
Sams Teach Yourself Database Programming
with Visual C++ 6 in 21 Days

Introduction
Week 1 at a Glance

Chapter 1 Choosing the Right Database Technology
Chapter 2 Tools for Database Development in Visual C++ Developer Studio
Chapter 3 Retrieving Data Through Structured Query Language (SQL)
Chapter 4 Retrieving SQL Data Through a C++ API
Chapter 5 Adding, Modifying, and Deleting Data
Chapter 6 Harnessing the Power of Relational Database Servers
Chapter 7 Database Design

Week 1 in Review
Week 2 at a Glance

Chapter 8 Utilizing the Capabilities of Database Servers
Chapter 9 Understanding COM
Chapter 10 Database Client Technologies and the Secrets of ADO
Chapter 11 Multitier Architectures
Chapter 12 Using Microsoft Transaction Server to Build Scalable Applications
Chapter 13 Melding Object-Oriented Programming with Relational Databases
Chapter 14 Legacy Database APIs

Week 2 in Review
Week 3 at a Glance

Chapter 15 The ODBC API and the MFC ODBC Classes

Chapter 16 The Ultimate Database API: OLE DB
Chapter 17 Accessing a Data Source with OLE DB
Chapter 18 Querying a Data Source
Chapter 19 Navigating the Result of a Query
Chapter 20 Properties, Transactions, and Indexes
Chapter 21 OLE DB Error Handling

Week 3 in Review

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

© Copyright, Sams Publishing. All rights reserved.

Sams Teach Yourself Database Programming
with Visual C++6 in 21 Days

● Introduction
● Who Should Read This Book

❍ What You Will Need to Use This Book
● Acknowledgments
● About the Authors
● Tell Us What You Think!

Introduction
Welcome to Sams Teach Yourself Database Programming with Visual C++ in 21 Days. The 21
lessons presented in this book provide C++ developers with a much needed treatise on databases from
a C++ programmerís perspective.

C++ Windows developers already possess valuable knowledge of object-oriented programming in the
Windows environment. However, many C++ programmers lack knowledge of database technology.
Knowledge of database technologies is crucial for building software for business applications, as well
as for many scientific applications.

A Windows application that is written in C++ and has a powerful database as its foundation can
perform amazing feats. With the advent of multitier architectures, C++ takes on a major role as an
excellent language for building server and middle-tier software components. Writing multitier
software components frequently involves using C++ with database technology. Having knowledge of
C++ alone is often not enough for these modern applications. You need knowledge of C++ database
programming if your skills are to be at the forefront of Windows software development.

This book builds on your knowledge of C++ Windows programming by teaching database expertise in
a way that you, as a C++ developer, can really take advantage of it.

Here is a brief rundown of what you will learn:

● How to choose the most appropriate database technology for each of your applications
● Evaluations of direct file access, simple record managers, ISAM databases, relational database

servers, and object databases
● Database APIs, including ADO, OLEDB, ODBC, and DAO, and how to use them in C++

applications
● Relational database design principles and techniques
● Relational database programming and SQL
● COM programming for building and using software components
● Multitier application development, including Web-based development, and how to build and

use Microsoft Transaction Server (MTS) software components in C++
● How to take full advantage of relational database servers, such as SQL Server and Oracle
● How to meld relational databases with object-oriented programming

Who Should Read This Book
This book is designed to teach database programming to intermediate-level C++ Windows developers.
If you already know something about C++ Windows programming and want to expand your skills to
include database programming, this is your book.

What You Will Need to Use This Book

Most of the programming examples in this book use Visual Studio 6 Enterprise Edition. The
Enterprise Edition has built-in tools for relational databases; these tools are very helpful for database
programming. You can get by with the Professional Edition of Visual Studio if the Enterprise Edition
is not available to you. This book also teaches programming for Microsoft Transaction Server (MTS),
Internet Information Server (IIS), and Internet Explorer version 4 (IE4), so you will need these
software packages as well. You can use Microsoftís Personal Web Server (PWS) in place of IIS if you
like. In terms of operating systems, Windows NT 4.0 makes an excellent platform running MTS and
IIS. You probably could make do with Windows 98 instead of Windows NT as long as your machine
has sufficient memory to run Visual Studio, MTS, IIS (or PWS), and IE4 simultaneously.

Acknowledgments
Writing a book is something that I've always wanted to do. I am very pleased that I have had the
opportunity to do so. There are many people who made it possible for me to complete this work and
who deserve my thanks.

Many friends and colleagues gave me much needed encouragement. I appreciate their helpful
feedback, which kept my motivation from sinking at critical times.

My wife and my three young sons made many sacrifices to give me the time I needed to write. My
sons endured the long hours of my absence from them with selflessness and maturity. My wife, Capri,
carried the burden of being virtually a single parent while I was holed up in the office, pouring my
best efforts into these pages. In addition, Capri produced the line drawings for this book and did some
initial editing as well. Without a doubt, her help was instrumental in my completing it.

About the Authors
Lyn Robison is a career software developer who specializes in database, COM, C++, and Java
development on the Windows platform. In addition to software development, Lyn enjoys writing,
speaking, and teaching new technologies to technical and non-technical audiences.

Lyn works as a developer at Webridge Inc., in Portland, Oregon. Webridge is a small software
company poised on the edge of greatness.

When he is not working, Lyn enjoys watching college football and playing basketball. He lacks just 12
inches in his vertical leap from being able to slam-dunk the basketball.

You can reach Lyn via email at LynRobison@aol.com.

K. David White is a software developer with over 10 years' experience developing control, database,
and user interface applications. He has been developing Windows NT applications for the last five
years. Dave can be reached at kdwhite@donet.com.

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As the Executive Editor for the Advanced Programming team at Macmillan Computer Publishing, I
welcome your comments. You can fax, email, or write me directly to let me know what you did or
didn't like about this book-as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book's title and author as well as your name and phone
or fax number. I will carefully review your comments and share them with the author and editors who
worked on the book.

mailto:LynRobison@aol.com"
mailto:kdwhite@donet.com

Fax: 317-817-7070
Email: adv_prog@mcp.com

Mail:
Bradley L. Jones, Executive Editor, Advanced Programming,
Macmillan Computer Publishing, 201 West 103rd Street, Indianapolis,
IN 46290 USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

mailto:adv_prog@mcp.com

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 1...
 At a Glance

This week, you learn essential database application programming in Visual C++. You
learn the database tools that are included in Visual Studio 6. You write database
applications and do some relational database programming. You wrap up the week by
learning how to design a good relation database.

● Day 1 You examine the various database technologies at your disposal.
● Day 2 You learn about the relational database tools built into Visual Studio.
● Day 3 You learn about SQL and write some SQL queries to retrieve data from a

database.
● Day 4 You write your first database application, using ADOóa C++ database

programming API.
● Day 5 You write SQL and C++ code to add, modify, and delete data in relational

databases.
● Day 6 You learn client/server programming techniques and the power of

relational database servers.
● Day 7 You learn to design your own relational databases.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 1
 Choosing the Right Database Technology

● Deciding the Appropriate Database Technology for Your Visual C++ Applications
● Building Your Own Database in C++

❍ Defining Metadata
❍ A C++ Base Class to Handle the Database Work
❍ Problems with Building Your Own Database

● OLE Structured Storage
● Record Managers (Btrieve)

❍ Listing 1.3. Btrieve Example
● Desktop Databases (FoxPro and Access)

❍ Accessing ISAM Data over a LAN
● Object Databases
● Relational Database Servers (Oracle and SQL Server)
● How Do the Database Technologies Compare?
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

The storing of data is an essential part of most software applications. Virtually all C++ applications
have the need to persist, or store, data of some kind.

Many applications also need to retrieve data efficiently. These applications typically need to search
through data that has been stored in order to retrieve specific information. This need to search for and
retrieve data means that an application must use a database.

A variety of database technologies are available to C++ programmers. Today you will explore these
database technologies and gain the knowledge you need to choose the appropriate technologies for
your applications.

Today you will learn

● How to choose the appropriate database technology for your Visual C++ applications
● The difficulties of trying to invent your own database system
● The different database technologies, including OLE structured storage, record managers (such

as Btrieve), desktop databases (such as FoxPro and Access), object databases, and relational
database servers (such as Oracle and SQL Server)

● How to take advantage of existing database technology to make your development efforts more
productive and successful

In addition to covering these topics, you will see how to write the code for implementing each of the
various database technologies available to C++ programmers.

Deciding the Appropriate Database Technology for
Your Visual C++ Applications
Choosing the right database technology means finding a technology that fills the requirements of your
application.

Without knowing the capabilities of the various database technologies, you can easily choose the
wrong one for your particular application. In the following sections, you will learn the capabilities of
each database technology.

When choosing a database technology, you need to carefully consider the importance of your
application's data. It would be easy to think that the data needs to be used only by your application.
However, if you write your application with that thought in mind, you will end up creating an
application that has a closed, proprietary database that no one else can use or make sense of.

You might think a closed, proprietary database is okay for your application because your application is
the only one that needs access to the data. Don't underestimate the value of the data and the need to
access the data through more than just your application.

NOTE

If your data is important to you, it's probably important to someone else,
who will want access to the data through more than just your application.

Even if you are certain that others will never want to access your data except through your application,
what about future implementations of your application? What if your application is Windows
executable, and you need to produce a new version of it that runs behind a Web server and provides
information to users with Web browsers? Because of the nature of Web development tools, an open,
nonproprietary database can enable you to perform this conversion in much less time than a closed,
proprietary database.

In the end, if you do decide to write an application that has a closed database, you will ultimately
shorten the life expectancy of your own application. An application that has an open, accessible
database and can interoperate with other databases and applications will sooner or later replace yours.

Now you will go through the process of choosing a database technology for an imaginary application.
You will examine each database technology and see what each one has to offer. Through this process,
you will learn the capabilities (and limitations) of each database technology and how to choose the
most appropriate technology for your applications.

The best way to learn to choose a database is by using an example and applying it to each technology.
Let's say that your job is to write an application for a company that sells products through television
advertising. The company advertises products such as a vegetable slicing machine, a bamboo steamer,
8-track love songs of the 70s, and so on, and offers them for the low, low price of $19.95. Each time
the TV commercial airs, the company's 800 line is flooded with calls from buyers.

The salespeople who take these calls have your application running on their computers. They use your
application to enter each order so that the product can be shipped and the buyer's money can be
collected.

This sounds easy enough. Your application needs to present a window into which the salesperson can
enter the order, and then your application must write the information for the order to a data file. This
being said, you might decide it would be easier to create your own database.

Building Your Own Database in C++
A C++ programmer is usually confident of his ability to write software. After all, if you can master a
language as complex and powerful as C++, you can no doubt write any software tool you need,
including your own database system.

However, because of the maturity of existing database technology, writing your own database is rarely
a productive effort. Although an electrical engineer can perhaps build her own cell phone, doing so
makes little practical sense. Existing cell phones are plentiful and inexpensive and adhere to standards
that enable them to interoperate with cellular networks and other cell phones.

Likewise, a C++ programmer can build his own database system, but doing so makes little practical
sense. Existing databases are plentiful and inexpensive and adhere to standards that enable them to
interoperate with computer networks and other applications. You should concentrate on building your
application, not on building its database.

Listing 1.1 shows what is required to store structured data in a file on disk to create a rudimentary
database. To create this application, run Visual C++ and create a new project as a Win32 console
application. You can call the new project anything you want. Calling it something like CPPDb would
be appropriate. Create a source file in the project, perhaps called main.cpp, and enter the following
code into it.

Listing 1.1. C++ Code to Write Data to a File

 1: #include <fstream.h>
 2:
 3: struct Date
 4: {
 5: int iMonth, iDay, iYear;
 6: };
 7:
 8: struct Product
 9: {
10: int iPartNumber;
11: char szName[80];
12: double dPrice;
13: };
14:
15: struct Customer
16: {
17: int iID;
18: char szName[50];
19: char szAddress[50];
20: char szCity[20];
21: char szState[20];
22: char szZip[9];
23: };
24:
25: void main()
26: {
27: Date dt = { 6, 10, 92 };
28: Product prod = {122, "Vegamatic", 19.95};
29: Customer cust = {15, "Seymore Hoskins", "300 Oak St",
 "Boring", "Oregon", "97203"};
30: ofstream datafile("data.dat" , ios::binary);
31: datafile.write((char *) &dt, sizeof dt);
32: datafile.write((char *) &prod, sizeof prod);
33: datafile.write((char *) &cust, sizeof cust);

34: }

Notice a couple of things about this code. First, you can see that data structures are defined in lines 3-
23. The structures are used to write data to the file in a predictable way (lines 31-33), in a pattern.
Other routines in the application can also use these structures to read the data from the file and make
sense of it.

Build the application. You should receive no errors or warnings. When you run the application, it
creates a file called data.dat in your application's directory and writes the data to the file. If you open
data.dat with a hex file viewer, or even with Notepad.exe, you will see the data in the file.

Defining Metadata

The structures used in Listing 1.1 are a kind of metadata, or data about data. This metadata must be
defined somewhere, or the data in the file will be unorganized and totally inaccessible.

When building your own C++ database, you define the metadata within your source code.
Unfortunately, your C++ source code isn't the best place for the metadata to reside. Anyone who wants
to use this data must have access to your source code. This is one of the many limitations to building
your own database in C++.

This metadata should, ideally, reside with the data. That way, the data file can be self-describing, and
other routines can have easier access to it.

NOTE
Metadata is what makes a database a database. A true database contains a
description of its own structure. A database contains both data and
metadata.

A C++ Base Class to Handle the Database Work

The other thing to note is that the source code in Listing 1.1 is not very object-oriented.

Using C++, you can write a base class that handles the reading and writing of object data to files on
disk. You can call this base class the Persistent class. In the sample application, you can derive
an Orders class from the Persistent class, thereby making instances of the Orders class

automatically capable of persisting (or saving) themselves to disk.

Sounds great, doesn't it? Unfortunately, C++ has a few limitations that make this Persistent base
class approach unworkable. The Persistent base class can't know at runtime how big an object of
a derived class is, so it can't persist an object of a derived class to disk. There also can be data
members in an object of a derived class that deal with runtime context or contain pointers. It would be
very difficult for a Persistent base class to have the intelligence to handle these data members
properly.

These problems ultimately mean that you can't write a C++ base class to handle all database work.
Some code for persisting data from a class must be contained in the class itself.

Problems with Building Your Own Database

When building your own database in C++, you typically embed the metadata in your source code and
must build some code to store and retrieve objects into each and every class that needs persistence.

I haven't talked about how to handle multiple threads and multiple applications accessing the same
data file simultaneously. One application can be reading while another is writing, or two can write at
the same time and produce garbage in the file. Certainly this would be a common occurrence in our
sample application, with multiple salespeople receiving a flood of calls each time a TV commercial
airs. Believe me, the source code you need to write to handle the file locking and retrying is not trivial.

For our sample application, building your own database by using C++ and data files on disk forces
you to write a lot of code, and no one could make sense of the data.

OLE Structured Storage
Within Microsoft's OLE technology is a technology called OLE structured storage (the newer
documentation from Microsoft refers to it simply as structured storage). OLE structured storage
promises to give other applications the potential of exploring the internal structure of your files. OLE
structured storage is a storage architecture that enables a file on disk (as well as other storage
mediums) to be divided into a hierarchy of storages and streams. Storages are analogous to operating-
system directories or subdirectories. Streams are analogous to files in the operating system. These
storages and streams can all exist within a single disk file.

Listing 1.2 shows how to create an OLE structured storage file, create a stream within it at the root
storage, and write your order information into the stream. The code in Listing 1.2 doesn't check return
values for errors to ensure code clarity and brevity.

To create this sample, run Visual C++ and create a new project as a Win32 console application. You
can call the new project anything you want. Calling it OLESS might be appropriate. Create a source
file in the project, perhaps called main.cpp, and enter the following code into it.

Listing 1.2. OLE Structured Storage

 1: #include <windows.h>
 2: #include <ole2.h>
 3: struct Date
 4: {
 5: int iMonth, iDay, iYear;
 6: };
 7:
 8: struct Product
 9: {
10: int iPartNumber;
11: char szName[80];
12: double dPrice;
13: };
14:
15: struct Customer
16: {
17: int iID;
18: char szName[50];
19: char szAddress[50];
20: char szCity[20];
21: char szState[20];
22: char szZip[9];
23: };
24:
25: void main()
26: {
27: Date dt = { 6, 10, 92 };
28: Product prod = {122, "Vegamatic", 19.95};
29: Customer cust = {15, "Seymore Hoskins", "300 Oak St",
 "Boring", "Oregon", "97203"};
30:
31: IStorage * pRootStorage;
32: IStream * pOrderInfo;
33:
34: CoInitialize(NULL);
35:
36: StgCreateDocfile(L"data.dat",
 STGM_CREATE | STGM_READWRITE | STGM_SHARE_EXCLUSIVE,
 0, &pRootStorage);
37:
38: pRootStorage->CreateStream(L"Order Information",
 STGM_CREATE | STGM_WRITE | STGM_SHARE_EXCLUSIVE,
 0, 0, &pOrderInfo);
39:
40: pOrderInfo->Write(&dt, sizeof(dt), NULL);
41: pOrderInfo->Write(&prod, sizeof(prod), NULL);
42: pOrderInfo->Write(&cust, sizeof(cust), NULL);
43:
44: pOrderInfo->Release();

45: pRootStorage->Release();
46:
47: CoUninitialize();
48: }

Within a single data file, you create a hierarchy of streams and storages (or files and directories). Lines
31 and 32 define pointers to two OLE interfaces (IStorage and IStream). Line 34 calls
CoInitialize to initialize the COM libraries. Line 36 calls an API function,
StgCreateDocFile, to create the OLE structured storage file. This call creates an instance of
IStorage and returns a pointer to it in the last parameter, pRootStorage. Line 38 calls the
CreateStream function of the IStorage class through the pRootStorage pointer to create a
stream in the root storage. The CreateStream function returns an IStream class and returns a
pointer to it in the last parameter, pOrderInfo. Lines 40-42 call the Istream's Write function to
write our order data into the stream. Lines 44 and 45 call Release to delete the pOrderInfo and
pRootStorage instances. Line 47 uninitializes the COM libraries.

Build the application. You should receive no errors or warnings. When you run the application, it
creates an OLE structured storage file called data.dat in your application's directory and writes the data
to the file.

You still had to define the metadata for your order information. The metadata for the sample
application is too complex for OLE structured storage to represent. You need to be able to specify that
an order includes an order date (with month, day, and year), a product (with product number, name,
and price), and a customer (with name, address, and so on). Also, you need to be able to specify the
data types and lengths. That level of detail cannot be represented using only a hierarchy of streams and
storages.

If you use OLE structured storage, another routine or application that wants to open your data file and
see the structure of the data won't be able to do so. The only thing it will see is a hierarchy of storages
and streams. Other routines and applications still would need access to your source code in order to
make sense of your data. Also, OLE structured storage has no inherent file-locking or record-locking
capability, so it wouldn't reduce the amount of locking code you would have to write.

OLE structured storage is primarily used by document-centric applications, such as Microsoft Word
and Excel, to create data files for documents. Word and Excel files are not self-describing. Any
application that wants to access the data in an OLE structured storage file containing Excel data must
have knowledge of how the data inside the streams is organized.

If you used OLE structured storage for the sample application, you would still have to write a lot of
code and no one else would be able to make sense of your data. This would not be ideal for the
database in the sample application.

Record Managers (Btrieve)

Record managers on the market can simplify the data storage piece of the sample application. Let's
take a look at a popular record manager, Btrieve, to see what it does.

Btrieve provides a layer of insulation between your application and its data files. In other words, your
application doesn't directly talk to the data files. The application talks to Btrieve, and Btrieve talks to
the data files.

Btrieve provides an API (application programming interface) for record-based data access from your
application. This API enables your application to insert, edit, and delete records from data files.
Btrieve also enables your application to search the data files for a certain record, such as an order
placed by John Smith on June 1. Your application can tell Btrieve to position its record pointer at this
record and read, edit, or delete it.

Listing 1.3 shows the code to open a data file in Btrieve, find a certain record, and display it. This is a
code snippet only and will not compile as shown.

Listing 1.3. Btrieve Example

 1: #define FILE1_NAME "c:\\data.btr"
 2: typedef struct
 3: {
 4: BTI_LONG ID;
 5: BTI_CHAR FirstName[16];
 6: BTI_CHAR LastName[26];
 7: BTI_CHAR Street[31];
 8: BTI_CHAR City[31];
 9: BTI_CHAR State[3];
10: BTI_CHAR Zip[11];
11: BTI_CHAR Country[21];
12: BTI_CHAR Phone[14];
13: } PERSON_STRUCT;
14:
15: typedef struct
16: {
17: BTI_CHAR networkAndNode[12];
18: BTI_CHAR applicationID[2];
19: BTI_WORD threadID;
20: } CLIENT_ID;
21:
22: CLIENT_ID clientID;
23: PERSON_STRUCT personRecord;
24:
25: strcpy((BTI_CHAR *)keyBuf1, FILE1_NAME);
25:
27: keyNum = 0;
28: dataLen = 0;

29:
30: status = BTRVID(
 B_OPEN,
 posBlock1,
 dataBuf,
 &dataLen,
 keyBuf1,
 keyNum,
 (BTI_BUFFER_PTR)&clientID);
31:
32: printf("Btrieve B_OPEN status (c:\\data.btr) = %d\n", status);
33:
34: /* get the record with key 0 = 263512477 using B_GET_EQUAL */
35: if (status == B_NO_ERROR)
36: {
37: file1Open = TRUE;
38: memset(&personRecord, 0, sizeof(personRecord));
39: dataLen = sizeof(personRecord);
40: personID = 263512477; /* this is really a social security
Ânumber */
41: *(BTI_LONG BTI_FAR *)&keyBuf1[0] = personID;
42: keyNum = 0;
43:
44: status = BTRVID(
 B_GET_EQUAL,
 posBlock1,
 &personRecord,
 &dataLen,
 keyBuf1,
 keyNum,
 (BTI_BUFFER_PTR)&clientID);
45:
46: printf("Btrieve B_GET_EQUAL status = %d\n", status);
47: if (status == B_NO_ERROR)
48: {
49: printf("\n");
50: printf("The retrieved record is:\n");
51: printf("ID: %ld\n", personRecord.ID);
52: printf("Name: %s %s\n", personRecord.FirstName,
 personRecord.LastName);
53: printf("Street: %s\n", personRecord.Street);
54: printf("City: %s\n", personRecord.City);
55: printf("State: %s\n", personRecord.State);
56: printf("Zip: %s\n", personRecord.Zip);
57: printf("Country: %s\n", personRecord.Country);
58: printf("Phone: %s\n", personRecord.Phone);
59: printf("\n");
60: }
61: }

In Listing 1.3, line 1 defines the data filename. Lines 2-23 define two structures and declare an

instance of each. The PERSON_STRUCT structure is the definition of the meta-data for a data record.
The CLIENT_ID structure is used internally by Btrieve to identify the application. Line 25 copies the
filename into a variable. Lines 27 and 28 initialize a couple of variables, and then line 30 uses those
variables in a call to the Btrieve record manager API to open the data file.

If there are no problems opening the data file, lines 37-42 initialize some variables to use in searching
for a particular record in the data file. Line 44 calls the Btrieve record manager API to find the record.
Line 47 tests to see whether the record was found in the data file. If it was, lines 49-59 display the data
contained in the record.

Btrieve uses a form of data storage known as the Indexed Sequential Access Method (ISAM). Btrieve
ISAM files are a highly advanced version of the data files created in Listing 1.1.

Btrieve can index the data in the data files to enable very fast record searches. Btrieve can also handle
record locking, so multiple threads and applications can simultaneously access the data files.

Using a record manager is much easier than writing all that code from scratch. In fact, many
commercial software packages use the Btrieve record manager. It provides excellent performance
(compared to what you can probably write yourself) and is easy to distribute with a commercial
application.

However, record managers such as Btrieve do have limitations and can leave some important database
work undone. As you see in Listing 1.3, the metadata is defined in your source code. Btrieve doesn't
store the metadata within the ISAM files. A Btrieve data file isn't self-describing. No one else can
make sense of a Btrieve data file without some outside knowledge of its structure.

NOTE
Btrieve provides a way to store metadata in separate files named DDF files.
This isn't ideal because the files can be changed or deleted independent of
each other. No mechanism ensures that the metadata is accurate or in sync
with the actual data.

The Btrieve record manager never makes use of metadata. Btrieve interprets a record in a data file
only as a collection of bytes and doesn't recognize discrete pieces of information within a record. To
Btrieve, a product number, name, and price don't exist inside a record. The record is simply a
collection of bytes. Because Btrieve doesn't use the metadata, the application must handle all
information about the format and type of data in a Btrieve data file. Btrieve does nothing to ensure the
integrity of the data within a record. Your application must do all the work of validating the data
before it's stored in the data file.

Another limitation of a record manager is a lack of set-based operations on the data. The application
must touch each and every record that is involved in any given operation. For example, in the sample
application, to discover the total sales volume in dollars, the application needs to iterate through the

records of all the orders, adding up the sales amount of each one.

Set-based operations, however, like those found in true databases (as opposed to record managers),
can enable the application to issue a single command to ask the database for the total sales volume in
dollars. You will learn more about set-based operations in the sections "Desktop Databases" and
"Relational Database Servers."

NOTE
Btrieve has produced an open database connectivity (ODBC) driver and
data-base engine that sit on top of the Btrieve record manager and provide
set-based operations through an ODBC API. Applications can use this
ODBC API to access Btrieve data files. However, the Btrieve ODBC API
doesn't provide the same level of performance that the Btrieve record
manager API provides.

Using a record manager for the sample application would be easier than creating your own C++
database and easier than using OLE structured storage. The location of the metadata still isn't ideal,
however. The lack of integrated metadata can limit the capability of other applications to read the data
file. For instance, this might prevent the manager from being able to analyze sales data from the
database in a spreadsheet. You need to consider these questions regarding this technology and the
sample application: Will the record manager provide sufficient open access to the data for other
applications? Will the data file become too large for the record manager to handle? Will the
performance of the record manager be fast enough, especially with multiple users over a network?

Desktop Databases (FoxPro and Access)
Desktop databases is a class of database software, sometimes called ISAM databases because they use
ISAM files. Several desktop databases are on the market. These include Microsoft Access, Microsoft
FoxPro, and Borland Paradox. These database products differ from each other in many ways, but they
all have certain features and characteristics in common.

Desktop databases store the metadata within their ISAM data files. The data files are self-describing.
This enables a variety of applications to readily access the data in desktop databases. Desktop
databases have their own languages and data types and include an interpreter to run programs written
in their language. You can use the language of a desktop database to build database applications.
(These interpreted database languages typically aren't used to build complete commercial applications
because of their many limitations.)

The desktop databases are designed to provide standard DBMS (database management system)
functionality such as data definition, data manipulation, querying, security, and maintenance. The
desktop databases are built specifically to run on personal computers.

C++ programs can use the ODBC (open database connectivity) API to talk to desktop databases. For
instance, a C++ program can call ODBC API functions to store and retrieve data in a Microsoft
Access database file. You can even use ODBC to send language statements to the Access interpreter
(also called the Jet database engine) and then retrieve any data that Access (Jet) might return as a
result of that operation.

Listing 1.4 shows some ODBC API function calls. This is a code snippet only and will not compile as
shown.

Listing 1.4. ODBC API Function Calls

 1: long lResult;
 2: SDWORD cbResult;
 3: HSTMT hstmt;
 4: CDatabase mfcdb;
 5:
 6: mfcdb.OpenEx("DSN=MyDataSource;UID=MyUserLogin;PWD=MyPassword;");
 7:
 8: AFX_SQL_SYNC(::SQLAllocStmt(mfcdb.m_hdbc,&hstmt));
 9:
10: AFX_ODBC_CALL(::SQLExecDirect(hstmt, (UCHAR FAR*)
 "SELECT * FROM Orders",SQL_NTS));
11:
12: while (::SQLFetch(hstmt) != SQL_NO_DATA_FOUND)
13: {
14: ::SQLGetData(hstmt, 1, SQL_C_LONG, &lResult, 0, &cbResult);
15: }
16:
17: AFX_SQL_SYNC(::SQLFreeStmt(hstmt,SQL_CLOSE));
18:
19: mfcdb.Close();

Line 4 declares an instance of the MFC CDatabase class. CDatabase encapsulates and simplifies
the code for connecting to ODBC databases. Line 6 calls the Cdatabase's OpenEx function to
connect to (or open) a database. Line 8 allocates a statement handle, which enables SQL language
statements to be sent to the database to be interpreted. Line 10 calls SQLExecDirect to send a SQL
statement, "SELECT * FROM Orders", to the database to be interpreted and executed. Lines 12-
15 retrieve the information that the database returns as a result of the SQL statement in line 10. Line
14 places the value of the first field in each record that was returned into the lResult variable. Line
17 frees the statement that was allocated in line 8. Line 19 closes the database connection that was
opened in line 6.

Desktop databases index the data and use ISAM for fast record searches. Desktop databases can also
handle record locking, so multiple threads and applications can access the data files simultaneously.

NOTE
A key difference between the ISAM files used by Btrieve and the ISAM
files used by desktop databases is that desktop databases store metadata
inside the ISAM files with the data. This means other programs can make
sense of the data without having to obtain your source code.

Desktop databases provide type checking of the data within the records. Whenever an application
sends data to a desktop database, the database checks the values and data types to make sure they are
appropriate. Thus, the database itself can help ensure the integrity of the data.

Desktop databases provide set-based operations in their programming model. With a single command,
an application can perform operations that affect potentially thousands of records. For example, in the
sample application, to discover the total sales volume in dollars, the application need issue only a
single command to the database-for example,

SELECT SUM(price) FROM Orders

Desktop databases do have some limitations. The raw performance of desktop databases is generally
not as good as the performance of straight record managers such as Btrieve.

NOTE
The Btrieve record manager is lean and fast but doesn't provide the
programming functionality and data openness that the desktop databases
provide. In choosing between a record manager such as Btrieve or a desktop
database, you have to balance your need for execution speed, which a record
manager can provide, with your need for speedy development time and data
openness, which a desktop database can provide).

Accessing ISAM Data over a LAN

ISAM data files from a desktop database can be accessed from a remote machine over a local area
network (LAN). (The machine running the application is usually called the client machine, and the
machine where the data file resides is usually called the server machine.) However, the capacity and
efficiency of accessing ISAM files over a LAN is limited.

When an ISAM data file is accessed over a LAN, the data is processed on the client machine. All the
data and indexes must travel from the server machine over the network to the client machine to be
processed. This is because all the logic for processing the records exists in the application running on
the client machine.

Because all the data and indexes must travel over the network, desktop databases can't be used to build
high-capacity client/server applications. I talk more about client/server architectures in the section
"Relational Database Servers."

Desktop databases are designed to run on personal computers, so their capacity and throughput is
limited. The client/server limitations of ISAM files hinder the capacity of desktop databases. The
documentation for desktop databases typically specifies that they are limited to a dozen or so
concurrent users and to data files of 100MB or so in size.

Using a desktop database for the sample application provides many advantages over creating your own
database, using OLE structured storage, or using Btrieve. The programming model for desktop
databases is more advanced and requires less code. Desktop databases store the metadata in the data
file, so the data can more easily be queried by other applications, such as spreadsheets. However, you
need to consider these questions regarding this technology and the sample application: If the
application uses a desktop database, will the database run fast enough, especially over a network with
multiple users? Will the data file become too large for the desktop database to handle?

For raw speed, a rich programming model, data openness, and client/server capability, you need to use
a relational database server. I'll explain more about relational database servers after I talk about object
databases.

Object Databases
Primitive database technologies store only raw data (bits and bytes) with no metadata in the data file.
Desktop and relational databases store data and metadata together to make the data files self-
describing. Object databases go one step further. Object databases store data, and the code to act on
that data, in the data file. Several object databases on the market provide a broad range of features and
capabilities.

Object databases are typically tied to a particular programming language. C++ object databases
directly support the type system of the C++ language. In other words, you can use a C++ object
database to store instances of C++ classes right in the database.

Listing 1.5 shows how to use a C++ object database to store product information. This is a code
snippet only and will not compile as shown.

Listing 1.5. An Object Database

 1: #include <string.h>
 2:
 3: // Header file for the Object Database
 4: // Management Group (ODMG) object model.
 5: #include <odmg.h>

 6:
 7: // Derive our Product class from d_Object
 8: // so Product can persist itself in the database.
 9: class Product : public d_Object
10: {
11: public:
12: int iPartNumber;
13: char szName[80];
14: double dPrice;
15: private:
16: d_Ref<Product> next; // For iterating instances of Product
17: // in the database.
18: };
19:
20: d_Database db; // Global instance of the object
database.
21: const char * const db_name[] = "Products";
22:
23: void main()
24: {
25: db.Open(db_name); // Opens the Products database.
26: d_Transaction tx; // Create and begin a transaction.
27: tx.begin();
28:
29: // Create a new product instance in the database.
30: Product *prod = new(&db, "Product") Product;
31: prod->iPartNumber = 122;
32: strcpy(prod->szName, "Vegamatic");
33: prod->dPrice = 19.95;
34:
35: tx.commit(); // Commit the additions to the db.
36: db.close(); // Close the db.
37: }

In Listing 1.5, line 5 assumes that the object database vendor has provided a header file called
odmg.h, which contains the declarations for the d_Object class. The d_Object class is a C++
base class that enables instances of derived classes to be persisted to the object database. Line 9
derives the Product class from the d_Object class, which enables instances of Product to be
persisted. The Product class has a d_Ref<Product> member (line 16). d_Ref<> is a smart
pointer class provided by the object database vendor that enables references (or pointers) to objects to
be stored in the database.

The new operator in line 30 has been overloaded in d_Object to take a pointer to a d_Database
instance as a parameter. The call to new in line 30 creates a persistent instance of Product in the
database. Lines 31-33 change the values of the data members in this instance of Product (in the
database). Line 35 commits the changes to the database, and line 36 closes the database. As you can
see, using an object database, you get database functionality for your C++ objects with very little extra
code.

This tight integration with the C++ programming language provides great power for designing and
building applications that have complex information models. You can use the full power of C++ with
encapsulation, inheritance, and polymorphism to reduce complexity.

If you use an Object DBMS, your application has a database that can handle great complexity. C++
classes enable you to model elaborate data entities and their relationships, and an Object DBMS
enables you to store instances of those elaborate C++ classes right in the database. However, object
databases have limitations, too. Because object databases are so tightly integrated with the
programming language of the application, the data tends not to be open or accessible to other
applications.

NOTE
Some Object DBMS vendors pledge that their object databases support (or
will support in the future) open technologies such as COM, CORBA, XML,
and ODBC/OLEDB. Support for these technologies will make object
databases more open and accessible. However, support for these open
technologies is neither universal nor uniform among Object DBMS vendors.
So caveat emptor (let the buyer beware).

Also, with a C++ object database in a client/server environment, the object functionality executes
primarily in the client application. Like desktop databases, C++ object data-bases will do most of their
processing on the client machine. This varies between object database implementations, but object
databases tend to be client-centric and do not fully take advantage of the server machine in
client/server applications.

Relational database servers, however, tend to be better able to take advantage of client/server
architectures. The next section talks about relational database servers in more detail.

Using an object database for the sample application could be easier than using your own database,
OLE structured storage, Btrieve record manager, or a desktop database. However, consider these
questions regarding this technology and the sample application: Would an object database be overkill
for the application? Is the data model sufficiently complex and intricate to require a direct mapping of
C++ classes into the database? Would this capability justify the added time you would have to spend
researching the capabilities of the various object databases? Would the database be open to other
applications? Would the performance with multiple users over a network be sufficient? Would
performance degrade significantly as the amount of data in the database increases?

Relational Database Servers (Oracle and SQL Server)
Relational database servers are in some ways similar to desktop databases. Relational database servers
have their own programming languages, interpreters, and data types. They integrate data and metadata.
C++ programs can talk to them through ODBC. The code in Listing 1.4 operates with a relational

database server as well as a desktop database.

NOTE
C++ applications that use the ODBC API can interoperate with desktop
database as well as with relational database servers.

Relational database servers provide the rich functionality and data openness of desktop databases
while far exceeding desktop databases and record managers in capacity and throughput. Relational
database servers can capitalize on client/server architectures much more than desktop servers, record
managers, and object databases. They provide true set-based operations.

NOTE
With set-based operations, a relational database can process thousands, even
millions, of records at the server machine and then send only a small result
set to the client computer. Set-based operations are a powerful tool to make
your applications highly scalable. Set-based operations at the server enable
relational database servers to do the heavy lifting in large client/server
applications.

Relational database servers are also built to take advantage of server hardware, such as large amounts
of RAM and high-performance disk subsystems. If you put a record manager on a RAID disk system,
the record manager probably wouldn't know what to do with it. However, if you put a relational
database server on a RAID system, it takes advantage of the RAID drives to provide phenomenal
throughput and reliability.

Relational database servers have their downside, too. They tend to be more expensive than record
managers and desktop databases. (Of course, some relational database servers are more expensive than
others.) Relational database servers also are more difficult to integrate with commercial applications.
They might have stringent hardware requirements and complex installation processes. Relational
database servers also require the periodic attention of a database administrator to tune and maintain
them. This also varies between database servers.

Also, compared to object databases, relational database servers are limited in the complexity of the
data model they can support. For an application with a highly complex data model, the process of
converting from C++ to the relational database server's type system and language interpreter can be
very difficult.

Using a relational database server for the sample application would be easier than using your own
database, OLE structured storage, or the Btrieve record manager. However, consider the following
questions regarding this technology and the sample application: Would the fact that the relational
database might be more time-consuming to implement than other technologies be a problem? Is a

relational database overkill for the application? Does the application require the capacity and
throughput a relational database server provides? Would the cost of the licensing fees for the database
server be prohibitive?

How Do the Database Technologies Compare?
Table 1.1 illustrates the relative strengths and weaknesses of the various database technologies. In
Table 1.1, a plus sign (+) indicates a strength of the technology, a minus sign (-) indicates a weakness,
a blank indicates no particular strength or weakness, and a question mark (?) indicates that it varies
between vendors or implementations of the technology.

● Openness of the Data refers to the capability of other routines or applications to make sense of
the data file without access to your source code.

● Complex Data Models refers to the technology's capability to handle applications that have
complex data entities and relationships.

● Multiuser refers to the capability of multiple threads, applications, and users to access the data
simultaneously.

● Performance refers to the speed with which data can be read from and written to the database.
● Scalability and Capacity refers to the database's capability to sustain good performance as the

amount of data increases.
● Set-based Operations in Code indicates whether the technology offers set-based operations in

its programming model.
● Set-based Operations at the Server refers to the capability of the technology to process data at

the server without having to send it all to the client machine to be processed.
● Embeddable with Your Application indicates how easy or difficult it would be to ship this

technology with a commercial application.
● Data Validation/Integrity refers to the database's capability to validate the data to ensure the

integrity of the data.
● Code-to-Functionality Ratio refers to how much code you have to write compared to the

database functionality you get from that code.

Table 1.1. How Do the Database Technologies Compare?

C++
OLE
SS

Record
Mgr

Desktop
Db

Object
Db

RDBMS
Server

Openness of the Data - - + -? +
Complex Data Models - - - +
Multiuser - - +? +
Performance - - + +? +
Scalability and Capacity - - +? +
Set-based Operations in Code - - - + + +
Set-based Operations at the Server - - - - -? +

Embeddable with Your Application + + ? -
Data Validation/ Integrity - - - + + +
Code-to-Functionality Ratio - - - + ++ +

As you can see from the table, the appropriateness of each of these technologies depends on the
requirements of the application. If you need your commercial application to write a small amount of
simple data to a temporary file, your own C++ database would probably work fine. If, however, you
need to store moderately complex data to a file with
multiple threads or multiple applications using it, consider one of the more advanced database
technologies.

Summary
Today's database technology offers a broad spectrum of functionality. Choosing the right database
technology means finding one that fills the requirements of your application.

In choosing a database technology, don't underestimate the importance of the data. Consider carefully
which database technology is the best steward of the data. A database should ensure the data's integrity
and provide appropriate open access to the data for other routines and applications, now and in the
future.

Q&A

Q It looks like I will have to learn so much before I can even start using data-bases.
Shouldn't I just write a database myself so that I can get up and running more
quickly?

A For all but the very simplest applications, it doesn't make sense to invent your own
database. You must realize that the time you spend writing your database is time spent
not writing your application. It's best to learn once how to use real databases and then
apply this valuable knowledge over and over.

Q If I decide to use a desktop database for my application, which one of the desktop
databases (Access, Paradox, FoxPro, and so on) should I use?

A Which desktop database you should use depends on the requirements of your
application. Microsoft Access offers one advantage over the other desktop data-bases,
however. Access does the best job of mimicking the functionality of a relational
database server: It uses a version of Structured Query Language (SQL), it can have
multiple tables per file, and it can store predefined queries.

Q Doesn't ODBC provide a single API that can be used with all ODBC data-bases? If
my application uses ODBC, why should I care which database is used underneath?

A The capabilities of the various database technologies differ fundamentally from each
other, and these differences are reflected in the way that the technologies implement the
ODBC API. Some databases support a superset of the ODBC API, whereas other
databases support only a subset of it. Also, some technologies provide excellent
performance through ODBC, whereas others provide very poor performance with
ODBC. You need to select the database for your application based on the database's
capabilities. If you plan to use ODBC, you need to consider how well the database you
want to use supports it.

Q Object databases look like they provide excellent power and flexibility. Why would
I use relational database servers when object databases seem to integrate so well
with C++?

A Relational database servers and object databases each have their own strengths and
weaknesses. Be aware that object databases are not yet fully mature, and the capabilities
of the different object databases vary greatly. Also remember that relational database
servers provide open and accessible databases, whereas object databases generally do
not. The need for open access to the data shouldn't be underestimated and might
outweigh the other areas in which object databases can be superior.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the primary benefits of using a record manager (such as Btrieve) rather than invent
your own database routines?

2. What do the desktop databases provide that record managers do not?
3. What are the benefits of using a database technology that provides open, accessible data stores?
4. Which database technologies provide open, accessible data stores?
5. What is the significance of server-side processing of set-based operations in a client/server

architecture?

Exercises

1. The code in Listing 1.1 creates a data file that contains order information. Write a program that
reads the order data from that file.

2. Decide which database technology would be most appropriate for the sample application
described earlier. Create a list of capabilities that the database for this application needs to
provide. Justify your decision by comparing the database requirements with the capabilities of
the database technology that you have chosen.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 2
 Tools for Database Development in
 Visual C++ Developer Studio

● How to Build a Perfect Database Every Time
● Support for the Relational Database Model in the Visual C++ Developer Studio

❍ Installing the Database Components for Visual C++
❍ Setting Up an ODBC Data Source for the Sample Database

● Components of a Relational Database
❍ Tables in a Relational Database
❍ Fields in a Relational Database Table
❍ Data Types in Relational Database Systems
❍ Records in a Relational Database Table
❍ Primary Keys in a Relational Database Table
❍ Relationships Between Records in Different Tables

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Today you will learn how to create and manage database applications by using the Visual C++
Professional and Enterprise Editions. With the Visual C++ Professional or Enterprise Editions, you
can retrieve data and modify the contents of databases. With the Enterprise Edition, you can also

create and modify the structure of the database (the database's metadata).

Today you will

● Learn how to build a perfect database.
● Explore the relational database model inside the Visual C++ Developer Studio.
● Work with the components of a relational database.

How to Build a Perfect Database Every Time
Building a good database is not rocket science. It is, however, computer science. If you can learn C++,
you already possess enough computer science savvy to learn the science of building good databases. A
good database has a flexible design, speedy performance, and efficient capacity and is adaptable to
meet today's, and future, requirements.

Your first design decision is to choose which database model to use for your application. There are
several database models to choose from, including flat file, object, and relational.

CAUTION
Neglecting to make a definite choice of a database model for your
application means that you are choosing to invent your own. Inventing a
database model is harder than it looks. If you try to invent your own
database model, you will severely handicap your database.

One particular database model offers a unique combination of power, flexibility, and universal
acceptance. That model is the relational model.

The relational model enables you to build databases that can be implemented on all popular computing
platforms, including mainframes, servers, PCs, and even some handheld machines. Most popular
programming languages can communicate with databases that adhere to the relational model.

The relational model also provides enough abstraction to enable you to add elements and features to
the database without having to recompile and redistribute the code for the applications that use it. This
level of abstraction also enables you and your customers to retrieve combinations of data from the
database that you hadn't anticipated needing at the time that the database was created.

Support for the Relational Database Model in the
Visual C++ Developer Studio
E.F. Codd, a computer scientist from IBM, first formulated relational theory in 1970. The first

commercially available relational database system (RDBMS) was Oracle. Many relational database
systems have become commercially available since then. It is interesting to note that the relational
database systems commercially available do not fully implement Codd's relational theory.

The relational model is based on relational calculus, a complex mathematics, but some fundamental
principles of the model make it easy to use. You can get up and running right away with the basics of
the relational model and learn the advanced portions of it later as the need arises.

The Visual C++ Professional and Enterprise Editions provide built-in support for the relational
database model. You can view and modify the contents of relational databases inside the Visual C++
Developer Studio.

Installing the Database Components for Visual C++

First, you need to make sure that you have installed the necessary Visual C++ database components.
These components consist of ODBC drivers and OLE DB providers. To install these (or to verify that
they're already installed), run the Visual Studio 6 setup program. Your first screen will look like
Figure 2.1.

Figure 2.1 : The Visual Studio 6 Setup dialog. Click the Add/Remove button.

Click the Add/Remove button. You will be presented with the Maintenance setup dialog, shown in
Figure 2.2.

Figure 2.2 : The Visual Studio 6 Maintenance setup dialog.

Select Data Access from the list and click the Change Option button.

Select OLEDB Components from the list shown in Figure 2.3 and click the Change Option button.

Figure 2.3 : The Visual Studio 6 Data Access dialog.

Check the boxes for the OLE DB providers, shown in Figure 2.4, that you will need. If you are unsure
which providers you will need, you can install all of them except those that you're certain you will not
use. You need to install the Microsoft OLEDB Jet Provider for the examples in this book, so make
sure it's checked. Click the OK button to return to the Data Access dialog shown in Figure 2.5.

Figure 2.4 : The Visual Studio 6 OLEDB Components dialog.

Figure 2.5 : The Visual Studio 6 Data Access dialog.

Select Microsoft ODBC Drivers from the list and click the Change Option button. Your screen will
look like Figure 2.6.

Check the boxes for the ODBC drivers you need. If you're unsure which drivers you need, install all of
them except those that you're certain you will not use. For the examples in this book, you need to
install the Microsoft Access ODBC Driver; make sure it's checked. Click the OK button to return to
the Data Access dialog.

Figure 2.6 : The Visual Studio 6 Microsoft ODBC Drivers dialog.

Click the OK button on the Data Access dialog to return to the Maintenance setup dialog. The bottom
right of the dialog shows the number of components you are adding. If that number is zero, the
database components you need for this book are already installed. You can click the Cancel button and
exit the setup program.

If the number of components to add isn't zero, click the Continue button. The setup program will
install the OLE DB providers and ODBC drivers you need for this book.

After the OLE DB providers and ODBC drivers are installed, you need to install the author's examples
from the CD-ROM included with this book. The examples include a Microsoft Access database file,
VCDb.mdb, which is used in examples throughout this book. Follow the installation instructions for
the CD in order to install the author's examples.

Setting Up an ODBC Data Source for the Sample Database

You need to set up the sample database VCDb.mdb as an ODBC data source on your machine. This is
done with the 32-bit ODBC applet in the Control Panel.

Run the 32-bit ODBC applet, which will display a dialog that enables you to create, edit, and delete
ODBC data sources (see Figure 2.7). An ODBC data source is also called a Data Source Name (DSN).

Figure 2.7 : The System DSN tab in the 32-bit ODBC Administrator applet.

The first three tabs along the top of the dialog enable you to create DSNs. A User DSN is accessible
only on this local machine and only by the current user. A System DSN is accessible on this local
machine by any user. A File DSN is a file-based data source that is accessible on a local or remote
machine by any user.

Now you will create a System DSN for the sample database. Select the System DSN tab and then click
the Add button (see Figures 2.8 and 2.9).

Figure 2.8 : Specifying an ODBC driver for a new System DSN. Select the Microsoft Access driver
and click the Finish button.

Figure 2.9 : The DSN setup for the Microsoft Access database.

Type in a name for the data source (such as OrdersDb). You can also type in a description for the
data source. (This description is not used programmatically.)

Click the Select button to specify the path and name of the database file. Make sure to specify the
VCDb.mdb file on your hard disk instead of the one on the CD-ROM. The one on the CD is read-only
and won't work for the examples in the book.

Click the OK button to create the ODBC data source. To open the VCDb.mdb database inside Visual
Studio, you need to create a database project. Run Visual C++ and select the File…New menu. Click
the Projects tab (see Figure 2.10) and select Database Project. Specify a directory and a project name
and click OK.

Figure 2.10: The New Projects dialog.

On the Machine Data Source page, you will be prompted to select the data source for this database
project, as shown in Figure 2.11.

Figure 2.11: Selecting the ODBC data source for a data-base project.

Select the ODBC data source you created earlier and click OK. Now click the Data View tab at the
bottom left of the Developer Studio main window.

Components of a Relational Database
The Data View in Developer Studio shows the components contained in the database. In the Data
View, you can double-click the elements (or click the plus sign [+]) to expand the tree view to display
the components of the database. As you can see in Figure 2.12, a relational database can consist of
many components and has considerable structure (or metadata).

Figure 2.12: The Visual C++ Data View.

The structure of a relational database might seem like too much overhead, but this structure provides
amazing benefits.

As an illustration, you can liken the raw data and complex structure of a relational database to those of
a human body. A human body is more than raw chemical elements. A human body contains complex
structures such as proteins and enzymes. The abundance of structures is what enables the chemical
elements to provide us much more value than they would if they were less highly structured.

