primary key constraint to the Pr oduct sPur chased table. The
primary key isacomposite key consisting of the O der Nunber field and the Par t Nunber field.
The constraint will prevent duplicate Or der Nunber /Par t Nunber combinations among the records
in the table.

Relational databases use indexes to optimize the performance of data access operations. If you merely
create tables and do not use indexes, the database will be forced to perform table scans. The database
will start at the beginning of the table and sequentially look at every record until it finds the record(s)
it needs. If, on the other hand, you create indexes for your tables, the database can look up the value it
Is searching for in the index and move directly to the appropriate record(s).

The primary key isindexed. When you specify a primary key on atable, the database creates an index
for the table using the primary key.

If you will frequently use other fields in queries, such as in the WHERE clause or the ORDER BY
clause of SELECT statements, you will probably want to create indexes for those fields as well. You
can create as many indexes as you need for each table (within practical limits). The following isthe
syntax for creating an index:

CREATE | NDEX myl ndex ON myTabl e (nyFi el d)

Y ou should use indexes only where they are needed. They will reduce insert, update, and delete

performance because every time you change an indexed field in arecord, the database has to update
the index aswell.

Toolsand Techniquesfor Managing Relationshipsin a
Relational Database

Y ou learned earlier today that you should carefully identify the one-to-one, one-to-many, and
many-to-many relationshipsin your database designs (see R2D2 #3).

To model aone-to-one relationship in your database, use primary keys and foreign keys as you learned
in Day 2, "Tools for Database Development in Visual C++ Developer Studio,”" and Day 3, "Retrieving

Data Through Structured Query Language (SQL)." For every instance of the primary key in one table,
you will have no more than one instance of the foreign key in the foreign table.

To model aone-to-many relationship, use primary keys and foreign keys as you learned in Day 2 and
Day 3. For every instance of the primary key in one table, you can have any number of instances of the
foreign key in the foreign table.

M odeling many-to-many relationships requires that you create a third table. The two tables that you
want to relate will contain their primary keys (as you would expect). The third table, called the link
table, will contain the foreign keys from both primary tables. Thisis best understood through an
example.

Y ou will recall that the design of the original Or der s table contained the product number and the
customer number as foreign keys (see Figure 7.5).

Theorigina Or der s table was alink table that facilitated a many-to-many relationship between
customers and products. Y ou could perform ajoin between these three tables and find out which
customers bought which products. Thisis an excellent example of a many-to-many relationship
because a single customer could buy many products and many customers could buy a single product.

Figure 7.5 isa simple entity relationship diagram (ER diagram) that shows the relationship between
these three tables. The Cust oner s table and the Pr oduct s table contain the primary keys. The
Or der s table contains the foreign keys, so it isthe link table.

Y ou can see that lines run between the primary and foreign key fields. A 1 isnext to the primary keys
and an infinity sign next to the foreign key fields. Thisis due to the one-to-many relationship between
the primary keysin the Cust oner s and Pr oduct s tables and the foreign keysin the link

(Or der s) table. When the one-to-many relationships are combined in the link table, it produces a
many-to-many relationship between the Cust oner s and Pr oduct s tables.

Figure 7.5 : Many-to-many relationships.

Using Constraintsto Enfor ce Relationships

Y ou can place constraints on the database that enforce the relationships. These constraints prevent a
user from deleting a record whose primary key constitutes aforeign key in another table.

Referential integrity constraints are constraints that ensure that the data in one table is consistent with
datain other tables in the database.

A referential integrity constraint will prevent you from deleting a product from the Pr oduct s table
that islisted in the Pr oduct sPur chased table. Y ou will recall that you encountered a constraint
like thisin Day 6, "Harnessing the Power of Relational Database Servers,” when you tried to delete all
the 8-track products from the Pr oduct s table. Thisis because that delete operation would have | eft
orphaned recordsin the Or der s table.

To create areferential integrity constraint, you can usethe ALTER TABLE statement with the ADD
CONSTRAI NT clause, asshown in Listing 7.7.

Listing 7.7. The Foreign Key Constraint Between the ProductsPurchased and Products Tables

ALTER TABLE Product sPurchased
ADD CONSTRAI NT f k_part nunber
FOREI GN KEY (Part Nunber)
REFERENCES Pr oducts (Part Nunber)

honbR

Listing 7.7 creates a constraint to enforce the referential integrity between the

Pr oduct sPur chased table and the Par t Nunber table. Line 2 in Listing 7.7 names the constraint
(in case you want to drop it later). Line 3 specifies that the Par t Nunber fieldin the

Pr oduct sPur chased tableisaforeign key. Line 4 tells the database where the primary key is that
matches this foreign key.

Listing 7.8 creates a constraint to enforce the referential integrity between the
Pr oduct sPur chased table and the NewOr der s table.

Listing 7.8. The Foreign Key Constraint Between the ProductsPurchased and NewOrders
Tables

ALTER TABLE Product sPurchased

ADD CONSTRAI NT f k_or der nunber
FOREI GN KEY (Order Nunber)
REFERENCES NewOr ders (Order Nunber)

RobhR

Listing 7.9 creates a constraint to enforce the referential integrity between the NewOr der s table and
the Cust oner s table.

Listing 7.9. The Foreign Key Constraint Between the NewOrdersand Customers Tables

ALTER TABLE NewOr ders

ADD CONSTRAI NT fk_cust nunber
FOREI GN KEY (Cust oner Nunber)
REFERENCES Cust oners (Cust Nunber)

hobe

Open a Query window in Visual Studio and issue these SQL statements to add the constraints. With
these constraints in place, users of the database will not be able to make modifications to the data that
would cause the datain one table to be out of sync with the data in the other tables.

Summary

Designing your database to conform to the relational model is important and can be difficult. The
process of designing arelational database is made easier by using the intuition-based R2D2s and the
science-based normal forms. The process of normalizing your database typically involves separating
tables in your database into more specialized tables.

Use SQL Data Definition Language (DDL) to build the schema of your database, which includes
tables, indexes, and constraints. Indexes enable better query performance. Constraints help ensure the
integrity of the data inside the database.

Q& A

Q If I know my database storesdata in 2K B pages, wouldn't it make senseto
structure my database tables so that each record is 2K B, also?

A That approach would certainly optimize your database for speed. However, it would be
Impossible to make such a database conform to the relational model. Y our database
might be marginally faster, but it would be incompatible with all the other database
software and data access tools in the Universe. Y our database would be a closed,
proprietary system with no value outside your application. This ultimately would lessen
the value of your application.

Q Isthereatypical level of conformanceto therelational model?

A No. However, if your database conformsto the 3NF, you can be well assured of its
usability and its compatibility with relational data access tools.

Q Do all relational database systems support the same DDL statements?

A Support for DDL statements varies among relational database vendors. Check your
database software documentation for specifics.

Q Isit necessary to add constraintsto my database?

A Primary key constraints are necessary for arelational database to function reliably.
Other constraints might not be necessary but are a great help to you in maintaining your
database's value and usefulness. Rather than look for ways to avoid constraints, you
should look for places to use constraints wherever possible. They will protect the
integrity and validity of the information stored in your database.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

What is the highest normal form in the relational database model?

What are entity relationships?

How can you guarantee that a table conforms to the second normal form?

What is the proper term for the structure (the tables, indexes, constraints, and so on) of a
relational database?

5. What does areferential integrity constraint do?

~poODNPE

Exercises

1. Write a SELECT statement that shows all the products purchased on each order. Hint: The
SELECT statement should perform ajoin between the NewOr der s, Pr oduct sPur chased,
and Pr oduct s tables.

2. Write a SELECT statement showing the products purchased by each customer.

| ¢ Previous Chapter (= Mext Chapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Week 1...
|n Review

Thefirst day's lesson examines the different database technologies, including OLE
structured storage, record managers (such as Btrieve), desktop databases (such as
FoxPro and Access), object databases, and relational database servers (such as Oracle
and SQL Server).

The lesson on Day 2 explains that the most widely used and accepted database model is

the relational model. A relational database consists of tables, which are arranged in
columns and rows. Each column is called afield. Each row iscalled arecord and is
unique, based on some key field or fields. The recordsin the tablesin arelational
database are related to each other, based on key fields that are called primary and
foreign keys.

In Day 3'slesson, you learned that SQL is alanguage that excels at manipulating data.
Y ou learned how to issue SELECT queriesto retrieve records from asingle tablein a
relational database. Y ou learned how to perform joinsto retrieve records from multiple
tables. Y ou learned how to use sub-queriesin SQL to obtain information that requires a
large quantity of procedural codeto retrieve. Last, you learned that cursors are a
mechanism that enables record-at-a-time navigation through a result set.

On Day 4, you learned that to access a database from C++, it's necessary to use a

database API. Severa database APIs are available to C++ developers. The future of all
data access in Microsoft Windows is OLE DB. The easiest way to use OLE DB isto use
ADO. ADO provides an object model that encapsulates the process of communicating
with databases from within C++ programs, as well as from other programming
languages.

On Day 5, you learned two methods for manipulating records in a database. Y ou learned

how to manipulate records from C++ code by using the ADO Recor dset member
functions to insert, update, and delete records. Y ou also learned how to manipulate
records from SQL, using the | NSERT, UPDATE, and DELETE statements.

On Day 6, you learned how to harness the power of relational database servers. Y ou saw

how the SQL | NSERT, UPDATE, and DEL ETE statements can be used to process many
records at atime. You also learned about stored procedures and how to call them, using
ADO Command objects.

Y ou wrapped up your first week of study by learning how the process of designing a
relational database can be made easier by using the intuition-based R2D2s and the
science-based normal forms. The process of normalizing your database typically
Involves separating tables in your database into more specialized tables. Use SQL Data
Definition Language (DDL) to build the schema of your database, which includes
tables, indexes, and constraints. Indexes can enable better query performance.
Constraints can help ensure the integrity of the data inside the database.

| = Previous Chapter (% NextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Week 2...
At a Glance

Thisweek, you learn how to build real-world database applications. Y ou explore
multitier architectures and Microsoft Transaction Server. Y ou acquire a deeper

understanding of relational database servers, COM, and Microsoftis database client
APIs.

. Day 8 You discover the powerful innovations of relational database servers.

. Day 9 You acquire an understanding of the Component Object Model (COM)
and write some COM software.

. Day 10 You learn Microsoftis database client technologies and learn how ADO
uses COM.

. Day 11 Youlearn the toolsto build multitier applications.

. Day 12 You explore Microsoft Transaction Server (MTS) and learn to build and
use MTS components.

. Day 13 You learn to combine object-oriented programming with relational

databases.

Day 14 You learn the ODBC, DAO, and RDO database APIs.

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 8
Utilizing the Capabilities of Database Servers

. Database Transactions
o SQL Transaction Statements
. Triggersto Execute SOL Code Automatically
. SOQL Aggregate Functions
o COUNT
o MAX, MIN, SUM, and AVG
o Aggregate Functions and the GROUP BY Clause
. SOL Views
. Summary
. Q&A
. Workshop
0 Quiz

o EXxercises

Relational database servers include tools that provide incredible power for processing and presenting
information. These tools can be highly valuable and productive for you in writing database
applications. However, the value-or even the existence-of these toolsis often not readily apparent from
database documentation. Today you will discover these relational database server power tools.

Today you will

. Usetransactions to ensure that complex operations execute reliably.

. Createtriggersthat will automatically execute SQL code when data is inserted, updated, or
del eted.

. Learn about the SQL aggregate functions and the power of the GROUP BY clause.

. Build SQL viewsto provide users with the particular information that interests them.

NOTE

Today's work deals specifically with relational database servers, such as
SQL Server and Oracle. Some of the functionality described today is not
available in the Access/Jet engine. The tools that are not available in
Access/Jet are noted for you. If you have use of arelational database server,
you will be able to try al the database tools described today. If not, you will
have to learn some of these tools without being able to try them yourself.

Database Transactions

Asyou learned yesterday, when you normalize a database, you create alarge number of specialized
tables. One side effect of normalization is that operations on the database typically involve severa
tables. For instance, in the sample application, when a customer places an order, you must add records
to two tablesin the database: the NewOr der s table and the Pr oduct sPur chased table.

When you add records to two different tables, you need to be assured that the two tables remain in
sync before, during, and after that operation. Y ou don't want a database failure of some kind to cause a
record to be added to one table without the corresponding record also being added to the other table. If
that happened, the usefulness of your database would be reduced because some of its information
would not be reliable.

A transaction in arelational database is a series of operations that must happen together. A transaction
isasingle unit of work that must be done completely or not at all.

In database parlance, atransaction must have atomicity, consistency, isolation, and durability. These
are called the ACID properties of database transactions:

. Atomicity-Either all of the operations are performed on the database, or none of the operations
are performed.

. Consistency-All the related changes that occur as aresult of the operations in the transaction
must occur successfully. The state of the database must be consistent after the transaction. For
example, the transaction cannot result in any orphaned records because that would mean the
database isin an invalid or inconsistent state.

. Isolation-The transaction must be isolated from the operations of other transactions that have
not yet completed. Transactions must be (or appear internally to be) serialized.

« Durability-When the transaction completes, its changes will be present in the database, even if
system failures occur.

Relational databases use a variety of mechanisms to ensure the ACID properties of transactions. These
mechanisms include locking (which you learned alittle about in Day 5, "Adding, Modifying, and

Deleting Data"), referential integrity constraints (which you learned about in Day 7, "Database
Design"), SQL transaction statements (which you will learn next), and triggers (which you will learn
later today).

SQL Transaction Statements

The syntax for SQL transaction statements varies somewhat among relational databases. The basic
ideais that you initiate a transaction, execute a series of SQL statements, and then either commit or
rollback the transaction.

In Microsoft SQL Server, the code to execute SQL statements inside a transaction could look
something like Listing 8.1.

NOTE

The codein Listings 8.1 and 8.2 isn't compatible with the Access/Jet engine.
Y ou cannot run this code from a Query window in Visual Studio that is con-
nected to an Access/Jet database.

INPUT

Listing 8.1. Transaction Codein Microsoft SQL Server

BEGA N TRANSACTI ON
| NSERT | NTO newor der s(or der nunber, customer nunber)
VALUES (5, 3)
| NSERT | NTO pr oduct spur chased(or der nunber, partnunber)
VALUES (5, 'CLAP-003")
| NSERT | NTO pr oduct spur chased(or der nunber, partnunber)
VALUES (5, 'MAG 292')
COW T TRANSACTI ON

XNk R

Line 1in Listing 8.1 initiates the transaction. Lines 2-7 perform a series of | NSERT statementsto
record an order in the database. If some kind of a database failure occurred while, say, line 6 was
being executed, the records inserted in lines 2-5 would be automatically removed (rolled back) by the
database. Therefore, the process of adding these three records is an all-or-nothing proposition.

All threeinsertsin Listing 8.1 will occur in the database, or none of them will. If the execution goes as
expected, line 8 commits the transaction. When line 8 executes, you can be assured that all three
records have been written to the database and will be persistent despite any database failures.

In Oracle, the code to do the same transaction would be somewhat different, asin Listing 8.2.

INPUT

Listing 8.2. Transaction Codein Oracle

| NSERT | NTO newor der s(or der nunber, customer nunber)
VALUES (5, 3)

| NSERT | NTO pr oduct spur chased(or der nunber, partnunber)
VALUES (5, 'CLAP-003")

| NSERT | NTO pr oduct spur chased(or der nunber, partnunber)
VALUES (5, 'MAG 292')

COWM T

NogRwoNRE

In Oracle, the transaction begins implicitly with the first | NSERT statement. Therefore, line1in
Listing 8.2 begins the transaction. If the commit in line 7 isn't performed, all the changesin lines 1-6
are rolled back.

Like Oracle, SQL Server can be made to begin transactions by implicitly using the SET
| MPLI CI T_TRANSACTI ONS ON statement. When this option isturned on, and if there are no
outstanding transactions already, every SQL statement automatically starts a transaction.

Y ou can see that the syntax can be different between SQL Server and Oracle. However, the principles
of database transactions are the same in both databases.

Code like that shown in Listings 8.1 and 8.2 ensures the transactions atomicity and consistency. The
transactions isolation is controlled through locking and the isolation level of the transaction.

A key function of arelational database server isits capability to ensure that multiple users can read
consistent sets of records and make modifications without inadvertently overwriting each other's
changes. The isolation level tells the database how zealous to be in protecting a user's work from

interaction with the work of other concurrent users.

Oracle and SQL Server perform the task of isolating concurrent users by using very different locking
and isolation strategies. Consult your database server documentation for information on transaction
isolation levels.

The basic thing to understand is that higher degrees of transaction isolation typically result in more
locks being placed on the data for longer periods of time. This can cause the database performance to
bog down.

To enable the database to provide transaction isolation without too much burdensome locking, it's
necessary to keep transactions as brief as possible. If possible, a transaction should not span multiple
round trips to the server. Transactions also should not remain open during the wait for user input.

Setting the appropriate level of isolation for the transactions and keeping transactions as brief as
possible enable the database to provide isolation between multiple transactions that execute
concurrently.

A distributed transaction is a transaction that involves making changes to the datain more than one
database server.

Distributed transactions enabl e transactions to cover changes to data in two or more networked
database servers. SQL Server and Oracle both support distributed transactions. The implementation of
distributed transactions varies between database vendors, so consult your database documentation for
details on distributed transactions.

TIP

Y ou need to use transactions only for those operations that modify
(I NSERT, UPDATE, or DELETE) datain the database. Y ou should not use
transactions when performing seLECT queries.

Transactions are avital tool for effective database applications. Transactions ensure that complex
operations on the database are performed reliably. Asyou can see from Listings 8.1 and 8.2,
transactions don't require you to write much extra code. The database server automatically handles the
commit or rollback of transactions.

Triggersto Execute SQL Code Automatically

Triggers are SQL statements that are executed, or triggered, when certain operations are performed in
the database. Triggers provide the capability to easily perform the following:

. Audit trails to track modifications to particular tables or records

. Cascading updates and deletes of records, for those cases when you want a change in one
record to result in an automatic change in other records Updates on period to-date fields to
keep, for instance, year-to-date sales figures always current

. Datareplication, in which data is automatically copied to another table or another database
server Listing 8.3 shows the code for creating atrigger in SQL Server.

NOTE

The codein Listing 8.3 isn't compatible with the Access/Jet engine. You
can't run the code from a Query window in Visual Studio that is connected
to an Access/Jet database.

INPUT

Listing 8.3. Codeto Createa Trigger in Microsoft SQL Server

| NSERT Del et edOrders
SELECT * FROM del et ed

1: CREATE TRI GGER SaveDel Orders
2: ON neworders

3: FOR DELETE

4. AS

5.

6.

LinelinListing 8.3 creates atrigger named SaveDel Or der s. Line 2 indicates that thistrigger is
attached to the NewOr der s table. Line 3 specifies that this trigger should fire whenever record(s) are
deleted from the NewOr der s table. Lines 5 and 6 insert the deleted record(s) into the

Del et edOr der s table.

Y ou will notice the FROM del et ed statement in line 6. SQL Server triggers can use two tables
calledi nsert ed and del et ed, which are temporary holding tables for records being inserted,
deleted, or updated (an update causes both a record to be deleted and a new record to be inserted).

Thei nsert ed and del et ed tables can be accessed only by code inside triggers. Oracle has
temporary holding tablessimilar toi nsert ed and del et ed; these are called newand ol d.

When arecord is deleted from the NewOr der s table, it isremoved from the NewOr der s table and
placed inthedel et ed table. A trigger attached to the NewCOr der s table, such asthe onein Listing
8.3, can access that record whileit'sin thedel et ed table.

The trigger in Listing 8.3 reads the record from del et ed and insertsit into another table. Thistrigger
provides a backup copy of all records deleted from the NewOr der s table.

With SQL Server, you can also create triggers that fire when records are inserted into a table and when
records are updated in atable. Line 3 of Listing 8.3 indicates that it's a delete trigger. For an insert
trigger, line 3 would say

FOR | NSERT
For an update trigger, line 3 would say

FOR UPDATE
For atrigger that fires on insert, update, and del ete operations, line 3 would say

FOR | NSERT, UPDATE, DELETE
Oracle uses adlightly different syntax for triggers. Oracle triggers also offer some capabilities not

found in SQL Server triggers. Consult the documentation of the relational database server you are
using for details on its implementation of triggers.

SQL Aggregate Functions

Y ou've learned that relational databases have the capability to process thousands, or even millions, of
records at the server and then send only the relevant resultset to the client application. Y ou saw some
examples of server-side processing in Day 6, "Harnessing the Power of Relational Database Servers."”

Today you will learn more about the server-based processing power of relational databases. Y ou will
explore server code that can summarize mountains of raw data and return small polished gems of
information to client applications. This power comes in the form of SQL aggregate functions.

Aggregate functions process multiple records and return asingle value. They are also called set
functions because they operate on sets of records. They calculate summary values from a particular
field in aset of records. For each set of records they process, they return a single value.

At times, the information you want to retrieve from a database table isn't stored in an individual record

but rather in a set of records. For instance, you might want to count the number of records that meet a
certain criteria or to know the maximum or minimum value of the datain a particular field in a set of
records. Y ou might need to calculate the average or sum of afield in a set. Cases like these are where
aggregate functions come in very handy.

The following define five aggregate functions and give an example of each:

« The COUNT function returns the number of records that match the criteria you specify in the
VWHERE clause.

SELECT COUNT(*) FROM product spurchased
VWHERE or der nunber = 4

« The MAX function returns the maximum value that occurs in the field you specify, in records
that match the criteria you specify in the WHERE clause.

SELECT MAX(quantity) FROM productspurchased
VWHERE or der nunber = 4

. The M N function returns the minimum value that occursin the field you specify, in records
that match the criteriayou specify in the WHERE clause.

SELECT M N(quantity) FROM productspurchased
VWHERE or der nunber = 4

. The SUMfunction adds up the values that occur in the field you specify, in records that match
the criteria you specify in the WHERE clause.

SELECT SUM price) FROM product spurchased
VWHERE or der nunber = 4

. The AVGfunction returns the average of the values that occur in the field you specify, in
records that match the criteria you specify in the WHERE clause.

SELECT AV price) FROM product spurchased
VWHERE or der nunber = 4

COUNT

The COUNT function returns the number of records that match a criterion. Y ou can substitute
COUNT(*) for thefield listin a SELECT statement to see how many recordsit will return. Open a
Query window and enter the query shown in Listing 8.4. As you can see, the COUNT function is not
restricted to working with records from a single table.

INPUT

Listing 8.4. Using COUNT (*) to Count the Rows Returned by a SELECT Statement

SELECT COUNT(*)

FROM cust oners, neworders, productspurchased, products
WHERE custl astnanme = 'clinton' AND

cust oners. cust nunber = newor ders. cust oner nunber AND

newor der s. or der nunber = product spurchased. order nunber AND
product spur chased. part nunber = products. partnunber

QOrONE

Listing 8.4 performs ajoin of four tables. Selecting COUNT(*) returns the number of rows that are
selected.

If you use COUNT(fi el dnane) instead of COUNT(*) , the function will not count records that
have a NULL value in the specified field. Y ou could use this to count how many records have non-
NULL entriesin afield. You can aso use COUNT(DI STI NCT fi el dnane) to determine how
many distinct values exist in afield.

MAX, MIN, SUM, and AVG

These functions take a single field name or a numeric expression as a parameter. For example, Listing
8.5 will return the sum of the Pr i ce and Shi ppi ngAndHandl i ng fieldsfor all records that have
an O der Nunber of 4.

INPUT

Listing 8.5. Using the SUM Function to Calculate the Total Price of an Order

1: SELECT SUM Price + shippi ngandhandling) FROM Product sPurchased
2: WHERE ordernunber = 4

The M N, MAX, and AVG functions work similarly. Y ou will notice that you didn't need to write aloop
that reads every record into a client application and then adds the appropriate fields to a variable. The

programming model used by the aggregate functions makes the code for performing cal culations on
sets of records very straightforward.

The aggregate functions can be helpful to you not only because they reduce your code complexity but
also because they execute at the server. The database server can process al the records in the database
and then return only a single value to the client application that requested the information.

This means that aLAN would not be burdened by huge amounts of network traffic between client and
server. It also means that the client application could be a browser accessing the database over the
Internet. If you were not using arelational database server, which is capable of processing data at the
server, there is no way that athin client (such as a browser) could effectively access your database
over alow-bandwidth, high-latency connection such as the Internet.

Aggregate Functions and the GROUP BY Clause

Aggregate functions enable you to obtain sums, averages, and so on, from the database. However, at
times you need to obtain sets of sums or sets of averages. For instance, you might need to calculate the
total sales revenue for each month during the past year or to discover the average number of products
purchased each week for the past six months. These are the cases where you need to use the aggregate
functions with the GROUP BY clause.

To try the GROUP BY clause, you first need to select a set of records. Try the query shown in Listing
8.6.

INPUT

Listing 8.6. Using the SELECT Statement to Retrieve All Products Purchased, the Order
Number, and the Date

1 SELECT newor ders. order nunber, neworders. orderdate,
2 product spurchased. *

3: FROM newor ders, productspurchased

4. WHERE newor ders. order nunber =

5 pr oduct spur chased. or der nunber

The query shown in Listing 8.6 will return all the products that have been sold, the order number each
was sold under, and the date of the order. The results are shown in Figure 8.1.

Figure 8.1 : All products purchased, the order number, and the date.

It would be interesting to see the total price of each order. This means that you need to add up the

Pri ce and the Shi ppi ngAndHandl i ng fields for every record on each order. You saw in Listing
8.5 how to obtain the total of asingle order. How do you find the total of every order? Listing 8.7
shows you how.

INPUT

Listing 8.7. Using the SUM Function with the GROUP BY Clauseto Calculate the Totals of
Each Order

SELECT newor ders. or der nunber,
SUM price + shippi ngandhandl i ng)
FROM newor ders, productspurchased
VWHERE newor der s. or der nunber = product spurchased. or der nunber
GROUP BY newor der s. or der nunber

gROME

Line 1 of Listing 8.7 selects the order number (so you have the context for the totals). Line 2 selects
the sum of the Pri ce and Shi ppi ngAndHandl i ng fields. Lines 3 and 4 specify the tables and the
join. (Actually, ajoin with the NewOr der s tableisn't necessary in this query because all the fields
you need arein the Pr oduct sPur chased table. Having the NewOr der s tablein this query
doesn't hurt anything, so just leave it in because the next query will require the Or der Dat e field
from NewOr der s.)

Line 5 specifies that you want the sum of the Pr i ce and Shi ppi ngAndHandl i ng fields grouped
by Or der Nunber . Figure 8.2 shows the output of this query.

Figure 8.2 : Thetotal price of each order.

If you look at Figure 8.1 and add up the numbers yourself, you will see that the totalsin Figure 8.2 are
correct. With the small amount of data in this example, you could probably perform these calculations
inside the client application (or even in your head). However, imagine the amount of work required to
process thousands of orders or tens of thousands of product sales. If you retrieved all those records and
did the calculations at the client, the application would bog down. The GROUP BY clause lets you
perform all the work at the server and then return only the small resultset to the client. Isthat cool, or
what?

It would be interesting to see the total sales volume per week. To do this, you must group by the order
date. More specifically, you must group by the week of the order date. Even more specifically, you
must group by the year and the week, in case you have orders that span more than one year. The

GROUP BY clause lets you group by multiple fields and multiple expressions. Listing 8.8 shows how
to retrieve the total sales volume per week.

INPUT

Listing 8.8. Using the SUM Function with the GROUP BY Clauseto Show the Total Sales
Volume per Week

1 SELECT DATEPART ('yyyy', neworders.orderdate) AS Year,

2 DATEPART ('ww , neworders. orderdate) AS Wek,

3: SUM price + shippi ngandhandl i ng) AS Tot al

4. FROM neworders, productspurchased

5: VWHERE newor ders. ordernunber = product spurchased. or der nunber
6 GROUP BY DATEPART ('yyyy', neworders. orderdate),

7 DATEPART ('ww , neworders. orderdate)

Line 1 of Listing 8.8 usesthe DATEPART function to retrieve the year. The AS Y ear modifier on the
end makes it so that the first field in the resultset has a name of Y ear. Specifying a name for afield

that contains an expression is handy because it gives you an easy way to access the field in ADO with
the GetCollect function. (You learned about the GetCollect function on Day 4, "Retrieving SQL Data

Through a C++ API," in Listing 4.12.)

Line 2 uses the DATEPART function to retrieve the week of the year for the Or der Dat e. It names
thisfield Week. Line 3 selects (and calculates) the sum of the Pri ce and

Shi ppi ngAndHandl i ng fieldsin the group. Thisfield isnamed Tot al . Lines4 and 5 are
identical to Listing 8.6. Lines 6 and 7 group the results of the SUMfunction by both the year and the
week of the order date.

In Figure 8.3, you see the results of the query in Listing 8.8. There are two records, one for the 45th
week and one for the 47th week of the year. No other weeks of the year had any sales, so they don't
appear in the resultset.

Figure 8.3 : The total sales volume per week.

The codein Listing 8.8 works with Access/Jet. However, the code to break down the date (the
DATEPART function) and modifiers to specify the field names for expressions will vary slightly in
SQL Server and Oracle. Check your database server documentation for details.

NOTE

In aclient/server application, the Access/Jet database engine will process
the GROUP BY query shown in Listing 8.8 at the client machine (rather
than at the server machine). Running asimilar query on arelational
database server, such as Oracle or SQL Server, will cause all the records to
be processed at the server machine and only the small resultset to be sent to
the client. Thisis one of the fundamental differences between relational
database servers and databases, such as Access/Jet, that use ISAM files.

SQL Server provides the CUBE and ROLLUP operators as optional switchesin the GROUP BY clause.
These operators produce super-aggregate rows, where the rows generated by the GROUP BY clause
are aggregated. The CUBE and ROLL UP operators are typically used in data warehouse applications.
Oracle also provides extensions to the GROUP BY clause that are useful in data warehouse
applications. See your database server documentation for more information on extensions to the
GROUP BY clause.

Asyou can see, aggregate functions enable relational database servers to process and summarize vast
quantities of information and make it available to thin clients across thin network connections. The
ability to place intelligence at every tier in an application, and to use each tier where its strengths are,
enables you to build highly advanced client/server and multitier systems.

SOQL Views

A view isavirtual table whose contents are defined by a query (a SELECT statement).

A view looks like a normal table. However, aview doesn't actually exist as atable in the database.
Instead, the view is materialized whenever it is opened. A view can consist of fields and records from
several tables.

A view's base query is the SELECT statement that defines the view.

A view's base tables are the tables from which the view gets its data.

The SELECT statement that defines the view (its base query) is stored in the database. The view
doesn't store any data. In other words, no records are stored in the view. The records that appear in a
view are actually stored in the view's base tables. Every time aview is opened, the database reads the
records into the view from its base tables by executing the view's base query.

Views enable users to work with the particular data that interests them. For instance, in the sample
application, the company manager might want to be able to see the weekly sales totals on demand.
Listing 8.9 shows the code to create a view that the manager could use to find that information.

INPUT

Listing 8.9. Codeto Createa View That Showsthe Total Sales Volume per Week

CREATE VI EW Weekl ySal es AS
SELECT DATEPART ('yyyy', neworders.orderdate) AS Year,
DATEPART ('ww , neworders. orderdate) AS Wek,
SUM price + shippi ngandhandl i ng) AS Tot al
FROM newor ders, productspurchased
VWHERE newor der s. or der nunber = product spurchased. or der nunber
GROUP BY DATEPART ('yyyy', neworders. orderdate),
DATEPART ('ww , neworders. orderdate)

NN R

LinelinListing 8.9 issuesthe SQ. CREATE VI EWstatement to create aview called
Weekl ySal es. The SELECT statement in lines 2-8 isthe same asthe onein Listing 8.8. This
SELECT statement definesthe Weekl ySal es view; it isthe Week| ySal es view's base query.

Execute the code in Listing 8.9 against the sample Access database. When you do, the view will be
created in the database. It will appear as aview in the Data View of Visual Studio (you will need to
right-click the data source and select the Refresh menu to see it the first time).

When you double-click the Week| ySal es view inthe Data View, it will open just like atable. In
fact, you can even use Week| ySal es like atable namein aquery. Click the SQL button on the
Query toolbar, and you will see that the SELECT statement queried the view asif it were atable. As
you can see, aview looks and acts like atable.

Change the SELECT statement in the Query window so that it looks like the one shown in Listing
8.10. Thiswill cause only the record that applies to week 45 to appear in the Query window.

INPUT

Listing 8.10. The SELECT Statement That Usesa View

1: SELECT *
2: FROM Weekl ySal es
3: VWHERE week = 45

When making a query against aview like this, two queries are actually executed. First, the base query
for the view is executed to populate the view with records. Second, the query you are making against
theview (asin Listing 8.10) is executed.

CAUTION

When you run a seLECT statement against a view, it might execute more
slowly than you expect. Before anything el se happens, the database has to
populate the view with records by executing the view's base query. Then,
after the view is completely populated, the database can execute the
SELECT statement you are running against it. This process of populating
the view before running your seLecT statement, combined with your
inability to build indexes on views, can make SELECT statements that run
against views take longer than you might expect.

Views can be updateable or read-only. If the view is updateable, users can insert, update, and delete
recordsin it just asthey can from atable. Bear in mind that when usersinsert, update, and delete
records in aview, they are actually inserting, updating, and deleting records in the view's base table(s).

For aview to be updateable, the particular field(s) and record(s) in the view must correspond directly
to field(s) and record(s) in its base table(s). The database must be able to discern which field/record to
update in the base table. In the view created in Listing 8.10, no direct correspondence exists between
the records in the view and the records in the base tables. The records in the view in Listing 8.10 are
aggregates of several records in the base tables. There is no way that the database can figure out how
to map records in the view to records in the base tables, so the Week| ySal es view isread-only.

NOTE

In Day 6, "Harnessing the Power of Relational Database Servers," you

learned that Visual Studio treats stored queries in Access as views rather
than as stored procedures. In Day 6 you also worked with two Access stored
queries called Cust oner Wt hivbst Recent Or der and

Cust omer sWt hOrder sSi nceDat e. In Day 7, "Database Design,”
you normalized the database and dropped the orderstable. These two Access
stored queries that you worked with on Day 6 will no longer run properly.
They accessed the orderstable, which no longer existsin the database.

Views can provide alayer of abstraction for users of your database. Views enable users to concentrate
on the data they are interested in without needing to know the details of the database schema
underneath the view.

Summary

Today you learned some powerful tools that relational database servers have to offer. You learned
about transactions, triggers, aggregate functions, and views.

These tools can enable you to build highly advanced database applications. Transactions enable
reliable changes to the data. Triggers make the database react automatically to changesin the data.
Aggregate functions cause the bulk of the data processing to happen at the server. Finally, views
enable you to customize the way people see your database.

Q&A

Q How dorelational database serversensurethat transactionswill be durable even
when thereis somekind of database failure?

A Relational database serverstypically log al the changesto the data. The database writes
to thelog file first and then commits the changes to the database. Every time the
database is started, it checks the log for uncommitted changes and uncompl eted
transactions. At this point, the database will automatically complete the transactions or
roll them back.

Q If | havean insert trigger that insertsanother record into the table, won't the insert
trigger fireagain and put the database into an endless |oop?

A Typically, relational database servers are written so that atrigger won't cause itself to
fire again. Consult your relational database server documentation for clarification of
this.

Q Why can't | create an index on a view?

A A view isavirtual table. No records are stored in it. It is popul ated with records every
time it's opened. These records are released from the view when it's closed. The virtual-
ness of the records in aview prevents you from being able to create a (nonvirtual) index
on the recordsin the view.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

What are the ACID properties of atransaction?

What istheisolation level of atransaction?

How does the GROUP BY clause interact with the SQL aggregate functions?

How many triggers can be attached to atable in Microsoft SQL Server?

Does aview on alarge table occupy much room in the database? Why or why not?

abkrwdpE

Exercises

1. Modify the SELECT statement in Listing 8.7 so that the resultset is sorted by the total sales
volume, from the highest volume to the |east.

2. Modify the SELECT statement in Listing 8.7 so that the query returns the average product
price, from the highest to the |east.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 9
Under standing COM

. TheLimitations of Traditional Windows DLLs
o TheLimits of Using Win32 DLLsfor Building Software Components
. Building Software Components by Using COM
o Using C++ Abstract Base Classes
o Creating Objects by Using an APl Function
o COM Clientsand COM Servers
o COM Servers
o TheActive Template Library (ATL)
o lUnknown, Querylnterface, AddRef, and Release
o Interface Definition Language
o Automation (Formerly Called OLE Automation)
o COM Type Libraries
. Summary
- Q&A
« Workshop
0 Quiz

o Exercises

The Component Object Model (COM) isthe basis for much of the next generation of software on the
Microsoft Windows platforms. An understanding of COM is a prerequisite for devel oping advanced
applications with Microsoft technology.

COM isahuge topic. Those who learn it all must conquer a vast technical landscape. Fortunately, you
don't need to learn all of COM. Y ou can learn the fundamentals of COM and use that knowledge to be
quite productive, particularly when it comes to database applications. Knowledge of the COM
fundamentals will serve you well and is sufficient for building advanced database software.

Today you will learn

. Thelimitations of traditional Windows DLLs

. Component software and C++ abstract base classes

. COM components, class factories, and registry entries

« I Unknown, Queryl nt erface, AddRef , and Rel ease
. Interface definition language

. Automation (formerly called OLE Automation)

. COM type libraries

COM is used extensively in Microsoft's latest database client technologies. In fact, you used COM in
Day 4, "Retrieving SQL Data Through a C++ API," Day 5, "Adding, Modifying, and Deleting Data,"
and Day 6, "Harnessing the Power of Relational Database Servers," when you used ADO. ADO sports
a COM interface.

Thefirst step in learning COM is understanding what problems COM solves. This gives you the
context for COM technologies. Y ou will learn what problems COM solves in the next section, which
explains the limitations of Windows DLLs (dynamic link libraries).

After you understand the problems COM solves, you can study its technical foundation. Today, you
will examine COM from the bottom up. A bottom-up approach to learning COM is a good approach
for C++ programmers for at least three reasons.

First, COM is narrower at the bottom than at the top. Thereislessto learn at the foundation than at the
top, where COM technology is applied in myriad different ways.

Another reason for the bottom-up approach is that you, being a C++ programmer, are capable of
understanding COM's foundation. As you will see, COM's foundation rests on afew particular C++
techniques, with which you might already be familiar.

Last, if you understand the foundation of COM technology, it will be much easier for you to grasp the
higher levels of COM. In COM, technologies are built on other technologies. If you learn the
foundation, you are in a much better position to understand the rest of COM.

The Limitations of Traditional WindowsDLLSs

Windows DLLs do one thing really well. They enable code to be shared among applications at runtime
in avery efficient manner.

However, there are some things that DLLs don't do very well. To understand the limitations of
traditional Win32 DLLs, you must first understand what Win32 DLLs are and how they actually work.
(When | say traditional DLLs, | am talking about DLL s that don't use COM.)

What Win32 DLLsAreand How They Work

The best way to think of aWin32 DLL isto pictureit as achunk of code sitting in memory. That
chunk of code can be mapped into your application's address space, which is what happens when your
application loads the DLL. When the DLL is mapped into your application's address space, your
application can execute the code in the DLL by calling the functions that it exports.

A DLL in Win32 does not have alife of itsown. A DLL doesn't have its own process. A DLL hasno
Windows message loop. Any objects created by code in the DLL are owned by the calling application.
A DLL never owns anything. Remember that DLLs are just code-code that isinert until it isloaded
into an application's address space and executed as part of that application's code.

An application can load aWin32 DLL into its address space in the following two ways.

. Implicit load-time linking
. Explicit runtime linking

With implicit load-time linking, the application statically links with the DLL's import library (aLIB
file). The import library contains the list of functions that the DLL exports for applicationsto call. The
import library also stores the addresses of the exported functionsin the DLL file image. When the
import library for the DLL islinked with an application, the information from the import library
becomes part of the EXE file image.

When the application is executed, the operating system (the OS) loads the EXE file, and the OS looks
in the EXE fileimage to see which DLLs are required for the application. The operating system loads
these DLLswhen it loads the application's EXE file.