A relational database is more than a data file containing raw bits and bytes. A relational database
contains a complex structure. As in the human body, the abundance of structure in a relational
database is what enables the data to provide so much more value than it would if it were less highly
structured.

The structure is where the value lies. The raw elements (and the raw data) provide the building blocks,
but the structure is what makes it all valuable.

This is one reason why I advise developers not to attempt building their own database models. The
structure of a homemade database model can never be as good as the structure of a relational database.
A database that uses a homemade model is far less valuable than it would be if it used the relational
model.

Tables in a Relational Database

The Microsoft Access database VCDb.mdb contains four tables and two views. Expand the Data View
so that it shows the tables in the database. Double-click the Products table in the Data View to see
the data inside the table, shown in Figure 2.13.

Figure 2.13: Opening a database table inside Visual C++.

The data in relational databases is arranged in tables. (In relational database parlance, tables are called
relations. I will refer to them as tables throughout this book.) These tables contain rows of like
information. The tables can be compared to arrays of structures in C++. The columns in the database
table are like the data members of the structure. The rows in the table are like the elements of the
array.

It's important to note that database tables are not like arrays of unions in C++. As you might know, a
union is a user-defined data type that can hold data of different types at different times. In an array of
unions, the number of data members, their types, and their lengths can vary from one element of the
array to the next. A database table isn't like that. The number of columns, their type, and their length
do not vary from row to row.

In relational database parlance, the process of creating tables of like information is called
normalization.

Good table design is fundamental to a good database. If you don't properly design your tables, your
database will not be as functional as it could be. I will explain the rules of thumb for good table design
on Day 8, "Utilizing the Capabilities of Database Servers."

Fields in a Relational Database Table

The columns in a database table are called fields. (In relational database parlance, fields are called
attributes.)

A field is the smallest element in a database. Each field in a table has a data type and a length. In the
Data View, click the plus sign by the Products table name to see the fields in the table, as in Figure
2.14.

Figure 2.14: Fields in a database table.

Each field should contain one data element. For instance, rather than have a single field to hold both
the first and last name of a customer, a table should have one field for the customer's first name and
another field for the last name. This enables easier searching and editing of the database.

Think carefully about the granularity of the data in the fields. Make each field as granular or precise as
possible. The usefulness of the database depends on the integrity of its smallest element-the field.

Data Types in Relational Database Systems

As I described on Day 1, "Choosing the Right Database Technology," relational data-bases have their
own type systems. This means that the data types in C++ aren't the same as the data types in relational
databases.

In the Data View, click the plus sign by a table name to display the fields in the table. Right-click a
field name and select Properties from the Context menu (see Figure 2.15). The properties of each field
are name, data type, length, and precision. Look at the data types for several fields and note that
they're similar to but not the same as C++ data types.

Figure 2.15: The Column Properties window.

The ODBC API and the OLE DB API (explained on Day 15, "The ODBC API and the MFC ODBC
Classes," and Day 16, "The Ultimate Database API: OLE DB") provide a translation facility between
C++ data types and database data types.

Many C++ data types readily translate to and from database data types. However, some types do not.
When designing your database applications, you need to carefully read the appropriate documentation.

An interesting data value that fields can hold is NULL. In relational databases, NULL does not mean
zero. Zero is a value, whereas NULL is undefined.

The use of NULL values is best illustrated with an example. Let's say you have a table that lists men
and the color of their hair. The hair color field would contain values such as Brown, Black, Red,
and so on. What about men who are bald? Well, that would be an ideal place to use NULL. A bald
man's hair color is undefined because he doesn't have hair.

Records in a Relational Database Table

The rows in a database table are called records. (In relational database parlance, records are called
tuples.)

Records can be likened in C++ to elements of an array of structures. When interfacing a C++ program

to a relational database, you use records to store instances of C++ classes. The topic of mapping C++
objects to relational databases is discussed in more detail on Day 14, "Legacy Database APIs." For
now, the basic idea is that the class definition corresponds to a table, the data members in the class
correspond to the fields, and each instance of the class that is created at runtime can be persisted as a
record in the table.

The important thing about records in a database is that each record must be unique. It makes no sense
to have several records containing the same data. For example, if you had a table that listed your
customers, you would not want duplicates. Each customer would be listed once, and only once, in the
customer table. If there were duplicate customer records and you needed to change a customer's
address, you would not know which record to change.

The requirement that each record be unique can be fulfilled with good database design. Database
design is discussed further on Day 8.

Primary Keys in a Relational Database Table

Creating unique records raises the necessity of discussing keys. A key is a field, or combination of
fields, with which you can uniquely identify a record.

It's easier to identify unique records by using a single field instead of a combination of several fields.
That's why you frequently see things such as account numbers, customer numbers, part numbers, and
so on.

As you can see in the sample database (and in Figure 2.14), there is a part number field in the
Products table. This part number field uniquely identifies each product and is the key field in the
Products table.

A good real-life example of a key is a Social Security number. If you know a person's Social Security
number, you can identify that person. A Social Security number is a key attribute.

When you design a database, try to think carefully about what field or fields would constitute the key
for each table.

Relationships Between Records in Different Tables

A benefit of having a primary key, which uniquely identifies each record, is that keys can be used to
relate records to each other.

In the sample database, you have one table that lists your customers and another table that lists their
orders (see Figure 2.16). The Orders table consists of an order number, the date of purchase, the
customer, the product purchased, and the price and payment information.

In the Orders table, you don't need to store all the customer data with every order. That would be

redundant. You simply store the customer number with each order. In C++ parlance, think of it as
storing a pointer to the customer with each order. That way you can easily tell which customer bought
what when, and the database will have no duplicate data.

Figure 2.16: Fields in the sample database.

The customer number is the primary key in your Customers table because it uniquely identifies the
customer. The customer number in the Orders table is a foreign key (see Figure 2.17). A foreign key
is a primary key from another table. Again, in C++ you would think of a foreign key as a pointer to an
object.

Figure 2.17: The Orders table with primary and foreign keys.

The same customer number could appear in the Orders table several times. That's okay. Foreign
keys can repeat within a table, but primary keys cannot. The customer number must appear only once
in the Customers table but can appear in several records in the Orders table. There is a one-to-
many relationship between the customer numbers in the Customers table and the customer numbers
in the Orders table.

The process of using primary keys and foreign keys is how the relationships between the data are
defined in a relational database. I will go into greater detail on this subject in the next few days.

Summary
The most widely used and accepted database model is the relational model. The relational model
provides great openness and flexibility. Applications in addition to a database's original application
can access the data. The database is sufficiently abstracted from the application so that the database
and the application can be independently updated.

A relational database consists of tables, which are arranged in columns and rows. Each column is
called a field. Each row is called a record and is unique, based on some key field or fields. The records
in the tables in a relational database are related to each other, based on key fields that are called
primary and foreign keys.

Q&A

Q Does Visual Studio provide support for other database models or technologies in
the same way that it supports relational databases?

A No. The database integration that you find inside Visual Studio is based on ODBC.
ODBC is designed to work with relational databases only. Therefore, Visual Studio 6
provides direct support of and integration with only relational database technology.

Q What's the difference between Microsoft Access and Jet?

A Jet is the name of the database engine portion of Microsoft Access. You can think of
Microsoft Access as a user interface (UI) to the Jet database engine. The Jet database
engine is also used in the Access ODBC driver. When you write a C++ application that
stores data in an Access MDB file, your application makes calls to the Access ODBC
driver, which calls the Jet engine, which talks to the MDB file.

Q Can't I build a relational database by using a record manager such as Btrieve or a
desktop database such as FoxPro?

A You can build a set of tables that use primary and foreign keys to relate records to each
other, using Btrieve or FoxPro. However, with Btrieve and FoxPro, each table is stored
in a separate file. Also, Btrieve and FoxPro make no effort to help you enforce relational
rules inside your database as a relational database server (and, to a certain extent,
Microsoft Access) does. With Btrieve and FoxPro, you will likely end up with a
database that is partly relational and partly your own model, which will be a handicap in
the future when you try to add new features or capabilities to your database.

Q Can't I use a spreadsheet such as Microsoft Excel as a database?
A Some spreadsheet applications do provide support for database-type functionality.

However, this functionality merely consists of storing rows and columns of data in a
manner akin to a single table in a relational database. Spreadsheets provide no relational
capabilities. Some spreadsheets, such as Microsoft Excel, do enable users to obtain data
from relational databases and analyze that data inside the spreadsheet. The data must be
formatted as a single table of data, however.

Q With all the overhead of a relational database, isn't a relational database going to
be slow when compared to a lean and mean database that I create myself in C++ or
compared to a record manager?

A A desktop database such as Microsoft Access will probably perform much faster than
any database you can write yourself. A relational database server, with its capability to
take full advantage of multiprocessor servers and modern disk subsystems, will
outperform record managers in handling large quantities of data.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. Which editions of Visual C++ enable viewing and editing data from relational databases inside
Visual Studio?

2. What is a DSN?
3. What gives a database its value and why?
4. What is the fundamental requirement for records in a relational database?
5. What mechanism is used to relate records in different tables to one another?

Exercises

1. Open the Orders table in the database project you created today. Note the foreign keys that
appear in the table. Open the Customers and Products tables and see primary keys for
customers and products. Try to change one of the foreign key values, such as a customer
number, to a number that doesn't exist as a primary key. What happens? Does the database help
enforce the integrity of the data?

2. Open the Orders table in the database project you created today. Try to change one of the
order numbers in the table by typing in letters for the contents of the field. When you move the
cursor off that record, what happens? Does the database validate the data type you tried to
enter? (You can press Esc to abort the edit.)

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 3
 Retrieving Data Through Structured
 Query Language (SQL)

● Structured Query Language
● The SQL SELECT Statement

❍ The ORDER BY Clause
❍ The WHERE Clause

● SQL Joins
● SQL Subqueries
● Resultsets and Cursors
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Today you will learn how to capture data from relational databases by using Structured Query
Language (SQL). SQL is a powerful language designed specifically for manipulating data.

When you complete this lesson, you will be able to use SQL to transform a relational database's raw
data into a rich harvest of useful information. You will appreciate how SQL queries and a properly
designed relational database enable you to fulfill requests for information that were unanticipated at
the time that the database was first created.

Today you will

● Learn about the Structured Query Language.
● Understand and use the SQL SELECT statement.
● Work with SQL Joins.
● Explore SQL subqueries.
● Use resultsets and cursors.

Structured Query Language
In Day 1, "Choosing the Right Database Technology," you learned that relational databases have their
own language interpreter. This language interpreter enables a relational database to interpret and
execute commands sent to the database. These commands are written in Structured Query Language, a
language specifically designed to work with data that resides in relational databases. The name for the
original version of this database language was Sequel. However, that name has been changed to SQL.

NOTE
When referring to the SQL language, the word SQL should be pronounced
ess-que-ell instead of sequel. The sequel pronunciation is sometimes used
when referring to Microsoft SQL Server and Sybase SQL Server. However,
when talking about the SQL language, use ess-que-ell.

Just as there is a standard for the C++ language, there is a standard for SQL. The most recent version
of the SQL standard is SQL-92 (ANSI Document Number X3.135-1992). Relational databases use
SQL. Each database vendor implements the SQL standard in its database but then adds its own
extensions. For instance, the ANSI SQL used in Microsoft SQL Server is essentially the same as the
ANSI SQL used in Oracle. However, SQL Server and Oracle each add their own custom extensions to
the language.

SQL is not a procedural language. It's not like C++ or BASIC. In fact, SQL is probably unlike any
programming language you have ever seen. SQL is built to deal with sets of records. These records
can come from a table or from multiple tables inside a relational database.

With SQL, the whole idea is to collect a set of records that match the criteria you specify and then to
perform some operation on these records. SQL has an almost English-like syntax (but with no accent).
SQL statements typically have a verb, which indicates the action to be taken-a command such as
SELECT, UPDATE, DELETE, or INSERT. The most common operation is to retrieve (or SELECT)
records.

The SQL SELECT Statement

The SQL SELECT statement enables you to retrieve information from the database. The SELECT
statement begins with the SELECT command and is followed by the noun(s) indicating which field(s)
you want to SELECT. You can use an asterisk to indicate that you want all the fields. You have to tell
the database which table you are talking about, so you include a FROM clause that indicates the table.
The basic syntax looks like this:

SELECT which fields FROM which table

An SQL query selects a set of records that match the criteria you specify. The preceding SELECT
statement would select all the records from the table. You can see a SELECT statement like this in
action right inside Visual C++.

Open the database project you created in yesterday's lesson (Day 2,"Tools for Database Development
in Visual C++ Developer Studio"). Select the Data View tab on the Workspace pane. As you know,
this database relates to the sample application mentioned in Day 1-software for taking orders for
products advertised on TV commercials. Double-click the Customers table (see Figure 3.1) to open
it and view all the records, shown in Figure 3.2.

Figure 3.1 : The Visual C++ Data View.

Figure 3.2 : The Customers table.

Click the SQL button on the Query toolbar (the third button from the right), and you will see an SQL
SELECT statement in the splitter window above the records in the table.

Figure 3.3 : The Customers table with a SELECT statement.

The SELECT statement shown in the window retrieved those records from the database. The SQL
statement looks like this:

SELECT 'Customers'.*
FROM 'Customers'

Visual C++ sent this statement to the database (in this case, the Access ODBC driver and Jet database
engine). The database interpreted the SQL statement, read the data from the MDB file, and returned
the set of records to Visual C++. Visual C++ displays those records in the window.

You can see that the SQL statement follows the basic syntax for the SELECT statement described
earlier. However, this statement uses tablename.fieldname syntax to indicate which fields
should be selected. The statement says SELECT 'Customers'.* to select all the fields in the
Customers table. It places single quotes around the table name in case the table name contains
spaces. The statement then says FROM 'Customers' to indicate from which table to select the
records.

Because the statement says FROM 'Customers', the 'Customers'.* syntax might seem
redundant. (The table name is specified twice in the same statement.) However, the
tablename.fieldname syntax comes in handy when you have two tables in your FROM clause
and the same field name exists in both tables. The tablename.fieldname syntax enables you to
indicate from which table you want the field.

This SELECT statement selects all the fields from all the records in the table. Try editing the SELECT
statement so that you don't get all the fields. Change the 'Customers'.* to
'Customers'.custlastname. Figure 3.4 shows the results.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. This ensures that the
syntax of your SQL statement is correct. It sends your SQL statement to the database's SQL
interpreterÑin this case, the Jet database engineÑto see whether it can properly run the statement. If
you haven't edited something you should have (or vice versa), you will receive the message that
appears in Figure 3.5.

Figure 3.4 : Editing the SELECT statement.

Figure 3.5 : The SQL Syntax Verified message box.

Run the SQL statement by pressing the ! (run) button on the Query toolbar. When you run your
SELECT statement, you will see only the custlastname field of every record in the Customers
table, as in Figure 3.6.

Figure 3.6 : The Last Name field from the Customers table.

It's disappointing to note that if you misspell the field name, the Jet syntax checker will not catch it.
When you run the query, you receive a rather unhelpful error message (see Figure 3.7). Some
databases do a better job than others of verifying the syntax.

With certain SQL syntax errors, you receive a more descriptive error message, such as the one in
Figure 3.8. However, if you ever need to track down some mysterious bug in your SQL statement, you
might feel that this error message isn't descriptive enough either.

Figure 3.7 : The error message from the Jet/Access ODBC driver.

Figure 3.8 : The error message from the Jet/Access ODBC driver.

Change the SELECT statement back so that it selects all the fields and run the query again to see the
whole table.

SELECT *
FROM Customers

The ORDER BY Clause

Wouldn't it be nice to see the customers in alphabetical order? That's very easy to do with SQL. All
you have to do is add an ORDER BY clause to the SELECT statement, like this:

SELECT *
FROM Customers
ORDER BY custlastname

When you run this query, you will see all the customer records, ordered by the CustLastName field
(see Figure 3.9).

Figure 3.9 : Customer names in order by last name.

You can select the customers in reverse alphabetical order by adding DESC to the end of the ORDER
BY clause. Observe the results in Figure 3.10.

Figure 3.10: Customer names descending in order by last name.

The WHERE Clause

With SQL SELECT statements, you can collect a set of records that fit specific criteria. The SELECT
statements you have used so far select all the records. That's pretty broad criteria. To narrow that
down, you add a predicate to the SQL statement. The predicate takes the form of a WHERE clause that
indicates which records to select. Edit the SELECT statement to include a WHERE clause, like this:

SELECT 'Customers'.*
FROM 'Customers'
WHERE custnumber = 2

You can type a lowercase WHERE. When you click the button to check the SQL syntax, this will
convert the WHERE to uppercase, as in Figure 3.11. Uppercase letters for SQL keywords are a standard
convention.

Figure 3.11: The customers WHERE CustNumber = 2.

Now change the WHERE clause to find all customers with a last name of Travolta. Use single quotes
around Travolta to indicate to the database that it's a string data type. Case sensitivity varies
between different relational databases. Don't worry too much about it now. Nothing that you do with
this database is case sensitive.

SELECT *
FROM Customers
WHERE custlastname = 'travolta'

Execute the statement and you will see that there really is only one John Travolta (see Figure 3.12).

Figure 3.12: The customers WHERE CustLastName ='Travolta'.

SQL Joins
Wouldn't it be interesting to see what products John Travolta buys from TV advertising? SQL lets us
find that information quite easily from our relational database. The first thing to do is look at John's
orders. Double-click the Orders table to see all the orders, as shown in Figure 3.13.

Figure 3.13: The Orders table.

You can see in the Customers table that John Travolta's customer number is 4. You can see a
CustomerNumber field in the Orders table. A couple of records in the Orders table contain 4 in
the CustomerNumber field. You can rightly assume that those were orders placed by Mr. Travolta.

What you're doing is looking at the primary key in the Customers table, which is the CustNumber
field, and comparing it to a foreign key field in the Orders table, which is the CustomerNumber
field. Is there some way to put this information together without having to eyeball it? Yep, there is. It's
called an SQL join.

First, you change the SQL query so that you find only the fields you are interested in. Edit and run the
query so that you obtain only the first and last name fields of records in which the last name equals
Travolta (see Figure 3.14).

Figure 3.14: The first and last name fields for Travolta.

You want to retrieve the part number from the Orders table, so add partnumber to the list of
fields to select. You need to pull information from the Orders table, so add the Orders table to the
FROM clause.

SELECT custfirstname, custlastname, partnumber
FROM Customers, orders
WHERE custlastname = 'travolta'

Here's the nifty part. You want only the records from the Orders table that have John Travolta's
customer number. You specify this in the WHERE clause. You want records in which the
CustomerNumber field (in the Orders table) equals the CustNumber field (in the Customers
table). You still want only records from the Customers table that have a last name of Travolta. To
do this, you add an AND to the WHERE clause, like this:

WHERE custlastname = 'travolta'
AND customers.custnumber = orders.customernumber

Run the query, and the results will look like Figure 3.15.

Figure 3.15: The part numbers purchased by John Travolta.

You performed a two-table join to discover the part numbers of the products that John Travolta
purchased. However, having part numbers isn't sufficient. You want to know the names of the
products he purchased. That means you need information from the Products table, too. Double-
click the Products table to open it and view all the products, as in Figure 3.16.

Figure 3.16: The Products table.

You know that you want the product name instead of the part number, so change the SELECT
statement to select the ProductName field instead of the PartNumber field. You also know that
the ProductName field comes from the Products table, so add the Products table to the FROM
clause.

You want only product names that have the same part number as the ones you found in the Orders
table for John Travolta. You specify this by adding another AND condition to the WHERE clause. Your
SELECT statement will look like this:

SELECT custfirstname, custlastname, productname
FROM Customers, orders, products
WHERE custlastname = 'travolta' AND
 customers.custnumber = orders.customernumber AND
 orders.partnumber = products.partnumber

When you run the query, you can see in Figure 3.17 that Mr. Travolta has a particular penchant for 8-
track music from the 70s.

Figure 3.17: The product names purchased by John Travolta.

Now that you have the information you need, you can close the query windows. When you close the
Customers Query window, you will be prompted to save the query. Because you could probably re-
create this query in a heartbeat if necessary, you don't need to save it.

SQL Subqueries
SQL syntax can be elegant and powerful. SQL queries can be nested to perform operations requiring
lengthy code in a procedural language. Nested queries are called subqueries.

A subquery enables you, with very little code, to find all the customers who have placed orders since a
certain date, such as November 11, 1998.

Open a query window for the Orders table by double-clicking the Orders table in the Data View.

Click the SQL button to view the SELECT statement that retrieved the records (see Figure 3.18).

Figure 3.18: The Orders table.

You need to find the customers who have ordered since November 11, 1998. The first step is to find
the orders placed since then. Modify the query so that the window contains only order records after
that date. You do this by adding a WHERE clause like this:

SELECT 'Orders'.*
FROM 'Orders'
WHERE OrderDate > { d '1998-11-11' }

The ANSI SQL convention is to use braces and the d, with single quotes around the date to indicate to
the database that this is a date, as opposed to a text string or numeric type. When you run the query,
you will find only the orders placed since that date, as shown in Figure 3.19.

Figure 3.19: The orders since November 11, 1998.

Now that you have the orders since that date, you are going to find the customers who placed those
orders, by retrieving the customer numbers from the orders. You need to change the query so that you
obtain only the customer numbers, as shown in Figure 3.20.

Figure 3.20: The customer numbers from orders since November 11, 1998.

Now you can use these customer numbers to find the customer information. Build a SELECT
statement that retrieves the customer records from the Customers table in which the customer
number is among the numbers retrieved in the orders query. To do this, you can embed the orders
query into the WHERE clause of a new query, like this:

SELECT 'Customers'.*
FROM 'Customers'
WHERE custnumber IN
 (SELECT 'Orders'.customernumber
 FROM 'Orders'
 WHERE OrderDate > { d '1998-11-11' })

The easiest way to create this new query is to open a new query window to the Customers table.
Press the SQL button on the Query toolbar so that you can see the customers query. Add the WHERE
clause so the query looks like the following:

SELECT 'Customers'.*
FROM 'Customers'
WHERE custnumber IN ()

Then select the text of the orders query, copy it to the Clipboard, and paste it inside the parentheses at
the end of the WHERE clause in the customers query, like this:

SELECT 'Customers'.*
FROM 'Customers'
WHERE custnumber IN (SELECT 'Orders'.customernumber
FROM 'Orders'
WHERE OrderDate > { d '1998-11-11' })

When you run the query, you can see in Figure 3.21 that two customers have placed orders since
November 11, 1998.

The code you would have to write in C++ to retrieve this same information from a binary data file, or
even from a record manager, is considerably more complex. SQL is made to work with data, and that
is where it excels.

Figure 3.21: The customers with orders since November 11, 1998.

Another helpful query to learn is which order in the database is the most recent order. One way to find
this is to select all the orders and include an ORDER BY OrderDate DESC clause.

SELECT 'Orders'.*
FROM 'Orders'
ORDER BY orderdate DESC

The first record is the most recent order.

Another way to find the most recent order is to ask the database for the order in which the date is equal
to the maximum date in the table. Asking for the maximum date in the table is easy. You do it like
this:

SELECT MAX(orderdate)
FROM Orders

MAX is an aggregate function, meaning that it operates on multiple records but returns a single value.
You can embed this SQL statement as a subquery in another SELECT statement to find the most
recent order (see Figure 3.22).

Figure 3.22: The most recent order.

You can also perform a join with the Customers table to find the customer who placed the most
recent order.

Resultsets and Cursors
When an application issues an SQL SELECT statement to a database, the database interprets it and
returns a set of records. As you know, this is what happens in Visual C++ when you double-click a

table in the Data View. Visual C++ sends a SELECT * statement to the database and the database
returns the records. Visual C++ then displays those records in a query window.

The set of records that a relational database returns as the result of a query is called the resultset.

SQL doesn't care whether that resultset contains one record or one million records. SQL cares only
about giving you a set of records that fit the criteria you specified. Most relational databases provide a
simple model for the application to retrieve data after a submitting query. Records are returned to the
application one at a time in the order specified by the query, until the end of the set is reached. SQL
has no provision for moving back to a previous record.

Applications often require the capability to move back and forth through a resultset, one record at a
time, and possibly edit or delete a particular record in the set. SQL was not originally designed to
provide that capability. This is where cursors come in.

A cursor is a mechanism that enables the individual records of a resultset to be processed one record at
a time. The mechanism is called a cursor because it indicates the current position in a resultset. This is
similar to the cursor on a computer screen, which indicates the current position of the input pointer in,
for example, a document.

A cursor that provides the ability to move only forward within a resultset is called a forward-only
cursor.

A cursor that provides the ability to move forward and backward within a resultset is called a
scrollable cursor.

A cursor that enables a user to change or delete data in addition to scrolling is referred to as a
scrollable, updatable cursor.

You can see that Visual C++ uses scrollable, updatable cursors when you open a query window. You
can move back and forth through the records and edit the information in the records.

Summary
Today you learned that SQL is a language that excels at manipulating data. You learned how to issue
SELECT queries to retrieve records from a single table in a relational database. You learned how to
perform joins to retrieve records from multiple tables. You learned how to use subqueries in SQL to
obtain information that requires a large quantity of procedural code to retrieve. Last, you learned that
cursors are a mechanism that enables record-at-a-time navigation through a resultset.

Q&A

Q Is it possible to write complete applications, using SQL?
A It's not possible to write applications by using ANSI SQL as the only programming

language. ANSI SQL has no control of flow constructs, such as conditional loops and
if statements. No user interface mechanisms or input/output routines (other than
SELECT, which provides output) are available. However, some relational database
servers, such as Microsoft SQL Server, do provide some control of flow extensions in
their SQL implementations.

Q Is SQL always interpreted? Wouldn't SQL run faster if there were a way to
compile the SQL statements?

A SQL is often interpreted, but there are ways to compile SQL statements to make them
run faster. Relational database servers have the capability to store SQL statements in the
database with the data. The database server interprets, optimizes, compiles, and saves
the SQL statements in their compiled form for speedy execution. These prepared SQL
statements are called stored procedures.

Workshop
The Workshop quiz questions test your understanding of today's material. The answers appear in
Appendix F, "Answers." The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is SQL?
2. What is an SQL join?

3. What is wrong with this SQL query?

SELECT customers.*
WHERE customers.custnumber = 3

4. What is an aggregate function?
5. What does a cursor make possible?

Exercises

1. Discover what happens when you add a table name to the FROM clause without mentioning that
table in the WHERE class of an SQL SELECT statement, like this:

SELECT customers.*
FROM customer, orders
WHERE customers.custnumber = 3

2. Add a join to the SQL query shown in Figure 3.22 to retrieve the name of the customer who
placed the most recent order.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 4
 Retrieving SQL Data Through a C++ API

● Relational Database APIs
● Microsoft Universal Data Access
● ActiveX Data Objects (ADO)

❍ Techniques for Using ADO in C++ Applications
❍ Building C++ Applications That Use ADO
❍ Exception Handling for ADO
❍ Displaying Records in a List Control

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Today you will learn how to retrieve data from relational databases by using an API for C++
programs. Using a database API in your C++ programs enables you to combine the strengths of C++
and SQL. When you complete today's work, you will know how to build applications in C++ that have
the data-handling power and elegance of SQL.

Today you will

● Retrieve data, using relational database APIs for C++.
● Work with Microsoft Universal Data Access.

● Understand ActiveX Data Objects (ADO).

Relational Database APIs
On Day 1, "Choosing the Right Database Technology," you learned that relational databases have their
own language interpreters and type systems. On Day 3, "Retrieving Data Through Structured Query
Language (SQL)," you learned that relational databases use a language called SQL. You also learned
that SQL is fundamentally different from C++ (SQL is interpreted, deals only with relational data, has
no procedural constructs, and so on).

C++ compilers don't know SQL, and SQL interpreters don't know C++. Therefore, you have to use a
relational database API to act as a translator for them.

Relational database APIs provide an interface between C++ and SQL. They offer a way for C++
programs to communicate with relational databases. Database APIs provide a bridge between C++ and
SQL by translating between the type system of the database and the type system of C++. They provide
a way to pass SQL code to the database to be run by the database interpreter and retrieve the resultset
into C++ program variables.

Some database APIs are database specific and are built to work only with a particular database from a
particular vendor. Other database APIs try to provide an open interface to multiple databases. ODBC
is a database API that tries to provide an API to all relational databases.

OLE DB is supplanting the venerable ODBC. OLE DB is newer, more modern, and more feature-rich.
OLE DB encapsulates ODBC functionality for relational databases and also provides access to
nonrelational data sources, such as data from spreadsheets, VSAM data (from mainframes), email
systems, directory services, and so on.

Microsoft Universal Data Access
OLE DB is the foundation of Microsoft Universal Data Access. With Microsoft Universal Data
Access, you can access data through one API, regardless of where the data resides. Your application
speaks to a common set of interfaces that generalize the concept of data. Microsoft examined what all
types of data have in common and produced an API that can represent data from a variety of sources.

The Microsoft Universal Data Access strategy is based on OLE DB, a low-level C/C++ API designed
to enable an individual data store to easily expose its native functionality without necessarily having to
make its data look like relational data. The vendor for that particular data store needs simply to
provide an OLE DB driver for it. OLE DB drivers are actually called OLE DB providers. As a C++
programmer, you can use the OLE DB API to gain access to any data source for which there is an
OLE DB provider.

ActiveX Data Objects (ADO)
ActiveX Data Objects (ADO) is a high-level database API that sits on top of OLE DB. Compared to
OLE DB, ADO programming is much simpler. ADO is suitable for scripting languages such as
VBScript and JavaScript and for programming languages such as Visual Basic (VB) and Java. You
can also call ADO from C++ programs.

ADO provides a dual interface. This dual interface makes it possible to use ADO from scripting
languages, such as VBScript and JavaScript, as well as from C++. ADO actually provides two APIs
(hence the term dual). One API is provided through OLE Automation for languages that don't use
pointers, such as scripting languages. The other API is provided through a vtable interface for C++
programming. You will learn more about COM on Day 10, "Database Client Technologies and the
Secrets of ADO," and Day 11, "Multitier Architectures." Now you will jump right into learning ADO.

The programming model in ADO typically consists of a sequence of actions. ADO provides a set of
classes that simplifies the process of building this sequence in C++ code.

● Connect to a data source.
● Specify a query of the data source.
● Execute the query.
● Retrieve the data from the query in an object that you can easily access in C++ code.
● If appropriate, update the data source to reflect the edits made to the data.
● Provide a general means to detect errors.

A recordset is a resultset coupled with a cursor. ADO returns the data from a query in a recordset
object. A recordset object encapsulates the data that was retrieved from the database (which is the
resultset) as well as functions for moving or navigating through records one at a time (which is the
cursor).

Typically, you will employ all the preceding steps in the ADO programming model. However, ADO is
flexible enough that you can use just part of the model if you need to. For example, you could create a
new recordset object and populate it from your code, without making a connection to a data source or
executing any queries. You could even pass that recordset object to other routines or applications.

The first step in accessing a data source with ADO is opening (or connecting to) the data source. With
ADO, you can open a data source through its OLE DB provider or through its ODBC driver. You
installed the Jet OLE DB Provider on Day 2, "Tools for Database Development in Visual C++
Developer Studio." You will use the Jet OLE DB Provider for the examples in this book.

With ADO, you can connect to ODBC data sources by using the OLE DB provider called MSDASQL.

In the Visual C++ setup program, it's called the Microsoft OLEDB ODBC Provider. You can use it
with ADO for those data sources that have no OLE DB provider but do have an ODBC driver.

In ADO, you make a connection to a data source by using the ADO Connection object. The ADO
Connection object has data members for the OLE DB provider name, data source name, username,
password, and so on. The idea is to set the Connection object's data members and call the Open
member function to establish and the Close member function to terminate the connection. You use
the Connection object to handle transactions, which are often crucial in database applications. You
will learn about transactions in Day 6, "Harnessing the Power of Relational Database Servers." You
can also use the ADO Connection object's Execute function to send SQL queries to and receive
resultsets from the data source.

An alternative to sending queries with the Connection's Execute function is to create an ADO
Command object and use its Execute function. The Command object enables more complex queries
and commands to be run against the data source. For instance, you could use a Command object to call
a stored procedure with parameters in SQL Server. You will learn more about stored procedures on
Day 6. A Command can create its own connection to the database or use a reference to an existing
Connection object for greater efficiency.

Techniques for Using ADO in C++ Applications

There are a couple of ways to use ADO in your C++ code. You can use the ADO header files and
import library from the OLE DB SDK. You include the ADO header files (adoid.h and adoint.h) in
your source and add the ADO import library adoid.lib to your linker input. This enables you to create
instances of the ADO objects and access their member functions. Using this method, the code to
connect to a data source and create a Command object could look something like Listing 4.1. The code
in Listing 4.1 doesn't check return values for the sake of code brevity. This is a code snippet only and
will not compile as shown.

Listing 4.1. Using ADO via the OLE DB SDK

 1: ADOConnection* piConnection;
 2: ADOCommand* piCommand;
 3:
 4: CoCreateInstance(CLSID_CADOConnection, NULL,CLSCTX_INPROC_SERVER,
 IID_IADOConnection, (LPVOID *)&piConnection);
 5:
 6: CoCreateInstance(CLSID_CADOCommand, NULL,CLSCTX_INPROC_SERVER,
 IID_IADOCommand, (LPVOID*)&piCommand);
 7:
 8: piConnection->Open(L"MyDSN", L"sa", L"bodacious");
 9:
10: piCommand->putref_ActiveConnection(piConnection);

Lines 1 and 2 declare pointers to two ADO COM interfaces. Lines 4 and 6 call
CoCreateInstance to create instances of the ADO interfaces and assign the pointers to them.
(You will learn more about CoCreateInstance and COM interfaces on Day 9, "Understanding
COM.") Line 8 uses the Open function of the ADO Connection object to open a connection with an
ODBC data source called MyDSN. It uses a username of sa (system administrator) and a password of
bodacious. Line 10 calls the ADO Command object's putref_ActiveConnection function
to tell it to use the connection that was opened in line 8. Later in your program you will need to call
the Release function on piConnection and piCommand to free those objects.

The other way to use ADO in a C++ application is to use the Visual C++ #import directive. Using
the #import directive with the ADO library enables you to write less verbose code to accomplish the
same tasks with ADO. For instance, with #import, the preceding code can be abbreviated to the
code in Listing 4.2. This code doesn't check return values for the sake of code brevity. This is a code
snippet only and will not compile as shown.

Listing 4.2. Using ADO via #import

 1: _ConnectionPtr pConnection;
 2: _CommandPtr pCommand;
 3:
 4: pConnection.CreateInstance(__uuidof(Connection));
 5: pCommand.CreateInstance(__uuidof(Command));
 6:
 7: pConnection->Open(L"MyDSN", L"sa", L"bodacious");
 8:
 9: pCommand->ActiveConnection = pConnection;

In Listing 4.2, lines 1 and 2 define instances of two ADO smart pointer classes. Lines 4 and 5 call the
CreateInstance function of those smart pointer classes to create instances of the ADO classes.
Line 7 uses the Open function of the ADO Connection object to open a connection with an ODBC
data source called MyDSN. It uses a username of sa and a password of bodacious. Line 9 sets the
ADO Command object's ActiveConnection data member so that it uses the connection opened in
line 7.

Later in your program, you should not call the Release function on pConnection and
pCommand to free those objects. pConnection and pCommand are smart pointers, so when they
go out of scope, Release will be automatically called. Also, using the #import directive means
that you don't need to include the ADO header files (adoid.h and adoint.h) in your source, nor do you
need to link with the ADO import library adoid.lib. Article Q169496 in the Microsoft Knowledge
Base (KB) provides additional information on using the #import directive with ADO. You can
obtain KB articles from the MSDN subscription CDs. Also, you can send email to the KB email server

at mshelp@microsoft.com.

As you can see from the code listings, using the #import directive enables you to write code that is
less verbose than OLE DB SDK code. Article Q174565 in the Microsoft Knowledge Base compares
the processes of using ADO via the OLE DB SDK, via the #import directive, and via the OLE DB
SDK, using the MFC OLE classes. That Knowledge Base article recommends using ADO via the
#import directive. Based on my personal experience in writing ADO applications, I have found that
the #import directive hides some of the complexity of using ADO. Therefore, the ADO examples in
this book use ADO via the #import directive.

Article Q174565 in the Microsoft Knowledge Base compares the process of using ADO via the OLE
DB SDK, via the #import directive, and via the OLE DB SDK using the MFC OLE classes. That
Knowledge Base article also recommends using ADO via the #import directive.

If you are interested in exploring the process of using ADO via the OLE DB SDK, there is a sample
application, ADOSDK, on the CD-ROM. It's an MFC application that gives you some idea of what
code you need to write in order to use ADO via the OLE DB SDK.

NOTE
ADO is a COM DLL. To call ADO functions from your C++ programs, the
ADO DLL must be registered, which means that the location of the ADO
DLL must be recorded in your machine's registry. When you install the
Visual C++ data access components, ADO is automatically installed and
registered for you. If you ever need to register ADO manually, at the
command line you can run the following:

RegSvr32 msado15.dll

You run RegSvr32 from the directory containing msado15.dll; this directory
typically is

\program files\common files\system\ado

Building C++ Applications That Use ADO

The best way to learn ADO is to build an application with it. Your application needn't be an MFC
application in order to use ADOÑMFC is not required for ADO. However, the ADO examples in this
book use MFC because MFC provides an application framework that you don't have to build from
scratch. Using MFC for the ADO examples enables you to concentrate on learning ADO, not on
building an application framework. It's also interesting to see how the ADO objects can map to the
objects in the MFC document/view architecture.

The first step is to create a new MFC AppWizard (exe) project in Visual C++: Name it ADOMFC1.

Figure 4.1 : A new AppWizard exe.

Specify that the application should be a multiple document application, as in Figure 4.2.

Figure 4.2 : Choose Multiple Documents in Step 1.

Specify that AppWizard include no database or OLE support in the application. You will add that code
yourself. Specify whatever you like on the AppWizard options for toolbars, status bars, and so on. In
AppWizard's last step (step 6 of 6, shown in Figure 4.3), make sure that the View class derives from
CListView instead of CView.

Let AppWizard generate the project and the source code. Run the application to make sure it builds
successfully with no errors or warnings.

Figure 4.3 : Derive the View class from CListView.

As mentioned earlier, the ADO library is a COM DLL. This means applications that use it must
initialize the OLE/COM libraries before making any ADO calls. In your MFC application, the call to
initialize the OLE/COM libraries is best done in the InitInstance function of the application
class.

Listing 4.3. Initializing the OLE/COM Libraries

 1: BOOL CADOMFC1App::InitInstance()
 2: {
 3: // Add this function to initialize the OLE/COM libraries
 4: AfxOleInit();

Add the code shown in line 4 to initialize the OLE/COM libraries every time the application is loaded.
Listing 4.4 shows some additions to StdAfx.h for ADO.

Listing 4.4. Changes to StdAfx.h

 1: #include <comdef.h>
 2:
 3: #import "C:\program files\common files\system\ado\msado15.dll" \
 4: no_namespace \
 5: rename("EOF", "adoEOF")

The code in Listing 4.4 can be added to the end of the StdAfx.h file. The most important thing is to not
place the code inside the brackets in StdAfx.h that mark the autogenerated code. Line 1 includes a
header file that enables your application to use some special COM support classes in Visual C++.
These classes make it easier to work with OLE Automation data types, which are the data types ADO
uses. Lines 3, 4, and 5 use the #import directive to import the ADO library class declarations into
your application.

As mentioned earlier, ADO is a COM DLL and provides dual interfaces. The declarations of the ADO
classes are stored as a resource in the ADO DLL (msado15.dll) inside what is called a Type Library.
The Type Library describes the automation interface as well as the COM vtable interface for use
with C++. When you use the #import directive, at runtime Visual C++ reads the Type Library from
the DLL and creates a set of C++ header files from it. These header files have .tli and .tlh
extensions and are stored in the build directory. The ADO classes that you call from your C++ code
are declared in these files.

Line 4 in Listing 4.4 specifies that no namespace is to be used for the ADO objects. In some
applications, it might be necessary to use a namespace because of a naming collision between objects
in the application and objects in ADO. You can specify a namespace by changing line 4 to look like
the following:

rename_namespace("AdoNS")

Specifying a namespace for ADO enables you to scope the ADO objects using the namespace, like
this:

AdoNS::ADO_Object_Name

Line 5 renames EOF (end of file) in ADO to adoEOF so that it won't conflict with other libraries that
define their own EOF. Microsoft Knowledge Base article Q169496 provides further information on
this topic, if you need it.

Run your application to make sure it builds successfully with no errors or warnings. After the build,
you should see the TLI and TLH files in the build directory. They are the header files that the compiler
created from the Type Library in msado15.dll. Feel free to have a look at them. They declare the ADO
classes you can call from your code.

As mentioned earlier, the typical ADO programming sequence starts with making a connection to the
database. A single ADO Connection object is normally shared and reused by multiple instances of
other ADO objects.

This is very similar to the way an MFC Document class is used in an MFC application. Therefore, it
makes sense to place an ADO Connection object in the Document class of an MFC application.

When a document is opened in OnNewDocument, you can call the ADO Connection object's Open
function to connect to the data source. In OnCloseDocument, you can call the Connection object's
Close function to close the connection to the data source.

In an MFC application, the Document object is easy to access from the other objects (particularly the
MFC View objects). By placing the ADO Connection object within that Document object, you
create a connection to the data source, which you can share and re-use and which automatically opens
and closes as the document(s) opens and closes.

Declare a pointer to an ADO Connection object in your Document class's header file as a public
member of the Document class. You also need to add a data member that you will use to indicate
whether the connection is open.

Listing 4.5. Changes to the Document Header File

 1: class CADOMFC1Doc : public CDocument
 2: {
 3: // Attributes
 4: public:
 5: BOOL m_IsConnectionOpen;
 6: _ConnectionPtr m_pConnection;

After making the additions shown in lines 5 and 6, your application should still build with no errors or
warnings. In your Document class constructor, initialize the m_IsConnectionOpen member to
FALSE, like this:

m_IsConnectionOpen = FALSE;

Open the connection to the data source in the Document class OnNewDocument function.

Listing 4.6. OnNewDocument

 1: BOOL CADOMFC1Doc::OnNewDocument()
 2: {
 3: if (!CDocument::OnNewDocument())
 4: return FALSE;
 5:
 6: HRESULT hr;
 7: hr = m_pConnection.CreateInstance(__uuidof(Connection));
 8: if (SUCCEEDED(hr))
 9: {

10: hr = m_pConnection->Open(
11: _bstr_t(L"Provider=Microsoft.Jet.OLEDB.3.51;
 Data Source=c:\\tysdbvc\\vcdb.mdb;"),
12: _bstr_t(L""),
13: _bstr_t(L""),
14: adModeUnknown);
15: if (SUCCEEDED(hr))
16: {
17: m_IsConnectionOpen = TRUE;
18: }
19: }
20:
21: return TRUE;
22: }

Line 6 defines an HRESULT variable, hr. ADO functions (and COM functions, in general) return
HRESULTs. Macros help you decode the meaning of an HRESULT. The SUCCEEDED macro on line 8
is a good example. Line 7 calls the _ConnectionPtr class CreateInstance function to create
an instance of an ADO Connection object. If that succeeds, lines 10-14 call the Open function to
actually make a connection to a data source. Line 11 is location specific, so you need to verify that it
matches the location of the file on your machine. If it succeeds, line 17 sets m_IsConnectionOpen
to TRUE.

Lines 11-13 create (temporary) instances of the _bstr_t class, which are passed as parameters to the
Open function. As you know, _bstr_t(L"") calls the _bstr_t class constructor to create a
temporary instance of _bstr_t. The L in front of the quote marks makes the string that is passed to
the _bstr_t constructor a wide-character string.

The _bstr_t class is one of the COM support classes included with Visual C++. It is declared in
comdef.h, which you included in StdAfx.h (see Listing 4.4, line 1). _bstr_t encapsulates the BSTR
data type, which COM and ADO use to pass strings in function calls. You will learn more about
COM, _bstr_t, and BSTR later. For now, know that _bstr_t makes it easier to use BSTR from
C++ (using BSTR in C++ without the _bstr_t class is somewhat involved). You can pass instances
of _bstr_t as arguments to ADO functions that require BSTR.

Line 11 is where you tell ADO which OLE DB provider to use and how to find the database file. The
Provider= portion of the string specifies that you want to use the Jet OLE DB Provider. The Data
Source= portion of the string specifies the location of the file.

Line 12 specifies the username for logging on to the database. The sample database vcdb.mdb has no
users defined, so it can be an empty string. Line 13 specifies the password for logging on to the
database. Again, it can be empty because none are defined in vcdb.mdb.

Now that you have the code to open a connection to the database when the document opens, you need
to add the code to close the connection when the document closes in the Document class

OnCloseDocument function. You can run ClassWizard to do the work of adding the function to the
class (see Figure 4.4).

Figure 4.4: Using ClassWizard to override OnCloseDocument.

Specify the Document class, highlight the OnCloseDocument function, and press the Add
Function button. Then highlight the OnCloseDocument function in the Member Functions list box
and press the Edit Code button.

Listing 4.7. OnCloseDocument

 1: void CADOMFC1Doc::OnCloseDocument()
 2: {
 3: if (m_IsConnectionOpen)
 4: {
 5: m_IsConnectionOpen = FALSE;
 6: m_pConnection->Close();
 7: }
 8:
 9: CDocument::OnCloseDocument();
10: }

Add the code so that your OnCloseDocument function looks like Listing 4.7. Line 3 looks at
m_IsConnectionOpen to see whether the connection is open. If it is, line 5 sets the flag to FALSE
and line 6 closes the connection. After you add this code, your application will build without any
errors or warnings.

Before running your application, however, you add some error handling code. One of the peculiarities
of using ADO with #import is that, rather than return errors from functions, ADO throws exceptions
. This means that you must add exception-handling code where you use ADO, or your application will
die an ugly death every time ADO encounters an error condition at runtime and throws an exception.

Exception Handling for ADO

The exception-handling code for ADO is easy to add to your code. Add try...catch blocks where
your code calls ADO functions, as in Listing 4.8.

Listing 4.8. OnNewDocument with Exception Handling

 1: BOOL CADOMFC1Doc::OnNewDocument()

 2: {
 3: if (!CDocument::OnNewDocument())
 4: return FALSE;
 5:
 6: HRESULT hr;
 7:
 8: try
 9: {
10: hr = m_pConnection.CreateInstance(__uuidof(Connection));
11: if (SUCCEEDED(hr))
12: {
13: hr = m_pConnection->Open(
14: _bstr_t(L"Provider=Microsoft.Jet.OLEDB.3.51;
 Data Source=c:\\tysdbvc\\vcdb.mdb;"),
15: _bstr_t(L""),
16: _bstr_t(L""),
17: adModeUnknown);
18: if (SUCCEEDED(hr))
19: {
20: m_IsConnectionOpen = TRUE;
21: }
22: }
23: }
24: catch(_com_error &e)
25: {
26: // Get info from _com_error
27: _bstr_t bstrSource(e.Source());
28: _bstr_t bstrDescription(e.Description());
29: TRACE("Exception thrown for classes generated by #import");
30: TRACE("\tCode = %08lx\n", e.Error());
31: TRACE("\tCode meaning = %s\n", e.ErrorMessage());
32: TRACE("\tSource = %s\n", (LPCTSTR) bstrSource);
33: TRACE("\tDescription = %s\n", (LPCTSTR) bstrDescription);
34: }
35: catch(...)
36: {
37: TRACE("*** Unhandled Exception ***");
38: }
39:
40: return TRUE;
41: }

Add the try and the open brace in lines 8 and 9. Add the close brace and the catch blocks in lines
23-38. The catch in line 24 catches _com_error exceptions, which is the type that ADO throws.
_com_error is another of the COM support classes declared in comdef.h.

If an error occurs at runtime-for example, if the mdb database file doesn't exist at the location
specified in the Open function, the Jet OLE DB Provider will create the _com_error object and fill
its members with information describing the error. The ADO Open function will throw the
_com_error object. Lines 27-33 catch the _com_error object, retrieve that error information, and

display it in TRACE output to the debug window in Visual C++. Without catching this exception and
displaying the error information, tracking down the error would be nearly impossible. With this code
to catch the exception, you can track down errors quite easily. Add a similar try...catch block to
the OnCloseDocument function as well.

Make sure your application builds with no errors or warnings; then run the application in debug mode
to see whether you can successfully connect to the database. You can do this by setting three
breakpoints. Set one breakpoint on the CreateInstance call in OnNewDocument. Set another on
a line inside the catch block in OnNewDocument. Set the third in OnCloseDocument on the if
statement that tests whether m_IsConnectionOpen is TRUE. When you reach a break point, single
step to see what the code does. You should create an instance of an ADO connection and open the
connection when the application loads. When you close the application, the ADO connection will
close as well. If there are errors, you should see some indications of what caused the errors in your
TRACE statements in the debug window in Visual Studio.

Displaying Records in a List Control

When your application can connect to the database, the next step is to display records in a list control
in your application. One easy way to create a list control is to use the ClistCtrlEx class that is
included with the DAOVI

EW example in Visual C++. To use the ClistCtrlEx class, copy three files-CtrlExt.cpp, CtrlExt.h,
and CtrlExt.Inl-from the DAOVIEW example into the source code directory for your application. Add
CtrlExt.cpp to the list of source code files and add CtrlExt.h and CtrlExt.Inl to the list of header files
in your project. Make the additions to StdAfx.h shown in Listing 4.9.

Listing 4.9. More Changes to StdAfx.h

 1: #include <comdef.h>
 2:
 3: #import "C:\program files\common files\system\ado\msado15.dll" \
 4: no_namespace \
 5: rename("EOF", "adoEOF")
 6: #include <afxcmn.h> // if not already included
 7: #include <afxcview.h>
 8: #include "ctrlext.h"

Lines 1-5 show the code you added previously. Add the include files shown in lines 6-8. Line 6
(afxcmn.h) might already be included, depending on the options you chose in AppWizard. These
include files are required for the ClistCtrlEx class. After adding this code, your application
should build without any errors or warnings.