With explicit runtime linking, the DLL isloaded by the application, not by the OS. The DLL isloaded
at application runtime, not at application load-time. The application loads the DLL whenever it needs
it, by calling the LoadLi br ar y Windows API function, like this:

HI NSTANCE LoadLi brary(LPCTSTR | pszDLLFi | eNane) ;
Also, the application can use the LoadLi br ar yEx functionto load DLLs. The LoadLi br ar yEx
function enables the application to specify some optionsin how the DLL isloaded. The

LoadLi brar yEx functionis

HI NSTANCE LoadLi brar yEx(LPCTSTR | pszDLLFi | eNane,
HANDLE hFi |l e, DWORD dwFl ags);

When the operating system loads the DLL, it uses a search procedure to find the DLL file. The search
procedure is the same whether the DLL isloaded when the application is loaded through implicit
linking or whether the DLL is explicitly loaded by the application code with LoadLi br ary. The OS
looks in the following series of locations to find the DLL file:

. Thedirectory containing the application EXE file

. The application's current directory

. The Windows system directory

. The Windows directory

. Thedirectories listed in the PATH environment variable

With implicit load-time linking, if the OS cannot find the DLL filein any of these locations, it will
present the user with a message box containing an error message. The message will state that it was
unable to load the DLL. The application then will not load or run.

If the application isloading the DLL at runtime with explicit runtime linking, and the DLL file is not
present, the LoadLi br ary function will fail. It's up to the application to check for errors returned by
LoadLi br ary and act accordingly.

After the application loads the DLL, it must get the addresses of the DLL function(s). If the
application uses implicit load-time linking (through the DLL's import library), the function addresses
are already linked into the application's EXE file image.

If the application calls LoadLi br ary toload the DLL at runtime, the application must call
CGet Pr ocAddr ess to get the address of the function(s) inthe DLL. The Get Pr ocAddr ess
functionis

NOTE

Developers might be accustomed to exporting DLL functions by assigning
each function an ordinal value. However, Microsoft wants you to link by
using the function's name instead of an ordinal value. If you use ordinals to
export your DLL functions, you are not guaranteed that your DLL will run
on all Win32 platforms and versions.

FARPROC Get Pr ocAddr ess(H NSTANCE hi nst anceDLL, LPCSTR | pszProc);

| mentioned that DLLs enable code to be shared among applicationsin avery efficient manner. When
multiple applications load the same DLL, the OS doesn't load multiple instances of the DLL. Rather,
when the first application loads the DLL, it's loaded into memory and mapped into the application's
address space. Figure 9.1 illustrates this.

Figure 9.1 : ADLL image mapped into an application's address space.

Figure 9.2 : A DLL image mapped into two applications address spaces.

When subsequent applications load the DLL, the OS simply maps the already loaded DLL into those
applications address space. Thisisillustrated in Figure 9.2.

DLL codein memory can be shared by multiple applications. Thisiswhat DLLs do really, really well.
They reduce code size at runtime by letting the code be shared among applications. The DLLs that
contain the Win32 API functions are a perfect example of this. The Windows system DLLs are |loaded
once and are shared by and mapped into the address space of every Win32 application that runs on the
machine.

TIP

Y ou should use DLLs for sharing common code among concurrently
running applications. DLLs do this very well.

The Limitsof Using Win32 DL Lsfor Building Software Components

DLLs enable efficient code sharing among concurrently running applications. However, because of
some limitations of DLLs, it's difficult to build truly modular, component-based software using
traditional Win32 DLLSs.

Y ou need to understand what | mean when | talk about component-based software. A true software
component would be a piece of software that does the following:

. Plugsinto other software systemsin a modular, object-oriented fashion

. Can be updated independently of the other software in the system

. Can be used by software systems with which the component author is not intimately familiar

. Consists of asmall or manageable number of files that can be distributed on disk or
electronically to component users/customers

In essence, a software component is a piece of software that you can give (or sell) to other people to
use with their software. Y ou can also update your component, and your users can begin using the
updated version without breaking their existing software.

Traditional Win32 DLLs, by themselves, do not enable component-based software. The limitations of
using DLLsto build software components include

. Therequirement to export your DLL functions by name
. Incompatibilities of C++ function decorating

. Hard-coded DLL namesin application EXE files

. Build-time dependencies between DLLs and EXEs

DLL Functions Must Be Exported by Name

| noted previously today that Microsoft wants functions exported from DLLs by their name, not by an
ordinal value. When an application uses a DLL, the application must use absolutely unique namesto
identify the DLL function(s) it wantsto call.

If you are going to distribute your DLL for use in other systems (systems with which you are
unfamiliar), you need to make sure the function names in your DLL don't duplicate any function
names from other DL L s that the system might use. With traditional DLLSs, thereis no easy way to do
that. Your DLL could contain afunction that has the same name as a function in another DLL.

I ncompatible C++ Function Name Decor ating

The need to export your DLL functions by name also causes a problem with C++ function decorating.
(Function decorating is aso called function name mangling, but decorating is a nicer word.)

Asyou know, C++ functions can be overloaded. Overloaded functions are functions that have the
same name and differ only in their parameter list. The compiler and linker, however, must give each
function a unique symbol name.

Visual C++ gives each function a unique symbol name by decorating the function's name with
additional alphanumeric characters based on the function's parameters. These alphanumeric characters

are derived from the function parameters and their types and enable the compiler and linker to
differentiate between the overloaded functions.

With Visual C++ name decorating, the function
void Foo(int i)
becomes

?Foo@ AXHQX

INPUT

Y ou can witness C++ function name decorating in the following example. Open your ADOMFC1
project. Click the File View tab and add a header file called DbComponent.h. Put the code shown in
Listing 9.1 in DbComponent.h.

Listing 9.1. The DbComponent Class Declaration

cl ass DbConponent
{
publ i c:
DbConponent () ;
i nt Beepl f Dbl sCk();

}

SOROME

INPUT

Next, include the DbComponent.h file in the CADOMFC1Doc.cpp file, like this:

#i ncl ude "DbConponent . h"

INPUT

Then add the code in Listing 9.2 to the CADOVFC1Doc: : OnNewDocunent function. (Y ou should,
of course, leave the existing code in OnNewDocunent and merely add this code to it, perhaps near
the beginning of the function.)

Listing 9.2. Calling the DbComponent Beepl fDbl sOk Function

1: DbConponent * pDb = new DbConponent();
2: pDb->Beepl f Dbl sCk();
3: delete pDb;

Now try to build the ADOMFC1 application. Y ou should receive two linker errors for unresolved
external symbols. Y ou will notice that one symbol, which corresponds to the Beepl f Dbl sCk
function, looks like this:

?Beepl f Dbl sOk@hbConponent @GARAEHXZ
The other symbol, which corresponds to the constructor for DbConponent class, looks like this:

??0DbConponent GAAE@XZ

Y ou are seeing C++ function name decorating in action. When the Visual C++ compiler builds
ADOMFC1Doc.obj, it decorates the names of the DbConponent constructor and the

Beepl f Dbl sCk function. The linker then triesto find the code for those functions, but it cannot, and
it generates the unresolved external symbol errors.

If aDLL existed with the DoConponent codeinit, the DbConponent constructor and the
Beepl f Dbl sCk function would need to exist in the DLL with the decorated names that the Visual
C++ linker expects. Otherwise, the linker would not find them and would still generate unresolved
external symbol errors.

Unfortunately, function decorating is not uniform among C++ compilers. C++ functions exported
fromaDLL built with Visual C++ cannot be called in an application built with Borland C++. A
Visual C++ DLL and aBorland C++ EXE are incompatible, at least in terms of C++ function calls.

NOTE

Y ou can disable C++ name decorating for functions that you export from a
DLL, by placing the DLL withinexternal " C' { } blocks. Thiscauses
the exported functions to have the signature of a standard C language
function. Thiswill enable your DLL functionsto be called from EXEs built
with other compilers but will cost you the C++ features and the object-
oriented nature of your component.

Therefore, if you put your C++ component in atraditional Win32 DLL, it can be used only in software
built with the same compiler that you used.

Hard-Coded DLL Names

Whether an application usesimplicit load-time linking or explicit runtime linking to call functionsin a
DLL, the DLL's nameis hard-coded into the application's EXE file. Thisresultsin afew limitations
from a component software standpoint.

The DLL file must exist somewhere that the OS can find it. One place is the application directory.
However, if the DLL file existed in the application directory, no other application on the machine
would be able to find it.

Another place to put the DLL might be the Windows System directory. If the DLL existsin the
Windows System directory, it runs the risk of being overwritten by, or at least conflicting with,
another DLL that happens to have the same name.

A true software component needs to be safely installable on any machine and accessible to all the
appropriate applications on that machine. Hard-coded DLL names in the application EXE files are
detrimental to this.

Build-Time Dependencies Between the DLL and the EXEs That Useit

The most common way for applicationsto useaDLL isto link with itsimport library (implicit load-
time linking). The other method-explicit runtime linking with the LoadLi br ary and

CGet Pr ocAddr ess functions-is not used nearly as often. Using LoadLi br ary and

CGet Pr ocAddr ess isn't as convenient for the application developer as smply linking to the DLL's
import library and having the OS automatically load the DLL.

However, a problem occurs when it comes time to update the DLL. A true software component can be
updated independently of the rest of the system. In other words, you can install and use a new version
of a component without breaking the existing system.

With traditional Win32 DLLs, when you modify the code and rebuild the DLL, the information in the
import library can change. Y ou will recall that the import library contains the function names exported
fromthe DLL. The import library also contains import records for those functions that are fixed up
when the DLL isloaded and the addresses are known.

This means that when a DLL is updated, the applications that use the DLL (by linking withthe DLL's
import library) need to be rebuilt also to ensure that the system is stable. Therefore, a build-time
dependency exists between the application EXE and the DLLs that it uses.

NOTE

It might be possible to update a DLL without updating the EXEs that use it,
If you don't change any existing functions in the DLL. However, thereis no
mechanism for the EXE to gracefully recover if the DLL does become out
of sync. Also, replacing an existing DLL with an older version quite often
causes problems that the application cannot deal with gracefully. The ease
with which this problem can occur and the lack of mechanisms to enable a
grace-ful recovery at runtime mean that, for most practical purposes, thereis
a build-time dependency between an EXE and the DLLsIt uses.

With traditional Win32 DLLs, you cannot simply plug a new version of the DLL into an existing
system without the risk of breaking it. If you place anew DLL in an existing system without
rebuilding the applications that use the DLL, the applications could crash because of changesin the
functionsinthe DLL.

Building Software Components by Using COM

COM addresses the limitations of traditional Win32 DLLs for component development. Using COM,
you build software components that

. Plug into other software systemsin a modular, object-oriented fashion
. Can be updated independent of the other software in the system
« Can be used by software systems with which the component author is not intimately familiar

. Consist of asmall or manageable number of files that can be distributed on disk or
electronically to component users/customers.

COM uses some very nifty tricks to solve the problems of building component software. With COM
components, there are none of the following:

. Reguirementsto export your DLL functions by name
. Incompatibilities from C++ function decorating

. Hard-coded DLL namesin application EXE files

. Build-time dependencies between DLLs and EXEs

COM accomplishes these technical feats through a rather ingenious application of some relatively
simple technologies. Y ou will explore these technol ogies next.

Using C++ Abstract Base Classes

INPUT

Modify the code that you entered from Listing 9.1 in DbComponent.h so that it looks like the code in
Listing 9.3.

Listing 9.3. The Abstract Base Class DbComponent Class Declar ation

1 cl ass DbConponent

2: |

3: public:

4 virtual int BeeplfDblsCk()=0;
SHE

Y ou can see that DbConponent isnow an abstract base class. Asyou know, an abstract base classis
aclassthat contains at least one pure virtual function.

Y ou specify avirtual function as pure by placing = 0 at the end of its declaration. Y ou don't have to
supply adefinition for a pure virtual function.

Y ou cannot declare an instance of an abstract base class; you can useit only as a base class from
which to derive other classes.

Try to build the application now. Y ou will recelve an error from the compiler indicating that you

cannot instantiate abstract class DbConponent because the Beepl f Dbl sCk isapure virtua
function.

INPUT

Modify the code you entered from Listing 9.2 (in the OnNewDocunent function) so that it looks like
the code shown in Listing 9.4

Listing 9.4. Calling the DbComponent Beepl fDblsOk Function

1: DbConponent * pDb;
2: pDb->Beepl f Dbl sCk();
3: delete pDb;

Try to build the project now. It should compile and link with no errors, though you might receive a
warning about using alocal variable beforeit'sinitialized. Of course, you should not try to run the
application, because it will fail. The DbConponent pointer defined in line 1 of Listing 9.4 is
uninitialized. Line 2 tries to use this uninitialized pointer to call the Beepl f Dbl sCk function.

The code will not run. However, perhaps somewhat surprisingly, the code will successfully compile
and link. Thereis no code for the DbConponent classandits Beepl f Dbl sCk function, so why did
the application link successfully? How did the linker bind code that doesn't exist?

The short answer is that the linker didn't bind it. Because the DbConponent classis an abstract base
class, and because Beepl f Dbl sCk function is a pure virtual function, the linker knew that the code
for line 2 of Listing 9.4 would be bound at runtime. Listing 9.5 is an example of runtime binding.

INPUT

Asyou know, you can call avirtual function through a base class pointer to execute the function in a
derived class. Thisis classic polymorphism in C++. Seethe codein Listing 9.5 for an example.

Listing 9.5. Polymorphism in C++

1: #include <iostreanp
2: Uusi ng nanespace std;

3 cl ass nyBaseC ass

4: |

5: public:

6 virtual -~nyBaseC ass() { };
7 virtual void nmyFunc();

8

1
10: class nyDerivedd ass : public nyBaseC ass
11: |
12: public:
13: void myFunc();
14: };
15:
16: void nyBased ass:: nmyFunc()
17 |
18: cout << "Executing nmyFunc in nyBaseC ass" <<endl ;
19: }
20:
21: void nyDerivedd ass:: myFunc()
22 |
23: cout << "Executing nmyFunc in nyDerivedCd ass" <<endl ;
24. }
25:
26: int main()
27 |
28: nyBaseCl ass * nyBaseC assPtrs|4];
29: nyBaseCl assPtrs[0] = new nyBased ass;
30: nyBaseCl assPtrs[1] = new nyDerivedd ass;
31: nyBaseCl assPtrs[2] = new nyBased ass;
32: nyBaseCl assPtrs[3] = new nyDerivedd ass;
33:
34 for(int i =0; i < 4; i++)
35: {
36: nyBaseCl assPtrs[i]->nyFunc();
37: }
38:
39: del ete nmyBased assPtrs[0];
40: del ete nmyBased assPtrs[1];
41: del ete nmyBased assPtrs|[2];
42: del ete nyBased assPtrs|[3];
43: return O;
44:. '}

Create anew Win32 console project in Visual Studio named Polymorph. Specify that AppWizard
should create an empty project. Create a source file called main.cpp (specify that main.cpp should be
added to the Polymorph project). Enter the code shown in Listing 9.5 in main.cpp

Lines 3-8 declare a base class named nyBaseCl ass that has avirtual function named ny Func.
Lines 10-14 derive aclassfrom nyBaseCl ass named nyDer i vedd ass. Line 13 placesa
function named nyFunc innyDer i vedd ass, which overridesnyFunc innyBaseC ass.

Lines 16-24 define the my Func functions to simply output a string indicating that they are being
executed. Line 28 defines an array of four pointersto myBaseC ass class. Lines 29-32 initialize the
pointers in the array by creating alternating instances of nyBaseCl ass and nyDeri vedd ass.
Lines 39-42 delete the instances of the classes to free up the memory.

Lines 34-37 call the my Func function through the pointersto myBaseCl ass. Note that you are
calling afunction in a derived class through a base class pointer. MyBaseCl assPtrs[1] and
nmyBaseCl assPt rs[3] arepointersto myBaseC ass but actually point to instances of
myDeri vedd ass.

Build the Polymorph project. It should build without errors or warnings. Run Polymorph. The code in
Listing 9.5 will produce this output:

Executing nmyFunc in nyBaseC ass
Executing nmyFunc in nyDerivedd ass
Executing nmyFunc in nyBaseC ass
Executing nmyFunc in nyDerivedd ass

Which class's ny Func was executed? This was determined at runtime, using C++ virtual function
tables, or vtables (pronounced vee-tables).

Ininstances of nyBaseCl ass, the vtable entry for my Func pointsto nyBaseC ass'snyFunc. In
instances of nyDer i vedd ass, the vtable entry for my Func pointsto myDer i vedC ass's
my Func.

Using vtables, the question of which classs my Func to execute is resolved at runtime. Therefore, the
binding of that code doesn't happen at link time. It happens at runtime.

NOTE

Calling aderived class's functions through a pointer to its base classis an
essential feature of COM.

Thisisacooal trick. Polymorphism is one of the pillars of object-oriented programming.
Polymorphism's runtime binding is also one of the pillars of COM.

Open your ADOMFC1 project in Visua Studio. You will recall that the code in the
OnNewDocunent function defines a pointer to the abstract base class, DbConponent (refer to
Listing 9.4).

Y ou made it an abstract base class because if a DLL existed with the DbConponent object codein
it, the DLL would need to have the DbConponent Beepl f Dbl sCk function with the exact
decorated name that the Visual C++ linker expects. Otherwise, the linker would not find it and would
generate an unresolved external symbol error. Using an abstract base class eliminates this need for a
compiled symbol with a name decorated the way Visual C++ expects.

NOTE

Using abstract base classes eliminates the problem of incompatible C++
function decorating between C++ compilers. Also, the code that implements
these abstract base classes doesn't need to be present when applications that
use the abstract base classes are built.

The code in your OnNewDocunent functionin Listing 9.4 attempts to call the Beepl f Dbl sCk
function through the DbConponent pointer, but there is another problem. The DoConponent
pointer in the OnNewDocunent function is uninitialized-and you can't create an instance of the
DbConponent classbecauseit's an abstract base class.

How can the code in your OnNewDocunent function get avalid DbConponent pointer so that it
can call the Beepl f Dbl sCk function?

Creating Objects by Using an API Function

It isimpossible to create an instance of DbConponent (becauseit's an abstract base class). However,
it is possible to create an instance of aclass that is derived from DbConponent . That derived class
could residein aCOM DLL (I will describe what a COM DLL entails later today in the section on
COM servers).

The derived class could override the Beepl f Dbl sCk function in DbConponent and implement it
with code to beep if the database is okay. The derived class could be named something like
DbConponent | npl .

If you could somehow create an instance of DbConponent | npl , and if you could assign its address
to the DbConponent pointer in your OnNewDocunent function, you could call the
DbConponent | npl 'sBeepl f Dbl sCk function through your DbConponent pointer.

It would be very handy in this case to have some Windows API function that creates instances of
classes for you. You could tell it that you want an instance of DbConponent | npl and that you want
to assign its address to the DbConponent pointer in your OnNewDocunent function.

For example, the code could ook something like that shown in Listing 9.6.

Listing 9.6. Calling the DbComponent Beepl fDblsOk Function

1 DbConponent * pDb;

2: ::Createl nstance(DbConponentlnpl ID, (void**)&pDb);
3: pDb->Beepl f Dbl sCk() ;

4. pDb->Rel ease();

Line 2 in Listing 9.6 calls an imaginary Windows API function named Cr eat el nst ance. Line 2
passes an (imaginary) identifier to the Cr eat el nst ance function to indicate that it should create an
instance of DbConponent | npl . The function returns a pointer to the DbConponent | npl
instance in the second parameter, pDb.

ThisCr eat el nst ance function would load the DLL containing the DoConponent | npl code,
create an instance of the DbConponent | npl class, and assign its address to pDb. After the

Cr eat el nst ance call, you would have avalid pDb pointer (which isa pointer to DbConponent)
that you could use to call the DbConponent | npl Beepl f Dbl sCk function, as shown inline 3.

Line4inListing 9.6 callsan imaginary Rel ease function to delete the object. Y ou shouldn't use the
delete operator on pDb because DbConponent doesn't have a virtual destructor. The destructor for
DbConponent probably wouldn't be capable of properly cleaning up an instance of the
DobConponent | npl class. The Rel ease functioninline4 isan imaginary function that is capable
of cleaning up an instance of DbConponent | npl .

Using aCr eat el nst ance function like this would enable you to call the member functions of the
DbConponent class. You would actually be executing code that resides in the DbConponent | npl
class. Thereally big newsisthat the code for the DoConponent | npl class would not have to be
present when you build your application. Also, the name of the DLL is not hard-coded into your
application's EXE file image. Y our application can use the code in the DLL without being tied to that
particular DLL file.

NOTE

Calling an API function in your application code to create instances of
components eliminates the problem of having DLL names hard-coded into
the EXE file image of your application.

There are, in fact, Windows API functions that work like the Cr eat el nst ance functionin Listing
9.6. These functions are part of the Windows COM libraries. The most frequently used function like
thisisthe COM CoCr eat el nst ance function.

Also, the Rel ease function shown in line 4 of Listing 9.6 is authentic. COM components aways
implement a Rel ease function to enable applications to delete (or free) them.

Actually, COM components free themselves. The purpose of Rel ease isto allow the client
application to announce that it won't be using the component anymore. This might result in the
component deleting itself, if no other client applications are using it.

You will recal that in Day 4, you used the CoCr eat el nst ance function. The smart pointer class's
Cr eat el nst ance function internally calls CoCr eat el nst ance. It also callsRel ease when
the pointer goes out of scope, so you don't have to cal it. Refer to the following days and their listings
for examples of where you used a smart pointer classs Cr eat el nst ance function:

Day Listings
4 4.1,4.2,4.6,and 4.8
5 51,52,and 5.3
6 6.7 and 6.8

Using abstract base classes to declare the class in the client application, and calling API functions to
load the DLL and instantiate the class, makes the application and the COM DLLsthat it uses
independent of each other.

Because all the code doesn't need to be present at the time the software is built and because the DLL
names are not hard-coded in the EXE fileimage, you have more flexibility in updating the software.
Single EXE or DLL files can be replaced with newer versions, without the need to rebuild and replace
al the EXE and DLL filesin the system every time.

NOTE

Breaking the build-time and load-time dependence between EXE files and
DLL files enables them to be updated independently of each other.

COM Clientsand COM Servers

In previous Days, you learned afew things about client/server systems. You learned that in
client/server database applications, which run on multiple computers over a network, the machine
where the database resides is called the server, and the machines that run the apps that use the
database are called the clients.

A similar terminology exists in the COM world. In this example, the application that calls the
Beepl f Dbl sCk function would be called the COM client. The DLL that contains the

DbConponent | npl class (and the Beepl f Dbl sCOk code) would be called the COM server.

In COM, a component that provides functions for other applicationsto call isaserver.

An application that calls functions provided by COM componentsis aclient.

So far today, you've learned alittle about what the code looks like in COM clients. COM clients use
abstract base classes to declare the COM components they use.

The abstract base classes that applications use to declare COM components are called COM
interfaces.

COM clients call Windows API functionsto create instances of the (server) component classes. COM
clients typically must call Rel ease to free the components when they are done with them. COM
clientswritten in Visual C++ can also use a smart pointer class that internally calls

CoCr eat el nst ance and Rel ease.

Y ou haven't yet had much opportunity to see what the code looks like for COM servers. That isthe
topic of the next section.

COM Servers

COM servers have some required functions that they must implement and export and some required
registry entries that they must make. The next two sections explain these requirements.

Registry Entries

Y ou will recall that COM clients call aWin32 API function to create instances of classes from COM
DLLs. How does the Win32 subsystem know which DLL contains the code for the classes?

The answer isthat the COM libraries (part of the Win32 subsystem) look in the registry for the name
of the DLL and the DLL'slocation. You will recall that in Listing 9.6, when the COM client called the
API function to create the class instance, it passed in an identifier to tell the API function which class
it wanted an instance of. That identifier is called a GUID.

A GUID isaglobally unique identifier. It isa 128-bit number that is guaranteed to be unique.
Microsoft provides atool for generating GUIDs, called Guidgen.exe. It uses the worldwide unique ID

of the computer's network card, combined with the current date and time, to create numbers that are
aways unique.

Figure 9.3 : Guidgen.

If the computer doesn't have a network card, the GUID is guaranteed to be unique on that computer
and statistically unique across computers. This means it's very unlikely, but possible, for such a GUID
to duplicate an existing GUID.

Y ou can typically find Guidgen.exe in your Visual C++ Tools\Bin directory. Run Guidgen so that you
can see what a GUID looks like (see Figure 9.3).

Asyou can see in the Result pane in the Guidgen window, GUIDs are simply 128-bit (16-byte)
numbers. Guidgen makes it easy for you to generate GUIDs and copy them to the Clipboard. From
there, you can easily paste them into your source code for use in building COM components.

A CLID isaGUID that identifiesaclass. In every COM component, each class and each interface
(remember, COM interfaces are C++ abstract base classes) is assigned a GUID. When a GUID is used
in this context, it iscalled aCLSID.

The CLSIDs of the COM server classes are stored in the registry, under
HKEY CLASSES ROOT\CLSID. You can best understand these registry entries by looking at areal-
life example.

Suppose you want to create an instance of an ADO Connection object, asyou did in Day 4 in Listing
4.1 and Listing 4.6. In this scenario, the ADO Connection object would be the COM server, and the
application you are writing would be the COM client.

To create the object, you write some code that calls CoCr eat el nst ance or the smart pointer
classsCr eat el nst ance function and passit the CLSID of the ADO Connection object.

The code for the CoCr eat el nst ance (in COM library) looks up that CLSID in the registry. Figure
9.4 shows the information in the registry for that CLSID.

Figure 9.4 : Reqgistry entries for the ADO Connection COM object.

Asyou can seein Figure 9.4, under this CLSID, thereis an entry called InprocServer32. The
InprocServer32 entry indicates that the ADO Connection object is an in-process server, meaning the
COM server iscontained inaDLL. Thelocation of the DLL is shown as

"C.\Program Fi | es\ Cormon Fil es\ Syst em ado\ nsadol15.dl|"

When ADO was installed on this machine, this entry for ADO Connection object was placed in the
registry. Thisregistry entry is what enables applications to use the code in the DL L, without hard-
coding the DLL name in the application EXE file image.

Y ou can find this entry yourself on your machine. Open the Registry Editor and do a Find on the key
ADCDB. Connect i on. Under the ADODB. Connect i on key isaCLSID subkey. This entry
containsthe ADO Connect i on'sCLSID. Next, do aFind on the key for this CLSID. Y ou will find
the entry shown in Figure 9.4.

The COM libraries use this registry entry for the CLSID to find the DLL filename and location. COM
then callsLoadLi brary toloadthe DLL.

After the DLL isloaded, COM needsto create an instance of the ADO Connection object. To do this,
COM needs some help from functionsin the DLL.

Required Server Functions

When you call CoCr eat el nst ance to create an instance of the ADO Connection object, how does
COM know how to create instances of the ADO Connection object?

The answer is, it doesn't. However, COM does know how to call a standard function, whichis
implemented in all COM server DLLS, to get a pointer to an interface for an object that can create
instances of ADO Connection. In other words, every COM DLL must export a standardized function
that the OS can call to create instances of its classes.

Thefunction nameisDl | Get Cl assObj ect . Itsprototypeis

STDAPI DI | Get Cl assObj ect (REFCLSID rclsid, REFIID riid, LPVAO D* ppv)

STDAPI ismerely amacro that resolvesto an HRESULT and a calling convention.

D | Get A asshj ect actually takestwo GUIDs as parameters, the first one being the CLSID and
the second one being the GUID for a particular interface that object supports. COM calls

D | Get A assObj ect with the parameters necessary to get a pointer to a class factory interface
fromthe DLL.

A classfactory is aclass that knows how to create instances of other classes.

A classfactory isimplemented in every COM server. The class factory implements the
| O assFact ory interface, which includesthe Cr eat el nst ance function. COM can call the
Cr eat el nst ance function to create COM objects (instances of COM server classes).

The class factory in msadol15.dll knows how to create ADO Connection objects. After COM loads the
DLL by calling LoadLi brary, it calsGet ProcAddr ess to get the address of

D | Get A assObj ect . COM thencalsDl | Get C assObj ect to get apointer to the

| Cl assFact ory interface.

Figure 9.5 : How a COM client obtains a pointer to a COM server.

After COM gets a pointer to the class factory in msadol15.dll, COM calls the class factory

Cr eat el nst ance function, passing it the ADO Connection CLSID to create an instance of the
ADO Connection class. Finally, COM returns the pointer to the ADO Connection object the client
application that called CoCreatel nstance.

The process of aclient calling CoCr eat el nst ance to get apointer to a COM server isillustrated
in Figure 9.5.

Y ou can see from Figure 9.5 that two calls are made into the COM server DLL. The

D | Get A assOnj ect functionis caled and the class factory Cr eat el nst ance functionis
called. That meansa DLL that contains COM server(s) must implement the DI | Get Cl assObj ect
function, aswell as a class factory class, in order to work.

A COM DLL needs three other functions in order to implement and expose. These functions are

. DI | Regi st er Ser ver -which contains the code to make the registry entries for the COM
serversthat residein the DLL. This makesthe COM DLL easy toinstal and use. The DLL's
COM servers can be registered by running RegSvr32.exe and passing the DLL name and path
as an argument.

. DIl Unregi st er Ser ver -which contains the code to remove the registry entries for the
COM serversthat residein the DLL. Thisfunction is called when RegSvr32.exe is run with an
argument to specify that it should remove the registry entries for the COM servers.

. DIl CanUnl oadNowwhich the OS calls to see whether it can safely unload the DLL from
memory. If COM clients are currently using servers from thisDLL, the DLL needsto stay
loaded (and mapped into the address space of the client applications). However, if all the
clients are done with its COM servers, the DLL could be unloaded to free up resources. A
global reference count is kept by COM DLLsto track how many of its COM servers are being
used. If that reference count is zero, the DLL can unload. If it isnot, it can't. This function
reports to the OS whether it can be safely unloaded. The DLL unloading functions exist to
enable the OS to unload an inproc DLL when system resources are low. The DLL isaways
unloaded when the processit's attached to ends. While the processis running, the DLL can veto
the unloading by returning FALSE from Dl | CanUnl oadNow. When the process stops, the
DLL doesn't get to vote.

Therefore, aDLL that contains COM server(s) must implement four functions
(D'l Get A assObj ect, Dl | Regi st er Server, Dl | Unregi st er Server, and
Dl | CanUnl oadNow) and one class (the class factory).

Y ou can implement all this code yourself in every COM DLL you create, or you can use atool that
implements this code for you. You will next explore atool that does most of this work for you. That
tool iscalled ATL.

The Active TemplateLibrary (ATL)

Y ou will learn more about ATL in Day 11, "Multitier Architectures." Today you will ssmply use the

ATL Wizard to create a COM DLL that containsa COM server. You will seethat ATL writesthe
code for you for the four required functions and the required class factory classin aCOM DLL.

ATL isinspired by the C++ Standard Template Library (STL). To make it easy to create COM
components, ATL uses C++ templates.

Figure 9.6 : A new ATL COM AppWizard project.

Despite ATL's use of templates, you don't need to use templates in your own code in order to use
ATL. ATL providestwo wizards and several default COM object types that generate much of the
template code for you. With ATL, you are able to concentrate primarily on the implementation of your
code and don't have to worry about writing very much of the plumbing that COM needs.

Create anew project in Visual Studio. Specify an ATL COM AppWizard application and ATLTest 1
as the project name, as shown in Figure 9.6.

Click the OK button. In the next dialog, specify a server type of DLL, as shown in Figure 9.7. You can
build COM serversinto an EXE or an NT service, but don't worry about that yet. Y ou will learn about
COM serversin EXEslater today.

Check the check boxes for Allow Merging of Proxy/Stub Code and for Support MFC. Don't check the
box for supporting MTS. Y ou will learn more about MTS in Day 12, "Using Microsoft Transaction

Server to Build Scalable Applications." Click the Finish button and then click the OK button to
generate code for the project.

Figure 9.7 : Options for the ATL COM AppWizard project.

Figure 9.8 : The ATL Object Wizard.

After the wizard generates the code, select the Class View and expand the list of Globals in the tree
control. You will seethat the four required functions for COM DLLs have been generated for you.

Now you can build your own COM server(s) inthisDLL. Select the InsertNew ATL Object... menu to
open the ATL Object Wizard shown in Figure 9.8. The iconsin the wizard might look different from
those in Figure 9.8, depending on which version of Visual Studio you are using.

Select Simple Object from the pane on the right and click the Next button. Y ou will then be presented
with the ATL Object Wizard Properties dialog shown in Figure 9.9.

Figure 9.9 : The ATL Object Wizard Properties Names tab.

The Namestab isinitially selected, asin Figure 9.9. Enter DoConponent asthe short name. The
other text boxes should fill in automatically.

Select the Attributes tab and select the radio buttons shown in Figure 9.10.

Figure 9.10: The ATL Object Wizard Properties Attributes tab.

Threading Model refersto the type of threading your COM server will support. Apartment is the
default and will be fine for now.

Interface refers to whether your COM server will provide adual interface so that it can be used both
from scripting languages and from C++ or whether it will provide a custom interface only, which
cannot be used from scripting languages. ATL gives you the dual interface for free, so you might as
well takeit.

Aggregation refers to whether your COM server will be aggregated inside other COM servers. It will
not, so select No.

Y ou a'so will not need support for 1SupportErrorinfo, Connection Points, or the Free Threaded
Marshaler. Do not check any of these check boxes.

When you click the OK button, the wizard will generate code for the DbConponent class, which
will bea COM component that's housed in the DLL.

After the code is generated, you will seein the Class View an entry in the tree control called
| dbConponent . | standsfor Interface. Thisisthe interface for the DbConponent COM server.
| DbConponent will become a C++ abstract base class for clients that want to use DoConponent .

Right-click | DbConponent inthetree control and select the Add Method... menu. Thiswill open
the Add Method to Interface dialog shown in Figure 9.11.

Figure 9.11: The Add Method to Interface dialog.

Enter Beepl f Dbl sCk for Method Name. Return Type is always an HRESULT for ATL COM
functions. Leave the Parameters edit box empty. Click OK.

After you click OK, ATL will generate the infrastructure for this function. In the Class View, expand
the CdbConponent ; then expand the | DbConponent under CDbConponent . Under
| dbConponent , you will see an entry in the tree control for the Beepl f Dbl sCk function. This

points to the code for this function in the COM server. Double-click Beepl f Dol sCk to edit its
source code.

Edit the code for the Beepl f Dbl sOk function so that it matches the codein Listing 9.7.

Listing 9.7. The BeeplfDblsOk Function

STDVETHODI MP CDbConponent : : Beepl f Dbl sOk()

{
AFX_NMANAGE_STATE(Af xGet St at i cMbdul eState())

/'l Good'Die Mte. 'Looks lock the die-ta bise is oak eye.
. MessageBeep(MB_OXK) ;

return S _CK;

CcoNygRONMR

}

Y ou can see that this code isn't really doing anything to check a database to see whether it's okay. This
Isjust asimple function that you can use to begin your discovery of COM programming.

Lines5 and 6 are the only lines you need to add. The ATL Wizard automatically puts the rest of them
there. You can see from line 5 that this code could be written in the land down undah. COM
components can be written and used anywhere on the planet. Line 6 ssmply beeps.

Build your ATLTestl1 project. It should build without errors or warnings. The build process will
generate an ATL Test1.h file that contains the abstract base class (I DbConponent) that the COM
clientswill use. The build process will generate another file called ATLTestl i.c, which holds the
GUIDsthat the COM clients will need in order to use this COM server.

INPUT

The build process will run RegSvr32.exe for you to register the COM server DLL. This means that
after each successful build, you have a COM server that has been registered on your machine and is
ready to be used by COM clients.

Y ou have now created a COM server component that can be called from COM clients. To try it out,
copy the ATLTestl.h fileand the ATLTestl i.cfileinto the directory with your ADOMFC1 project.
Open your ADOMFC1 project in Developer Studio.

INPUT

Change the CADOMFC1Doc.cpp file so that it includesthe ATLTestl.h fileand the ATLTestl i.c
file (instead of the DbComponent.h file), like this:

#include "ATLTest1l i.c"
#include "ATLTest 1. h"

Change the code in the OnNewDocunent function so that it callsthe Beepl f Dbl sCk function in
your COM server (see Listing 9.8). (Y ou should, of course, leave the existing code in
OnNewDocunent and merely add this code to it-perhaps near the beginning of the function.)

Listing 9.8. Callingthe COM Server BeeplfDblsOk Function from the OnNewDocument
Function

1: hr = CoCreatel nstance(CLSI D DbConponent, NULL,
2: CLSCTX_ I NPROC_SERVER, 11 D_I DbConponent,

3: (void**) &pDb);

4:

5: if (SUCCEEDED(hr))

6: {

7: pDb- >Beepl f Dbl sCk() ;

8: pDb- >Rel ease() ;

9: }

Line 3 of Listing 9.8 defines a pointer to | DbConponent , the abstract base class that is the interface
to the COM object. | DbConponent isdeclared in ATLTest1.h.

Lines5, 6, and 7 call CoCr eat el nst ance. Thefirst parameter isthe CLSID for this component.
The second parameter isfor the aggregating | Unknown interface and is NULL (except when using
aggregation). The third parameter tells COM that you are working with a COM server inaDLL. The
fourth parameter isthe GUID for the interface you are requesting. (In this case, the CLSID for this
component and the GUID for the interface are actually the same.) The last parameter is where the
pointer to the instance of the class will be returned.

If the call to CoCr eat el nst ance succeeds, line 10 calls Beepl f Dbl sOk, and line 11 calls
Rel ease to freethe COM server. Listing 9.8 does not check for or handle errors for the sake of code
brevity and clarity.

Remember that you called the Af xA el ni t function in CADOMFCLApp: : I nitl nstanceto
initialize the COM libraries. Y ou must always do this before calling COM functions (such as

CoCr eat el nst ance), or they will fail.

The software should run without a hitch. Y ou should be able to set a break point in the client code and
step into the server code in the DLL, just as you can when COM isn't involved. Also, of course, the
program should beep as expected. No worries.

NOTE

Every COM interface isinherited from | Unknown, which has three
functions:
Queryl nt er f ace, AddRef, and Rel ease.

Y ou have now written a COM server component and a COM client application. Congratulations. Y ou
also understand COM at its foundation, which will enable you to understand more about COM later.

|Unknown, Querylnterface, AddRef, and Release

Y ou might be wondering about that Rel ease function call in line 12 of Listing 9.8. You didn't
declare or implement aRel ease function in your DbConponent classfor the COM server. How
did Rel ease become part of | DbConponent ?

It might not be readily apparent in this example, but every COM interface (I DoConponent
included) is derived from an abstract base class caled | Unknown. | Unknown has three member
functions: Quer yl nt er f ace, AddRef , and Rel ease.

Queryl nt er f ace enablesa COM client to query a COM server to see whether the server supports
the requested interface. The implementation of Quer ylI nt er f ace is standard among COM servers,
and ATL implementsit for you. If you weren't using ATL (or some other tool that automates the
process of creating COM server code), you would have to write an implementation of

Quer yl nt er f ace into your server code.

The same thing goes for AddRef and Rel ease. These two functions provide usage counts for COM
servers. Their implementations are pretty standard. ATL writes the code for these functions as well, so
you don't have to in your COM server code.

I nterface Definition Language

| mentioned earlier today that you could build COM serversinto an EXE. This means that the COM
client, which is an EXE in the example you just went through, can call functionsin another EXE.
COM enables function calls across process boundaries.

The programming model isidentical, whether your COM client istalking to a COM server inaDLL
or in an EXE. About the only difference on the client side is the third parameter it passes to

CoCr eat el nst ance-CLSCTX_LOCAL_SERVER instead of CLSCTX_| NPROC_SERVER. The
difference at runtime is that making function calls across process boundaries can be about 50 times
slower than making function calls within the same process. Nevertheless, the ability to call functions
in an EXE from another EXE is quite afeat.

To accomplish this feat, COM has to make each EXE believe it's talking to code inside its own address
space. COM creates alocal proxy of a server inside the client's address space. The client talks to the
proxy, the proxy talksto COM, and COM talksto the server EXE.