Use ClassWizard to override the OnCreate function in your application's View class.

Figure 4.5 : Using ClassWizard to override OnCreate.

Specify the View class, highlight the WM_CREATE message, and press the Add Function button. Then
highlight the OnCreate function in the Member Functions list box and press the Edit Code button.

Listing 4.10. Overriding the View's OnCreate

 1: int CADOMFC1View::OnCreate(LPCREATESTRUCT lpCreateStruct)
 2: {
 3: lpCreateStruct->style |= LVS_REPORT;
 4: if (CListView::OnCreate(lpCreateStruct) == -1)
 5: return -1;
 6:
 7: return 0;
 8: }

Listing 4.10 shows how the OnCreate function should look. The only code you need to add is line 3.
All the other code is already there. Line 3 gives the list control a LVS_REPORT style, which means
that the list control will display its columns.

Add some code to the OnInitialUpdate function of the View class. The OnInitialUpdate
function already exists in your code; AppWizard put it there when you specified that the View class
should derive from CListView. Add code like that shown in Listing 4.11.

LISTING 4.11. OnInitialUpdate

 1: void CADOMFC1View::OnInitialUpdate()
 2: {
 3: CListView::OnInitialUpdate();
 4:
 5: CListCtrlEx& ctlList = (CListCtrlEx&) GetListCtrl();
 6:
 7: ctlList.AddColumn(" First Test Column ",0);
 8: ctlList.AddColumn(" Second Test Column ",1);
 9: ctlList.AddColumn(" Third Test Column ",3);
10:
11: ctlList.AddItem(0,0,"First Test Row");
12: ctlList.AddItem(1,0,"Second Test Row");
13: }

Lines 7-12 use the AddColumn and AddItem functions from the ClistCtrlEx class declared in
CtrlExt.h. The AddColumn and AddItem functions in the ClistCtrlEx class make it very easy
to add columns and rows to a list control.

Your application should build successfully without any errors or warnings. When you run the
application, it will look like Figure 4.6.

Figure 4.6: The application with a list control.

Querying Records from the Database

You will now add code to execute a query and display the results in the list control every time you
right-click the View.

Use ClassWizard to override the WM_RBUTTONDOWN message. In the OnRButtonDown function,
add the code shown in Listing 4.12.

Listing 4.12. OnRButtonDown

 1: void CADOMFC1View::OnRButtonDown(UINT nFlags, CPoint point)
 2: {
 3: _RecordsetPtr pRecordSet;
 4: CADOMFC1Doc * pDoc;
 5: pDoc = GetDocument();
 6:
 7: _bstr_t bstrQuery("SELECT * FROM Customers");
 8: _variant_t vRecsAffected(0L);
 9:
10: try
11: {
12: pRecordSet = pDoc->m_pConnection->Execute(bstrQuery,
&vRecsAffected,
13:
adOptionUnspecified);
14: if (!pRecordSet->GetadoEOF())
15: {
16: CListCtrlEx& ctlList = (CListCtrlEx&) GetListCtrl();
17: ctlList.DeleteAllItems();
18: while(ctlList.DeleteColumn(0));
19:
20: ctlList.AddColumn(" First Name ",0);
21: ctlList.AddColumn(" Last Name ",1);
22:
23: int i = 0;

24: _variant_t vFirstName;
25: _variant_t vLastName;
26: while (!pRecordSet->GetadoEOF())
27: {
28: vFirstName = pRecordSet->GetCollect(L"CustFirstName");
29: ctlList.AddItem(i,0,(_bstr_t) vFirstName);
30: vLastName = pRecordSet->GetCollect(L"CustLastName");
31: ctlList.AddItem(i,1,(_bstr_t) vLastName);
32: i++;
33: pRecordSet->MoveNext();
34: }
35: }
36:
37: pRecordSet->Close();
38: }
39: catch(_com_error &e)
40: {
41: // Get info from _com_error
42: _bstr_t bstrSource(e.Source());
43: _bstr_t bstrDescription(e.Description());
44: TRACE("Exception thrown for classes generated by #import");
45: TRACE("\tCode = %08lx\n", e.Error());
46: TRACE("\tCode meaning = %s\n", e.ErrorMessage());
47: TRACE("\tSource = %s\n", (LPCTSTR) bstrSource);
48: TRACE("\tDescription = %s\n", (LPCTSTR) bstrDescription);
49: }
50: catch(...)
51: {
52: TRACE("*** Unhandled Exception ***");
53: }
54:
55: CListView::OnRButtonDown(nFlags, point);
56: }

Line 3 defines a smart pointer to a Recordset class. Lines 4 and 5 define and initialize a pointer to
the MFC Document. Line 6 constructs a _bstr_t that contains the SQL query string to select
records from the Customers table. Line 7 constructs a _variant_t that is passed as a parameter
to the Connection's Execute function in line 12. This variable is used to show how many records
were affected. The Jet OLE DB Provider apparently does not use this variable. Other OLE DB
providers might use it. In any case, you are required to pass the address of the variable as a parameter
to the Execute function.

The _variant_t class is another of the COM helper classes declared in comdef.h. The
_variant_t class encapsulates the OLE Automation VARIANT data type. Using the _variant_t
class is much easier than trying to use the VARIANT data type directly in C++. See the explanation of
lines 28-31 for examples of using the _variant_t class.

Line 12 (and line 13) calls the Connection object's Execute function through the MFC Document

object. The Execute function returns a Recordset object that contains the resultset from the query
and a cursor pointing to the first record. Line 14 tests for an EOF file condition of the cursor in the
Recordset. An EOF condition immediately after the Recordset object is created indicates that
the query returned no records. If the query did return some records, the cursor would be positioned at
the first record in the Recordset.

If the query returned records, lines 17-21 delete the existing rows and columns from the list control
and add a last name column and a first name column.

Line 26 starts a while loop that tests for the EOF condition in the cursor of the Recordset. Line
33 calls the MoveNext function in the Recordset to scroll the cursor forward one record at a time.
The loop executes until the cursor moves beyond the last record in the Recordset.

Lines 24 and 25 create two instances of _variant_t, for the customer first name and last name.
Lines 28 and 30 call the GetCollect function from the Recordset class. The field name from the
table in the database is passed as a parameter to the GetCollect function. The GetCollect
function returns a VARIANT containing the contents of the field in the current record.

The current record is the record on which the cursor is currently positioned.

Lines 28 and 30 store the VARIANT data from the field in the instances of _variant_t that were
created in lines 24 and 25. Lines 29 and 31 cast these _variant_ts as _bstr_ts and pass them to
the list control's AddItem function to display their contents in the window.

The _variant_t class is very handy for dealing with data from fields in a database. You can simply
cast the contents of a _variant_t, whether it is numeric or string or date/time data, to C++ and
COM data types. See the Visual C++ documentation under "_variant_t Extractors" for further
information.

There you have it. Your application is now capable of displaying data from the database in a list
control. Run the application and right-click the View window. The list control will display the
contents of first and last name fields in the Customers table.

Summary
To access a database that has a different type system from C++ and has its own language interpreter,
it's necessary to use a database API. Several database APIs are available to C++ developers.

The future of all data access in Microsoft Windows is OLE DB. The easiest way to use OLE DB is to
use ADO. ADO provides an object model that encapsulates the process of communicating with
databases from within C++ programs as well as from other programming languages.

Q&A

Q What is the best database API to use for my application?
A The database API you choose depends on the particular database you have chosen for

your application. If you are using a popular relational database, the most modern and
robust APIs are OLE DB and ADO.

Q I've heard that ODBC and OLE DB are slow. Shouldn't I use my database's native
API?

A The speed of the drivers for ODBC or OLE DB depends largely on the quality of the
vendor's implementation. For at least a couple of the popular databases, namely SQL
Server and Access, ODBC and OLE DB are highly optimized.

Q Where do I find an OLE DB provider for my database?
A You should check with your database vendor. If the vendor doesn't offer an OLE DB

provider, it might know of a third party that does. You can also check the Microsoft
Web site for a list of available OLE DB providers.

Q Using these _variant_ts and _bstr_ts looks a little weird. Isn't there an API
that lets me use C++ data types?

A Databases typically don't use C++ data types. It's the job of the database API to translate
between these data types. The _variant_t and _bstr_t classes provide great functionality
for translating between database types and C++ types, so don't be afraid of them.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What does a database API do?
2. What database APIs work with nonrelational data sources?
3. What does an ADO Connection object do?
4. What does the current record mean?

Exercises

1. Change the code in Listing 4.12 so that the customers are sorted by last name.
2. Change the code in Listing 4.12 to display the customer number as well as the customer first

and last name.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 5
 Adding, Modifying, and Deleting Data

● Cursor Types in ADO Recordsets
● The ADO AddNew, Update,and Delete Functions

❍ The AddNew Function
❍ The Update Function
❍ The Delete Function

● The SQL INSERT, UPDATE,and DELETE Statements
❍ The SQL INSERT Statement
❍ INSERT INTO Products (partnumber, productname) VALUES('xxx', 'yyy')
❍ The SQL UPDATE Statement
❍ The SQL DELETE Statement

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

One reason for the existence of database applications is to modify data in databases. You will learn
how to modify data in relational databases by using ADO functions, as well as SQL statements, in
your C++ programs. When you complete today's work, you will know how to create applications that
alter the data in relational databases.

Today you will

● Learn about cursor types in ADO Recordsets.
● Use the ADO AddNew, Update, and Delete functions.
● Use SQL INSERT, UPDATE, DELETE statements.

Cursor Types in ADO Recordsets
As you know, an ADO Recordset object encapsulates a resultset, which contains records from a
query, and a cursor, which enables you to move through those records. There are four different types
of cursor in ADO--dynamic, keyset, static, and forward only--each with unique capabilities and
attributes.

A dynamic cursor enables you to view additions, changes, and deletions made by other users while the
recordset is open. A dynamic cursor also enables all types of movement through the Recordset,
including the ability to move n number of records forward or backward, move to the first record, and
move to the last record.

A keyset cursor enables you to see changes made by other users. However, you can't see records that
other users add, nor can you access records that other users delete. It enables all types of movement
through the Recordset.

A static cursor provides a static copy (or snapshot) of a set of records and enables all types of
movement through the Recordset. Additions, changes, or deletions by other users are not visible.

A forward-only cursor enables you to see changes made by other users and to scroll only forward
through records. This improves performance when you need to make only a single pass through a
Recordset.

The type of cursor you choose depends on your requirements. However, bear in mind that queries
execute much faster if you use a forward-only cursor. In database applications, performance is always
an issue. Therefore, you should typically use forward-only cursors and save dynamic, keyset, or static
cursors for when you need the features they offer.

You specify the cursor type in ADO before opening the Recordset, or you pass a CursorType
argument with the Recordset Open function. Some providers don't support all cursor types. Check
the provider's documentation. If you don't specify a cursor type, ADO opens a forward-only cursor by
default.

The ADO AddNew, Update, and Delete Functions
One way to add, change, and delete records in a database is to create a Recordset object and call its
member functions to add, change, and delete the records in the Recordset. The changes made to the

Recordset are applied to the database. In other words, if you change the records in the
Recordset, you change records in the database.

The ADO Recordset class has three member functions that enable you to modify the records in the
Recordset. These functions are AddNew, Update, and Delete.

Create a new Recordset menu with three items for AddNew, Update, and Delete, as shown in
Figure 5.1.

Figure 5.1 : The new Recordset menu.

To view the changes you will make to the database today, it would be handy to add a database project
to your current project. Select the Project Add to Project New… menu. Select the Project tab and
specify a database project, as shown in Figure 5.2.

Figure 5.2 : Add a database project.

When you click the OK button, you are presented with a dialog window where you specify the ODBC
DSN for the database project, as you did in Day 2, "Tools for Database Development in Visual C++
Developer Studio" (refer to Figures 2.11 and 2.12). After you specify the DSN, the database project
will be added to your current project. You need to select the Project Set Active Project menu to
specify that your current project should be the active one, not the database project. (Otherwise, you
will not be able to build or debug your application.)

The AddNew Function

The process of adding records by using the AddNew function involves creating two arrays and passing
them as parameters to the AddNew function. The first array is an array that contains the names of the
fields that will contain the data in the new record. The second array is an array of values to assign to
each field.

The tricky part of using AddNew is that the two arrays you pass as parameters must be VARIANT
arrays. The code to produce and manipulate VARIANT arrays in C++ can be involved. Because you
are using MFC for the sample applications in this book, your code can be simplified by using the MFC
ColeSafeArray class.

Listing 5.1 shows the code for adding a new record by using the AddNew function. Use ClassWizard
to add a handler function to the View class for the AddNew menu choice. In the AddNew handler
function for that menu item, add the code in Listing 5.1.

Listing 5.1. Using the ADO AddNew Function

 1: void CADOMFC1View::OnRecordsetAddnew()
 2: {
 3: _RecordsetPtr pRecordSet;
 4: CADOMFC1Doc * pDoc;
 5: pDoc = GetDocument();
 6:
 7: HRESULT hr;
 8: _bstr_t bstrQuery("SELECT * FROM Products WHERE PartNumber IS
 NULL");
 9: _variant_t vNull;
10: vNull.vt = VT_ERROR;
11: vNull.scode = DISP_E_PARAMNOTFOUND;
12:
13: try
14: {
15: hr = pRecordSet.CreateInstance(_uuidof(Recordset));
16: if (SUCCEEDED(hr))
17: {
18: pRecordSet->PutRefActiveConnection(pDoc->m_pConnection);
19: hr = pRecordSet->Open(_variant_t(bstrQuery), vNull,
20: adOpenForwardOnly, adLockOptimistic, adCmdText);
21: if (SUCCEEDED(hr))
22: {
23: // Create an array for the list of fields in
24: // the Products table.
25: COleSafeArray vaFieldlist;
26: vaFieldlist.CreateOneDim(VT_VARIANT,3);
27: // Fill in the field names now.
28: long lArrayIndex[1];
29: lArrayIndex[0] = 0;
30: vaFieldlist.PutElement(lArrayIndex,
31: &(_variant_t(ÒPartNumber")));
32: lArrayIndex[0] = 1;
33: vaFieldlist.PutElement(lArrayIndex,
34: &(_variant_t("ProductName")));
35: lArrayIndex[0] = 2;
36: vaFieldlist.PutElement(lArrayIndex,
37: &(_variant_t("Price")));
38:
39: // Create an array for the list of values to go in
40: // the Products table.
41: COleSafeArray vaValuelist;
42: vaValuelist.CreateOneDim(VT_VARIANT,3);
43: // Fill in the values for each field.
44: lArrayIndex[0] = 0;
45: vaValuelist.PutElement(lArrayIndex,
46: &(_variant_t("8TRACK-003")));
47: lArrayIndex[0] = 1;
48: vaValuelist.PutElement(lArrayIndex,
49: &(_variant_t("Bell Bottom Hits")));
50: lArrayIndex[0] = 2;
51: vaValuelist.PutElement(lArrayIndex,
52: &(_variant_t((float)19.95)));
53:

54: pRecordSet->AddNew(vaFieldlist, vaValuelist);
55: pRecordSet->Close();
56: }
57: }
58: }
59: catch(_com_error &e)
60: {
61: TRACE("Error:%08lx.\n", e.Error());
62: TRACE("ErrorMessage:%s.\n", e.ErrorMessage());
63: TRACE("Source:%s.\n", (LPCTSTR) _bstr_t(e.Source()));
64: TRACE("Description:%s.\n", (LPCTSTR)
_bstr_t(e.Description()));
65: }
66: catch(...)
67: {
68: TRACE("\n*** Unhandled Exception ***\n");
69: }
70: }

In Listing 5.1, line 3 defines a smart pointer to a Recordset. Lines 4 and 5 obtain a pointer to the
MFC document, which will enable you to get to the ADO Connection object that was opened with the
document.

Line 8 defines a _bstr_t object that contains a SQL SELECT statement. This SQL statement will be
passed to the Recordset Open function and will open a recordset that contains no records. The
WHERE clause specifies records where the PartNumber IS NULL. PartNumber is the primary
key in the Products table and will never be NULL. You want to use this Recordset only for
adding new records to the database, so you don't need the Recordset to contain any records. In
other words, you want an empty Recordset.

Lines 9-11 define a _variant_t object named vNull and set two of its data members. vNull will
be passed as the second parameter to the Recordset Open function. This parameter can contain a
string for connecting to the database during the Open call. Rather than pass a connect string, you
pass vNull and (in line 18) specify that the Recordset should use the connection already opened
in the MFC document.

Line 15 calls the _RecordsetPtr CreateInstance function to instantiate the Recordset
object. If that succeeds, lines 18-20 set the connection and open the Recordset. The Open function
specifies a forward-only cursor (adOpenForwardOnly) with optimistic record locking
(adLockOptimistic).

Optimistic locking means that just before the record is added, it is locked so that no other users can
muck with it while you're trying to write it to the database. Another option for locking is pessimistic
locking, which holds the lock for a longer time in the database. You will learn more about optimistic
and pessimistic locking later today in the section on the Update function.

In line 20, the last parameter for the Open call is adCmdText, which tells the database that you are
passing the text of a SQL statement, which it needs to interpret.

Lines 23-37 create an array of VARIANTs, called vaFieldlist, which contains the field names of
the new record. Lines 39-52 create another array of VARIANTs, called vaValuelist, that contains
the actual data values you will place in the fields of the new record. If you were adding multiple
records, you would probably define these arrays once and simply change the values of the
vaValuelist array before calling AddNew to add each record.

Line 54 passes these two arrays in the AddNew call to add the record to the database. Line 55 closes
the Recordset object. The rest of the code does exception handling.

You should be able to build the application with no errors or warnings. When you run the application,
set a breakpoint on line 5 or so and another breakpoint in the exception-handling code, such as line 61.
When you run the application and take the AddNew menu choice, you will receive no exceptions, and
it will add the new record to the Products table. If you try to add the same record twice, you will
receive an exception from the database, telling you that the changes were not successful because they
would create duplicate values in the index or primary key. This is an example of the database ensuring
the integrity of the data.

This might seem like a large amount of code for adding merely one record to the database. It is.
However, you must realize that the Insert performance (the speed with which you can add records
to a database) is often a critical factor in database applications. The ADO AddNew function is highly
optimized so that it executes very efficiently (when used with an empty, forward-only Recordset,
as in Listing 5.1). To reduce the amount of code you must write, you could encapsulate the code in
Listing 5.1 into a function that builds the VARIANT arrays and takes the values of the data for the new
records as parameters.

The Update Function

The ADO Update function enables you to edit an existing record. The idea is to open a Recordset
that contains the record you want to edit. Position the cursor at the appropriate record (if it is not there
already). Change the data in the field(s) you want to edit. Then call Update to commit the changes to
the database. (An alternative to calling Update is to move the cursor off the record. This has the
effect of implicitly calling Update.)

Use ClassWizard to add a handler function to the View class for the Recordset Update menu; then add
the code in Listing 5.2.

Listing 5.2. Using the ADO Update Function

 1: void CADOMFC1View::OnRecordsetUpdate()
 2: {

 3: RecordsetPtr pRecordSet;
 4: CADOMFC1Doc * pDoc;
 5: pDoc = GetDocument();
 6:
 7: HRESULT hr;
 8: bstr_t bstrQuery(
 9: "SELECT * FROM Products WHERE PartNumber = '8TRACK-003'");
10: variant_t vNull;
11: vNull.vt = VT_ERROR;
12: vNull.scode = DISP_E_PARAMNOTFOUND;
13:
14: try
15: {
16: hr = pRecordSet.CreateInstance(_uuidof(Recordset));
17: if (SUCCEEDED(hr))
18: {
19: pRecordSet->PutRefActiveConnection(pDoc->m_pConnection);
20: hr = pRecordSet->Open(_variant_t(bstrQuery), vNull,
21: adOpenForwardOnly, adLockOptimistic, adCmdText);
22: if (!pRecordSet->GetadoEOF())
23: {
24: pRecordSet->PutCollect(L"ProductName",
25: L"Bell Bottoms and Bass Guitars");
26: pRecordSet->Update(vNull, vNull);
27: pRecordSet->Close();
28: }
29: }
30: }
31: catch(_com_error &e)
32: {
33: TRACE("Error:%08lx.\n", e.Error());
34: TRACE("ErrorMessage:%s.\n", e.ErrorMessage());
35: TRACE("Source:%s.\n", (LPCTSTR) _bstr_t(e.Source()));
36: TRACE("Description:%s.\n", (LPCTSTR)
_bstr_t(e.Description()));
37: }
38: catch(...)
39: {
40: TRACE("\n*** Unhandled Exception ***\n");
41: }
42: }

Lines 3-7 are identical to the code in Listing 5.1 and merely initialize some variables you will need.
Line 8 defines an instance of _bstr_t that contains a SQL SELECT statement that selects the record
you added in Listing 5.1. Lines 10-19 are the same as Listing 5.1. Line 20 opens the Recordset.
Line 22 tests whether the EOF file condition is true. If it isn't, that means you have the record you are
looking for.

Lines 24 and 25 call the Recordset PutCollect function to change the product name for this
record to Bell Bottoms and Bass Guitars, which is obviously a much groovier title than Bell Bottom

Hits. As an alternative to calling PutCollect, you could pass an array of field names and an array
of values to the Update function. Line 26 calls Update to commit the change, and line 27 closes the
Recordset.

This code will build with no errors or warnings. It will run with no exceptions or errors and will
update the product name in the database. To ensure that this code runs properly, set some breakpoints
when you execute this function. After you run it, you can open the Products table in Developer
Studio and see whether the ProductName field for that record changed, as it should.

I mentioned locking earlier. The difference between optimistic and pessimistic locking consists
primarily in the length of time the lock is held in the database. With pessimistic locking, the lock is
initiated as soon as you modify the contents of a field in the record (in this case, by calling
PutCollect). The lock is held until after you call Update or move the cursor off the record to
commit the change.

With optimistic locking, the lock is initiated and held only when the change is committed to the
database during the Update call. This means the lock is held for a very short time. However, if
another user modifies the record during the time between your PutCollect call and your Update
call, your Update call will fail (the database will reject your change to the record). If that happens,
you need to retry to make the change.

Optimistic locking generally supports larger numbers of concurrent users than pessimistic locking.
However, with optimistic locking, the users might have to try to commit their changes more than once.

The Delete Function

The ADO Delete function enables you to delete an existing record from the database. The idea is to
open a Recordset that contains the record you want to edit. Position the cursor at the appropriate
record (if it isn't already there). Then call the Delete function to remove the records from the
database.

Use ClassWizard to add a handler function to the View class for the Recordset Delete menu; then add
the code in Listing 5.3.

Listing 5.3. Using the ADO Delete Function

 1: void CADOMFC1View::OnRecordsetDelete()
 2: {
 3: RecordsetPtr pRecordSet;
 4: CADOMFC1Doc * pDoc;
 5: pDoc = GetDocument();
 6:
 7: HRESULT hr;
 8: bstr_t bstrQuery(

 9: "SELECT * FROM Products WHERE PartNumber = '8TRACK-003'");
10: variant_t vNull;
11: vNull.vt = VT_ERROR;
12: vNull.scode = DISP_E_PARAMNOTFOUND;
13:
14: try
15: {
16: hr = pRecordSet.CreateInstance(_uuidof(Recordset));
17: if (SUCCEEDED(hr))
18: {
19: pRecordSet->PutRefActiveConnection(pDoc->m_pConnection);
20: hr = pRecordSet->Open(_variant_t(bstrQuery), vNull,
21: adOpenForwardOnly, adLockOptimistic, adCmdText);
22: if (!pRecordSet->GetadoEOF())
23: {
24: pRecordSet->Delete(adAffectCurrent);
25: pRecordSet->Close();
26: }
27: }
28: }
29: catch(_com_error &e)
30: {
31: TRACE("Error:%08lx.\n", e.Error());
32: TRACE("ErrorMessage:%s.\n", e.ErrorMessage());
33: TRACE("Source:%s.\n", (LPCTSTR) _bstr_t(e.Source()));
34: TRACE("Description:%s.\n", (LPCTSTR)
_bstr_t(e.Description()));
35: }
36: catch(...)
37: {
38: TRACE("\n*** Unhandled Exception ***\n");
39: }
40: }

In Listing 5.3, lines 3-23 are identical to the code in Listing 5.2. You are opening a Recordset that
contains the record that you added to the database in Listing 5.1. If the record is there, line 24 calls
Delete and passes adAffectCurrent as a parameter so that only the current record is deleted
from the database.

The code will build with no errors or warnings and run with no exceptions. It will delete the record
that you added in the AddNew section earlier today.

The SQL INSERT, UPDATE, and DELETE Statements
So far, you have used the ADO Recordset to make changes to records in the database. You can
also use SQL statements to make changes to records.

You've already learned about the SQL SELECT statement for retrieving data from the database. Now
you will learn about three SQL statements that enable you to modify the data in a database. You could
use the Execute statement in the ADO Connection object to send these statements to the database,
but the easiest way to learn these statements is to use Developer Studio. You will now learn how to
send these statements to the database by using Developer Studio.

The SQL INSERT Statement

The SQL INSERT statement enables you to add records to the database. The basic syntax looks like
this:

INSERT INTO which table(list of columns) VALUES(list of values)

Now you will use the INSERT statement to add a record to your database. Switch to the Data View
and double-click the Products table to open it. Click the SQL button on the Query toolbar so that
you can view and edit the SQL query. Change the query so that it looks like the one in Figure 5.3.

Figure 5.3 : The INSERT statement.

Visual Studio can help you by building the basic structure of the INSERT statement. If you click the
Change Type button on the Query toolbar and then select Insert Values from the drop-down list,
Visual Studio will create a basic INSERT statement for you. All you need to do is fill in the field
names and their values.

NOTE
In SQL statements, text field values are bounded by single quotes (') and
numeric values are not. This enables the database engine to properly
interpret these data types.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (!) button on the Query toolbar to execute the statement and insert the record.

After you run the query, a message box will appear, telling you that one record was affected. Also, the
area below the SQL INSERT statement in the query window will become empty. As you know, the
query window displays the records that the database returned as a result of the SQL statement. The
window is empty because the SQL INSERT statement doesn't return data. To view the contents of the
table, you must change the query back to a SQL SELECT statement (which does return data).

Edit the SQL query so that it looks like this:

SELECT Products.* FROM Products

Visual Studio can help you easily create the SELECT statement. If you click the Change Type button
on the Query toolbar and then select Select from the drop-down list, Visual Studio will create most of
a SELECT statement for you. All you need to do is add the table name and an asterisk after SELECT.

When you run the query, you should see all the records, including the one you just added to the table
with your INSERT statement.

You can use an incomplete field list in an INSERT statement to add data to only some of the fields in
the new record. For example, in the Products table, you could use a statement such as the one
below to add a record without specifying the price.

INSERT INTO Products (partnumber, productname) VALUES('xxx',
'yyy')

You can perform more advanced operations by using the SQL INSERT statement, such as inserting
multiple records that were retrieved from other tables with a SELECT statement. You will learn more
about advanced INSERT operations tomorrow on Day 6, "Harnessing the Power of Relational
Database Servers."

The SQL UPDATE Statement

The SQL UPDATE statement enables you to modify the data in existing records in the database. The
basic syntax looks like this:

UPDATE which table SET which field = new value, which field = new
value, ... WHERE condition

Now you will use the UPDATE statement to modify the record you inserted into your database.
Change the query in the query window so that it looks like the one in Figure 5.4.

Figure 5.4 : The UPDATE statement.

Visual Studio can help you by building the basic structure of the UPDATE statement. If you click the
Change Type button on the Query toolbar and then select Update from the drop-down list, Visual
Studio will create a partial UPDATE statement for you. All you need to do is fill in the field names and
their values and add a WHERE clause.

CAUTION
Make sure to include a WHERE clause in your UPDATE statement! An
UPDATE statement that does not contain a WHERE clause will modify
every record in the table.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (!) button on the Query toolbar to execute the statement and update the record.

A message box will appear, telling you that one record was affected. The portion of the query window
that displays the data will be empty because the UPDATE statement doesn't return any data. Change
the SQL statement to a SELECT statement so that you can view the records, including the one you just
modified. The record should reflect the changes you specified in your UPDATE statement.

As you can see from Figure 5.4, you can use an incomplete field list in an UPDATE statement to
modify only some of the fields in the record. You can also do more advanced operations with the
UPDATE statement, such as replacing numeric data with the results of a mathematical operation. Also,
you can use a SELECT statement in the WHERE clause to modify records that match very complex
criteria. Tomorrow you will learn more about advanced operations with the UPDATE statement.

The SQL DELETE Statement

The SQL DELETE statement enables you to delete existing records in the database. The basic syntax
looks like this:

DELETE FROM which table WHERE condition

Because you are deleting an entire record, the DELETE statement doesn't require you to specify a list
of fields. You tell it which table you want to delete a record from and the criteria for the record.

Now you will use the DELETE statement to remove the record you inserted into your database.
Change the query so that it looks like the one in Figure 5.5.

Figure 5.5 : The DELETE statement.

Visual Studio can help you by building the basic structure of the DELETE statement. If you click the
Change Type button on the Query toolbar and then select Delete from the drop-down list, Visual
Studio will create a DELETE statement for you. In fact, Visual Studio will remember the WHERE
clause from the UPDATE statement and use that for your DELETE statement.

CAUTION
Make sure to include a WHERE clause in your DELETE statement! A
DELETE statement that doesn't contain a WHERE clause will delete every
record in the table.

Press the SQL Check button on the Query toolbar to verify the SQL syntax. The syntax should verify
okay. Press the Run (!) button on the Query toolbar to execute the statement and delete the record.

A message box will appear, telling you that one record was affected. The portion of the query window
that displays the data will be empty because the DELETE statement doesn't return any data. Change
the SQL statement to a SELECT statement so that you can view the records. The record you added
should no longer exist in the Products table.

Summary
Today you learned two methods for manipulating records in a database. You learned how to
manipulate records from C++ code by using the ADO Recordset member functions to insert,
update, and delete records. You also learned how to manipulate records from SQL, using the INSERT,
UPDATE, and DELETE statements.

Q&A

Q Is it possible to present a UI that lets users edit the contents of records in the
database?

A Of course. It would be a matter of positioning the cursor on the appropriate record and
calling the ADO Recordset GetCollect function to read the values of the data
from the record's fields. You could place those data values in edit controls for the users
to change if they want. Then, if users specify that they want to commit the changes to
the database, your code could call the PutCollect and Update functions to make
the changes in the database.

Q I need to optimize the query performance of my database. What is the fastest
cursor type for queries?

A As I mentioned, forward-only cursors are the fastest for query processing. For even
greater speed, you could specify a read-only, forward-only cursor. You make a cursor
read-only by specifying adLockReadOnly as the lock type in the ADO Recordset
Open function. You cannot insert, update, or delete records in a read-only cursor, but
select performance will be optimal and significantly faster than other cursor types.

Q When should I use the ADO Recordset AddNew, Update, and Delete
functions, and when should I use the SQL INSERT, UPDATE, and DELETE
statements?

A If you need to modify data from within a C++ program, you could use the ADO
Recordset functions. You could also execute a SQL INSERT, UPDATE, or DELETE
statement from within a C++ program by using the ADO Connection Execute
function. Typically, you would use the ADO Connection to execute a SQL statement
only when you need to build the SQL statement dynamically at runtime and submit it to
database for processing. If you know at design time what the operations on the database
will be, you should use the ADO Recordset functions because they generally give
better performance.

Workshop

The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is a forward-only cursor?
2. What function do you use to place a value in a field of the current record in an ADO

Recordset?
3. What is wrong with this SQL statement?

DELETE FROM customers

4. What are the two arguments that you must pass to the ADO Recordset AddNew function?
5. What happens if you specify only one field/value pair in the SET clause of the SQL UPDATE

function?

Exercises

1. Discover what happens in the Price field when you specify only the PartNumber and
ProductName fields in a SQL INSERT statement for the Products table, like this:

INSERT INTO Products(PartNumber, ProductName)
VALUES ('xxx', 'yyy')

2. Modify the code in Listing 5.1 so that it doesn't specify a price for the new record.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 6
 Harnessing the Power of Relational
 Database Servers

● Multitier Applications
● How to Process Data at the Server
● SQL Statements for Processing Data at the Server

❍ The SQL INSERT Statement
❍ The SQL UPDATE Statement
❍ The SQL DELETE Statement
❍ SQL Stored Procedures

● C++ Tools for Processing Data at the Server
❍ Calling Stored Procedures with ADO Command Objects
❍ Calling Stored Procedures That Take Parameters

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Database servers have the capacity to process huge amounts of data at the server while requiring very
little processing from client applications. This enables you to use database servers as backend data-
processing engines for large client/server applications and for database-driven Web sites.

When you complete today's work, you will understand how to use relational database servers as
backend data-processing engines.

Today you will

● Learn about multitier applications.
● Discover how to process data at the server.
● Create SQL statements that process data at the server.
● Use C++ tools for processing data at the server.

Multitier Applications
In a conventional C++ application, all the logic for the application is implemented in C++ code, and at
runtime a single process executes the code. If the database for the application is merely a file on disk,
the database is basically inert. The database has no life of its own because all the logic and processing
are done inside the application's C++ code.

This is a classic single-tier system. The application consists of one process that does all the work. (As
you know, a process in Win32 is one instance of a running program.)

In a multitier system, the application consists of more than one process. These processes run
simultaneously and cooperate with each other to accomplish the work of the application. The
processes can be running on different machines. Each process typically has certain tasks that it is
optimized to perform. The different processes in the application are organized into tiers, based on the
type of tasks they perform and the machine on which they are running.

A relational database server is a process that is optimized to handle large amounts of data and can do
this without any help from the other processes in the application.

Keep in mind that in a multitier application, the database server is not inert. The database itself has
logic and processing power. You can write code that is executed by the database. The trick is to build
your database code so that the database fulfills the task of handling large amounts of data without
burdening the other processes in the application.

To avoid burdening other processes in the application, the database server code must do all the heavy
lifting when it comes to processing records from the database. The database code must reduce records
from the database into information, information that has been processed and summarized into bite-size
pieces that the other processes in the application can easily swallow. To accomplish this, you must
learn how to process data at the server.

How to Process Data at the Server
The programs you have thus far created for this book have processed records one at a time. Relational

database servers are capable of processing many records at a time. In fact, they are built to do just that.
Using a relational database to process one record at a time is like using a dump truck to haul one
shovelful of dirt at a time. You can do it, but it's wasteful.

You need to know how to do two things to create multitier applications that take advantage of
relational database servers. You need to learn how to use SQL statements that process more than one
record at a time and how to call those SQL statements from within a C++ program in such a way that
the database server (instead of your C++ program) does the heavy lifting of the data.

SQL Statements for Processing Data at the Server
Yesterday you learned how to use the SQL INSERT, UPDATE, and DELETE statements. The SQL
statements you worked with yesterday added, modified, and deleted single records.

In your work yesterday, the SQL INSERT, UPDATE, and DELETE statements were underutilized. A
single INSERT, UPDATE, or DELETE statement needn't be limited to one record. The statement can
affect literally millions of records in the database, and the database will execute these statements
without any need for help or intervention from other processes.

The SQL INSERT Statement

As you will recall, the SQL INSERT statement enables you to add records to the database. The basic
syntax to add a single record looks like this:

INSERT INTO which table(list of columns) VALUES(list of values)

However, you can extend this syntax to add multiple records by using one INSERT statement. You
can add multiple records to a table by replacing the VALUES clause with a SELECT statement that
selects multiple records, like this:

INSERT INTO which table(list of columns) SELECT * FROM which table

You can use this technique yourself in the VCDb.mdb database. Open your ADOMFC1 project, select
the Data View, and open a Query window on the Orders table. You will see that three orders are
recorded in the table. Let's say a customer named Bill Clinton wants to order all the 8-track tapes the
company sells. (Remember that in the sample application from Day 1, "Choosing the Right Database
Technology," you are writing a C++ program that salespeople use to record these orders.)

As you know, the products are listed in the Products table. Open a Query window on the
Products table, and you will see that the company sells two 8-track tapes. You added a third 8-track
yesterday when you learned about the SQL INSERT statement. You also removed it when you learned
about the DELETE statement. To make this exercise more interesting, again add the third 8-track into
the Products table by using the following INSERT statement:

INSERT INTO Products (partnumber, productname, price)
 VALUES('8TRACK-003', 'Bell Bottoms and Bass Guitars', 29.95)

Mr. Clinton wants to order all the 8-tracks the company sells. That means that to record the order, you
need to insert three records into the Orders table. You could issue three INSERT statements, one for
each record. The first INSERT statement would look like Listing 6.1.

Listing 6.1. The INSERT Statement to Add a Single Order Record

 1: INSERT INTO Orders (ordernumber, orderdate,
 2: customernumber, partnumber, price,
 3: shippingandhandling, paymentmethod)
 4: VALUES (4, { d '1998-11-16' }, 5, '8TRACK-001',
 5: 19.95, 4, 'MC 1223 9873 2028 8374 9/99')

You would need to issue two more INSERT statements, one for each additional 8-track. Issuing these
INSERT statements from your C++ program (using ADO) would mean three calls from your program
into the database. If your C++ program and the database were running on different machines, it would
require three network round trips between machines just to add one order.

For your application to be efficient, the database needs to do the bulk of the work with the data. There
needs to be some way to add an order for all the 8-tracks by using just one call from your C++
program: You use a single INSERT statement to add multiple records. To do this, you must replace
the VALUES clause of the INSERT statement with a SELECT statement.

First, you need to create a SELECT statement that produces output that can be inserted into the
Orders table. The output from the SELECT must produce data that matches the fields in the
Orders table. The SELECT statement in Listing 6.2 does this.

Listing 6.2. The SELECT Statement That Matches Order Records

1: SELECT 4, { d '1998-11-16' }, 5, PartNumber, Price, 4,
2: 'MC 1223 9873 2028 8374 9/99'
3: FROM Products
4: WHERE (PartNumber LIKE '8TRACK%')

In the Data View, click the plus sign next to the Orders table so that you can see its fields and can
compare them with the SELECT statement in Listing 6.2. The SELECT statement begins in line 1 by

selecting 4, which will be the order number for this order. The 4 is hard-coded into the SELECT
statement, so every record that the SELECT produces will begin with a numeric 4. The next value the
SELECT produces is a date of November 16, 1998. This is followed by a 5, which is Mr. Clinton's
customer number. Then it selects the PartNumber and Price fields (you can see in the FROM
clause in line 3 that these fields come from the Products table). Last, the SELECT statement
produces another numeric 4 (for the ShippingAndHandling field in Orders) and a credit card
number (for the PaymentMethod field in Orders).

The WHERE clause in line 4 uses the LIKE keyword and the % wildcard character to find all product
records that have a part number that begins with "8TRACK". Issue this SELECT statement against the
Products table, and it will return three records.

You now have a SELECT statement that produces output that can be inserted into the Orders table.
You can use this SELECT statement inside an INSERT statement to add an order for all the 8-tracks
the company sells, as in Listing 6.3.

Listing 6.3. The INSERT Statement with SELECT for Adding Multiple Records

 1: INSERT INTO Orders (ordernumber, orderdate, customernumber,
 partnumber,
 2: price, shippingandhandling, paymentmethod)
 3: SELECT 4, { d '1998-11-16' }, 5, PartNumber, Price, 4,
 4: 'MC 1223 9873 2028 8374 9/99'
 5: FROM Products
 6: WHERE (PartNumber LIKE '8TRACK%')

Issue this statement from a Query window; then open the Orders table and see that it added three
records.

Now you have a single SQL statement that adds multiple records. Your C++ program no longer needs
to issue three INSERT statements to the database to add this order. Your C++ program can send this
single INSERT statement to add all three records. The database is handling all the processing of the
data, with only one call from the client application.

This is the essence of multitier database application development. The idea is to take advantage of the
power of the relational database servers to reduce the number of round trips between the client and
server processes.

The SQL UPDATE Statement

The SQL UPDATE statements you wrote yesterday updated only one record. As you might have

guessed, though, the UPDATE statement can update multiple records in a single call. The syntax for
doing this is straightforward. As you recall, the syntax for UPDATE is

UPDATE which table SET which field = new value, which field = new
value ... WHERE condition

Suppose you need to change the price of all the 8-tracks in the database. Despite sales to Mr. Travolta
and Mr. Clinton, the company is not selling enough 8-track tapes. To spur demand, management has
decided to reduce the price of each 8-track by $10.

As you know, there are three 8-track records in the Products table. You could issue three UPDATE
statements, or you could issue a statement like the following:

UPDATE products SET price = (price - 10) WHERE (PartNumber LIKE
'8TRACK%')

This statement will update every record where the PartNumber field starts with "8TRACK",
replacing the Price field with $10 less than the current price listed in that record. Execute this
statement to make sure it works the way you would expect.

The SQL DELETE Statement

Now suppose, even after the price decrease, that sales of the 8-tracks still aren't sufficient. Therefore,
the company has decided to discontinue selling 8-tracks.

You must delete the three 8-track records from the Products table. Should you issue three DELETE
statements? I think not. You should issue a single DELETE statement with the WHERE clause written
so that it affects all the 8-track records, like this:

DELETE FROM Products WHERE (PartNumber LIKE '8TRACK%')

However, if you try to issue this command, you will receive an error from the database (provided the
Access database is set up to enforce referential integrity, like the database on the CD-ROM). The
DELETE statement is correct, but what you are trying to do will cause orphaned data in the Orders
table. You can't delete these records from the Products table because their part numbers are
included in orders recorded in the Orders table. If you delete these product records, you would not
be able to obtain complete information on past orders that include these products. The orders would
show a part number only. You would not be able to look up the name of the product because that
information would no longer exist in the Products table. In relational database parlance, deleting
these records would violate the referential integrity of the data.

A less-than-relational database would let you make the mistake of deleting these product records.
Relational database servers such as SQL Server and Oracle prevent this type of mistake and help you
preserve the referential integrity of your data. Microsoft Access, which does the best job of applying
the relational model in desktop databases, also prevents this mistake. When using other database

technologies, caveat developer (let the developer beware).

Rather than delete these records, a better approach might be to add a field to the Products table to
indicate whether the product is currently for sale. You will learn more about relational database design
in the next few days.

SQL Stored Procedures

I mentioned earlier today that a database server is not inert. The database itself has logic and
processing power. As you know, client programs can send text strings containing SQL statements to
the database, and the database will interpret the statements and return any data that they produce. It is
possible for relational database servers to save SQL statements in a compiled form.

Stored procedures are compiled SQL statements, which are stored inside a relational database. Each
stored procedure is given a unique name so that client programs can call it.

Stored procedures provide two important benefits. They enable SQL code to run in compiled instead
of interpreted form. The benefit of compiled SQL code is faster execution. In addition, stored
procedures execute at the server and require no resources from a client program. The second benefit
derives from stored procedures providing a layer of abstraction that can hide the details of the database
design. The benefit of this abstraction is that client programs need not know the details of how the
various tables and fields in database are constructed. The client code can be simpler, and the database
design can be modified without breaking the client code.

A stored procedure may be a straight SQL statement that simply executes as it is written, or it may
accept parameters from the calling program for more dynamic execution, as you will see later today.

Relational database servers (such as Oracle and SQL Server) are the only databases that provide true
stored procedures. Microsoft Access provides something similar to stored procedures, called Queries.
These Queries in Access are in some ways similar to stored procedures: They can be called by name
from client programs, they can accept parameters, and they can abstract the details of the database.

However, Queries in Access are not compiled like stored procedures in relational database servers.
Queries also do not execute at the server (because Access applications are file based, as described in
Day 1). Another difference is that Visual Studio treats Access Queries as Views in the Data View
window. This is unfortunate because, as you will see later, it prevents you from executing Queries that
take parameters from inside Visual Studio. By contrast, SQL Server stored procedures appear in a
folder titled Stored Procedures in the Data View window. If you execute a SQL Server stored
procedure that takes parameters from inside Visual Studio, you will be prompted to enter the
parameters, and the stored procedure will execute properly.

Despite their shortcomings, Queries in Access do provide a place to begin your exploration of stored
procedures. In fact, two Queries are included in VCDb.mdb. The first Query is called
CustomerWithMostRecentOrder and consists of a simple SELECT statement. The text of the
SELECT statement is shown in Listing 6.4.

Listing 6.4. The CustomerWithMostRecentOrder SQL Statement

 1: SELECT 'Customers'.*
 2: FROM Customers
 3: WHERE custnumber IN
 4: (
 5: SELECT 'Orders'.customernumber
 6: FROM 'Orders'
 7: WHERE orderdate =
 8: (
 9: SELECT MAX(orderdate)
10: FROM Orders
11:)
12:);

This is the same query you saw in Day 3, "Retrieving Data Through Structured Query Language
(SQL)," that returns the customer who placed the most recent order. Because it's now stored as a
Query in the Access database, you can run it without having to send all the SQL code to the database
from a client program. A client program can simply call the Query. One way to call Queries in Access
(and stored procedures in a relational database) is to use an ADO Command object. You will learn
about ADO Command objects later today. You can execute this Query in Visual Studio by double-
clicking it in the Data View.

The second Query is called CustomersWithOrdersSinceDate and consists of a SELECT
statement that takes a date as a parameter. The text of the Query is shown in Listing 6.5.

Listing 6.5. The CustomersWithOrdersSinceDate SQL Statement

 1: SELECT 'Customers'.*
 2: FROM Customers
 3: WHERE custnumber IN
 4: (
 5: SELECT 'Orders'.customernumber
 6: FROM 'Orders'
 7: WHERE OrderDate > [param1]
 8:);

The CustomersWithOrdersSinceDate query shown in Listing 6.5 selects the customers who
have ordered after a certain date. What date? Well, the database lets the client application (or the
human user) specify that date at runtime. Unfortunately, if you try to run this query from inside Visual
Studio, you will receive an error message indicating that it was expecting one parameter. However,
you will be able to execute this query from C++ code that you will write in the next section of today's
work.

If this were a stored procedure in a relational database server, the SQL code would look like Listing
6.6.

Listing 6.6. The CustomersWithOrdersSinceDate Stored Procedure

 1: CREATE PROCEDURE CustomersWithOrdersSinceDate @param1 datetime AS
 2: SELECT Customers.*
 3: FROM Customers
 4: WHERE custnumber IN
 5: (
 6: SELECT Orders.customernumber
 7: FROM Orders
 8: WHERE OrderDate > @param1
 9:)

Line 1 in Listing 6.6 uses the SQL CREATE PROCEDURE statement to cause the stored procedure to
be compiled and saved in the database. Line 1 also specifies the parameter name (prefixed by an @)
and type immediately after the stored procedure name. You execute this SQL code to create and store
the stored procedure in the database. When the stored procedure is stored in the database, client
applications can call CustomersWithOrdersSinceDate and pass it a date as a parameter to
obtain a resultset of customers who have made purchases since that date. A client program can do this,
using an ADO Command object.

Note that a client program that uses CustomersWithOrdersSinceDate doesn't try to obtain all
the orders and all the customers and then process all that data to find the customer records. Rather, the
client program makes a single request to the database and retrieves only the data that is relevant.

As you'll see in the next section, the programming models are identical, whether the client program is
using Access or a relational database server. You can use an ADO Command object to call Access
Queries as well as SQL Server stored procedures. The difference between Access and SQL Server is
that, with Access, all the records are brought into the client process. This happens behind the scenes,
so you don't deal with it in your code. It happens because Access applications are file based (as
described in Day 1) and because the Jet database engine is a DLL that runs inside the client program's

address space. With SQL Server, only the data that the client program requested is brought into the
client process (because the server processes all the records and returns only the resultset).

C++ Tools for Processing Data at the Server
Yesterday, you created ADO Recordsets and used the AddNew, Update, and Delete functions.
These functions work well when you are dealing with single records or when the number of records in
the resultset is very small.

However, there will likely be occasions when you need to perform an operation that affects thousands
or millions of records. The following is a programming sequence you should not follow in your client
program when you need to perform an operation on a large number of records:

● Create a Recordset that contains all the records that will be affected.
● Pull all the records into the client process by starting at the first record in the Recordset and

calling the MoveNext function to scroll to the last record.
● Process each record singly (by evaluating the contents of the fields in each record or by calling
Update or Delete on each record).

Using a programming sequence like this to deal with a large number of records would be slow and
could hog the network's bandwidth and consume the client computer's memory. The solution in cases
where you have a large number of records to process is to write a stored procedure so that all those
records can be processed at the server. You call the stored procedure by using an ADO Command
object.

Open your ADOMFC1 project and add a menu for Commands with two choices, as shown in Figure
6.1.

Figure 6.1 : Menus for ADO Commands.

Calling Stored Procedures with ADO Command Objects

Use ClassWizard to create a handler function for the Most Recent Order menu choice. In the handler
function, add the code shown in Listing 6.7.