With COM crossing process boundaries like this, it was necessary to create some standard formats for
sending function calls and their parameter values and types between client and server EXES. Also
needed was an object that understands how to pack and unpack the specific parameters of an
interface's functions. Thisis called marshalling.

Proxy/stub objects, which are created by the MIDL compiler, handle this marshalling. The input to the
MIDL compiler is Interface Definition Language (IDL).

Y ou can see what IDL looks like by opening the ATL Test1 project and double-clicking the
| DbConponent interfacein the Class View. Thiswill open ATLTestl.idl.

You can think of IDL as C++ header files on steroids. IDL defines the interface classes, their
functions, and the functions parameters, just as C++ headers do. IDL also specifies whether the
parametersare | n, Qut , or Bot h, indicating whether a parameter is used by the client to passin a
variable that's filled in or modified by the server.

Automation (Formerly Called OL E Automation)

Automation is the name for a standard COM interface named | Di spat ch. If you look at
ATLTestl.idl, you will notice that | DbConponent isderived from | Di spat ch (I Di spatch is
derived from | Unknown).

Remember that you told ATL that you wanted this COM server to provide adual interface (refer to
Figure 9.10). A dual interface enables your server to be used by clients such as scripting languages.

Thel Di spat ch interface has a member function named | nvoke. | nvoke takes afunction name,
or ordinal value that represents afunction, as a parameter and invokes the function on behalf of a
COM client that can't call the function directly itself.

Calling functions in a COM server through | Di spat ch | nvoke isabit slower than making direct

calls to afunction through a pointer. However, the | Di spat ch interface opens up a COM server so
that |anguages without pointers can useit.

If your COM server has adual interface, it supports both the direct method through pointers and the
indirect method though the | Di spat ch interface. ATL does all the work of implementing the
| Di spat ch functions, so there's often no cost to supporting Automation in your COM server.

There is aneed, however, for your COM server to use only the data types supported by Automation in
its function parameters. Thistypically isn't a problem, but you should check the Automation typesin
the COM/V C++ documentation to make sure they meet the requirements of your server.

COM TypelLibraries

If aCOM server supports Automation, it can be used from client applications written in awide variety
of programming languages. If all that a COM server provides to document itsinterface isa C++
header file, that might not help some of the clients that want to use that server.

A type library is alanguage-independent header file.

A typelibrary describes the interfacesto a COM server in away that can be understood by most
modern programming languages (on the Windows platform). ATL automatically creates atype library
for COM servers. Thetypelibrary ATL created for ATLTestl isinthefile ATLTestl.tlb.

Y ou have actually used atype library already. When you used the #i npor t directive with ADO in
Days4, 5, and 6, you were using the ADO type library. The ADO type library is stored as aresource

inthe ADO DLL file. The#i nport directive reads the type library from the resource and creates
C++ classes for you that correspond to the interfaces described.

Summary

Today you learned the basics of COM. Y ou learned that COM is based on C++ abstract base classes,
called interfaces. Y ou aso learned that the COM libraries (part of the Win32 API) provide away to
create instances of classes indirectly, thereby avoiding any build-time dependencies between clients
and servers.

Traditional DLLs are good for sharing common code among concurrently running applications.
However, to build real component-based software, the capabilities afforded by COM are essential.

Q& A

file:///D|/UncleVan/Current/DB%20Visual%20C++/ch04/ch05.htm

Q What isthe difference between COM and OLE?

A These names (acronyms) are a bit historical. OLE is the name for the original
technology when it was introduced several years ago. OLE now applies mostly when
talking about controls, in-place activation, and other application-level technologies.
COM is more foundational and deals with the base parts of the technology. Today you
learned about COM, not OLE.

Q How does COM compareto other object technologies, such as CORBA and
OpenDoc?

A These object technologies have incredible depth and breadth. 1t would be difficult to
provide an adequate comparison. However, in general, COM provides the easiest
development model but not always the most robust performance. COM is most popular
on the Windows platforms. CORBA finds most of its adherents on the UNIX platforms.
For awhile, it looked as though OpenDoc would be supported on the IBM platforms
(0OS/2 and mainframes) and on the Macintosh platform, but support for OpenDoc has
waned considerably.

Q Does MFC provide classes and wizardsfor COM?

A Yes, it does. However, much of MFC's support isin two areas. OLE controls, both for
building them and for using them, and Automation, both for building Automation
servers and for building Automation clients. The OLE support in MFC is particularly
hel pful when you are building OLE components that have heavy user interface (Ul)
requirements. ATL is best used for COM components that have few, or no, Ul
requirements.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

Why can't you load a DLL into memory and send messages to it from your application?

What makes a C++ class an abstract base class?

What is aclass factory?

Why isit necessary for a COM client to call Rel ease on a COM server after it's finished with
it?

5. What isaCLSID, and why must all CLSIDs be unique?

~ONPE

Exercises

1. Add another method to the | DbConponent interface. Make this method take, as a parameter,
an address to a variable of some sort. Modify this variable in the server code and make sure it

gets back okay to the client.

2. Usethe ATL COM AppWizard to create a COM server in an EXE. Expose afunction in its
interface, similar to onein the DLL COM server. Compare the performance of the EXE-based
COM server (the out-of-proc server) versus the DLL-based COM server (the inproc server).

| ¢ Previous Chapter (% MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 10
Database Client Technologies and the
Secrets of ADO

. An Overview of Database Client Technologies
o ODBC
o MFC ODBC Classes
o DAO
n» RDO
- OLEDB
o ADO
o Database Client Technology Summary
. The Secrets of ADO
o ADQO's History
. Summary
. Q&A
. Workshop
o Quiz

o EXxercises

Database client technologies for the Windows platform have rapidly evolved during the past few
years. Technologies for doing database client development include ODBC, the MFC ODBC classes,
DAO, RDO, OLE DB, and ADO. Each of these technologies can be a useful tool for developing
database client applications.

The question of when and where to use each client technology can be very confusing-unless you
understand each technology and how it relates to the others. Today, the murky waters of database
client technologies will become clear.

After examining the context of database client technol ogies and the relationships between them, you
will spend some time learning more about ADO.

Today you will learn

. Anoverview of the database client technologies, such as ODBC, DAO, RDO, OLE DB and
ADO

. A comparison of the strengths and weaknesses of each technology

. The secretsof ADO

Y ou won't be writing new code today. Rather, you will concentrate on gaining a deeper understanding
of the ADO code you wrotein Day 4, "Retrieving SQL Data Through a C++ API," Day 5, "Adding,

Modifying, and Deleting Data," and Day 6, "Harnessing the Power of Relational Database Servers.”

An Overview of Database Client Technologies

Database client technologies provide abstractions. That is their purpose. A database is avery complex
piece of software. Writing programs to communicate with a database through its native interface can
be very complicated. Database client technologies simplify this process.

Database client technologies provide an interface that is less complex than the underlying database.
Database client interfaces provide leverage for you, the developer. They enable you to write relatively
simple programs that leverage an enormous amount of code (code that resides in the database) to
perform very complex tasks.

A good database interface is like a magnifying glass for your code, as shown in Figure 10.1.

Figure 10.1 : A database interface as a code magnifier.

Writing programs to communicate with a database through its native interface not only can be
complex but also can result in limited and inflexible applications. An application written to use a
particular database's native interface is limited, of course, to using only that particular database. The
process of enabling such an application to use another database can be very difficult and time-
consuming, if not impossible.

Database client technologies provide a uniform interface for communicating with different and
disparate database systems. With modern database client interfaces, you can write a single program
that performs complex operations using multiple types of data bases, as shown in Figure 10.2.

Figure 10.2 : A uniform interface to disparate database systems.

A good database interface magnifies your code and provides a uniform interface to different database
systems. In the recent past, several database interfaces have been developed. These database interfaces
differ from each other in the things they accomplish and the way they go about them.

The popular database interfaces on the Windows platforms include

. ODBC (open database connectivity)

« MFC (Microsoft Foundation Classes) ODBC classes

. DAO (Data Access Objects)

. RDO (Remote Data Objects)

. OLE DB (object-linking and embedding database-the expanded acronym makes no sense
unless you know its historical context, which you will learn shortly)

. ADO (ActiveX Data Objects)

Y ou will learn database client technologies in more depth in Days 14-21. However, hereis a brief
explanation of each technology to give you an understanding of the context of each.

ODBC

ODBC was created in the late '80s and early '90s to provide a uniform interface for writing client
software for relational databases. ODBC provides asingle API for client applications to work with
different databases. Applications that use the ODBC API can communicate with any relational
database for which thereisan ODBC driver.

Compared to other database interfaces, the ODBC API could be classified as alow-level database
interface. The ODBC API enables client applications to configure and control the database at a
relatively low level.

Figure 10.3 illustrates the architecture of ODBC.

Figure 10.3 : The ODBC architecture.

ODBC was designed to provide an interface to relational databases. ODBC has become quite popul ar
and is generally accepted as a standard for interfacing with relational database systems.

ODBC islimited to relational databases. Because of the relational nature of ODBC, it's difficult to use
ODBC to communicate with non-relational data sources, such as object databases, network directory
services, emall stores, and so on.

ODBC providesthe ODBC Driver Manager (ODBC32.DLL), an import library (ODBC32.L1B), and
ODBC header filesfor the ODBC API. Client applications link with the import library to use the
functions exposed by the ODBC Driver Manager. At runtime, the ODBC Driver Manager calls

functionsin the ODBC drivers (which are a'so DLLS) to perform operations on the databases, as
shown in Figure 10.3.

ODBC does not provide an embedded SQL interface. With embedded SQL, the SQL code is
embedded in the application program source code. A precompiler transforms the SQL code at build
time into native function calls that call the database's runtime library.

ODBC provides acall-level interface (CLI). A CLI isaspecia kind of database API. A CLI, likea
typical API, provides functionsfor client applicationsto call. However, in a CLI, the SQL code in the
client application is not precompiled. Rather, the API provides functions that enable the application to
send the SQL code to the database at runtime. The SQL code isinterpreted at runtime.

ODBC isanontrivia topic. You will explore the architecture of ODBC (and write some ODBC code)
in Day 14, "Legacy Database APIs."

MFC ODBC Classes

ODBC was created to provide a uniform interface to relational databases. However, the ODBC API
isn't necessarily simple.

In Visual C++, MFC provides classes that ssimplify the ODBC API. The MFC ODBC classes make
ODBC programming much less complex. Y ou used the MFC ODBC classesin Day 1, "Choosing the

Right Database Technology," in Listing 1.4.

The MFC ODBC classes are easier to use than the ODBC API but do not give you the low level
control that the ODBC API offers. Therefore, the MFC ODBC classes could be classified as a high-
level database interface. Y ou will learn more about using the MFC ODBC classesin Day 15, "The

ODBC API and the MFC ODBC Classes."

DAO

DAO stands for Data Access Objects. Data Access Objectsis a set of (COM) Automation interfaces
for the Microsoft Access/Jet database engine. DAO talks directly to Access/Jet databases. DAO can
also communicate with other databases through the Jet engine, as shown in Figure 10.4.

The COM-based Automation interface of DAO provides more than a function-based API. DAO

provides an object model for database programming.

The DAO object model is better suited to object-oriented development than a straight API. Integrating
a set of disparate API functions into an object-oriented application typically means that the devel oper
must write her own set of classes to encapsulate the API functions.

Figure 10.4 : DAQO architecture.

Rather than provide merely a bunch of functions, DAO provides a set of objects for connecting to a
database and performing operations on the data. These DA O objects are easy to integrate into the
source code of an object-oriented application.

In addition to including classes for connecting to a database and manipulating data, the DAO object
model also encapsulates the structural pieces of an Access database, such as tables, queries, indexes,
and so on. This means that DAO also enables you to directly modify the structure, or schema, of
Access databases without having to use SQL DDL statements.

DAOQO provides a useful object model for database programming, but as you can see from Figure 10.4,
several layers of software are involved. Note that if you are using DAO to talk to a database server
such as Oracle or SQL Server, al the calls into the database and al the data coming out of the
database must pass through the Access/Jet engine. This can be a significant bottleneck for applications
that use a database server.

DAO iseasier to use than the ODBC API but doesn't provide the degree of low-level control afforded
by the ODBC API. Therefore, DAO could be classified as a high-level database interface.

Thereisaset of MFC classes that further ssimplify the DAO Automation interfaces. The MFC DAO
classes are prefixed with CDAQ. Y ou can find information on these MFC classes in the Visual C++
documentation. On Day 14, you will learn more about DAO and the MFC DAO classes.

RDO

RDO stands for Remote Data Objects. RDO was originally developed as an abstraction of the ODBC
API for Visual Basic programmers. Therefore, RDO is closely tied to ODBC and Visual Basic.

RDO iseasier to use than the ODBC API but doesn't offer the low-level control provided by the
ODBC API. Therefore, RDO could be classified as a high-level database interface.

Because RDO callsthe ODBC API directly (rather than through Jet, like DAQO), it can provide good
performance for applications that use relational database servers.

RDO can be used with Visual C++ applications by inserting the Renot eDat a control in the
application. The Renot eDat a control isan OLE Control that can be bound to controlsin the
application's Ul. You can call RDO functions through the Renot eDat a control's methods. Y ou will

learn more about RDO in Day 14.

OLE DB

As| mentioned earlier, OLE DB stands for object-linking and embedding database. The OLE DB
name makes more sense as an acronym. Y ou will understand why in a moment.

OLE DB expands on ODBC in two important ways. First, OLE DB provides an OLE-actually, a
COM-interface for database programming. Second, OLE DB provides an interface to both relational
and nonrelational data sources.

OLE DB provides an OLE (COM) interface. OLE was the original name for COM. When OLE DB
was being created, OLE was still used as the name for COM. Since that time, COM has become the
name for the foundation of Microsoft's component technology (which you explored yesterday), and
OLE has come to be associated with Ul components such as OLE Controls (OCX Controls).

Used as an acronym, the OLE DB name invokes an image of OLE/COM and databases, which is
accurate. However, the expanded object-linking and embedding database name makes no sense. This
iswhy | say the OLE DB name makes more sense as an acronym.

| think the technology might best be named COM DB instead of OLE DB because OLE DB haslittle
to do with Ul components such as OLE Controls. Unfortunately, Microsoft has yet to seek my
approval of the OLE DB name and seems committed to using the OLE DB term.

OLE DB's provision of a COM interface for database programming isimportant because a COM
interface can be much more robust and flexible than atraditional call-level interface, such asthe
ODBC interface. Thisflexibility can result in better performance and more robust error handling and
can enable interfacing with nonrelational data sources.

Like ODBC, OLE DB could be classified as alow-level database API. OLE DB incorporates the
functionality of ODBC for relational databases and expands on it by providing access to nonrelational
data sources.

There are two kinds of OLE DB software: OLE DB consumers and OLE DB providers. Figure 10.5
illustrates the relationship between OLE DB consumers and OLE DB providers.

Figure 10.5 : OLE DB consumers and providers.

An OLE DB consumer is any application that uses or consumes OLE DB interfaces. For example, any
application that you write in C++ and that uses OLE DB to connect to a database server would be an
OLE DB consumer.

OLE DB providers are DLLsthat implement the OLE DB interfaces and do the actual communication
with the data source. OLE DB providers are similar in function to ODBC drivers, except that OLE DB

providers implement COM interfaces instead of API functions.

OLE DB furnishes access to any data source for which thereis an OLE DB provider. These data
sources include email stores, object databases, network directories, and other nonrelational data stores.

Asyou can seein Figure 10.5, thereisan OLE DB provider called MSDASQL.DLL that cantalk to
ODBC data sources. Thisis handy for those data sources that have an ODBC driver but don't yet have
an OLE DB provider.

OLE DB exposes aset of COM interfaces that can be called from C++ programs. OLE DB doesn't
offer an Automation interface.

OLE DB isthe future of database client development on Windows. Microsoft's own development
efforts are focused on OLE DB. It's unlikely that we will not see any further updates of ODBC. ODBC
will stick around in its present form, and all the new database client technology from Microsoft will be
applied to OLE DB. OLE DB isthe focus of Days 16-21.

ADO

ADO stands for ActiveX Data Objects. ADO is built on top of OLE DB. ADO isan OLE DB
consumer. Applications that use ADO use the OLE DB interfacesindirectly.

ADO provides an object model for database programming that's similar to, but more flexible than,
DAOQO's object model. For instance, you can create Recordset objectsin ADO without first creating a
Connection object (which is something you can't do in DAO).

ADO simplifies OLE DB. OLE DB islarge and complex; a program that uses OLE DB must use some
complex COM interfaces. ADO is much ssimpler to use than OLE DB and can be classified as a high-
level database interface.

Also, ADO can be used with more programming languages than OLE DB. ADO provides an
Automation interface. This enables ADO to be used from scripting languages, such as VB Script and
JavaScript. (OLE DB can't be used from scripting languages because scripting languages don't have
pointers and therefore can't use COM interfaces.)

You've already used ADO objectsin Days 4, 5, and 6 to connect to a database, issue queries, retrieve
resultsets, and execute stored procedures. Y ou will use ADO objects more today.

Database Client Technology Summary

The database client technologies and how they relate to each other are shown in Figure 10.6. Asyou
can see, several technologies are available to you for database client devel opment.

Table 10.1 presents the relative strengths and weaknesses of the various database client technologies.

Table 10.1 Comparison of the Database Client Technologies

MFC OLE
ODBC | oppc | DAO | RDO | pB | ADO
Object model - + + + + ++
Nonrelational data sources - - - - + +
Low-level control + - - +
Performance + - ++
Code-to-functionality ratio - + - +

Figure 10.6 : Database client technologies.

In Table 10.1, aplus sign (+) indicates a strength, two plus signs (++) indicate a specia strength, a
minus sign (-) indicates a weakness, and a blank indicates no particular strength or weakness.

« Object model indicates whether the technology provides an object model that lends itself to
object-oriented programming.

. Nonrelational data sources refers to the technology's capability to access data stored in
nonrelational data stores. (All these technologies provide access to relational databases, so
relational database accessisn't shown.)

. Low-level control refersto the amount of database configurability and low-level control the
technology provides for working with relational database servers.

. Performance refers to the amount of execution overhead the technology imposes when
accessing relational database servers.

. Code-to-functionality ratio refers to how much code you have to write compared to the
database functionality you gain from that code.

Of all these technologies, OLE DB and ADO have the most promising future. These two technologies
are where Microsoft is doing its development work. The other technologies are not being
discontinued, per se, but will not be further updated by Microsoft.

OLE DB offers unparalleled power and flexibility for client database programming. However, as you
can see from Table 10.1, OLE DB is alow-level interface and requires more code than a high-level
interface such as ADO.

ADO offers aflexible yet smple object model with decent performance. This makes ADO the best
way to start doing database client development. Next, you will explore ADO and learn how to
discover details about its functions.

The Secrets of ADO

The things you are about to learn are not really secrets. They are important pieces of information about

ADO that are not very clearly documented. The knowledge you are about to gain here, combined with
the existing ADO documentation, should give you what you need to perform any ADO programming
task.

Rather than describe al the ADO functions (asin traditional APl documentation), | will show you
where to find that information and how to use it. The knowledge you gain here will apply not only to
ADO but also to all other dual-interface COM servers.

ADQO'sHistory

Compared to the other database client technologies, ADO isrelatively new. So far, Microsoft has
released three versions of ADO: 1.0, 1.5, and 2.0.

Thefirst release, version 1.0, was a subset of the functionality of RDO. It was targeted at developers
building Active Server Pages (ASP) for Internet Information Server (11S).

The next release, version 1.5, was shipped with 11S 4.0 and Internet Explorer (IE) 4.0. It was aso
included in the Microsoft Data Access Components (MDAC). With version 1.5, ADO became a
database interface that rivaled (or exceeded) RDO and DAO in functionality and performance.

The latest release, version 2.0, added new functionality to ADO that is not found in other database
client technologies. ADO 2.0 is actually housed in MSADO15.DLL, which is the same filename as the
ADO 1.5DLL. Thefilenameisthe same, but additional ADO COM interfaces are implemented in the
ADO 2.0 version of the DLL.

The new functionality in ADO 2.0 includes

« Asynchronous operations and notifications
« Recordset persistence
. Hierarchical recordsets for data shaping

Before you delve into the latest and coolest features of ADO 2.0, however, you need to understand
some of the basics of ADO. Y ou will begin with ADO's use of COM.

ADO and COM

You will recall from Day 9, "Understanding Com," that a COM server can

. BehousedinaDLL sothat it runsin the client process's address space for good performance

« Provide an Automation interface so that it can be used from clients written in almost any
programming language

. Sport atype library so that its objects and functions can be easily discovered by client
applications

ADO does all these thingsasa COM server. ADO ishoused in MSADO15.DLL. ADO hasadua
interface, meaning it has custom (vtable) interfaces and Automation interfaces, and ADO has atype
library, so you can discover the ADO objects and the functions they expose.

The ADO TypeLibrary

Y ou can view the ADO type library by running the OLE-COM Object Viewer. Run the OLE-COM
Object Viewer now. It can be found under the Microsoft Visual Studio 6.0 Tools menu, Ole View.

From the File menu, select View TypeLib... and navigate to the MSADO15.DLL file. The
MSADOI15.DLL fileistypically installed in the C:\Program Files\Common Files\ System\ADO
directory.

The left pane of the OLE-COM Object Viewer window contains a tree control with the elements of the
type library. The right pane of the window shows the Interface Definition Language (IDL) code that
the MIDL compiler used to create the type library.

You will recall from yesterday that IDL is basically alanguage-independent C++ header file. The
MIDL compiler, which runs when you build a COM server project in Visual C++, usesthe IDL code
to build the type library.

Asyou select elementsin the tree control in the left pane of the OLE-COM Object Viewer window,
the right pane shows the corresponding IDL code. Scroll down in the tree control and select the

i nterface _Connecti on element. Thisisthe custom COM interface for the ADO

_Connect i on object. The ITypeLib Viewer window should look like Figure 10.7. The GUID for
the _Connect i on interface might change between releases of ADO, so it might look similar but not
identical to Figure 10.7.

The right pane shows the IDL for the ADO _Connect i on object. ThisIDL liststhe _Connect i on
object's functions and their arguments.

Figure 10.7 : Viewing the ADO typelibrary.

Y ou can find documentation for IDL in the Visual C++ help system. Basically, IDL islike C++
function declarations with the addition of attributes in brackets before each function and each
argument. The attributes you will see most frequently are

. 1 d-Assignsan ordinal value, called aDl SPI D, to each function

« out -Indicates that the argument isan out parameter: a pointer to avariable that the server
will modify and that the client will use afterwards

. 1 n-Indicates that the argument isan i n parameter and is being passed in from the client to the
server and that the client is responsible for the lifetime of any storage allocated

. retval -Isused in conjunction with an out argument to indicate that thisis the return value
of the function (all COM interface functions return an HRESUL T, so one out argument can be
specified as the return value)

. opti onal -Indicates that this parameter can accept a NULL value
. def aul t val ue-Specifies adefault value for optional parameters (this attribute is not
typically implemented when using #i nport)

Expand the tree control under thei nt erf ace _Connect i on element. Highlight the Execut e
function. The right pane will show the IDL code for the ADO _Connect i on object'sExecut e
function as shown in Figure 10.8.

Asyou can see, the type library provides documentation for the functionsin the COM interfaces of a
COM server. You can usethe#i nport directivein Visual C++ to have the compiler read the type
library and produce C++ header files that match it. Asyou will recall, that's what you did in the code
you wrote in Days 4, 5, and 6. You will learn more about using #i npor t with ADO in the next

section.

Figure 10.8 : Viewing thetype library for the Execut e function of the ADO _Connect i on_custom
interface.

Now scroll up the left pane of the OLE-COM Object Viewer window and expand the
di spi nterface _Connecti on element inthetree control. Thisisthe dispatch interface for the
ADO _Connecti on object.

You will recall from yesterday that the dispatch interface (I Di spat ch) isthe COM interface that
provides an | nvoke function. Programming languages that don't have pointers (but are Automation
capable) can call functionsin COM servers by passing the DI SPI D of the function to the

| Di spat ch | nvoke function. Thistechnology was originally called OLE Automation but is now
called ssimply Automation (with a capital A).

Select the Execut e method under di spi nterface _Connecti on inthe OLE-COM Object
Viewer. Your window will look like Figure 10.9.

Y ou can see that the IDL for the Execut e functionin ADO's Aut omat i on interface in Figure 10.9
iIssimilar to the IDL for the Execut e function in the custom interface (refer to Figure 10.8). The
difference between the functionsisthat the Aut ormat i on function does not return an HRESULT.
Rather, ther et val argument in the custom interface is listed as the value returned from the

Aut omat i on function.

Figure 10.9 : Viewing thetype library for the Execut e function of ADO _Connecti on
D spi nterface.

When an application uses the custom interface version of the _Connect i on: : Execut e function,
the application must pass a pointer to a pointer to a Recordset as the fifth argument, and the function
returns an HRESULT.

When an application uses#i npor t , however, the _Connect i on: : Execut e function returnsa

pointer to a Recordset, as in the Automation version of the function.
ADO and the#import Directive

Open your ADOMFC1 project. Open the MSADO15.TLH file and the MSADO15.TLI files. You can
find the MSADO15.TLH file and the MSADO15.TLI files by navigating to your build output
directory (probably Debug). These are the C++ header files that the compiler created from the ADO
type library at build time.

These header files contain two types of functions: high-level wrapper functions and low-level direct
functions. The high-level wrapper functions have the same name as the functionsin the type library.
The low-level functions use the function name with a prefix of r aw_.

For functionsthat have ar et val argument, awrapper is created with the same function name but
with ther et val argument removed and the return type changed to ther et val pointer type. You
saw the same technique used in the Automation version of the function in the type library shown in
Figure 10.9.

MSADO15.TLI contains the inline implementations of the high-level wrapper functions. The low-
level functions are invoked by the high-level functions, as shown in Listing 10.1.

Listing 10.1 A High-Level Wrapper Function in MSADO15.TL|

inline _RecordsetPtr _Connection::Execute (_bstr_t CommandText,
VARI ANT * RecordsAffected, |long Options)
{
struct _Recordset * _result;
HRESULT _hr = raw_Execut e(CommandText,
Recor dsAffected, Options, & result);
if (FAILED _hr)) _
com.issue_errorex(_hr, this, __uuidof(this));
return RecordsetPtr(_result, false);

QLN RONE

H

Ther aw_Execut e functioninline5 of Listing 10.1 isthe low-level function being invoked by this
high-level function. Y ou can see that this code calls the low-level function (r aw_Execut e), checks
the return value to see whether it'safailed HRESULT, and then throws an exception if it is. You can
call the low-level functions from your code if you want to. This would enable you to evaluate the
return values of the functions rather than have to catch exceptions.

MSADO15.TLH contains the declarations of the high-level and low-level functions. MSADO15.TLH
also containsthe #i ncl ude statement for Comdef.h, the forward references for the GUIDs in the

type library, smart pointer declarations, enumerated types in the type library, and the #i ncl ude
statement for MSADO15.TLI.

Listing 10.2 shows the portion of MSADO15.TLH that contains the forward references for the GUIDs
in the type library. The GUID for the _Connect i on interface might change between rel eases of
ADO, so it might look similar, but not identical, to Listing 10.2.

Listing 10.2 Forward Referencesfor the GUIDsin MSADO15.TLH

11
/'l Forward references and typedefs
11

struct __ decl spec(uui d("00000512-0000-0010- 8000- 00aa006d2ea4d"))
[* dual interface */ _Collection;

struct __ decl spec(uui d("00000513-0000-0010- 8000- 00aa006d2ea4d"))
/* dual interface */ _DynaColl ection;

struct __ decl spec(uui d("00000534-0000- 0010- 8000- 00aa006d2ea4d"))
10: /* dual interface */ _ADG

11: struct __decl spec(uui d("00000504-0000-0010- 8000- 00aa006d2ea4d"))
12: /* dual interface */ Properties;

13: struct __decl spec(uui d("00000503-0000-0010- 8000- 00aa006d2ea4d"))
14: /* dual interface */ Property;

15: struct __decl spec(uui d("00000500-0000-0010- 8000- 00aa006d2ea4d"))
16: /* dual interface */ Error;

17: struct __decl spec(uui d("00000501-0000-0010- 8000- 00aa006d2ea4d"))
18: /* dual interface */ Errors;

19: struct __decl spec(uui d("00000508-0000-0010- 8000- 00aa006d2ea4d"))
20: /* dual interface */ _Comrand;

21: struct __decl spec(uui d("00000515-0000-0010-8000- 00aa006d2ead"))
22: |* dual interface */ _Connection;

23: struct __decl spec(uui d("0000050e-0000-0010-8000- 00aa006d2ead"))
24: |* dual interface */ _Recordset;

25: struct __decl spec(uui d("00000506-0000-0010-8000- 00aa006d2ead"))
26: /* dual interface */ Fields;

27 struct __decl spec(uui d("00000505-0000-0010-8000- 00aa006d2ead"))
28: /* dual interface */ Field,

29: struct __decl spec(uui d("0000050c-0000-0010-8000- 00aa006d2ead"))
30: /* dual interface */ _Paraneter;

31: struct __ decl spec(uuid("0000050d-0000-0010-8000- 00aa006d2easd"))
32: /* dual interface */ Paraneters;

33: struct __decl spec(uui d("00000538-0000-0010-8000- 00aa006d2ead"))
34: /* interface */ ADODebuggi ng;

35: struct __decl spec(uuid("00000402-0000-0010-8000- 00aa006d2ead"))
36: /* interface */ Connecti onEventsVtbl;

37: struct __decl spec(uuid("00000403-0000-0010-8000- 00aa006d2ead"))
38: /* interface */ Recordset EventsVtbl;

39: struct __ decl spec(uuid("00000400-0000-0010-8000- 00aa006d2ead"))
40: /* dispinterface */ ConnectionEvents;

CcoNyORONMR

41: struct _ decl spec(uui d("00000266- 0000- 0010- 8000- 00aa006d2easd"))
42: | * dispinterface */ Recordset Events;

43: struct _ decl spec(uui d("00000516- 0000- 0010- 8000- 00aa006d2easd"))
44: |* interface */ ADOConnecti onConstruction;

45: struct /* coclass */ Connection;

46: struct /* coclass */ Conmand;

47: struct /* coclass */ Recordset;

48: struct _ decl spec(uui d("00000283-0000-0010-8000- 00aa006d2easd"))
49: /* interface */ ADORecordset Construction;

50: struct /* coclass */ Paraneter;

Listing 10.2 shows the GUIDs for the ADO objects. The GUIDs defined as dual interfaces, asin lines
21 and 22, are the ones you want to passto CoCr eat el nst ance or Cr eat el nst ance to
instantiate ADO objects. Other GUIDs are defined here that are not defined as dual interfaces. Asin
lines 43 and 44, these GUIDs are used internally by ADO.

After the forward references in MSADO15.TLH, you will see the declarations of the smart pointers
for each ADO object. Listing 10.3 shows these declarations.

Listing 10.3 Smart Pointer Declarationsin MSADO15.TLH

/1
/1 Smart pointer typedef declarations
/1

_COM _SMARTPTR_TYPEDEF(_Col | ection, __uuidof(_Collection));
_COM_SMARTPTR_TYPEDEF(_DynaCol | ecti on
___uui dof (_DynaCol | ection));

7: _COM SMARTPTR_TYPEDEF(_ADO, __ uui dof (_ADO)) ;

8: _COM SMARTPTR_TYPEDEF(Properties, __ uuidof (Properties));

9: _COM _SMARTPTR_TYPEDEF(Property, __ uuidof (Property));

10: _COM SVMARTPTR_TYPEDEF(Error, _ _uuidof(Error));

11: _COM SMARTPTR _TYPEDEF(Errors, _ uuidof(Errors));

12: _COM _SMARTPTR_TYPEDEF(_Command, __ uui dof (_Comrand));

13: _COM SMARTPTR_TYPEDEF(_Connection, __uuidof (_Connection));
14: COM SMARTPTR _TYPEDEF(_Recordset, _ uui dof(_Recordset));

15: _COM SMARTPTR_TYPEDEF(Fi el ds, __uui dof (Fi el ds));

16: _COM SVMARTPTR _TYPEDEF(Fi el d, _ uuidof(Field));

17: _COM SVMARTPTR_TYPEDEF(_Par anmeter, _ uui dof (_Paraneter));

18: _COM SMARTPTR_TYPEDEF(Par aneters, _ uui dof (Paraneters));

19: _COM SMARTPTR_TYPEDEF(ADODebuggi ng, __uui dof (ADODebuggi ng)) ;
20: _COM _SMARTPTR_TYPEDEF(Connecti onEvent sVt bl ,

__uui dof (Connecti onEventsVthbl));
21: _COM _SMARTPTR_TYPEDEF(Recor dset Event sVt bl ,
___uui dof (Recordset EventsVthbl));

22: _COM SMARTPTR_TYPEDEF(Connecti onEvents, _ uui dof (I D spatch));

23: _COM SMARTPTR_TYPEDEF(Recor dset Events, __uui dof (1 Di spatch));

QORrONE

24: COM SMARTPTR_TYPEDEF(ADOConnect i onConstructi on,

__uui dof (ADOConnecti onConstruction));
25: COM SMARTPTR_TYPEDEF(ADORecor dset Constructi on,

__uui dof (ADORecor dset Construction));

The name of the smart pointer that #i npor t generatesfor usein your code is the name of the first
argument (with aPt r suffix) passed to the COM_SMARTPTR_TYPEDEF macro. For example, line
13 in Listing 10.3 creates a smart pointer derived classcalled Connecti onPtr .

Y ou can see that the second argument passed to the_ COM_SMARTPTR_TYPEDEF macro uses the
___uui dof keyword. The COM SMARTPTR_TYPEDEF macros shown in Listing 10.3 refer to the
forward declaration of the GUIDs defined earlier in MSADO15.TLH. The __uui dof keywordisa
Microsoft-specific C++ extension and retrieves the GUID for the argument.

Following the smart pointer declarations, MSADO15.TLH contains the enumerated types defined in
the ADO type library. Listing 10.4 shows the Connect Mode Enumenumerated type as it appearsin
MSADO15.TLH.

Listing 10.4 The Enumerated Type ConnectM odeEnum Defined in the ADO TypelLibrary

enum Connect ModeEnum

{
adModeUnknown = 0,
adMobdeRead = 1,
adModeWite = 2,
adModeReadWite = 3,
adMbdeShar eDenyRead = 4,
adMbdeShar eDenyWite 8,
adModeShar eExcl usi ve 12,
adMbdeShar eDenyNone = 16

RoLoNoOoRNR

B

You will recall in Day 4 that you wrote the code shown in Listings 10.5 and 10.6 to create an instance

of the ADO Connection object in your code. (Listing 10.5 duplicates Listing 4.5, and Listing 10.6
duplicates Listing 4.8.)

INPUT

Listing 10.5. Changestothe ADOMFC1 Document Header File

cl ass CADOWClDoc : public CDocunent
{
/'l Attributes
publ i c:
BOOL m | sConnecti onQpen;
_ConnectionPtr m pConnecti on;

A A

INPUT

Listing 10.6. Changestothe ADOMFC1 OnNewDocument Function

1: BOOL CADOVFClDoc: : OnNewbDocunent ()
2: |
3. if (!CDocunent:: OnNewDocunent ())
4: return FALSE;
5:
6: HRESULT hr;
7.
8: try
9: {
10: hr = m pConnecti on. Creat el nstance(__ uui dof (Connection));
11: i f (SUCCEEDED(hr))
12: {
13: hr = m pConnecti on->Cpen(
14: _bstr_t(L"Provider=M crosoft.Jet. OLEDB. 3. 51;
Dat a Source=c:\\tysdbvc\\vcdb. ndb; "),
15: _bstr_t(L""),
16: _bstr_t(L""),
17: adMbdeUnknown) ;
18: i f (SUCCEEDED(hr))
19: {
20: m_| sConnecti onOpen = TRUE;
21: }
22: }
23: }
24 catch(_comerror &)
25: {
26: /[l Get info from comerror
27: _bstr_t bstrSource(e. Source());
28: _bstr_t bstrDescription(e.Description());
29: TRACE("Exception thrown for classes generated by #i nport");
30: TRACE("\t Code = %08l x\n", e.Error());

31: TRACE("\t Code neaning = %\n", e.ErrorMessage());

32: TRACE("\tSource = %\n", (LPCTSTR) bstr Source);

33: TRACE("\tDescription = %\ n", (LPCTSTR) bstrDescription);
34: }

35: catch(...)

36: {

37: TRACE("*** Unhandl ed Exception ***");

38: }

39:

40: return TRUE;

41: }

You can see that line 6 of Listing 10.5 definesa_Connect i onPt r instance as a member of the
CDocunent class. Note that the name _Connect i onPt r matches the argument (with aPt r
suffix) passed to the _ COM SMARTPTR_TYPEDEF macro in line 13 of Listing 10.3.

Line 10 of Listing 10.6 callsthe Cr eat el nst ance function of the _Connect i onPt r classand
passes the GUID for the ADO _Connect i on class (using the __uui dof keyword).
Cr eat el nst ance will return afailed HRESULT rather than throw an exception.

Line 17 of Listing 10.6 passes avauein Connect ModeEnumas an argument to the Qpen function
for the Connection object. The Open function will throw an exception if it fails (see the code for the
_Connection: : Open function in MSADO15.TLI).

Following the enumerated type declarations, MSADO15.TLH contains the declarations of the ADO
objectsin thetype library. Listing 10.7 shows the portion of MSADO15.TLH that contains the
declaration for the ADO _Connect i on object.

Listing 10.7 The ADO _Connection Object Declaration in MSADO15.TLH

1 struct _ decl spec(uui d("00000515-0000- 0010- 8000- 00aa006d2ea4d"))

2 Connection : _ADO

3 {

4: I

5: /'l Property data

6: I

7

8 __decl spec(property(get=Get ConnectionStri ng,
put =Put Connecti onString))

9: _bstr_t ConnectionString;

10:

__decl spec(property(get=Get ConmandTi neout , put =Put ConmandTi neout))
11: | ong ConmandTi neout ;
12: __decl spec(property(get=CGet Connecti onTi meout,

put =Put Connecti onTi nmeout))
13: | ong Connecti onTi meout ;

14: __decl spec(property(get=CGet Version))

15: _bstr_t Version;

16: __decl spec(property(get=GetErrors))
17: ErrorsPtr Errors,;

18:

__decl spec(property(get=CGet Def aul t Dat abase, put =Put Def aul t Dat abase))
19: _bstr_t Default Dat abase;

20:
__decl spec(property(get=CGetlsol ationLevel, put=Putlsol ati onLevel))
21: enum | sol ati onLevel Enum | sol ati onLevel ;
22: __decl spec(property(get=Get Attri butes, put=Put Attributes))
23: long Attri butes;
24:
__decl spec(property(get=Get CursorLocati on, put =Put CursorLocati on))
25: enum Cur sor Locat i onEnum Cur sor Locat i on;
26: __decl spec(property(get=CGet Mbde, put =Put Mode))
27: enum Connect ModeEnum Mode;
28: __decl spec(property(get=CGet Provider, put =Put Provi der))
29: _bstr_t Provider;
30: __decl spec(property(get=CGet State))
31: | ong State;
32:
33: I
34 /1 W apper nethods for error-handling
35: I
36:
37: _bstr_t GetConnectionString ();
38: voi d Put ConnectionString (
39: _bstr_t pbstr);
40: | ong Get CommandTi nmeout ();
41: voi d Put CommandTi neout (
42: | ong pl Ti neout);
43: | ong Get Connecti onTi neout ();
44. voi d Put Connecti onTi meout (
45: | ong pl Ti neout);
46: _bstr_t GetVersion ();
a47: HRESULT Cl ose ();
48: _Recordset Ptr Execute (
49: _bstr_t CommandText,
50: VARI ANT * Recor dsAffected,
51: long Options);
52: | ong BeginTrans ();
53: HRESULT Commit Trans ();
54 HRESULT Rol | backTrans ();
55: HRESULT Open (
56: _bstr_t ConnectionString,
57: _bstr_t Userl D,
58: _bstr_t Password,
59: long Options);
60: ErrorsPtr GetErrors ();
61: _bstr_t GCetDefaul t Dat abase ();
62: voi d Put Def aul t Dat abase (
63: _bstr_t pbstr);

64: enum | sol ati onLevel Enum CGet | sol ati onLevel ();

65: voi d Putlsol ati onLevel (

66: enum | sol ati onLevel Enum Level);

67: long GetAttributes ();

68: void PutAttributes (

69: long plAttr);

70: enum Cur sor Locat i onEnum Get Cur sor Location ();
71: voi d Put CursorLocation (

72: enum Cur sor Locat i onEnum pl Cursor Loc);

73: enum Connect ModeEnum Get Mbde ();

74. voi d Put Mode (

75: enum Connect ModeEnum pl Mode);

76: _bstr_t GetProvider ();

77 voi d Put Provider (

78: _bstr_t pbstr);

79: long GetState ();

80: _Recordset Ptr OpenSchena (

81: enum SchemaEnum Schena,

82: const _variant_t & Restrictions = vtM ssing,
83: const _variant_t & SchemalD = vtM ssing);
84 HRESULT Cancel ();

85:

86: I

87: /'l Raw et hods provided by interface

88: I

89:

90: virtual HRESULT __ stdcall get_ ConnectionString (
91: BSTR * pbstr) = 0;

92: virtual HRESULT __ stdcall put_ConnectionString (
93: BSTR pbstr) = 0;

94 virtual HRESULT __ stdcall get CommandTi neout (
95: long * pl Timeout) = O;

96: virtual HRESULT __ stdcall put_CommandTi neout (
97: I ong pl Timeout) = O;

98: virtual HRESULT __ stdcall get_ ConnectionTi meout (
99: long * pl Timeout) = O;

100: virtual HRESULT __ stdcall put_ConnectionTi meout (
101: I ong pl Timeout) = O;

102: virtual HRESULT _ stdcall get Version (

103: BSTR * pbstr) = 0;

104: virtual HRESULT _ stdcall raw Cose () = 0;
105: virtual HRESULT _ stdcall raw Execute (

106: BSTR ConmandText ,

107: VARI ANT * Recor dsAffected,

108: | ong Opti ons,

109: struct _Recordset * * ppiRset) = 0;

110: virtual HRESULT _ stdcall raw BeginTrans (

111: long * TransactionLevel) = 0;

112: virtual HRESULT _ stdcall raw ConmitTrans () = O;
113: virtual HRESULT _ stdcall raw Roll backTrans () = O;
114: virtual HRESULT __ stdcall raw Open (

115: BSTR ConnectionStri ng,

116: BSTR User | D,

117: BSTR Passwor d,

118: long Options) = 0;

119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150:
151:
152:
153:

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

rtual HRESULT _ stdcall get Errors (
struct Errors * * ppvObject) = 0O;

rtual HRESULT _ stdcall get_ Defaul t Dat abase (
BSTR * pbstr) = 0;

rtual HRESULT _ stdcall put_Defaul t Dat abase (
BSTR pbstr) = 0;

rtual HRESULT _ stdcall get Isol ationLevel (
enum | sol ati onLevel Enum * Level) = 0;

rtual HRESULT _ stdcall put_Isol ationLevel (
enum | sol ati onLevel Enum Level) = O0;

rtual HRESULT _ stdcall get Attributes (
long * plAttr) = 0;

rtual HRESULT _ stdcall put_ Attributes (
long plAttr) = 0;

rtual HRESULT _ stdcall get CursorlLocation (
enum Cur sor Locati onEnum * pl CursorLoc) = 0O;

rtual HRESULT _ stdcall put_CursorlLocation (
enum Cur sor Locat i onEnum pl CursorLoc) = 0;

rtual HRESULT __ stdcall get_ Mbde (
enum Connect ModeEnum * pl Mode) = O;

rtual HRESULT __ stdcall put_Mode (
enum Connect ModeEnum pl Mbde) = O;

rtual HRESULT _ stdcall get_ Provider (
BSTR * pbstr) = 0;

rtual HRESULT _ stdcall put_Provider (
BSTR pbstr) = 0;

rtual HRESULT _ stdcall get_State (
long * plObj State) = 0;

rtual HRESULT _ stdcall raw OpenSchenma (
enum SchemaEnum Schena,
VARI ANT Restrictions,
VARI ANT Schemal D,
struct _Recordset * * pprset) = 0;

rtual HRESULT _ stdcall raw Cancel () = 0O;

Line1in Listing 10.7 shows the interface identifier (I11D) for the ADO Connection object. Y ou can see
in line 2 that the Connect i on classis derived from the ADO class, which is declared earlier in the

MSADOI15.TLH file.

COM objects can have properties, which are basically data members, in addition to member functions
or methods. Visual C++ usesget , put , and put r ef methods to make the propertiesin a COM
object accessible to COM clients. Lines4-31 in Listing 10.7 assign these COM property-handling
functions to the high-level wrapper functions that are created with Get , Put , and Put Ref prefixes.

Lines 33-84 in Listing 10.7 declare the high-level functions for the ADO Connection object. The code

for these high-level functionsisfound in MSADO15.TLI.

Lines 86-153 in Listing 10.7 declare the functions found in the ADO type library. They use the
function name from the type library with ar aw_ prefix. Low-level functionsfor pr operty get,
put , and put r ef methods are prefixed by get _, put _,and _putref.

This completes your exploration of the use of #i nport with ADO. Y ou should now have a good
understanding of the .tlh and .tli files generated by #i npor t with the ADO type library.

Y ou can use the MSADO15.TLH file and the MSADO15.TLI files in combination with the existing
ADO documentation in order to understand ADO and how to effectively useit in your C++
applications.

Summary

Today you learned about database client technologies. Severa database client technologies are
available to C++ programmers. Each technology has its own strengths and weaknesses, and each one
has an historical context that defines how it relates to the other technologies.

The two database client technologies that will be updated and improved on in the future are OLE DB
and ADO. ADO offers agood balance of code size, performance, and ease of use. Y ou can best
understand the ADO object model by examining the MSADO15. TLH fileand the MSADO15.TLI
files, coupled with the ADO documentation.

Q& A

Q Isn't the performance of a native database API always better than the performance
of the database client technologies mentioned today?

A Not necessarily. It depends on the implementation of the API. Some database vendors
do provide anative API that is faster than the ODBC driver for their database. However,
other database vendors (notably Microsoft) provide ODBC drivers and OLE DB
providers that are highly optimized and are asfast as, or faster than, the native APIs for
their databases.

Q IsOLE DB just another layer on top of ODBC?

A No. OLE DB can directly communicate with any data source for which thereisan OLE
DB provider. OLE DB providers do not generally communicate with data sources
through ODBC. Rather, OLE DB providers directly communicate with the data source.
Thereisone OLE DB provider, MSDASQL, that can communicate with data sources
through ODBC. MSDA SQL should be used only with those data sources that don't have
anative OLE DB provider but do have an ODBC driver.

Q What database client technologies are compatible with Web servers?

A Web servers using CGI can communicate with CGIl-compatible executables. The
executable can conceivably talk to any data source to which it can gain access and for
which it has a programming interface. However, several newer technologies provide
better scalability for Web servers than CGIl. These newer technologies include NSAPI
on Netscape's Web servers and ISAPI on Microsoft's 11S. On the Windows platform,
ODBC, OLE DB, and ADO are compatible with CGlI interfaces, as well as with the
newer Web server interface technologies.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

What isthe goal or purpose of ODBC?

How is ODBC's call-level interface different from embedded SQL?

Where does the ADO type library reside and how can you view it?

Why does ADO throw exceptions when errors occur?

What function that you use with #i npor t does not throw exceptions but returns afailed
HRESULT instead?

akrwdpE

Exercises

1. Set break pointsin theinline functionsin MSADO15.TLI, such asthe
_Connecti on: : Open function, and run ADOMFC1 in debug mode to develop afeel for
how code in MSADO15.TLH and MSADO15.TLI is executed. Debug step into all the
functions to discern when you are executing code in your ADOMFC1 project and when you are
executing codeinthe ADODLL.

2. Modify the codein Listing 10.7 so that the call to the ADO Command Execut e function in
line 24 directly callsthe low-level Execut e function.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 11
Multitier Architectures

Layered Architecture
o The QS| Model
o Layered Architecture for Multitier Applications
Database Data and the Internet
o CGI-The Origina Technique for Interfacing Databases with Web Servers
o DLLsand Server Scripts-An Improved Technigue for Interfacing Databases with Web
Servers
o The XML Files
o What Color of Edsel Would You Like?
. Using ActiveX Controls and RDS to Build Elegant Thin Clients
. Summary
- Q&A
. Workshop
0 Quiz

o Exercises

Multitier development is transcending traditional client/server programming. The reason for this
transition is the fact that multitier applications promise to combine the verve and panache of
client/server applications with the ruggedness and scalability of the big iron (mainframe systems).

The tools for multitier programming are relatively new, and devel opers who have knowledge of

multitier development are at a premium. Today's material provides you with information about some
of thetools for performing multitier development on the Windows platform.

Today's devel opment work uses Microsoft Internet Information Server (11S) with Internet Explorer
version 4.0 (IE4). If you have use of IE4 and I1S (or Microsoft Personal Web Server, whichis
compatible with I1S), you will be able to perform all the programming tasks described today. If not,
you will have to learn some of these techniques without being able to try them yourself.

Although thisisaVisua C++ book, today's work does not involve writing any C++ code. Instead, you
will examine some XML code and write alittle HTML code. Y ou will also write some Active Server
Page code to learn how to use Remote Data Services (RDS). Y ou will get back to writing C++ code
tomorrow when you build COM server components that run under Microsoft Transaction Server and
Internet Information Server.

Today you will

. Explore some of the limitations of client/server computing that are driving the advance to
multitier applications.

. Enable database data to be sent over the Internet using XML.

. Use Remote Data Services (RDS) to send database data over HTTP to thin client applications,
such as Web browsers.

L ayered Architecture

Creating database applications for systems where the software runs on multiple computers over a
network has never been easy. The most difficult part of developing such asystemisdesigningit. In
fact, limitations in the design of typical client/server systems have hindered the growth of client/server
computing.

One of the limitations in the design of typical client/server systemsis that the software is generally not
layered effectively. Client/server software is often monalithic.

In monolithic software, the code for the different types of operationsis intermingled, and this codeis
all baked into traditional Windows EXEs and DLLs. Monolithic software has proven to be
insufficiently flexible and scalable for many client/server applications to be successful.

Using alayered architecture is a proven alternative to monolithic software. The value of alayered

architecture is best understood by examining a very successful layered architecture, the OSI model for
network software.

The OSl Model

Not too many years ago, it was difficult to send data between different computer systems, because
each computer manufacturer had its own standards for network communications. The computers from

different manufacturers used different communications protocols, and the computers typically could
not talk to each other.

In the late 1970s, the International Standards Organization (ISO) created a model to standardize the
various protocols for network communications. This model is called Open Systems Interconnect, or
the OSI model.

The OSI model enables network communications software to be written in layers, with well-defined
interfaces between the layers. The abstractions provided by these layers now make it possible for
disparate computer systems to communicate with each other over a network.

The OSI model consists of seven layers. In the OSI model, each layer was created to provide a
different level of abstraction. Each layer in the model performs awell-defined type of operation and
has a well-defined set of interfaces. The OSI layers are shown in Figure 11.1.

Figure 11.1: Layers of the OS model.

The layers of the OSI model shown in Figure 11.1 are

. Thephysical layer, which transmits and receives unstructured bit stream data over the physical
medium

. Thedata-link layer, which checks for and handles errorsin the frames of bits from the physical
layer

. The network layer, which maps physical addresses to logical addresses and handles routing of
frames to adjacent nodes

. Thetransport layer, which provides reliable end-to-end data delivery with acknowledgments to
ensure that messages are delivered with no losses or duplications

. The session layer, which enables communication sessions, or connections, to be established
between processes running on different computers

. The presentation layer, which performs translations such as ASCII to EBCDIC or CR to
CR/LF, data compression, and data encryption

. The application layer, which provides high-level functions such as device redirection, remote
file access, remote printer access, and interprocess communication

NOTE

The designers of the OSI model carefully crafted the interfaces between the
OSl layers so that the layers would be independent. The interfaces were
created in such away as to enable the implementation of one layer to be
changed without the need to change the implementation of its neighboring
layers.

The OSI model has proven to be very successful. Disparate computer systems can now readily
communicate with each other using this layered approach.

TCP/IP is aprotocol that adheres to the OSI model. Figure 11.2 illustrates how the layers of TCP/IP
map to the layers of the OSI model.

Figure 11.2 : How TCP/IP layers correspond to the OS model.

TCP/IP isthe protocol of the Internet. Asyou will see later, the nature of TCP/IP and the nature of the
OSl model figure prominently in the way multitier applications are developed.

Layered Architecturefor Multitier Applications

When you build multitier applications, you can apply important lessons from the OSI model to make
your applications successful.

NOTE

When you build multitier applications, you must carefully craft the
Interfaces between the tiers so that the tiers are independent. Y ou need to
create the interfaces in such away that the implementation of one tier can be
changed without the need to change the implementation of its neighboring
tiers.

Interfaces and abstractions are the two pillars on which multitier applications rest. Each tier that
provides an effective level of abstraction has interfaces that are understandable and distinct. Distinct
interfaces between the tiers enable the tiers to be updated independently of each other.

In traditional C++ development, programmers typically attempt to create layered architectures by
using C++ classes. The classes provide the abstractions, and the public member functions provide the
interfaces.

The C++ approach is good but is hampered by the fact that the C++ classes are usually compiled into
Windows EXEs and DLLs, without using COM interfaces. Asyou discovered in Day 9,
"Understanding COM," Windows EXEs and DLLs that don't support COM interfaces are invariably
bound together by build-time dependencies. A non-COM Windows EXE file and the DLL filesit uses
must all come from the appropriate build of the software.

Any time you have build-time dependencies between binaries in an application, you have a monolithic
application. In a multitier application, you might have client pieces running on hundreds of computers.
Y ou don't want to have to update all the software on every client machine every time you make some
small alteration to the software.

NOTE

In multitier applications, you want to avoid build-time dependencies
between the tiers. Y ou want to be able to update the software on one tier
without having to update the software on its neighboring tiers.

Thisissue of being required to update all the client machinesis afrequent problem in traditional
client/server applications. In many client/server systems, even asmall change in the server software
can necessitate a massive update of all the client software.

These massive client software updates are often caused by the build-time dependencies between EXEs
and DLLs, which make it impossible to update one binary without updating them all.

Another feature in client/server applications that exacerbates the need to update al the client software
every timeisfat client software. Fat client software does not refer to software you write for fat clients.
Rather, afat client is a piece of software that runs on a client computer and contains both code to
process data and code to present it to the user.

Asyou can seein Figure 11.3, fat clients contain business logic. This business logic may include code
for formulas or rules to perform cal culations on business data, or it may include code that accesses
tables and fields directly in a business database.

Figure 11.3 : Client/server architecture with fat clients.

Notein Figure 11.3 that the Ul portion of the client tier communicates directly with the database. This
occurs in client applications that use direct SQL statements and/or databound controls, which tie fields
and records in the database directly to elements of the user interface.

Thinisin

Thin client software is software that runs on client machines and contains only Ul (or presentation)
code. With thin clients, the need to update all the client computers every time the application is
updated is greatly reduced. Thin clients enable you to change server software components without
having to update all the client software every time. A ssmple multitier architectureisillustrated in
Figure 11.4.

Asyou can seein Figure 11.4, multitier applications use thin clients that do not contain business logic.
The business logic istypically moved to amiddletier of some sort. In some multitier applications, the

middletier software runs on its own machine. In other multitier applications, the middle-tier software
runs on the same machine as the data-tier software.

Figure 11.4 : Multitier architecture.

A good example of athin client isaWeb browser. All that a Web browser typically doesis
presentation. Contrast a Web browser with ADOMFC1.EXE, the MFC application you have been
working on in this book. As you know, ADOMFC1.EXE performs more than just presentation tasks.

ADOMFCL1.EXE uses ADO to connect with the database and then issues SQL statements to SELECT,
UPDATE, | NSERT, and DELETE data from tables in the database. ADOMFCL1.EXE has intimate
knowledge of the database. The code in ADOMFC1.EXE knows the names of the tables and their
fields, and the relationships between the tables. If the database schema were to change,
ADOMFC1.EXE would very likely need to be changed as well.

ADOMFCL1.EXE isafat client. ADOMFCL.EXE illustrates the requirement for client software to be
frequently updated in client/server systems. If ADOMFC1.EXE were installed as the client software
for a client/server application, a small change in the database could necessitate an update of all the
instances of ADOMFCL1.EXE on the client machines.

The nature of the connection that ADOMFC1.EXE uses with the database also increases its
interdependence with the datatier. When ADOMFCL.EXE uses the ADO Connection object to make a
connection to a database such as SQL Server, it makes an interprocess communication (IPC)
connection with the database. The interprocess communication mechanism is typically named pipes or
TCP/IP sockets.

It was mentioned earlier that the nature of TCP/IP and the OSI model figures prominently in the way
multitier applications are developed. Here's how.

Interprocess communication with named pipes and/or sockets is done at the OS| application layer. For
security reasons, interprocess communication is typically not used over the Internet. Using
Interprocess communications between software tiers makes a wide-open connection and enables a
broad interface between the software tiers.

An IPC connection can be thought of as a hard-wired connection to the database that enables
ADOMFCL1.EXE and the database to have a high level of interaction. ADOMFC1.EXE can modify
data in the database almost instantaneously. Round trips between ADOMFC1.EXE and the database
happen relatively fast. ADOMFC1.EXE can scroll through large sets of records very quickly.
ADOMFCL1.EXE can aso lock records and open transactions in the database and keep them aslong as
it likes.

I nterprocess communication between software tiers enables a broad interface between the tiers.
However, a broad interface between tiersis not always desirable if you want the tiers to be somewhat
independent of each other.

Web browsers and Web servers use the HT TP protocol, which is a connectionless protocol built on
TCP/IP. HTTP also operates at the application layer of the OSI model. However, using HTTP for
communications between software tiers provides a much narrower interface between the tiers than
named pipes or TCP/IP sockets do. A client application can't make an |PC connection to a database
with HTTP. This means an application that uses HTTP can't enjoy the high level of interactivity with
the database that an IPC connection would provide. HTTP's narrower interface, in effect, forces the
software tiers to be more independent of each other.

Web Browsersas Thin Clients

Web browsers can make a good client tier. Because Web browsers perform only Ul tasks and the
interface between the Web browser and the Web server (HTTP) is so distinct, the Web browser and
the Web server can be quite independent of each other in terms of software update requirements.

Web browsers can be used for applications that run on the Internet (more specifically, the World Wide
Web) and also can be used in applications that run over aLAN in an intranet. Theterm intranet is
used to describe the application of Internet technologies on internal corporate networks. With an
intranet, you can have a Web server that isinternal to your corporate LAN, and information from that
Web server can be accessed by machines on the LAN that runs Web browsers.

Multitier applications that use Web browsers as clients use a Web server such as Microsoft (11S) in
their middle tier. In such applications, Microsoft Transaction Server (MTS) is sometimes used in
conjunction with [1S on the middle tier. Y ou will explore MTS tomorrow.

Multitier applications that use Web browsers and 11S typically use an RDBMS, such as SQL Server or
Oracle, asthe datatier. Later today, you will use amiddle-tier software component that retrieves data
from the database and sends it through I1S to software on the client tier.

Tomorrow you will write your own component that runs under MTS and I1S. Y ou will be able to use
this component on the middle tier to send data from a database to browsers over HTTP, aswell asto
fat DCOM clients such as ADOMFCL1.EXE.

Database Data and the I nter net

If you do use a Web browser for the client piece of your multitier application, how do you get the data
from the database to the Web browser?

CGI-TheOriginal Techniquefor Interfacing Databases with Web Servers

The tools for using a Web browser as the Ul to a database application have been evolving rapidly.

Figure 11.5 shows how it was done in the early days of the Web.

Figure 11.5: Interfacing a Web browser to a database by using CGl.

Asyou can see from Figure 11.5, you could write a CGI application, which is an EXE that accepts and
fulfills requests from the Web server for data from the database. One drawback of CGI isthe fact that
for every concurrent user that is hitting your Web server, the Web server has to launch another
instance of the CGI EXE. Launching an EXE for each concurrent user can put a strain on the Web
server machine.

DLLsand Server Scripts-An Improved Technique for Interfacing
Databases with Web Servers

Microsoft and Netscape each developed their own improvements to the CGI model. In the improved
models, aDLL that runsin the Web server's process space is used instead of a CGl EXE. Thisis
illustrated in Figure 11.6.

Figure 11.6 : Interfacing a Web browser to a database by using DLLSs.

In the case of Microsoft 11S, the DLLs that provide an interface between I1S and a database are called
|SAPI DLLs. Because DLLsrun in the Web server's process, they place alighter load on the Web
server machine than CGI EXEs.

Microsoft has developed a technology called Active Server Pages (ASP), which is built on its ISAPI
DLL technology. ASP has a server-side script interpreter that enables you to run JScript and VB Script
scripts on the Web server. These scripts can make callsto COM servers and send the results out
through the Web server to Web browsers. The ASP technology isillustrated in Figure 11.7.

Figure 11.7 : Interfacing a Web browser to a database by using ASP.

Asyou can seein Figure 11.7, an ASP script can call a COM server that can communicate with a
database. The ASP script can then send the data from the database out through the Web server to Web
browsers. Later today, you will use ASP to communicate database data to Web browsers.

The XML Files

Extensible Markup Language (XML) provides away to describe and exchange data in Web-based
applications. XML complements Hypertext Markup Language (HTML). HTML enables the displaying
of data, whereas XML provides ways to describe and transmit data.

XML enables metadata, or data about data, to be imbedded with data and sent over the Web. Y ou
could think of XML as away to describe and transmit datain an HTML-like format.

As of thiswriting, XML is still making its way through the standards process. XML isin its infancy
now, but it will become avital technology in multitier applications in the future.

Listing 11.1 shows some XML code. The intent hereisto give you afeel for what XML lookslike.

Listing 11.1 A High-level Wrapper Functionin MSADO15.TL |

1. <?XM. version="1.0" encodi ng="UTF-8" ?>

2: <Sal es>

3: <s:schema id='"Sal esSchema' >

4.

5: <el enent Type i d="cust nunber" >

6: <string/>

7: </ el ement Type>

8:

9: <el ement Type id="Custoner">

10: <el enent id="cl" type="#custnunber"/>

11: <key id="kl"><keyPart href="#cl"/></key>
12: </ el ement Type>

13:

14. <el enent Type i d="buyer">

15: <string/>

16: <f or ei gnKey range="#Custoner" key="#kl1"/>
17: </ el ement Type>

18:

19: <el enent Type i d="part nunber">

20: <string/>

21: </ el enment Type>

22:

23: <el enent Type i d="Purchase" >

24. <el enent type="#partnunber"/>

25: <el enent type="#buyer" occurs="ONEORMORE"/ >
26: </ el ement Type>

27:

28: </s:schema>

29:
30: <Customer ><cust nunmber >Cust 003</ cust nunber ></ Cust oner >
31:
32: <Cust oner ><cust nunber >Cust 938</ cust nunber ></ Cust oner >
33:
34: <Cust oner ><cust nunber >Cust 501</ cust nunber ></ Cust oner >
35:
36: <Purchase>
37: <buyer >Cust 003</ buyer >
38: <buyer >Cust 938</ buyer >

39: <part nunber >CLAP- 003</ par t nunber >

40: </ Purchase>

41:

42: <Purchase>

43: <buyer >Cust 501</ buyer >

44. <buyer >Cust 938</ buyer >

45: <part nunber >M C- 92823</ par t nunber >
46: </ Purchase>

47:

48: </ Sal es>

Listing 11.1 illustrates how datafrom arelational database could be represented in XML. XML is text-
based, and as you can see, issimilar to HTML.

Line 1 indicates the version of XML. XML codeisrigidly nested. An XML document is made up of
XML elements, each of which consists of a start tag, such as<Sal es> inline 2, and an end tag, such
as</ Sal es> inline 48. The information between the two tags is referred to as the contents.

Tags annotate XML code as they do HTML code. In HTML, each tag indicates how something should
look. However, in XML each tag indicates what something means.

Line 3 isthe start tag for the schemacalled " Sal esSchema" . Line 28 isthe end tag for the schema.
A schemain XML issimilar to aschemain arelational database. Lines 3-28 declare a schema that
relatesbuyer s and par t nunber s in aone-to-many relationship called Pur chases. Y ou will
recall that you explored database design and data relationshipsin Day 7. (In arelational database that
corresponds to the XML schemain Listing 11.1, Pur chases would be atable that contains two
fields: par t nunber and buyer .)

To declare the one-to-many relationship, lines 5-26 contain a series of el enent Ty pe declarations.
Lines 5-7 declare a class (or element type) withanid of " cust nunber " that has a data type of
string. Lines 9-12 declare an element type of " Cust oner " that hascust nunber asan element
(or field). Note that cust nunber isthekey field. (In redl life, the Cust oner element type would
have additional fields, but they are not shown here for ssmplicity.)

Lines 14-17 declare an element type of " buyer ", which hasaCust oner asaforeign key field.
Lines 19-21 declareapar t nunber element type that is string data. Lines 23-26 declare an element
typeof " Pur chase" , which containsapar t nunber and abuyer . You will notice that in line 25,
buyer isindicated as ONEORMORE, meaning there can be multiple buyer s per par t nunber .

Line 28 marks the end of the schema. The information that comes after line 28 is the actual data. This
XML data conforms to the XML schema, like records in a database.

Lines 30-34 are three instances (or records) of customers. Lines 36-46 are two instances of
Pur chases. Each purchase liststhe par t nunber and thecust onmer s who bought it. If you were
to place the Pur chases information in atable in arelational database, the table would consist of two

fields (par t nunber and buyer) and would contain four records.

A full explanation of how to parse and process XML code is beyond the scope of this book. However,
you could begin to get your feet wet with XML by entering the code in Listing 11.1 into an XML file.
Y ou could then use the XML parsing sample(s) from Microsoft's Web site to processiit.

To enter Listing 11.1 into an XML file, run Visual Studio, select the File, New menu, and tell it to
create anew HTML page. (The HTML page needn't be part of any of your projectsin Visua Studio.)
Then typeinthecodein Listing 11.1 and save it asan XML file.

Currently, IE4 isthe only XML-aware browser. Other Web browsers currently cannot read XML files.

A potentially useful tool for XML isthe Microsoft XSL Processor. The XSL Processor takes XML
code and convertsit to HTML that can be displayed in almost any browser. Thisisillustrated in
Figure 11.8.

Figure 11.8 : Using XLSwith XML to get HTML.

Microsoft offers an XSL command-line utility and an XSL ActiveX control to make it easy and
productive to get HTML from XML.

Y ou can find more information on XML and XSL by pointing your Web browser to

http://ww. m crosoft.conm XM.. You will find information and documentation on XML, as
well as sample programs for parsing and processing XML code. Y ou can obtain further XML
development information as part of the Microsoft Internet Client SDK at

http://nmedn. m crosoft.com devel oper/sdk/i net sdk.

What Color of Edsel Would You Like?

So far today, you've read about using Web browsers as the client piece of multitier database
applications. This, of course, means putting database datainto HTML and sending it to Web browsers.
In actual practice, using HTML to display data from a database can make a pretty lame user interface.
Listing 11.2 shows atypical model for displaying and processing database datain HTML.

NOTE

A full explanation of HTML is beyond the scope of thiswork. Listing 11.2
Isintended merely to familiarize you with some of the limitations of using
HTML-based Web pages as the Ul for a database application.

INPUT

http://www.microsoft.com/XML
http://msdn.microsoft.com/developer/sdk/inetsdk

To enter Listing 11.2 into an HTML file, run Visual Studio, select the File, New menu, and tell it to
create anew HTML page. (The HTML page needn't be part of any of your projectsin Visual Studio.)
Thentypeinthe codein Listing 11.2 and save it asan HTM file. Y ou can view the page in IE4 by
entering the full path and filename of the HTM filein the IE4 Address text box.

Listing 11.2 Database Datain HTML

<HTM_>

<HEAD>

<TlI TLE>Dat abase Data in HTM.</ Tl TLE>
</ HEAD>

<BODY>

<CENTER>

<Hl1>Dat abase Dat a</ H1>

<TABLE BORDER=1 W DTH=80%
10: <THEAD>

11: <TR>

12: <TH>Field 1</ TH>

13: <TH>Field 2</ TH>

CcoNOORONMR

14: </ TR>
15: <TBODY>
16: <TR>

'_\

17: <TD>Record 1, Field contents. </ TD>
18: <TD>Record 1, Field 2 contents. </ TD>
19: </ TR>
20 <TR>
21: <TD>Record 2, Field contents. </ TD>
22: <TD>Record 2, Field 2 contents. </ TD>

'_\

23: </ TR>

24: <TR>

25: <TD>Record 3, Field 1 contents. </ TD>
26: <TD>Record 3, Field 2 contents. </ TD>
27: </ TR>

28: </ TABLE>

29:

30: <TABLE>

31: <TR>

32: <TD>Field 1:<TD><I NPUT NAME=Fi el d1 SI ZE=30>
33: <TD>Field 2: <TD><I NPUT NAME=Fi el d2 SI ZE=30>

34: </ TR>
35: </ TABLE>
36:

37:

38: <I NPUT TYPE=BUTTON NAME="Update" VALUE="Save Changes">
39: </ CENTER>

41: <SCRI PT LANGUAGE="VBScri pt">
42: SUB Update_Ond i ck

43: MsgBox "Do sone processing to update: " + Fieldl.Value +
" and " + Field2. Val ue

44: END SUB

45: </ SCRI PT>

46: </ BODY>

47: </ HTM.>

In browser/database applications, data from a database is typically placed in static HTML tables for
the browser to display to the user. Lines 1-28 in Listing 11.2 are standard HTML for displaying atable
of data.

Lines 30-35 place two text boxes on the page. Line 38 puts a button on the page. Lines 41-45 contain
VBScript code with an Updat e_OnCl i ck function that executes when the button is clicked.

The user-interface toolsin HTML for enabling the user to edit, add, and del ete database data are
somewhat primitive. The ideawith the pagein Listing 11.2 isto display the data from the database in
the HTML table and accept user input for changes to the data by using the two text boxes. When the
user clicks the button, the Updat e _OnC i ck function would display the user'sinput in the HTML
table or send the data to the server, or both. Unfortunately, there is no easy way in HTML to enable
the user to navigate to a particular record and edit it. As you can see, HTML makes for a somewhat
primitive data-base Ul.

Any changes that the user does make have to be sent to the server singly as they are made or cached in
variablesin the HTML page and sent as a batch. Sending the changes singly as they are made might
result in lots of time-consuming round trips between the browser and the server. Caching the variables
inthe HTML page and sending them as a batch requires you to write lots of code.

With the lag time of the data's round trips to the Web server, and with browsers primitive Ul tools,
your spiffy new multitier application could end up looking like an Edsel. For all the weaknesses of fat
client software, afat client does give you database connections that are responsive and quick and state
of the art Ul programming tools for building an elegant user interface.

Wouldn't it be nice if there were some way to build aclient tier by using Web browsers that have the
Ul and the data handling capabilities of fat clients?

Fortunately, thereis away you can get these fat client capabilitiesin abrowser. Y ou can use the |IE4
browser, with ActiveX controls for the Ul and with ADO Remote Data Service (RDS) to handle the
data on the client and middle tiers.

Using ActiveX Controlsand RDSto Build Elegant Thin
Clients

Y ou can use avariety of ActiveX controlsto provide an elegant Ul in |E4. These ActiveX controls are
available from Microsoft and from a number of independent software vendors (I1SV's). Evaluation
versions of many of the controls can be downloaded for free from the vendor's Web sites. These
ActiveX controls enable you to create a modern and complete Ul in the IE4 browser. Y ou will use one
such ActiveX control today.

To enable robust data handling in a browser, Microsoft offers Remote Data Service. RDSisincluded
in Microsoft's Data Access Components (MDAC). When you install MDAC, RDSis installed
automatically. You will find instructions for setting up RDS by searching the Platform SDK
documentation (in MSDN) for a document titled " Setting Up Remote Data Service."

NOTE

Y ou need to install the RDS Address Book sample to get a particular
ActiveX control required for your work today. The Sheridan grid control is
an ActiveX control that (as of thiswriting) isincluded in the RDS Address
Book sample.

The code that you will write today uses the Sheridan grid control. If you are unable to obtain the
Sheridan grid control in the RDS samples, you can download atrial version of the Sheridan Data
Widgetsat ht t p: / / www. shersoft.com .

INPUT

To test your installation of RDS, type in the code shown in Listing 11.3 and save it asan ASPfile. To
enter Listing 11.3 into an ASPfile, run Visual Studio, select the File, New menu, and tell it to create a
new Active Server Page. (The ASP page needn't be part of any of your projectsin Visua Studio.)
Then typeinthe codein Listing 11.3 and save it asan ASP file. Call it something like ClientTier.ASP.
Y ou can view the page in |E4 by entering the Web address of the ASP file in the IE4 Address text box.

Torunthecodein Listing 11.3, you must have | 1S or Personal Web Server running on
your machine. See the " Setting Up Remote Data Service" document in the Platform
SDK documentation for more information.

Listing 11.3 A Database Client Ul with the ActiveX Grid Control and RDS

1: <HTM>

2: <HEAD>

3: <TITLE>Cient Tier</TITLE>
4: </ HEAD>

5: <CENTER>

http://www.shersoft.com/

<Hl1>Renpte Data Service and Sheridan Gid Control </ H1>

<OBJECT I D="GRI D' W DTH=600 HElI GHT=200 Dat asr c="#ADC"
CODEBASE="ht t p: / / <%Request . Server Vari abl es(" SERVER_NAME") %
/| MSADC/ Sanpl es/ ssdat b32. cab”
CLASSI D="CLSI D: ACO5DC80- 7DF1- 11d0- 839E- 00A024A94B3A" >
<PARAM NAME="_Ver si on" VALUE="131072" >
<PARAM NAME="BackCol or" VALUE="-2147483643" >
<PARAM NAME="BackCol or Gdd" VALUE="-2147483643">
<PARAM NAME="For eCol or Even" VALUE="0">
</ OBJECT>

<OBJECT cl assi d="cl si d: BD96C556- 65A3- 11D0- 983A- 00C04FC29E33"
| D=ADC HEI GHT=1 W DTH = 1>
</ OBJECT>

<|I NPUT TYPE=BUTTON NAME="Execute" VALUE="Execute">

<I NPUT TYPE=BUTTON NAME="MoveFirst" VALUE="MveFirst">

<I NPUT TYPE=BUTTON NAME=" MovePr evi ous" VALUE="MovePrevi ous" >
<I NPUT TYPE=BUTTON NANME="MbveNext" VALUE=" MoveNext">

<| NPUT TYPE=BUTTON NAME="Mbvelast" VALUE="MovelLast">

<I NPUT TYPE=BUTTON NAME="Updat e" VALUE="Update">

<I NPUT TYPE=BUTTON NAME="Cancel " VALUE="Cancel ">

</ CENTER>

<SCRI PT LANGUAGE= "VBScri pt">

SUB MoveFirst_ondick
ADC. Recor dset . MoveFi r st
END SUB

SUB MovePr evi ous_ond i ck
On Error Resume Next
ADC. Recor dset . MovePr evi ous
| F ERR Nunber <> 0 THEN
ERR. Cl ear
END | F
END SUB

SUB MoveNext ond i ck
On Error Resume Next
ADC. Recor dset . MoveNext
| F ERR Nunber <> 0 THEN
ERR. Cl ear
END | F
END SUB

SUB MovelLast _ond i ck
ADC. Recor dset . Movelast
END SUB

59:
60: SUB Update onC i ck

61: ADC. Subm t Changes

62: ADC. Ref resh

63: Gi d. Rebi nd

64: END SUB

65:

66: SUB Cancel ondick

67: ADC. Cancel Updat e

68: ADC. Ref resh

69: Gi d. Rebi nd

70. END SUB

71:

72: SUB Execute onCick

73: ADC. Server =
"http://<%Request. Server Vari abl es(" SERVER_NAME") %"
74. ADC. Connect = "DSN=Or der sDb"
75: ADC. SQL = "Sel ect * from Products”
76: ADC. Ref resh

77 Gi d. Rebi nd

78. END SUB

79:

80: </ SCRI PT>

81l: </ BODY>

82: </ HTM.>

Lines 1-7 in Listing 11.3 put up thetitle for the window and a heading. Lines 9-17 place the Sheridan
ActiveX grid control in the page. Lines 19-21 place the Microsoft RDS DataControl (also called the
Advanced Data Control or ADC) into the page. Lines 26-32 place severa buttons on the page to
enable the user to interact with the Ul. Lines 35 to 80 contain VVBScript code for handling button
presses by the user. Lines 80-82 end the tags to indicate the end of the page.

The Microsoft RDS Dat aCont r ol (ADC) isan ActiveX control that isinstantiated on the client
machine in the browser's process. When the user presses the execute button, lines 73-75 set the Server,
Connect, and SQL propertiesin the ADC. Line 76 callsthe ADC Ref r esh method. This method
usesthe Ser ver , Connect , and SQL propertiesto tell the middletier to connect to the database and
issue the SQL query. The ADC then retrieves the records and caches them on the client machine.

Line 77 tellsthe grid control to rebind to the records. The grid actually does more than just display
them. The grid enables the user to navigate through the records, using the code in lines 37 through 58.
The user can edit the records contents in the grid. The user can cancel those changes by clicking the
Cancel button, which executes the code in lines 66-70. The user can commit the changes by clicking
the Update button, which executes the code in lines 60-64. The output of Listing 11.3 isshown in
Figure 11.9.

Figure 11.9: Theclient tier pagein |E4.

What happens behind the scenes with Remote Data Servicesis quite amazing. Figure 11.10 shows the
architecture of RDS.

Figure 11.10: The RDS architecture.

Following is an explanation of the sequence in atypical RDS operation:

1. A thinclient, such as a browser, running on aclient tier machine creates alocal instance of the
RDS. Dat aCont r ol (perhapsit isbound to agrid control running in the browser).

2. When the user makes arequest for the data, RDS. Dat aCont r ol creates aremote instance of
RDSSer ver . Dat aFact or y on the middle-tier machine and issues a query to the
Dat aFact or y object.

3. TheDat aFact or y object on the middle-tier machine uses OLE DB or ODBC to query the
database on the data-tier machine.

4. The database processes the query and sends all the recordsto the Dat aFact or y object on the
middle-tier machine.

5. TheDat aFact ory object stores al the records from the query in an OLE DB row set, called
the server-side cache, which resides on the middle-tier machine.

6. TheDat aFact ory placesan ADO Recor dset interface on the row set and sendsiit to the
client machine asthe RDS. Dat aCont r ol requestsit.

7. If configured to do so, with large amounts of datathe RDS. Dat aCont r ol can cause the grid
control to become interactive very soon after the Dat aFact or y begins sending datato the
client machine.

Step 7 mentions a capability that RDS provides that could be crucial for applications that process large
amounts of data. RDS enables the results of queriesto be sent asynchronously.

The RDS. Dat aCont r ol can be configured to retrieve data in the background or asynchronoudly. If
the RDS. Dat aCont r ol isretrieving the datain the background and the user tellsit to MovelLast
(move to the last record), user interactivity will cease until al the datais retrieved. If the

RDS. Dat aCont r ol isretrieving the data asynchronously and the user tellsit to MovelLast , user
interactivity will continue. The RDS. Dat aCont r ol will move to the most recent record received
and will continue to retrieve data asynchronously.

Y ou can enable the asynchronous capabilities of RDS by using the code shown in Listing 11.4. Create
anew ASP page for this code. Call it something like ClientTierAsync.ASP.