Listing 6.7. The ADO Command Object to Call MostRecentOrder

 1: void CADOMFC1View::OnCommandMostrecentorder()
 2: {
 3: _CommandPtr pCommand;
 4:
 5: pCommand.CreateInstance(__uuidof(Command));

 6:
 7: CADOMFC1Doc * pDoc;
 8: pDoc = GetDocument();
 9:
10: try
11: {
12: pCommand->ActiveConnection = pDoc->m_pConnection;
13:
14: pCommand->CommandType = adCmdStoredProc;
15:
16: pCommand->CommandText =
_bstr_t("CustomerWithMostRecentOrder");
17:
18: _variant_t vNull;
19: vNull.vt = VT_ERROR;
20: vNull.scode = DISP_E_PARAMNOTFOUND;
21:
22: _RecordsetPtr pRS;
23:
24: pRS = pCommand->Execute(&vNull, &vNull, adCmdUnknown);
25:
26: if (!pRS->GetadoEOF())
27: {
28: CListCtrlEx& ctlList = (CListCtrlEx&) GetListCtrl();
29: ctlList.DeleteAllItems();
30: while(ctlList.DeleteColumn(0));
31:
32: ctlList.AddColumn(" Customer Number ",0);
33: ctlList.AddColumn(" First Name ",1);
34: ctlList.AddColumn(" Last Name ",2);
35:
36: int i = 0;
37: _variant_t vCustName;
38: _variant_t vFirstName;
39: _variant_t vLastName;
40: while (!pRS->GetadoEOF())
41: {
42: vCustName = pRS->GetCollect(L"CustNumber");
43: ctlList.AddItem(i,0,(_bstr_t) vCustName);
44: vFirstName = pRS->GetCollect(L"CustFirstName");
45: ctlList.AddItem(i,1,(_bstr_t) vFirstName);
46: vLastName = pRS->GetCollect(L"CustLastName");
47: ctlList.AddItem(i,2,(_bstr_t) vLastName);
48: i++;
49: pRS->MoveNext();
50: }
51: }
52:
53: pRS->Close();
54: }
55: catch(_com_error &e)
56: {
57: TRACE("Error:%08lx.\n", e.Error());
58: TRACE("ErrorMessage:%s.\n", e.ErrorMessage());

59: TRACE("Source:%s.\n", (LPCTSTR) _bstr_t(e.Source()));
60: TRACE("Description:%s.\n", (LPCTSTR)
_bstr_t(e.Description()));
61: }
62: catch(...)
63: {
64: TRACE("\n*** Unhandled Exception ***\n");
65: }
66: }

Lines 3 and 5 of Listing 6.7 create an ADO Command object. Line 12 tells the Command object to use
the existing database connection stored in the MFC Document. Lines 14 and 16 tell the Command
object that you are going to call a stored procedure; also, lines 14 and 16 tell the Command object the
name of the stored procedure. Line 22 creates a Recordset pointer, and line 24 calls the Command
object's Execute function to execute the stored procedure and place any resulting data in a Recordset
object (which is pointed to by the Recordset pointer). Lines 26-51 display the contents of the
Recordset in the list control in the View. (The code in lines 40-50 uses a while loop, which is
probably unnecessary because this stored procedure returns only one record.)

Note that the C++ code in Listing 6.7 does not retrieve a Recordset containing all orders, find the most
recent order by looking at every record, and then finally retrieve the customer for that order. This code
issues a single call to the database, enables the database to process the records, and retrieves only the
customer information it's looking for.

This approach is elegant and harnesses the power of a relational database server. It could handle
millions of records without hogging network bandwidth or consuming memory in client process space.

In this example, Microsoft Access appears to be processing the records at the server, just like a
relational database server. However, with Access, all the records are brought into the client program
address space to be evaluated by the Jet database engine (which resides in a DLL mapped into the
client program address space). The programming model is identical to a relational database server, but
the actual execution model doesn't utilize true client/server capabilities.

Calling Stored Procedures That Take Parameters

Use ClassWizard to create a handler function for the Ordered Since Date menu choice. In the handler
function, add the code shown in Listing 6.8.

Listing 6.8. The ADO Command Object to Call OrderedSinceDate

 1: void CADOMFC1View::OnCommandOrderedsincedate()
 2: {

 3: _CommandPtr pCommand;
 4:
 5: pCommand.CreateInstance(__uuidof(Command));
 6:
 7: CADOMFC1Doc * pDoc;
 8: pDoc = GetDocument();
 9:
10: try
11: {
12: pCommand->ActiveConnection = pDoc->m_pConnection;
13:
14: pCommand->CommandType = adCmdStoredProc;
15:
16: pCommand->CommandText =
_bstr_t("CustomersWithOrdersSinceDate");
17:
18: pCommand->Parameters->Append
19: (
20: pCommand->CreateParameter
21: (
22: _bstr_t("ParamDate"),
23: adDBTimeStamp,
24: adParamInput,
25: 0,
26: _variant_t(COleDateTime(1998, 10, 1, 0, 0, 0))
27:)
28:);
29:
30: _variant_t vNull;
31: vNull.vt = VT_ERROR;
32: vNull.scode = DISP_E_PARAMNOTFOUND;
33:
34: _RecordsetPtr pRS;
35:
36: pRS = pCommand->Execute(&vNull, &vNull, adCmdUnknown);
37:
38: if (!pRS->GetadoEOF())
39: {
40: CListCtrlEx& ctlList = (CListCtrlEx&) GetListCtrl();
41: ctlList.DeleteAllItems();
42: while(ctlList.DeleteColumn(0));
43:
44: ctlList.AddColumn(" Customer Number ",0);
45: ctlList.AddColumn(" First Name ",1);
46: ctlList.AddColumn(" Last Name ",2);
47:
48: int i = 0;
49: _variant_t vCustName;
50: _variant_t vFirstName;
51: _variant_t vLastName;
52: while (!pRS->GetadoEOF())
53: {
54: vCustName = pRS->GetCollect(L"CustNumber");
55: ctlList.AddItem(i,0,(_bstr_t) vCustName);

56: vFirstName = pRS->GetCollect(L"CustFirstName");
57: ctlList.AddItem(i,1,(_bstr_t) vFirstName);
58: vLastName = pRS->GetCollect(L"CustLastName");
59: ctlList.AddItem(i,2,(_bstr_t) vLastName);
60: i++;
61: pRS->MoveNext();
62: }
63: }
64:
65: pRS->Close();
66: }
67: catch(_com_error &e)
68: {
69: TRACE("Error:%08lx.\n", e.Error());
70: TRACE("ErrorMessage:%s.\n", e.ErrorMessage());
71: TRACE("Source:%s.\n", (LPCTSTR) _bstr_t(e.Source()));
72: TRACE("Description:%s.\n", (LPCTSTR)
_bstr_t(e.Description()));
73: }
74: catch(...)
75: {
76: TRACE("\n*** Unhandled Exception ***\n");
77: }
78: }

The code in Listing 6.8 is nearly identical to Listing 6.7. One crucial difference is in line 16 where the
name of the stored procedure is specified. Another important difference is in lines 18Ð28. The ADO
Command object contains a Parameters collection, which stores the parameters that will be passed to
the stored procedure when Execute is called. The pCommand->Parameters->Append call in
line 18 appends a new parameter to the Parameters collection for this Command object. The argument
passed to the Append function is the result of the pCommand->CreateParameter call in lines
20-27.

Line 22 names the parameter (so you can access it to change its value later if you want). Line 23
specifies the data type for this parameter, which is adDBTimeStamp. The available data types are
declared in the DataTypeEnum in msado15.tlh, which is one of the files created when you use
#import on the ADO type library. Line 24 specifies that this is an input parameter, meaning that
this client program is giving this parameter to the database. The parameter directions (input, output, or
both) are declared in the ParameterDirectionEnum in msado15.tlh. An output parameter would
be one where the value of the parameter is changed by the stored procedure and then read by the client
program after executing the stored procedure. Line 25 specifies the length of the parameter data. This
is not used for adDBTimeStamp types but is used for numeric and string types. Line 26 is a
_variant_t containing the data value for the parameter that will be passed to the stored procedure.
In this case, a COleDateTime is used because it encapsulates the VARIANT date/time stuff and
makes it easier to use. You need to pass data of the appropriate type to the _variant_t constructor
in line 26, based on the data type you specify in line 23.

That's it. When you run the application and take this menu choice, you will see displayed in the list
control the customers who have made purchases since the date specified. The parameter value needn't
be hard-coded. You could, of course, expand this code to let the user enter a date, and then you could
pass that date to the stored procedure.

NOTE
If you specify a COleDateTime of 11/1/1998 0:0:00, you will see
that the stored procedure returns customers who made purchases on
11/1/1998. This might seem strange because the SQL code specifies
OrderDates that are greater than the parameter value. However, you
must realize that this a date/time data type. It will take the time into account,
as well as the date. If you specified a COleDateTime of 11/1/1998
23:59:59 instead, you probably wouldn't see any customers who placed
orders on 11/1/1998.

Summary
Today you learned how to harness the power of relational database servers. You saw how the SQL
INSERT, UPDATE, AND DELETE statements can be used to process many records at a time. You
also learned about stored procedures and how to call them by using ADO Command objects.

You wrote code that illustrated methods for processing data at the server. Your ability to write code
that processes data at the server will enable you to create applications that can handle huge amounts of
data and work efficiently over a LAN, a WAN, or the Internet.

Q&A

Q What's the difference between client/server applications and multitier
applications?

A Client/server applications typically consist of client machine(s) running a Windows
application, connected over a LAN to a relational database server on a network server
machine. This is a two-tier system (client and server). Multitier applications typically
consist of more than two tiers. The client tier consists of machine(s) running some kind
of a thin client program, such as a Web browser or a simple application. There is often a
middle tier, consisting of machine(s) running a Web server, such as Internet Information
Server (IIS) and/or an Object Request Broker (ORB) such as Microsoft Transaction
Server (MTS). The server tier typically consists of a server running a relational database.
Client tier programs typically communicate with programs on the middle tier, which
then communicate with the database at the server tier. The clients do not communicate
with the database directly, only through the middle tier programs.

Q When should I use the ADO Recordset AddNew, Update, and Delete functions
instead of stored procedures?

A For inserting records, the ADO Recordset AddNew function can be faster than calling a
stored procedure to insert records. For summarizing, updating, and/or deleting records, it
depends on the number of records you need to work with. If the number of records is
small, you can get by with pulling the records into a Recordset at the client to process
them. If, however, the number of records isn't small, you should consider using a stored
procedure called from an ADO Command object. The only caveat for ADO Command
objects seems to be that the process of changing parameter values in the Parameters
collection can be CPU intensive at the client. Your mileage might vary, so write some
test code and benchmark the performance for your own applications.

Q Can I create Access Queries from within Visual Studio?
A No, the only way to create new Queries in an Access database (.mdb file) is to run

Microsoft Access and create the new Queries through the Access UI.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is a single-tier application?
2. How do you make the SQL INSERT statement insert multiple records?
3. What databases help you preserve the referential integrity of your data?
4. How is a stored procedure in a relational database different from a Query in Microsoft Access?
5. Where can you find the data types available for use in ADO Parameter objects?

Exercises

1. Modify the SELECT statement in Listing 6.2 so that the customer number is not hard-coded.
Make it so that the customer number is retrieved based on the customer's last name.

2. Add code to the OrderedSinceDate handler shown in Listing 6.8 to change the value of
the parameter after it has been appended to the command but before the Command has been
executed.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 7
 Database Design

● Database Normalization
❍ Rules of Thumb for Relational Database Design
❍ Normal Forms of the Relational Database Model

● SQL Data Definition Language
● Using Constraints and Indexes in a Relational Database
● Tools and Techniques for Managing Relationships in a Relational Database

❍ Using Constraints to Enforce Relationships
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

A good database design pays big dividends. A database that is properly designed is easy to write code
for, provides good performance, and furnishes useful information that you had not anticipated needing
at the time the database was first designed.

Today you will learn

● How to normalize a database to ensure ready access to the data
● SQL Data Definition Language (DDL) for creating and altering the structure of databases
● How to use constraints and indexes in a relational database to manage relationships and

improve performance
● Tools and techniques for managing relationships among the tables in your database

Designing a good database is harder than it looks. It is also more important than many developers
realize. In other words, designing a database takes time and effort, but it is time and effort well spent.

Database Normalization
Even though designing a database can be difficult, a few rules of thumb simplify the process. In
addition, there are some sound scientific principles for designing relational databases. These scientific
principles of database design are called the normal forms of relational databases.

Normal forms are database design rules that specify levels of conformance to the relational model.
There are six levels of conformance, beginning at the first normal form (1NF), progressing through the
fifth (5NF), and concluding with the highest level of conformance, which is the domain/key normal
form (DKNF).

Database normalization is the process of designing the tables in a database so that they conform to the
normal forms of the relational database model.

The normal forms are essentially a measure of how well the tables in your database conform to the
relational model. The normal forms are nested. If a table in your database conforms to the 3NF, it
automatically conforms to the 2NF and the 1NF as well.

Building a database that conforms to the normal forms of the relational model takes effort, but it is a
worthwhile effort. If your database conforms to the relational model, everyone who uses your database
(now and in the future) will be assured of having access to the data in a way that makes the database
open and therefore valuable.

Rules of Thumb for Relational Database Design

Before delving into the normal forms, I will explain the rules of thumb that simplify the process of
database design. There are three of them, and I call them Robison's Rules of Database Design, or
R2D2 for short.

TIP

R2D2 #1 (the first rule): The number of records in your database should
mirror the number of objects in real life.

If one instance of an object exists in real life (IRL), one and only one record (one row in a table)
should exist in your database. If exactly twenty instances exist IRL, exactly twenty records should
exist in your database.

For example, if your database stores information about customers, the database should have one, and
only one, record for each customer. The database should not hold more than one customer per record,
nor should it split a customer across multiple records.

R2D2 #1 is fundamental to designing a relational database and will make your application more
valuable because it helps ensure that your database is open and accessible. I worked on a commercial
application that, to optimize performance, stored more than one IRL object per record in the database.
The result was a marginal gain in the performance of the database. However, because of its lack of
conformance to the relational model, the database could not be accessed outside the application. This
limitation proved to be a detriment to the application's commercial success.

TIP
R2D2 #2: The fields in each record should represent the attributes of the
objects in real life.

If you use R2D2 #1 and make each record represent an object IRL, you can use R2D2 #2 to figure out
what fields those records should contain. You can also deduce what the data types of those attributes
should be.

TIP
R2D2 #3: The relationships between objects in real life should be mirrored
in the relationships between records in the database.

If a customer can place more than one order, this is a one-to-many relationship. The database must be
built to store more than one order record for each customer record, thus mirroring the one-to-many
relationship between customers and orders IRL. The other types of relationships are one to one and
many to many.

The relationships between records in various tables in a relational database are called the entity
relationships.

There are tools and techniques for implementing one-to-one, one-to-many, and many-to-many
relationships in relational database. You will learn about these tools and techniques later today.

Normal Forms of the Relational Database Model

In addition to Robison's Rules for Database Design are the normal forms of the rela-tional model.
Based on sound scientific principles and ensure that your database will be accessible and valuable,
now and in the future.

The First Normal Form

The first normal form (1NF) requires that, in a given table, the data type of each field must not change
from record to record. In C++ parlance, a database table must be like an array of structures; the data
structure does not vary from element to element in the array. A database table must not be like an
array of unions, in which the data structure can vary from element to element.

Each column must have a unique name. Each field in each record must contain a single value,
meaning it must describe a single attribute and cannot contain a compound data type that holds more
than one attribute.

There can be no repeating fields. A record cannot contain any repeating data, such as multiple fields in
the record that contain the same type of attribute. (This would be a one-to-many relationship and
should be represented in two tables.)

Each record must be unique; there can be no duplicate records in the table. Creating a primary key for
the table (such as a Social Security number for people, a part number for products, and so on) usually
ensures the uniqueness of records in a table. The primary key cannot contain a NULL in any records.

Sometimes it's necessary to create a composite key, which is made up of two or more fields in the
record.

A composite key is a key that consists of two or more fields in a database table.

For example, you might have a table that records the dates that products were shipped. You might
specify the part number field and the ship date field as the primary key. The fields are separate fields,
but the combination of the two fields constitutes a composite key.

In a nutshell, 1NF requires that your tables be simple two-dimensional tables with no repeating fields
and with the fields containing no compound data types.

The Second Normal Form

The second normal form (2NF) requires that all the fields in the database contain data that depends on
the entire primary key. If a table uses a single field as its key and is in 1NF, it is automatically in 2NF.

If you were to apply 2NF to a table with a composite key of the part number field and the ship date
field, you couldn't have any fields in the table that apply only to the ship date field or only to the part
number field. For instance, in this table you wouldn't want a field for the total number of all products
shipped that day, such as the Quantity field shown in Figure 7.1. In this example, three products
were actually shipped on 11/16/98 (one each of the three 8-tracks).

Figure 7.1 : A table showing the quantity of all products shipped daily.

The Quantity field contains the total of all products shipped that day. Supposedly, you could select
any record that has a ship date you are looking for and use the Quantity field from that record to
discover the total number of products shipped that day. However, the Quantity field violates the
2NF. The Quantity field applies only to the ship date field, not to the part number field. This results
in duplicate data (multiple records with 3 for the quantity for 11/16/98).

All the non-key fields in the record must apply to the unique combination of ship date and part
number. Therefore, you could have a field in the table that contains the total number of each particular
product that was shipped that day. This field would depend on both the part number and the ship date,
as the Quantity field now does in Figure 7.2.

Figure 7.2 : A table showing the quantity of each product shipped daily.

The Quantity field shown in Figure 7.2 applies to both the part number field and the ship date field.
The part number field and the ship date field make up the entire key, so the table is in 2NF. One way
to discover the total number of products shipped on a given day is to use an aggregate function to add
up the quantity field of all the records for that date. You will learn more about aggregate functions in
the next few days.

The Third Normal Form

The third normal form (3NF) requires that there be no transitive dependencies, in which one field
depends on another field, which in turn depends on another field. When a table violates 3NF, lack of
records in one table can result in loss of information.

For example, look at the following table with the PartNo as the key:

PartNo Description Artist Gender

000001 8-TrackTape Hendrix Male

The Gender field depends on a field (Artist) rather than the PartNo key.

Technically, if you have the zip code, city, and state in an address record, it probably isn't in 3NF,
because an argument can be made that the city and state depend on the zip code.

Lack of normalization does not necessarily ruin the design, however. The higher levels of
normalization (4NF, 5NF, and DKNF) prevent any loss of information. As you progress to higher
levels of normalization, you end up creating more and more specialized tables. However, conforming
to the higher levels of normalization can have a negative effect on performance because of the
increasing number of tables and the complexity of the SQL joins you have to write.

You should design your tables to conform to the highest normal form as is practical. Violating the
normal forms should be the exception rather than the rule in your database designs. The optimum
database design is often slightly denormalized (but only slightly).

SQL Data Definition Language
Open your ADOMFC1 project, select the Data View, and open a Query window on the Customers
table. You will see that the Customers table does conform to R2D2 #1; there is one customer per
record. Does it conform to the normal forms? Well, almost. There are two address fields. Strictly
speaking, this is a violation of 1NF because the records have repeating fields. However, you could
make the case that the two address fields are not repeating data but are two distinct elements that make
up a street address. With this possible exception, the Customers table conforms to the 1NF, 2NF,
and 3NF.

Open the Products table. You will see that it conforms to the R2D2s and the 3NF as well.

Open the Orders table. You will see that it does not conform to R2D2 #1.

Figure 7.3 : The Orders table.

This table is supposed to store orders, but as you can see in Figure 7.3, there are multiple records in
this table for single orders IRL. Notice that there are two records for order number 2 and three records
for order number 4.

The primary key for the Orders table is the RecordNumber field. This field has no real relevance
to an order; a record number is not an attribute of an order. This Orders table does not conform to
the normal forms.

To bring the database into conformance with the relational model, you need to create an Orders
table that contains orders as single records.

You need to identify the single attributes of an order. These single attributes would include an order
number, an order date, the payment method, and the customer number for the customer who placed the
order. You might want to store the shipping address as well. You might be able to obtain the shipping
address from the customer's address field(s) in the Customers table. However, the address to which
each order was shipped is actually an attribute of the order and could be different than the customer's
address.

Multiple products can be purchased in a single order. That means the products for the orders need to
be moved to a separate table.

The new table that contains products for orders could be called the ProductsPurchased table.
Each product purchased would have a single record in this table. The attributes of each product
purchased would be the product number, the order number under which this product was purchased,
the price that the product sold for, the quantity of the product purchased, and the shipping charge for
that product.

You could make a case for not including the price in the ProductsPurchased table. You might be
able to obtain the price by using the product number and looking up the price in the Products table.
However, the price in the ProductsPurchased table could change. This would cause the price the
product sold for on past orders to be lost. Therefore, it's best to treat the price that the product sold for
as an attribute of the products purchased and make it a field in the ProductsPurchased table.

The question of which table should contain the shipping charge field depends on how the company
assesses shipping charges. If a shipping charge is dependent on each product shipped, the shipping
charge should be a field in the ProductsPurchased table. If the shipping charge is a flat fee for
each order, it should be a field in the Orders table. In the sample application, the shipping charge is
assessed for each product purchased. Therefore it is a field in the ProductsPurchased table.

One place the shipping charge should not be stored is in your application source code. You might
assume that the shipping charge is a fee that's always added to each product. You might hard-code the
shipping charge into your application source code and not store it in the database. That would be a bad
idea because the shipping charge might change. The logic to add the shipping charges to the price of
the order should be written into your application source code. However, the amount of the shipping
charge should be stored in the database because it could change over time.

TIP
Keep the business formulas separate from the business variables. In your
application source code, place the formulas you use to make calculations.
Place the variables for those formulas in your database.

Perhaps a more precise name for the ProductsPurchased table would be the
OrderLineItems table because each product purchased IRL doesn't necessarily have its own

single record in this table (as specified in R2D2 #1). If a customer purchased three of a particular item
in one order, only one record would be in the table, and that record would contain a quantity of three.
However, I prefer to call the table ProductsPurchased because that name denotes that you can
use it to obtain information on what products were purchased and when.

Click the SQL button with the Orders table open. Change the SQL statement so that it looks like the
code in Listing 7.1.

Listing 7.1. The CREATE TABLE Statement for the ProductsPurchased Table

 1: CREATE TABLE ProductsPurchased(OrderNumber INTEGER,
 2: PartNumber varchar(10), Price CURRENCY,
 3: Quantity INTEGER, ShippingAndHandling CURRENCY)

Data Definition Language (DDL) consists of those SQL statements that create or alter the structure of
a database. This structure consists of database tables, indexes, constraints, and so on.

The structure of the entire database is called the schema of the database.

The DDL code in Listing 7.1 is a statement that will create a table called ProductsPurchased.
Notice that the fields are listed in the CREATE TABLE statement, followed by their data type.
Microsoft Access supports the CURRENCY data type. Other databases might not have this data type
but will have other type(s) that can store decimal numbers such as monetary values. Consult your
database documentation for information on the specific data types that it supports.

Run this statement against your database by clicking the Run (!) button. Click the minus sign by
Tables in the Data View to contract the list of tables. Click the plus sign to expand the list of tables,
and you will see your new table in the Data View.

Now you need to move the data from the Orders table into your new ProductsPurchased table.
Close the Orders table and open it again so that you get a SELECT statement for the Orders table.
Modify the SELECT statement so that it looks like Listing 7.2.

Listing 7.2. The INSERT INTO Statement for the ProductsPurchased Table

 1: INSERT INTO productspurchased
 2: (ordernumber, partnumber, price, quantity,
 3: shippingandhandling)
 4: SELECT ordernumber, partnumber, price, 1,
 5: shippingandhandling
 6: FROM Orders

Execute the statement in Listing 7.2. It should insert the six records from the Orders table into the
ProductsPurchased table. Open the ProductsPurchased table to make sure.

Now you need to normalize the Orders table. SQL makes it easy to add new columns to a table.
However, most relational databases do not enable you to delete columns. The surest course is to create
a new table. You could call the new table NewOrders. Enter the DDL code shown in Listing 7.3 into
a Query window and execute it to build the NewOrders table.

Listing 7.3. The CREATE TABLE Statement for the NewOrders Table

 1: CREATE TABLE NewOrders(OrderNumber INTEGER,
 2: OrderDate DATETIME, CustomerNumber INTEGER,
 3: PaymentMethod VARCHAR(50))

Your next task is to move the appropriate records from the Orders table into the NewOrders table.
You can do this by using an INSERT INTO, and SELECT, statement, as shown in Listing 7.4.

Listing 7.4. The INSERT INTO Statement for the NewOrders Table

 1: INSERT INTO NewOrders
 2: (ordernumber, orderdate, customernumber,
 3: paymentmethod)
 4: SELECT DISTINCT
 5: ordernumber, orderdate, customernumber,
 6: paymentmethod
 7: FROM orders

Line 4 of Listing 7.4 uses the DISTINCT modifier with the SELECT statement. This causes only
unique records to be returned by the SELECT statement. In other words, no duplicate records will be
returned by the SELECT statement. Without the DISTINCT modifier, all the records in the Orders
table (six records) would be inserted into the NewOrders table. Using the DISTINCT modifier, only
three records are inserted, which is the actual number of orders IRL. Figure 7.4 shows the records
inserted into the NewOrders table.

Figure 7.4 : The NewOrders table.

You can see in Figure 7.4 that there were actually three orders IRL: order numbers 1, 2, and 4. The
NewOrders table conforms to R2D2 #1 and to the 3NF.

Now that you have split the data from the Orders table into two normalized tables, you can get rid of
the Orders table. This is done with the following DROP TABLE statement:

DROP TABLE Orders

Open a Query window and execute this statement to delete the Orders table. In the Data View,
contract and expand the list of tables or right-click the data source and select the Refresh menu to see
that the Orders table is now just a memory.

Using Constraints and Indexes in a Relational Database
Relational databases have built-in mechanisms to ensure the integrity of the data in the database. One
of these mechanisms is called a constraint.

Constraints are rules for valid data that the database enforces for you.

You can place different kinds of constraints on the database. For instance, you can place a primary key
constraint on a field to enforce the primary key. The constraint makes sure that the data in the primary
key field(s) is unique. In other words, it prevents duplicate records in the table by not allowing new
records to have the same data in the key field as other records.

You need to specify primary keys in the new tables you added to the database. Add a primary key to
the NewOrders table by issuing the SQL statement shown in Listing 7.5.

Listing 7.5. The Primary Key Constraint for the NewOrders Table

 1: ALTER TABLE NewOrders
 2: ADD CONSTRAINT OrderNumberIndex
 3: PRIMARY KEY (ordernumber)

Line 1 in Listing 7.5 uses the ALTER TABLE statement and specifies the NewOrders table. Line 2
tells the database to add a constraint called OrderNumberIndex. Line 3 specifies this is a primary
key constraint on the OrderNumber field. This makes the OrderNumber field the primary key in
the NewOrders table. The constraint will enforce the uniqueness of the OrderNumber field.

Add a primary key to the ProductsPurchased table by issuing the SQL statement shown in
Listing 7.6.

Listing 7.6. The Primary Key Constraint for the ProductsPurchased Table

 1: ALTER TABLE ProductsPurchased
 2: ADD CONSTRAINT ProductsPurchasedIndex
 3: PRIMARY KEY (ordernumber, partnumber)

The code in Listing 7.6 adds a primary key constraint to the ProductsPurchased table. The
primary key is a composite key consisting of the OrderNumber field and the PartNumber field.
The constraint will prevent duplicate OrderNumber/PartNumber combinations among the records
in the table.

Relational databases use indexes to optimize the performance of data access operations. If you merely
create tables and do not use indexes, the database will be forced to perform table scans. The database
will start at the beginning of the table and sequentially look at every record until it finds the record(s)
it needs. If, on the other hand, you create indexes for your tables, the database can look up the value it
is searching for in the index and move directly to the appropriate record(s).

The primary key is indexed. When you specify a primary key on a table, the database creates an index
for the table using the primary key.

If you will frequently use other fields in queries, such as in the WHERE clause or the ORDER BY
clause of SELECT statements, you will probably want to create indexes for those fields as well. You
can create as many indexes as you need for each table (within practical limits). The following is the
syntax for creating an index:

CREATE INDEX myIndex ON myTable (myField)

You should use indexes only where they are needed. They will reduce insert, update, and delete

performance because every time you change an indexed field in a record, the database has to update
the index as well.

Tools and Techniques for Managing Relationships in a
Relational Database
You learned earlier today that you should carefully identify the one-to-one, one-to-many, and
many-to-many relationships in your database designs (see R2D2 #3).

To model a one-to-one relationship in your database, use primary keys and foreign keys as you learned
in Day 2, "Tools for Database Development in Visual C++ Developer Studio," and Day 3, "Retrieving
Data Through Structured Query Language (SQL)." For every instance of the primary key in one table,
you will have no more than one instance of the foreign key in the foreign table.

To model a one-to-many relationship, use primary keys and foreign keys as you learned in Day 2 and
Day 3. For every instance of the primary key in one table, you can have any number of instances of the
foreign key in the foreign table.

Modeling many-to-many relationships requires that you create a third table. The two tables that you
want to relate will contain their primary keys (as you would expect). The third table, called the link
table, will contain the foreign keys from both primary tables. This is best understood through an
example.

You will recall that the design of the original Orders table contained the product number and the
customer number as foreign keys (see Figure 7.5).

The original Orders table was a link table that facilitated a many-to-many relationship between
customers and products. You could perform a join between these three tables and find out which
customers bought which products. This is an excellent example of a many-to-many relationship
because a single customer could buy many products and many customers could buy a single product.

Figure 7.5 is a simple entity relationship diagram (ER diagram) that shows the relationship between
these three tables. The Customers table and the Products table contain the primary keys. The
Orders table contains the foreign keys, so it is the link table.

You can see that lines run between the primary and foreign key fields. A 1 is next to the primary keys
and an infinity sign next to the foreign key fields. This is due to the one-to-many relationship between
the primary keys in the Customers and Products tables and the foreign keys in the link
(Orders) table. When the one-to-many relationships are combined in the link table, it produces a
many-to-many relationship between the Customers and Products tables.

Figure 7.5 : Many-to-many relationships.

Using Constraints to Enforce Relationships

You can place constraints on the database that enforce the relationships. These constraints prevent a
user from deleting a record whose primary key constitutes a foreign key in another table.

Referential integrity constraints are constraints that ensure that the data in one table is consistent with
data in other tables in the database.

A referential integrity constraint will prevent you from deleting a product from the Products table
that is listed in the ProductsPurchased table. You will recall that you encountered a constraint
like this in Day 6, "Harnessing the Power of Relational Database Servers," when you tried to delete all
the 8-track products from the Products table. This is because that delete operation would have left
orphaned records in the Orders table.

To create a referential integrity constraint, you can use the ALTER TABLE statement with the ADD
CONSTRAINT clause, as shown in Listing 7.7.

Listing 7.7. The Foreign Key Constraint Between the ProductsPurchased and Products Tables

 1: ALTER TABLE ProductsPurchased
 2: ADD CONSTRAINT fk_partnumber
 3: FOREIGN KEY (PartNumber)
 4: REFERENCES Products (PartNumber)

Listing 7.7 creates a constraint to enforce the referential integrity between the
ProductsPurchased table and the PartNumber table. Line 2 in Listing 7.7 names the constraint
(in case you want to drop it later). Line 3 specifies that the PartNumber field in the
ProductsPurchased table is a foreign key. Line 4 tells the database where the primary key is that
matches this foreign key.

Listing 7.8 creates a constraint to enforce the referential integrity between the
ProductsPurchased table and the NewOrders table.

Listing 7.8. The Foreign Key Constraint Between the ProductsPurchased and NewOrders
Tables

 1: ALTER TABLE ProductsPurchased
 2: ADD CONSTRAINT fk_ordernumber
 3: FOREIGN KEY (OrderNumber)
 4: REFERENCES NewOrders (OrderNumber)

Listing 7.9 creates a constraint to enforce the referential integrity between the NewOrders table and
the Customers table.

Listing 7.9. The Foreign Key Constraint Between the NewOrders and Customers Tables

 1: ALTER TABLE NewOrders
 2: ADD CONSTRAINT fk_custnumber
 3: FOREIGN KEY (CustomerNumber)
 4: REFERENCES Customers (CustNumber)

Open a Query window in Visual Studio and issue these SQL statements to add the constraints. With
these constraints in place, users of the database will not be able to make modifications to the data that
would cause the data in one table to be out of sync with the data in the other tables.

Summary
Designing your database to conform to the relational model is important and can be difficult. The
process of designing a relational database is made easier by using the intuition-based R2D2s and the
science-based normal forms. The process of normalizing your database typically involves separating
tables in your database into more specialized tables.

Use SQL Data Definition Language (DDL) to build the schema of your database, which includes
tables, indexes, and constraints. Indexes enable better query performance. Constraints help ensure the
integrity of the data inside the database.

Q&A

Q If I know my database stores data in 2KB pages, wouldn't it make sense to
structure my database tables so that each record is 2KB, also?

A That approach would certainly optimize your database for speed. However, it would be
impossible to make such a database conform to the relational model. Your database
might be marginally faster, but it would be incompatible with all the other database
software and data access tools in the Universe. Your database would be a closed,
proprietary system with no value outside your application. This ultimately would lessen
the value of your application.

Q Is there a typical level of conformance to the relational model?
A No. However, if your database conforms to the 3NF, you can be well assured of its

usability and its compatibility with relational data access tools.
Q Do all relational database systems support the same DDL statements?
A Support for DDL statements varies among relational database vendors. Check your

database software documentation for specifics.
Q Is it necessary to add constraints to my database?
A Primary key constraints are necessary for a relational database to function reliably.

Other constraints might not be necessary but are a great help to you in maintaining your
database's value and usefulness. Rather than look for ways to avoid constraints, you
should look for places to use constraints wherever possible. They will protect the
integrity and validity of the information stored in your database.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is the highest normal form in the relational database model?
2. What are entity relationships?
3. How can you guarantee that a table conforms to the second normal form?
4. What is the proper term for the structure (the tables, indexes, constraints, and so on) of a

relational database?
5. What does a referential integrity constraint do?

Exercises

1. Write a SELECT statement that shows all the products purchased on each order. Hint: The
SELECT statement should perform a join between the NewOrders, ProductsPurchased,
and Products tables.

2. Write a SELECT statement showing the products purchased by each customer.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 1...
 In Review

The first day's lesson examines the different database technologies, including OLE
structured storage, record managers (such as Btrieve), desktop databases (such as
FoxPro and Access), object databases, and relational database servers (such as Oracle
and SQL Server).

The lesson on Day 2 explains that the most widely used and accepted database model is
the relational model. A relational database consists of tables, which are arranged in
columns and rows. Each column is called a field. Each row is called a record and is
unique, based on some key field or fields. The records in the tables in a relational
database are related to each other, based on key fields that are called primary and
foreign keys.

In Day 3's lesson, you learned that SQL is a language that excels at manipulating data.
You learned how to issue SELECT queries to retrieve records from a single table in a
relational database. You learned how to perform joins to retrieve records from multiple
tables. You learned how to use sub-queries in SQL to obtain information that requires a
large quantity of procedural code to retrieve. Last, you learned that cursors are a
mechanism that enables record-at-a-time navigation through a result set.

On Day 4, you learned that to access a database from C++, it's necessary to use a
database API. Several database APIs are available to C++ developers. The future of all
data access in Microsoft Windows is OLE DB. The easiest way to use OLE DB is to use
ADO. ADO provides an object model that encapsulates the process of communicating
with databases from within C++ programs, as well as from other programming
languages.

On Day 5, you learned two methods for manipulating records in a database. You learned
how to manipulate records from C++ code by using the ADO Recordset member
functions to insert, update, and delete records. You also learned how to manipulate
records from SQL, using the INSERT, UPDATE, and DELETE statements.

On Day 6, you learned how to harness the power of relational database servers. You saw
how the SQL INSERT, UPDATE, and DELETE statements can be used to process many
records at a time. You also learned about stored procedures and how to call them, using
ADO Command objects.

You wrapped up your first week of study by learning how the process of designing a
relational database can be made easier by using the intuition-based R2D2s and the
science-based normal forms. The process of normalizing your database typically
involves separating tables in your database into more specialized tables. Use SQL Data
Definition Language (DDL) to build the schema of your database, which includes
tables, indexes, and constraints. Indexes can enable better query performance.
Constraints can help ensure the integrity of the data inside the database.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 2...
 At a Glance

This week, you learn how to build real-world database applications. You explore
multitier architectures and Microsoft Transaction Server. You acquire a deeper
understanding of relational database servers, COM, and Microsoftís database client
APIs.

● Day 8 You discover the powerful innovations of relational database servers.
● Day 9 You acquire an understanding of the Component Object Model (COM)

and write some COM software.
● Day 10 You learn Microsoftís database client technologies and learn how ADO

uses COM.
● Day 11 You learn the tools to build multitier applications.
● Day 12 You explore Microsoft Transaction Server (MTS) and learn to build and

use MTS components.
● Day 13 You learn to combine object-oriented programming with relational

databases.
● Day 14 You learn the ODBC, DAO, and RDO database APIs.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 8
 Utilizing the Capabilities of Database Servers

● Database Transactions
❍ SQL Transaction Statements

● Triggers to Execute SQL Code Automatically
● SQL Aggregate Functions

❍ COUNT
❍ MAX, MIN, SUM, and AVG
❍ Aggregate Functions and the GROUP BY Clause

● SQL Views
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Relational database servers include tools that provide incredible power for processing and presenting
information. These tools can be highly valuable and productive for you in writing database
applications. However, the value-or even the existence-of these tools is often not readily apparent from
database documentation. Today you will discover these relational database server power tools.

Today you will

● Use transactions to ensure that complex operations execute reliably.

● Create triggers that will automatically execute SQL code when data is inserted, updated, or
deleted.

● Learn about the SQL aggregate functions and the power of the GROUP BY clause.
● Build SQL views to provide users with the particular information that interests them.

NOTE
Today's work deals specifically with relational database servers, such as
SQL Server and Oracle. Some of the functionality described today is not
available in the Access/Jet engine. The tools that are not available in
Access/Jet are noted for you. If you have use of a relational database server,
you will be able to try all the database tools described today. If not, you will
have to learn some of these tools without being able to try them yourself.

Database Transactions
As you learned yesterday, when you normalize a database, you create a large number of specialized
tables. One side effect of normalization is that operations on the database typically involve several
tables. For instance, in the sample application, when a customer places an order, you must add records
to two tables in the database: the NewOrders table and the ProductsPurchased table.

When you add records to two different tables, you need to be assured that the two tables remain in
sync before, during, and after that operation. You don't want a database failure of some kind to cause a
record to be added to one table without the corresponding record also being added to the other table. If
that happened, the usefulness of your database would be reduced because some of its information
would not be reliable.

A transaction in a relational database is a series of operations that must happen together. A transaction
is a single unit of work that must be done completely or not at all.

In database parlance, a transaction must have atomicity, consistency, isolation, and durability. These
are called the ACID properties of database transactions:

● Atomicity-Either all of the operations are performed on the database, or none of the operations
are performed.

● Consistency-All the related changes that occur as a result of the operations in the transaction
must occur successfully. The state of the database must be consistent after the transaction. For
example, the transaction cannot result in any orphaned records because that would mean the
database is in an invalid or inconsistent state.

● Isolation-The transaction must be isolated from the operations of other transactions that have
not yet completed. Transactions must be (or appear internally to be) serialized.

● Durability-When the transaction completes, its changes will be present in the database, even if
system failures occur.

Relational databases use a variety of mechanisms to ensure the ACID properties of transactions. These
mechanisms include locking (which you learned a little about in Day 5, "Adding, Modifying, and
Deleting Data"), referential integrity constraints (which you learned about in Day 7, "Database
Design"), SQL transaction statements (which you will learn next), and triggers (which you will learn
later today).

SQL Transaction Statements

The syntax for SQL transaction statements varies somewhat among relational databases. The basic
idea is that you initiate a transaction, execute a series of SQL statements, and then either commit or
rollback the transaction.

In Microsoft SQL Server, the code to execute SQL statements inside a transaction could look
something like Listing 8.1.

NOTE
The code in Listings 8.1 and 8.2 isn't compatible with the Access/Jet engine.
You cannot run this code from a Query window in Visual Studio that is con-
nected to an Access/Jet database.

Listing 8.1. Transaction Code in Microsoft SQL Server

 1: BEGIN TRANSACTION
 2: INSERT INTO neworders(ordernumber, customernumber)
 3: VALUES (5, 3)
 4: INSERT INTO productspurchased(ordernumber, partnumber)
 5: VALUES (5, 'CLAP-003')
 6: INSERT INTO productspurchased(ordernumber, partnumber)
 7: VALUES (5, 'MAG-292')
 8: COMMIT TRANSACTION

Line 1 in Listing 8.1 initiates the transaction. Lines 2-7 perform a series of INSERT statements to
record an order in the database. If some kind of a database failure occurred while, say, line 6 was
being executed, the records inserted in lines 2-5 would be automatically removed (rolled back) by the
database. Therefore, the process of adding these three records is an all-or-nothing proposition.

All three inserts in Listing 8.1 will occur in the database, or none of them will. If the execution goes as
expected, line 8 commits the transaction. When line 8 executes, you can be assured that all three
records have been written to the database and will be persistent despite any database failures.

In Oracle, the code to do the same transaction would be somewhat different, as in Listing 8.2.

Listing 8.2. Transaction Code in Oracle

 1: INSERT INTO neworders(ordernumber, customernumber)
 2: VALUES (5, 3)
 3: INSERT INTO productspurchased(ordernumber, partnumber)
 4: VALUES (5, 'CLAP-003')
 5: INSERT INTO productspurchased(ordernumber, partnumber)
 6: VALUES (5, 'MAG-292')
 7: COMMIT

In Oracle, the transaction begins implicitly with the first INSERT statement. Therefore, line 1 in
Listing 8.2 begins the transaction. If the commit in line 7 isn't performed, all the changes in lines 1-6
are rolled back.

Like Oracle, SQL Server can be made to begin transactions by implicitly using the SET
IMPLICIT_TRANSACTIONS ON statement. When this option is turned on, and if there are no
outstanding transactions already, every SQL statement automatically starts a transaction.

You can see that the syntax can be different between SQL Server and Oracle. However, the principles
of database transactions are the same in both databases.

Code like that shown in Listings 8.1 and 8.2 ensures the transactions' atomicity and consistency. The
transactions' isolation is controlled through locking and the isolation level of the transaction.

A key function of a relational database server is its capability to ensure that multiple users can read
consistent sets of records and make modifications without inadvertently overwriting each other's
changes. The isolation level tells the database how zealous to be in protecting a user's work from

interaction with the work of other concurrent users.

Oracle and SQL Server perform the task of isolating concurrent users by using very different locking
and isolation strategies. Consult your database server documentation for information on transaction
isolation levels.

The basic thing to understand is that higher degrees of transaction isolation typically result in more
locks being placed on the data for longer periods of time. This can cause the database performance to
bog down.

To enable the database to provide transaction isolation without too much burdensome locking, it's
necessary to keep transactions as brief as possible. If possible, a transaction should not span multiple
round trips to the server. Transactions also should not remain open during the wait for user input.

Setting the appropriate level of isolation for the transactions and keeping transactions as brief as
possible enable the database to provide isolation between multiple transactions that execute
concurrently.

A distributed transaction is a transaction that involves making changes to the data in more than one
database server.

Distributed transactions enable transactions to cover changes to data in two or more networked
database servers. SQL Server and Oracle both support distributed transactions. The implementation of
distributed transactions varies between database vendors, so consult your database documentation for
details on distributed transactions.

TIP
You need to use transactions only for those operations that modify
(INSERT, UPDATE, or DELETE) data in the database. You should not use
transactions when performing SELECT queries.

Transactions are a vital tool for effective database applications. Transactions ensure that complex
operations on the database are performed reliably. As you can see from Listings 8.1 and 8.2,
transactions don't require you to write much extra code. The database server automatically handles the
commit or rollback of transactions.

Triggers to Execute SQL Code Automatically

Triggers are SQL statements that are executed, or triggered, when certain operations are performed in
the database. Triggers provide the capability to easily perform the following:

● Audit trails to track modifications to particular tables or records
● Cascading updates and deletes of records, for those cases when you want a change in one

record to result in an automatic change in other records Updates on period to-date fields to
keep, for instance, year-to-date sales figures always current

● Data replication, in which data is automatically copied to another table or another database
server Listing 8.3 shows the code for creating a trigger in SQL Server.

NOTE
The code in Listing 8.3 isn't compatible with the Access/Jet engine. You
can't run the code from a Query window in Visual Studio that is connected
to an Access/Jet database.

Listing 8.3. Code to Create a Trigger in Microsoft SQL Server

 1: CREATE TRIGGER SaveDelOrders
 2: ON neworders
 3: FOR DELETE
 4: AS
 5: INSERT DeletedOrders
 6: SELECT * FROM deleted

Line 1 in Listing 8.3 creates a trigger named SaveDelOrders. Line 2 indicates that this trigger is
attached to the NewOrders table. Line 3 specifies that this trigger should fire whenever record(s) are
deleted from the NewOrders table. Lines 5 and 6 insert the deleted record(s) into the
DeletedOrders table.

You will notice the FROM deleted statement in line 6. SQL Server triggers can use two tables
called inserted and deleted, which are temporary holding tables for records being inserted,
deleted, or updated (an update causes both a record to be deleted and a new record to be inserted).

The inserted and deleted tables can be accessed only by code inside triggers. Oracle has
temporary holding tables similar to inserted and deleted; these are called new and old.

When a record is deleted from the NewOrders table, it is removed from the NewOrders table and
placed in the deleted table. A trigger attached to the NewOrders table, such as the one in Listing
8.3, can access that record while it's in the deleted table.

The trigger in Listing 8.3 reads the record from deleted and inserts it into another table. This trigger
provides a backup copy of all records deleted from the NewOrders table.

With SQL Server, you can also create triggers that fire when records are inserted into a table and when
records are updated in a table. Line 3 of Listing 8.3 indicates that it's a delete trigger. For an insert
trigger, line 3 would say

FOR INSERT

For an update trigger, line 3 would say

FOR UPDATE

For a trigger that fires on insert, update, and delete operations, line 3 would say

FOR INSERT, UPDATE, DELETE

Oracle uses a slightly different syntax for triggers. Oracle triggers also offer some capabilities not
found in SQL Server triggers. Consult the documentation of the relational database server you are
using for details on its implementation of triggers.

SQL Aggregate Functions
You've learned that relational databases have the capability to process thousands, or even millions, of
records at the server and then send only the relevant resultset to the client application. You saw some
examples of server-side processing in Day 6, "Harnessing the Power of Relational Database Servers."

Today you will learn more about the server-based processing power of relational databases. You will
explore server code that can summarize mountains of raw data and return small polished gems of
information to client applications. This power comes in the form of SQL aggregate functions.

Aggregate functions process multiple records and return a single value. They are also called set
functions because they operate on sets of records. They calculate summary values from a particular
field in a set of records. For each set of records they process, they return a single value.

At times, the information you want to retrieve from a database table isn't stored in an individual record

but rather in a set of records. For instance, you might want to count the number of records that meet a
certain criteria or to know the maximum or minimum value of the data in a particular field in a set of
records. You might need to calculate the average or sum of a field in a set. Cases like these are where
aggregate functions come in very handy.

The following define five aggregate functions and give an example of each:

● The COUNT function returns the number of records that match the criteria you specify in the
WHERE clause.

SELECT COUNT(*) FROM productspurchased
WHERE ordernumber = 4

● The MAX function returns the maximum value that occurs in the field you specify, in records
that match the criteria you specify in the WHERE clause.

SELECT MAX(quantity) FROM productspurchased
WHERE ordernumber = 4

● The MIN function returns the minimum value that occurs in the field you specify, in records
that match the criteria you specify in the WHERE clause.

SELECT MIN(quantity) FROM productspurchased
WHERE ordernumber = 4

● The SUM function adds up the values that occur in the field you specify, in records that match
the criteria you specify in the WHERE clause.

SELECT SUM(price) FROM productspurchased
WHERE ordernumber = 4

● The AVG function returns the average of the values that occur in the field you specify, in
records that match the criteria you specify in the WHERE clause.

SELECT AVG(price) FROM productspurchased
WHERE ordernumber = 4

COUNT

The COUNT function returns the number of records that match a criterion. You can substitute
COUNT(*) for the field list in a SELECT statement to see how many records it will return. Open a
Query window and enter the query shown in Listing 8.4. As you can see, the COUNT function is not
restricted to working with records from a single table.

Listing 8.4. Using COUNT(*) to Count the Rows Returned by a SELECT Statement

 1: SELECT COUNT(*)
 2: FROM customers, neworders, productspurchased, products
 3: WHERE custlastname = 'clinton' AND
 4: customers.custnumber = neworders.customernumber AND
 5: neworders.ordernumber = productspurchased.ordernumber AND
 6: productspurchased.partnumber = products.partnumber

Listing 8.4 performs a join of four tables. Selecting COUNT(*) returns the number of rows that are
selected.

If you use COUNT(fieldname) instead of COUNT(*), the function will not count records that
have a NULL value in the specified field. You could use this to count how many records have non-
NULL entries in a field. You can also use COUNT(DISTINCT fieldname) to determine how
many distinct values exist in a field.

MAX, MIN, SUM, and AVG

These functions take a single field name or a numeric expression as a parameter. For example, Listing
8.5 will return the sum of the Price and ShippingAndHandling fields for all records that have
an OrderNumber of 4.

Listing 8.5. Using the SUM Function to Calculate the Total Price of an Order

 1: SELECT SUM(Price + shippingandhandling) FROM ProductsPurchased
 2: WHERE ordernumber = 4

The MIN, MAX, and AVG functions work similarly. You will notice that you didn't need to write a loop
that reads every record into a client application and then adds the appropriate fields to a variable. The

programming model used by the aggregate functions makes the code for performing calculations on
sets of records very straightforward.

The aggregate functions can be helpful to you not only because they reduce your code complexity but
also because they execute at the server. The database server can process all the records in the database
and then return only a single value to the client application that requested the information.

This means that a LAN would not be burdened by huge amounts of network traffic between client and
server. It also means that the client application could be a browser accessing the database over the
Internet. If you were not using a relational database server, which is capable of processing data at the
server, there is no way that a thin client (such as a browser) could effectively access your database
over a low-bandwidth, high-latency connection such as the Internet.

Aggregate Functions and the GROUP BY Clause

Aggregate functions enable you to obtain sums, averages, and so on, from the database. However, at
times you need to obtain sets of sums or sets of averages. For instance, you might need to calculate the
total sales revenue for each month during the past year or to discover the average number of products
purchased each week for the past six months. These are the cases where you need to use the aggregate
functions with the GROUP BY clause.

To try the GROUP BY clause, you first need to select a set of records. Try the query shown in Listing
8.6.

Listing 8.6. Using the SELECT Statement to Retrieve All Products Purchased, the Order
Number, and the Date

 1: SELECT neworders.ordernumber, neworders.orderdate,
 2: productspurchased.*
 3: FROM neworders, productspurchased
 4: WHERE neworders.ordernumber =
 5: productspurchased.ordernumber

The query shown in Listing 8.6 will return all the products that have been sold, the order number each
was sold under, and the date of the order. The results are shown in Figure 8.1.