Listing 11.4 RDS Asynchronous Operations

<HTM_>

<HEAD>

<TITLE>Client Tier</TITLE>
</ HEAD>

hobRe

<CENTER>
<Hl1>Renpte Data Service and Sheridan Gid Control </ H1>

<OBJECT I D="GRI D' W DTH=600 HElI GHT=200 Dat asr c="#ADC"
CODEBASE="ht t p: / / <%Request . Server Vari abl es(" SERVER_NAME") %
/| MSADC/ Sanpl es/ ssdat b32. cab”
CLASSI D="CLSI D: ACO5DC80- 7DF1- 11d0- 839E- 00A024A94B3A" >
<PARAM NAME="_Ver si on" VALUE="131072" >
<PARAM NAME="BackCol or" VALUE="-2147483643" >
<PARAM NAME="BackCol or Gdd" VALUE="-2147483643">
<PARAM NANME="For eCol or Even" VALUE="0">

</ OBJECT>

<OBJECT cl assi d="cl si d: BD96C556- 65A3- 11D0- 983A- 00C04FC29E33"
| D=ADC HEI GHT=1 W DTH = 1>
</ OBJECT>

<|I NPUT TYPE=BUTTON NAME="Execute" VALUE="Execute">

<I NPUT TYPE=BUTTON NAME="MoveFirst" VALUE="MveFirst">

<I NPUT TYPE=BUTTON NAME=" MovePr evi ous" VALUE="MovePrevi ous" >
<|I NPUT TYPE=BUTTON NANME="MbveNext" VALUE=" MoveNext">

<|I NPUT TYPE=BUTTON NAME="Mbvelast" VALUE="MovelLast">

<I NPUT TYPE=BUTTON NAME="Updat e" VALUE="Update">

<I NPUT TYPE=BUTTON NAME=" Cancel " VALUE="Cancel ">

<|I NPUT TYPE=TEXT NAME=RsSt at e S| ZE =25>

</ CENTER>

<SCRI PT LANGUAGE= "VBScri pt">

Const adcExecSync =1
Const adcExecAsync = 2

Const adcFet chUpFront = 1
Const adcFet chBackground = 2
Const adcFet chAsync = 3

Const adcReadySt at eLoaded = 2
Const adcReadyStatelnteractive = 3
Const adcReadySt at eConpl ete = 4

SUB ADC OnReadySt at eChange
Sel ect case ADC. ReadyState
case adcReadySt at eLoaded: RsState. Val ue = "Loaded"
case adcReadyStatelnteractive: RsState.Value = "Interactive"
case adcReadySt at eConpl ete: RsState. Val ue = "Conpl et e”
END Sel ect
END SUB

SUB MoveFirst _onCick

59: ADC. Recor dset . MoveFi r st

60: END SUB

61:

62: SUB MovePrevi ous_ond i ck

63: On Error Resunme Next

64 ADC. Recor dset . MovePr evi ous

65: | F ERR. Nunber <> 0 THEN

66: ERR. C ear

67: END | F

68: END SUB

69:

70: SUB MoveNext ondick

71: On Error Resunme Next

72: ADC. Recor dset . MoveNext

73: | F ERR. Nunber <> 0 THEN

74. ERR. d ear

75: END | F

76: END SUB

77

78: SUB MovelLast ondick

79: ADC. Recor dset . MovelLast

80: END SUB

81:

82: SUB Update onC i ck

83: ADC. Subm t Changes

84: ADC. Refresh

85: Gid. Rebi nd

86: END SUB

87:

88: SUB Cancel ondick

89: ADC. Cancel Updat e

90: ADC. Refresh

91: Gi d. Rebi nd

92: END SUB

93:

94: SUB Execute_ondick

95: ADC. Execut eOpti ons = adcExecAsync

96: ADC. Fet chOpti ons = adcFet chAsync

97: ADC. Server =
"http://<%Request. Server Vari abl es(" SERVER_NAME") %"

98: ADC. Connect = "DSN=Or der sDb"

99: ADC. SQL = "Select * from Products”

100: ADC. Refresh
101: Gi d. Rebi nd
102: END SUB

103:

104: </ SCRI PT>
105: </ BODY>

106: </ HTM.>

The code in Listing 11.4 enables you to experiment with the asynchronous capabilities of RDS. To

help understand what is happening with the asynchronous data transfer, refer again to Figure 11.10.

Thecodein Listing 11.4 isidentical to the codein Listing 11.3, with afew additions. Line 34 adds a
text box that will report on the status of the Recor dset inthe ADC. Lines 39 to 48 are constants that
were copied from the RDS type library (in MSADCO.DLL). Lines 50-56 define afunction that is
executed automatically whenever the status of the ADC Recordset changes. Lines 95 and 96 set the
ADC to asynchronous operation before the query isissued.

One apparent problem with the RDS Dat aCont r ol isthe fact that the client program will issue
queries directly to the database. It would appear that the client application has direct knowledge of the
database. However, it isimportant to remember that the code for the client tier actually exists on the
middle tier in ASP files. Changing the database might necessitate changing the ASP files, but not the
software on the client machines.

A level of abstraction could be created using stored procedures and views in the database. These
database stored procedures and views could provide an interface layer to the RDS clients, underneath
which the implementation of the database structure could change.

A potential problem with RDSisin the area of security. The Dat aFact or y object on the middle tier
enables anyone who can obtain a DSN, username, and password to issue SQL statements to the
database. Those SQL statements could include DEL ETE statements to erase datain the database. For
thisreason, RDSis typically not used on the Internet. It could enable anyone with a browser to delete
your data. Rather, RDS finds its greatest application in corporate intranets where the users are more
trusted and security can be controlled more easily.

Y ou can also use the RDS Dat aCont r ol inyour C++ programs. The ADC code and the type library
residein MSADCO.DLL. You can usethe#i nport directive with MSADCO.DLL just asyou do
with MSADO15.DLL. The RDS Dat aCont r ol interfaceislisted as| Bi ndMgr inthetype library.

Summary

Multitier applications promise easier updates and maintenance than traditional client/server
applications. The tools for building multitier applications have evolved rapidly over the past few
years. XML is atechnology that will be widely used in the future to transmit datain multitier
applications. Some of the more recent developments, such as ActiveX controls and RDS, promise to
enable client/server-type development in an intranet environment.

Q& A

Q Can | use XML in C++ programs?

A Yes. You can use the XML parser from Microsoft to parse XML documentsin C++
programs and retrieve their contents. In other words, you can use the XML parser to
read the schema of XML documents and then read the data that the XML documents
contain. Thereis at least one sample C++ program for XML parsing on the Microsoft
Web site.

Q Why isit so difficult touse HTML to build a Ul for a database application?

A The Ul for a database application typically requires that the data be displayed in atable
and that the user be able to navigate through the table and edit the content of rowsin the
table as needed. HTML does not provide these capabilities. Thisiswhy it is necessary to
use an ActiveX control, such as agrid control, to build a good database UI.

Q Dol havetousean ODBC DSN with the RDS Dat aCont r ol , or can | specify an
OLE DB provider?

A You can use OLE DB providers as well as ODBC data sources with the RDS
Dat aCont r ol . To use an OLE DB provider, you would use" Pr ovi der =" and
specify the name of the provider and the particular OLE DB data source.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

What are the two pillars on which multitier architectures rest?

Why are thin client programs often more desirable than fat client programs?

How does the purpose of XML differ from the purpose of HTML?

What COM objects are instantiated, and where are they instantiated, in atypical RDS
application?

5. What is the security risk posed by the RDS COM servers?

W PE

Exercises

1. Create atable in your database that contains 10,000 records and query it with RDS to become
familiar with the asynchronous operation of RDS.

2. Create anew MFC application that uses#i npor t with MSADCO.DLL. Make this C++
application use the ADO Dat aCont r ol to perform afunction that is similar to the ASP code
inListing 11.4.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 12
Using Microsoft Transaction Server to
Build Scalable Applications

. Thelnfrastructure for Multitier Applications
. Using MTSto Build Multitier Applications
o Whereto Find MTS and How to Install It
o How MTS Worksin Multitier Applications
o Managing MTS Components by Using Packages
o Creating an MTS Component, Using Visual C++ and the ATL
o Using the OLE-COM Viewer to Instantiate Y our Component
o Using the Windows Scripting Host to Test your Component
o Testing Your Component in an Active Server Page
o Installing Your Component in MTS
o Calling Your MTS Component from an Active Server Page
o Debugging MTS Components

. Summary

- Q&A

« Workshop
0 Quiz

o Exercises

Building a multitier application can be a daunting task. Implementing the application logic is just one
part of the development process. Multitier applications require a sophisticated infrastructure. This

infrastructure often includes code to synchronize access to server resources, manage server
connections and thread pools, enforce security, and so on.

Without using Microsoft Transaction Server (MTS), application developers must build the
infrastructure for multitier applications themselves. However, by using M TS, developers can take
advantage of the infrastructure that MTS provides and are free to concentrate on implementing the
application instead of itsinfrastructure.

Today you will learn

. Theinfrastructure required for scalable, multitier applications

. Thefoundation and infrastructure that MTS provides for multitier applications

. How to create MTS components and how to use them in applications

. Waysto integrate MTS components with 11S and Web browsers

. How to debug M TS components

. How to send ADO Recordset objects between the tiers and components of a multitier
application

NOTE

Today's development work utilizes Microsoft Transaction Server (MTS), Microsoft
Internet Information Sever (11S), and Internet Explorer version 4.0 (1E4). If you have
accessto MTS, IE4, and I1S (or Microsoft Personal Web Server, which is compatible
with 11S), you will be able to perform all the programming tasks described today. If
not, you will have to learn some of these techniques without being able to try them
yourself.

Thelnfrastructurefor Multitier Applications

The move to multitier applicationsis being driven by the need for business applications that

« Are component-based and extensible
. Can handle large quantities of data being accessed by large numbers of concurrent users
. Aresecure and provide for the safety and security of important data

. Are accessible to users who might be in diverse locations and are using the application over a
LAN, WAN, or the Web

Building applications with these characteristics requires lots of code. The infrastructure, or plumbing
(which includes the code for communications, resource allocation, security, and so on), hasto bein
place before the devel oper can build the application.

Developers who build multitier applications from scratch have found that building the infrastructure
can be the most challenging and time-consuming portion of the project. In other words, building the

plumbing can be a significant part of the development effort.
The plumbing for a multitier application typically must include code that

. Communicates with client applications over the Web, aWAN, or aLAN

. Instantiates objects and resources on the server on behalf of each client

« Queues client requests

. Manages objects lifetimes on the server

. Trackseach user'sidentity and state

« Poolsthreads so that the server (or the middle-tier) doesn't have to dedicate a thread to each
user

« Prevents unauthorized access to the application or to the data

. Manages transactions to assure the successful processing of each client's work

. Pools database connections so that the server doesn't have to dedicate a database connection to
each user

This plumbing has to exist for multitier applications to work. That means that someone has to write it.

Developers who build their own plumbing for multitier applications typically must rebuild the
plumbing (or parts of it) each time they build a new application. For each application, they must spend
asignificant portion of their time writing code that is not really part of the application.

Developers who build their own plumbing also have limited opportunities to use third-party
components in their applications. For the use of third-party components in multitier applications, a
common component framework must be in place, and the components and the plumbing must be
compatible.

The Component Object Model (COM) provides a component framework. However, COM by itself
does not provide sufficient plumbing for building multitier applications. In practice, COM by itself
provides the framework for only asingletier of an application.

NOTE

DCOM does provide the means to instantiate COM objects on different machines
across a LAN. However, this capability alone does not provide a complete foundation
for building multitier applications. Instantiating objects on a server is only part of the
plumbing that a multitier application needs.

COM provides a component framework for asingletier in an application. To use COM componentsin
amultitier application, the application must have plumbing that is compatible with COM.

MTS provides plumbing for multitier applications that is compatible with COM. COM provides the
framework for using components in asingletier, and M TS provides the plumbing for these
components to be used acrosstiersin amultitier application.

Using MTSto Build Multitier Applications

Microsoft Transaction Server extends COM to provide a multitier application framework that can
shelter you from the complexities of multitier development. MTS handles object instantiation at the
server, process and thread management, synchronization of shared resources, and security. MTS also
supports transactions to ensure atomic updates and consistency.

Whereto Find MTSand How to Install It
MTSisincluded in the Windows NT 4.0 Option Pack. MTS requires

« Windows NT 4.0 or Windows 98 (or Windows 95 with DCOM support)
« A hard disk with aminimum of 30MB available space

. A CD-ROM drive

. Atleast 32MB of RAM

You can install MTS on your computer by using the Windows NT 4.0 Option Pack Setup program.
Y ou can install MTS with or without 11S and the other Option Pack components.

Toinstal MTS

Run the Option Pack Setup program.

Choose Custom Install.

Select (but do not uncheck) the check box for Transaction Server.

Click Show Subcomponents.

Check Transaction Server Core Components. Thiswill also install the Microsoft Management
Console. Note that choosing the Development Option also installs the Data Access
components.

6. Click OK for the Setup program to do the install.

abkrwpdpE

The Windows NT 4.0 Option Pack and MTS also are available as part of the Visual Studio Enterprise
Edition Server Setup options. Select Server Setup; then select BackOffice Setup. Then you can select
NT Option Pack as an installation option (along with SQL server, and so on.)

How MTSWorksin Multitier Applications

To use MTS in amultitier application, you build the business logic and functionality of your
application into a set of COM in-process servers. (Anin-process COM server isa COM server that
residesin aDLL.) Each of these COM servers performs some function or well defined set of functions
in your application.

The client programs in your application call these COM servers. The client programs do not perform

any communications with a database server directly. The COM servers constitute a middie tier that the
client programs call. This multitier architectureisillustrated in Figure 12.1.

Figure 12.1 : Multitier architecture.

In-process COM servers by themselves can't provide an adequate middletier. MTS extends COM by
providing awrapper for COM servers. You install these in-process COM serversin MTS, and MTS
wraps them and gives them additional functionality. This additional functionality makesit possible for
these COM serversto be used effectively as amiddletier in amultitier application. Figure 12.2
illustrates the role of MTS in multitier applications.

Figure 12.2 : MTSin multitier applications.

MTS wraps and extends the COM servers by intercepting the calls to them from client applications.
MTS does this by causing the Registry entries for COM serversto point to the MTS runtime
environment, instead of to the COM server's DLL. You will recall from Day 9, "Understanding
COM," that the location of a COM server's binary (EXE or DLL) is stored in the Registry. Figure 12.3
shows a sample Registry entry for an in-process COM.

Figure 12.3 : The Registry entry for an in-process COM server.

You can seein Figure 12.3 that the | npr ocSer ver 32 key for this particular CLSID pointsto
RDSATLMTSL.DLL (the filename derives from the fact that this example experiments with RDS,
ATL, and MTS) in the WorkinProgress\ RDSATLMTS1\Debug directory on the C drive.

Asyou will recall from Day 9, when a client application requests a pointer to an interface to a COM

server (using the CLSID), the system locates the binary and loads it if necessary. The system then calls
the class factory in the binary to create an instance of the COM server (if an instance needs to be
created) and returnsto the client a pointer to an interface to the COM server. (Refer to Figure 9.5 for
an illustration of this process.)

When you install an in-process COM server in MTS, the COM server becomes an MTS component.
The Registry entry for that COM server is changed so that it no longer points to the DLL in which the
COM server resides. Instead, the Registry pointsto MTX.EXE, which isthe MTS application binary.
Thisisillustrated in Figure 12.4.

Figure 12.4 : The Registry entry for an in-process COM server installed in MTS

Youcanseein Figure 12.4 that aLocal Ser ver 32 key that points to C:\WINNT\System32\mtx.exe
has been added. Following the filename and pathnameisa/ p: command-line argument followed by
aGUID. You can't seeit in Figure 12.4, but the entry for the | npr ocSer ver 32 key has been
emptied so that it no longer points to the COM server's DLL.

This change in the Registry means that when a client application references this COM server's CLSID

to obtain an interface pointer to the COM server, the system does not ook for and load the COM
server'sDLL. Instead, MTX.EXE islocated by the system (and loaded if necessary) and is passed the
/ p: command-line argument followed by the GUID shown in Figure 12.4.

Remember that an MTS component isa COM server that has been installed in MTS. The GUID passed
on the command line represents the particular MTS package that contains this MTS component. An
MTS package is a collection of MTS components that run in the same process.

Managing MTS Components by Using Packages

MTS components are organized into MTS packages. Packagesin M TS enable process isolation and
security to be established for sets of components. Process isolation ensures that a poorly written
component, which could cause errors at runtime, cannot bring down other processes running on that
machine. M TS package security ensures that only authorized users can access your application.

To learn about M TS packages, and to begin today's development work, you will need to create your
own package in MTS. Run the Transaction Server Explorer, which (on NT) you can run by selecting
the Start, Programs, Windows NT 4.0 Option Pack, Microsoft Transaction Server, Transaction Server
Explorer menu. The Transaction Server Explorer runs inside the Microsoft Management Console and
iIsshown in Figure 12.5.

Figure 12.5: The Transaction Server Explorer.

The tree control in the left pane enables you to navigate among the various MTS objects. You can
double-click each element (or click the plus sign beside each element) in the tree control to expand it
to view its children. The Transaction Server Explorer in Figure 12.5 has been expanded to show
installed MTS packages.

Create your own package in MTS by right-clicking the Packages Installed folder and selecting the
New Packages menu. Y ou are presented with the first window of awizard that will help you create
your package. Thiswindow is shown in Figure 12.6.

Figure 12.6 : Using Package Wizard to create an empty M TS package.

When you install a COM server in MTS, you specify which package it isto beinstalled in. Y ou can
create new packages anytime you need to in MTS.

NOTE

MTS security is not as fully implemented under Windows 95 and Windows 98 asit is
under Windows NT. The following explanation of how to create your own MTS
package under NT might contain steps for setting up security that do not apply under
Windows 95 and Windows 98.

Click the Create an Empty Package button. In the next window, you are prompted for the name of the
package, which you can call MyFi r st or some other appropriate name. Press the Next button. Y ou
will then be presented with awindow to specify the identity under which this package will run. This
window isshown in Figure 12.7.

Figure 12.7 : Using Package Wizard to set the package identity.

The default is to run the package under the currently logged-on user's identity. The alternative isto
hard-code the package to always run under a user identity that you specify. For your work today, use
the default setting of the current user's identity for your package. Click the Finish button to create the
package.

Y our package should appear in the tree control in the Transaction Server Explorer. Select it by
clicking it, and you should see that the package contains two folders, one for components and one for
roles. The Components folder will contain the in-process COM server that you will create and install
later today. The Roles folder enables you to specify security to limit user access to the package and its
components.

Y ou can set the properties of your MTS package by right-clicking its element in the tree control and
selecting the Properties menu from the context menu. Thiswill show the Properties window for your
package. The contents of the General tab are shown in Figure 12.8.

Figure 12.8 : Package properties- the General tab.

The Properties window in Figure 12.8 shows the name of the package, a description (which you can
assign), and the GUID that uniquely identifies this package. Thisisthe GUID that appearsin the
Registry asthe/ p: argument with MTX.EXE for the COM serversinstalled in this package.

Select the Security tab, which enables you to turn on and off security for this package. Thereisa
check box titled Enable Authorization Checking that you should leave unchecked to leave security off
for your package while you are learning MTS.

The Advanced tab enables you to specify how long the components in your package should live on the
server after being used and released by client applications. The default values are fine for now.

The Identity tab is the same one you saw on the Package Wizard. Use the default setting of the current
user's identity for your package.

The Activation tab enables you to specify where (in which process) the componentsin your package
should be instantiated. The Activation tab is shown in Figure 12.9.

Figure 12.9 : Package properties- the Activation tab.

The Library Package activation typeis available only for client applications that run on the computer

on which the package and components are installed. In other words, the client application and the
components have to be on the same machine. Selecting this option causes the components to be
instantiated in the client application's address space.

The Server Package activation type causes the components to be instantiated in a server process on the
MTS machine. In other words, the package runsin its own process on the MTS machine. The Server
Package activation type provides processisolation. It also enables M TS to enforce security, manage
resource sharing, and track the usage of components in the package. Select Server Package activation
for your package.

Creatingan MTS Component, Using Visual C++ and the ATL

Now it istime to create your first MTS component. Run Visual Studio and select the File, New menu.
On the Project tab, specify an ATL COM AppWizard project. The New Project window is shown in
Figure 12.10.

Figure 12.10: The new ATL COM AppWizard project window.

Call the project MTSConp1, as shown in Figure 12.10, or use whatever name you think is appropriate.
Figure 12.10 shows the project being placed in the c:\tysdbvc\mtscompl directory. If that directory
already exists on your machine, you will need to use a different directory. Click the OK button.

The next window isthe ATL COM AppWizard-Step 1 of 1 window. It is shown in Figure 12.11.

Figure 12.11: The ATL COM AppWizard-Sep 1 of 1 window.

Specify merging of proxy/stub code and support for MTS, as shown in Figure 12.11. Click the Finish
button and then the OK button for the wizard to create the project.

Select the Insert menu and the New ATL Object menu choice to specify an MS Transaction Server
object as shown in Figure 12.12.

Figure 12.12: Using the ATL Object Wizard.

Click the Next button. The ATL Object Wizard Properties window will appear. Under the Names tab,
specify a short name of Conponent 1.

Under the MTS tab, specify adual interface. Also, enable the check boxes for Support 10bjectControl
and Can Be Pooled, as shown in Figure 12.13.

Figure 12.13: The ATL Object Wizard Properties window and the MTS tab.

The 10bjectControl and Can Be Pooled optionstell MTS that your component should be returned to

an instance pool after deactivation, rather than be destroyed. This enables M TS to provide access to
your component in avery efficient manner as multiple client applications create and free your object.
MTS provides efficient access to your component by using thread pooling and database connection
pooling.

Click the OK button to generate the object. The CConponent 1 classwill appear in the tree view in
the ClassView tab of the project workspace in Visual Studio. Thel Conponent 1 interface will also
appear there.

To add a function to your component, right-click the | Conponent 1 interface and choose Add
Method from the context menu. The Add Method to Interface dialog will be displayed, as shown in
Figure 12.14.

Figure 12.14: Adding the Ret ur nHel | o method to an interface.

As Figure 12.14 shows, you should specify a method name of Ret ur nHel | o and the following
parameters.

[out, retval] BSTR* bstrHello

Using[out, retval] telsthesystemthat thebst r Hel | o parameter needs to be marshaled
from the server to the client and that this parameter is the return value of the function.

Click the OK button to add the method. Click the plus sign next to the | Conponent 1 interface, and
you should see the Ret ur nHel | o method listed. Double-click the Ret ur nHel | o method to view
the MTSCompl.IDL filethat the ATL Wizard created for you. This IDL code declares the interface to
| Conponent 1.

Click the plus sign next to the CConponent 1 class. Thel Conponent 1 interface will be listed
there, aswell as four other functions and a data member for the CConponent 1 class. Click the plus
sign next to the | Conponent 1 interface under the CConponent 1 class, and you will see the

Ret ur nHel | o function listed there, as shown in Figure 12.15.

Figure 12.15: The Ret ur nHel | o function in Component1.CPP.

Double-click the Ret ur nHel | o function under thel Conponent 1 interface under the
CConponent 1 classto open the Component1.CPP, as shown in Figure 12.15. Thisis where you
implement the code for | Conponent 1. Change the code in the Ret ur nHel | o function so that it
matches the code shown in Listing 12.1.

Listing 12.1 The RETURNHELL O Function in Component1.CPP

1: STDVETHODI MP CConponent 1:: Ret urnHel | o(BSTR *bstr Hel | 0)
2:

3: *pbstrHello = bstr _t("Hello");

4. return S_CK;

5.}

INPUT

The ATL Object Wizard generated lines 1, 2, 4, and 5. Y ou add the code in line 3 that assigns a
temporary _bstr _t instanceto the pMyBSTR argument. Y ou will also need to add

#i ncl ude <condef. h>

to Component1.CPP so that you can usethe bstr t class. Build the project, which should compile
and link with no errors or warnings. When you build the project, Visual Studio will register the COM
server for you.

NOTE

To build any of the release versions of this project, you might need to remove the
_ATL_M N_CRT preprocessor definition from the compiler settings for those
configurations. Search your Visual C++ documentationon ATL_M N_CRT, for
details.

Using the OLE-COM Viewer to Instantiate Your Component

Before installing your component in MTS, you would be wise to test it. There are several ways for you
to verify that your COM component works.

First, you will want to ensure that the system can instantiate your component. The easiest way to do
thisisto use the OLE-COM Object Viewer. You will recall from Day 10, "Database Client
Technologies and the Secrets of ADO," that you can find the OLE-COM Object Viewer under the
Microsoft Visual Studio 6.0 Tools menu. The menu OLE-COM Viewer iscalled OLE View. Run the
OLE-COM Object viewer and expand the Object Classes, Grouped by Component Category elements
of the tree control in the left pane. Expand the Automation Objects element. Under the Automation
Objectsin the left pane, you should see all the Automation objects that are registered on your system.

Scroll down until you find Conponent 1 Class. If you don't see Conponent 1 there, it probably is
not registered. Visual Studio registersit for you after every successful build, so it should be there if
you are doing this on your build machine. If you ever need to register the component manually

(perhaps on another machine), you can run regsvr32 mtscompl.DLL from the DOS prompt to register
it.

Click Componentl Class, and the right pane of the OLE-COM Viewer will display the Registry entry
for your Conponent 1. Right-click Componentl in the left pane and select Create | nstance from the
context menu. The Componentl Class element in the tree control will appear in bold text, and the

| Conponent 1,1 Di spat ch, and | Unkown interfaces will appear under it, as shown in Figure
12.16.

Figure 12.16: Using the OLE-COM viewer to instantiate a COM object.

If thisworks, you know that your Conponent 1 isregistered properly and that the system can
instantiate it. Release the instance of the Conponent 1 you just created, by right-clicking
Componentl Class and selecting Release Instance from the context menu.

Using the Windows Scripting Host to Test your Component

One of the easiest ways to exercise afunction in your component isto write a simple script that calls
it.

Until recently, the only scripting language that Windows supported was the MS-DOS command
language. Compared to the scripting languages available on other platforms, the MS-DOS command
language has very limited features and capabilities.

Microsoft has greatly expanded the scripting language support on the Win32 platform by introducing
the ActiveX scripting architecture. Microsoft provides three hosts for running scripts in the ActiveX
scripting architecture:

. Microsoft Internet Explorer (I1E4), which enables scripts to be executed on client machines
from within HTML pages

. Internet Information Server (11S) and Active Server Pages (A SP), which enable server-side
scripting for use over the Internet or an intranet

« Windows Scripting Host (WSH), which enables you to write scripts and execute them directly
on the Windows desktop or at the MS-DOS prompt

The Windows-based host is called WSCRIPT.EXE and enables you to run scripts directly from the
Windows desktop by double-clicking a script file. The command prompt-based host is CSCRIPT.EXE
and enables you to run scripts from the MS-DOS prompt by ssimply entering the name of the script
file.

WSH isincluded in the NT 4.0 Option Pack, Windows 98, Windows NT Workstation version 5.0, and
Windows NT Server version 5.0.

Microsoft provides Visual Basic Script (VBScript) and Java Script scripting engines for WSH.

Support for other script languages, such as Perl, TCL, REXX, and Python, is (or will be) provided for
WSH by third-party companies.

To write a script that exercises your component, create a text file and save it as Conpt est . VBS. The
VBS extension is important because the extension tells WSH which scripting language to use. (VBS
stands for VBScript.) Enter the code shown in Listing 12.2 in Comptest.VBS.

Listing 12.2 The VBScript Filefor Exercisng COMPONENT1

di m conpl

set conpl = WBcript. CreateObject ("MISConpl. Conponent 1. 1")
nyStr = conpl. ReturnHell o

W5cri pt. Echo "Result of ReturnHello: " & nyStr

RoOnNR

LinelinListing 12.2 definesavariable called conpl that can hold a COM object. Line 2 callsthe
WEcr i pt. Creat eQbj ect function to instantiate your component. Line 3 declares a variable called
nmy St r and stores the results of acall to your component's Ret ur nHel | o function. Line 4 displays
the resulting string in a message box.

Y ou can execute your Comptest.VBS script by double-clicking the file in Windows Explorer or by
enteringcscri pt Conpt est . VBS at the DOS prompt in the directory that contains thefile. It
should run with no errorsand display Resul t of ReturnHel | o: Hel | o inamessage box.
Testing your component with a script is one way for you to know that your component is registered
properly and that the code for your component works.

Testing Your Component in an Active Server Page

Y ou can also call your component from within an Active Server Page. However, you must make some
additional entriesin the Registry for |E4 to allow your component to run in its process.

|E4 has its own security to help ensure that the ActiveX (COM) componentsit runs are not malicious.
A component must be registered as safe for scripting and safe for initialization, or IE4 will not run it.
Therefore, you need to register Conponent 1 as being safe for scripting and initialization. Y ou do
this by creating atext file that has a .REG extension, such as mar ksaf e. REG, and that contains the
code shown in Listing 12.3.

Listing 12.3 A REG Fileto Mark Your Component Safe for Scripting and I nitialization

1: REGEDI T4

2: [HKEY_CLASSES ROOT\ CLSI D\ <@JI D>\| npl enent ed Cat egori es\
{ 7DD95801- 9882- 11CF- 9FA9- 00AA006CA2CA4}]

3: [HKEY_CLASSES ROOT\ CLSI D\ <@JI D>\ | npl enent ed Cat egori es\
{ 7DD95802- 9882- 11CF- 9FA9- 00AA006CA2CA}]

Replace the text that says <GUI D> in lines 2 and 3 of Listing 12.3 with the CLSI D for your
Conponent 1. You can obtain the CLSI Dfor your Conponent 1 from several places.

One easy way to obtain the CLSI Dfor your Conponent 1 isto use the OLE-COM Viewer. Right-
click Component1 Class and select Copy CLSID to Clipboard from the context menu. (After doing
thisyou can exit OLE-COM Viewer.)

Y ou can then paste the CLSI D into the REG file. To add these entries to the Registry database on your
machine, simply double-click the REG file in Windows Explorer.

In Visual Studio, create a new Active Server Page (the file does not need to be added to a project).
Enter the code shown in Listing 12.4 and save thefileasCl i ent Ti er For MT'S. ASP.

Listing 12.4 TheClientTierForMTS.ASP to Run COMPONENT 1 from an Active Server Page

1: <HTM.>
2: <HEAD>
3: <TITLE>Oient Tier</TITLE>
4: </ HEAD>
5: <CENTER>
6: <Hl1>Browser Client for MI'S Conponent </ Hl1>
7:
8: <!-- RDS. Dat aSpace --><OBJECT | D="ADS1" W DTH=1 HEI GHT=1
9: CLASSI D="CLSI D: BD96C556- 65A3- 11D0- 983A- 00C04FC29E36" >
10: </ OBJECT>
11:
12:

13:

14: <|I NPUT TYPE=BUTTON NAME="Ret ur nHel | 0" VALUE="Return Hell 0">
15: <| NPUT NAME=Ret ur nedHel | o SI ZE=10>
16: </ CENTER>

17:

18: <SCRI PT LANGUAGE= "VBScri pt">

19:

20: SUB ReturnHell o_Ond i ck

21:

22: Di m obj MyCust onBusi ness(bj ect
23: Set obj MyCust onBusi nessCbj ect =

ADS1. Cr eat e(bj ect (" MI'SConpl. Conponent 1. 1", "")

25: Ret ur nedHel | 0. Val ue = obj MyCust onBusi nessCbj ect. ReturnHel | o

26:

27: Set obj MyCust onBusi nessCbj ect = Not hi ng
28:

29: END SUB

30:

31: </ SCRI PT>
32: </ BODY>
33: </ HIM>

Lines 1- 7 and 32-33 aresimple HTML. Lines 11-17 contain norma HTML code that creates a
ReturnHello button and a text box.

Lines 8-10 create an instance of the Remote Data Services (RDS) Dat aSpace object. The database
space object is used to create client-side proxies of COM components that exist on a server or middle-
tier machine. RDS supports four protocols over which it can instantiate and call COM objects: HTTP,
HTTPS, DCOM, and in-process.

Lines 18 through 31 contain VBScript code that uses the Dat aSpace object to instantiate your
Conponent 1, cal itsRet ur nHel | o method, and display the results in the text box.

Line 23 callsthe Dat aSpace Cr eat e(bj ect function to instantiate Conponent 1. Asyou can
see, the second argument passed to the Cr eat ebj ect functionis"" . Thistellsthe

Cr eat eQbj ect function that the COM component isinstalled on this machine and to run it asan in-
process COM server. Y ou can specify a machine namein theform, " machi ne nane" to havethe
Cr eat e(bj ect function instantiate the COM component over DCOM. Y ou can specify

"HTTPS: / / webser ver nane” or "HTTP: / / webser ver nane" to havethe Cr eat e(bj ect
function instantiate the COM component over an HTTP connection to aWeb server.

Before you can have the Dat aSpace Cr eat eObj ect function instantiate your component over
HTTP or DCOM, you must add the Prog ID of your component (MTSCompl.Componentl.1) as a key
under the following Registry key:

HKEY LOCAL_MACHI NE\ SYSTEM Curr ent Cont r ol Set\ Servi ces
\ VBSVCQC\ Par anet er s\ ADCLaunch

To run the ASP shown in Listing 12.4, place the ASP file in adirectory that is accessibleto I1S (11S
will need to be running on the machine). Run IE4 and enter the HT TP address of that directory,
followed by the ASP filename. The page should load with no errors. When you click the ReturnHello
button, Conponent 1 will be called, and Hel | o will be displayed in the text box.

Note that you have not yet installed your component in MTS. The ability to instantiate and call your
COM component over DCOM and HTTP from a browser is provided by RDS. When you install your
component in MTS, it will not change the ASP code in Listing 12.4. Rather, MTS will simply make
your Conponent 1 more robust and secure when it executes on the middle-tier machine.

Installing Your Component in MTS

Now you need to install your COM server in MTS. Click the plus sign next to the MyFirst packagein
Transaction Server Explorer; then click the Components folder under the MyFirst package in the tree
control. Right-click the Components folder and select the New Component menu. Thiswill run the
Component Wizard, shown in Figure 12.17.

Figure 12.17: The MTS Component Wizard.

Asyou can seein Figure 12.17, there is a button to install new components and a button to import
components that are already registered. The button to import components that are already registered
will open awindow that displays al the COM servers registered on your computer. The button to
install new components opens the window shown in Figure 12.18. Click the button to install new
components.

Figure 12.18: The Install Components window in the MTS Component Wizard.

Click the Add Files button and navigate to the directory that contains the MTSCompl.DLL file for the
COM server that you just built and select the DLL. The Install Components window should show that
it found Conponent 1, which isthe COM server in your DLL. Click the Finish button to install
Conponent 1 in MTS.

Y ou should now be able to see MTSCompl.Componentl in the MyFirst package. The installed
component looks like a bowling ball with an X on it, as shown in Figure 12.19.

Figure 12.19: The MTSCompl.Compone ntl in the Transaction Server Explorer.

Using the View menu, you can see various kinds of information about the components. One
interesting view is the Status view. Select the Status view, and you will be able to see information on
whether MTSCompl.Componentl has been activated, how many objects of it are instantiated, and
how many are handling calls from client applications. These values should all be blank now, but when
aclient application calls your MTSCompl.Componentl, you will be able to see that the object is
instantiated by using this view.

Calling Your MTS Component from an Active Server Page

Y ou can use MTS components in Active Server Pages (ASP). However, there are two things you need
to do to your Conponent 1 MTS component to enable it to be used from an ASP.

First, just to ensure that the MTS security doesn't get in your way during development, you need to
make sure it is not enabled for your Conponent 1. Y ou do this by right-clicking the bowling ball for
Conponent 1 and selecting Properties from its context menu. Under the Security tab, uncheck the

Enable Authorization Checking check box, as shown in Figure 12.20, and press the OK button.

Figure 12.20: Disabling security authorization checking for Conponent 1.

Secondly, you need to mark the component safe for scripting and initialization again. When you
installed Conponent 1 in MTS, the Registry entry was modified, and the entries that mark
Conponent 1 as safe for scripting and initialization were removed. Y ou can put the safe-for-scripting
and initialization entries back in the Registry for your component by simply double-clicking the
marksafe.REG file in Windows Explorer. After you mark Conponent 1 safe again, you might want
to refresh the MyFirst package in Transaction Server Explorer, just to make sure that MTSisfeeling
good about things with your component.

It is important to refresh the MTS settings for components each time you recompile your project or
make changes to its Registry settings. Refreshing component settings prevents your component
Registry settings from being rewritten.

To refresh your component settings, in the left pane of the Transaction Server Explorer, select My
Computer. On the Action menu, click Refresh All Components. This updates MTS with any changes
to the System Registry, component CLSIDs, or interface identifiers (11Ds). Y ou can also refresh
components by selecting the computer in the left pane of the Explorer and clicking the Refresh button
on the MTS toolbar.

Y ou can refresh individual packagesin MTS by right-clicking the Components folder, under the
package in the left pane of the Transaction Server Explorer, and selecting Refresh from the context
menul.

When you build your MTSCompl project, it will run mtxrereg.EXE as a postbuild step.
Mtxrereg.EXE is a command-line version of the Refresh Components menu that you can access by
right-clicking a package. If mtxrereg.EXE runs properly, you will not have to use Transaction Server
Explorer to refresh your component after each build.

After making all these changes, your component will be ready to run under MTS and will be
accessible to Web browsers through RDS.

Run the ASP shown in Listing 12.4 again, by clicking the Refresh button on your browser. If you have
aready quit |E4, run it and enter the HT TP address of that directory, followed by the ASP filename.
The page should load with no errors. When you click the ReturnHello button, Conponent 1 will be
called, and Hel | o will be displayed in the text box.

Y ou will also be able to look at the Status view for the components of your package in Transaction
Server Explorer. The Objects, Activated, and In Call columns for MTSCompl.Componentl should go
from blank to 0O, indicating that the object was instantiated, activated, and called. (It ran to completion
too quickly to register a1 in any of those columns.)

Returning an ADO Recordset from M TS Component to an Active Server
Page

Now that you know that your component can run in MTS and can be called from an ASP, it'stimeto
make your component do something useful. In fact, your component will do more than something
useful; it will do something really cool.

Asyou know, ADO Recordsets are built to encapsul ate the results of database queries. ADO
Recordsets have functions built in for navigating through records and accessing the datain fields. Y ou
can edit the datain the Recordset, and those changes will be made to data that resides in the database.
(Of course, you recall that you need to make a connection to the database first by using the ADO
Connect i on object.)

ADO Recordsets are nifty because they can be disconnected from the database and returned from
functionsin COM components. Thisis because ADO Recordsets have the capability to be marshaled
across process boundaries.

This feature of ADO Recordsets enables your middle-tier COM component to create a Recordset from
a database query and then send the Recordset across the wire, using COM, DCOM, or HTTP, to the
|E4 Web browser. A Recordset that is sent across the wire in this manner is called a disconnected
Recordset.

| E4 can use a disconnected Recordset as the data source for a grid control. The browser can accept the
user's changes to the data in the grid control and then submit the Recordset back to the middie-tier
component, which could submit the Recordset back to the database for the user's changes to be made
to the datain the database.

Web browsers that have no direct connection to the database can retrieve and edit data from the
database asif they did have a connection to it. Remember, MTS can provide security for these types of
applications.

Unfortunately, building a complete application like thisis beyond the scope of today's work. Y ou will,
however, in today's work write the code to send a Recordset from your middle-tier MTS component to
aWeb browser and bind it to agrid control.

Add another method to your Conponent 1 interface. Name the method Ret ur nRs and use the
following for its parameters:

[out, retval] ID spatch ** Rs

After adding the Ret ur nRs method, implement the code for it as shown in Listing 12.5.