Figure 8.1 : All products purchased, the order number, and the date.

It would be interesting to see the total price of each order. This means that you need to add up the
Price and the ShippingAndHandling fields for every record on each order. You saw in Listing
8.5 how to obtain the total of a single order. How do you find the total of every order? Listing 8.7
shows you how.

Listing 8.7. Using the SUM Function with the GROUP BY Clause to Calculate the Totals of
Each Order

 1: SELECT neworders.ordernumber,
 2: SUM(price + shippingandhandling)
 3: FROM neworders, productspurchased
 4: WHERE neworders.ordernumber = productspurchased.ordernumber
 5: GROUP BY neworders.ordernumber

Line 1 of Listing 8.7 selects the order number (so you have the context for the totals). Line 2 selects
the sum of the Price and ShippingAndHandling fields. Lines 3 and 4 specify the tables and the
join. (Actually, a join with the NewOrders table isn't necessary in this query because all the fields
you need are in the ProductsPurchased table. Having the NewOrders table in this query
doesn't hurt anything, so just leave it in because the next query will require the OrderDate field
from NewOrders.)

Line 5 specifies that you want the sum of the Price and ShippingAndHandling fields grouped
by OrderNumber. Figure 8.2 shows the output of this query.

Figure 8.2 : The total price of each order.

If you look at Figure 8.1 and add up the numbers yourself, you will see that the totals in Figure 8.2 are
correct. With the small amount of data in this example, you could probably perform these calculations
inside the client application (or even in your head). However, imagine the amount of work required to
process thousands of orders or tens of thousands of product sales. If you retrieved all those records and
did the calculations at the client, the application would bog down. The GROUP BY clause lets you
perform all the work at the server and then return only the small resultset to the client. Is that cool, or
what?

It would be interesting to see the total sales volume per week. To do this, you must group by the order
date. More specifically, you must group by the week of the order date. Even more specifically, you
must group by the year and the week, in case you have orders that span more than one year. The

GROUP BY clause lets you group by multiple fields and multiple expressions. Listing 8.8 shows how
to retrieve the total sales volume per week.

Listing 8.8. Using the SUM Function with the GROUP BY Clause to Show the Total Sales
Volume per Week

 1: SELECT DATEPART ('yyyy', neworders.orderdate) AS Year,
 2: DATEPART ('ww', neworders.orderdate) AS Week,
 3: SUM(price + shippingandhandling) AS Total
 4: FROM neworders, productspurchased
 5: WHERE neworders.ordernumber = productspurchased.ordernumber
 6: GROUP BY DATEPART ('yyyy', neworders.orderdate),
 7: DATEPART ('ww', neworders.orderdate)

Line 1 of Listing 8.8 uses the DATEPART function to retrieve the year. The AS Year modifier on the
end makes it so that the first field in the resultset has a name of Year. Specifying a name for a field
that contains an expression is handy because it gives you an easy way to access the field in ADO with
the GetCollect function. (You learned about the GetCollect function on Day 4, "Retrieving SQL Data
Through a C++ API," in Listing 4.12.)

Line 2 uses the DATEPART function to retrieve the week of the year for the OrderDate. It names
this field Week. Line 3 selects (and calculates) the sum of the Price and
ShippingAndHandling fields in the group. This field is named Total. Lines 4 and 5 are
identical to Listing 8.6. Lines 6 and 7 group the results of the SUM function by both the year and the
week of the order date.

In Figure 8.3, you see the results of the query in Listing 8.8. There are two records, one for the 45th
week and one for the 47th week of the year. No other weeks of the year had any sales, so they don't
appear in the resultset.

Figure 8.3 : The total sales volume per week.

The code in Listing 8.8 works with Access/Jet. However, the code to break down the date (the
DATEPART function) and modifiers to specify the field names for expressions will vary slightly in
SQL Server and Oracle. Check your database server documentation for details.

NOTE

In a client/server application, the Access/Jet database engine will process
the GROUP BY query shown in Listing 8.8 at the client machine (rather
than at the server machine). Running a similar query on a relational
database server, such as Oracle or SQL Server, will cause all the records to
be processed at the server machine and only the small resultset to be sent to
the client. This is one of the fundamental differences between relational
database servers and databases, such as Access/Jet, that use ISAM files.

SQL Server provides the CUBE and ROLLUP operators as optional switches in the GROUP BY clause.
These operators produce super-aggregate rows, where the rows generated by the GROUP BY clause
are aggregated. The CUBE and ROLLUP operators are typically used in data warehouse applications.
Oracle also provides extensions to the GROUP BY clause that are useful in data warehouse
applications. See your database server documentation for more information on extensions to the
GROUP BY clause.

As you can see, aggregate functions enable relational database servers to process and summarize vast
quantities of information and make it available to thin clients across thin network connections. The
ability to place intelligence at every tier in an application, and to use each tier where its strengths are,
enables you to build highly advanced client/server and multitier systems.

SQL Views

A view is a virtual table whose contents are defined by a query (a SELECT statement).

A view looks like a normal table. However, a view doesn't actually exist as a table in the database.
Instead, the view is materialized whenever it is opened. A view can consist of fields and records from
several tables.

A view's base query is the SELECT statement that defines the view.

A view's base tables are the tables from which the view gets its data.

The SELECT statement that defines the view (its base query) is stored in the database. The view
doesn't store any data. In other words, no records are stored in the view. The records that appear in a
view are actually stored in the view's base tables. Every time a view is opened, the database reads the
records into the view from its base tables by executing the view's base query.

Views enable users to work with the particular data that interests them. For instance, in the sample
application, the company manager might want to be able to see the weekly sales totals on demand.
Listing 8.9 shows the code to create a view that the manager could use to find that information.

Listing 8.9. Code to Create a View That Shows the Total Sales Volume per Week

 1: CREATE VIEW WeeklySales AS
 2: SELECT DATEPART ('yyyy', neworders.orderdate) AS Year,
 3: DATEPART ('ww', neworders.orderdate) AS Week,
 4: SUM(price + shippingandhandling) AS Total
 5: FROM neworders, productspurchased
 6: WHERE neworders.ordernumber = productspurchased.ordernumber
 7: GROUP BY DATEPART ('yyyy', neworders.orderdate),
 8: DATEPART ('ww', neworders.orderdate)

Line 1 in Listing 8.9 issues the SQL CREATE VIEW statement to create a view called
WeeklySales. The SELECT statement in lines 2-8 is the same as the one in Listing 8.8. This
SELECT statement defines the WeeklySales view; it is the WeeklySales view's base query.

Execute the code in Listing 8.9 against the sample Access database. When you do, the view will be
created in the database. It will appear as a view in the Data View of Visual Studio (you will need to
right-click the data source and select the Refresh menu to see it the first time).

When you double-click the WeeklySales view in the Data View, it will open just like a table. In
fact, you can even use WeeklySales like a table name in a query. Click the SQL button on the
Query toolbar, and you will see that the SELECT statement queried the view as if it were a table. As
you can see, a view looks and acts like a table.

Change the SELECT statement in the Query window so that it looks like the one shown in Listing
8.10. This will cause only the record that applies to week 45 to appear in the Query window.

Listing 8.10. The SELECT Statement That Uses a View

 1: SELECT *
 2: FROM WeeklySales
 3: WHERE week = 45

When making a query against a view like this, two queries are actually executed. First, the base query
for the view is executed to populate the view with records. Second, the query you are making against
the view (as in Listing 8.10) is executed.

CAUTION
When you run a SELECT statement against a view, it might execute more
slowly than you expect. Before anything else happens, the database has to
populate the view with records by executing the view's base query. Then,
after the view is completely populated, the database can execute the
SELECT statement you are running against it. This process of populating
the view before running your SELECT statement, combined with your
inability to build indexes on views, can make SELECT statements that run
against views take longer than you might expect.

Views can be updateable or read-only. If the view is updateable, users can insert, update, and delete
records in it just as they can from a table. Bear in mind that when users insert, update, and delete
records in a view, they are actually inserting, updating, and deleting records in the view's base table(s).

For a view to be updateable, the particular field(s) and record(s) in the view must correspond directly
to field(s) and record(s) in its base table(s). The database must be able to discern which field/record to
update in the base table. In the view created in Listing 8.10, no direct correspondence exists between
the records in the view and the records in the base tables. The records in the view in Listing 8.10 are
aggregates of several records in the base tables. There is no way that the database can figure out how
to map records in the view to records in the base tables, so the WeeklySales view is read-only.

NOTE

In Day 6, "Harnessing the Power of Relational Database Servers," you
learned that Visual Studio treats stored queries in Access as views rather
than as stored procedures. In Day 6 you also worked with two Access stored
queries called CustomerWithMostRecentOrder and
CustomersWithOrdersSinceDate. In Day 7, "Database Design,"
you normalized the database and dropped the Orders table. These two Access
stored queries that you worked with on Day 6 will no longer run properly.
They accessed the Orders table, which no longer exists in the database.

Views can provide a layer of abstraction for users of your database. Views enable users to concentrate
on the data they are interested in without needing to know the details of the database schema
underneath the view.

Summary
Today you learned some powerful tools that relational database servers have to offer. You learned
about transactions, triggers, aggregate functions, and views.

These tools can enable you to build highly advanced database applications. Transactions enable
reliable changes to the data. Triggers make the database react automatically to changes in the data.
Aggregate functions cause the bulk of the data processing to happen at the server. Finally, views
enable you to customize the way people see your database.

Q&A

Q How do relational database servers ensure that transactions will be durable even
when there is some kind of database failure?

A Relational database servers typically log all the changes to the data. The database writes
to the log file first and then commits the changes to the database. Every time the
database is started, it checks the log for uncommitted changes and uncompleted
transactions. At this point, the database will automatically complete the transactions or
roll them back.

Q If I have an insert trigger that inserts another record into the table, won't the insert
trigger fire again and put the database into an endless loop?

A Typically, relational database servers are written so that a trigger won't cause itself to
fire again. Consult your relational database server documentation for clarification of
this.

Q Why can't I create an index on a view?

A A view is a virtual table. No records are stored in it. It is populated with records every
time it's opened. These records are released from the view when it's closed. The virtual-
ness of the records in a view prevents you from being able to create a (nonvirtual) index
on the records in the view.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the ACID properties of a transaction?
2. What is the isolation level of a transaction?
3. How does the GROUP BY clause interact with the SQL aggregate functions?
4. How many triggers can be attached to a table in Microsoft SQL Server?
5. Does a view on a large table occupy much room in the database? Why or why not?

Exercises

1. Modify the SELECT statement in Listing 8.7 so that the resultset is sorted by the total sales
volume, from the highest volume to the least.

2. Modify the SELECT statement in Listing 8.7 so that the query returns the average product
price, from the highest to the least.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 9
 Understanding COM

● The Limitations of Traditional Windows DLLs
❍ The Limits of Using Win32 DLLs for Building Software Components

● Building Software Components by Using COM
❍ Using C++ Abstract Base Classes
❍ Creating Objects by Using an API Function
❍ COM Clients and COM Servers
❍ COM Servers
❍ The Active Template Library (ATL)
❍ IUnknown, QueryInterface, AddRef, and Release
❍ Interface Definition Language
❍ Automation (Formerly Called OLE Automation)
❍ COM Type Libraries

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

The Component Object Model (COM) is the basis for much of the next generation of software on the
Microsoft Windows platforms. An understanding of COM is a prerequisite for developing advanced
applications with Microsoft technology.

COM is a huge topic. Those who learn it all must conquer a vast technical landscape. Fortunately, you
don't need to learn all of COM. You can learn the fundamentals of COM and use that knowledge to be
quite productive, particularly when it comes to database applications. Knowledge of the COM
fundamentals will serve you well and is sufficient for building advanced database software.

Today you will learn

● The limitations of traditional Windows DLLs
● Component software and C++ abstract base classes
● COM components, class factories, and registry entries
● IUnknown, QueryInterface, AddRef, and Release
● Interface definition language
● Automation (formerly called OLE Automation)
● COM type libraries

COM is used extensively in Microsoft's latest database client technologies. In fact, you used COM in
Day 4, "Retrieving SQL Data Through a C++ API," Day 5, "Adding, Modifying, and Deleting Data,"
and Day 6, "Harnessing the Power of Relational Database Servers," when you used ADO. ADO sports
a COM interface.

The first step in learning COM is understanding what problems COM solves. This gives you the
context for COM technologies. You will learn what problems COM solves in the next section, which
explains the limitations of Windows DLLs (dynamic link libraries).

After you understand the problems COM solves, you can study its technical foundation. Today, you
will examine COM from the bottom up. A bottom-up approach to learning COM is a good approach
for C++ programmers for at least three reasons.

First, COM is narrower at the bottom than at the top. There is less to learn at the foundation than at the
top, where COM technology is applied in myriad different ways.

Another reason for the bottom-up approach is that you, being a C++ programmer, are capable of
understanding COM's foundation. As you will see, COM's foundation rests on a few particular C++
techniques, with which you might already be familiar.

Last, if you understand the foundation of COM technology, it will be much easier for you to grasp the
higher levels of COM. In COM, technologies are built on other technologies. If you learn the
foundation, you are in a much better position to understand the rest of COM.

The Limitations of Traditional Windows DLLs
Windows DLLs do one thing really well. They enable code to be shared among applications at runtime
in a very efficient manner.

However, there are some things that DLLs don't do very well. To understand the limitations of
traditional Win32 DLLs, you must first understand what Win32 DLLs are and how they actually work.
(When I say traditional DLLs, I am talking about DLLs that don't use COM.)

What Win32 DLLs Are and How They Work

The best way to think of a Win32 DLL is to picture it as a chunk of code sitting in memory. That
chunk of code can be mapped into your application's address space, which is what happens when your
application loads the DLL. When the DLL is mapped into your application's address space, your
application can execute the code in the DLL by calling the functions that it exports.

A DLL in Win32 does not have a life of its own. A DLL doesn't have its own process. A DLL has no
Windows message loop. Any objects created by code in the DLL are owned by the calling application.
A DLL never owns anything. Remember that DLLs are just code-code that is inert until it is loaded
into an application's address space and executed as part of that application's code.

An application can load a Win32 DLL into its address space in the following two ways:

● Implicit load-time linking
● Explicit runtime linking

With implicit load-time linking, the application statically links with the DLL's import library (a LIB
file). The import library contains the list of functions that the DLL exports for applications to call. The
import library also stores the addresses of the exported functions in the DLL file image. When the
import library for the DLL is linked with an application, the information from the import library
becomes part of the EXE file image.

When the application is executed, the operating system (the OS) loads the EXE file, and the OS looks
in the EXE file image to see which DLLs are required for the application. The operating system loads
these DLLs when it loads the application's EXE file.

With explicit runtime linking, the DLL is loaded by the application, not by the OS. The DLL is loaded
at application runtime, not at application load-time. The application loads the DLL whenever it needs
it, by calling the LoadLibrary Windows API function, like this:

HINSTANCE LoadLibrary(LPCTSTR lpszDLLFileName);

Also, the application can use the LoadLibraryEx function to load DLLs. The LoadLibraryEx
function enables the application to specify some options in how the DLL is loaded. The
LoadLibraryEx function is

HINSTANCE LoadLibraryEx(LPCTSTR lpszDLLFileName,
 HANDLE hFile, DWORD dwFlags);

When the operating system loads the DLL, it uses a search procedure to find the DLL file. The search
procedure is the same whether the DLL is loaded when the application is loaded through implicit
linking or whether the DLL is explicitly loaded by the application code with LoadLibrary. The OS
looks in the following series of locations to find the DLL file:

● The directory containing the application EXE file
● The application's current directory
● The Windows system directory
● The Windows directory
● The directories listed in the PATH environment variable

With implicit load-time linking, if the OS cannot find the DLL file in any of these locations, it will
present the user with a message box containing an error message. The message will state that it was
unable to load the DLL. The application then will not load or run.

If the application is loading the DLL at runtime with explicit runtime linking, and the DLL file is not
present, the LoadLibrary function will fail. It's up to the application to check for errors returned by
LoadLibrary and act accordingly.

After the application loads the DLL, it must get the addresses of the DLL function(s). If the
application uses implicit load-time linking (through the DLL's import library), the function addresses
are already linked into the application's EXE file image.

If the application calls LoadLibrary to load the DLL at runtime, the application must call
GetProcAddress to get the address of the function(s) in the DLL. The GetProcAddress
function is

NOTE
Developers might be accustomed to exporting DLL functions by assigning
each function an ordinal value. However, Microsoft wants you to link by
using the function's name instead of an ordinal value. If you use ordinals to
export your DLL functions, you are not guaranteed that your DLL will run
on all Win32 platforms and versions.

FARPROC GetProcAddress(HINSTANCE hinstanceDLL, LPCSTR lpszProc);

I mentioned that DLLs enable code to be shared among applications in a very efficient manner. When
multiple applications load the same DLL, the OS doesn't load multiple instances of the DLL. Rather,
when the first application loads the DLL, it's loaded into memory and mapped into the application's
address space. Figure 9.1 illustrates this.

Figure 9.1 : A DLL image mapped into an application's address space.

Figure 9.2 : A DLL image mapped into two applications' address spaces.

When subsequent applications load the DLL, the OS simply maps the already loaded DLL into those
applications' address space. This is illustrated in Figure 9.2.

DLL code in memory can be shared by multiple applications. This is what DLLs do really, really well.
They reduce code size at runtime by letting the code be shared among applications. The DLLs that
contain the Win32 API functions are a perfect example of this. The Windows system DLLs are loaded
once and are shared by and mapped into the address space of every Win32 application that runs on the
machine.

TIP
You should use DLLs for sharing common code among concurrently
running applications. DLLs do this very well.

The Limits of Using Win32 DLLs for Building Software Components

DLLs enable efficient code sharing among concurrently running applications. However, because of
some limitations of DLLs, it's difficult to build truly modular, component-based software using
traditional Win32 DLLs.

You need to understand what I mean when I talk about component-based software. A true software
component would be a piece of software that does the following:

● Plugs into other software systems in a modular, object-oriented fashion
● Can be updated independently of the other software in the system
● Can be used by software systems with which the component author is not intimately familiar
● Consists of a small or manageable number of files that can be distributed on disk or

electronically to component users/customers

In essence, a software component is a piece of software that you can give (or sell) to other people to
use with their software. You can also update your component, and your users can begin using the
updated version without breaking their existing software.

Traditional Win32 DLLs, by themselves, do not enable component-based software. The limitations of
using DLLs to build software components include

● The requirement to export your DLL functions by name
● Incompatibilities of C++ function decorating
● Hard-coded DLL names in application EXE files
● Build-time dependencies between DLLs and EXEs

DLL Functions Must Be Exported by Name

I noted previously today that Microsoft wants functions exported from DLLs by their name, not by an
ordinal value. When an application uses a DLL, the application must use absolutely unique names to
identify the DLL function(s) it wants to call.

If you are going to distribute your DLL for use in other systems (systems with which you are
unfamiliar), you need to make sure the function names in your DLL don't duplicate any function
names from other DLLs that the system might use. With traditional DLLs, there is no easy way to do
that. Your DLL could contain a function that has the same name as a function in another DLL.

Incompatible C++ Function Name Decorating

The need to export your DLL functions by name also causes a problem with C++ function decorating.
(Function decorating is also called function name mangling, but decorating is a nicer word.)

As you know, C++ functions can be overloaded. Overloaded functions are functions that have the
same name and differ only in their parameter list. The compiler and linker, however, must give each
function a unique symbol name.

Visual C++ gives each function a unique symbol name by decorating the function's name with
additional alphanumeric characters based on the function's parameters. These alphanumeric characters
are derived from the function parameters and their types and enable the compiler and linker to
differentiate between the overloaded functions.

With Visual C++ name decorating, the function

void Foo(int i)

becomes

?Foo@@YAXH@Z

You can witness C++ function name decorating in the following example. Open your ADOMFC1
project. Click the File View tab and add a header file called DbComponent.h. Put the code shown in
Listing 9.1 in DbComponent.h.

Listing 9.1. The DbComponent Class Declaration

 1: class DbComponent
 2: {
 3: public:
 4: DbComponent();
 5: int BeepIfDbIsOk();
 6: };

Next, include the DbComponent.h file in the CADOMFC1Doc.cpp file, like this:

#include "DbComponent.h"

Then add the code in Listing 9.2 to the CADOMFC1Doc::OnNewDocument function. (You should,
of course, leave the existing code in OnNewDocument and merely add this code to it, perhaps near
the beginning of the function.)

Listing 9.2. Calling the DbComponent BeepIfDbIsOk Function

 1: DbComponent * pDb = new DbComponent();
 2: pDb->BeepIfDbIsOk();
 3: delete pDb;

Now try to build the ADOMFC1 application. You should receive two linker errors for unresolved
external symbols. You will notice that one symbol, which corresponds to the BeepIfDbIsOk
function, looks like this:

?BeepIfDbIsOk@DbComponent@@QAEHXZ

The other symbol, which corresponds to the constructor for DbComponent class, looks like this:

??0DbComponent@@QAE@XZ

You are seeing C++ function name decorating in action. When the Visual C++ compiler builds
ADOMFC1Doc.obj, it decorates the names of the DbComponent constructor and the

BeepIfDbIsOk function. The linker then tries to find the code for those functions, but it cannot, and
it generates the unresolved external symbol errors.

If a DLL existed with the DbComponent code in it, the DbComponent constructor and the
BeepIfDbIsOk function would need to exist in the DLL with the decorated names that the Visual
C++ linker expects. Otherwise, the linker would not find them and would still generate unresolved
external symbol errors.

Unfortunately, function decorating is not uniform among C++ compilers. C++ functions exported
from a DLL built with Visual C++ cannot be called in an application built with Borland C++. A
Visual C++ DLL and a Borland C++ EXE are incompatible, at least in terms of C++ function calls.

NOTE
You can disable C++ name decorating for functions that you export from a
DLL, by placing the DLL within external "C" { } blocks. This causes
the exported functions to have the signature of a standard C language
function. This will enable your DLL functions to be called from EXEs built
with other compilers but will cost you the C++ features and the object-
oriented nature of your component.

Therefore, if you put your C++ component in a traditional Win32 DLL, it can be used only in software
built with the same compiler that you used.

Hard-Coded DLL Names

Whether an application uses implicit load-time linking or explicit runtime linking to call functions in a
DLL, the DLL's name is hard-coded into the application's EXE file. This results in a few limitations
from a component software standpoint.

The DLL file must exist somewhere that the OS can find it. One place is the application directory.
However, if the DLL file existed in the application directory, no other application on the machine
would be able to find it.

Another place to put the DLL might be the Windows System directory. If the DLL exists in the
Windows System directory, it runs the risk of being overwritten by, or at least conflicting with,
another DLL that happens to have the same name.

A true software component needs to be safely installable on any machine and accessible to all the
appropriate applications on that machine. Hard-coded DLL names in the application EXE files are
detrimental to this.

Build-Time Dependencies Between the DLL and the EXEs That Use it

The most common way for applications to use a DLL is to link with its import library (implicit load-
time linking). The other method-explicit runtime linking with the LoadLibrary and
GetProcAddress functions-is not used nearly as often. Using LoadLibrary and
GetProcAddress isn't as convenient for the application developer as simply linking to the DLL's
import library and having the OS automatically load the DLL.

However, a problem occurs when it comes time to update the DLL. A true software component can be
updated independently of the rest of the system. In other words, you can install and use a new version
of a component without breaking the existing system.

With traditional Win32 DLLs, when you modify the code and rebuild the DLL, the information in the
import library can change. You will recall that the import library contains the function names exported
from the DLL. The import library also contains import records for those functions that are fixed up
when the DLL is loaded and the addresses are known.

This means that when a DLL is updated, the applications that use the DLL (by linking with the DLL's
import library) need to be rebuilt also to ensure that the system is stable. Therefore, a build-time
dependency exists between the application EXE and the DLLs that it uses.

NOTE
It might be possible to update a DLL without updating the EXEs that use it,
if you don't change any existing functions in the DLL. However, there is no
mechanism for the EXE to gracefully recover if the DLL does become out
of sync. Also, replacing an existing DLL with an older version quite often
causes problems that the application cannot deal with gracefully. The ease
with which this problem can occur and the lack of mechanisms to enable a
grace-ful recovery at runtime mean that, for most practical purposes, there is
a build-time dependency between an EXE and the DLLs it uses.

With traditional Win32 DLLs, you cannot simply plug a new version of the DLL into an existing
system without the risk of breaking it. If you place a new DLL in an existing system without
rebuilding the applications that use the DLL, the applications could crash because of changes in the
functions in the DLL.

Building Software Components by Using COM
COM addresses the limitations of traditional Win32 DLLs for component development. Using COM,
you build software components that

● Plug into other software systems in a modular, object-oriented fashion
● Can be updated independent of the other software in the system
● Can be used by software systems with which the component author is not intimately familiar

● Consist of a small or manageable number of files that can be distributed on disk or
electronically to component users/customers.

COM uses some very nifty tricks to solve the problems of building component software. With COM
components, there are none of the following:

● Requirements to export your DLL functions by name
● Incompatibilities from C++ function decorating
● Hard-coded DLL names in application EXE files
● Build-time dependencies between DLLs and EXEs

COM accomplishes these technical feats through a rather ingenious application of some relatively
simple technologies. You will explore these technologies next.

Using C++ Abstract Base Classes

Modify the code that you entered from Listing 9.1 in DbComponent.h so that it looks like the code in
Listing 9.3.

Listing 9.3. The Abstract Base Class DbComponent Class Declaration

 1: class DbComponent
 2: {
 3: public:
 4: virtual int BeepIfDbIsOk()=0;
 5: };

You can see that DbComponent is now an abstract base class. As you know, an abstract base class is
a class that contains at least one pure virtual function.

You specify a virtual function as pure by placing = 0 at the end of its declaration. You don't have to
supply a definition for a pure virtual function.

You cannot declare an instance of an abstract base class; you can use it only as a base class from
which to derive other classes.

Try to build the application now. You will receive an error from the compiler indicating that you

cannot instantiate abstract class DbComponent because the BeepIfDbIsOk is a pure virtual
function.

Modify the code you entered from Listing 9.2 (in the OnNewDocument function) so that it looks like
the code shown in Listing 9.4

Listing 9.4. Calling the DbComponent BeepIfDbIsOk Function

 1: DbComponent * pDb;
 2: pDb->BeepIfDbIsOk();
 3: delete pDb;

Try to build the project now. It should compile and link with no errors, though you might receive a
warning about using a local variable before it's initialized. Of course, you should not try to run the
application, because it will fail. The DbComponent pointer defined in line 1 of Listing 9.4 is
uninitialized. Line 2 tries to use this uninitialized pointer to call the BeepIfDbIsOk function.

The code will not run. However, perhaps somewhat surprisingly, the code will successfully compile
and link. There is no code for the DbComponent class and its BeepIfDbIsOk function, so why did
the application link successfully? How did the linker bind code that doesn't exist?

The short answer is that the linker didn't bind it. Because the DbComponent class is an abstract base
class, and because BeepIfDbIsOk function is a pure virtual function, the linker knew that the code
for line 2 of Listing 9.4 would be bound at runtime. Listing 9.5 is an example of runtime binding.

As you know, you can call a virtual function through a base class pointer to execute the function in a
derived class. This is classic polymorphism in C++. See the code in Listing 9.5 for an example.

Listing 9.5. Polymorphism in C++

 1: #include <iostream>
 2: using namespace std;

 3: class myBaseClass
 4: {
 5: public:
 6: virtual ~myBaseClass() { };
 7: virtual void myFunc();
 8: };
 9:
10: class myDerivedClass : public myBaseClass
11: {
12: public:
13: void myFunc();
14: };
15:
16: void myBaseClass::myFunc()
17: {
18: cout << "Executing myFunc in myBaseClass" <<endl ;
19: }
20:
21: void myDerivedClass::myFunc()
22: {
23: cout << "Executing myFunc in myDerivedClass" <<endl ;
24: }
25:
26: int main()
27: {
28: myBaseClass * myBaseClassPtrs[4];
29: myBaseClassPtrs[0] = new myBaseClass;
30: myBaseClassPtrs[1] = new myDerivedClass;
31: myBaseClassPtrs[2] = new myBaseClass;
32: myBaseClassPtrs[3] = new myDerivedClass;
33:
34: for(int i = 0; i < 4; i++)
35: {
36: myBaseClassPtrs[i]->myFunc();
37: }
38:
39: delete myBaseClassPtrs[0];
40: delete myBaseClassPtrs[1];
41: delete myBaseClassPtrs[2];
42: delete myBaseClassPtrs[3];
43: return 0;
44: }

Create a new Win32 console project in Visual Studio named Polymorph. Specify that AppWizard
should create an empty project. Create a source file called main.cpp (specify that main.cpp should be
added to the Polymorph project). Enter the code shown in Listing 9.5 in main.cpp

Lines 3-8 declare a base class named myBaseClass that has a virtual function named myFunc.
Lines 10-14 derive a class from myBaseClass named myDerivedClass. Line 13 places a
function named myFunc in myDerivedClass, which overrides myFunc in myBaseClass.

Lines 16-24 define the myFunc functions to simply output a string indicating that they are being
executed. Line 28 defines an array of four pointers to myBaseClass class. Lines 29-32 initialize the
pointers in the array by creating alternating instances of myBaseClass and myDerivedClass.
Lines 39-42 delete the instances of the classes to free up the memory.

Lines 34-37 call the myFunc function through the pointers to myBaseClass. Note that you are
calling a function in a derived class through a base class pointer. MyBaseClassPtrs[1] and
myBaseClassPtrs[3] are pointers to myBaseClass but actually point to instances of
myDerivedClass.

Build the Polymorph project. It should build without errors or warnings. Run Polymorph. The code in
Listing 9.5 will produce this output:

Executing myFunc in myBaseClass
Executing myFunc in myDerivedClass
Executing myFunc in myBaseClass
Executing myFunc in myDerivedClass

Which class's myFunc was executed? This was determined at runtime, using C++ virtual function
tables, or vtables (pronounced vee-tables).

In instances of myBaseClass, the vtable entry for myFunc points to myBaseClass's myFunc. In
instances of myDerivedClass, the vtable entry for myFunc points to myDerivedClass's
myFunc.

Using vtables, the question of which class's myFunc to execute is resolved at runtime. Therefore, the
binding of that code doesn't happen at link time. It happens at runtime.

NOTE
Calling a derived class's functions through a pointer to its base class is an
essential feature of COM.

This is a cool trick. Polymorphism is one of the pillars of object-oriented programming.
Polymorphism's runtime binding is also one of the pillars of COM.

Open your ADOMFC1 project in Visual Studio. You will recall that the code in the
OnNewDocument function defines a pointer to the abstract base class, DbComponent (refer to
Listing 9.4).

You made it an abstract base class because if a DLL existed with the DbComponent object code in
it, the DLL would need to have the DbComponent BeepIfDbIsOk function with the exact
decorated name that the Visual C++ linker expects. Otherwise, the linker would not find it and would
generate an unresolved external symbol error. Using an abstract base class eliminates this need for a
compiled symbol with a name decorated the way Visual C++ expects.

NOTE
Using abstract base classes eliminates the problem of incompatible C++
function decorating between C++ compilers. Also, the code that implements
these abstract base classes doesn't need to be present when applications that
use the abstract base classes are built.

The code in your OnNewDocument function in Listing 9.4 attempts to call the BeepIfDbIsOk
function through the DbComponent pointer, but there is another problem. The DbComponent
pointer in the OnNewDocument function is uninitialized-and you can't create an instance of the
DbComponent class because it's an abstract base class.

How can the code in your OnNewDocument function get a valid DbComponent pointer so that it
can call the BeepIfDbIsOk function?

Creating Objects by Using an API Function

It is impossible to create an instance of DbComponent (because it's an abstract base class). However,
it is possible to create an instance of a class that is derived from DbComponent. That derived class
could reside in a COM DLL (I will describe what a COM DLL entails later today in the section on
COM servers).

The derived class could override the BeepIfDbIsOk function in DbComponent and implement it
with code to beep if the database is okay. The derived class could be named something like
DbComponentImpl.

If you could somehow create an instance of DbComponentImpl, and if you could assign its address
to the DbComponent pointer in your OnNewDocument function, you could call the
DbComponentImpl's BeepIfDbIsOk function through your DbComponent pointer.

It would be very handy in this case to have some Windows API function that creates instances of
classes for you. You could tell it that you want an instance of DbComponentImpl and that you want
to assign its address to the DbComponent pointer in your OnNewDocument function.

For example, the code could look something like that shown in Listing 9.6.

Listing 9.6. Calling the DbComponent BeepIfDbIsOk Function

 1: DbComponent * pDb;
 2: ::CreateInstance(DbComponentImpl_ID, (void**)&pDb);
 3: pDb->BeepIfDbIsOk();
 4: pDb->Release();

Line 2 in Listing 9.6 calls an imaginary Windows API function named CreateInstance. Line 2
passes an (imaginary) identifier to the CreateInstance function to indicate that it should create an
instance of DbComponentImpl. The function returns a pointer to the DbComponentImpl
instance in the second parameter, pDb.

This CreateInstance function would load the DLL containing the DbComponentImpl code,
create an instance of the DbComponentImpl class, and assign its address to pDb. After the
CreateInstance call, you would have a valid pDb pointer (which is a pointer to DbComponent)
that you could use to call the DbComponentImpl BeepIfDbIsOk function, as shown in line 3.

Line 4 in Listing 9.6 calls an imaginary Release function to delete the object. You shouldn't use the
delete operator on pDb because DbComponent doesn't have a virtual destructor. The destructor for
DbComponent probably wouldn't be capable of properly cleaning up an instance of the
DbComponentImpl class. The Release function in line 4 is an imaginary function that is capable
of cleaning up an instance of DbComponentImpl.

Using a CreateInstance function like this would enable you to call the member functions of the
DbComponent class. You would actually be executing code that resides in the DbComponentImpl
class. The really big news is that the code for the DbComponentImpl class would not have to be
present when you build your application. Also, the name of the DLL is not hard-coded into your
application's EXE file image. Your application can use the code in the DLL without being tied to that
particular DLL file.

NOTE
Calling an API function in your application code to create instances of
components eliminates the problem of having DLL names hard-coded into
the EXE file image of your application.

There are, in fact, Windows API functions that work like the CreateInstance function in Listing
9.6. These functions are part of the Windows COM libraries. The most frequently used function like
this is the COM CoCreateInstance function.

Also, the Release function shown in line 4 of Listing 9.6 is authentic. COM components always
implement a Release function to enable applications to delete (or free) them.

Actually, COM components free themselves. The purpose of Release is to allow the client
application to announce that it won't be using the component anymore. This might result in the
component deleting itself, if no other client applications are using it.

You will recall that in Day 4, you used the CoCreateInstance function. The smart pointer class's
CreateInstance function internally calls CoCreateInstance. It also calls Release when
the pointer goes out of scope, so you don't have to call it. Refer to the following days and their listings
for examples of where you used a smart pointer class's CreateInstance function:

Day Listings
4 4.1, 4.2, 4.6, and 4.8

5 5.1, 5.2, and 5.3

6 6.7 and 6.8

Using abstract base classes to declare the class in the client application, and calling API functions to
load the DLL and instantiate the class, makes the application and the COM DLLs that it uses
independent of each other.

Because all the code doesn't need to be present at the time the software is built and because the DLL
names are not hard-coded in the EXE file image, you have more flexibility in updating the software.
Single EXE or DLL files can be replaced with newer versions, without the need to rebuild and replace
all the EXE and DLL files in the system every time.

NOTE
Breaking the build-time and load-time dependence between EXE files and
DLL files enables them to be updated independently of each other.

COM Clients and COM Servers

In previous Days, you learned a few things about client/server systems. You learned that in
client/server database applications, which run on multiple computers over a network, the machine
where the database resides is called the server, and the machines that run the apps that use the
database are called the clients.

A similar terminology exists in the COM world. In this example, the application that calls the
BeepIfDbIsOk function would be called the COM client. The DLL that contains the

DbComponentImpl class (and the BeepIfDbIsOk code) would be called the COM server.

In COM, a component that provides functions for other applications to call is a server.

An application that calls functions provided by COM components is a client.

So far today, you've learned a little about what the code looks like in COM clients. COM clients use
abstract base classes to declare the COM components they use.

The abstract base classes that applications use to declare COM components are called COM
interfaces.

COM clients call Windows API functions to create instances of the (server) component classes. COM
clients typically must call Release to free the components when they are done with them. COM
clients written in Visual C++ can also use a smart pointer class that internally calls
CoCreateInstance and Release.

You haven't yet had much opportunity to see what the code looks like for COM servers. That is the
topic of the next section.

COM Servers

COM servers have some required functions that they must implement and export and some required
registry entries that they must make. The next two sections explain these requirements.

Registry Entries

You will recall that COM clients call a Win32 API function to create instances of classes from COM
DLLs. How does the Win32 subsystem know which DLL contains the code for the classes?

The answer is that the COM libraries (part of the Win32 subsystem) look in the registry for the name
of the DLL and the DLL's location. You will recall that in Listing 9.6, when the COM client called the
API function to create the class instance, it passed in an identifier to tell the API function which class
it wanted an instance of. That identifier is called a GUID.

A GUID is a globally unique identifier. It is a 128-bit number that is guaranteed to be unique.
Microsoft provides a tool for generating GUIDs, called Guidgen.exe. It uses the worldwide unique ID

of the computer's network card, combined with the current date and time, to create numbers that are
always unique.

Figure 9.3 : Guidgen.

If the computer doesn't have a network card, the GUID is guaranteed to be unique on that computer
and statistically unique across computers. This means it's very unlikely, but possible, for such a GUID
to duplicate an existing GUID.

You can typically find Guidgen.exe in your Visual C++ Tools\Bin directory. Run Guidgen so that you
can see what a GUID looks like (see Figure 9.3).

As you can see in the Result pane in the Guidgen window, GUIDs are simply 128-bit (16-byte)
numbers. Guidgen makes it easy for you to generate GUIDs and copy them to the Clipboard. From
there, you can easily paste them into your source code for use in building COM components.

A CLSID is a GUID that identifies a class. In every COM component, each class and each interface
(remember, COM interfaces are C++ abstract base classes) is assigned a GUID. When a GUID is used
in this context, it is called a CLSID.

The CLSIDs of the COM server classes are stored in the registry, under
HKEY_CLASSES_ROOT\CLSID. You can best understand these registry entries by looking at a real-
life example.

Suppose you want to create an instance of an ADO Connection object, as you did in Day 4 in Listing
4.1 and Listing 4.6. In this scenario, the ADO Connection object would be the COM server, and the
application you are writing would be the COM client.

To create the object, you write some code that calls CoCreateInstance or the smart pointer
class's CreateInstance function and pass it the CLSID of the ADO Connection object.

The code for the CoCreateInstance (in COM library) looks up that CLSID in the registry. Figure
9.4 shows the information in the registry for that CLSID.

Figure 9.4 : Registry entries for the ADO Connection COM object.

As you can see in Figure 9.4, under this CLSID, there is an entry called InprocServer32. The
InprocServer32 entry indicates that the ADO Connection object is an in-process server, meaning the
COM server is contained in a DLL. The location of the DLL is shown as

"C:\Program Files\Common Files\System\ado\msado15.dll"

When ADO was installed on this machine, this entry for ADO Connection object was placed in the
registry. This registry entry is what enables applications to use the code in the DLL, without hard-
coding the DLL name in the application EXE file image.

You can find this entry yourself on your machine. Open the Registry Editor and do a Find on the key
ADODB.Connection. Under the ADODB.Connection key is a CLSID subkey. This entry
contains the ADO Connection's CLSID. Next, do a Find on the key for this CLSID. You will find
the entry shown in Figure 9.4.

The COM libraries use this registry entry for the CLSID to find the DLL filename and location. COM
then calls LoadLibrary to load the DLL.

After the DLL is loaded, COM needs to create an instance of the ADO Connection object. To do this,
COM needs some help from functions in the DLL.

Required Server Functions

When you call CoCreateInstance to create an instance of the ADO Connection object, how does
COM know how to create instances of the ADO Connection object?

The answer is, it doesn't. However, COM does know how to call a standard function, which is
implemented in all COM server DLLs, to get a pointer to an interface for an object that can create
instances of ADO Connection. In other words, every COM DLL must export a standardized function
that the OS can call to create instances of its classes.

The function name is DllGetClassObject. Its prototype is

STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, LPVOID* ppv)

STDAPI is merely a macro that resolves to an HRESULT and a calling convention.
DllGetClassObject actually takes two GUIDs as parameters, the first one being the CLSID and
the second one being the GUID for a particular interface that object supports. COM calls
DllGetClassObject with the parameters necessary to get a pointer to a class factory interface
from the DLL.

A class factory is a class that knows how to create instances of other classes.

A class factory is implemented in every COM server. The class factory implements the
IClassFactory interface, which includes the CreateInstance function. COM can call the
CreateInstance function to create COM objects (instances of COM server classes).

The class factory in msado15.dll knows how to create ADO Connection objects. After COM loads the
DLL by calling LoadLibrary, it calls GetProcAddress to get the address of
DllGetClassObject. COM then calls DllGetClassObject to get a pointer to the
IClassFactory interface.

Figure 9.5 : How a COM client obtains a pointer to a COM server.

After COM gets a pointer to the class factory in msado15.dll, COM calls the class factory
CreateInstance function, passing it the ADO Connection CLSID to create an instance of the
ADO Connection class. Finally, COM returns the pointer to the ADO Connection object the client
application that called CoCreateInstance.

The process of a client calling CoCreateInstance to get a pointer to a COM server is illustrated
in Figure 9.5.

You can see from Figure 9.5 that two calls are made into the COM server DLL. The
DllGetClassObject function is called and the class factory CreateInstance function is
called. That means a DLL that contains COM server(s) must implement the DllGetClassObject
function, as well as a class factory class, in order to work.

A COM DLL needs three other functions in order to implement and expose. These functions are

● DllRegisterServer-which contains the code to make the registry entries for the COM
servers that reside in the DLL. This makes the COM DLL easy to install and use. The DLL's
COM servers can be registered by running RegSvr32.exe and passing the DLL name and path
as an argument.

● DllUnregisterServer-which contains the code to remove the registry entries for the
COM servers that reside in the DLL. This function is called when RegSvr32.exe is run with an
argument to specify that it should remove the registry entries for the COM servers.

● DllCanUnloadNow-which the OS calls to see whether it can safely unload the DLL from
memory. If COM clients are currently using servers from this DLL, the DLL needs to stay
loaded (and mapped into the address space of the client applications). However, if all the
clients are done with its COM servers, the DLL could be unloaded to free up resources. A
global reference count is kept by COM DLLs to track how many of its COM servers are being
used. If that reference count is zero, the DLL can unload. If it is not, it can't. This function
reports to the OS whether it can be safely unloaded. The DLL unloading functions exist to
enable the OS to unload an inproc DLL when system resources are low. The DLL is always
unloaded when the process it's attached to ends. While the process is running, the DLL can veto
the unloading by returning FALSE from DllCanUnloadNow. When the process stops, the
DLL doesn't get to vote.

Therefore, a DLL that contains COM server(s) must implement four functions
(DllGetClassObject, DllRegisterServer, DllUnregisterServer, and
DllCanUnloadNow) and one class (the class factory).

You can implement all this code yourself in every COM DLL you create, or you can use a tool that
implements this code for you. You will next explore a tool that does most of this work for you. That
tool is called ATL.

The Active Template Library (ATL)

You will learn more about ATL in Day 11, "Multitier Architectures." Today you will simply use the
ATL Wizard to create a COM DLL that contains a COM server. You will see that ATL writes the
code for you for the four required functions and the required class factory class in a COM DLL.

ATL is inspired by the C++ Standard Template Library (STL). To make it easy to create COM
components, ATL uses C++ templates.

Figure 9.6 : A new ATL COM AppWizard project.

Despite ATL's use of templates, you don't need to use templates in your own code in order to use
ATL. ATL provides two wizards and several default COM object types that generate much of the
template code for you. With ATL, you are able to concentrate primarily on the implementation of your
code and don't have to worry about writing very much of the plumbing that COM needs.

Create a new project in Visual Studio. Specify an ATL COM AppWizard application and ATLTest1
as the project name, as shown in Figure 9.6.

Click the OK button. In the next dialog, specify a server type of DLL, as shown in Figure 9.7. You can
build COM servers into an EXE or an NT service, but don't worry about that yet. You will learn about
COM servers in EXEs later today.

Check the check boxes for Allow Merging of Proxy/Stub Code and for Support MFC. Don't check the
box for supporting MTS. You will learn more about MTS in Day 12, "Using Microsoft Transaction
Server to Build Scalable Applications." Click the Finish button and then click the OK button to
generate code for the project.

Figure 9.7 : Options for the ATL COM AppWizard project.

Figure 9.8 : The ATL Object Wizard.

After the wizard generates the code, select the Class View and expand the list of Globals in the tree
control. You will see that the four required functions for COM DLLs have been generated for you.

Now you can build your own COM server(s) in this DLL. Select the InsertNew ATL Object... menu to
open the ATL Object Wizard shown in Figure 9.8. The icons in the wizard might look different from
those in Figure 9.8, depending on which version of Visual Studio you are using.

Select Simple Object from the pane on the right and click the Next button. You will then be presented
with the ATL Object Wizard Properties dialog shown in Figure 9.9.

Figure 9.9 : The ATL Object Wizard Properties Names tab.

The Names tab is initially selected, as in Figure 9.9. Enter DbComponent as the short name. The
other text boxes should fill in automatically.

Select the Attributes tab and select the radio buttons shown in Figure 9.10.

Figure 9.10: The ATL Object Wizard Properties Attributes tab.

Threading Model refers to the type of threading your COM server will support. Apartment is the
default and will be fine for now.

Interface refers to whether your COM server will provide a dual interface so that it can be used both
from scripting languages and from C++ or whether it will provide a custom interface only, which
cannot be used from scripting languages. ATL gives you the dual interface for free, so you might as
well take it.

Aggregation refers to whether your COM server will be aggregated inside other COM servers. It will
not, so select No.

You also will not need support for ISupportErrorInfo, Connection Points, or the Free Threaded
Marshaler. Do not check any of these check boxes.

When you click the OK button, the wizard will generate code for the DbComponent class, which
will be a COM component that's housed in the DLL.

After the code is generated, you will see in the Class View an entry in the tree control called
IdbComponent. I stands for Interface. This is the interface for the DbComponent COM server.
IDbComponent will become a C++ abstract base class for clients that want to use DbComponent.

Right-click IDbComponent in the tree control and select the Add Method… menu. This will open
the Add Method to Interface dialog shown in Figure 9.11.

Figure 9.11: The Add Method to Interface dialog.

Enter BeepIfDbIsOk for Method Name. Return Type is always an HRESULT for ATL COM
functions. Leave the Parameters edit box empty. Click OK.

After you click OK, ATL will generate the infrastructure for this function. In the Class View, expand
the CdbComponent; then expand the IDbComponent under CDbComponent. Under
IdbComponent, you will see an entry in the tree control for the BeepIfDbIsOk function. This

points to the code for this function in the COM server. Double-click BeepIfDbIsOk to edit its
source code.

Edit the code for the BeepIfDbIsOk function so that it matches the code in Listing 9.7.

Listing 9.7. The BeepIfDbIsOk Function

 1: STDMETHODIMP CDbComponent::BeepIfDbIsOk()
 2: {
 3: AFX_MANAGE_STATE(AfxGetStaticModuleState())
 4:
 5: // Good'Die Mite. 'Looks lock the die-ta bise is oak eye.
 6: ::MessageBeep(MB_OK);
 7:
 8: return S_OK;
 9: }

You can see that this code isn't really doing anything to check a database to see whether it's okay. This
is just a simple function that you can use to begin your discovery of COM programming.

Lines 5 and 6 are the only lines you need to add. The ATL Wizard automatically puts the rest of them
there. You can see from line 5 that this code could be written in the land down undah. COM
components can be written and used anywhere on the planet. Line 6 simply beeps.

Build your ATLTest1 project. It should build without errors or warnings. The build process will
generate an ATLTest1.h file that contains the abstract base class (IDbComponent) that the COM
clients will use. The build process will generate another file called ATLTest1_i.c, which holds the
GUIDs that the COM clients will need in order to use this COM server.

The build process will run RegSvr32.exe for you to register the COM server DLL. This means that
after each successful build, you have a COM server that has been registered on your machine and is
ready to be used by COM clients.

You have now created a COM server component that can be called from COM clients. To try it out,
copy the ATLTest1.h file and the ATLTest1_i.c file into the directory with your ADOMFC1 project.
Open your ADOMFC1 project in Developer Studio.

Change the CADOMFC1Doc.cpp file so that it includes the ATLTest1.h file and the ATLTest1_i.c
file (instead of the DbComponent.h file), like this:

#include "ATLTest1_i.c"
#include "ATLTest1.h"

Change the code in the OnNewDocument function so that it calls the BeepIfDbIsOk function in
your COM server (see Listing 9.8). (You should, of course, leave the existing code in
OnNewDocument and merely add this code to it-perhaps near the beginning of the function.)

Listing 9.8. Calling the COM Server BeepIfDbIsOk Function from the OnNewDocument
Function

 1: hr = CoCreateInstance(CLSID_DbComponent, NULL,
 2: CLSCTX_INPROC_SERVER, IID_IDbComponent,
 3: (void**) &pDb);
 4:
 5: if (SUCCEEDED(hr))
 6: {
 7: pDb->BeepIfDbIsOk();
 8: pDb->Release();
 9: }

Line 3 of Listing 9.8 defines a pointer to IDbComponent, the abstract base class that is the interface
to the COM object. IDbComponent is declared in ATLTest1.h.

Lines 5, 6, and 7 call CoCreateInstance. The first parameter is the CLSID for this component.
The second parameter is for the aggregating IUnknown interface and is NULL (except when using
aggregation). The third parameter tells COM that you are working with a COM server in a DLL. The
fourth parameter is the GUID for the interface you are requesting. (In this case, the CLSID for this
component and the GUID for the interface are actually the same.) The last parameter is where the
pointer to the instance of the class will be returned.