Listing 12.5 The RETURNRS method for Returning an ADO Recordset froman MTS
Component to an ASP

1: STDVETHODI MP CConponent 1:: ReturnRs(|1 Di spatch **Rs)
2: {
3: _Recordset Ptr adoRs = NULL;
4.
5: try
6: {
7: adoRs. Creat el nst ance(__uui dof (Recordset));
8: adoRs- >Put Cur sor Locat i on(adUsed i ent) ;
9: adoRs- >Qpen("SELECT * FROM Custoners",
10: "DSN=Cr der sDb; Ul D=; PWD=; ",
11: adOpenSt atic, adLockBatchOptim stic, adCrdText);
12:
13: *Rs = (1D spatch*)adoRs;
14:
15: adoRs- >AddRef () ;
16:
17: /1 m spQbj ect Cont ext - >Set Conpl et e() ;
18:
19: return S_CK;
20: }
21: catch (_comerror e)
22: {
23: . . MessageBeep(MB_(X) ;
24. At | Report Error(CLSID Conponentl, (LPCOLESTR)e. Description(),
25: I 1D | Conponent1, e.Error());
26: }
27:
28: /I m spQbj ect Cont ext - >Set Abort ();
29: return E_FAIL;
30: }

Line 3 of Listing 12.5 defines an ADO Recordset smart pointer. Line 7 uses the smart pointer class's
Cr eat el nst ance function to create an ADO Recordset. Line 8 tells ADO to use aclient-side
cursor, which is necessary if you are going to make this a disconnected Recordset. Lines 9-11 open the
Recordset witha" SELECT * FROM Cust oner s" query.

Line 13 iswhere the real magic happens. It casts the Recordset smart pointer asan | Di spat ch
pointer and assignsit tother et val out parameter. When thisline of code executes, COM uses the
ADO Recordset's| Mar shal implementation to send the Recordset object (code, data, and all) to
whichever client program is calling this Ret ur nRs function. After line 13 executes, the Recordset no
longer existsin this process space, so it is not necessary to close or releaseit.

Line 15 calls AddRef () so that when the smart pointer goes out of scope, it won't call Rel ease()
on the Recordset. It will cause an error if it does, because the Recordset is already gone. (It was sent to
the client and released from thisend in Line 13.) Line 17 could call Set Conpl et e() if you were

supporting MTS transactions in this component, which you are not. Lines 21-29 are for error handling.
Line 23 just beeps in case the client application is not set up to take the output of
At |l ReportError().

Y ou will need to add the #i nport directive for the ADO library to a source file in your project.
Stdafx.h isagood file to add the #i npor t directiveto. (You will, of course, need to list the path to
the MSADO15.DLL file on your machine.)

#inmport "C \programfiles\comon files\system ado\ nsadol5.dl " \
no_nanmespace \
renane("EOF", "adoECF")

Y ou will receive a C4530 warning unless you enable exception handling for this project. In the C++
Language Category of the C/C++ tab in the Project Settings dialog box, select the Enable Exception
Handling option or ssmply use the /GX compiler switch.

After making these additions, build your MTSComp1 project. It should build with no errors or
warnings. If mtxrereg.EXE ran properly in the postbuild step, it will have refreshed your MTS
package for you.

Now you need to create an ASP that will use your Ret ur nRs method. Create anew ASP filein
Visual Studio. (It does not need to be made part of the project.) Listing 12.6 shows the source code for
the ASP.

Y ou need to install the Sheridan grid control on your machine for the code in Listing 12.6 to run
properly. Asof thiswriting, the Sheridan grid control isincluded in the Microsoft RDS Address Book
sample.

If you are unable to obtain the Sheridan grid control in the RDS samples, you can download atria
version of the Sheridan DataWidgetsat ht t p: / / ww. sher soft. com .

Listing 12.6 ClientTierForMTSAdoRS.ASP Receivesan ADO Recordset froman MTS
Component to an ASP

<HTM_>

<HEAD>

<TITLE>Client Tier</TlITLE>

</ HEAD>

<CENTER>

<H1>Browser Client for MIS Conponent </ Hl>

<OBJECT I D="GRI D' W DTH=600 HEI GHT=200 Dat asr c="#ADC"
CODEBASE="ht t p: / / <%Request . Ser ver Vari abl es(" SERVER_NAME") %
| MSADC/ Sanpl es/ ssdat b32. cab"
CLASSI D="CLSI D: ACO5DC80- 7DF1- 11d0- 839E- 00A024A94B3A" >

RooLooNogRONMR

B

http://www.shersoft.com/

12:
13:
14.
15:
16:
17:
18:
19:
20:
21.
22.
23.
24.
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
ADS1.
38:
39:
40:
41:
42:
43:
44:;
ADS1.
45;
46:
47:
48:
49:
50:
51:
52:

<PARAM NAME="_Ver si on" VALUE="131072" >
<PARAM NAME=" BackCol or " VALUE="-2147483643" >
<PARAM NAME="BackCol or Gdd" VALUE="-2147483643">
<PARAM NAME=" For eCol or Even" VALUE="0">

</ OBJECT>

<OBJECT cl assi d="cl si d: BD96C556- 65A3- 11D0- 983A- 00C04FC29E33"
| D=ADC HEI GHT=1 W DTH = 1>
</ OBJECT>

<! -- RDS. Dat aSpace --><OBJECT | D="ADS1" W DTH=1 HElI GHT=1
CLASSI D="CLSI D: BD96C556- 65A3- 11D0- 983A- 00C04FC29E36" >
</ OBJECT>

<I NPUT TYPE=BUTTON NAME="Ret urnHel | 0" VALUE="Return Hell 0" >
<I NPUT NAME=Ret ur nedHel | o SI ZE=10>

<I NPUT TYPE=BUTTON NAME="Ret ur nRS" VALUE="Ret urn RecordSet">
</ CENTER>

<SCRI PT LANGUAGE= "VBScri pt">

SUB ReturnHell o_OnC i ck
Di m obj MyCust onBusi ness(bj ect
Set obj MyCust onBusi nessCbj ect =
Creat ebj ect (" MISConpl. Conponent 1. 1", "")
Ret ur nedHel | 0. Val ue = obj MyCust onBusi ness(bj ect. ReturnHel | o
Set obj MyCust onBusi nessCbj ect = Not hi ng
END SUB

SUB Ret urnRS_Ond i ck
Di m obj MyCust onBusi ness(bj ect
Set obj MyCust onBusi nessCbj ect =
Creat ebj ect (" MISConpl. Conponent 1. 1", "")
ADC. Sour ceRecordset = obj MyCust onBusi nessObj ect. Ret ur nRs
Gid. Refresh
Set obj MyCust onBusi nessCbj ect = Not hi ng
END SUB

</ SCRI PT>
</ BODY>
</ HTM.>

Lines 1-6 in Listing 12.6 put up the title for the window and a heading. Lines 8-16 place the Sheridan
ActiveX grid control in the page. Lines 18-20 place the Microsoft RDS Dat aCont r ol (also called
the Advanced Data Control or ADC) into the page. Lines 22-24 place the RDS Dat aSpace object in
the page, asyou used in Listing 12.4 as well.

Line 30 adds a button called ReturnRS. Lines 42-48 are the code that executes when the user clicks the

ReturnRS button. Line 45 sets the ADC Source Recordset to the disconnected Recordset returned by
Conponent 1. Ret urnRs() .

Load this ASP in IE4. Click the ReturnHello button to make sure it still works. Then click the
ReturnRs button. If everything runs properly, you should see the records from the Cust oner s table
appear in the grid control. It'sreally cool when it works. When it doesn't work, you need to debug your
component.

Debugging M TS Components

Y ou can debug your Microsoft Transaction Server component DLL in Visual C++ with the following
procedure. Shut down server processes using the Transaction Server Explorer by right-clicking My
Computer and selecting Shutdown Server Process.

In your Visual C++ session, under the Project, Settings, Debug, General menu, set the program
argumentsto the following string: "/ p: PackageNane" -for example,

[p: "MyFirst"
In the same property sheet, set the executable to the full path of Mtx.EXE-for example,
C: \ W NNT\ Syst enB2\ MI'x. exe

Set breakpointsin your component DLL inthe Ret ur nHel | o and Ret ur nRs functions and run the
server process (in the Build menu, select Start Debug and click Go.) Then run I1E4 and load
ClientTierForMTSAdoRS.ASP. Click the ReturnHello button and/or the ReturnRs button to hit your
breakpoints. Y ou should be able to step through the code just like a normal debugging session.

Summary

The infrastructure necessary for multitier applicationsis difficult and time-consuming to build
yourself. MTS can do most of that work for you and enable you to concentrate on building your
application, not its infrastructure.

MTS components are COM DLLS that you can build with ATL. In your component code, you can
create ADO Recordsets from database queries and send the Recordsets to applications on the client
tier.

|[E4 can host ActiveX controls and, with RDS, can instantiate and communicate over COM, DCOM,
and HTTP with MTS components that you build.

Q& A

What do transactionsin MTS do?

Some operations that you might perform in your MTS components could involve calling
code in severa other components or in several databases. M TS transactions enable you to
ensure that all that work completes successfully.

Q What isthedifference between the RDS Dat aSpace object | used today and the RDS
Dat aCont r ol object | used yesterday?

A TheDat aCont r ol object hasaRef r esh function that enables you to query a data
source behind the Web server. That Ref r esh function usesthe RDS Dat aFact ory
object on the middle tier, which could be a security risk in some installations. The
Dat aSpace object enables you to instantiate other components on the middle tier, which
you can use instead of the Dat aFact or y object.

Q TheRDSDat aCont r ol Refresh method providesfor asynchronous fetching of
ADO Recordsets. Doesthe Dat aSpace object provide that capability?

A No. When retrieving a Recordset from a COM component that was instantiated using the
Dat aSpace object, the Recordset comes across synchronously. In other words, it will
block until all the data in the Recordset is fetched.

> O

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

Why isn't DCOM aone sufficient for building multitier applications?
What does[out, retval] meanandwhereisit used?

Will MTS run on Windows 987

What do M TS packages do?

What is a disconnected Recordset?

abkrwpdpE

Exercises

1. Try to rebuild your MTSCompl.DLL while you have |E4 running with
ClientTierForM TSAdoRS.ASP loaded. What happens? How do you fix the problem?

2. How would you go about removing your MTSCompl.Componentl from MTS so that you
could useit asa standard COM server? Try it.

| ¢ Previous Chapter (< MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yoursef Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter [MextChapter

Day 13
Melding Object-Oriented Programming
with Relational Databases

. Relational Databases and Object-Oriented L anguages, the Oil and Vinegar of Modern
Application Devel opment
o How the Relational Model and the Object Model Differ
« Object Databases Versus Relational Databases
. The Costs and Benefits of Using Relational Databases with C++
. Techniquesfor Integrating Relational Databases with Object-Oriented C++ Programs
o Begin by Designing the Relational Database
o Create Simple Object/Relational M appings
o Create alLive Object Cache
o Usethe Strengths of Both Models
. Summary
. Q&A
. Workshop
o Quiz

o Exercises

Relational database technologies have revolutionized the way datais managed. With relational
databases, you can manage huge quantities of data that are impossible to manage using other, less
capabl e database technologies.

Object-oriented programming techniques have revol utionized the way software is developed. With
object-oriented programming techniques, you can create large and complex software systems that are
Impossible to create using other, less capable programming methodol ogies.

Relational databases enable powerful data management, and object-oriented programming enables
powerful software development. By combining the object model and the relational model, you can
write large and complex software systems that manage huge amounts of data.

Today you will learn

. The characteristics of the relational model and the object model that make them difficult to
integrate

. Thefactorsthat determine whether an application is suitable for an object/relational mix or for a
pure object database

. The costs and the benefits of combining the relational model with the object model

. Thetechniques for integrating relational databases with object-oriented programs

Because today's work deals primarily with design issues, you won't be writing any code today. Also, it
isvery difficult to write a day's worth of code on thistopic. The topic is so large that to write alittle bit
of code, you end up having to write alot.

Relational Databases and Object-Oriented L anguages,
the Oil and Vinegar of Modern Application
Development

Some things don't mix easily. Their characteristics are so different that they do not blend with each
other naturally. Relational databases and object-oriented programming languages are like that.

Combining the object model and the relational model can enable you to write complex applications that
manage huge amounts of data. However, the relational model and the object model come from
different worlds and are quite dissimilar. The differences between the two models prevent them from
blending easily with each other easily.

The interface between the relational model and the object model is not straightforward, but there are
proven techniques for combining the two models. As a C++ database programmer, you possess
knowledge of both the relational model and the object model. Y ou are in a unique position to learn how
to fuse these two disparate models to build advanced software applications.

How the Relational Model and the Object M odel Differ
Relational database systems:

. Dataisrepresented in a collection of two-dimensional tables.

. Relationships between the data in the tables are expressed by values stored in the tables.

. Using SQL, you can create relationships between the data in a dynamic fashion on-the-fly.

. The relationships between the data entities do not necessarily need to be defined or envisioned
when the database isfirst created.

Object-oriented systems:

« The application consists of a set of objects that contain data and the code to act on that data.

. These objects are data types defined by the programmer when the system isfirst created.

. These datatypes can have complex relationships with each other through techniques such as
inheritance and encapsulation.

. Therelationships between data types cannot be modified easily or created dynamically after the
system is built.

. Theinstances (or objects) of these data types can hold references to other objects and can also
be stored in collections for enumerating them easily.

Relational systems and object-oriented systems differ from each other fundamentally. These
differences can be categorized as

. Differencesin type systems

. Differencesin language

. Differencesin paradigms

. Differencesin basic data entities

Differencesin Type Systems

The type system of arelational database isrelatively smple. The database vendor establishes the data
types. These datatypes typically consist of ssimple numeric, dat e/ ti nme, t ext, and bi nary types.
Developers cannot create their own types, as they can in the object model.

The data types in arelational database are used to define fields (or columns) in the database tables. The
datathat goes into each column must match the data type defined for that column.

For arelational database to perform properly, the datain the database tables must conform to the first
normal form. The datain each row of each column must be atomic.

The object model is based on objects, each of which can contain many data attributes and the code to
act on them. Objects are instances of these data types. The application developer can create new data
types as needed.

Because of the complexity of objects, you cannot create usable objects that would be considered atomic
typesin the relational model. In other words, you cannot store objects in relational tables because
objects have many attributes and do not fit the relational definition of an atomic data type.

In addition, the type system of arelational database is established by the database itself. Data of the

supported types are the al that you can store in arelational database.

The basic properties of objects are encapsulation, inheritance, and polymorphism. Thereis no real
support for encapsulation, inheritance, and polymorphism in the type systems of relational databases.

Differencesin Language

In the relational model, SQL isthe only language you can use, and SQL does everything. SQL code
expresses the functionality of the database. SQL statements create the tables in which the datais stored.
Relationships in the data are expressed through a combination of datain key fields and SQL code. All
access to the datain the database is done through SQL.

Each relational database vendor implements SQL for its own database system. Each relational database
system contains a SQL engine that executes its particular implementation of SQL. In relational
systems, SQL isthe only language you can use, and you can use only your database's particular brand

of SQL.

SQL is not an object-oriented language. It has no object-oriented constructs or capabilities. Thereis no
real support for encapsulation, inheritance, and polymorphism in SQL. SQL's sole purpose isto store
and retrieve datain tablesin arelational database.

In the object model, you can use alanguage such as C++, which supports object-oriented mechanisms
such as encapsulation, inheritance, and polymorphism. Using C++, you can define your own data
types. Instances of data types (objects) can contain multiple attributes as well as code to operate on
those attributes. Y ou can use mechanisms such as encapsulation, inheritance, and polymorphism to
create complex hierarchies and networks of interrelated objects.

With C++, you can implement data models that are highly complex and intricate. However, C++
provides only primitive mechanisms for persisting and retrieving objects from a permanent store such
asahard disk.

SQL was built to store and retrieve data from tables in a database and has no object capabilities. C++
was built to create complex object systems and has extremely meager data storage capabilities.

These two languages are fundamentally different from each other, and no facility is built in to either
language for interfacing with the other. The two languages are as different as English and music.

Differencesin Paradigms

In the relational model, the database server dictates the model, the language, and the type system.
Applications must use the database server on the database server's terms. If the application wants to use
amodel that is different from the model provided by the database, the application must provide the
interface that maps between the models.

The necessity of using a database server on its terms has been the driving force behind the creation of

database interfaces such as ODBC and OLE DB. These APIs are an effort to provide an interface
between databases (which use the relational model) and C++ applications (which can use either the
procedural model or the object model). At the very least, what these APIs do is translate between the
datatypesin relational databases and datatypesin C++.

The relational model sees the world as a set of two-dimensional tables. Data that cannot be easily
represented in atabular form is difficult to fashion in arelational database.

Thefield isthe basic unit of the relational database. The field is the smallest data element in arelational
database. All data accessin arelational database is performed on afield basis. All data accessis done
through SQL, which is built to work with fields.

The relational model is built to handle large quantities of data. If you can mold your data so that it
conforms to the relational model, arelational database can manage enormous quantities of data quite
effectively.

By contrast, object-oriented systems try to mimic objects in the real world. Y ou don't have to try to
mold your datato fit the object model. Instead, you create objects that mimic or reproduce the
attributes and characteristics of real-life objects.

Thisiswhy the object model can handle more complexity than the relational model. With the relational
model, you have to make the data fit the model. With the object model, you can make the model fit the
data.

Differencesin Basic Data Entities

A common mapping between the object model and the relational model is the direct mapping of a class
to arelational table, as shown in Figure 13.1.

Figure 13.1 : Mapping a C++ classto a relational table.

Asyou can seein Figure 13.1, a C++ class corresponds to arelational table. The data members of the
class correspond to fields in the table. Instances of the class correspond to records in the table.

One thing that makes it difficult to interface the relational model with the object model is that the basic
data entities of the two models do not correspond to each other. In the C++ object model, the basic data
entity isthe class. In the relational model, the basic data entity is the field. C++ classes do not map to
fields. C++ classes map to tables.

C++ and SQL are built around their basic data entities. C++ is built to work with classes. SQL is built
to work with fields. When you try to map between the two models, you end up having to make your
SQL code work with tables and your C++ code work with the data members.

Object Databases Versus Relational Databases

With al the difficulty in trying to map between two such disparate models, it might seem better to
simply use one model for all your application development. If you were to use an object database
management system (ODBMYS) instead of arelational database management system (RDBMS), you
could avoid the muss and the fuss of mapping between the object model and the relational model.

However, some applications lend themsel ves to object databases, and some do not. Y our choice of
database technology should depend on the particular requirements of your application.

Object databases and relational databases each have specific characteristics, and each will provide
particular capabilitiesin your applications.

Asyou learned in Day 1, "Choosing the Right Database Technology," C++ object databases directly

support the type system of the C++ language. In other words, you can use a C++ object database to
store instances of C++ classes right in the database.

Refer to Listing 1.5 to see how well and how easily C++ databases can integrate with C++ applications.
By using simple overrides of afew C++ operators, you can easily persist and retrieve your C++ objects
in an object database.

C++ object databases support

. The C++ type system, including classes that are defined by the application devel oper

. Inheritance, where the database understands the class hierarchy and manages the object store
appropriately

. Polymorphism, where objects can be read from the database without knowing in advance their
complete type information

. Object identities, where the database assigns a unique | D to each object, can readily retrieve
each object by ID, and can determine whether the object has already been loaded into program
memory

. Referencesto other objects, where the database understands pointer references between objects
and can store and retrieve linked objects appropriately

Using an object database means that your database will directly mirror the objectsin your application.
The objects in the database will be the same as the objectsin your C++ code. Having a database that
mirrors the objectsin your C++ code is a two-edged sword with two potentially negative consequences.

First, the only datathat can be retrieved from your database is the data encapsul ated in the objects in
your C++ source code. All the data, relationships, and uses of that data must be defined in the source
code for your application. Y ou might not be able to foresee all the potential uses of this data during
your application development. This means that your application and its database could miss
opportunities to be useful in the future.

Second, the only applications that will be able to access the database will be C++ programs that have
an intimate knowledge of the objects in your application source code. The database will be a closed,

proprietary database. This means that your database could miss opportunities to be useful in the future.

NOTE

If your dataisimportant to you, it is probably important to others, also. They
will want access to the data through more than just your application.

It is important to remember what makes most database applications valuable is the information that
they provide. Y our application processes the data from the data source into useful information and
presentsits view of the information. However, people will invariably want access to the data source
themselves so that they can perform additional analyses for use in different applications.

TIP

Over time, applications often depreciate, while databases appreciate. The
value of a given application will decline as business needs change, but
information is always valuable.

Because information is always valuable, its value often justifies the additional time and effort required
to placeit in arelational database and create an object-to-relational mapping layer for your application.

Figure 13.2 illustrates the closed nature of a C++ object database and the openness and availability of a
relational database.

Figure 13.2 : Therelative openness of object databases and relational databases.

Some applications lend themselves to object databases, whereas other applications lend themselves to
relational databases. Whether an application should use an object database or arelational databaseis
largely determined by the need for flexibility in using the data.

A relational database will be open to other uses and other applications. It will also be open to future
versions of your application that might need to apply new analyses to data from the database. A
relational database enables you to create new relationships and collections of data that you had not
envisioned at the time the database was first created. If your database conforms to the normal forms,
you can simply write some new SQL code to create new relationships and to perform new analyses on
the data. Relational databases provide a high degree of flexibility in defining new uses for the data.

Object databases lend themselves to applications in which the data model is complex and the
relationships are well defined at the time the database is created. Some data models are too complex to
be molded into arelational database. For specialized applications like this, you will need to take
advantage of the object-oriented features of C++ to model the complexities of the data. An object
database will enable you to easily persist those C++ objectsto a data store. Defining new uses for that
data and making that data available to other applications might not be easy, however.

The Costs and Benefits of Using Relational Databases
with C++

To use arelational database with a C++ object-oriented application, you must create a mapping layer
that trandlates between the object model and the relational model. Creating this mapping layer can be a
costly endeavor in terms of time and effort, but can also result in significant benefits and synergies for
your application.

The costs and difficulties of creating an object-to-relational mapping layer include

. Dedling with two semantic spaces where the logic for your application is mani-fested in two
different programming models

. Creating two separate designs: arelational design and an object design

. Building an interface to translate between the relational model and the object model

. Developing the code in each object to communicate with the translation layer

. Your application not being able to handle highly complex data models because of the relational
database and the need for the trandlation layer

Using arelational database with an object-oriented application enables you to

. Create new uses for the data in the database because the data itself is valuable.

. Usethe strengths of the relational model, by using the relational database to obtain aggregate
totals directly from the server without having to instantiate lots of objects and access each of the
data members of each object.

. Usethe strengths of the object model by using C++ objects to handle nested rel ationships that
are difficult to model in arelational database, such as abill of materials.

. Take advantage of the many server management tools available for relational database servers.

Techniquesfor Integrating Relational Databases with
Object-Oriented C++ Programs

There are afew general strategies you can use to build an object-oriented application that uses a
relational database.

Begin by Designing the Relational Database

In general, when you are creating the object-oriented application that uses arelational database, it is not
agood ideato create the object model first and then try to map it to relational tables. Object models can
be significantly more complex than relational models. If you build the object model first, you might not
be able to create arelational model that matchesit.

Even inrelatively ssimple object models, an object might need to be stored across several relational
tables, and many joins might be required to construct the objects. This can cause application
performance to deteriorate.

Because the relational database is the foundation of your application, and because the relational model
might ultimately limit the degree of complexity that your application can handle, you should begin with
the design of the relational database.

If you are able to model the datafor your application effectively in arelational database, you will know
that your application can indeed handle the level of complexity that is required. Refer to Day 7,
"Database Design,” for information on designing relational databases.

Relational models tend to be simpler than object models. Therefore, entitiesin arelational model can
usually be converted to entitiesin an object model quite readily. If you use this approach, the relationa
database schema becomes the basis for the object model.

Create Simple Object/Relational M appings

Simple mappings between the relational and object models provide the best performance. Remember
KISS (Keep It Simple, Sweetie).

Map Tablesto Classes

Asshown in Figure 13.1, the smplest and most straightforward mapping is to map aclass to each
relational table. The class absolutely must contain the primary key and foreign key fields from the table
as data members and would probably contain data members for all the fieldsin the table as well.

Routines need to be developed for reading and persisting objects to and from the database. These
routines will need to have intimate knowledge of the C++ classes and of the database. These routines
could exist in each class, or they could be implemented in friend classes.

Encapsulating disconnected ADO Recordsets (which you learned about in Day 12, "Using Microsoft
Transaction Server to Build Scalable Applications") in your classes can go along way toward

encapsul ating the field data members, as well as the reading and persisting routines that each of your
classes needs.

Use Primary and Foreign Keysto Map Relationships Between Objects

The ssimplest approach for defining a relationship between two objects is to embed the primary key of
one object as a data member of the other object. (Asyou will recall from Day 2, "Tools for Database

Development in Visual C++ Developer Studio,” and Day 3, "Retrieving Data Through Structured
Query Language (SQL)," aprimary key from another table is called aforeign key.) This approach
works well for one-to-one and one-to-many relationships.

For many-to-many relationships, it is necessary to have alink table in the database that contains the
primary keys of the two related entities. Thisisillustrated in Figure 13.3.

Figure 13.3 : Many-to-many relationships in a relational database.

Figure 13.3 shows arelational database schema. It hasa Cust oner s table, with Cust onmer Nunber
asthe primary key, aPr oduct s table, with Pr oduct Nunber asthe primary key, and a

Pur chases table, with acomposite key of Cust onmer Nunmber and Pr oduct Nunber . The

Pur chases table's Cust oner Nunber and Pr oduct Nunber fields are also foreign keys from the
other two tables. The Pur chases table defines a many-to-many relationship between recordsin the
Cust oner s table and the Pr oduct s table. A customer can purchase many products, and a product
can be purchased by many customers.

Modeling many-to-many relationships in an object system might involve storing a collection (or
disconnected Recordset) containing foreign keys inside the objects involved in the relationships.

Don't Try to Map Object Inheritancein Relational Databases

Object inheritance is al but impossible to implement in relational databases. The best approach
generally isto map only the leaf classes (the concrete classes at the bottom of the hierarchy) to tablesin
the database. For example, refer to the C++ classes declared in Listing 13.1

Listing 13.1 Creating C++ Classeswith Inheritance

1: class shoe

2:

3: public:

4: int sole;

5: I nt upper;

6: };

7.

8: class athleticshoe : public shoe
9: {

10: public:

11: i nt tongue;

12: int |aces;

13: };

14:

15: cl ass basketbal | shoe : public athleticshoe
16: {

17: public:

18: I nt archsupport;

19: };

In this case, it would probably be best to create a single table in the database, called

Basket bal | Shoes. The Basket bal | Shoes table would contain fields for sol e, upper,

t ongue, | aces, andar chsupport . You would also need to have an additional field for the
primary key inthe Basket bal | Shoes table. Y ou should also add a data member to the shoe class
to hold the primary key from the database table.

If other classes derivefrom at hl et i cshoe, suchascr osst rai ner, you would want to create a
Cr ossTr ai ner s tablethat containsfieldsfor sol e, upper,t ongue, | aces, the primary key,
and whatever data membersareinthecr osst r ai ner class.

Sometimes, however, it might be necessary to get a count all of the shoes. That would mean that you
would have to tell the database to count the recordsin the Basket bal | Shoes table, count the
recordsin the Cr ossTr ai ner s table, and add those two numbers together. That would not be very
elegant and will become uglier if the number of different types of shoesincreases.

One possible solution isto create a Shoes table that contains fields for the primary key, sol e, and
upper and removethesol e and upper fieldsfromthe Basket bal | Shoes table and the
Cr ossTr ai ner s table. You would need to add afield to the Shoes table to indicate the shoe type.

The idea then would be to add arecord for each shoe to the Shoes table and also add a record to
whatever additional table is appropriate.

For instance, a basketball shoe would have arecord in the Shoes table, which indicatesitssol e and
upper . It would also have arecord in the Basket bal | Shoes table that indicatesitst ongue,

| aces, and ar chsupport . The Shoes table and the Basket bal | Shoes table would have a one-
to-one relationship with each other, based on the primary key in each table. Likewise, a cross-trainer
shoe would have arecord in the Shoes table and arecord inthe Cr ossTr ai ner s table.

The database schema would look like the one shown in Figure 13.4.

Figure 13.4 : Arelational database schema to model a single level of inheritance.

Data in the database would ook something like the data shown in Figure 13.5.

Figure 13.5: Datain arelational database schema that models a single level of inheritance.

Asyou can seein Figure 13.5, there are two records in the Shoes table and one record each in the
Basket bal | Shoes tableand the Cr ossTr ai ner s table.

The class definition for the shoe type would have two data members added to it, as shown in Listing
13.2.

Listing 13.2 Changesto the Base SHOE Class

1: class shoe

2: A

3: public:

4. I nt shoel D,
5: i nt shoeType;
4: i nt sol e;

5: I nt upper;

6: 1}

To get acount of al the shoes using this schema, you needn't count the records from multiple tables
and add up the counts to get the total number of instances. Y ou merely get a count of the recordsin the
Shoes table.

This schema also enables you to look up ashoe by its 1D (without knowing its type in advance) and
discover itstype. Y ou can then use its type to execute the proper SQL query to perform ajoin with the
appropriate table to get al the shoe's attributes.

Note that in relational database servers, you cannot use a variable for a table name in a compiled stored
procedure. Therefore, in a stored procedure you could not put the name of the table from the
ShoeType field in avariable and use that variable in the FROMclause of a SELECT statement to get
the rest of the shoe's attributes. However, you could use that variable asaflag in acase-type or

sw t ch-type statement in a SQL query to execute the appropriate query to retrieve the attributes from
the appropriate table.

As you can see, mapping object-oriented concepts to the relational model requires imagination and
potentially lots of code.

Createa Live Object Cache

The biggest performance hit in database applications is database access. If you can minimize the
number of times the application must access the database, the performance will be dramatically faster
than if the application hasto hit the database frequently.

To reduce the number of database hits, applications can use an object cache. Theideaisto cache
objects read from the database in RAM so that the next time the objects are needed, they can be read
from the cache instead of the database.

Using a cache provides significant performance benefits because accessing datain RAM is much faster
than accessing datain a database. A cache can aso reduce the number of costly network roundtrips
between a client application and a database server.

When the client application asks for an object, the tranglation layer should ook to see whether that
object already exists in the cache. The trangdlation layer can use the primary key as the object identifier.

If the object isin the cache, the trandation layer can give the application a pointer to the existing object
without having to query the database. Thisis a huge optimization, but requires a bit of code.

Unfortunately, describing the code required to implement an object cache is beyond the scope of the
book. Some technical white papers on this topic are available from programming tool vendors who
specialize in thiskind of work.

Usethe Strengths of Both M odels

Take advantage of objects when you can, and take advantage of the RDM S server when you can-use
both.

For example, if you need to get the total number of instances in the database, do not count them by
Instantiating every object inside aloop in the client code. Instead, ask the database server to simply
count the records and return the figure to the client application that needs it. The performance will be
much better with this approach.

Another exampleisif you need to traverse atree of nested objects, such asin abill of materias. It
would probably be inefficient to have the relational database server traverse the tree. Instead, you
should instantiate the appropriate objects and have the object code traverse the tree.

Summary

Relational databases and object-oriented programming languages are powerful tools for managing data
and writing software. Unfortunately, melding these two technologies is not straightforward. Thisis
because relational databases were not designed to store objects, and objects were not designed to be
stored in relational databases.

Melding an object-oriented application with arelational database requires you to write atranslation
layer between the object code and the relational database. Writing this translation layer can be difficult
and time-consuming. However, your application and your database can derive great benefits from the
synergies of these two technologies.

Q& A

Q Areany softwar e tools available that make thetask of writing thetrandation layer
easier?

A Yes. There are independent software vendors who produce tools for just this purpose.
Y ou can find them by perusing the advertisementsin the various relational database or
C++ technical journals. You can also search the Web for terms such as object database,
RDBMS, ODBMS, persistence, mapping, translation layer, and so on.

Q Aren't the vendors of relational databases extending their databasesto support the
storage of objects?

A Yes. Relational database vendors such as Informix, Oracle, and others have made efforts
to extend their databases to support object storage. However, thereis no clear indication
of significant market acceptance of any of their approaches so far. Let the buyer beware.

Q Can't | just create a set of C++ base classesthat talk to thetrandation layer and
derivethe classesin my application from these base classesto get easy
communication with arelational database?

A If only it were that ssmple. One of the problems you will encounter isthat a C++ base
class will have trouble persisting an instance of a derived class, because the derived class
might contain data that the base class does not know about. The derived classes
themselves will probably need to participate in some way in their being persisted to the
database.

Q What isMicrosoft's approach to object storage?

A Microsoft does not seem to be trying to extend its SQL Server database to make it store
objects. Rather, Microsoft has provided OLE DB as an object-oriented APl that can
communicate with relational aswell as object-oriented data stores.

W or kshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to

real-life situations.

Quiz
1. What prevents you from being able to store C++ objectsin relational database fields?
2. Why can't you use SQL for object-oriented programming tasks?
3. What are the primary differences between C++ object databases and relational databases?
4. When designing an application that will use object and relational technology, where do you

start?
5. What are the benefits of alive object cache?

Exercises

1. Write a SELECT statement that retrieves the shoe type based on the shoe ID from the Shoes
table shown in Figure 13.5.

2. Write a SELECT statement that retrieves all the attributes of basketball shoes from the tables
shown in Figure 13.5.

| ¢ Previous Chapter (& MextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 14
L egacy Database APIs

. ODBC
. The ODBC Driver Administrator
. The ODBC Driver Manager
. The ODBC Driver
. Programmatic Sequence for the ODBC API
o Step 1: Connect to a Data Source
o Step 2: Allocate a Statement Handle
o Step 3: Prepare and Execute the SOL Statements
o Step 4: Get the Results
o Step 5: Committing the Transaction
o A Simple Example
« MFC Wrappersfor ODBC
n CDatabase
o CRecordSet
. DAO
o The Jet Database Engine
o CdbDBENgine: The Root of 1t All
o CdbDBWorkspace
o CdbDBDatabase
o CdbDBRecordsets
« MFC Wrappersfor DAO
o CDaoWorkspace
o CDaoDatabase

o CDaoRecordSet

o A Simple Example
. Summary
. Q&A
. Workshop

0 Quiz

o EXxercises

Although considered legacy, the APIs that you will learn about today provide some valuable insight
into the structured nature of devel oping database applications. Merriam Webster defines legacy as
"being from the past,” but you can hardly limit the content of this chapter to dusty old relics that need
only cursory explanation. Although ODBC and DAO APIs might no longer be applicable in
mainstream coding circles, the technology provides the foundation for most databases supported
today.

Today you will

. Learn about the ODBC Architecture and API.

. Receive an introduction to the ODBC API calls.

. Learn about the DAO API.

. Receive an introduction to the DAO API calls.

. Explore the similarities and differences between ODBC and DAO.
« Understand the MFC wrapper classes for each API.

NOTE

This book focuses primarily on the newer OLE DB (ADO) technologies, but
remember that it is till inits infancy and OLE DB providers for many
databases are still in development. With thisin mind, it is easy to see the
Importance of understanding these legacy interfaces. Who knows, you
might have to provide support for an application using these APIs.

ODBC

Databases, and their programming APIs, comein avariety of flavors. Many different databases are
available to the devel oper, and each has a specific set of programming APIs. SQL was an attempt to
standardize the database programming interface. However, each database implementation of SQL
varies dlightly.

NOTE

ANSI SQL-92 isthe latest and most supported version of SQL, but the
specification only provides aguideline. It is up to the database vendor to
support al or part, as well as additional elements of the specification.

ODBC was the first cohesive attempt to provide an application layer that would allow access to many
different databases. ODBC provided a consistent specification for database vendors to develop ODBC
driversthat applications could connect to. Applications can make function callsto the ODBC driver to
send data to and receive data from a database, or in some cases multiple databases.

ODBC provides standardized access to databases. This enables the application devel oper to better
concentrate on the application and its user interface and not have to worry about database specifics for
every possible database on the market. To make things even ssmpler, the developers of ODBC decided
to implement the API layer as a SQL translation mechanism. By passing ODBC SQL to an ODBC
driver, the application can communicate with the database using SQL . Because there are many
different flavors of SQL, ODBC provides asingle flavor that would be translated into aflavor that the
database could read.

NOTE

Y ou might have heard that an ODBC driver is Level X-compliant asrelated
to the API. What does this mean? There are three levels of compliance:

Core Level-All drivers must support thislevel. Must be able to support
connections, SQL statement preparation and execution, data set
management, and transaction management.

Level 1-Must support all core-level compliance, as well as dialog-based
connectivity, and be able to obtain driver/datasource information, which
includes advanced connections using get and set options.

Level 2-Must support al the previous levels, plus the capability to list and
search the datasource connections, and advanced query mechanisms and
have support for scrollable cursors, among other things.

Figure 14.1 : The ODBC architecture overview.

The ODBC Driver Administrator

The Driver Administrator is a Control Panel applet responsible for defining the ODBC data sources. A
data source is simply the connection definition to a specific database. The connection definition
contains information about the type of database, as well as the pertinent location information for the

database. It then assigns a common name, called the Data Source Name (DSN), to the definition. The
ODBC Driver Manager and drivers use the name as an index into the data source table to find the
database-specific information.

Refer to Day 2, "Tools for Database Development in Visual C++ Developer Studio,” for a description
of the steps to define DSNs.

The ODBC Driver Manager

The ODBC Driver Manager is a set of functions that receives requests from the application and
manages the subsequent driver actions for those requests. The primary functions of the Driver
Manager are to load and unload database drivers and pass function calls to the driver. Y ou might be
thinking that thisis alittle bit of overkill. Why not just call the driver directly? Wouldn't it be faster?
Just imagine, however, if the Driver Manager didn't exist, and your application was responsible for
loading, unloading, and maintaining driver connections. Y our application would be responsible for
every possible driver configuration available, including the data source definitions. (Registry
programming, anyone?) The Driver Manager makes the application developer's life easy, by
compartmentalizing this functionality.

If you look alittle closer at the Driver Manager, you see that it does perform some processing related
to your application's requests. It implements some of the functions of the ODBC API. These include
SQLDat aSour ces, SQLDri ver s, and SQLGet Funct i ons. It aso performs some basic error
checking, function call ordering, checking for null pointers, and validating of function arguments and
parameters.

NOTE

Note that the ODBC API calls start with SQL. Thereis good reason for this.
The ODBC API communicates through the SQL database interface instead
of calling the database's lower layer. Thisis done primarily to add some
level of consistency and standardization. ODBC does this by mapping
ODBC SQL to the database driver's specific SQL standard. Hence, the
naming convention for ODBC API function calls.

When the Driver Manager loads a driver, it stores the address of each function call in the driver and
then tells the driver to connect to the data source. The application specifies which data source to
connect to, using the data source name. The Driver Manager searches the DSN definition file for the
particular driver to load. When the application is done, it tells the Driver Manager to disconnect
(SQLD sconnect). The Driver Manager in turn hands this to the connected driver, which
disconnects from the data source. The Driver Manager will unload the driver from memory only when
the application frees the connection. The driver is kept in memory in case the application devel oper
decides he needs further access.

The ODBC Driver

To adequately discuss every aspect of developing ODBC drivers would require another book.
However, a cursory discussion is warranted. An ODBC driver must perform the following:

. Connecting to and disconnecting from the data source.

. Error checking not performed by the Driver Manager.

« Transaction management.

« Submitting SQL statements. This involves transposing the ODBC SQL to the SQL "speak™ of
the database that is supported.

. Processing data.

A driver can be defined as one of two types. A file-based driver accesses the physical data directly. A
DBM S-based driver doesn't access the data directly but performs SQL functions on another wrapper.
Thiswrapper isreferred to as an engine. The database engine for Microsoft Accessisthe Jet engine.

Programmatic Sequence for the ODBC API

Now that I've discussed the architecture of the ODBC specification, let's take alook at how to develop
an application by using the ODBC API.

NOTE

Although this section introduces certain steps in developing an ODBC
application, it isn't intended to be a complete reference. Many ODBC
programming references are available that provide in-depth discussions
about the API function calls.

Before | discuss the API function calls, let's make some sense out of processing a data request. First
you have to know where the data is (data source definition). Then you have to connect to it. After you
are connected, you need to ask the data source for information. After the information isin hand, you
process it and in most cases hand it back to the data source for safe keeping. When you are finished,
you disconnect from the data source.

Figure 14.2 : The ODBC programmatic flow chart.

Step 1: Connect to a Data Sour ce

First you have to acquire an environment handle. Do this by calling SQLAI | ocHandl e. At this point
you might be asking what an environment handle is. A handle is nothing more than a pointer to a
special structure. The environment mentioned here is generally considered the system and data source
information that the Driver Manager needs to store for the driver. Y ou might also be asking why the

Driver Manager does this, not the driver. Recall that you have not connected yet, and therefore the
Driver Manager doesn't know what driver you will be using and will hold thisinformation until itis
needed. Some applications might need to connect to multiple databases. If the Driver Manager did not
exist, the application would have to keep track of all the environment handles.