If the call to CoCreateInstance succeeds, line 10 calls BeepIfDbIsOk, and line 11 calls
Release to free the COM server. Listing 9.8 does not check for or handle errors for the sake of code
brevity and clarity.

Remember that you called the AfxOleInit function in CADOMFC1App::InitInstance to
initialize the COM libraries. You must always do this before calling COM functions (such as

CoCreateInstance), or they will fail.

The software should run without a hitch. You should be able to set a break point in the client code and
step into the server code in the DLL, just as you can when COM isn't involved. Also, of course, the
program should beep as expected. No worries.

NOTE
Every COM interface is inherited from IUnknown, which has three
functions:
QueryInterface, AddRef, and Release.

You have now written a COM server component and a COM client application. Congratulations. You
also understand COM at its foundation, which will enable you to understand more about COM later.

IUnknown, QueryInterface, AddRef, and Release

You might be wondering about that Release function call in line 12 of Listing 9.8. You didn't
declare or implement a Release function in your DbComponent class for the COM server. How
did Release become part of IDbComponent?

It might not be readily apparent in this example, but every COM interface (IDbComponent
included) is derived from an abstract base class called IUnknown. IUnknown has three member
functions: QueryInterface, AddRef, and Release.

QueryInterface enables a COM client to query a COM server to see whether the server supports
the requested interface. The implementation of QueryInterface is standard among COM servers,
and ATL implements it for you. If you weren't using ATL (or some other tool that automates the
process of creating COM server code), you would have to write an implementation of
QueryInterface into your server code.

The same thing goes for AddRef and Release. These two functions provide usage counts for COM
servers. Their implementations are pretty standard. ATL writes the code for these functions as well, so
you don't have to in your COM server code.

Interface Definition Language

I mentioned earlier today that you could build COM servers into an EXE. This means that the COM
client, which is an EXE in the example you just went through, can call functions in another EXE.
COM enables function calls across process boundaries.

The programming model is identical, whether your COM client is talking to a COM server in a DLL
or in an EXE. About the only difference on the client side is the third parameter it passes to
CoCreateInstance-CLSCTX_LOCAL_SERVER instead of CLSCTX_INPROC_SERVER. The
difference at runtime is that making function calls across process boundaries can be about 50 times
slower than making function calls within the same process. Nevertheless, the ability to call functions
in an EXE from another EXE is quite a feat.

To accomplish this feat, COM has to make each EXE believe it's talking to code inside its own address
space. COM creates a local proxy of a server inside the client's address space. The client talks to the
proxy, the proxy talks to COM, and COM talks to the server EXE.

With COM crossing process boundaries like this, it was necessary to create some standard formats for
sending function calls and their parameter values and types between client and server EXEs. Also
needed was an object that understands how to pack and unpack the specific parameters of an
interface's functions. This is called marshalling.

Proxy/stub objects, which are created by the MIDL compiler, handle this marshalling. The input to the
MIDL compiler is Interface Definition Language (IDL).

You can see what IDL looks like by opening the ATLTest1 project and double-clicking the
IDbComponent interface in the Class View. This will open ATLTest1.idl.

You can think of IDL as C++ header files on steroids. IDL defines the interface classes, their
functions, and the functions' parameters, just as C++ headers do. IDL also specifies whether the
parameters are In, Out, or Both, indicating whether a parameter is used by the client to pass in a
variable that's filled in or modified by the server.

Automation (Formerly Called OLE Automation)

Automation is the name for a standard COM interface named IDispatch. If you look at
ATLTest1.idl, you will notice that IDbComponent is derived from IDispatch (IDispatch is
derived from IUnknown).

Remember that you told ATL that you wanted this COM server to provide a dual interface (refer to
Figure 9.10). A dual interface enables your server to be used by clients such as scripting languages.

The IDispatch interface has a member function named Invoke. Invoke takes a function name,
or ordinal value that represents a function, as a parameter and invokes the function on behalf of a
COM client that can't call the function directly itself.

Calling functions in a COM server through IDispatch Invoke is a bit slower than making direct

calls to a function through a pointer. However, the IDispatch interface opens up a COM server so
that languages without pointers can use it.

If your COM server has a dual interface, it supports both the direct method through pointers and the
indirect method though the IDispatch interface. ATL does all the work of implementing the
IDispatch functions, so there's often no cost to supporting Automation in your COM server.

There is a need, however, for your COM server to use only the data types supported by Automation in
its function parameters. This typically isn't a problem, but you should check the Automation types in
the COM/VC++ documentation to make sure they meet the requirements of your server.

COM Type Libraries

If a COM server supports Automation, it can be used from client applications written in a wide variety
of programming languages. If all that a COM server provides to document its interface is a C++
header file, that might not help some of the clients that want to use that server.

A type library is a language-independent header file.

A type library describes the interfaces to a COM server in a way that can be understood by most
modern programming languages (on the Windows platform). ATL automatically creates a type library
for COM servers. The type library ATL created for ATLTest1 is in the file ATLTest1.tlb.

You have actually used a type library already. When you used the #import directive with ADO in
Days 4, 5, and 6, you were using the ADO type library. The ADO type library is stored as a resource
in the ADO DLL file. The #import directive reads the type library from the resource and creates
C++ classes for you that correspond to the interfaces described.

Summary
Today you learned the basics of COM. You learned that COM is based on C++ abstract base classes,
called interfaces. You also learned that the COM libraries (part of the Win32 API) provide a way to
create instances of classes indirectly, thereby avoiding any build-time dependencies between clients
and servers.

Traditional DLLs are good for sharing common code among concurrently running applications.
However, to build real component-based software, the capabilities afforded by COM are essential.

Q&A

file:///D|/UncleVan/Current/DB%20Visual%20C++/ch04/ch05.htm

Q What is the difference between COM and OLE?
A These names (acronyms) are a bit historical. OLE is the name for the original

technology when it was introduced several years ago. OLE now applies mostly when
talking about controls, in-place activation, and other application-level technologies.
COM is more foundational and deals with the base parts of the technology. Today you
learned about COM, not OLE.

Q How does COM compare to other object technologies, such as CORBA and
OpenDoc?

A These object technologies have incredible depth and breadth. It would be difficult to
provide an adequate comparison. However, in general, COM provides the easiest
development model but not always the most robust performance. COM is most popular
on the Windows platforms. CORBA finds most of its adherents on the UNIX platforms.
For a while, it looked as though OpenDoc would be supported on the IBM platforms
(OS/2 and mainframes) and on the Macintosh platform, but support for OpenDoc has
waned considerably.

Q Does MFC provide classes and wizards for COM?
A Yes, it does. However, much of MFC's support is in two areas: OLE controls, both for

building them and for using them, and Automation, both for building Automation
servers and for building Automation clients. The OLE support in MFC is particularly
helpful when you are building OLE components that have heavy user interface (UI)
requirements. ATL is best used for COM components that have few, or no, UI
requirements.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. Why can't you load a DLL into memory and send messages to it from your application?
2. What makes a C++ class an abstract base class?
3. What is a class factory?
4. Why is it necessary for a COM client to call Release on a COM server after it's finished with

it?
5. What is a CLSID, and why must all CLSIDs be unique?

Exercises

1. Add another method to the IDbComponent interface. Make this method take, as a parameter,
an address to a variable of some sort. Modify this variable in the server code and make sure it

gets back okay to the client.
2. Use the ATL COM AppWizard to create a COM server in an EXE. Expose a function in its

interface, similar to one in the DLL COM server. Compare the performance of the EXE-based
COM server (the out-of-proc server) versus the DLL-based COM server (the inproc server).

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 10
 Database Client Technologies and the
 Secrets of ADO

● An Overview of Database Client Technologies
❍ ODBC
❍ MFC ODBC Classes
❍ DAO
❍ RDO
❍ OLE DB
❍ ADO
❍ Database Client Technology Summary

● The Secrets of ADO
❍ ADO's History

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Database client technologies for the Windows platform have rapidly evolved during the past few
years. Technologies for doing database client development include ODBC, the MFC ODBC classes,
DAO, RDO, OLE DB, and ADO. Each of these technologies can be a useful tool for developing
database client applications.

The question of when and where to use each client technology can be very confusing-unless you
understand each technology and how it relates to the others. Today, the murky waters of database
client technologies will become clear.

After examining the context of database client technologies and the relationships between them, you
will spend some time learning more about ADO.

Today you will learn

● An overview of the database client technologies, such as ODBC, DAO, RDO, OLE DB and
ADO

● A comparison of the strengths and weaknesses of each technology
● The secrets of ADO

You won't be writing new code today. Rather, you will concentrate on gaining a deeper understanding
of the ADO code you wrote in Day 4, "Retrieving SQL Data Through a C++ API," Day 5, "Adding,
Modifying, and Deleting Data," and Day 6, "Harnessing the Power of Relational Database Servers."

An Overview of Database Client Technologies
Database client technologies provide abstractions. That is their purpose. A database is a very complex
piece of software. Writing programs to communicate with a database through its native interface can
be very complicated. Database client technologies simplify this process.

Database client technologies provide an interface that is less complex than the underlying database.
Database client interfaces provide leverage for you, the developer. They enable you to write relatively
simple programs that leverage an enormous amount of code (code that resides in the database) to
perform very complex tasks.

A good database interface is like a magnifying glass for your code, as shown in Figure 10.1.

Figure 10.1 : A database interface as a code magnifier.

Writing programs to communicate with a database through its native interface not only can be
complex but also can result in limited and inflexible applications. An application written to use a
particular database's native interface is limited, of course, to using only that particular database. The
process of enabling such an application to use another database can be very difficult and time-
consuming, if not impossible.

Database client technologies provide a uniform interface for communicating with different and
disparate database systems. With modern database client interfaces, you can write a single program
that performs complex operations using multiple types of data bases, as shown in Figure 10.2.

Figure 10.2 : A uniform interface to disparate database systems.

A good database interface magnifies your code and provides a uniform interface to different database
systems. In the recent past, several database interfaces have been developed. These database interfaces
differ from each other in the things they accomplish and the way they go about them.

The popular database interfaces on the Windows platforms include

● ODBC (open database connectivity)
● MFC (Microsoft Foundation Classes) ODBC classes
● DAO (Data Access Objects)
● RDO (Remote Data Objects)
● OLE DB (object-linking and embedding database-the expanded acronym makes no sense

unless you know its historical context, which you will learn shortly)
● ADO (ActiveX Data Objects)

You will learn database client technologies in more depth in Days 14-21. However, here is a brief
explanation of each technology to give you an understanding of the context of each.

ODBC

ODBC was created in the late '80s and early '90s to provide a uniform interface for writing client
software for relational databases. ODBC provides a single API for client applications to work with
different databases. Applications that use the ODBC API can communicate with any relational
database for which there is an ODBC driver.

Compared to other database interfaces, the ODBC API could be classified as a low-level database
interface. The ODBC API enables client applications to configure and control the database at a
relatively low level.

Figure 10.3 illustrates the architecture of ODBC.

Figure 10.3 : The ODBC architecture.

ODBC was designed to provide an interface to relational databases. ODBC has become quite popular
and is generally accepted as a standard for interfacing with relational database systems.

ODBC is limited to relational databases. Because of the relational nature of ODBC, it's difficult to use
ODBC to communicate with non-relational data sources, such as object databases, network directory
services, email stores, and so on.

ODBC provides the ODBC Driver Manager (ODBC32.DLL), an import library (ODBC32.LIB), and
ODBC header files for the ODBC API. Client applications link with the import library to use the
functions exposed by the ODBC Driver Manager. At runtime, the ODBC Driver Manager calls

functions in the ODBC drivers (which are also DLLs) to perform operations on the databases, as
shown in Figure 10.3.

ODBC does not provide an embedded SQL interface. With embedded SQL, the SQL code is
embedded in the application program source code. A precompiler transforms the SQL code at build
time into native function calls that call the database's runtime library.

ODBC provides a call-level interface (CLI). A CLI is a special kind of database API. A CLI, like a
typical API, provides functions for client applications to call. However, in a CLI, the SQL code in the
client application is not precompiled. Rather, the API provides functions that enable the application to
send the SQL code to the database at runtime. The SQL code is interpreted at runtime.

ODBC is a nontrivial topic. You will explore the architecture of ODBC (and write some ODBC code)
in Day 14, "Legacy Database APIs."

MFC ODBC Classes

ODBC was created to provide a uniform interface to relational databases. However, the ODBC API
isn't necessarily simple.

In Visual C++, MFC provides classes that simplify the ODBC API. The MFC ODBC classes make
ODBC programming much less complex. You used the MFC ODBC classes in Day 1, "Choosing the
Right Database Technology," in Listing 1.4.

The MFC ODBC classes are easier to use than the ODBC API but do not give you the low level
control that the ODBC API offers. Therefore, the MFC ODBC classes could be classified as a high-
level database interface. You will learn more about using the MFC ODBC classes in Day 15, "The
ODBC API and the MFC ODBC Classes."

DAO

DAO stands for Data Access Objects. Data Access Objects is a set of (COM) Automation interfaces
for the Microsoft Access/Jet database engine. DAO talks directly to Access/Jet databases. DAO can
also communicate with other databases through the Jet engine, as shown in Figure 10.4.

The COM-based Automation interface of DAO provides more than a function-based API. DAO

provides an object model for database programming.

The DAO object model is better suited to object-oriented development than a straight API. Integrating
a set of disparate API functions into an object-oriented application typically means that the developer
must write her own set of classes to encapsulate the API functions.

Figure 10.4 : DAO architecture.

Rather than provide merely a bunch of functions, DAO provides a set of objects for connecting to a
database and performing operations on the data. These DAO objects are easy to integrate into the
source code of an object-oriented application.

In addition to including classes for connecting to a database and manipulating data, the DAO object
model also encapsulates the structural pieces of an Access database, such as tables, queries, indexes,
and so on. This means that DAO also enables you to directly modify the structure, or schema, of
Access databases without having to use SQL DDL statements.

DAO provides a useful object model for database programming, but as you can see from Figure 10.4,
several layers of software are involved. Note that if you are using DAO to talk to a database server
such as Oracle or SQL Server, all the calls into the database and all the data coming out of the
database must pass through the Access/Jet engine. This can be a significant bottleneck for applications
that use a database server.

DAO is easier to use than the ODBC API but doesn't provide the degree of low-level control afforded
by the ODBC API. Therefore, DAO could be classified as a high-level database interface.

There is a set of MFC classes that further simplify the DAO Automation interfaces. The MFC DAO
classes are prefixed with CDAO. You can find information on these MFC classes in the Visual C++
documentation. On Day 14, you will learn more about DAO and the MFC DAO classes.

RDO

RDO stands for Remote Data Objects. RDO was originally developed as an abstraction of the ODBC
API for Visual Basic programmers. Therefore, RDO is closely tied to ODBC and Visual Basic.

RDO is easier to use than the ODBC API but doesn't offer the low-level control provided by the
ODBC API. Therefore, RDO could be classified as a high-level database interface.

Because RDO calls the ODBC API directly (rather than through Jet, like DAO), it can provide good
performance for applications that use relational database servers.

RDO can be used with Visual C++ applications by inserting the RemoteData control in the
application. The RemoteData control is an OLE Control that can be bound to controls in the
application's UI. You can call RDO functions through the RemoteData control's methods. You will

learn more about RDO in Day 14.

OLE DB

As I mentioned earlier, OLE DB stands for object-linking and embedding database. The OLE DB
name makes more sense as an acronym. You will understand why in a moment.

OLE DB expands on ODBC in two important ways. First, OLE DB provides an OLE-actually, a
COM-interface for database programming. Second, OLE DB provides an interface to both relational
and nonrelational data sources.

OLE DB provides an OLE (COM) interface. OLE was the original name for COM. When OLE DB
was being created, OLE was still used as the name for COM. Since that time, COM has become the
name for the foundation of Microsoft's component technology (which you explored yesterday), and
OLE has come to be associated with UI components such as OLE Controls (OCX Controls).

Used as an acronym, the OLE DB name invokes an image of OLE/COM and databases, which is
accurate. However, the expanded object-linking and embedding database name makes no sense. This
is why I say the OLE DB name makes more sense as an acronym.

I think the technology might best be named COM DB instead of OLE DB because OLE DB has little
to do with UI components such as OLE Controls. Unfortunately, Microsoft has yet to seek my
approval of the OLE DB name and seems committed to using the OLE DB term.

OLE DB's provision of a COM interface for database programming is important because a COM
interface can be much more robust and flexible than a traditional call-level interface, such as the
ODBC interface. This flexibility can result in better performance and more robust error handling and
can enable interfacing with nonrelational data sources.

Like ODBC, OLE DB could be classified as a low-level database API. OLE DB incorporates the
functionality of ODBC for relational databases and expands on it by providing access to nonrelational
data sources.

There are two kinds of OLE DB software: OLE DB consumers and OLE DB providers. Figure 10.5
illustrates the relationship between OLE DB consumers and OLE DB providers.

Figure 10.5 : OLE DB consumers and providers.

An OLE DB consumer is any application that uses or consumes OLE DB interfaces. For example, any
application that you write in C++ and that uses OLE DB to connect to a database server would be an
OLE DB consumer.

OLE DB providers are DLLs that implement the OLE DB interfaces and do the actual communication
with the data source. OLE DB providers are similar in function to ODBC drivers, except that OLE DB

providers implement COM interfaces instead of API functions.

OLE DB furnishes access to any data source for which there is an OLE DB provider. These data
sources include email stores, object databases, network directories, and other nonrelational data stores.

As you can see in Figure 10.5, there is an OLE DB provider called MSDASQL.DLL that can talk to
ODBC data sources. This is handy for those data sources that have an ODBC driver but don't yet have
an OLE DB provider.

OLE DB exposes a set of COM interfaces that can be called from C++ programs. OLE DB doesn't
offer an Automation interface.

OLE DB is the future of database client development on Windows. Microsoft's own development
efforts are focused on OLE DB. It's unlikely that we will not see any further updates of ODBC. ODBC
will stick around in its present form, and all the new database client technology from Microsoft will be
applied to OLE DB. OLE DB is the focus of Days 16-21.

ADO

ADO stands for ActiveX Data Objects. ADO is built on top of OLE DB. ADO is an OLE DB
consumer. Applications that use ADO use the OLE DB interfaces indirectly.

ADO provides an object model for database programming that's similar to, but more flexible than,
DAO's object model. For instance, you can create Recordset objects in ADO without first creating a
Connection object (which is something you can't do in DAO).

ADO simplifies OLE DB. OLE DB is large and complex; a program that uses OLE DB must use some
complex COM interfaces. ADO is much simpler to use than OLE DB and can be classified as a high-
level database interface.

Also, ADO can be used with more programming languages than OLE DB. ADO provides an
Automation interface. This enables ADO to be used from scripting languages, such as VBScript and
JavaScript. (OLE DB can't be used from scripting languages because scripting languages don't have
pointers and therefore can't use COM interfaces.)

You've already used ADO objects in Days 4, 5, and 6 to connect to a database, issue queries, retrieve
resultsets, and execute stored procedures. You will use ADO objects more today.

Database Client Technology Summary

The database client technologies and how they relate to each other are shown in Figure 10.6. As you
can see, several technologies are available to you for database client development.

Table 10.1 presents the relative strengths and weaknesses of the various database client technologies.

Table 10.1 Comparison of the Database Client Technologies

ODBC
MFC

ODBC DAO RDO
OLE
DB ADO

Object model - + + + + ++
Nonrelational data sources - - - - + +
Low-level control + - - +
Performance + - ++
Code-to-functionality ratio - + - +

Figure 10.6 : Database client technologies.

In Table 10.1, a plus sign (+) indicates a strength, two plus signs (++) indicate a special strength, a
minus sign (-) indicates a weakness, and a blank indicates no particular strength or weakness.

● Object model indicates whether the technology provides an object model that lends itself to
object-oriented programming.

● Nonrelational data sources refers to the technology's capability to access data stored in
nonrelational data stores. (All these technologies provide access to relational databases, so
relational database access isn't shown.)

● Low-level control refers to the amount of database configurability and low-level control the
technology provides for working with relational database servers.

● Performance refers to the amount of execution overhead the technology imposes when
accessing relational database servers.

● Code-to-functionality ratio refers to how much code you have to write compared to the
database functionality you gain from that code.

Of all these technologies, OLE DB and ADO have the most promising future. These two technologies
are where Microsoft is doing its development work. The other technologies are not being
discontinued, per se, but will not be further updated by Microsoft.

OLE DB offers unparalleled power and flexibility for client database programming. However, as you
can see from Table 10.1, OLE DB is a low-level interface and requires more code than a high-level
interface such as ADO.

ADO offers a flexible yet simple object model with decent performance. This makes ADO the best
way to start doing database client development. Next, you will explore ADO and learn how to
discover details about its functions.

The Secrets of ADO
The things you are about to learn are not really secrets. They are important pieces of information about

ADO that are not very clearly documented. The knowledge you are about to gain here, combined with
the existing ADO documentation, should give you what you need to perform any ADO programming
task.

Rather than describe all the ADO functions (as in traditional API documentation), I will show you
where to find that information and how to use it. The knowledge you gain here will apply not only to
ADO but also to all other dual-interface COM servers.

ADO's History

Compared to the other database client technologies, ADO is relatively new. So far, Microsoft has
released three versions of ADO: 1.0, 1.5, and 2.0.

The first release, version 1.0, was a subset of the functionality of RDO. It was targeted at developers
building Active Server Pages (ASP) for Internet Information Server (IIS).

The next release, version 1.5, was shipped with IIS 4.0 and Internet Explorer (IE) 4.0. It was also
included in the Microsoft Data Access Components (MDAC). With version 1.5, ADO became a
database interface that rivaled (or exceeded) RDO and DAO in functionality and performance.

The latest release, version 2.0, added new functionality to ADO that is not found in other database
client technologies. ADO 2.0 is actually housed in MSADO15.DLL, which is the same filename as the
ADO 1.5 DLL. The filename is the same, but additional ADO COM interfaces are implemented in the
ADO 2.0 version of the DLL.

The new functionality in ADO 2.0 includes

● Asynchronous operations and notifications
● Recordset persistence
● Hierarchical recordsets for data shaping

Before you delve into the latest and coolest features of ADO 2.0, however, you need to understand
some of the basics of ADO. You will begin with ADO's use of COM.

ADO and COM

You will recall from Day 9, "Understanding Com," that a COM server can

● Be housed in a DLL so that it runs in the client process's address space for good performance
● Provide an Automation interface so that it can be used from clients written in almost any

programming language
● Sport a type library so that its objects and functions can be easily discovered by client

applications

ADO does all these things as a COM server. ADO is housed in MSADO15.DLL. ADO has a dual
interface, meaning it has custom (vtable) interfaces and Automation interfaces, and ADO has a type
library, so you can discover the ADO objects and the functions they expose.

The ADO Type Library

You can view the ADO type library by running the OLE-COM Object Viewer. Run the OLE-COM
Object Viewer now. It can be found under the Microsoft Visual Studio 6.0 Tools menu, Ole View.

From the File menu, select View TypeLib… and navigate to the MSADO15.DLL file. The
MSADO15.DLL file is typically installed in the C:\Program Files\Common Files\ System\ADO
directory.

The left pane of the OLE-COM Object Viewer window contains a tree control with the elements of the
type library. The right pane of the window shows the Interface Definition Language (IDL) code that
the MIDL compiler used to create the type library.

You will recall from yesterday that IDL is basically a language-independent C++ header file. The
MIDL compiler, which runs when you build a COM server project in Visual C++, uses the IDL code
to build the type library.

As you select elements in the tree control in the left pane of the OLE-COM Object Viewer window,
the right pane shows the corresponding IDL code. Scroll down in the tree control and select the
interface _Connection element. This is the custom COM interface for the ADO
_Connection object. The ITypeLib Viewer window should look like Figure 10.7. The GUID for
the _Connection interface might change between releases of ADO, so it might look similar but not
identical to Figure 10.7.

The right pane shows the IDL for the ADO _Connection object. This IDL lists the _Connection
object's functions and their arguments.

Figure 10.7 : Viewing the ADO type library.

You can find documentation for IDL in the Visual C++ help system. Basically, IDL is like C++
function declarations with the addition of attributes in brackets before each function and each
argument. The attributes you will see most frequently are

● id-Assigns an ordinal value, called a DISPID, to each function
● out-Indicates that the argument is an out parameter: a pointer to a variable that the server

will modify and that the client will use afterwards
● in-Indicates that the argument is an in parameter and is being passed in from the client to the

server and that the client is responsible for the lifetime of any storage allocated
● retval-Is used in conjunction with an out argument to indicate that this is the return value

of the function (all COM interface functions return an HRESULT, so one out argument can be
specified as the return value)

● optional-Indicates that this parameter can accept a NULL value
● defaultvalue-Specifies a default value for optional parameters (this attribute is not

typically implemented when using #import)

Expand the tree control under the interface _Connection element. Highlight the Execute
function. The right pane will show the IDL code for the ADO _Connection object's Execute
function as shown in Figure 10.8.

As you can see, the type library provides documentation for the functions in the COM interfaces of a
COM server. You can use the #import directive in Visual C++ to have the compiler read the type
library and produce C++ header files that match it. As you will recall, that's what you did in the code
you wrote in Days 4, 5, and 6. You will learn more about using #import with ADO in the next
section.

Figure 10.8 : Viewing the type library for the Execute function of the ADO _Connection custom
interface.

Now scroll up the left pane of the OLE-COM Object Viewer window and expand the
dispinterface _Connection element in the tree control. This is the dispatch interface for the
ADO _Connection object.

You will recall from yesterday that the dispatch interface (IDispatch) is the COM interface that
provides an Invoke function. Programming languages that don't have pointers (but are Automation
capable) can call functions in COM servers by passing the DISPID of the function to the
IDispatch Invoke function. This technology was originally called OLE Automation but is now
called simply Automation (with a capital A).

Select the Execute method under dispinterface _Connection in the OLE-COM Object
Viewer. Your window will look like Figure 10.9.

You can see that the IDL for the Execute function in ADO's Automation interface in Figure 10.9
is similar to the IDL for the Execute function in the custom interface (refer to Figure 10.8). The
difference between the functions is that the Automation function does not return an HRESULT.
Rather, the retval argument in the custom interface is listed as the value returned from the
Automation function.

Figure 10.9 : Viewing the type library for the Execute function of ADO _Connection
Dispinterface.

When an application uses the custom interface version of the _Connection::Execute function,
the application must pass a pointer to a pointer to a Recordset as the fifth argument, and the function
returns an HRESULT.

When an application uses #import, however, the _Connection::Execute function returns a

pointer to a Recordset, as in the Automation version of the function.

ADO and the #import Directive

Open your ADOMFC1 project. Open the MSADO15.TLH file and the MSADO15.TLI files. You can
find the MSADO15.TLH file and the MSADO15.TLI files by navigating to your build output
directory (probably Debug). These are the C++ header files that the compiler created from the ADO
type library at build time.

These header files contain two types of functions: high-level wrapper functions and low-level direct
functions. The high-level wrapper functions have the same name as the functions in the type library.
The low-level functions use the function name with a prefix of raw_.

For functions that have a retval argument, a wrapper is created with the same function name but
with the retval argument removed and the return type changed to the retval pointer type. You
saw the same technique used in the Automation version of the function in the type library shown in
Figure 10.9.

MSADO15.TLI contains the inline implementations of the high-level wrapper functions. The low-
level functions are invoked by the high-level functions, as shown in Listing 10.1.

Listing 10.1 A High-Level Wrapper Function in MSADO15.TLI

 1: inline _RecordsetPtr _Connection::Execute (_bstr_t CommandText,
 2: VARIANT * RecordsAffected, long Options)
 3: {
 4: struct _Recordset * _result;
 5: HRESULT _hr = raw_Execute(CommandText,
 6: RecordsAffected, Options, &_result);
 7: if (FAILED(_hr)) _
 8: com_issue_errorex(_hr, this, __uuidof(this));
 9: return _RecordsetPtr(_result, false);
10: }

The raw_Execute function in line 5 of Listing 10.1 is the low-level function being invoked by this
high-level function. You can see that this code calls the low-level function (raw_Execute), checks
the return value to see whether it's a failed HRESULT, and then throws an exception if it is. You can
call the low-level functions from your code if you want to. This would enable you to evaluate the
return values of the functions rather than have to catch exceptions.

MSADO15.TLH contains the declarations of the high-level and low-level functions. MSADO15.TLH
also contains the #include statement for Comdef.h, the forward references for the GUIDs in the

type library, smart pointer declarations, enumerated types in the type library, and the #include
statement for MSADO15.TLI.

Listing 10.2 shows the portion of MSADO15.TLH that contains the forward references for the GUIDs
in the type library. The GUID for the _Connection interface might change between releases of
ADO, so it might look similar, but not identical, to Listing 10.2.

Listing 10.2 Forward References for the GUIDs in MSADO15.TLH

 1: //
 2: // Forward references and typedefs
 3: //
 4:
 5: struct __declspec(uuid("00000512-0000-0010-8000-00aa006d2ea4"))
 6: /* dual interface */ _Collection;
 7: struct __declspec(uuid("00000513-0000-0010-8000-00aa006d2ea4"))
 8: /* dual interface */ _DynaCollection;
 9: struct __declspec(uuid("00000534-0000-0010-8000-00aa006d2ea4"))
10: /* dual interface */ _ADO;
11: struct __declspec(uuid("00000504-0000-0010-8000-00aa006d2ea4"))
12: /* dual interface */ Properties;
13: struct __declspec(uuid("00000503-0000-0010-8000-00aa006d2ea4"))
14: /* dual interface */ Property;
15: struct __declspec(uuid("00000500-0000-0010-8000-00aa006d2ea4"))
16: /* dual interface */ Error;
17: struct __declspec(uuid("00000501-0000-0010-8000-00aa006d2ea4"))
18: /* dual interface */ Errors;
19: struct __declspec(uuid("00000508-0000-0010-8000-00aa006d2ea4"))
20: /* dual interface */ _Command;
21: struct __declspec(uuid("00000515-0000-0010-8000-00aa006d2ea4"))
22: /* dual interface */ _Connection;
23: struct __declspec(uuid("0000050e-0000-0010-8000-00aa006d2ea4"))
24: /* dual interface */ _Recordset;
25: struct __declspec(uuid("00000506-0000-0010-8000-00aa006d2ea4"))
26: /* dual interface */ Fields;
27: struct __declspec(uuid("00000505-0000-0010-8000-00aa006d2ea4"))
28: /* dual interface */ Field;
29: struct __declspec(uuid("0000050c-0000-0010-8000-00aa006d2ea4"))
30: /* dual interface */ _Parameter;
31: struct __declspec(uuid("0000050d-0000-0010-8000-00aa006d2ea4"))
32: /* dual interface */ Parameters;
33: struct __declspec(uuid("00000538-0000-0010-8000-00aa006d2ea4"))
34: /* interface */ ADODebugging;
35: struct __declspec(uuid("00000402-0000-0010-8000-00aa006d2ea4"))
36: /* interface */ ConnectionEventsVtbl;
37: struct __declspec(uuid("00000403-0000-0010-8000-00aa006d2ea4"))
38: /* interface */ RecordsetEventsVtbl;
39: struct __declspec(uuid("00000400-0000-0010-8000-00aa006d2ea4"))
40: /* dispinterface */ ConnectionEvents;

41: struct __declspec(uuid("00000266-0000-0010-8000-00aa006d2ea4"))
42: /* dispinterface */ RecordsetEvents;
43: struct __declspec(uuid("00000516-0000-0010-8000-00aa006d2ea4"))
44: /* interface */ ADOConnectionConstruction;
45: struct /* coclass */ Connection;
46: struct /* coclass */ Command;
47: struct /* coclass */ Recordset;
48: struct __declspec(uuid("00000283-0000-0010-8000-00aa006d2ea4"))
49: /* interface */ ADORecordsetConstruction;
50: struct /* coclass */ Parameter;

Listing 10.2 shows the GUIDs for the ADO objects. The GUIDs defined as dual interfaces, as in lines
21 and 22, are the ones you want to pass to CoCreateInstance or CreateInstance to
instantiate ADO objects. Other GUIDs are defined here that are not defined as dual interfaces. As in
lines 43 and 44, these GUIDs are used internally by ADO.

After the forward references in MSADO15.TLH, you will see the declarations of the smart pointers
for each ADO object. Listing 10.3 shows these declarations.

Listing 10.3 Smart Pointer Declarations in MSADO15.TLH

 1: //
 2: // Smart pointer typedef declarations
 3: //
 4:
 5: _COM_SMARTPTR_TYPEDEF(_Collection, __uuidof(_Collection));
 6: _COM_SMARTPTR_TYPEDEF(_DynaCollection,
__uuidof(_DynaCollection));
 7: _COM_SMARTPTR_TYPEDEF(_ADO, __uuidof(_ADO));
 8: _COM_SMARTPTR_TYPEDEF(Properties, __uuidof(Properties));
 9: _COM_SMARTPTR_TYPEDEF(Property, __uuidof(Property));
10: _COM_SMARTPTR_TYPEDEF(Error, __uuidof(Error));
11: _COM_SMARTPTR_TYPEDEF(Errors, __uuidof(Errors));
12: _COM_SMARTPTR_TYPEDEF(_Command, __uuidof(_Command));
13: _COM_SMARTPTR_TYPEDEF(_Connection, __uuidof(_Connection));
14: _COM_SMARTPTR_TYPEDEF(_Recordset, __uuidof(_Recordset));
15: _COM_SMARTPTR_TYPEDEF(Fields, __uuidof(Fields));
16: _COM_SMARTPTR_TYPEDEF(Field, __uuidof(Field));
17: _COM_SMARTPTR_TYPEDEF(_Parameter, __uuidof(_Parameter));
18: _COM_SMARTPTR_TYPEDEF(Parameters, __uuidof(Parameters));
19: _COM_SMARTPTR_TYPEDEF(ADODebugging, __uuidof(ADODebugging));
20: _COM_SMARTPTR_TYPEDEF(ConnectionEventsVtbl,
 __uuidof(ConnectionEventsVtbl));
21: _COM_SMARTPTR_TYPEDEF(RecordsetEventsVtbl,
 __uuidof(RecordsetEventsVtbl));
22: _COM_SMARTPTR_TYPEDEF(ConnectionEvents, __uuidof(IDispatch));
23: _COM_SMARTPTR_TYPEDEF(RecordsetEvents, __uuidof(IDispatch));

24: _COM_SMARTPTR_TYPEDEF(ADOConnectionConstruction,
 __uuidof(ADOConnectionConstruction));
25: _COM_SMARTPTR_TYPEDEF(ADORecordsetConstruction,
 __uuidof(ADORecordsetConstruction));

The name of the smart pointer that #import generates for use in your code is the name of the first
argument (with a Ptr suffix) passed to the _COM_SMARTPTR_TYPEDEF macro. For example, line
13 in Listing 10.3 creates a smart pointer derived class called _ConnectionPtr.

You can see that the second argument passed to the _COM_SMARTPTR_TYPEDEF macro uses the
__uuidof keyword. The _COM_SMARTPTR_TYPEDEF macros shown in Listing 10.3 refer to the
forward declaration of the GUIDs defined earlier in MSADO15.TLH. The __uuidof keyword is a
Microsoft-specific C++ extension and retrieves the GUID for the argument.

Following the smart pointer declarations, MSADO15.TLH contains the enumerated types defined in
the ADO type library. Listing 10.4 shows the ConnectModeEnum enumerated type as it appears in
MSADO15.TLH.

Listing 10.4 The Enumerated Type ConnectModeEnum Defined in the ADO Type Library

 1: enum ConnectModeEnum
 2: {
 3: adModeUnknown = 0,
 4: adModeRead = 1,
 5: adModeWrite = 2,
 6: adModeReadWrite = 3,
 7: adModeShareDenyRead = 4,
 8: adModeShareDenyWrite = 8,
 9: adModeShareExclusive = 12,
10: adModeShareDenyNone = 16
11: };

You will recall in Day 4 that you wrote the code shown in Listings 10.5 and 10.6 to create an instance
of the ADO Connection object in your code. (Listing 10.5 duplicates Listing 4.5, and Listing 10.6
duplicates Listing 4.8.)

Listing 10.5. Changes to the ADOMFC1 Document Header File

 1: class CADOMFC1Doc : public CDocument
 2: {
 3: // Attributes
 4: public:
 5: BOOL m_IsConnectionOpen;
 6: _ConnectionPtr m_pConnection;

Listing 10.6. Changes to the ADOMFC1 OnNewDocument Function

 1: BOOL CADOMFC1Doc::OnNewDocument()
 2: {
 3: if (!CDocument::OnNewDocument())
 4: return FALSE;
 5:
 6: HRESULT hr;
 7:
 8: try
 9: {
10: hr = m_pConnection.CreateInstance(__uuidof(Connection));
11: if (SUCCEEDED(hr))
12: {
13: hr = m_pConnection->Open(
14: _bstr_t(L"Provider=Microsoft.Jet.OLEDB.3.51;
 Data Source=c:\\tysdbvc\\vcdb.mdb;"),
15: _bstr_t(L""),
16: _bstr_t(L""),
17: adModeUnknown);
18: if (SUCCEEDED(hr))
19: {
20: m_IsConnectionOpen = TRUE;
21: }
22: }
23: }
24: catch(_com_error &e)
25: {
26: // Get info from _com_error
27: _bstr_t bstrSource(e.Source());
28: _bstr_t bstrDescription(e.Description());
29: TRACE("Exception thrown for classes generated by #import");
30: TRACE("\tCode = %08lx\n", e.Error());
31: TRACE("\tCode meaning = %s\n", e.ErrorMessage());

32: TRACE("\tSource = %s\n", (LPCTSTR) bstrSource);
33: TRACE("\tDescription = %s\n", (LPCTSTR) bstrDescription);
34: }
35: catch(...)
36: {
37: TRACE("*** Unhandled Exception ***");
38: }
39:
40: return TRUE;
41: }

You can see that line 6 of Listing 10.5 defines a _ConnectionPtr instance as a member of the
CDocument class. Note that the name _ConnectionPtr matches the argument (with a Ptr
suffix) passed to the _COM_SMARTPTR_TYPEDEF macro in line 13 of Listing 10.3.

Line 10 of Listing 10.6 calls the CreateInstance function of the _ConnectionPtr class and
passes the GUID for the ADO _Connection class (using the __uuidof keyword).
CreateInstance will return a failed HRESULT rather than throw an exception.

Line 17 of Listing 10.6 passes a value in ConnectModeEnum as an argument to the Open function
for the Connection object. The Open function will throw an exception if it fails (see the code for the
_Connection::Open function in MSADO15.TLI).

Following the enumerated type declarations, MSADO15.TLH contains the declarations of the ADO
objects in the type library. Listing 10.7 shows the portion of MSADO15.TLH that contains the
declaration for the ADO _Connection object.

Listing 10.7 The ADO _Connection Object Declaration in MSADO15.TLH

 1: struct __declspec(uuid("00000515-0000-0010-8000-00aa006d2ea4"))
 2: Connection : _ADO
 3: {
 4: //
 5: // Property data
 6: //
 7:
 8: __declspec(property(get=GetConnectionString,
 put=PutConnectionString))
 9: _bstr_t ConnectionString;
 10:
__declspec(property(get=GetCommandTimeout,put=PutCommandTimeout))
 11: long CommandTimeout;
 12: __declspec(property(get=GetConnectionTimeout,
 put=PutConnectionTimeout))
 13: long ConnectionTimeout;

 14: __declspec(property(get=GetVersion))
 15: _bstr_t Version;
 16: __declspec(property(get=GetErrors))
 17: ErrorsPtr Errors;
 18:
__declspec(property(get=GetDefaultDatabase,put=PutDefaultDatabase))
 19: _bstr_t DefaultDatabase;
 20:
__declspec(property(get=GetIsolationLevel,put=PutIsolationLevel))
 21: enum IsolationLevelEnum IsolationLevel;
 22: __declspec(property(get=GetAttributes,put=PutAttributes))
 23: long Attributes;
 24:
__declspec(property(get=GetCursorLocation,put=PutCursorLocation))
 25: enum CursorLocationEnum CursorLocation;
 26: __declspec(property(get=GetMode,put=PutMode))
 27: enum ConnectModeEnum Mode;
 28: __declspec(property(get=GetProvider,put=PutProvider))
 29: _bstr_t Provider;
 30: __declspec(property(get=GetState))
 31: long State;
 32:
 33: //
 34: // Wrapper methods for error-handling
 35: //
 36:
 37: _bstr_t GetConnectionString ();
 38: void PutConnectionString (
 39: _bstr_t pbstr);
 40: long GetCommandTimeout ();
 41: void PutCommandTimeout (
 42: long plTimeout);
 43: long GetConnectionTimeout ();
 44: void PutConnectionTimeout (
 45: long plTimeout);
 46: _bstr_t GetVersion ();
 47: HRESULT Close ();
 48: _RecordsetPtr Execute (
 49: _bstr_t CommandText,
 50: VARIANT * RecordsAffected,
 51: long Options);
 52: long BeginTrans ();
 53: HRESULT CommitTrans ();
 54: HRESULT RollbackTrans ();
 55: HRESULT Open (
 56: _bstr_t ConnectionString,
 57: _bstr_t UserID,
 58: _bstr_t Password,
 59: long Options);
 60: ErrorsPtr GetErrors ();
 61: _bstr_t GetDefaultDatabase ();
 62: void PutDefaultDatabase (
 63: _bstr_t pbstr);
 64: enum IsolationLevelEnum GetIsolationLevel ();

 65: void PutIsolationLevel (
 66: enum IsolationLevelEnum Level);
 67: long GetAttributes ();
 68: void PutAttributes (
 69: long plAttr);
 70: enum CursorLocationEnum GetCursorLocation ();
 71: void PutCursorLocation (
 72: enum CursorLocationEnum plCursorLoc);
 73: enum ConnectModeEnum GetMode ();
 74: void PutMode (
 75: enum ConnectModeEnum plMode);
 76: _bstr_t GetProvider ();
 77: void PutProvider (
 78: _bstr_t pbstr);
 79: long GetState ();
 80: _RecordsetPtr OpenSchema (
 81: enum SchemaEnum Schema,
 82: const _variant_t & Restrictions = vtMissing,
 83: const _variant_t & SchemaID = vtMissing);
 84: HRESULT Cancel ();
 85:
 86: //
 87: // Raw methods provided by interface
 88: //
 89:
 90: virtual HRESULT __stdcall get_ConnectionString (
 91: BSTR * pbstr) = 0;
 92: virtual HRESULT __stdcall put_ConnectionString (
 93: BSTR pbstr) = 0;
 94: virtual HRESULT __stdcall get_CommandTimeout (
 95: long * plTimeout) = 0;
 96: virtual HRESULT __stdcall put_CommandTimeout (
 97: long plTimeout) = 0;
 98: virtual HRESULT __stdcall get_ConnectionTimeout (
 99: long * plTimeout) = 0;
100: virtual HRESULT __stdcall put_ConnectionTimeout (
101: long plTimeout) = 0;
102: virtual HRESULT __stdcall get_Version (
103: BSTR * pbstr) = 0;
104: virtual HRESULT __stdcall raw_Close () = 0;
105: virtual HRESULT __stdcall raw_Execute (
106: BSTR CommandText,
107: VARIANT * RecordsAffected,
108: long Options,
109: struct _Recordset * * ppiRset) = 0;
110: virtual HRESULT __stdcall raw_BeginTrans (
111: long * TransactionLevel) = 0;
112: virtual HRESULT __stdcall raw_CommitTrans () = 0;
113: virtual HRESULT __stdcall raw_RollbackTrans () = 0;
114: virtual HRESULT __stdcall raw_Open (
115: BSTR ConnectionString,
116: BSTR UserID,
117: BSTR Password,
118: long Options) = 0;

119: virtual HRESULT __stdcall get_Errors (
120: struct Errors * * ppvObject) = 0;
121: virtual HRESULT __stdcall get_DefaultDatabase (
122: BSTR * pbstr) = 0;
123: virtual HRESULT __stdcall put_DefaultDatabase (
124: BSTR pbstr) = 0;
125: virtual HRESULT __stdcall get_IsolationLevel (
126: enum IsolationLevelEnum * Level) = 0;
127: virtual HRESULT __stdcall put_IsolationLevel (
128: enum IsolationLevelEnum Level) = 0;
129: virtual HRESULT __stdcall get_Attributes (
130: long * plAttr) = 0;
131: virtual HRESULT __stdcall put_Attributes (
132: long plAttr) = 0;
133: virtual HRESULT __stdcall get_CursorLocation (
134: enum CursorLocationEnum * plCursorLoc) = 0;
135: virtual HRESULT __stdcall put_CursorLocation (
136: enum CursorLocationEnum plCursorLoc) = 0;
137: virtual HRESULT __stdcall get_Mode (
138: enum ConnectModeEnum * plMode) = 0;
139: virtual HRESULT __stdcall put_Mode (
140: enum ConnectModeEnum plMode) = 0;
141: virtual HRESULT __stdcall get_Provider (
142: BSTR * pbstr) = 0;
143: virtual HRESULT __stdcall put_Provider (
144: BSTR pbstr) = 0;
145: virtual HRESULT __stdcall get_State (
146: long * plObjState) = 0;
147: virtual HRESULT __stdcall raw_OpenSchema (
148: enum SchemaEnum Schema,
149: VARIANT Restrictions,
150: VARIANT SchemaID,
151: struct _Recordset * * pprset) = 0;
152: virtual HRESULT __stdcall raw_Cancel () = 0;
153: };

Line 1 in Listing 10.7 shows the interface identifier (IID) for the ADO Connection object. You can see
in line 2 that the Connection class is derived from the ADO class, which is declared earlier in the
MSADO15.TLH file.

COM objects can have properties, which are basically data members, in addition to member functions
or methods. Visual C++ uses get, put, and putref methods to make the properties in a COM
object accessible to COM clients. Lines 4-31 in Listing 10.7 assign these COM property-handling
functions to the high-level wrapper functions that are created with Get, Put, and PutRef prefixes.

Lines 33-84 in Listing 10.7 declare the high-level functions for the ADO Connection object. The code
for these high-level functions is found in MSADO15.TLI.

Lines 86-153 in Listing 10.7 declare the functions found in the ADO type library. They use the
function name from the type library with a raw_ prefix. Low-level functions for property get,
put, and putref methods are prefixed by get_, put_, and _putref.

This completes your exploration of the use of #import with ADO. You should now have a good
understanding of the .tlh and .tli files generated by #import with the ADO type library.

You can use the MSADO15.TLH file and the MSADO15.TLI files in combination with the existing
ADO documentation in order to understand ADO and how to effectively use it in your C++
applications.

Summary
Today you learned about database client technologies. Several database client technologies are
available to C++ programmers. Each technology has its own strengths and weaknesses, and each one
has an historical context that defines how it relates to the other technologies.

The two database client technologies that will be updated and improved on in the future are OLE DB
and ADO. ADO offers a good balance of code size, performance, and ease of use. You can best
understand the ADO object model by examining the MSADO15. TLH file and the MSADO15.TLI
files, coupled with the ADO documentation.

Q&A

Q Isn't the performance of a native database API always better than the performance
of the database client technologies mentioned today?

A Not necessarily. It depends on the implementation of the API. Some database vendors
do provide a native API that is faster than the ODBC driver for their database. However,
other database vendors (notably Microsoft) provide ODBC drivers and OLE DB
providers that are highly optimized and are as fast as, or faster than, the native APIs for
their databases.

Q Is OLE DB just another layer on top of ODBC?
A No. OLE DB can directly communicate with any data source for which there is an OLE

DB provider. OLE DB providers do not generally communicate with data sources
through ODBC. Rather, OLE DB providers directly communicate with the data source.
There is one OLE DB provider, MSDASQL, that can communicate with data sources
through ODBC. MSDASQL should be used only with those data sources that don't have
a native OLE DB provider but do have an ODBC driver.

Q What database client technologies are compatible with Web servers?

A Web servers using CGI can communicate with CGI-compatible executables. The
executable can conceivably talk to any data source to which it can gain access and for
which it has a programming interface. However, several newer technologies provide
better scalability for Web servers than CGI. These newer technologies include NSAPI
on Netscape's Web servers and ISAPI on Microsoft's IIS. On the Windows platform,
ODBC, OLE DB, and ADO are compatible with CGI interfaces, as well as with the
newer Web server interface technologies.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is the goal or purpose of ODBC?
2. How is ODBC's call-level interface different from embedded SQL?
3. Where does the ADO type library reside and how can you view it?
4. Why does ADO throw exceptions when errors occur?
5. What function that you use with #import does not throw exceptions but returns a failed

HRESULT instead?

Exercises

1. Set break points in the inline functions in MSADO15.TLI, such as the
_Connection::Open function, and run ADOMFC1 in debug mode to develop a feel for
how code in MSADO15.TLH and MSADO15.TLI is executed. Debug step into all the
functions to discern when you are executing code in your ADOMFC1 project and when you are
executing code in the ADO DLL.

2. Modify the code in Listing 10.7 so that the call to the ADO Command Execute function in
line 24 directly calls the low-level Execute function.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 11
 Multitier Architectures

● Layered Architecture
❍ The OSI Model
❍ Layered Architecture for Multitier Applications

● Database Data and the Internet
❍ CGI-The Original Technique for Interfacing Databases with Web Servers
❍ DLLs and Server Scripts-An Improved Technique for Interfacing Databases with Web

Servers
❍ The XML Files
❍ What Color of Edsel Would You Like?

● Using ActiveX Controls and RDS to Build Elegant Thin Clients
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Multitier development is transcending traditional client/server programming. The reason for this
transition is the fact that multitier applications promise to combine the verve and panache of
client/server applications with the ruggedness and scalability of the big iron (mainframe systems).

The tools for multitier programming are relatively new, and developers who have knowledge of

multitier development are at a premium. Today's material provides you with information about some
of the tools for performing multitier development on the Windows platform.

Today's development work uses Microsoft Internet Information Server (IIS) with Internet Explorer
version 4.0 (IE4). If you have use of IE4 and IIS (or Microsoft Personal Web Server, which is
compatible with IIS), you will be able to perform all the programming tasks described today. If not,
you will have to learn some of these techniques without being able to try them yourself.

Although this is a Visual C++ book, today's work does not involve writing any C++ code. Instead, you
will examine some XML code and write a little HTML code. You will also write some Active Server
Page code to learn how to use Remote Data Services (RDS). You will get back to writing C++ code
tomorrow when you build COM server components that run under Microsoft Transaction Server and
Internet Information Server.

Today you will

● Explore some of the limitations of client/server computing that are driving the advance to
multitier applications.

● Enable database data to be sent over the Internet using XML.
● Use Remote Data Services (RDS) to send database data over HTTP to thin client applications,

such as Web browsers.

Layered Architecture
Creating database applications for systems where the software runs on multiple computers over a
network has never been easy. The most difficult part of developing such a system is designing it. In
fact, limitations in the design of typical client/server systems have hindered the growth of client/server
computing.

One of the limitations in the design of typical client/server systems is that the software is generally not
layered effectively. Client/server software is often monolithic.

In monolithic software, the code for the different types of operations is intermingled, and this code is
all baked into traditional Windows EXEs and DLLs. Monolithic software has proven to be
insufficiently flexible and scalable for many client/server applications to be successful.

Using a layered architecture is a proven alternative to monolithic software. The value of a layered
architecture is best understood by examining a very successful layered architecture, the OSI model for
network software.

The OSI Model

Not too many years ago, it was difficult to send data between different computer systems, because
each computer manufacturer had its own standards for network communications. The computers from

different manufacturers used different communications protocols, and the computers typically could
not talk to each other.

In the late 1970s, the International Standards Organization (ISO) created a model to standardize the
various protocols for network communications. This model is called Open Systems Interconnect, or
the OSI model.

The OSI model enables network communications software to be written in layers, with well-defined
interfaces between the layers. The abstractions provided by these layers now make it possible for
disparate computer systems to communicate with each other over a network.

The OSI model consists of seven layers. In the OSI model, each layer was created to provide a
different level of abstraction. Each layer in the model performs a well-defined type of operation and
has a well-defined set of interfaces. The OSI layers are shown in Figure 11.1.

Figure 11.1 : Layers of the OSI model.

The layers of the OSI model shown in Figure 11.1 are

● The physical layer, which transmits and receives unstructured bit stream data over the physical
medium

● The data-link layer, which checks for and handles errors in the frames of bits from the physical
layer

● The network layer, which maps physical addresses to logical addresses and handles routing of
frames to adjacent nodes

● The transport layer, which provides reliable end-to-end data delivery with acknowledgments to
ensure that messages are delivered with no losses or duplications

● The session layer, which enables communication sessions, or connections, to be established
between processes running on different computers

● The presentation layer, which performs translations such as ASCII to EBCDIC or CR to
CR/LF, data compression, and data encryption

● The application layer, which provides high-level functions such as device redirection, remote
file access, remote printer access, and interprocess communication

NOTE
The designers of the OSI model carefully crafted the interfaces between the
OSI layers so that the layers would be independent. The interfaces were
created in such a way as to enable the implementation of one layer to be
changed without the need to change the implementation of its neighboring
layers.

The OSI model has proven to be very successful. Disparate computer systems can now readily
communicate with each other using this layered approach.

TCP/IP is a protocol that adheres to the OSI model. Figure 11.2 illustrates how the layers of TCP/IP
map to the layers of the OSI model.

Figure 11.2 : How TCP/IP layers correspond to the OSI model.

TCP/IP is the protocol of the Internet. As you will see later, the nature of TCP/IP and the nature of the
OSI model figure prominently in the way multitier applications are developed.

Layered Architecture for Multitier Applications

When you build multitier applications, you can apply important lessons from the OSI model to make
your applications successful.

NOTE
When you build multitier applications, you must carefully craft the
interfaces between the tiers so that the tiers are independent. You need to
create the interfaces in such a way that the implementation of one tier can be
changed without the need to change the implementation of its neighboring
tiers.

Interfaces and abstractions are the two pillars on which multitier applications rest. Each tier that
provides an effective level of abstraction has interfaces that are understandable and distinct. Distinct
interfaces between the tiers enable the tiers to be updated independently of each other.

In traditional C++ development, programmers typically attempt to create layered architectures by
using C++ classes. The classes provide the abstractions, and the public member functions provide the
interfaces.

The C++ approach is good but is hampered by the fact that the C++ classes are usually compiled into
Windows EXEs and DLLs, without using COM interfaces. As you discovered in Day 9,
"Understanding COM," Windows EXEs and DLLs that don't support COM interfaces are invariably
bound together by build-time dependencies. A non-COM Windows EXE file and the DLL files it uses
must all come from the appropriate build of the software.

Any time you have build-time dependencies between binaries in an application, you have a monolithic
application. In a multitier application, you might have client pieces running on hundreds of computers.
You don't want to have to update all the software on every client machine every time you make some
small alteration to the software.

NOTE

In multitier applications, you want to avoid build-time dependencies
between the tiers. You want to be able to update the software on one tier
without having to update the software on its neighboring tiers.

This issue of being required to update all the client machines is a frequent problem in traditional
client/server applications. In many client/server systems, even a small change in the server software
can necessitate a massive update of all the client software.

These massive client software updates are often caused by the build-time dependencies between EXEs
and DLLs, which make it impossible to update one binary without updating them all.

Another feature in client/server applications that exacerbates the need to update all the client software
every time is fat client software. Fat client software does not refer to software you write for fat clients.
Rather, a fat client is a piece of software that runs on a client computer and contains both code to
process data and code to present it to the user.

As you can see in Figure 11.3, fat clients contain business logic. This business logic may include code
for formulas or rules to perform calculations on business data, or it may include code that accesses
tables and fields directly in a business database.

Figure 11.3 : Client/server architecture with fat clients.

Note in Figure 11.3 that the UI portion of the client tier communicates directly with the database. This
occurs in client applications that use direct SQL statements and/or databound controls, which tie fields
and records in the database directly to elements of the user interface.

Thin is in

Thin client software is software that runs on client machines and contains only UI (or presentation)
code. With thin clients, the need to update all the client computers every time the application is
updated is greatly reduced. Thin clients enable you to change server software components without
having to update all the client software every time. A simple multitier architecture is illustrated in
Figure 11.4.

As you can see in Figure 11.4, multitier applications use thin clients that do not contain business logic.
The business logic is typically moved to a middletier of some sort. In some multitier applications, the

middletier software runs on its own machine. In other multitier applications, the middle-tier software
runs on the same machine as the data-tier software.

Figure 11.4 : Multitier architecture.

A good example of a thin client is a Web browser. All that a Web browser typically does is
presentation. Contrast a Web browser with ADOMFC1.EXE, the MFC application you have been
working on in this book. As you know, ADOMFC1.EXE performs more than just presentation tasks.

ADOMFC1.EXE uses ADO to connect with the database and then issues SQL statements to SELECT,
UPDATE, INSERT, and DELETE data from tables in the database. ADOMFC1.EXE has intimate
knowledge of the database. The code in ADOMFC1.EXE knows the names of the tables and their
fields, and the relationships between the tables. If the database schema were to change,
ADOMFC1.EXE would very likely need to be changed as well.

ADOMFC1.EXE is a fat client. ADOMFC1.EXE illustrates the requirement for client software to be
frequently updated in client/server systems. If ADOMFC1.EXE were installed as the client software
for a client/server application, a small change in the database could necessitate an update of all the
instances of ADOMFC1.EXE on the client machines.

The nature of the connection that ADOMFC1.EXE uses with the database also increases its
interdependence with the data tier. When ADOMFC1.EXE uses the ADO Connection object to make a
connection to a database such as SQL Server, it makes an interprocess communication (IPC)
connection with the database. The interprocess communication mechanism is typically named pipes or
TCP/IP sockets.

It was mentioned earlier that the nature of TCP/IP and the OSI model figures prominently in the way
multitier applications are developed. Here's how.

Interprocess communication with named pipes and/or sockets is done at the OSI application layer. For
security reasons, interprocess communication is typically not used over the Internet. Using
interprocess communications between software tiers makes a wide-open connection and enables a
broad interface between the software tiers.

An IPC connection can be thought of as a hard-wired connection to the database that enables
ADOMFC1.EXE and the database to have a high level of interaction. ADOMFC1.EXE can modify
data in the database almost instantaneously. Round trips between ADOMFC1.EXE and the database
happen relatively fast. ADOMFC1.EXE can scroll through large sets of records very quickly.
ADOMFC1.EXE can also lock records and open transactions in the database and keep them as long as
it likes.

Interprocess communication between software tiers enables a broad interface between the tiers.
However, a broad interface between tiers is not always desirable if you want the tiers to be somewhat
independent of each other.

Web browsers and Web servers use the HTTP protocol, which is a connectionless protocol built on
TCP/IP. HTTP also operates at the application layer of the OSI model. However, using HTTP for
communications between software tiers provides a much narrower interface between the tiers than
named pipes or TCP/IP sockets do. A client application can't make an IPC connection to a database
with HTTP. This means an application that uses HTTP can't enjoy the high level of interactivity with
the database that an IPC connection would provide. HTTP's narrower interface, in effect, forces the
software tiers to be more independent of each other.

Web Browsers as Thin Clients

Web browsers can make a good client tier. Because Web browsers perform only UI tasks and the
interface between the Web browser and the Web server (HTTP) is so distinct, the Web browser and
the Web server can be quite independent of each other in terms of software update requirements.

Web browsers can be used for applications that run on the Internet (more specifically, the World Wide
Web) and also can be used in applications that run over a LAN in an intranet. The term intranet is
used to describe the application of Internet technologies on internal corporate networks. With an
intranet, you can have a Web server that is internal to your corporate LAN, and information from that
Web server can be accessed by machines on the LAN that runs Web browsers.

Multitier applications that use Web browsers as clients use a Web server such as Microsoft (IIS) in
their middle tier. In such applications, Microsoft Transaction Server (MTS) is sometimes used in
conjunction with IIS on the middle tier. You will explore MTS tomorrow.

Multitier applications that use Web browsers and IIS typically use an RDBMS, such as SQL Server or
Oracle, as the data tier. Later today, you will use a middle-tier software component that retrieves data
from the database and sends it through IIS to software on the client tier.

Tomorrow you will write your own component that runs under MTS and IIS. You will be able to use
this component on the middle tier to send data from a database to browsers over HTTP, as well as to
fat DCOM clients such as ADOMFC1.EXE.

Database Data and the Internet
If you do use a Web browser for the client piece of your multitier application, how do you get the data
from the database to the Web browser?

CGI-The Original Technique for Interfacing Databases with Web Servers

The tools for using a Web browser as the UI to a database application have been evolving rapidly.

Figure 11.5 shows how it was done in the early days of the Web.

Figure 11.5 : Interfacing a Web browser to a database by using CGI.

As you can see from Figure 11.5, you could write a CGI application, which is an EXE that accepts and
fulfills requests from the Web server for data from the database. One drawback of CGI is the fact that
for every concurrent user that is hitting your Web server, the Web server has to launch another
instance of the CGI EXE. Launching an EXE for each concurrent user can put a strain on the Web
server machine.

DLLs and Server Scripts-An Improved Technique for Interfacing
Databases with Web Servers

Microsoft and Netscape each developed their own improvements to the CGI model. In the improved
models, a DLL that runs in the Web server's process space is used instead of a CGI EXE. This is
illustrated in Figure 11.6.

Figure 11.6 : Interfacing a Web browser to a database by using DLLs.

In the case of Microsoft IIS, the DLLs that provide an interface between IIS and a database are called
ISAPI DLLs. Because DLLs run in the Web server's process, they place a lighter load on the Web
server machine than CGI EXEs.

Microsoft has developed a technology called Active Server Pages (ASP), which is built on its ISAPI
DLL technology. ASP has a server-side script interpreter that enables you to run JScript and VBScript
scripts on the Web server. These scripts can make calls to COM servers and send the results out
through the Web server to Web browsers. The ASP technology is illustrated in Figure 11.7.

Figure 11.7 : Interfacing a Web browser to a database by using ASP.

As you can see in Figure 11.7, an ASP script can call a COM server that can communicate with a
database. The ASP script can then send the data from the database out through the Web server to Web
browsers. Later today, you will use ASP to communicate database data to Web browsers.

The XML Files

Extensible Markup Language (XML) provides a way to describe and exchange data in Web-based
applications. XML complements Hypertext Markup Language (HTML). HTML enables the displaying
of data, whereas XML provides ways to describe and transmit data.

XML enables metadata, or data about data, to be imbedded with data and sent over the Web. You
could think of XML as a way to describe and transmit data in an HTML-like format.

As of this writing, XML is still making its way through the standards process. XML is in its infancy
now, but it will become a vital technology in multitier applications in the future.

Listing 11.1 shows some XML code. The intent here is to give you a feel for what XML looks like.

Listing 11.1 A High-level Wrapper Function in MSADO15.TLI

 1: <?XML version="1.0" encoding="UTF-8" ?>
 2: <Sales>
 3: <s:schema id='SalesSchema'>
 4:
 5: <elementType id="custnumber">
 6: <string/>
 7: </elementType>
 8:
 9: <elementType id="Customer">
10: <element id="c1" type="#custnumber"/>
11: <key id="k1"><keyPart href="#c1"/></key>
12: </elementType>
13:
14: <elementType id="buyer">
15: <string/>
16: <foreignKey range="#Customer" key="#k1"/>
17: </elementType>
18:
19: <elementType id="partnumber">
20: <string/>
21: </elementType>
22:
23: <elementType id="Purchase">
24: <element type="#partnumber"/>
25: <element type="#buyer" occurs="ONEORMORE"/>
26: </elementType>
27:
28: </s:schema>
29:
30: <Customer><custnumber>Cust003</custnumber></Customer>
31:
32: <Customer><custnumber>Cust938</custnumber></Customer>
33:
34: <Customer><custnumber>Cust501</custnumber></Customer>
35:
36: <Purchase>
37: <buyer>Cust003</buyer>
38: <buyer>Cust938</buyer>
39: <partnumber>CLAP-003</partnumber>

40: </Purchase>
41:
42: <Purchase>
43: <buyer>Cust501</buyer>
44: <buyer>Cust938</buyer>
45: <partnumber>MIC-92823</partnumber>
46: </Purchase>
47:
48: </Sales>

Listing 11.1 illustrates how data from a relational database could be represented in XML. XML is text-
based, and as you can see, is similar to HTML.

Line 1 indicates the version of XML. XML code is rigidly nested. An XML document is made up of
XML elements, each of which consists of a start tag, such as <Sales> in line 2, and an end tag, such
as </Sales> in line 48. The information between the two tags is referred to as the contents.

Tags annotate XML code as they do HTML code. In HTML, each tag indicates how something should
look. However, in XML each tag indicates what something means.

Line 3 is the start tag for the schema called "SalesSchema". Line 28 is the end tag for the schema.
A schema in XML is similar to a schema in a relational database. Lines 3-28 declare a schema that
relates buyers and partnumbers in a one-to-many relationship called Purchases. You will
recall that you explored database design and data relationships in Day 7. (In a relational database that
corresponds to the XML schema in Listing 11.1, Purchases would be a table that contains two
fields: partnumber and buyer.)

To declare the one-to-many relationship, lines 5-26 contain a series of elementType declarations.
Lines 5-7 declare a class (or element type) with an id of "custnumber" that has a data type of
string. Lines 9-12 declare an element type of "Customer" that has custnumber as an element
(or field). Note that custnumber is the key field. (In real life, the Customer element type would
have additional fields, but they are not shown here for simplicity.)

Lines 14-17 declare an element type of "buyer", which has a Customer as a foreign key field.
Lines 19-21 declare a partnumber element type that is string data. Lines 23-26 declare an element
type of "Purchase", which contains a partnumber and a buyer. You will notice that in line 25,
buyer is indicated as ONEORMORE, meaning there can be multiple buyers per partnumber.

Line 28 marks the end of the schema. The information that comes after line 28 is the actual data. This
XML data conforms to the XML schema, like records in a database.

Lines 30-34 are three instances (or records) of customers. Lines 36-46 are two instances of
Purchases. Each purchase lists the partnumber and the customers who bought it. If you were
to place the Purchases information in a table in a relational database, the table would consist of two

fields (partnumber and buyer) and would contain four records.

A full explanation of how to parse and process XML code is beyond the scope of this book. However,
you could begin to get your feet wet with XML by entering the code in Listing 11.1 into an XML file.
You could then use the XML parsing sample(s) from Microsoft's Web site to process it.

To enter Listing 11.1 into an XML file, run Visual Studio, select the File, New menu, and tell it to
create a new HTML page. (The HTML page needn't be part of any of your projects in Visual Studio.)
Then type in the code in Listing 11.1 and save it as an XML file.

Currently, IE4 is the only XML-aware browser. Other Web browsers currently cannot read XML files.

A potentially useful tool for XML is the Microsoft XSL Processor. The XSL Processor takes XML
code and converts it to HTML that can be displayed in almost any browser. This is illustrated in
Figure 11.8.

Figure 11.8 : Using XLS with XML to get HTML.

Microsoft offers an XSL command-line utility and an XSL ActiveX control to make it easy and
productive to get HTML from XML.

You can find more information on XML and XSL by pointing your Web browser to
http://www.microsoft.com/XML. You will find information and documentation on XML, as
well as sample programs for parsing and processing XML code. You can obtain further XML
development information as part of the Microsoft Internet Client SDK at
http://msdn.microsoft.com/developer/sdk/inetsdk.

What Color of Edsel Would You Like?

So far today, you've read about using Web browsers as the client piece of multitier database
applications. This, of course, means putting database data into HTML and sending it to Web browsers.
In actual practice, using HTML to display data from a database can make a pretty lame user interface.
Listing 11.2 shows a typical model for displaying and processing database data in HTML.

NOTE
A full explanation of HTML is beyond the scope of this work. Listing 11.2
is intended merely to familiarize you with some of the limitations of using
HTML-based Web pages as the UI for a database application.

http://www.microsoft.com/XML
http://msdn.microsoft.com/developer/sdk/inetsdk

To enter Listing 11.2 into an HTML file, run Visual Studio, select the File, New menu, and tell it to
create a new HTML page. (The HTML page needn't be part of any of your projects in Visual Studio.)
Then type in the code in Listing 11.2 and save it as an HTM file. You can view the page in IE4 by
entering the full path and filename of the HTM file in the IE4 Address text box.

Listing 11.2 Database Data in HTML

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Database Data in HTML</TITLE>
 4: </HEAD>
 5: <BODY>
 6: <CENTER>
 7: <H1>Database Data</H1>
 8:

 9: <TABLE BORDER=1 WIDTH=80%>
10: <THEAD>
11: <TR>
12: <TH>Field 1</TH>
13: <TH>Field 2</TH>
14: </TR>
15: <TBODY>
16: <TR>
17: <TD>Record 1, Field 1 contents.</TD>
18: <TD>Record 1, Field 2 contents.</TD>
19: </TR>
20: <TR>
21: <TD>Record 2, Field 1 contents.</TD>
22: <TD>Record 2, Field 2 contents.</TD>
23: </TR>
24: <TR>
25: <TD>Record 3, Field 1 contents.</TD>
26: <TD>Record 3, Field 2 contents.</TD>
27: </TR>
28: </TABLE>
29:

30: <TABLE>
31: <TR>
32: <TD>Field 1:<TD><INPUT NAME=Field1 SIZE=30>
33: <TD>Field 2:<TD><INPUT NAME=Field2 SIZE=30>
34: </TR>
35: </TABLE>
36:
37:

38: <INPUT TYPE=BUTTON NAME="Update" VALUE="Save Changes">
39: </CENTER>
40:
41: <SCRIPT LANGUAGE="VBScript">
42: SUB Update_OnClick

43: MsgBox "Do some processing to update: " + Field1.Value +
 " and " + Field2.Value
44: END SUB
45: </SCRIPT>
46: </BODY>
47: </HTML>

In browser/database applications, data from a database is typically placed in static HTML tables for
the browser to display to the user. Lines 1-28 in Listing 11.2 are standard HTML for displaying a table
of data.

Lines 30-35 place two text boxes on the page. Line 38 puts a button on the page. Lines 41-45 contain
VBScript code with an Update_OnClick function that executes when the button is clicked.

The user-interface tools in HTML for enabling the user to edit, add, and delete database data are
somewhat primitive. The idea with the page in Listing 11.2 is to display the data from the database in
the HTML table and accept user input for changes to the data by using the two text boxes. When the
user clicks the button, the Update_OnClick function would display the user's input in the HTML
table or send the data to the server, or both. Unfortunately, there is no easy way in HTML to enable
the user to navigate to a particular record and edit it. As you can see, HTML makes for a somewhat
primitive data-base UI.

Any changes that the user does make have to be sent to the server singly as they are made or cached in
variables in the HTML page and sent as a batch. Sending the changes singly as they are made might
result in lots of time-consuming round trips between the browser and the server. Caching the variables
in the HTML page and sending them as a batch requires you to write lots of code.

With the lag time of the data's round trips to the Web server, and with browsers' primitive UI tools,
your spiffy new multitier application could end up looking like an Edsel. For all the weaknesses of fat
client software, a fat client does give you database connections that are responsive and quick and state
of the art UI programming tools for building an elegant user interface.

Wouldn't it be nice if there were some way to build a client tier by using Web browsers that have the
UI and the data handling capabilities of fat clients?

Fortunately, there is a way you can get these fat client capabilities in a browser. You can use the IE4
browser, with ActiveX controls for the UI and with ADO Remote Data Service (RDS) to handle the
data on the client and middle tiers.

Using ActiveX Controls and RDS to Build Elegant Thin
Clients

You can use a variety of ActiveX controls to provide an elegant UI in IE4. These ActiveX controls are
available from Microsoft and from a number of independent software vendors (ISVs). Evaluation
versions of many of the controls can be downloaded for free from the vendor's Web sites. These
ActiveX controls enable you to create a modern and complete UI in the IE4 browser. You will use one
such ActiveX control today.

To enable robust data handling in a browser, Microsoft offers Remote Data Service. RDS is included
in Microsoft's Data Access Components (MDAC). When you install MDAC, RDS is installed
automatically. You will find instructions for setting up RDS by searching the Platform SDK
documentation (in MSDN) for a document titled "Setting Up Remote Data Service."

NOTE
You need to install the RDS Address Book sample to get a particular
ActiveX control required for your work today. The Sheridan grid control is
an ActiveX control that (as of this writing) is included in the RDS Address
Book sample.

The code that you will write today uses the Sheridan grid control. If you are unable to obtain the
Sheridan grid control in the RDS samples, you can download a trial version of the Sheridan Data
Widgets at http://www.shersoft.com/.

To test your installation of RDS, type in the code shown in Listing 11.3 and save it as an ASP file. To
enter Listing 11.3 into an ASP file, run Visual Studio, select the File, New menu, and tell it to create a
new Active Server Page. (The ASP page needn't be part of any of your projects in Visual Studio.)
Then type in the code in Listing 11.3 and save it as an ASP file. Call it something like ClientTier.ASP.
You can view the page in IE4 by entering the Web address of the ASP file in the IE4 Address text box.

To run the code in Listing 11.3, you must have IIS or Personal Web Server running on
your machine. See the "Setting Up Remote Data Service" document in the Platform
SDK documentation for more information.

Listing 11.3 A Database Client UI with the ActiveX Grid Control and RDS

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Client Tier</TITLE>
 4: </HEAD>
 5: <CENTER>

http://www.shersoft.com/

 6: <H1>Remote Data Service and Sheridan Grid Control</H1>
 7:

 8:
 9: <OBJECT ID="GRID" WIDTH=600 HEIGHT=200 Datasrc="#ADC"
10: CODEBASE="http://<%=Request.ServerVariables("SERVER_NAME")%>
11: /MSADC/Samples/ssdatb32.cab"
12: CLASSID="CLSID:AC05DC80-7DF1-11d0-839E-00A024A94B3A">
13: <PARAM NAME="_Version" VALUE="131072">
14: <PARAM NAME="BackColor" VALUE="-2147483643">
15: <PARAM NAME="BackColorOdd" VALUE="-2147483643">
16: <PARAM NAME="ForeColorEven" VALUE="0">
17: </OBJECT>
18:
19: <OBJECT classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
20: ID=ADC HEIGHT=1 WIDTH = 1>
21: </OBJECT>
22:
23:

24:

25:

26: <INPUT TYPE=BUTTON NAME="Execute" VALUE="Execute">
27: <INPUT TYPE=BUTTON NAME="MoveFirst" VALUE="MoveFirst">
28: <INPUT TYPE=BUTTON NAME="MovePrevious" VALUE="MovePrevious">
29: <INPUT TYPE=BUTTON NAME="MoveNext" VALUE="MoveNext">
30: <INPUT TYPE=BUTTON NAME="MoveLast" VALUE="MoveLast">

31: <INPUT TYPE=BUTTON NAME="Update" VALUE="Update">
32: <INPUT TYPE=BUTTON NAME="Cancel" VALUE="Cancel">
33: </CENTER>
34:
35: <SCRIPT LANGUAGE= "VBScript">
36:
37: SUB MoveFirst_onClick
38: ADC.Recordset.MoveFirst
39: END SUB
40:
41: SUB MovePrevious_onClick
42: On Error Resume Next
43: ADC.Recordset.MovePrevious
44: IF ERR.Number <> 0 THEN
45: ERR.Clear
46: END IF
47: END SUB
48:
49: SUB MoveNext_onClick
50: On Error Resume Next
51: ADC.Recordset.MoveNext
52: IF ERR.Number <> 0 THEN
52: ERR.Clear
53: END IF
54: END SUB
55:
56: SUB MoveLast_onClick
57: ADC.Recordset.MoveLast
58: END SUB

59:
60: SUB Update_onClick
61: ADC.SubmitChanges
62: ADC.Refresh
63: Grid.Rebind
64: END SUB
65:
66: SUB Cancel_onClick
67: ADC.CancelUpdate
68: ADC.Refresh
69: Grid.Rebind
70: END SUB
71:
72: SUB Execute_onClick
73: ADC.Server =
"http://<%=Request.ServerVariables("SERVER_NAME")%>"
74: ADC.Connect = "DSN=OrdersDb"
75: ADC.SQL = "Select * from Products"
76: ADC.Refresh
77: Grid.Rebind
78: END SUB
79:
80: </SCRIPT>
81: </BODY>
82: </HTML>

Lines 1-7 in Listing 11.3 put up the title for the window and a heading. Lines 9-17 place the Sheridan
ActiveX grid control in the page. Lines 19-21 place the Microsoft RDS DataControl (also called the
Advanced Data Control or ADC) into the page. Lines 26-32 place several buttons on the page to
enable the user to interact with the UI. Lines 35 to 80 contain VBScript code for handling button
presses by the user. Lines 80-82 end the tags to indicate the end of the page.

The Microsoft RDS DataControl (ADC) is an ActiveX control that is instantiated on the client
machine in the browser's process. When the user presses the execute button, lines 73-75 set the Server,
Connect, and SQL properties in the ADC. Line 76 calls the ADC Refresh method. This method
uses the Server, Connect, and SQL properties to tell the middle tier to connect to the database and
issue the SQL query. The ADC then retrieves the records and caches them on the client machine.

Line 77 tells the grid control to rebind to the records. The grid actually does more than just display
them. The grid enables the user to navigate through the records, using the code in lines 37 through 58.
The user can edit the records' contents in the grid. The user can cancel those changes by clicking the
Cancel button, which executes the code in lines 66-70. The user can commit the changes by clicking
the Update button, which executes the code in lines 60-64. The output of Listing 11.3 is shown in
Figure 11.9.

Figure 11.9 : The client tier page in IE4.

What happens behind the scenes with Remote Data Services is quite amazing. Figure 11.10 shows the
architecture of RDS.

Figure 11.10: The RDS architecture.

Following is an explanation of the sequence in a typical RDS operation:

1. A thin client, such as a browser, running on a client tier machine creates a local instance of the
RDS.DataControl (perhaps it is bound to a grid control running in the browser).

2. When the user makes a request for the data, RDS.DataControl creates a remote instance of
RDSServer.DataFactory on the middle-tier machine and issues a query to the
DataFactory object.

3. The DataFactory object on the middle-tier machine uses OLE DB or ODBC to query the
database on the data-tier machine.

4. The database processes the query and sends all the records to the DataFactory object on the
middle-tier machine.

5. The DataFactory object stores all the records from the query in an OLE DB row set, called
the server-side cache, which resides on the middle-tier machine.

6. The DataFactory places an ADO Recordset interface on the row set and sends it to the
client machine as the RDS.DataControl requests it.

7. If configured to do so, with large amounts of data the RDS.DataControl can cause the grid
control to become interactive very soon after the DataFactory begins sending data to the
client machine.

Step 7 mentions a capability that RDS provides that could be crucial for applications that process large
amounts of data. RDS enables the results of queries to be sent asynchronously.

The RDS.DataControl can be configured to retrieve data in the background or asynchronously. If
the RDS.DataControl is retrieving the data in the background and the user tells it to MoveLast
(move to the last record), user interactivity will cease until all the data is retrieved. If the
RDS.DataControl is retrieving the data asynchronously and the user tells it to MoveLast, user
interactivity will continue. The RDS.DataControl will move to the most recent record received
and will continue to retrieve data asynchronously.

You can enable the asynchronous capabilities of RDS by using the code shown in Listing 11.4. Create
a new ASP page for this code. Call it something like ClientTierAsync.ASP.

Listing 11.4 RDS Asynchronous Operations

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Client Tier</TITLE>
 4: </HEAD>

 5: <CENTER>
 6: <H1>Remote Data Service and Sheridan Grid Control</H1>
 7:

 8:
 9: <OBJECT ID="GRID" WIDTH=600 HEIGHT=200 Datasrc="#ADC"
 10: CODEBASE="http://<%=Request.ServerVariables("SERVER_NAME")%>
 11: /MSADC/Samples/ssdatb32.cab"
 12: CLASSID="CLSID:AC05DC80-7DF1-11d0-839E-00A024A94B3A">
 13: <PARAM NAME="_Version" VALUE="131072">
 14: <PARAM NAME="BackColor" VALUE="-2147483643">
 15: <PARAM NAME="BackColorOdd" VALUE="-2147483643">
 16: <PARAM NAME="ForeColorEven" VALUE="0">
 17: </OBJECT>
 18:
 19: <OBJECT classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
 20: ID=ADC HEIGHT=1 WIDTH = 1>
 21: </OBJECT>
 22:
 23:

 24:

 25:

 26: <INPUT TYPE=BUTTON NAME="Execute" VALUE="Execute">
 27: <INPUT TYPE=BUTTON NAME="MoveFirst" VALUE="MoveFirst">
 28: <INPUT TYPE=BUTTON NAME="MovePrevious" VALUE="MovePrevious">
 29: <INPUT TYPE=BUTTON NAME="MoveNext" VALUE="MoveNext">
 30: <INPUT TYPE=BUTTON NAME="MoveLast" VALUE="MoveLast">

 31: <INPUT TYPE=BUTTON NAME="Update" VALUE="Update">
 32: <INPUT TYPE=BUTTON NAME="Cancel" VALUE="Cancel">
 33:

 34: <INPUT TYPE=TEXT NAME=RsState SIZE =25>
 35: </CENTER>
 36:
 37: <SCRIPT LANGUAGE= "VBScript">
 38:
 39: Const adcExecSync = 1
 40: Const adcExecAsync = 2
 41:
 42: Const adcFetchUpFront = 1
 43: Const adcFetchBackground = 2
 44: Const adcFetchAsync = 3
 45:
 46: Const adcReadyStateLoaded = 2
 47: Const adcReadyStateInteractive = 3
 48: Const adcReadyStateComplete = 4
 49:
 50: SUB ADC_OnReadyStateChange
 51: Select case ADC.ReadyState
 52: case adcReadyStateLoaded: RsState.Value = "Loaded"
 53: case adcReadyStateInteractive: RsState.Value = "Interactive"
 54: case adcReadyStateComplete: RsState.Value = "Complete"
 55: END Select
 56: END SUB
 57:
 58: SUB MoveFirst_onClick

 59: ADC.Recordset.MoveFirst
 60: END SUB
 61:
 62: SUB MovePrevious_onClick
 63: On Error Resume Next
 64: ADC.Recordset.MovePrevious
 65: IF ERR.Number <> 0 THEN
 66: ERR.Clear
 67: END IF
 68: END SUB
 69:
 70: SUB MoveNext_onClick
 71: On Error Resume Next
 72: ADC.Recordset.MoveNext
 73: IF ERR.Number <> 0 THEN
 74: ERR.Clear
 75: END IF
 76: END SUB
 77:
 78: SUB MoveLast_onClick
 79: ADC.Recordset.MoveLast
 80: END SUB
 81:
 82: SUB Update_onClick
 83: ADC.SubmitChanges
 84: ADC.Refresh
 85: Grid.Rebind
 86: END SUB
 87:
 88: SUB Cancel_onClick
 89: ADC.CancelUpdate
 90: ADC.Refresh
 91: Grid.Rebind
 92: END SUB
 93:
 94: SUB Execute_onClick
 95: ADC.ExecuteOptions = adcExecAsync
 96: ADC.FetchOptions = adcFetchAsync
 97: ADC.Server =
"http://<%=Request.ServerVariables("SERVER_NAME")%>"
 98: ADC.Connect = "DSN=OrdersDb"
 99: ADC.SQL = "Select * from Products"
100: ADC.Refresh
101: Grid.Rebind
102: END SUB
103:
104: </SCRIPT>
105: </BODY>
106: </HTML>

The code in Listing 11.4 enables you to experiment with the asynchronous capabilities of RDS. To

help understand what is happening with the asynchronous data transfer, refer again to Figure 11.10.

The code in Listing 11.4 is identical to the code in Listing 11.3, with a few additions. Line 34 adds a
text box that will report on the status of the Recordset in the ADC. Lines 39 to 48 are constants that
were copied from the RDS type library (in MSADCO.DLL). Lines 50-56 define a function that is
executed automatically whenever the status of the ADC Recordset changes. Lines 95 and 96 set the
ADC to asynchronous operation before the query is issued.

One apparent problem with the RDS DataControl is the fact that the client program will issue
queries directly to the database. It would appear that the client application has direct knowledge of the
database. However, it is important to remember that the code for the client tier actually exists on the
middle tier in ASP files. Changing the database might necessitate changing the ASP files, but not the
software on the client machines.

A level of abstraction could be created using stored procedures and views in the database. These
database stored procedures and views could provide an interface layer to the RDS clients, underneath
which the implementation of the database structure could change.

A potential problem with RDS is in the area of security. The DataFactory object on the middle tier
enables anyone who can obtain a DSN, username, and password to issue SQL statements to the
database. Those SQL statements could include DELETE statements to erase data in the database. For
this reason, RDS is typically not used on the Internet. It could enable anyone with a browser to delete
your data. Rather, RDS finds its greatest application in corporate intranets where the users are more
trusted and security can be controlled more easily.

You can also use the RDS DataControl in your C++ programs. The ADC code and the type library
reside in MSADCO.DLL. You can use the #import directive with MSADCO.DLL just as you do
with MSADO15.DLL. The RDS DataControl interface is listed as IBindMgr in the type library.

Summary
Multitier applications promise easier updates and maintenance than traditional client/server
applications. The tools for building multitier applications have evolved rapidly over the past few
years. XML is a technology that will be widely used in the future to transmit data in multitier
applications. Some of the more recent developments, such as ActiveX controls and RDS, promise to
enable client/server-type development in an intranet environment.

Q&A

Q Can I use XML in C++ programs?

A Yes. You can use the XML parser from Microsoft to parse XML documents in C++
programs and retrieve their contents. In other words, you can use the XML parser to
read the schema of XML documents and then read the data that the XML documents
contain. There is at least one sample C++ program for XML parsing on the Microsoft
Web site.

Q Why is it so difficult to use HTML to build a UI for a database application?
A The UI for a database application typically requires that the data be displayed in a table

and that the user be able to navigate through the table and edit the content of rows in the
table as needed. HTML does not provide these capabilities. This is why it is necessary to
use an ActiveX control, such as a grid control, to build a good database UI.

Q Do I have to use an ODBC DSN with the RDS DataControl, or can I specify an
OLE DB provider?

A You can use OLE DB providers as well as ODBC data sources with the RDS
DataControl. To use an OLE DB provider, you would use "Provider=" and
specify the name of the provider and the particular OLE DB data source.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the two pillars on which multitier architectures rest?
2. Why are thin client programs often more desirable than fat client programs?
3. How does the purpose of XML differ from the purpose of HTML?
4. What COM objects are instantiated, and where are they instantiated, in a typical RDS

application?
5. What is the security risk posed by the RDS COM servers?

Exercises

1. Create a table in your database that contains 10,000 records and query it with RDS to become
familiar with the asynchronous operation of RDS.

2. Create a new MFC application that uses #import with MSADCO.DLL. Make this C++
application use the ADO DataControl to perform a function that is similar to the ASP code
in Listing 11.4.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 12
 Using Microsoft Transaction Server to
 Build Scalable Applications

● The Infrastructure for Multitier Applications
● Using MTS to Build Multitier Applications

❍ Where to Find MTS and How to Install It
❍ How MTS Works in Multitier Applications
❍ Managing MTS Components by Using Packages
❍ Creating an MTS Component, Using Visual C++ and the ATL
❍ Using the OLE-COM Viewer to Instantiate Your Component
❍ Using the Windows Scripting Host to Test your Component
❍ Testing Your Component in an Active Server Page
❍ Installing Your Component in MTS
❍ Calling Your MTS Component from an Active Server Page
❍ Debugging MTS Components

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Building a multitier application can be a daunting task. Implementing the application logic is just one
part of the development process. Multitier applications require a sophisticated infrastructure. This

infrastructure often includes code to synchronize access to server resources, manage server
connections and thread pools, enforce security, and so on.

Without using Microsoft Transaction Server (MTS), application developers must build the
infrastructure for multitier applications themselves. However, by using MTS, developers can take
advantage of the infrastructure that MTS provides and are free to concentrate on implementing the
application instead of its infrastructure.

Today you will learn

● The infrastructure required for scalable, multitier applications
● The foundation and infrastructure that MTS provides for multitier applications
● How to create MTS components and how to use them in applications
● Ways to integrate MTS components with IIS and Web browsers
● How to debug MTS components
● How to send ADO Recordset objects between the tiers and components of a multitier

application

NOTE
Today's development work utilizes Microsoft Transaction Server (MTS), Microsoft
Internet Information Sever (IIS), and Internet Explorer version 4.0 (IE4). If you have
access to MTS, IE4, and IIS (or Microsoft Personal Web Server, which is compatible
with IIS), you will be able to perform all the programming tasks described today. If
not, you will have to learn some of these techniques without being able to try them
yourself.

The Infrastructure for Multitier Applications
The move to multitier applications is being driven by the need for business applications that

● Are component-based and extensible
● Can handle large quantities of data being accessed by large numbers of concurrent users
● Are secure and provide for the safety and security of important data
● Are accessible to users who might be in diverse locations and are using the application over a

LAN, WAN, or the Web

Building applications with these characteristics requires lots of code. The infrastructure, or plumbing
(which includes the code for communications, resource allocation, security, and so on), has to be in
place before the developer can build the application.

Developers who build multitier applications from scratch have found that building the infrastructure
can be the most challenging and time-consuming portion of the project. In other words, building the

plumbing can be a significant part of the development effort.

The plumbing for a multitier application typically must include code that

● Communicates with client applications over the Web, a WAN, or a LAN
● Instantiates objects and resources on the server on behalf of each client
● Queues client requests
● Manages objects' lifetimes on the server
● Tracks each user's identity and state
● Pools threads so that the server (or the middle-tier) doesn't have to dedicate a thread to each

user
● Prevents unauthorized access to the application or to the data
● Manages transactions to assure the successful processing of each client's work
● Pools database connections so that the server doesn't have to dedicate a database connection to

each user

This plumbing has to exist for multitier applications to work. That means that someone has to write it.

Developers who build their own plumbing for multitier applications typically must rebuild the
plumbing (or parts of it) each time they build a new application. For each application, they must spend
a significant portion of their time writing code that is not really part of the application.

Developers who build their own plumbing also have limited opportunities to use third-party
components in their applications. For the use of third-party components in multitier applications, a
common component framework must be in place, and the components and the plumbing must be
compatible.

The Component Object Model (COM) provides a component framework. However, COM by itself
does not provide sufficient plumbing for building multitier applications. In practice, COM by itself
provides the framework for only a single tier of an application.

NOTE
DCOM does provide the means to instantiate COM objects on different machines
across a LAN. However, this capability alone does not provide a complete foundation
for building multitier applications. Instantiating objects on a server is only part of the
plumbing that a multitier application needs.

COM provides a component framework for a single tier in an application. To use COM components in
a multitier application, the application must have plumbing that is compatible with COM.

MTS provides plumbing for multitier applications that is compatible with COM. COM provides the
framework for using components in a single tier, and MTS provides the plumbing for these
components to be used across tiers in a multitier application.

Using MTS to Build Multitier Applications
Microsoft Transaction Server extends COM to provide a multitier application framework that can
shelter you from the complexities of multitier development. MTS handles object instantiation at the
server, process and thread management, synchronization of shared resources, and security. MTS also
supports transactions to ensure atomic updates and consistency.

Where to Find MTS and How to Install It

MTS is included in the Windows NT 4.0 Option Pack. MTS requires

● Windows NT 4.0 or Windows 98 (or Windows 95 with DCOM support)
● A hard disk with a minimum of 30MB available space
● A CD-ROM drive
● At least 32MB of RAM

You can install MTS on your computer by using the Windows NT 4.0 Option Pack Setup program.
You can install MTS with or without IIS and the other Option Pack components.

To install MTS

1. Run the Option Pack Setup program.
2. Choose Custom Install.
3. Select (but do not uncheck) the check box for Transaction Server.
4. Click Show Subcomponents.
5. Check Transaction Server Core Components. This will also install the Microsoft Management

Console. Note that choosing the Development Option also installs the Data Access
components.

6. Click OK for the Setup program to do the install.

The Windows NT 4.0 Option Pack and MTS also are available as part of the Visual Studio Enterprise
Edition Server Setup options. Select Server Setup; then select BackOffice Setup. Then you can select
NT Option Pack as an installation option (along with SQL server, and so on.)

How MTS Works in Multitier Applications

To use MTS in a multitier application, you build the business logic and functionality of your
application into a set of COM in-process servers. (An in-process COM server is a COM server that
resides in a DLL.) Each of these COM servers performs some function or well defined set of functions
in your application.

The client programs in your application call these COM servers. The client programs do not perform

any communications with a database server directly. The COM servers constitute a middle tier that the
client programs call. This multitier architecture is illustrated in Figure 12.1.

Figure 12.1 : Multitier architecture.

In-process COM servers by themselves can't provide an adequate middle tier. MTS extends COM by
providing a wrapper for COM servers. You install these in-process COM servers in MTS, and MTS
wraps them and gives them additional functionality. This additional functionality makes it possible for
these COM servers to be used effectively as a middle tier in a multitier application. Figure 12.2
illustrates the role of MTS in multitier applications.

Figure 12.2 : MTS in multitier applications.

MTS wraps and extends the COM servers by intercepting the calls to them from client applications.
MTS does this by causing the Registry entries for COM servers to point to the MTS runtime
environment, instead of to the COM server's DLL. You will recall from Day 9, "Understanding
COM," that the location of a COM server's binary (EXE or DLL) is stored in the Registry. Figure 12.3
shows a sample Registry entry for an in-process COM.

Figure 12.3 : The Registry entry for an in-process COM server.

You can see in Figure 12.3 that the InprocServer32 key for this particular CLSID points to
RDSATLMTS1.DLL (the filename derives from the fact that this example experiments with RDS,
ATL, and MTS) in the WorkInProgress\RDSATLMTS1\Debug directory on the C drive.

As you will recall from Day 9, when a client application requests a pointer to an interface to a COM
server (using the CLSID), the system locates the binary and loads it if necessary. The system then calls
the class factory in the binary to create an instance of the COM server (if an instance needs to be
created) and returns to the client a pointer to an interface to the COM server. (Refer to Figure 9.5 for
an illustration of this process.)

When you install an in-process COM server in MTS, the COM server becomes an MTS component.
The Registry entry for that COM server is changed so that it no longer points to the DLL in which the
COM server resides. Instead, the Registry points to MTX.EXE, which is the MTS application binary.
This is illustrated in Figure 12.4.

Figure 12.4 : The Registry entry for an in-process COM server installed in MTS.

You can see in Figure 12.4 that a LocalServer32 key that points to C:\WINNT\System32\mtx.exe
has been added. Following the filename and pathname is a /p: command-line argument followed by
a GUID. You can't see it in Figure 12.4, but the entry for the InprocServer32 key has been
emptied so that it no longer points to the COM server's DLL.

This change in the Registry means that when a client application references this COM server's CLSID

to obtain an interface pointer to the COM server, the system does not look for and load the COM
server's DLL. Instead, MTX.EXE is located by the system (and loaded if necessary) and is passed the
/p: command-line argument followed by the GUID shown in Figure 12.4.

Remember that an MTS component is a COM server that has been installed in MTS. The GUID passed
on the command line represents the particular MTS package that contains this MTS component. An
MTS package is a collection of MTS components that run in the same process.

Managing MTS Components by Using Packages

MTS components are organized into MTS packages. Packages in MTS enable process isolation and
security to be established for sets of components. Process isolation ensures that a poorly written
component, which could cause errors at runtime, cannot bring down other processes running on that
machine. MTS package security ensures that only authorized users can access your application.

To learn about MTS packages, and to begin today's development work, you will need to create your
own package in MTS. Run the Transaction Server Explorer, which (on NT) you can run by selecting
the Start, Programs, Windows NT 4.0 Option Pack, Microsoft Transaction Server, Transaction Server
Explorer menu. The Transaction Server Explorer runs inside the Microsoft Management Console and
is shown in Figure 12.5.

Figure 12.5 : The Transaction Server Explorer.

The tree control in the left pane enables you to navigate among the various MTS objects. You can
double-click each element (or click the plus sign beside each element) in the tree control to expand it
to view its children. The Transaction Server Explorer in Figure 12.5 has been expanded to show
installed MTS packages.

Create your own package in MTS by right-clicking the Packages Installed folder and selecting the
New Packages menu. You are presented with the first window of a wizard that will help you create
your package. This window is shown in Figure 12.6.

Figure 12.6 : Using Package Wizard to create an empty MTS package.

When you install a COM server in MTS, you specify which package it is to be installed in. You can
create new packages anytime you need to in MTS.

NOTE
MTS security is not as fully implemented under Windows 95 and Windows 98 as it is
under Windows NT. The following explanation of how to create your own MTS
package under NT might contain steps for setting up security that do not apply under
Windows 95 and Windows 98.

Click the Create an Empty Package button. In the next window, you are prompted for the name of the
package, which you can call MyFirst or some other appropriate name. Press the Next button. You
will then be presented with a window to specify the identity under which this package will run. This
window is shown in Figure 12.7.

Figure 12.7 : Using Package Wizard to set the package identity.

The default is to run the package under the currently logged-on user's identity. The alternative is to
hard-code the package to always run under a user identity that you specify. For your work today, use
the default setting of the current user's identity for your package. Click the Finish button to create the
package.

Your package should appear in the tree control in the Transaction Server Explorer. Select it by
clicking it, and you should see that the package contains two folders, one for components and one for
roles. The Components folder will contain the in-process COM server that you will create and install
later today. The Roles folder enables you to specify security to limit user access to the package and its
components.

You can set the properties of your MTS package by right-clicking its element in the tree control and
selecting the Properties menu from the context menu. This will show the Properties window for your
package. The contents of the General tab are shown in Figure 12.8.

Figure 12.8 : Package properties- the General tab.

The Properties window in Figure 12.8 shows the name of the package, a description (which you can
assign), and the GUID that uniquely identifies this package. This is the GUID that appears in the
Registry as the /p: argument with MTX.EXE for the COM servers installed in this package.

Select the Security tab, which enables you to turn on and off security for this package. There is a
check box titled Enable Authorization Checking that you should leave unchecked to leave security off
for your package while you are learning MTS.

The Advanced tab enables you to specify how long the components in your package should live on the
server after being used and released by client applications. The default values are fine for now.

The Identity tab is the same one you saw on the Package Wizard. Use the default setting of the current
user's identity for your package.

The Activation tab enables you to specify where (in which process) the components in your package
should be instantiated. The Activation tab is shown in Figure 12.9.

Figure 12.9 : Package properties- the Activation tab.

The Library Package activation type is available only for client applications that run on the computer

on which the package and components are installed. In other words, the client application and the
components have to be on the same machine. Selecting this option causes the components to be
instantiated in the client application's address space.

The Server Package activation type causes the components to be instantiated in a server process on the
MTS machine. In other words, the package runs in its own process on the MTS machine. The Server
Package activation type provides process isolation. It also enables MTS to enforce security, manage
resource sharing, and track the usage of components in the package. Select Server Package activation
for your package.

Creating an MTS Component, Using Visual C++ and the ATL

Now it is time to create your first MTS component. Run Visual Studio and select the File, New menu.
On the Project tab, specify an ATL COM AppWizard project. The New Project window is shown in
Figure 12.10.

Figure 12.10: The new ATL COM AppWizard project window.

Call the project MTSComp1, as shown in Figure 12.10, or use whatever name you think is appropriate.
Figure 12.10 shows the project being placed in the c:\tysdbvc\mtscomp1 directory. If that directory
already exists on your machine, you will need to use a different directory. Click the OK button.

The next window is the ATL COM AppWizard-Step 1 of 1 window. It is shown in Figure 12.11.

Figure 12.11: The ATL COM AppWizard-Step 1 of 1 window.

Specify merging of proxy/stub code and support for MTS, as shown in Figure 12.11. Click the Finish
button and then the OK button for the wizard to create the project.