SQLHENV envHandl e1l;
SQLAI | ocHandl e(SQL_HANDLE ENV, SQ._NULL_ HANDLE, &envHandl el);

After the Environment Handle is allocated, the application must then determine the attributes for the
handle. The most important of these attributes is the ODBC version attribute
(SQL_ATTR_ODBC_VERSI ON). Different versions of ODBC support different SQL statements and
parameters. In some cases, it isimportant to determine the ODBC version that the driver supports and
to know the differences.

Step 2: Allocate a Statement Handle

Y ou can think of a statement in ODBC as being a SQL statement. As discussed earlier, ODBC
communicates with the SQL interface to the database. The Driver Manager maps the ODBC SQL to
the driver's SQL. However, a statement also carries attributes with it that define it in the context of the
connection to the data source. Thisincludes, but is certainly not limited to, the resultsets that the
statement creates. Some statements require specific parameters in order to execute. These parameters
are also considered attributes of the statement. Therefore, each statement has a handle that pointsto a
structure that defines all the attributes of the statement. This handle also assists the driver in keeping
track of the statements, because a multitude of statements can be associated with a connection.

Statement handles are defined and allocated similarly to the environment handle. However, the handle
type is HSTMT. Remember that the Driver Manager allocates the handle structure and hands this off to
the driver whenever the connection to the driver is made.

Step 3. Prepare and Executethe SQL Statements

Here's where things can differ depending on what the application requires. If an application just wants
to read data from the database and display it to the user (that is, database viewer application), it won't
require some of the more complex SQL UPDATES, | NSERTS, or DELETEs.

NOTE

Because Day 15, "The ODBC API and the MFC ODBC Classes,” discusses

the binding of parameters, this section skips the explanation and
demonstration of how to bind SQL parameters to the application's data.
However, it isimportant to bear in mind that when you are preparing a SQL
statement, this binding must take place.

There are two primary ways to prepare and execute the statements. Thefirst isSQLExecDi r ect ,
which essentially executes a SQL statement in asingle step. For many application requirements, thisis
okay. Some applications, however, might need to execute the same statement several times. To do

this, you should use the SQLPr epar e and then the SQLExecut e functi ons. You cal

SQLPr epar e once and then call SQLExecut e as many times as necessary to execute the prepared
statement.

Step 4. Get the Results

After the SQL statement has been executed, the application must be prepared to receive the data. The
first part of this takes place when the application binds the results to the local variables. However, the
results aren't passed back to the application directly. The application hasto tell the Driver Manager
that it isready to receive the results. The application does this by calling SQLFet ch. SQLFet ch
only returns one row of data. Because the datais returned in columns, the application has to bind those
columns with the SQLBI ndCol call. Essentially, you have to do the following statements, in order, to
receive the resultset:

« SQLNunResul t Col s-Returns the number of columns.

. SQLDescr i beCol -Givesyou information about the data in the columns (name, data type,
precision, and so on).

. SQLBI ndCol -Binds the column data to a variable in the application.

. SQLFet ch-Getsthe data.

. SQLCet Dat a-Gets any long data.

First the application calls SQLNunResul t Col s to find out how many columns are in each record.
SQ.Descr i beCol tellsthe application what type of datais stored in each column. The application
has to bind the data to variablesin its address space in order to receive the data. Then the application
calls SQLFet ch or SQLCet Dat a to obtain the data. The application repesats this sequence for any
remaining statements.

Step 5: Committing the Transaction

When al the statements have been executed and the data received, the application calls SQLEndTr an
to commit or roll back the transaction. This takes place if the commit mode is manual (application-
directed). If the commit mode is set to be automatic (which is the default), the command will be
committed whenever the SQL statement is executed.

NOTE

Think of atransaction as a single entity that contains any number of steps. If
any step or part of the transaction fails, the entire transaction fails. A
transaction can be either committed or rolled back. Committed indicates that
every part/step of the transaction was successful. If any part fails, then the
transaction isrolled back, which indicates that the original datais preserved.
Changing the commit mode to manual will assist in preserving data

integrity.

A Simple Example

Because Day 15 presents a more detailed example, this section shows only a portion of the program
flow. This example will fetch the last name for all the records stored in the AddressBook database.

Listing 14.1 A Smple ODBC Exampleto Retrievethe Last Name from the AddressBook
Database

1: #include <SQ.. H>

2: #include <SQLEXT. H>

3: void CAddressBookVi ew. : OnFi I | Li st Box()

4. |

5: RETCODE r code;

6:

7: HENV henvl,;

8: HDBC hdbc1;

9: HSTMI' hstnt 1;

10:

11: char szFirst Nane[50] ;

12: char szLast Nane[50] ;

13: char szPhoneNuni 20] ;

14:

15: SDWORD sdODat aLengt h;

16: unsi gned char conStringQut[256];

17:

18: rcode = ::SQ.Al I ocEnv(&henvl);

19: if (rcode == SQ._SUCCESS)
20: {
21: rcode = ::SQAl I ocConnect (henvl, & hdbcl);
22: if (rcode == SQ._SUCCESS)
23: {
24 rcode = ::SQ.Driver Connect (hdbcl, O,
25: (unsi gned char *)" DSN=Addr essBookDb",
26: SQ._NTS, conStringQut, 256, NULL
27: SQL_DRI VER_NOPROWPT) ;
28: if (rcode == SQ._SUCCESS)
29: {

30: rcode = ::SQAlIocStnt(hdbcl, &hstntl);

31: if (rcode == SQ._SUCCESS)

32: {

33: rcode = ::SQLExecDirect(hstnt 1

34 (unsi gned char *)

35: "SELECT szlLast Name FROM AddressTabl e”,
36: SQL_NTS);

37:

38: for (rcode = ::SQFetch(hstnt1);

39: rcode == SQL_SUCCESS;

40: rcode = SQLFetch(hstntl))

41: {

42: »:SQCetData(hstnt 1, 1, SQ_C CHAR
43: szLast Nane, 50, & sdODatalength);
44 . MessageBox(NULL, szLast Nane,

45: " from AddressBookDb ", MB_(XK);
46: }

a47: - SQLFreeStm (hstnt1l, SQ._DROP);

48: }

49: :: SQLDi sconnect (hdbcl);

50: }

51: . SQLFr eeConnect (hdbcl);

52: }

53: . SQLFr eeEnv(henvl);

54 }

55: }

Line 18 in Listing 14.1 calls SQLAI | ocEnv to instruct the ODBC Driver Manager to allocate
variables for this application and return an environment handle. Line 21 calls SQLAI | ocConnect ,
which tells the Driver Manager to allocate variables to manage a connection and to obtain a
connection handle. Line 24 calls SQLDr i ver Connect to make a connection to the

Addr essBookDb data source name.

Y ou might have noticed that the section " Step One: Connect to a Data Source” discusses using the
SQLAI | ocHandl e call to allocate any handle, including the environment handle.

SQLAI | ocHandl e isan ODBC 3.0 call that replaces SQLAI | ocEnv, SQLAI | ocConnect , and
SQLDr i ver Connect . Thiswas presented in this fashion to make the point that some legacy
applications might contain ODBC version 2.0 code.

Noticethe#i ncl ude declarations:

#i ncl ude <SQL. H>
#i ncl ude <SQLEXT. H>

These #i ncl ude filesare required for any function implementing the ODBC API.

Obvioudly, thislisting is very simplistic and is presented here to assist you in understanding
programmatic flow of the ODBC API and working with databases.

MFC Wrappersfor ODBC

Asyou can see from this simplistic listing, you must perform many steps just to obtain some data from
adatabase. Thereisan easier way.

NOTE

Although the MFC class library provides class wrappers for database
functions, the ODBC API function calls are still accessible from within the
application. Remember to include the SQL.H and the SQLEXT.H files.

The Microsoft Foundation Classes (MFC) are designed to make life ssmple for developers. They
enable devel opers to create Windows-based applications without having to know the underlying
Windows architecture. Because database applications are an important aspect of managing data,
Microsoft developed the MFC wrappers for the ODBC API. These classes present an object-oriented
approach to using the ODBC API.

NOTE

The MFC class wrappers for the ODBC APl make life easier on the
programmer, linking to the MFC can make the application quite large.
Depending on how the MFC library islinked with the application, the MFC
DLLs might need to be distributed with the application's executable and
libraries.

CDatabase

The CDat abase class represents a connection to the database. It contains the m_hdbc member
variable, which represents the connection handle to a data source. To instantiate the CDat abase
class, cal the constructor and then the QopenEx or Qpen member function. Thiswill initialize the
environment handle and perform the connection to the data source. To close the connection, call the
Cl ose member function.

NOTE

The application can use the CDatabase class for more than just one
database. If the application finishes using a database but needs to connect to
another database, the same instance of the CDatabase class can be reused.
Simply call Close to close the connection to the original data source; then
call the OpenEx member function to a different data source.

There are member functions that perform work on the connected database. After the applicationis
connected to a database, it is ready to begin work with the CDat abase instance. To begin a
transaction, the CDat abase class contains a member function called Begi nTr ans. After al the
processing is completed, the application will call the Conm t Tr ans to commit the transaction or
Rol | back to rollback the changes. Both Conm t Tr ans and Rol | back are member functions of
the CDat abase class.

NOTE

The CDatabase class also contains a member function that can execute SQL
statements that don't require a returned resultset (recordset). This function
member is the ExecuteSQL function.

There are also member functions that will return specific information about the data source. Some of
these are

. Get Connect -Isthe ODBC connection string used to connect the CDat abase instanceto a
specific data source.

. | sOpen-Indicates whether the CDat abase instance is connected to a data source.

. Cet Dat abaseNane-Returns the data source name that the CDat abase instanceis currently
connected to.

. CanTr ansact -Indicates whether the data source uses transactions.

Asyou can see, the CDat abase class provides the C++ programmer with an object-oriented
interface to the ODBC environment and connection APl calls.

CRecor dSet

The CRecor dSet class defines the datathat is received from or sent to a database. The recordset
could be defined as an entire table or smply one column of atable. The recordset is defined by its
SQL statement.

Them _hst nt member variable of the CRecor dSet contains the statement handle for the SQL
handle that defines the recordset. The m nFi el ds member variable holds the number of fieldsin the
recordset. Them nPar ans member variable holds the number of parameters used to define the
recordset. The recordset is connected to the data source through a pointer to the CDat abase object.
This pointer isthe CRecor dSet member variable m pDat abase.

Other member variables are defined in the CRecor dSet classdeclaration. Them strFil ter
member variable defines the WHERE clause used in the SQL statement. Them st r Sort member
variable is used if the SQL statement uses an ORDER BY clause.

There are many ways that recordsets can be opened or defined. CRecor dSet hasan Open member

function that will actually perform the recordset query. The application can format a SQL SELECT
statement to pass in the Open function member of the CRecor dSet class.

The first parameter for the Open member function defines how the recordset will be opened. Y ou can
define and open arecordset by the following three methods:

. CRecor dSet : : dynaset -Dynamic recordsets that support bi-directional cursors and
synchronize with the underlying data of the database.

. CRecor dSet : : snapshot -A static snapshot of the table to be queried. Doesn't reflect any
other changes made to the table from other sources. The application must re-query the database
to obtain updates to the recordset. Supports bidirectional cursors.

. CRecordSet: : forwardOnl y-Similar to snapshot but doesn't support bidirectional,
scrollable cursors.

DAO

In 1995, Microsoft introduced the DAO API. This APl was developed as the API for the Microsoft Jet
Database engine. The Microsoft Jet Database Engine is the database engine for Microsoft Access. The
Jet Database Engine contains an ODBC interface that enables both direct and indirect ODBC accessto
other databases.

As opposed to being alayered API similar to ODBC, DAO was based on OLE Automation objects.
Coding directly to the ODBC API was a matter of calling API functions directly within the application
or using the MFC wrappers. Thiswasn't the case with DAO objects. If the programmer is proficient in
COM, programming directly to the API can be more convenient. Not all programmers are proficient
with COM, so Microsoft developed DAO wrappers within the Microsoft Foundation Classes (MFC).
To ease the transition from one API to another, the MFC classes are similar to the MFC ODBC
Wrappers.

Not only does the DAO API provide an object-oriented method for accessing a database, but it also
provides the capability for database management. DA O has the capability to modify the database
schema. It does this by enabling the application to define queries and table structures within the
database and then applying SQL statements against those structures. New relationships and table
unions can also be defined from within the DAO API.

This section presents pertinent information for understanding the DAO objects and introduces key
steps in working with these objects. After thisintroduction, you will explore the MFC wrapper classes
for the DAO objects.

The Jet Database Engine

Before you jump into the DAO API object description, let's take a quick look at the underlying engine
that DAO was created for. The Jet Engine was primarily developed as the engine for the Microsoft
Access database. Microsoft, understanding that a proprietary database might not succeed, decided to

add two types of ODBC support to the engine.

DAQ's Direct ODBC issimilar in nature to pass-through SQL. ODBC calls are passed through the
engine and handed directly to the ODBC Driver Manager. Indirect ODBC requires that the ODBC
layer of the Jet Engine process the request. Access, for example, supports SQL statements.

The Jet Engineis also designed to interface to ISAM (indexed-sequential accessfiles) as shownin
Figure 14.3. If an ISAM driver exists for the file database, it can be accessed through the ISAM layer
of the Jet engine.

Figure 14.3 : The Jet Database Engine interface diagram.

CdbDBENgine: The Root of It All
The relationship between the DAO classesis shown in Figure 14.4.

Figure 14.4 : DAO class diagram.

Note that the classes shown in Figure 14.4 are not MFC classes; they are classes provided in the DAO
SDK.

The CdbDBENgi ne classisthe base class for the DAO classes. It contains and controls all other
DAO classes. You must create an instance of this class before any connections to the Jet database can
be performed. The DBENgine classis the class that contains the logic to connect to the Jet database
engine. For an application to connect to the Jet database, it must create a DBEngi ne object.

CdbDBWorkspace

Directly underneath the CdbDBENgi ne object isthe CdbDBWr kspace object. The workspace
object manages the database. Remember that DA O provides the ability to modify the actual database
schema. Thisis done through the database object. The database that the workspace owns can contain
Quer yDef s and Tabl eDef objectsthat can be used to modify the database structure. The
workspace object also contains group and user objects that further define the database permissions
structures, and allows the application to add or modify them.

CdbDBDatabase

The workspace might contain any number of databases that it is connected to. A typical application
can access one database for employee information and another for payroll information to create a
history report. This would be done by instantiating the CdbDBDat abase object for each database
and assigning it to the workspace already created to manage the payroll history reporting.

CdbDBRecordsets

CdbDBRecor dset s aresimilar in nature to the ODBC wrapper for the ODBC recordset. For each
SQL statement that is executed on any database, a recordset must exist to receive the data. Therefore, a
CdbDBRecor dset object will be instantiated for each query or action.

MFC Wrappersfor DAO

If you look at the MFC wrapper classes supplied for DAO, you will notice that they are similar in
some respects to the wrappers for ODBC. This was done to aid developers in migrating ODBC
applications that connected to databases designed to use the Jet engine. Because the object model for
DAO was devel oped with some of thisin mind, some correlation exists between the DAO API and its
corresponding MFC wrapper classes. Because the DAO AP is object-oriented, the wrapper classes are
much easier to comprehend.

CAUTION

The DAO API provides database security through the groups object and the
users object. The MFC wrapper, CDaoDatabase, doesn't grant access to
these objects, so a security risk could exist. See Technote 54 in the Visual
C++ documentation for details.

CDaoWorkspace

The CDaoWor kspace encapsulates the CdbDBWOr kspace object. However, it doesn't stop there.
The application uses the workspace to manage the database itself.

CDaoDatabase

The CDaoDat abase wrapper class encapsulates the CdbDBDat abase object, and al connection
information is contained within it. An application will declare and instantiate the CDaoDat abase
and then store this connection information within the application for all processing related to the
database.

CDaoRecor dSet

Like the ODBC MFC wrapper class, the recordset is managed and maintained by the
CDaoRecor dSet class. There are many similarities to the ODBC wrapper, and at first glance it
would appear that applications programmatically perform the same functions.

A Simple Example

Listing 14.2 merely shows the general sequence for developing database applications; it doesn't really

do anything.

Listing 14.2 An Example Showing the General Sequence for Developing Database Applications

1: #include <stdafx. h>

2: #include <afxdao. h>

3:

4: voi d CAddressBookVi ew. : OnFi | | Li st Box()

5. {

6: CString | pszSQL_SELECT _ALL = "SELECT * FROM ADDRESSES";
7: CString nessage;

8: i nt nRet Code = 1;

9:

10: CString filenanme = "c:\\tysdbvc\\ Addr essBook. ndb";
11:

12: /'l construct new dat abase

13: CDaoDat abase *ppDat abase = new CDaoDat abase;
14:

15: if (ppDatabase == NULL) return -1; // fatal error
16:

17: try

18: {

19: (*ppDat abase) - >Open(fi |l eNane);

20: }

21: catch (CDaoException *e)

22: {

23: /'l create a nmessage to display

24 nmessage = _T("Coul dn't open dat abase- Exception: ");
25: nmessage += e->m pErrorlnfo->m strDescription;
26: Af xMessageBox(nessage) ;

27: nRet Code = -1;

28: }

29:

30: CDaoRecordSet *ppRecSet = new CDaoRecor dSet (ppDat abase) ;
31:

32: try

33: {

34 ppRecSet -

>Open(dbOpenSnapshot , | pszSQL_SELECT ALL, dbReadOnl y) ;

35: }

36: cat ch(CDaoException *e)

37: {

38: /'l create a nmessage to display

39: nmessage = _T("Coul dn't open RecordSet-Exception: ");
40: nmessage += e->m pErrorlnfo->m strDescription
41: Af xMessageBox(nessage) ;
42: nRet Code = -1;
43: }

44 }

Line 19 of Listing 14.2 attempts to open the database file (in this case, an Access database file). Line
34 opens a recordset defined by

SELECT * FROM ADDRESSES
This SQL statement will retrieve all columnsin the Addr esses table of the AddressBook.mdb

Access database. Notice the dbReadOnl y flag passed as the last parameter. Table 14.1 shows some
of the option flags available in the DAO MFC wrapper CDaoRecor dSet wrapper class.

Table 14.1 Optionsto Recordsets

Flag Description
dbAppendOnl y Allows additional records but doesn't permit existing records to
be modified. (Dynasets only.)
dbDenyWite Prevents data from being modified while arecordset is active.
(Al
dbDenyRead Basically locks the tables and doesn't allow records to be read by

other applications or users while the recordset is active. (Tables)

dbSQLPassThr ough||Passes the SQL statement directly to the data source (ODBC).
The DAO API won't perform any processing on the SQL
statement. (Dynaset and snapshots)

DbForwar dOnl y Allows the recordset to have forward-scrolling only. (Snapshot)

DbFai | OnError The workspace will roll back any changes made if an error
occurs during the recordset processing. (All)

One thing that you will notice from Listing 14.2 is that the recordset was opened, but the data wasn't
mapped to any application variables. Thisisreferred to as data binding and is covered in the next
chapter.

Again, thisexample is extremely simplistic, but it's presented to show the object-oriented nature of the
DAO MFC wrapper classes. In the next chapter you will actually build the ssmple Address Book
application. You will build it twice, once for the ODBC wrapper classes and once for the MFC
wrapper classes.

TIP

It is always good practice to use try/catch blocks for processing errors.

Summary

ODBC was the first good attempt at shielding the application programmer from all the nitty-gritty of
devel oping database applications. DAO was the follow-up API aimed at closely matching the object-
oriented programming nature of C++ with the relational nature of databases.

Y ou might run across older applications that use the ODBC or DAO APIs. It helps to gain enough
understanding of the ODBC architecture and the API to be able to support legacy applications.

Today you the big picture of the two APIs. By understanding the environment of these APIs, you
become more proficient at migrating to the newer OLE DB and ADO technologies.

Q&A

Q How do | determine which MFC wrapper classesto use?

A The DAO API isdesigned to sit on top of and interface with the Jet database engine. It is
optimized for this. However, it enables the programmer to access other data sources
through the ODBC layer of the engine. This pass-through method is slower than using
the ODBC API directly. If the database is a Jet engine database or alocal ISAM
database, use DAO; otherwise, use ODBC.

Q Why isthe dbDBENgi ne object not directly mapped into the MFC DAO wrapper
classes?

A The MFC DAO wrapper class for CDaoWor kspace encapsulates this functionality.
The concept of the workspace is to present a transaction manager.

Q Can | createadata sourcedirectly from my application?

A Yes. The ODBC API function SQLConf i gDat aSour ce will do thisfor you. The
function takes four arguments. The first argument is the handle of the parent window.
The second argument is used to designate whether you want to add a DSN
(ODBC_ADD _DSN) or configure an existing one (ODBC_CONFI G_DSN). Y ou might
also remove aDSN by passing ODBC REMOVE DSN. The third argument names the
driver, whereas the fourth argument names the data source.

Q Doesthe ODBC API have any built-in exception handling?

A Yes. Typicaly, the application should perform all database processing inside
t ry/cat ch blocks. Both the ODBC and the DAO will throw the CDBExcept i on
error. The application must provide the error handling inside the catch block.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

Name the MFC wrapper class that encapsulates the SQLConnect logic.

What is the environment handle used for, and who maintainsit?

What is the root object in the DAO API? Does it have a corresponding MFC wrapper class?
What parameter should be passed to the recordset for it to be dynamic and allow the datain the

recordset to be synchronized with the data source?

~poODNPE

Exercises

1. Usethe OLE/COM Object Viewer to find the DAO classes on your system. View the type
library to see al the methods exposed by the DAO classes.

| ¢ Previous Chapter (= Mext Chapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Week 2...
|n Review

On Day 8, you learned some power tools that relational database servers have to offer.

Y ou learned about transactions, triggers, aggregate functions, and views. These tools
can enable you to build highly advanced database applications. Transactions enable
reliable changes to the data. Triggers make the database react automatically to changes
in the data. Aggregate functions cause the bulk of the data processing to happen at the
server. Finaly, views enable you to customize the way people see your database.

In Day 9'slesson, you learned the basics of COM. Y ou learned that COM is based on

C++ abstract base classes, called interfaces. Y ou also learned that the COM libraries
(part of the Win32 API) provide away to create instances of classes indirectly, thereby
avoiding any build-time dependencies between clients and servers. Traditional DLLs are
good for sharing common code among concurrently running applications. However, to
build real component-based software, the capabilities afforded by COM are essential.

You learned in Day 10 how to program Microsoftis database client technologies.

Several database client technologies are available to C++ programmers. Each
technology hasits own strengths and weaknesses, and each one has an historical context
that defines how it relates to the other technologies. The two database client
technologies that will be updated and improved on in the future are OLE DB and ADO.
ADO offers agood balance of code size, performance, and ease of use. Y ou can best
understand the ADO object model by examining the MSADO15.TLH file and the
MSADOIS5.TLI files, coupled with the ADO documentation.

On Day 11, you learned how multitier applications promise easier updates and
mai ntenance than traditional client/server applications. The tools for building multitier

applications have evolved rapidly over the past few years. XML is atechnology that in
the future will be widely used to transmit data in multitier applications. Some of the
more recent developments, such as ActiveX controls and RDS, promise to enable
client/server-type development in an intranet environment.

In Day 12'slesson, you learned that the infrastructure necessary for multitier

applications is difficult and time-consuming to build yourself. MTS can do most of that
work for you. MTS components are COM DLL S that you can build with ATL. In your
component code, you can create ADO Recordsets from database queries and send the
Recordsets to applications on the client tier. IE4 can host ActiveX controls and, with
RDS, can instantiate and communicate over COM, DCOM, and HTTP with MTS
components that you build.

Y ou learned, on Day 13, that melding an object-oriented application with arelational
database requires you to write a translation layer between the object code and the
relational database. Thistranglation layer can be difficult and time-consuming to write.
However, your application and your database can derive great benefit from the
synergies of these two technologies.

On Day 14, you learned a history lesson in technology progression. ODBC was the first

good attempt at shielding the application programmer from all the nitty-gritty associated
with developing database applications. DAO was the follow-up API that was aimed at
closely matching the object-oriented programming nature of C++ with the relational
nature of databases. Hopefully, after reading this chapter, you can come closer to
understanding the big picture of the two APIs. By understanding the steps and
environment of these APIs, you will become more proficient at migrating to the newer
OLE DB and ADO technologies.

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Week 3...
At a Glance

Thisweek, you expand your understanding of database programming by learning
additional database APIs.

. Day 15 Youlearnto usethe ODBC API and the MFC ODBC classes.

. Day 16 You receive an introduction to OLE DB, the latest and most powerful
database APl from Microsoft.

. Day 17 You learn to connect with a data source by using the OLE DB API.

. Day 18 Youlearnto retrieve datafrom a data source by using OLE DB.

. Day 19 You learn to scroll through data that you retrieve from a data source.

. Day 20 Youlearn OLE DB properties, transactions, and the | ndex object.

. Day 21 You learn mechanismsfor integrating error handling into your OLE DB
applications.

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 15
The ODBC API and the MFC ODBC Classes

. The Address Book
. Using the MFC ODBC Wrapper Classes
o Creating the Application
o Getting Data
o Updating the Application's Variables
. Using the MFC DAO Wrapper Classes
o Taking aCloser Look
o Getting Data
o Other DAQO Classes
. Summary
. Q&A
« Workshop
0 Quiz

o Exercises

Y esterday, you explored the ODBC and DAO APIs and were introduced to the MFC wrapper classes
for both. Today, you will create a simple application using the wrapper classes and discuss the data
binding that takes place. Y ou will also look at what the API is doing through the use of the wrapper
classes.

Today you will

. Bind datawith the ODBC API.

. Implement ODBC MFC wrappersin an application.
. Bind datawith the DAO API.

. Implement DAO MFC wrappersin an application.

The Address Book

This chapter focuses on using the wrapper classes that MFC provides for the ODBC and DAO APIs.
Y ou do this by creating a simple application to list addresses for your friends, like the one in Figure
15.1. The database that you will be using was created with Access 97 and will contain asingle table
(Addr esses). Thistable will contain the fields shown in Figure 15.1:

Figure 15.1 : The Address book table (Addresses) structure.

To simplify things, you examine the application development code, using the MFC AppWizard for
creating your data bindings. After you do this, you will take a closer look at how the table data can be
manually bound to the application's variables.

Using the MFC ODBC Wrapper Classes

Day 14, "Legacy Database APIs," provides an introduction to the ODBC APl and to the MFC
wrappers for the API. One important item that Day 14 doesn't discussisthe CRecor dVi ewclass.

This class doesn't really wrap the API so much asit creates a go-between data-binding class that fits
into the MFC's Document/View architecture. CRecor dVi ewis derived from the CFor nVi ewclass,
which ultimately is derived from CVi ew. The view classes provide the user interface mechanisms to
display the data and handle Windows messages. The CRecor dSet and CDat abase classes are
closely coupled with CRecor dVi ew, asyou will seein your application code. It contains a member
variable to handle the actual data cursor. It does thisin the form of arecord pointer. If you have had
the opportunity to program database applications the hard way, you will definitely appreciate this
class. The CRecor dVi ewalso contains a pointer to the CRecor dSet class.

NOTE

If you are unfamiliar with MFC and the MFC Document/View architecture,
the following sections might appear to be a broad step from the explanation
of the API to the actual implementation of the application. This chapter does
this to highlight certain aspects of implementing database applications;
however, it does so using the most widely used approach.

Let'sjump right in and create the sample application.

Creating the Application

Before the AppWizard creates the application, the database and ODBC data source must exist. You
can use the Control Panel ODBC applet to determine whether a database and ODBC data source exist
for the targeted application.

NOTE

The application code is included on the accompanying CD-ROM, which
includes the Addr essBook database.

From the File menu, select New to start the MFC AppWizard. The screen shown in Figure 15.2
appears. Based on your system file structure and where your database and application files reside, fill
in the appropriate information shown in Figure 15.2. In this case, you are creating an executable that
will be MFC-based.

Figure 15.2 : MFC AppWizard Sep 1: Creating the application.

Figure 15.3 shows the screen where you specify the database support for your application. At this
point, it is asking whether you want database support. (Y ou can choose to skip this selection, by
choosing None, and then put it in later.) Select Database View Without File Support. After you select
the database support, the next step is to set the data source. For your example, select ODBC as shown
in Figure 15.3.

Figure 15.3 : MFC AppWizard Sep 2: Defining database reguirements.

Y ou then select the table(s) that you would like to have support for.

The AppWizard will build the data relationships for the recordset that relates to the tables you select.
For every table that you select, the wizard will create a CRecor dSet -based class that wraps the
table. You'll come back to this when you look at the code. Figure 15.4 shows the classes that
AppWizard will create.

Figure 15.4 : MFC AppWizard Sep 6: Files created.

Y ou only need to concern yourself with the CAddr essBook ODBCVi ew class and the

CAddr essBookODBCSet class. These two classes contain the information that will help you
understand how the data is passed from the data source to the application. Listing 15.1 is the definition
filefor the CAddr essBook ODBCSet class.

Listing 15.1 The CADDRESSBOOKODBCSET Class Declar ation

1: // AddressBookODBCSet.h : interface of the

2: /] CAddr essBookODBCSet cl ass

c AL rrrrrrrrrr
4.

5: #if !defined(AFX_ADDRESSBOOKODBCSET _H D21600E1_4140_

11D2_9D78_000000000000__ I NCLUDED)
6: #define AFX_ADDRESSBOOKODBCSET _H_ D21600E1_
4140_11D2_9D78_000000000000__ | NCLUDED _

7:

8: #if _MSC_VER >= 1000

9: #pragma once

10: #endif // _MSC VER >= 1000

11:

12: class CAddr essBook(ODBCSet : public CRecordset

13: |

14: public:

15: CAddr essBookODBCSet (CDat abase* pDat abase = NULL);
16: DECLARE_DYNAM C(CAddr essBookODBCSet)

17:

18: /'l Field/ Param Dat a

19: /1 {{ AFX_FI ELD(CAddr essBookODBCSet, CRecordset)

20; long mlI D

21: CString mLast_ Nane;

22: CString mFirst_Nane;

23: CString mStreet;

24. CString mCty;

25: CString m State;

26: long mZip;

27 CString m Phone;

28: /1}} AFX_FI ELD

29:

30: /'l Overrides

31: /'l CassWzard generated virtual function overrides
32: /1 {{ AFX_VI RTUAL(CAddr essBook ODBCSet)

33: publ i c:

34: virtual CString GetDefaultConnect(); // Default connection
string

35: virtual CString GetDefaul t SQ(); /1 default SQ for Recordset
36: virtual void DoFi el deExchange(CFi el dExchange* pFX); [/ RFX
support

37: /1}}AFX_VI RTUAL

38:

39: /1 1 nplementation
40: #i f def _DEBUG
41: virtual void AssertValid() const;
42: virtual void Dunp(CDunpCont ext & dc) const;
43: #endi f
44:
45: };
46:
47: |1 {{ AFX_I NSERT_LCOCATI ON} }
48: [/ Mcrosoft Developer Studio will insert additional
49: [/ declarations imedi ately before the preceding |ine.

50:

51: #endif // !defined(AFX_ADDRESSBOOKODBCSET H__D21600EL_
4140 _11D2_9D78_000000000000 | NCLUDED)

Notice that line 19 is where the data mapping starts. The AFX_FI ELD declaration indicates that thisis
field datafor the recordset. Just think of the number of SQLBI ndCol umm calls that you would have
to make to declare each field if the table were very large.

The MFC DDX/DDV message-handling mechanism defines the connection between the table column
data and the applications variable used to present that data. The other part of the binding that takes
place here is the actual data attribute definition. The CSt r i ng classis awrapper for a C character
string. The CSt r i ng class is mapped to the character data represented in the columns. Thel ong is
mapped to the data type for the Zip code in the Access database. In this case, it is defined as an
integer.

Let'stake alook at the CRecor dVi ewbased class. Here you see the implementation file for the
CAddr essBookODBCVi ewclassin Listing 15.2.

Listing 15.2 The CADDRESSBOOKODBCVIEW Class Declaration

1: /1 Addr essBookCDBCVi ew. h : interface of the
2: /| CAddr essBookODBCVi ew cl ass
3: FHEEEEErrrr bbb ririrrirry
4.
5: #i f 1 defined(AFX_ADDRESSBOOKODBCVI EW H D21600DF_4140
11D2_9D78_000000000000__ | NCLUDED)
6: #defi ne AFX_ADDRESSBOOKCDBCVI EW H D21600DF_4140_11D2_
9D78_000000000000__ | NCLUDED _
7:
8: #if _MSC VER >= 1000
9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12: cl ass CAddr essBookODBCSet ;
13:
14. cl ass CAddr essBookODBCVi ew : public CRecordVi ew
15: {
16: protected: // create fromserialization only
17: CAddr essBookCDBCVi ewW) ;
18: DECLARE DYNCREATE(CAddr essBook ODBCVi ew)
19:
20: public:
21: /1 {{ AFX_DATA(CAddr essBook ODBCVi ew)
22: enun{ | DD = | DD_ADDRESSBOOKODBC FORM };
23: CAddr essBookODBCSet * m pSet ;

24: // NOTE: the CassWzard will add data nenbers here

25:
26:
27
28:.
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41

/1}} AFX_DATA

/1 Attributes
publ i c:
CAddr essBookODBCDoc* Cet Docunent () ;

/1 Operations
publ i c:

/'l Overrides
/1 CassWzard generated virtual function overrides
[1 {{ AFX_VI RTUAL(CAddr essBook ODBCVi ew)
publ i c:
virtual CRecordset* OnCet Recordset();
virtual BOOL PreCreat eW ndow CREATESTRUCT& cs);
pr ot ect ed:
virtual void DoDat aExchange(CDat aExchange* pDX); /1

DDX/ DDV /| support

42: virtual void Onlnitial Update(); // called first time after
/'l construct

43: virtual BOOL OnPreparePrinting(CPrintlnfo* plnfo);

44. virtual void OnBegi nPrinting(CDC* pDC, CPrintlnfo* plnfo);

45: virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);

46: /1}} AFX_VI RTUAL

47:

48: /1l 1 nplementation

49: publ i c:

50: virtual ~CAddressBookODBCVi ew);

51: #i f def _DEBUG

52: virtual void AssertValid() const;

53: virtual void Dunp(CDunpCont ext & dc) const;

54 #endi f

55:

56: pr ot ect ed:

57:

58: /'l Cenerated nessage map functions

59: pr ot ect ed:

60: /1 {{ AFX_MSGE CAddr essBook ODBCVi ew)

61: /1 NOTE - The CassWzard will add and renove nenber

/'l functions here.

62: /1 DO NOT EDI T what you see in these bl ocks of

generated // code!

63: /1}} AFX_NMSG

64: DECLARE_MESSAGE_MAP()

65: };

66:

67: #i fndef _DEBUG // debug version in AddressBookCDBCVi ew. cpp

68: i nline CAddressBookODBCDoc* CAddr essBookODBCVi ew: : Get Docunent ()

69: { return (CAddressBookODBCDoc*) m pDocunent; }

70: #endi f

71:

72:

//}//

73:

74: /1 {{ AFX_| NSERT_LOCATI ON} }

75: /'l Mcrosoft Devel oper Studio will insert additional

decl arati ons

76: /1l inmediately before the preceding line.

7.

78: #endi f // !defi ned(AFX_ADDRESSBOCKCDBCVI EW H D21600DF_4140_

11D2_9D78_000000000000__| NCLUDED)

The CAddr essBook ODBCVi ew class contains quite afew more function members, but most are
related to the Document/View architecture of MFC. Notice on line 23 that you have a pointer to the
CAddr essBookODBCSet classin the CAddr essBook ODBCVi ewclass. This pointer isthe
primary link between the API wrapping and the Document/View architecture. The

CAddr essBook ODBCVi ew class contains a document that is the application's data keeper. Datais
passed between the view and dialog classes and the GUI viathe MFC DDX/DDV data exchange
mechanisms. The view gets access to the document directly via Get Docunent ; the document pumps
notifications (and hints) to the view viathe

CDocunent : : Updat eAl | Vi ews/ CVi ew; ; OnUpdat e coupling. For data to be bound from a
database to the application, the application’'s view must know about the data structure. The m_pSet
pointer is the mechanism that accomplishesthis. Let's take alook at what the Docunent class
contains. Notice that the document containsthe Recor dSet (line 21).

Something very interesting happensin Listing 15.3. By looking at the wrapper declarations for your
application, you have learned how the data binding takes place. The document class represents the
application's memory. The view classis your window into that data. But you are working with
databases, and the datain this case is stored on disk. The Recor dSet isthe APl wrapper that will
provide the link to the data in the database. By containing the recordset, the document class essentially
maps the data into the application's memory.

Listing 15.3 The CADDRESSBOOK ODBCDOC Class Declar ation

1: /1 AddressBookODBCDoc. h : interface of the CAddressBookODBCDoc
/1l class

2: /1

3:
LHEELEEEErrr i r i r i rrr i rriirrrrd

4.

5: #i f 1 defined(AFX_ADDRESSBOOKCDBCDOC H_D21600DD 4140 11D2 9D78_

000000000000__ I NCLUDED)
6: #def i ne AFX_ADDRESSBOOKODBCDOC H D21600DD 4140 11D2 9D78_

000000000000__I NCLUDED_

#f _MSC VER >= 1000
#pragna once
#endif // _MSC_VER >= 1000

el
PO OO

12:
13:
14.
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48

49:
50:
51:
52:
53:

cl ass CAddr essBookODBCDoc : public CDocunent
{
protected: // create fromserialization only
CAddr essBookODBCDoc() ;
DECLARE _DYNCREATE(CAddr essBookODBCDoc)

[l Attributes
publi c:
CAddr essBookODBCSet m addr essBookODBCSet ;

/| Operations
publ i c:

/1 Cverrides
/'l O assWzard generated virtual function overrides
/1 {{ AFX_VI RTUAL(CAddr essBookODBCDoc)
publi c:
virtual BOOL OnNewDocunent ();
/1}} AFX_VI RTUAL

/1 1 nplementation
publi c:
virtual ~CAddressBookODBCDoc();
#i f def _DEBUG
virtual void AssertValid() const;
virtual void Dunp(CDunpCont ext & dc) const;
#endi f

pr ot ect ed:

/'l CGenerated nessage map functions
pr ot ect ed:
/1 {{ AFX_MSE CAddr essBookODBCDoc)
/1 NOTE - The CassWzard will add and renove nenber
/1 functions here. DO NOT EDI T what you see in these
/1 bl ocks of generated code !
[1}}AFX_MSG
DECLARE_NMESSAGE_MAP()

b

FEEEEEEEEr bbb bbb rrrrirrr

54:
55:
56:
57:
58:
59:

/1 {{ AFX_| NSERT LOCATI ON} }

/'l Mcrosoft Devel oper Studio will insert additional declarations
i nmedi ately before the previous 57: line.
#endi f //

| def i ned(AFX_ADDRESSBOOKODBCDOC H D21600DD 4140 11D2

9D78_000000000000__ | NCLUDED)

Y ou have now created an application that contains the ODBC wrappers that you will need to interface
to your database. However, the AppWizard really can't determine what you plan to do with the data. If
the application were to be built and executed at this point, you would see something similar to Figure
15.5.

Figure 15.5 : The Address Book ODBC application. First run.

For the application to do any real work, you first have to create controls for the data to be displayed in.

Getting Data

Look at Listing 15.4 to see how much the AppWizard really does for you.

Listing 15.4 The ONINITIALUPDATE Implementation

1 voi d CAddr essBookODBCVi ew. : Onl ni ti al Updat e()

2: {

3: m pSet = &Get Docunent () - >m addr essBook ODBCSet ;
4. CRecordView. : Onl nitial Updat e();

5 }

The Onl ni ti al Updat e function member of your view class will set your recordset pointer. Notice
that it getsthe Recor dSet information from the document-remember our discussion about the
Document/View and how the Recor dVi ewtied everything together.

In Listing 15.5, the two functions Get Def aul t Connect () and Get Def aul t SQL() are used.
The Get Def aul t Connect function member will provide the data source information that you need
to pass to the database open command. The Get Def aul t SQL function member will pass back the
defining information for your fetch routines. (In this case, the SQL statement that queries the

Addr esses table).

Listing 15.5 The GETDEFAULTCONNECT and GETDEFAULTSQL Implementations

1: CString CAddressBookODBCSet : : Get Def aul t Connect ()
2: {

3: return _T(" ODBC, DSN=Addr essBook") ;

4. }

S:

6:

CString CAddressBookODBCSet : : Get Def aul t SQL()

7: {

8: return _T("[Addresses]");

9: }

10:

11: voi d CAddr essBookODBCSet : : DoFi el dExchange(CFi el dExchange* pFX)
12: {

13: [1 {{ AFX_FI ELD_MAP(CAddr essBook ODBCSet)

14: pFX- >Set Fi el dType(CFi el dExchange: : out put Col um) ;
15: RFX_Long(pFX, _T("[ID "), mlID);

16: RFX Text (pFX, _T("[Last Nane]"), mLast_ Nane);
17: RFX Text (pFX, _T("[First Nanme]"), mFirst_Nane);
18: RFX Text (pFX, _T("[Street]"), m Street);

19: RFX Text (pFX, _T("[City]"), mCty);

20: RFX Text (pFX, _T("[State]"), mState);

21: RFX_Long(pFX, _T("[Zip]"), mZp);

22: RFX _Text (pFX, _T("[Phone]"), m Phone);

23: /1}}AFX_FI ELD_MAP

24. }

In Listing 15.6, notice line 4 from the modified Onl ni t i al Updat e function. To open the recordset,
simply call the Open function member of the recordset and pass the SQL string. Thisisn't always
necessary. The Get Def aul t SQL function member contains a shorthand version of the statement
listed previoudly. If the SELECT statement needs to change, simply insert the SQL statement in the
recordset's OPEN function.

Listing 15.6 The Modified ONINITIALUPDATE Implementation

1 voi d CAddr essBookODBCVi ew. : Onl ni ti al Updat e()

2: {

3: m pSet = &Get Docunent () ->m addr essBookODBCSet ;

4. m _pSet - >Open(CRecor dSet : : snapshot, "SELECT * FROM
Addr esses");

5: CRecordVi ew. : Onl nitial Updat e();

6: }
NOTE

It isimportant to note here that the Onl ni t i al Updat e routine will
actually perform the connecting and opening of the data source. It then will
set the pointer to the recordset.

Updating the Application's Variables

By using the AppWizard to generate this application, you didn't use the CDat abase classto connect
or open the data source. By letting AppWizard define the recordset parameters, the code generated
gets around this. If the support selected during the AppWizard phase does not include this support, the
application developer would have to add a CDat abase classand CRecor dSet class
implementation in the CRecor dVi ew. More work, but essentially the same resullt.

What you haven't learned is how the table datais transferred to the application's data. Inside MFC
database support is the Record Field Exchange (RFX) mechanism. Similar to Dynamic Data Exchange
(DDX), the RFX layer performs the underlying field-to-data transfers. Thisis done at the message
interface level.

Y ou have now created an application that uses the ODBC API. Y ou will next explore the DAO API.

Using the MFC DAO Wrapper Classes

The steps needed to create the DA O application are similar to the steps needed to create an MFC
ODBC application. However, there are some minor differences. When asked for database support
(refer to Figure 15.3), select Database Support with File Support (the last selection). Remember the
discussion in Day 14 concerning the two APIs. ODBC uses a data source, which can be network-

resident and doesn't rely on the file system. DAO uses the Jet engine, which isfile-based. After this
selection is made, the steps are identical to those for the ODBC application.

Many applications that you might run across will obviously have more than one recordset defined to
accept aquery on just one table. The AppWizard gives the application developer a starting point. As
the application is created, notice that the files produced by the AppWizard are amost identical to those
created when you built the ODBC application. The MFC wrapper classes for the DAO APl were
designed to closely match those created for the ODBC API, even though the APIs are completely
different. Taking agood look under the hood is beyond the scope of this book, but if you have the
opportunity, look at the MFC wrapper code for the DAO API classes that AppWizard creates. If you
compare the implementation of the CDaoRecor dVi ew class and the CRecor dVi ewclass, you will
also see the similarities. Remember that the view is the coupling class to the MFC Document/View
architecture. Most of the differences will appear at the recordset class wrappers.

Taking a Closer L ook

Let'stakealook at in Listing 15.7 the class implementations that the AppWizard generated for us.
First, look at the Record Set class.

Listing 15.7 The DAO CADDRESSBOOKDAOSET Class Declaration

1: /] AddressBookDACSet.h : interface of the CAddressBookDACSet
cl ass

2: [/
3:

FEEEEEEEE bbbt r bbb rr i rrrrirrr

4.

5: #i f !defined(AFX_ADDRESSBOOKDACSET H 990F28BF_41F8_11D2_9D79_
000000000000__ I NCLUDED)

6: #def i ne AFX_ADDRESSBOOKDAOSET _H_990F28BF_41F8_ 11D2_9D79
000000000000__ I NCLUDED _

7:

8: #if _MSC VER >= 1000

9: #pragnma once

10: #endif // _MSC_VER >= 1000

11:

12: cl ass CAddr essBookDAGSet : public CDaoRecordset

13: {

14: publ i c:

15: CAddr essBookDACSet (CDaoDat abase* pDat abase = NULL);

16: DECLARE_DYNAM C(CAddr essBook DACSet)

17:

18: /'l Field/ Param Dat a

19: [1 {{ AFX_FI ELD(CAddr essBookDACSet , CDaoRecor dset)

20: | ong m_| D,

21: CString m Last _Nane;

22: CString m Fi rst_Nane;

23: CString m Street;

24. CString mCty,;

25: CString m St at e;

26: | ong m_Zi p;

27 CString m_Phone;

28: /1}} AFX_FI ELD

29:

30: /'l Overrides

31: /'l CassWzard generated virtual function overrides

32: /1 {{ AFX_VI RTUAL(CAddr essBook DACSet)

33: publ i c:

34: virtual CString GetDefaul tDBNane(); // REVIEW Get a

comment //
35:

her e
virtual CString GetDefaul t SQL(); /1 default SQ for
/1 Recordset

36: virtual void DoFi el deExchange(CDaoFi el dExchange* pFX)
/'l RFX support

37: /1}}AFX_VI RTUAL

38:

39: /1 1 nplementation

40: #i f def _DEBUG

41: virtual void AssertValid() const;

42: virtual void Dunp(CDunpCont ext & dc) const;

43: #endi f

44:

45: };

46:

47: [T {{ AFX_I NSERT_LCOCATI ON} }

48: /'l Mcrosoft Devel oper Studio will insert additional

decl arati ons

49: /1l inmrediately before the previous |ine.
50:
51: #endi f //

| def i ned(AFX_ADDRESSBOOKDACSET H__990F28BF_41F8_11D2_9D79_
000000000000 | NCLUDED)

On line 34, notice the declaration of Get Def aul t DBNanme() . Thisisdifferent from the ODBC
configuration. Again, it's the file or data source difference between the two APIs. Other than that
difference, the declarations appear identical.

In Listing 15.8, you can explore the document class declaration.

Listing 15.8 The DAO CADDRESSBOOKDAODOC Class Declaration

1 /1 Addr essBookDAODoc. h : interface of the CAddressBookDAODoc

cl ass

2: /1

3.

(HEEEEEErrr e rr i rrririr

4:

5: #i f 1 defined(AFX_ADDRESSBOOKDACDOC H 990F28BB_41F8 11D2_9D79
000000000000__ I NCLUDED)

6: #def i ne AFX_ADDRESSBOOKDACDOC H 990F28BB_41F8_11D2_9D79
000000000000__ I NCLUDED _

7.

8: #if _MSC VER >= 1000

9: #pragnma once

10: #endif // _MSC _VER >= 1000

11:

12:

13: cl ass CAddr essBookDAODoc : public CDocunent

14. {

15: protected: // create fromserialization only

16: CAddr essBook DAODoc() ;

17: DECLARE DYNCREATE(CAddr essBook DACDoc)

18:

19: [l Attributes

20: public:

21: CAddr essBookDACSet m addr essBookDACSet ;

22:

23: /1 QOperations

24: publi c:

25:

26: [l Cverrides

27: [/l CassWzard generated virtual function overrides

28: /1 {{ AFX_VI RTUAL(CAddr essBook DACDoc)

29: publ i c:

30: virtual BOOL OnNewDocunent ();

31: virtual void Serialize(CArchive& ar);

32: /1}}AFX_VI RTUAL

33:

34 /1 1 nplementation

35: publ i c:

36: virtual ~CAddressBookDAODoc();

37: #i f def _DEBUG

38: virtual void AssertValid() const;

39: virtual void Dunp(CDunpCont ext & dc) const;

40: #endi f

41:

42: pr ot ect ed:

43:

44. /'l Cenerated nessage map functions

45: pr ot ect ed:

46: /1 {{ AFX_MSGE CAddr essBookDACDocC)

47: /1 NOTE - The CassWzard will add and renove nenber

functions // here.

48: /1 DO NOT EDI T what you see in these bl ocks of generated
I code !

49: [1}} ARX_MSG

50: DECLARE_MESSAGE_MAP()

51: };

52:

53:

FHEETEEEE i rririrrrrli

54:

55: [T {{ AFX_I NSERT_LCOCATI ON} }

56: /'l Mcrosoft Devel oper Studio will insert additional

decl arati ons

57: /1l inmediately before the preceding line.

58:

59: #endi f //

| def i ned(AFX_ADDRESSBOOKDACDOC H__990F28BB_41F8_11D2_9D79
000000000000 | NCLUDED)

Notice that this again appears identical to the ODBC MFC Document wrapper class. Notice on line 21
that the document owns the recordset (your coupling).

Finally, the view classis explored in Listing 15.9.

Listing 15.9 The DAO CADDRESSBOOKDAOVIEW Class Declar ation

1: /] Addr essBookDAOVi ew. h : interface of the CAddressBookDAOVi ew

/1l class
2: /1
3.
[HEHEEEEErrr i rirrriirrrlll
4:

5: #i f !defi ned(AFX_ADDRESSBOOKDAOVI EW H 990F28BD 41F8 11D2 9D79
000000000000__ I NCLUDED)

6: #def i ne AFX_ADDRESSBOOKDAOVI EW H 990F28BD_41F8_11D2_9D79_
000000000000__ I NCLUDED _

7:

8: #if _MSC VER >= 1000

9: #pragnma once

10: #endif // _MSC_VER >= 1000

11:

12: cl ass CAddr essBookDAGCSet ;

13:

14: cl ass CAddr essBookDAOVi ew : public CDaoRecordVi ew

15: {

16: protected: // create fromserialization only

17: CAddr essBookDAOVi ewW) ;

18: DECLARE _DYNCREATE(CAddr essBook DAQVI ew)

19:

20: publ i c:

21: /1 {{ AFX_DATA(CAddr essBook DAQVi ew)

22: enun{ | DD = | DD_ADDRESSBOOKDAO FORM };

23: CAddr essBookDACSet * m pSet;

24: /'l NOTE: The C assWzard wll add data nmenbers here

25: /'1}} AFX_DATA

26:

27: /'l Attributes

28: publ i c:

29: CAddr essBookDAODoc* Get Docunent () ;

30:

31: /| Operations

32: publ i c:

33:

34: /'l Overrides

35: /'l CassWzard generated virtual function overrides

36: /1 {{ AFX_VI RTUAL(CAddr essBook DAQVi ew)

37: publ i c:

38: virtual CDaoRecordset* OnGet Recordset();

39: virtual BOOL PreCreat eW ndow CREATESTRUCT& cs);

40: pr ot ect ed:

41: virtual void DoDat aExchange(CDat aExchange* pDX)
/| DDX/ DDV support

42: virtual void OnlnitialUpdate(); // called first time after
/'l construct

43: virtual BOOL OnPreparePrinting(CPrintlnfo* plnfo);

44. virtual void OnBegi nPrinting(CDC* pDC, CPrintlnfo* plnfo);

45: virtual void OnEndPrinting(CDC* pDC, CPrintlnfo* plnfo);

46: /1}}AFX_VI RTUAL

47:

48: /1 1 nplementation

49: publ i c:

50: virtual ~CAddressBookDAOVi ew);

51: #i f def _DEBUG
52: virtual void AssertValid() const;
53: virtual void Dunp(CDunpCont ext & dc) const;
54. #endi f
55:
56: pr ot ect ed:
57:
58: /'l CGenerated nessage map functions
59: pr ot ect ed:
60: /1 {{ AFX_MSGE CAddr essBook DAQVi ew)
61: /1 NOTE - The CassWzard will add and renove nenber
functions // here.
62: /1 DO NOT EDI T what you see in these bl ocks of
gener at ed
I code !
63: [1}} ARX_MSG
64: DECLARE_MESSAGE_MAP()
65: };
66:
67: #i fndef _DEBUG // debug version in AddressBookDAOVi ew. cpp
68: i nline CAddressBookDAODoc* CAddr essBookDAOVi ew: : Get Docunent ()
69: { return (CAddressBookDAODoc*)m pDocunent; }
70: #endi f
71:
12:
FEETTEEEE i rrrririrr
73:
74: AFX_1 NSERT_LOCATI ON} }
75: /'l Mcrosoft Devel oper Studio will insert additional
decl arati ons
76: /1l inmediately before the preceding line.
77:
78: #endi f //

| def i ned(AFX_ADDRESSBOOKDAOVI EW H__990F28BD 41F8_11D2_9D79
000000000000 | NCLUDED)

Again, this looks identical to the ODBC implementation, and in many respectsitis.

Getting Data

If you look implementation>at the Onl ni t i al Updat e routine of your view class, you see that it,
too, isidentical to the ODBC implementation. Do you see a pattern?

The Get Def aul t DBNanme will return a string indicating the file and path information to the database
(see Listing 15.10). In the ODBC implementation, you had to go to the DSN table to find this
information.

Listing 15.10 DAO GETDEFAUL TDBNAME Implementation

1 CStri ng CAddr essBookDAGCSet : : Get Def aul t DBNane()
2: {
3: return _T("E \\Teach_Yoursel f_stuff\\Database 21\\ Day
15\\ Appl i cat i ons\\ Addr essBookDB. ndb") ;
4. }
TIP

It's not generally good practice to hard-code string information. Modify this
to return a string variable that will contain the file and path declaration.

The DoFi el dExchange, shownin Listing 15.11, issimilar to the DoDat aExchange for adiaog-
based view. The data from the database's columns are mapped to the application's memory by this
mechanism.

Listing 15.11 The DAO GETDEFAULTSQL and DOFIELDEXCHANGE Implementations

1. CString CAddressBookDACSet : : Get Def aul t SQL()
2: {
3: return _T("[Addresses]");
4. }
5:
6: voi d CAddressBookDAGCSet : : DoFi el dExchange(CDaoFi el dExchange* pFX)
7 {
8: [1 {{ AFX_FI ELD_MAP(CAddr essBook DACSet)
9: pFX- >Set Fi el dType(CDaoFi el dExchange: : out put Col umm) ;
10: DFX _Long(pFX, _T("[ID "), mlID);
11: DFX Text (pFX, _T("[Last Nane]"), mLast_ Nane);
12: DFX Text (pFX, _T("[First Nanme]"), mFirst_Nane);
13: DFX Text (pFX, _T("[Street]"), mStreet);
14: DFX Text (pFX, _T("[City]"), mCty);
15: DFX Text (pFX, _T("[State]"), m State);
16: DFX _Long(pFX, _T("[Zip]"), mZp);
17: DFX Text (pFX, _T("[Phone]"), m Phone);
18: /1}}AFX_FI ELD_MAP
19: }

Other DAO Classes

Both the ODBC and the DAO Address Book applications, as presented, are quite ssmplistic, and they
really don't do much. What if you decided that you need to add another phone number field to the
database? Y ou could use Microsoft Access to add the field and rebuild these applicationsto read in
that field. Y ou would also have to place controls on the views to display your new field. Thisisalittle
bit of work, but what if you needed to let the application's users define temporary tables and queries?
Except for SQL DDL statements, ODBC doesn't give the programmer a method for modifying the
data source's schema. Because DAOQ isfile-based, the programmer is able to easily modify the schema
programmatically.

MFC provides two class wrappers that enable the programmer to easily modify the structure of the
database. These are CDaoTabl eDef and CDaoQuer yDef . These wrappers map to the Tabl eDef
and Quer yDef objects directly. These classes contain member functions that enable the programmer
to build new database structures as well as modify any database structures deemed as updatable.

In many cases, a database schema might be too limited to provide the application with the exact query
information that it needs. Instead of doing multiple queries and saving al this information locally
within the application for processing, the CDaoQuer yDef function member will enable the
programmer to add a query definition to the database and then perform a query on the temporary query
just created.

If the database is large, temporary tables can be defined for the application that can hold temporary
indexes, report results, running totals, and other such items that might be expensive in the application.

TIP

Although this book isn't intended to instruct the database application
developer on programming the older APIs, you would be well adivsed to
build afew test applications to solidify your learning. The MFC source code
Is distributed with the Developer Studio, and it is recommended that the
database application programmer review and investigate the wrapper
classes.

Summary

After reading this chapter, you will be able to view ODBC and DAO API applications and understand
the mechanisms used in ODBC and DA O applications.

MFC AppWizard provides a good start in creating ODBC and DAO appliations. The MFC wrapper
classes do much of the work for you aswell. The MFC classes automatically perform the data and
provide the RFX mechanism. After you define the user interface controls to view the data, your
application is off and running. The only code that you have to write is code for reports and other data
manipul ation.

Q& A

Q How do | determine which database support | need?

A On the MFC AppWizard, the database support without file support is primarily for the
ODBC API. Remember that ODBC works with data sources, and DAO works with files.
If file support is selected, you are essentially using the Jet database engine.

Q Can | modify the database table by adding fields (columns)?

A If the application isa DAO application, use the CDaoTabl eDef classto define atable.
The CDaoTabl eDef hasamember function, CanUpdat e, that can determine
whether field information in the table can be modified. CDaoTabl eDef can be used to
open an existing table or create a new table in a database schema.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is the mechanism that binds the column data in the database with the data in the
database?

2. How isthe API attached to the MFC Document/View architecture?
3. What routine would have to be modified to change the database SQL Query?

Exercises

1. Taking the ODBC Address Book application, add controls to display the fields to the

Recor dVi ew. Isthe data updated whenever the cursor selectors are pressed to move up and
down the list?

2. Repeat exercise 1 for the DAO application.
3. What would the code look like for adding another record to the table? Use (Smith, Jennifer,
234 WayWay St., Dublin, OH, 45400, 614-555-0101).

| ¢ Previous Chapter (3 MNextChapter

© Copyright, Sams Publishing. All rights reserved.

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 16
The Ultimate Database APl: OLE DB

. AnAPI for All Data Sources
o The Components of an OLE DB Application
o Making Data Sources Available
o Comparing OLE DB to ODBC
. The OLE DB Object Hierarchy
o Enumerator
o DataSource
o Session
o Command
o Rowset
o Index
o Error
o Transaction
. Getting the Latest OLE DB Information
. Summary
. Q&A
. Workshop
0 Quiz

o EXxercises

Today's material introduces OLE DB and explains the OLE DB object hierarchy. Today's material also

relates the basic concepts of ODBC to concepts of OLE DB, enabling you to build on your knowledge
of database APIs and expand it to include OLE DB.

Today you will
. Look at the architecture of OLE DB.
. Explore the ODBC concepts found in OLE DB.

. Learnthe OLE DB object hierarchy.
. Find sources for the latest information on OLE DB.

An API for All Data Sour ces

OLE DB isdesigned to provide a means for accessing data regardless of the data source. As shown in
Figure 16.1, OLE DB becomes the data access bridge for documents, email systems, file systems,
spreadsheets, COM components, and relational databases.

Figure 16.1 : The topoloqgy of OLE DB applications.

Asyou can seein Figure 16.1, an application that uses OLE DB can communicate with any data
source for which thereis an OLE DB data provider. Because of the object-oriented (and COM) nature
of OLE DB, OLE DB data providers can be written to accommodate relational as well as nonrelational
data sources.

The Componentsof an OLE DB Application

Two basic components of an OLE DB implementation are the data provider and the data consumer.
An OLE DB data provider is an application that responds to queries and returns data in a usable form.
An OLE DB data provider responds to various OLE DB callsto provide the information from the data
source in ausable tabular form.

An OLE DB consumer is an application, or other COM component, that uses the OLE DB API to
access a data source. OLE DB enables an application to access the entire range of enterprise data,
regardless of whereit is stored.

Making Data Sour ces Available

The key feature of OLE DB isthat it simplifies the requirements for implementing a data provider.
With OLE DB, the only requirement for a data provider is to return datain atabular form; the data
provider is not required to support a SQL language interface.

NOTE

To create an ODBC driver for adata source, it's necessary to build an SQL
processing engine that can interpret and execute SQL queries. However, to
create an OLE DB data provider, it's not necessary to build an SQL
processing engine.

An important component of OLE DB isthe service provider. As shown in Figure 16.1, a service
provider isamiddleman in the OLE DB architecture. Acting as a consumer of raw OLE DB data
sources and as a provider to other OLE DB consumers, a service provider can provide functionality
that OLE DB data providers don't implement themsel ves.

For instance, OLE DB service providers alleviate the need for OLE DB data providers to implement
their own SQL database engine. OLE DB offers a query-processing component as a service provider.
Developers of OLE DB data providers can use the query-processing service provider if they don't want
to implement a query-processing engine themsel ves.

Because OLE DB components provide a consistent interface, OLE DB data providers can use OLE
DB service providersif they need to, in order to offer complete OLE DB functionality to applications.

Also, some OLE DB service providers provide cursor engines, besides query-processing engines.
Other service providers built to provide additional functionality will be available in the future.

OLE DB extends the capabilities of ODBC by enabling less sophisticated data sources to have data

providers written for them. OLE DB extends ODBC, but many concepts of ODBC programming have
their counterpartsin OLE DB.

Comparing OLE DB to ODBC

Open your ADOMFC1 project. Add a menu titled ODBC and add a drop-down menu item called
Si npl e. Use ClassWizard to implement a command handler in the Vi ew class for that menu choice.

Y ou need to include the files SQL.H and SQLEXT.H in ADOMFC1View.cpp, as shown here:.

#i ncl ude <SQ.. H>
#i ncl ude <SQLEXT. H>

Y ou also need to use the ODBC import library, called Odbc32.1ib, in your linker input (found under
the Project Settings menu), shown in Figure 16.2.

Figure 16.2 : ODBC import library.

Inside your command handler, add the code in Listing 16.1.

INPUT

Listing 16.1 ODBC API Programming

voi d CADOVFC1Vi ew. : OnCdbcSi npl e()
{

RETCODE r et code;

HENV henvi ron;

HDBC hdbconn;

HSTMTI hstnt ;

char szCust First Nanme[50] ;

SDWORD sdQut put Dat aLen;

unsi gned char connStrQut[256];

retcode = ::SQ.Al | ocEnv(&henviron);

if (retcode == SQ._SUCCESS)

{
retcode = ::SQ.Al | ocConnect (henviron,
if (retcode == SQ._SUCCESS)
{

&hdbconn);

retcode = ::SQ.DriverConnect (hdbconn, O,

(unsi gned char *)"DSN=Or der sDb",
SQL_NTS, connStrQut, 256, NULL,
SQ._DRI VER_NOPROWPT) ;

if (retcode == SQ._SUCCESS)

{
retcode = ::SQ.Al | ocSt nt (hdbconn,
if (retcode == SQ._SUCCESS)
{

retcode = ::SQ.ExecDirect (hstnt,

(unsi gned char *)

&hstnt);

"SELECT Cust Fi rst Nane FROM Cust oners",

SQL_NTS) ;

for (retcode = ::SQFetch(hstnt);

retcode == SQL_SUCCESS;
retcode = SQ.Fetch(hstnt))

c:SQLGetData(hstm, 1, SQ. _C CHAR,

szCust Fi rst Nane, 50,
&sdQut put Dat aLen) ;

:: MessageBox(NULL, szCustFir st Nane,

"Sinmple ODBC', MB_(XK);
}
. SQLFreeStnt (hstnt, SQ._ DROP);
}
:: SQLDI sconnect (hdbconn) ;

}
. : SQLFr eeConnect (hdbconn);

46: }

47: :: SQLFr eeEnv(henviron);
48: }

49: }

Asyou know, the code in Listing 16.1 isunredlistically simple. Listing 16.1 isintended merely to
provide asimple ODBC program for comparison with the simple OLE DB program that you will see
later in Listing 16.2.

Line11in Listing 16.1 calls SQLAI | ocEnv to instruct the ODBC driver manager to allocate
variables for this application and return an environment handle. Line 14 calls SQLAI | ocConnect to
instruct the ODBC driver manager to allocate variables to manage a connection and to obtain a
connection handle. Line 17 calls SQLDr i ver Connect to make a connection, using the Or der sDb
data source name. (SQLAI | ocEnv, SQLAI | ocConnect ,and SQLDri ver Connect are ODBC
2.0 functions that have been replaced in ODBC 3.0 with the SQLAI | ocHandl e function.)

Line 23 alocates a statement handle. Line 26 calls SQLExecDi r ect , using that statement handle, to
execute a query against the database. Lines 31-40 use SQLFet ch and SQLGet Dat a to retrieve the
results of the query and display thefirst field in a series of message boxes. Lines 41-47 release all the
resources allocated earlier in the routine.

Compile the application and run it. Y es, the message boxes do make alovely interface.

OLE DB programming is quite different from ODBC programming. OLE DB uses COM and COM
interfaces extensively.

To writearoutine similar to Listing 16.1 for OLE DB is quite a bit more involved, so much more
involved that all |1 can show you today isthe OLE DB code to load the OLE DB provider and initialize
it.

Add to your ADOMFCL1 project amenu titled OLE DB and add a drop-down menu item called
Si npl e. Use ClassWizard to implement a command handler in the Vi ew class for that menu choice.

Y ou need to include the files oledb.h, oledberr.h, msdaguid.h, and msdasgl.h in ADOMFC1View.cpp,
as shown here:

#i ncl ude <ol edb. h>

#i ncl ude <ol edberr. h>
#i ncl ude <nsdagui d. h>
#i ncl ude <nsdasgl . h>

Y ou also need to use the OLE DB import library, called oledb.lib, in your linker input (found under
the Project Settings menu), as shown in Figure 16.3.

Figure 16.3 : OLE DB import library.

Y ou also need to add a preprocessor definition of DBI NI TCONSTANTS under the C/C++ tab of the
Project Settings menu, as shown in Figure 16.4.

Figure 16.4: The DBI NI TCONSTANTS preprocessor definition.

Inside your OLE DB Si npl e command handler, add the codein Listing 16.2.

INPUT

Listing 16.2 OLE DB API programming

1: void CADOVFCL1Vi ew. : OnA edbSi mpl e()

2. A

3 IDBInitialize* plDBInitialize = NULL;

4

5 /1 Initialize The Conponent Object Mdule Library
6 /1 Colnitialize(NULL);

7

8 /1 Obtain Access To The OLE DB - ODBC Provi der

9 CoCr eat el nst ance(CLSI D_MSDASQL, NULL, CLSCTX | NPROC SERVER,
10 1D IDBInitialize, (void **) &l DBlnitialize);
11 plDBInitialize->Initialize();

12:

13: /1l This Is Where You Wwuld Uilize OLE DB .

14:

15: /'l Free Up Allocated Menory

16: plDBInitialize->Uninitialize();

17: pl DBl nitialize->Rel ease();

18:

19: /'l Rel ease The Conponent Cbject Mdul e Library
20: /1 CoUninitialize();

21:

22: }

Asyou can see, the code in Listing 16.2 isunredlistically simple. Listing 16.2 isintended merely to
get you started with OLE DB programming. For the sake of code brevity, error checking is not
performed.

Line3inListing 16.2 declaresan| DBl ni ti al i ze pointer. | DBl ni ti al i ze isan interface used
to initialize and uninitialize data source objects and enumerators.

Lines 6 and 20 show thecallstoCol niti al i zeandCoUni niti al i ze. Thesecallsare
commented out because the COM libraries are already being initialized elsewhere in the code in
ADOMFCL1. They are shown in Listing 16.2 to illustrate the fact that the COM libraries must be
initialized when you are doing OLE DB programming, but not when doing ODBC programming.

Lines9 and 10 call CoCr eat el nst ance to load the OLE DB provider for ODBC data sources; the
provider residesin MSDASQL.DLL. The CoCr eat el nst ance call requests a pointer to the

| DBI ni tialize interface for the MSDASQL object and storesitinpl DBl niti al i ze. Asyou
know, the CoCr eat el nst ance call will load MSDASQL.DLL into memory. Line 11 callsthe
IDBInitialize::Initialize functiontoinitializethe provider.

From here you could make calls directly into the OLE DB provider. Y ou would use
Quer yl nt er f ace to obtain pointers to the OLE DB interfaces exposed by the provider and would
call its member functions to perform operations on the database.

ODBC programming and OLE programming are similar in that the application, in both environments,
does the following:

. CadlsAPI functionsto load the appropriate DLL(S)

« Usesfunctionsin the DLL(s) to connect to a data source
. Creates and executes queries

. Processes results

« Cleansup

For ODBC, to load the appropriate DLL(S), the application links with Odbc32.lib, which is the import
library for the ODBC Driver Manager. The Driver Manager DLL, Odbc32.dll, loads when the
application loads. The application calls ODBC API functionsin the Driver Manager DLL, and the
Driver Manager in turn calls functions in the appropriate ODBC driver.

For OLE DB, the application initializes the COM libraries. The application loads the proper data
provider according to the CLSI D parameter that it passes to the CoCr eat el nst ance function.
After that, the application can obtain pointers to the interfaces that the provider exposes and can call
functions directly in the provider.

For ODBC, the application connects to the data source by calling SQLAI | ocEnv,

SQLAI | ocConnect ,and SQLDr i ver Connect (or by calling SQLAI | ocHandl e) to alocate a
connection handle. The application then builds a connection string containing the user ID, password,
and the name of the data source.

For OLE DB, the application connects to the data source by building an array of property structures
that contain the user 1D, password, and the name of the data source. The application then calls

| DBProperties:: Set Properti es tosetinitialization properties. (Listing 16.2 doesn't show
this step, but tomorrow you will see the code for this.) Then the application calls
IDBInitialize::Initializetoinitiaizethe data source object.

The fundamental differences between the model for OLE DB and the model for ODBC are

. OLE DB uses COM interfaces, whereas ODBC uses traditional DLLs and static linking with an
import library.

. OLE DB uses structures that contain the user ID, password, and DSN, whereas ODBC uses
keywordsin astring variable.

. In OLE DB, setting the user 1D, password, and DSN is separate from actually connecting to the
data source, which enables the connection properties to be persisted by the application more
easily than in ODBC.

. In OLE DB, the application uses COM interfaces to set properties in a query object and then
calls amember function to execute the query (you will see code for this later this week),
whereas ODBC usesthe SQLAI | ocSt mt and SQLExecDi r ect functionsto send SQL
strings to the database.

. In OLE DB, the application receives results from queriesin Rowset objects, whereas ODBC
uses the SQLGet Dat a and SQLGet Dat a functions to retrieve the data from queries.

Asyou can see, OLE DB takes an object-oriented, or COM, approach, whereas ODBC takes a
traditional API-based approach to database client programming.

The OLE DB Object Hierarchy

The OLE DB interface is composed of several magjor objects. Enuner at or , Dat aSour ce,
Sessi on, Conmand, Rowset , | ndex, Error,and Transact i on. In Figure 16.5, you can see
the hierarchy of the OLE DB objects. During this week you will have a chance to ook at each object
in detail. A brief survey of the mgor OLE DB objects follows.

Figure 16.5: The OLE DB object hierarchy.

Enumerator

The Enuner at or object retrieves information regarding the OLE DB providers and enumerators
available on this system. Much of the information about OLE DB providersis stored in the registry.
An Enuner at or exposesthel Sour cesRowset interface and returns a Rowset describing all
data sources and enumerators visible to the Enuner at or .

Using the Enurrer at or object is better than directly accessing the registry, because in the future this
information might be stored somewhere else. The Enuner at or object abstracts the source of the
data provider information from an application, enabling it to work even if a new enumeration method
IS created.

DataSour ce

A data consumer uses a Dat aSour ce object to connect to adata provider. A data provider can be an

OLE DB application, a database, or an ODBC data source using the OLE DB ODBC data source
provider. When connecting to a database, a Dat aSour ce object encapsul ates the environment and
connection information, including a username and password. A Dat aSour ce object can be made
persistent by saving its state to afile.

Session

A Sessi on object provides a context for transactions. Sessi ons create an environment to
encapsul ate transactions, generate rows of data from a data source, and generate commands that can
query and manipulate the data source. A Dat aSour ce object createsa Sessi on object; a

Dat aSour ce object can create multiple Sessi on objects.

Command

A Command object processes commands. An OLE DB data provider isn't required to process
commands. A Conmand object can create commands that can query or manipulate a data source. The
result of aquery createsaRowset object. A Command object can also create multiple row sets.
When accessing a data source, Conmand objects can create prepared statements and queries that
return multiple row sets.

Rowset

A Rowset object accesses information from a data source in atabular form. A Rowset object can be
created as the result of executing acommand. If the data provider doesn't support commands (which it
IS not required to provide), arow set can be generated directly from the data provider. The capability
to create row sets directly is arequirement of al data providers. A Rowset object also is used when
accessing data source schema information. Depending on the functionality of the data provider, a
Rowset object can aso update, insert, and delete rows.

| ndex

Anl ndex object isaspecia case of aRowset object. An| ndex object creates arow set that uses
an associated index, which allows ordered access to a data source row set.

Error

An Err or object encapsulates errors that occur when accessing a data provider. An Er r or object
can be used to obtain extended return codes and status information. OLE DB Er r or objects use the
standard OLE Automation methodology of error handling. Although all OLE DB methods return error
codes indicating the success or failure of the method call, they are not required to support the extended
information provided by the Er r or object.

Transaction

A Transact i on object encapsulates transactions with a data source. A transaction buffers changes
to the data source, giving the application the opportunity to commit or abort these changes.
Transactions can improve application performance when accessing a data source. If the OLE DB
provider supports them, distributed transactions, which enable multiple OLE DB data consumers to
participate in shared transactions, are possible. An OLE DB provider is not required to support the
transaction interface.

Getting the Latest OLE DB Information

The following Microsoft Web sites can help you keep up with the latest developments of OLE DB:

. http://ww. m crosoft.coni dat a/ -Thelatest information on Microsoft's Universal

Data Access (MDAC) strategy
« http://ww. m crosoft.coni dat a/ ol edb/ -Thelatest OLE DB information

. http://ww. m crosoft.com data/ ado/ -The ADO Web site

The following Internet newsgroups might also be helpful:

. mcrosoft. public. ol edb-General OLE DB information
. mcrosoft. public. ol edb. sdk-Specific OLE DB SDK-related information
. mcrosoft. public.ado-ADO information

Summary

OLE DB builds on and expands the capabilities of ODBC.

Because of the need to implement a SQL processor in an ODBC driver, writing an OLE DB provider
for adata source is generally easier than writing an ODBC driver. Because OLE DB providers can be
written for nonrelational data sources, OLE DB provides an interface to relational aswell as
nonrelational data sources.

OLE DB takes an object-oriented approach to database client development, whereas ODBC takes a
function-based APl approach. The OLE DB object hierarchy consists of just afew objects, which
expose COM interfaces to perform well-defined sets of functions.

Q& A

Q I can seehow OLE DB technology can help alarge enterprise access all the
information it storesin disparate locations, but what about a small organization?
Small organizationsdon't have data stored all over the place, so what can OLE DB
doin that environment?

http://www.microsoft.com/data/
http://www.microsoft.com/data/oledb/
http://www.microsoft.com/data/ado/

A The datain asmall organization might not be stored in many different locations, but
OLE DB technology can certainly be of help to everyone. First, OLE DB provides a
consistent and scal able interface to access data providers, no matter what the source.
Second, OLE DB enables you to use this consistent interface to retrieve information
previously inaccessible in a programmatically consistent manner. OLE DB potentially
opens al information in an organization to any application.

Q Does OLE DB support security?

A The security mechanismsin OLE DB are currently incomplete. OLE DB will permit
authentication, authorization, and the management of security options. Authentication
makes sure users are who they say they are and is generally implemented by a username
and password mechanism. When it's complete, OLE DB will support domain-based and
distributed authentication methodologies. Authorization methods make sure users access
only what they have privileges to access. The current version of OLE DB supports |local
authorization methods by returning aflag if security restrictions cause a call to fail.
When it's complete, OLE DB will support Distributed Component Object M odel
(DCOM) authorization methods. Finaly, the complete OLE DB will support
mechanisms to manage permissions for users and groups.

Q Many complaints about using ODBC to access a database concern perfor mance
issues. How will the additional layer of an OLE DB ODBC provider affect
per formance? Are my applications going to run even mor e slowly?

A You should not notice much of a performance difference between the OLE DB ODBC
provider and using the ODBC API directly. Remember that OLE DB is based on COM
technology. COM is away to provide a consistent interface so that two applications can
share functionality. The OLE DB ODBC provider is ssmply a mechanism that remaps
ODBC-gspecific callsinto the OLE DB model; it doesn't add any overhead to this
process. As the OLE DB technology matures, you are sure to see more pure OLE DB
providers for data sources. Because the goal of COM and OLE DB isto create a plug-
and-play architecture for application components, applications designed today using the
OLE DB ODBC provider should be capable of using a pure OLE DB data provider with
very few modifications.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the two basic OLE DB components?

2. How does OLE DB currently enable access to ODBC data sources for which no OLE DB
provider isyet available?

3. What are the major OLE DB objects?

4. Which header files must be included to access OLE DB objects?
5. What isthe URL for the OLE DB home page?

Exercises

1. Browsethe OLE DB documentation and become familiar with it.
2. Visitthe OLE DB Web siteathtt p: / / www. m crosoft. com ol edb.

| = Previous Chapter (& NextChapter

© Copyright, Sams Publishing. All rights reserved.

http://www.microsoft.com/oledb

SAMS

Teach Yourself Database Programming
with Visual C++ 6in 21 days

| ¢ Previous Chapter (< MextChapter

Day 17/
Accessing a Data Source with OLE DB

. Data Consumers and Providers
. Interfaces
o Interface Factoring
o Interface Negotiations
. OLE DB Application Flow
. Enumerators
o ThelParseDisplayName Interface
o ThelSourcesRowset Interface
o ThelDBInitialize Interface
o ThelDBProperties Interface
o ThelSupportErrorinfo Interface
o Using an Enumerator: A Simple Example
. The DataSource Object
o ThelDBCreateSession Interface
o ThelDBDataSourceAdmin Interface
o ThelDBInfo Interface
o ThelPersist Interface
o ThelPersistFile Interface
. Connecting to a DataSource Object
o The OLE DB ODBC Provider
o Initialization Properties Used
o Example: Connecting to an OLE DB ODBC Data Source

. Summary

[] Q&A
. Workshop
o Quiz

o Exercises

Asyou learned yesterday, OLE DB is based on the Component Object Model (COM) architecture.
Today begins the process of integrating OLE DB into applications. Y ou will explore the relationship
between COM and OLE DB and learn how COM technology influences the OLE DB programming
model.

NOTE

Much of today's material deals with COM and will help you understand and
integrate COM components, including OLE DB, into your applications.

Today you will

. Explore what OLE DB data consumers and providers are.

. Learn how to obtain an OLE DB interface.

« Understand the structure of an OLE DB application.

. Observe the flow of information from object to object.

. Work with enumerators.

. UseDat aSour ce objects.

« Use properties to change the state of COM and OLE DB ODBC provider objectsin a particular
object.

. Integrate the OLE DB objects discussed today.

Data Consumersand Providers

Asyou learned yesterday, OLE DB applications in their ssimplest form are composed of a data
provider and a data consumer. A data pro