Select the Insert menu and the New ATL Object menu choice to specify an MS Transaction Server
object as shown in Figure 12.12.

Figure 12.12: Using the ATL Object Wizard.

Click the Next button. The ATL Object Wizard Properties window will appear. Under the Names tab,
specify a short name of Component1.

Under the MTS tab, specify a dual interface. Also, enable the check boxes for Support IObjectControl
and Can Be Pooled, as shown in Figure 12.13.

Figure 12.13: The ATL Object Wizard Properties window and the MTS tab.

The IObjectControl and Can Be Pooled options tell MTS that your component should be returned to

an instance pool after deactivation, rather than be destroyed. This enables MTS to provide access to
your component in a very efficient manner as multiple client applications create and free your object.
MTS provides efficient access to your component by using thread pooling and database connection
pooling.

Click the OK button to generate the object. The CComponent1 class will appear in the tree view in
the ClassView tab of the project workspace in Visual Studio. The IComponent1 interface will also
appear there.

To add a function to your component, right-click the IComponent1 interface and choose Add
Method from the context menu. The Add Method to Interface dialog will be displayed, as shown in
Figure 12.14.

Figure 12.14: Adding the ReturnHello method to an interface.

As Figure 12.14 shows, you should specify a method name of ReturnHello and the following
parameters:

[out, retval] BSTR* bstrHello

Using [out, retval] tells the system that the bstrHello parameter needs to be marshaled
from the server to the client and that this parameter is the return value of the function.

Click the OK button to add the method. Click the plus sign next to the IComponent1 interface, and
you should see the ReturnHello method listed. Double-click the ReturnHello method to view
the MTSComp1.IDL file that the ATL Wizard created for you. This IDL code declares the interface to
IComponent1.

Click the plus sign next to the CComponent1 class. The IComponent1 interface will be listed
there, as well as four other functions and a data member for the CComponent1 class. Click the plus
sign next to the IComponent1 interface under the CComponent1 class, and you will see the
ReturnHello function listed there, as shown in Figure 12.15.

Figure 12.15: The ReturnHello function in Component1.CPP.

Double-click the ReturnHello function under the IComponent1 interface under the
CComponent1 class to open the Component1.CPP, as shown in Figure 12.15. This is where you
implement the code for IComponent1. Change the code in the ReturnHello function so that it
matches the code shown in Listing 12.1.

Listing 12.1 The RETURNHELLO Function in Component1.CPP

 1: STDMETHODIMP CComponent1::ReturnHello(BSTR *bstrHello)
 2: {
 3: *bstrHello = _bstr_t("Hello");
 4: return S_OK;
 5: }

The ATL Object Wizard generated lines 1, 2, 4, and 5. You add the code in line 3 that assigns a
temporary _bstr_t instance to the pMyBSTR argument. You will also need to add

#include <comdef.h>

to Component1.CPP so that you can use the _bstr_t class. Build the project, which should compile
and link with no errors or warnings. When you build the project, Visual Studio will register the COM
server for you.

NOTE
To build any of the release versions of this project, you might need to remove the
_ATL_MIN_CRT preprocessor definition from the compiler settings for those
configurations. Search your Visual C++ documentation on _ATL_MIN_CRT, for
details.

Using the OLE-COM Viewer to Instantiate Your Component

Before installing your component in MTS, you would be wise to test it. There are several ways for you
to verify that your COM component works.

First, you will want to ensure that the system can instantiate your component. The easiest way to do
this is to use the OLE-COM Object Viewer. You will recall from Day 10, "Database Client
Technologies and the Secrets of ADO," that you can find the OLE-COM Object Viewer under the
Microsoft Visual Studio 6.0 Tools menu. The menu OLE-COM Viewer is called OLE View. Run the
OLE-COM Object viewer and expand the Object Classes, Grouped by Component Category elements
of the tree control in the left pane. Expand the Automation Objects element. Under the Automation
Objects in the left pane, you should see all the Automation objects that are registered on your system.

Scroll down until you find Component1 Class. If you don't see Component1 there, it probably is
not registered. Visual Studio registers it for you after every successful build, so it should be there if
you are doing this on your build machine. If you ever need to register the component manually

(perhaps on another machine), you can run regsvr32 mtscomp1.DLL from the DOS prompt to register
it.

Click Component1 Class, and the right pane of the OLE-COM Viewer will display the Registry entry
for your Component1. Right-click Component1 in the left pane and select Create Instance from the
context menu. The Component1 Class element in the tree control will appear in bold text, and the
IComponent1, IDispatch, and IUnkown interfaces will appear under it, as shown in Figure
12.16.

Figure 12.16: Using the OLE-COM viewer to instantiate a COM object.

If this works, you know that your Component1 is registered properly and that the system can
instantiate it. Release the instance of the Component1 you just created, by right-clicking
Component1 Class and selecting Release Instance from the context menu.

Using the Windows Scripting Host to Test your Component

One of the easiest ways to exercise a function in your component is to write a simple script that calls
it.

Until recently, the only scripting language that Windows supported was the MS-DOS command
language. Compared to the scripting languages available on other platforms, the MS-DOS command
language has very limited features and capabilities.

Microsoft has greatly expanded the scripting language support on the Win32 platform by introducing
the ActiveX scripting architecture. Microsoft provides three hosts for running scripts in the ActiveX
scripting architecture:

● Microsoft Internet Explorer (IE4), which enables scripts to be executed on client machines
from within HTML pages

● Internet Information Server (IIS) and Active Server Pages (ASP), which enable server-side
scripting for use over the Internet or an intranet

● Windows Scripting Host (WSH), which enables you to write scripts and execute them directly
on the Windows desktop or at the MS-DOS prompt

The Windows-based host is called WSCRIPT.EXE and enables you to run scripts directly from the
Windows desktop by double-clicking a script file. The command prompt-based host is CSCRIPT.EXE
and enables you to run scripts from the MS-DOS prompt by simply entering the name of the script
file.

WSH is included in the NT 4.0 Option Pack, Windows 98, Windows NT Workstation version 5.0, and
Windows NT Server version 5.0.

Microsoft provides Visual Basic Script (VBScript) and Java Script scripting engines for WSH.

Support for other script languages, such as Perl, TCL, REXX, and Python, is (or will be) provided for
WSH by third-party companies.

To write a script that exercises your component, create a text file and save it as Comptest.VBS. The
VBS extension is important because the extension tells WSH which scripting language to use. (VBS
stands for VBScript.) Enter the code shown in Listing 12.2 in Comptest.VBS.

Listing 12.2 The VBScript File for Exercising COMPONENT1

 1: dim comp1
 2: set comp1 = WScript.CreateObject("MTSComp1.Component1.1")
 3: myStr = comp1.ReturnHello
 4: WScript.Echo "Result of ReturnHello: " & myStr

Line 1 in Listing 12.2 defines a variable called comp1 that can hold a COM object. Line 2 calls the
WScript.CreateObject function to instantiate your component. Line 3 declares a variable called
myStr and stores the results of a call to your component's ReturnHello function. Line 4 displays
the resulting string in a message box.

You can execute your Comptest.VBS script by double-clicking the file in Windows Explorer or by
entering cscript Comptest.VBS at the DOS prompt in the directory that contains the file. It
should run with no errors and display Result of ReturnHello: Hello in a message box.
Testing your component with a script is one way for you to know that your component is registered
properly and that the code for your component works.

Testing Your Component in an Active Server Page

You can also call your component from within an Active Server Page. However, you must make some
additional entries in the Registry for IE4 to allow your component to run in its process.

IE4 has its own security to help ensure that the ActiveX (COM) components it runs are not malicious.
A component must be registered as safe for scripting and safe for initialization, or IE4 will not run it.
Therefore, you need to register Component1 as being safe for scripting and initialization. You do
this by creating a text file that has a .REG extension, such as marksafe.REG, and that contains the
code shown in Listing 12.3.

Listing 12.3 A REG File to Mark Your Component Safe for Scripting and Initialization

 1: REGEDIT4

 2: [HKEY_CLASSES_ROOT\CLSID\<GUID>\Implemented Categories\
 {7DD95801-9882-11CF-9FA9-00AA006C42C4}]
 3: [HKEY_CLASSES_ROOT\CLSID\<GUID>\Implemented Categories\
 {7DD95802-9882-11CF-9FA9-00AA006C42C4}]

Replace the text that says <GUID> in lines 2 and 3 of Listing 12.3 with the CLSID for your
Component1. You can obtain the CLSID for your Component1 from several places.

One easy way to obtain the CLSID for your Component1 is to use the OLE-COM Viewer. Right-
click Component1 Class and select Copy CLSID to Clipboard from the context menu. (After doing
this you can exit OLE-COM Viewer.)

You can then paste the CLSID into the REG file. To add these entries to the Registry database on your
machine, simply double-click the REG file in Windows Explorer.

In Visual Studio, create a new Active Server Page (the file does not need to be added to a project).
Enter the code shown in Listing 12.4 and save the file as ClientTierForMTS.ASP.

Listing 12.4 The ClientTierForMTS.ASP to Run COMPONENT1 from an Active Server Page

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Client Tier</TITLE>
 4: </HEAD>
 5: <CENTER>
 6: <H1>Browser Client for MTS Component</H1>
 7:
 8: <!-- RDS.DataSpace --><OBJECT ID="ADS1" WIDTH=1 HEIGHT=1
 9: CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">
10: </OBJECT>
11:
12:

13:

14: <INPUT TYPE=BUTTON NAME="ReturnHello" VALUE="Return Hello">
15: <INPUT NAME=ReturnedHello SIZE=10>
16: </CENTER>
17:
18: <SCRIPT LANGUAGE= "VBScript">
19:
20: SUB ReturnHello_OnClick
21:
22: Dim objMyCustomBusinessObject
23: Set objMyCustomBusinessObject =
 ADS1.CreateObject("MTSComp1.Component1.1", "")
24:

25: ReturnedHello.Value = objMyCustomBusinessObject.ReturnHello
26:
27: Set objMyCustomBusinessObject = Nothing
28:
29: END SUB
30:
31: </SCRIPT>
32: </BODY>
33: </HTML>

Lines 1- 7 and 32-33 are simple HTML. Lines 11-17 contain normal HTML code that creates a
ReturnHello button and a text box.

Lines 8-10 create an instance of the Remote Data Services (RDS) DataSpace object. The database
space object is used to create client-side proxies of COM components that exist on a server or middle-
tier machine. RDS supports four protocols over which it can instantiate and call COM objects: HTTP,
HTTPS, DCOM, and in-process.

Lines 18 through 31 contain VBScript code that uses the DataSpace object to instantiate your
Component1, call its ReturnHello method, and display the results in the text box.

Line 23 calls the DataSpace CreateObject function to instantiate Component1. As you can
see, the second argument passed to the CreateObject function is "". This tells the
CreateObject function that the COM component is installed on this machine and to run it as an in-
process COM server. You can specify a machine name in the form, "machine name" to have the
CreateObject function instantiate the COM component over DCOM. You can specify
"HTTPS://webservername" or "HTTP://webservername" to have the CreateObject
function instantiate the COM component over an HTTP connection to a Web server.

Before you can have the DataSpace CreateObject function instantiate your component over
HTTP or DCOM, you must add the Prog ID of your component (MTSComp1.Component1.1) as a key
under the following Registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
 \W3SVC\Parameters\ADCLaunch

To run the ASP shown in Listing 12.4, place the ASP file in a directory that is accessible to IIS (IIS
will need to be running on the machine). Run IE4 and enter the HTTP address of that directory,
followed by the ASP filename. The page should load with no errors. When you click the ReturnHello
button, Component1 will be called, and Hello will be displayed in the text box.

Note that you have not yet installed your component in MTS. The ability to instantiate and call your
COM component over DCOM and HTTP from a browser is provided by RDS. When you install your
component in MTS, it will not change the ASP code in Listing 12.4. Rather, MTS will simply make
your Component1 more robust and secure when it executes on the middle-tier machine.

Installing Your Component in MTS

Now you need to install your COM server in MTS. Click the plus sign next to the MyFirst package in
Transaction Server Explorer; then click the Components folder under the MyFirst package in the tree
control. Right-click the Components folder and select the New Component menu. This will run the
Component Wizard, shown in Figure 12.17.

Figure 12.17: The MTS Component Wizard.

As you can see in Figure 12.17, there is a button to install new components and a button to import
components that are already registered. The button to import components that are already registered
will open a window that displays all the COM servers registered on your computer. The button to
install new components opens the window shown in Figure 12.18. Click the button to install new
components.

Figure 12.18: The Install Components window in the MTS Component Wizard.

Click the Add Files button and navigate to the directory that contains the MTSComp1.DLL file for the
COM server that you just built and select the DLL. The Install Components window should show that
it found Component1, which is the COM server in your DLL. Click the Finish button to install
Component1 in MTS.

You should now be able to see MTSComp1.Component1 in the MyFirst package. The installed
component looks like a bowling ball with an X on it, as shown in Figure 12.19.

Figure 12.19: The MTSComp1.Compone nt1 in the Transaction Server Explorer.

Using the View menu, you can see various kinds of information about the components. One
interesting view is the Status view. Select the Status view, and you will be able to see information on
whether MTSComp1.Component1 has been activated, how many objects of it are instantiated, and
how many are handling calls from client applications. These values should all be blank now, but when
a client application calls your MTSComp1.Component1, you will be able to see that the object is
instantiated by using this view.

Calling Your MTS Component from an Active Server Page

You can use MTS components in Active Server Pages (ASP). However, there are two things you need
to do to your Component1 MTS component to enable it to be used from an ASP.

First, just to ensure that the MTS security doesn't get in your way during development, you need to
make sure it is not enabled for your Component1. You do this by right-clicking the bowling ball for
Component1 and selecting Properties from its context menu. Under the Security tab, uncheck the

Enable Authorization Checking check box, as shown in Figure 12.20, and press the OK button.

Figure 12.20: Disabling security authorization checking for Component1.

Secondly, you need to mark the component safe for scripting and initialization again. When you
installed Component1 in MTS, the Registry entry was modified, and the entries that mark
Component1 as safe for scripting and initialization were removed. You can put the safe-for-scripting
and initialization entries back in the Registry for your component by simply double-clicking the
marksafe.REG file in Windows Explorer. After you mark Component1 safe again, you might want
to refresh the MyFirst package in Transaction Server Explorer, just to make sure that MTS is feeling
good about things with your component.

It is important to refresh the MTS settings for components each time you recompile your project or
make changes to its Registry settings. Refreshing component settings prevents your component
Registry settings from being rewritten.

To refresh your component settings, in the left pane of the Transaction Server Explorer, select My
Computer. On the Action menu, click Refresh All Components. This updates MTS with any changes
to the System Registry, component CLSIDs, or interface identifiers (IIDs). You can also refresh
components by selecting the computer in the left pane of the Explorer and clicking the Refresh button
on the MTS toolbar.

You can refresh individual packages in MTS by right-clicking the Components folder, under the
package in the left pane of the Transaction Server Explorer, and selecting Refresh from the context
menu.

When you build your MTSComp1 project, it will run mtxrereg.EXE as a postbuild step.
Mtxrereg.EXE is a command-line version of the Refresh Components menu that you can access by
right-clicking a package. If mtxrereg.EXE runs properly, you will not have to use Transaction Server
Explorer to refresh your component after each build.

After making all these changes, your component will be ready to run under MTS and will be
accessible to Web browsers through RDS.

Run the ASP shown in Listing 12.4 again, by clicking the Refresh button on your browser. If you have
already quit IE4, run it and enter the HTTP address of that directory, followed by the ASP filename.
The page should load with no errors. When you click the ReturnHello button, Component1 will be
called, and Hello will be displayed in the text box.

You will also be able to look at the Status view for the components of your package in Transaction
Server Explorer. The Objects, Activated, and In Call columns for MTSComp1.Component1 should go
from blank to 0, indicating that the object was instantiated, activated, and called. (It ran to completion
too quickly to register a 1 in any of those columns.)

Returning an ADO Recordset from MTS Component to an Active Server
Page

Now that you know that your component can run in MTS and can be called from an ASP, it's time to
make your component do something useful. In fact, your component will do more than something
useful; it will do something really cool.

As you know, ADO Recordsets are built to encapsulate the results of database queries. ADO
Recordsets have functions built in for navigating through records and accessing the data in fields. You
can edit the data in the Recordset, and those changes will be made to data that resides in the database.
(Of course, you recall that you need to make a connection to the database first by using the ADO
Connection object.)

ADO Recordsets are nifty because they can be disconnected from the database and returned from
functions in COM components. This is because ADO Recordsets have the capability to be marshaled
across process boundaries.

This feature of ADO Recordsets enables your middle-tier COM component to create a Recordset from
a database query and then send the Recordset across the wire, using COM, DCOM, or HTTP, to the
IE4 Web browser. A Recordset that is sent across the wire in this manner is called a disconnected
Recordset.

IE4 can use a disconnected Recordset as the data source for a grid control. The browser can accept the
user's changes to the data in the grid control and then submit the Recordset back to the middle-tier
component, which could submit the Recordset back to the database for the user's changes to be made
to the data in the database.

Web browsers that have no direct connection to the database can retrieve and edit data from the
database as if they did have a connection to it. Remember, MTS can provide security for these types of
applications.

Unfortunately, building a complete application like this is beyond the scope of today's work. You will,
however, in today's work write the code to send a Recordset from your middle-tier MTS component to
a Web browser and bind it to a grid control.

Add another method to your Component1 interface. Name the method ReturnRs and use the
following for its parameters:

[out, retval] IDispatch ** Rs

After adding the ReturnRs method, implement the code for it as shown in Listing 12.5.

Listing 12.5 The RETURNRS method for Returning an ADO Recordset from an MTS
Component to an ASP

 1: STDMETHODIMP CComponent1::ReturnRs(IDispatch **Rs)
 2: {
 3: _RecordsetPtr adoRs = NULL;
 4:
 5: try
 6: {
 7: adoRs.CreateInstance(__uuidof(Recordset));
 8: adoRs->PutCursorLocation(adUseClient);
 9: adoRs->Open("SELECT * FROM Customers",
10: "DSN=OrdersDb; UID=; PWD=;",
11: adOpenStatic, adLockBatchOptimistic, adCmdText);
12:
13: *Rs = (IDispatch*)adoRs;
14:
15: adoRs->AddRef();
16:
17: //m_spObjectContext->SetComplete();
18:
19: return S_OK;
20: }
21: catch (_com_error e)
22: {
23: ::MessageBeep(MB_OK);
24: AtlReportError(CLSID_Component1, (LPCOLESTR)e.Description(),
25: IID_IComponent1, e.Error());
26: }
27:
28: //m_spObjectContext->SetAbort();
29: return E_FAIL;
30: }

Line 3 of Listing 12.5 defines an ADO Recordset smart pointer. Line 7 uses the smart pointer class's
CreateInstance function to create an ADO Recordset. Line 8 tells ADO to use a client-side
cursor, which is necessary if you are going to make this a disconnected Recordset. Lines 9-11 open the
Recordset with a "SELECT * FROM Customers" query.

Line 13 is where the real magic happens. It casts the Recordset smart pointer as an IDispatch
pointer and assigns it to the retval out parameter. When this line of code executes, COM uses the
ADO Recordset's IMarshal implementation to send the Recordset object (code, data, and all) to
whichever client program is calling this ReturnRs function. After line 13 executes, the Recordset no
longer exists in this process space, so it is not necessary to close or release it.

Line 15 calls AddRef()so that when the smart pointer goes out of scope, it won't call Release()
on the Recordset. It will cause an error if it does, because the Recordset is already gone. (It was sent to
the client and released from this end in Line 13.) Line 17 could call SetComplete() if you were

supporting MTS transactions in this component, which you are not. Lines 21-29 are for error handling.
Line 23 just beeps in case the client application is not set up to take the output of
AtlReportError().

You will need to add the #import directive for the ADO library to a source file in your project.
Stdafx.h is a good file to add the #import directive to. (You will, of course, need to list the path to
the MSADO15.DLL file on your machine.)

#import "C:\program files\common files\system\ado\msado15.dll" \
 no_namespace \
 rename("EOF", "adoEOF")

You will receive a C4530 warning unless you enable exception handling for this project. In the C++
Language Category of the C/C++ tab in the Project Settings dialog box, select the Enable Exception
Handling option or simply use the /GX compiler switch.

After making these additions, build your MTSComp1 project. It should build with no errors or
warnings. If mtxrereg.EXE ran properly in the postbuild step, it will have refreshed your MTS
package for you.

Now you need to create an ASP that will use your ReturnRs method. Create a new ASP file in
Visual Studio. (It does not need to be made part of the project.) Listing 12.6 shows the source code for
the ASP.

You need to install the Sheridan grid control on your machine for the code in Listing 12.6 to run
properly. As of this writing, the Sheridan grid control is included in the Microsoft RDS Address Book
sample.

If you are unable to obtain the Sheridan grid control in the RDS samples, you can download a trial
version of the Sheridan Data Widgets at http://www.shersoft.com/.

Listing 12.6 ClientTierForMTSAdoRS.ASP Receives an ADO Recordset from an MTS
Component to an ASP

 1: <HTML>
 2: <HEAD>
 3: <TITLE>Client Tier</TITLE>
 4: </HEAD>
 5: <CENTER>
 6: <H1>Browser Client for MTS Component</H1>
 7:
 8: <OBJECT ID="GRID" WIDTH=600 HEIGHT=200 Datasrc="#ADC"
 9: CODEBASE="http://<%=Request.ServerVariables("SERVER_NAME")%>
10: /MSADC/Samples/ssdatb32.cab"
11: CLASSID="CLSID:AC05DC80-7DF1-11d0-839E-00A024A94B3A">

http://www.shersoft.com/

12: <PARAM NAME="_Version" VALUE="131072">
13: <PARAM NAME="BackColor" VALUE="-2147483643">
14: <PARAM NAME="BackColorOdd" VALUE="-2147483643">
15: <PARAM NAME="ForeColorEven" VALUE="0">
16: </OBJECT>
17:
18: <OBJECT classid="clsid:BD96C556-65A3-11D0-983A-00C04FC29E33"
19: ID=ADC HEIGHT=1 WIDTH = 1>
20: </OBJECT>
21:
22: <!-- RDS.DataSpace --><OBJECT ID="ADS1" WIDTH=1 HEIGHT=1
23: CLASSID="CLSID:BD96C556-65A3-11D0-983A-00C04FC29E36">
24: </OBJECT>
25:
26:

27:

28: <INPUT TYPE=BUTTON NAME="ReturnHello" VALUE="Return Hello">
29: <INPUT NAME=ReturnedHello SIZE=10>
30: <INPUT TYPE=BUTTON NAME="ReturnRS" VALUE="Return RecordSet">
31: </CENTER>
32:
33: <SCRIPT LANGUAGE= "VBScript">
34:
35: SUB ReturnHello_OnClick
36: Dim objMyCustomBusinessObject
37: Set objMyCustomBusinessObject =
ADS1.CreateObject("MTSComp1.Component1.1", "")
38: ReturnedHello.Value = objMyCustomBusinessObject.ReturnHello
39: Set objMyCustomBusinessObject = Nothing
40: END SUB
41:
42: SUB ReturnRS_OnClick
43: Dim objMyCustomBusinessObject
44: Set objMyCustomBusinessObject =
ADS1.CreateObject("MTSComp1.Component1.1", "")
45: ADC.SourceRecordset = objMyCustomBusinessObject.ReturnRs
46: Grid.Refresh
47: Set objMyCustomBusinessObject = Nothing
48: END SUB
49:
50: </SCRIPT>
51: </BODY>
52: </HTML>

Lines 1-6 in Listing 12.6 put up the title for the window and a heading. Lines 8-16 place the Sheridan
ActiveX grid control in the page. Lines 18-20 place the Microsoft RDS DataControl (also called
the Advanced Data Control or ADC) into the page. Lines 22-24 place the RDS DataSpace object in
the page, as you used in Listing 12.4 as well.

Line 30 adds a button called ReturnRS. Lines 42-48 are the code that executes when the user clicks the

ReturnRS button. Line 45 sets the ADC Source Recordset to the disconnected Recordset returned by
Component1.ReturnRs().

Load this ASP in IE4. Click the ReturnHello button to make sure it still works. Then click the
ReturnRs button. If everything runs properly, you should see the records from the Customers table
appear in the grid control. It's really cool when it works. When it doesn't work, you need to debug your
component.

Debugging MTS Components

You can debug your Microsoft Transaction Server component DLL in Visual C++ with the following
procedure. Shut down server processes using the Transaction Server Explorer by right-clicking My
Computer and selecting Shutdown Server Process.

In your Visual C++ session, under the Project, Settings, Debug, General menu, set the program
arguments to the following string: "/p: PackageName"-for example,

/p: "MyFirst"

In the same property sheet, set the executable to the full path of Mtx.EXE-for example,

C:\WINNT\System32\MTx.exe

Set breakpoints in your component DLL in the ReturnHello and ReturnRs functions and run the
server process (in the Build menu, select Start Debug and click Go.) Then run IE4 and load
ClientTierForMTSAdoRS.ASP. Click the ReturnHello button and/or the ReturnRs button to hit your
breakpoints. You should be able to step through the code just like a normal debugging session.

Summary
The infrastructure necessary for multitier applications is difficult and time-consuming to build
yourself. MTS can do most of that work for you and enable you to concentrate on building your
application, not its infrastructure.

MTS components are COM DLLS that you can build with ATL. In your component code, you can
create ADO Recordsets from database queries and send the Recordsets to applications on the client
tier.

IE4 can host ActiveX controls and, with RDS, can instantiate and communicate over COM, DCOM,
and HTTP with MTS components that you build.

Q&A

Q What do transactions in MTS do?
A Some operations that you might perform in your MTS components could involve calling

code in several other components or in several databases. MTS transactions enable you to
ensure that all that work completes successfully.

Q What is the difference between the RDS DataSpace object I used today and the RDS
DataControl object I used yesterday?

A The DataControl object has a Refresh function that enables you to query a data
source behind the Web server. That Refresh function uses the RDS DataFactory
object on the middle tier, which could be a security risk in some installations. The
DataSpace object enables you to instantiate other components on the middle tier, which
you can use instead of the DataFactory object.

Q The RDS DataControl Refresh method provides for asynchronous fetching of
ADO Recordsets. Does the DataSpace object provide that capability?

A No. When retrieving a Recordset from a COM component that was instantiated using the
DataSpace object, the Recordset comes across synchronously. In other words, it will
block until all the data in the Recordset is fetched.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. Why isn't DCOM alone sufficient for building multitier applications?
2. What does [out, retval] mean and where is it used?
3. Will MTS run on Windows 98?
4. What do MTS packages do?
5. What is a disconnected Recordset?

Exercises

1. Try to rebuild your MTSComp1.DLL while you have IE4 running with
ClientTierForMTSAdoRS.ASP loaded. What happens? How do you fix the problem?

2. How would you go about removing your MTSComp1.Component1 from MTS so that you
could use it as a standard COM server? Try it.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 13
 Melding Object-Oriented Programming
 with Relational Databases

● Relational Databases and Object-Oriented Languages, the Oil and Vinegar of Modern
Application Development

❍ How the Relational Model and the Object Model Differ
● Object Databases Versus Relational Databases
● The Costs and Benefits of Using Relational Databases with C++
● Techniques for Integrating Relational Databases with Object-Oriented C++ Programs

❍ Begin by Designing the Relational Database
❍ Create Simple Object/Relational Mappings
❍ Create a Live Object Cache
❍ Use the Strengths of Both Models

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Relational database technologies have revolutionized the way data is managed. With relational
databases, you can manage huge quantities of data that are impossible to manage using other, less
capable database technologies.

Object-oriented programming techniques have revolutionized the way software is developed. With
object-oriented programming techniques, you can create large and complex software systems that are
impossible to create using other, less capable programming methodologies.

Relational databases enable powerful data management, and object-oriented programming enables
powerful software development. By combining the object model and the relational model, you can
write large and complex software systems that manage huge amounts of data.

Today you will learn

● The characteristics of the relational model and the object model that make them difficult to
integrate

● The factors that determine whether an application is suitable for an object/relational mix or for a
pure object database

● The costs and the benefits of combining the relational model with the object model
● The techniques for integrating relational databases with object-oriented programs

Because today's work deals primarily with design issues, you won't be writing any code today. Also, it
is very difficult to write a day's worth of code on this topic. The topic is so large that to write a little bit
of code, you end up having to write a lot.

Relational Databases and Object-Oriented Languages,
the Oil and Vinegar of Modern Application
Development
Some things don't mix easily. Their characteristics are so different that they do not blend with each
other naturally. Relational databases and object-oriented programming languages are like that.

Combining the object model and the relational model can enable you to write complex applications that
manage huge amounts of data. However, the relational model and the object model come from
different worlds and are quite dissimilar. The differences between the two models prevent them from
blending easily with each other easily.

The interface between the relational model and the object model is not straightforward, but there are
proven techniques for combining the two models. As a C++ database programmer, you possess
knowledge of both the relational model and the object model. You are in a unique position to learn how
to fuse these two disparate models to build advanced software applications.

How the Relational Model and the Object Model Differ

Relational database systems:

● Data is represented in a collection of two-dimensional tables.

● Relationships between the data in the tables are expressed by values stored in the tables.
● Using SQL, you can create relationships between the data in a dynamic fashion on-the-fly.
● The relationships between the data entities do not necessarily need to be defined or envisioned

when the database is first created.

Object-oriented systems:

● The application consists of a set of objects that contain data and the code to act on that data.
● These objects are data types defined by the programmer when the system is first created.
● These data types can have complex relationships with each other through techniques such as

inheritance and encapsulation.
● The relationships between data types cannot be modified easily or created dynamically after the

system is built.
● The instances (or objects) of these data types can hold references to other objects and can also

be stored in collections for enumerating them easily.

Relational systems and object-oriented systems differ from each other fundamentally. These
differences can be categorized as

● Differences in type systems
● Differences in language
● Differences in paradigms
● Differences in basic data entities

Differences in Type Systems

The type system of a relational database is relatively simple. The database vendor establishes the data
types. These data types typically consist of simple numeric, date/time, text, and binary types.
Developers cannot create their own types, as they can in the object model.

The data types in a relational database are used to define fields (or columns) in the database tables. The
data that goes into each column must match the data type defined for that column.

For a relational database to perform properly, the data in the database tables must conform to the first
normal form. The data in each row of each column must be atomic.

The object model is based on objects, each of which can contain many data attributes and the code to
act on them. Objects are instances of these data types. The application developer can create new data
types as needed.

Because of the complexity of objects, you cannot create usable objects that would be considered atomic
types in the relational model. In other words, you cannot store objects in relational tables because
objects have many attributes and do not fit the relational definition of an atomic data type.

In addition, the type system of a relational database is established by the database itself. Data of the

supported types are the all that you can store in a relational database.

The basic properties of objects are encapsulation, inheritance, and polymorphism. There is no real
support for encapsulation, inheritance, and polymorphism in the type systems of relational databases.

Differences in Language

In the relational model, SQL is the only language you can use, and SQL does everything. SQL code
expresses the functionality of the database. SQL statements create the tables in which the data is stored.
Relationships in the data are expressed through a combination of data in key fields and SQL code. All
access to the data in the database is done through SQL.

Each relational database vendor implements SQL for its own database system. Each relational database
system contains a SQL engine that executes its particular implementation of SQL. In relational
systems, SQL is the only language you can use, and you can use only your database's particular brand
of SQL.

SQL is not an object-oriented language. It has no object-oriented constructs or capabilities. There is no
real support for encapsulation, inheritance, and polymorphism in SQL. SQL's sole purpose is to store
and retrieve data in tables in a relational database.

In the object model, you can use a language such as C++, which supports object-oriented mechanisms
such as encapsulation, inheritance, and polymorphism. Using C++, you can define your own data
types. Instances of data types (objects) can contain multiple attributes as well as code to operate on
those attributes. You can use mechanisms such as encapsulation, inheritance, and polymorphism to
create complex hierarchies and networks of interrelated objects.

With C++, you can implement data models that are highly complex and intricate. However, C++
provides only primitive mechanisms for persisting and retrieving objects from a permanent store such
as a hard disk.

SQL was built to store and retrieve data from tables in a database and has no object capabilities. C++
was built to create complex object systems and has extremely meager data storage capabilities.

These two languages are fundamentally different from each other, and no facility is built in to either
language for interfacing with the other. The two languages are as different as English and music.

Differences in Paradigms

In the relational model, the database server dictates the model, the language, and the type system.
Applications must use the database server on the database server's terms. If the application wants to use
a model that is different from the model provided by the database, the application must provide the
interface that maps between the models.

The necessity of using a database server on its terms has been the driving force behind the creation of

database interfaces such as ODBC and OLE DB. These APIs are an effort to provide an interface
between databases (which use the relational model) and C++ applications (which can use either the
procedural model or the object model). At the very least, what these APIs do is translate between the
data types in relational databases and data types in C++.

The relational model sees the world as a set of two-dimensional tables. Data that cannot be easily
represented in a tabular form is difficult to fashion in a relational database.

The field is the basic unit of the relational database. The field is the smallest data element in a relational
database. All data access in a relational database is performed on a field basis. All data access is done
through SQL, which is built to work with fields.

The relational model is built to handle large quantities of data. If you can mold your data so that it
conforms to the relational model, a relational database can manage enormous quantities of data quite
effectively.

By contrast, object-oriented systems try to mimic objects in the real world. You don't have to try to
mold your data to fit the object model. Instead, you create objects that mimic or reproduce the
attributes and characteristics of real-life objects.

This is why the object model can handle more complexity than the relational model. With the relational
model, you have to make the data fit the model. With the object model, you can make the model fit the
data.

Differences in Basic Data Entities

A common mapping between the object model and the relational model is the direct mapping of a class
to a relational table, as shown in Figure 13.1.

Figure 13.1 : Mapping a C++ class to a relational table.

As you can see in Figure 13.1, a C++ class corresponds to a relational table. The data members of the
class correspond to fields in the table. Instances of the class correspond to records in the table.

One thing that makes it difficult to interface the relational model with the object model is that the basic
data entities of the two models do not correspond to each other. In the C++ object model, the basic data
entity is the class. In the relational model, the basic data entity is the field. C++ classes do not map to
fields. C++ classes map to tables.

C++ and SQL are built around their basic data entities. C++ is built to work with classes. SQL is built
to work with fields. When you try to map between the two models, you end up having to make your
SQL code work with tables and your C++ code work with the data members.

Object Databases Versus Relational Databases

With all the difficulty in trying to map between two such disparate models, it might seem better to
simply use one model for all your application development. If you were to use an object database
management system (ODBMS) instead of a relational database management system (RDBMS), you
could avoid the muss and the fuss of mapping between the object model and the relational model.

However, some applications lend themselves to object databases, and some do not. Your choice of
database technology should depend on the particular requirements of your application.

Object databases and relational databases each have specific characteristics, and each will provide
particular capabilities in your applications.

As you learned in Day 1, "Choosing the Right Database Technology," C++ object databases directly
support the type system of the C++ language. In other words, you can use a C++ object database to
store instances of C++ classes right in the database.

Refer to Listing 1.5 to see how well and how easily C++ databases can integrate with C++ applications.
By using simple overrides of a few C++ operators, you can easily persist and retrieve your C++ objects
in an object database.

C++ object databases support

● The C++ type system, including classes that are defined by the application developer
● Inheritance, where the database understands the class hierarchy and manages the object store

appropriately
● Polymorphism, where objects can be read from the database without knowing in advance their

complete type information
● Object identities, where the database assigns a unique ID to each object, can readily retrieve

each object by ID, and can determine whether the object has already been loaded into program
memory

● References to other objects, where the database understands pointer references between objects
and can store and retrieve linked objects appropriately

Using an object database means that your database will directly mirror the objects in your application.
The objects in the database will be the same as the objects in your C++ code. Having a database that
mirrors the objects in your C++ code is a two-edged sword with two potentially negative consequences.

First, the only data that can be retrieved from your database is the data encapsulated in the objects in
your C++ source code. All the data, relationships, and uses of that data must be defined in the source
code for your application. You might not be able to foresee all the potential uses of this data during
your application development. This means that your application and its database could miss
opportunities to be useful in the future.

Second, the only applications that will be able to access the database will be C++ programs that have
an intimate knowledge of the objects in your application source code. The database will be a closed,

proprietary database. This means that your database could miss opportunities to be useful in the future.

NOTE
If your data is important to you, it is probably important to others, also. They
will want access to the data through more than just your application.

It is important to remember what makes most database applications valuable is the information that
they provide. Your application processes the data from the data source into useful information and
presents its view of the information. However, people will invariably want access to the data source
themselves so that they can perform additional analyses for use in different applications.

TIP
Over time, applications often depreciate, while databases appreciate. The
value of a given application will decline as business needs change, but
information is always valuable.

Because information is always valuable, its value often justifies the additional time and effort required
to place it in a relational database and create an object-to-relational mapping layer for your application.

Figure 13.2 illustrates the closed nature of a C++ object database and the openness and availability of a
relational database.

Figure 13.2 : The relative openness of object databases and relational databases.

Some applications lend themselves to object databases, whereas other applications lend themselves to
relational databases. Whether an application should use an object database or a relational database is
largely determined by the need for flexibility in using the data.

A relational database will be open to other uses and other applications. It will also be open to future
versions of your application that might need to apply new analyses to data from the database. A
relational database enables you to create new relationships and collections of data that you had not
envisioned at the time the database was first created. If your database conforms to the normal forms,
you can simply write some new SQL code to create new relationships and to perform new analyses on
the data. Relational databases provide a high degree of flexibility in defining new uses for the data.

Object databases lend themselves to applications in which the data model is complex and the
relationships are well defined at the time the database is created. Some data models are too complex to
be molded into a relational database. For specialized applications like this, you will need to take
advantage of the object-oriented features of C++ to model the complexities of the data. An object
database will enable you to easily persist those C++ objects to a data store. Defining new uses for that
data and making that data available to other applications might not be easy, however.

The Costs and Benefits of Using Relational Databases
with C++
To use a relational database with a C++ object-oriented application, you must create a mapping layer
that translates between the object model and the relational model. Creating this mapping layer can be a
costly endeavor in terms of time and effort, but can also result in significant benefits and synergies for
your application.

The costs and difficulties of creating an object-to-relational mapping layer include

● Dealing with two semantic spaces where the logic for your application is mani-fested in two
different programming models

● Creating two separate designs: a relational design and an object design
● Building an interface to translate between the relational model and the object model
● Developing the code in each object to communicate with the translation layer
● Your application not being able to handle highly complex data models because of the relational

database and the need for the translation layer

Using a relational database with an object-oriented application enables you to

● Create new uses for the data in the database because the data itself is valuable.
● Use the strengths of the relational model, by using the relational database to obtain aggregate

totals directly from the server without having to instantiate lots of objects and access each of the
data members of each object.

● Use the strengths of the object model by using C++ objects to handle nested relationships that
are difficult to model in a relational database, such as a bill of materials.

● Take advantage of the many server management tools available for relational database servers.

Techniques for Integrating Relational Databases with
Object-Oriented C++ Programs
There are a few general strategies you can use to build an object-oriented application that uses a
relational database.

Begin by Designing the Relational Database

In general, when you are creating the object-oriented application that uses a relational database, it is not
a good idea to create the object model first and then try to map it to relational tables. Object models can
be significantly more complex than relational models. If you build the object model first, you might not
be able to create a relational model that matches it.

Even in relatively simple object models, an object might need to be stored across several relational
tables, and many joins might be required to construct the objects. This can cause application
performance to deteriorate.

Because the relational database is the foundation of your application, and because the relational model
might ultimately limit the degree of complexity that your application can handle, you should begin with
the design of the relational database.

If you are able to model the data for your application effectively in a relational database, you will know
that your application can indeed handle the level of complexity that is required. Refer to Day 7,
"Database Design," for information on designing relational databases.

Relational models tend to be simpler than object models. Therefore, entities in a relational model can
usually be converted to entities in an object model quite readily. If you use this approach, the relational
database schema becomes the basis for the object model.

Create Simple Object/Relational Mappings

Simple mappings between the relational and object models provide the best performance. Remember
KISS (Keep It Simple, Sweetie).

Map Tables to Classes

As shown in Figure 13.1, the simplest and most straightforward mapping is to map a class to each
relational table. The class absolutely must contain the primary key and foreign key fields from the table
as data members and would probably contain data members for all the fields in the table as well.

Routines need to be developed for reading and persisting objects to and from the database. These
routines will need to have intimate knowledge of the C++ classes and of the database. These routines
could exist in each class, or they could be implemented in friend classes.

Encapsulating disconnected ADO Recordsets (which you learned about in Day 12, "Using Microsoft
Transaction Server to Build Scalable Applications") in your classes can go a long way toward
encapsulating the field data members, as well as the reading and persisting routines that each of your
classes needs.

Use Primary and Foreign Keys to Map Relationships Between Objects

The simplest approach for defining a relationship between two objects is to embed the primary key of
one object as a data member of the other object. (As you will recall from Day 2, "Tools for Database
Development in Visual C++ Developer Studio," and Day 3, "Retrieving Data Through Structured
Query Language (SQL)," a primary key from another table is called a foreign key.) This approach
works well for one-to-one and one-to-many relationships.

For many-to-many relationships, it is necessary to have a link table in the database that contains the
primary keys of the two related entities. This is illustrated in Figure 13.3.

Figure 13.3 : Many-to-many relationships in a relational database.

Figure 13.3 shows a relational database schema. It has a Customers table, with CustomerNumber
as the primary key, a Products table, with ProductNumber as the primary key, and a
Purchases table, with a composite key of CustomerNumber and ProductNumber. The
Purchases table's CustomerNumber and ProductNumber fields are also foreign keys from the
other two tables. The Purchases table defines a many-to-many relationship between records in the
Customers table and the Products table. A customer can purchase many products, and a product
can be purchased by many customers.

Modeling many-to-many relationships in an object system might involve storing a collection (or
disconnected Recordset) containing foreign keys inside the objects involved in the relationships.

Don't Try to Map Object Inheritance in Relational Databases

Object inheritance is all but impossible to implement in relational databases. The best approach
generally is to map only the leaf classes (the concrete classes at the bottom of the hierarchy) to tables in
the database. For example, refer to the C++ classes declared in Listing 13.1

Listing 13.1 Creating C++ Classes with Inheritance

 1: class shoe
 2: {
 3: public:
 4: int sole;
 5: int upper;
 6: };
 7:
 8: class athleticshoe : public shoe
 9: {
10: public:
11: int tongue;
12: int laces;
13: };
14:
15: class basketballshoe : public athleticshoe
16: {
17: public:
18: int archsupport;
19: };

In this case, it would probably be best to create a single table in the database, called
BasketballShoes. The BasketballShoes table would contain fields for sole, upper,
tongue, laces, and archsupport. You would also need to have an additional field for the
primary key in the BasketballShoes table. You should also add a data member to the shoe class
to hold the primary key from the database table.

If other classes derive from athleticshoe, such as crosstrainer, you would want to create a
CrossTrainers table that contains fields for sole, upper, tongue, laces, the primary key,
and whatever data members are in the crosstrainer class.

Sometimes, however, it might be necessary to get a count all of the shoes. That would mean that you
would have to tell the database to count the records in the BasketballShoes table, count the
records in the CrossTrainers table, and add those two numbers together. That would not be very
elegant and will become uglier if the number of different types of shoes increases.

One possible solution is to create a Shoes table that contains fields for the primary key, sole, and
upper and remove the sole and upper fields from the BasketballShoes table and the
CrossTrainers table. You would need to add a field to the Shoes table to indicate the shoe type.

The idea then would be to add a record for each shoe to the Shoes table and also add a record to
whatever additional table is appropriate.

For instance, a basketball shoe would have a record in the Shoes table, which indicates its sole and
upper. It would also have a record in the BasketballShoes table that indicates its tongue,
laces, and archsupport. The Shoes table and the BasketballShoes table would have a one-
to-one relationship with each other, based on the primary key in each table. Likewise, a cross-trainer
shoe would have a record in the Shoes table and a record in the CrossTrainers table.

The database schema would look like the one shown in Figure 13.4.

Figure 13.4 : A relational database schema to model a single level of inheritance.

Data in the database would look something like the data shown in Figure 13.5.

Figure 13.5 : Data in a relational database schema that models a single level of inheritance.

As you can see in Figure 13.5, there are two records in the Shoes table and one record each in the
BasketballShoes table and the CrossTrainers table.

The class definition for the shoe type would have two data members added to it, as shown in Listing
13.2.

Listing 13.2 Changes to the Base SHOE Class

 1: class shoe
 2: {
 3: public:
 4: int shoeID;
 5: int shoeType;
 4: int sole;
 5: int upper;
 6: };

To get a count of all the shoes using this schema, you needn't count the records from multiple tables
and add up the counts to get the total number of instances. You merely get a count of the records in the
Shoes table.

This schema also enables you to look up a shoe by its ID (without knowing its type in advance) and
discover its type. You can then use its type to execute the proper SQL query to perform a join with the
appropriate table to get all the shoe's attributes.

Note that in relational database servers, you cannot use a variable for a table name in a compiled stored
procedure. Therefore, in a stored procedure you could not put the name of the table from the
ShoeType field in a variable and use that variable in the FROM clause of a SELECT statement to get
the rest of the shoe's attributes. However, you could use that variable as a flag in a case-type or
switch-type statement in a SQL query to execute the appropriate query to retrieve the attributes from
the appropriate table.

As you can see, mapping object-oriented concepts to the relational model requires imagination and
potentially lots of code.

Create a Live Object Cache

The biggest performance hit in database applications is database access. If you can minimize the
number of times the application must access the database, the performance will be dramatically faster
than if the application has to hit the database frequently.

To reduce the number of database hits, applications can use an object cache. The idea is to cache
objects read from the database in RAM so that the next time the objects are needed, they can be read
from the cache instead of the database.

Using a cache provides significant performance benefits because accessing data in RAM is much faster
than accessing data in a database. A cache can also reduce the number of costly network roundtrips
between a client application and a database server.

When the client application asks for an object, the translation layer should look to see whether that
object already exists in the cache. The translation layer can use the primary key as the object identifier.

If the object is in the cache, the translation layer can give the application a pointer to the existing object
without having to query the database. This is a huge optimization, but requires a bit of code.

Unfortunately, describing the code required to implement an object cache is beyond the scope of the
book. Some technical white papers on this topic are available from programming tool vendors who
specialize in this kind of work.

Use the Strengths of Both Models

Take advantage of objects when you can, and take advantage of the RDMS server when you can-use
both.

For example, if you need to get the total number of instances in the database, do not count them by
instantiating every object inside a loop in the client code. Instead, ask the database server to simply
count the records and return the figure to the client application that needs it. The performance will be
much better with this approach.

Another example is if you need to traverse a tree of nested objects, such as in a bill of materials. It
would probably be inefficient to have the relational database server traverse the tree. Instead, you
should instantiate the appropriate objects and have the object code traverse the tree.

Summary
Relational databases and object-oriented programming languages are powerful tools for managing data
and writing software. Unfortunately, melding these two technologies is not straightforward. This is
because relational databases were not designed to store objects, and objects were not designed to be
stored in relational databases.

Melding an object-oriented application with a relational database requires you to write a translation
layer between the object code and the relational database. Writing this translation layer can be difficult
and time-consuming. However, your application and your database can derive great benefits from the
synergies of these two technologies.

Q&A

Q Are any software tools available that make the task of writing the translation layer
easier?

A Yes. There are independent software vendors who produce tools for just this purpose.
You can find them by perusing the advertisements in the various relational database or
C++ technical journals. You can also search the Web for terms such as object database,
RDBMS, ODBMS, persistence, mapping, translation layer, and so on.

Q Aren't the vendors of relational databases extending their databases to support the
storage of objects?

A Yes. Relational database vendors such as Informix, Oracle, and others have made efforts
to extend their databases to support object storage. However, there is no clear indication
of significant market acceptance of any of their approaches so far. Let the buyer beware.

Q Can't I just create a set of C++ base classes that talk to the translation layer and
derive the classes in my application from these base classes to get easy
communication with a relational database?

A If only it were that simple. One of the problems you will encounter is that a C++ base
class will have trouble persisting an instance of a derived class, because the derived class
might contain data that the base class does not know about. The derived classes
themselves will probably need to participate in some way in their being persisted to the
database.

Q What is Microsoft's approach to object storage?
A Microsoft does not seem to be trying to extend its SQL Server database to make it store

objects. Rather, Microsoft has provided OLE DB as an object-oriented API that can
communicate with relational as well as object-oriented data stores.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What prevents you from being able to store C++ objects in relational database fields?
2. Why can't you use SQL for object-oriented programming tasks?
3. What are the primary differences between C++ object databases and relational databases?
4. When designing an application that will use object and relational technology, where do you

start?
5. What are the benefits of a live object cache?

Exercises

1. Write a SELECT statement that retrieves the shoe type based on the shoe ID from the Shoes
table shown in Figure 13.5.

2. Write a SELECT statement that retrieves all the attributes of basketball shoes from the tables
shown in Figure 13.5.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 14
 Legacy Database APIs

● ODBC
● The ODBC Driver Administrator
● The ODBC Driver Manager
● The ODBC Driver
● Programmatic Sequence for the ODBC API

❍ Step 1: Connect to a Data Source
❍ Step 2: Allocate a Statement Handle
❍ Step 3: Prepare and Execute the SQL Statements
❍ Step 4: Get the Results
❍ Step 5: Committing the Transaction
❍ A Simple Example

● MFC Wrappers for ODBC
❍ CDatabase
❍ CRecordSet

● DAO
❍ The Jet Database Engine
❍ CdbDBEngine: The Root of It All
❍ CdbDBWorkspace
❍ CdbDBDatabase
❍ CdbDBRecordsets

● MFC Wrappers for DAO
❍ CDaoWorkspace
❍ CDaoDatabase

❍ CDaoRecordSet
❍ A Simple Example

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Although considered legacy, the APIs that you will learn about today provide some valuable insight
into the structured nature of developing database applications. Merriam Webster defines legacy as
"being from the past," but you can hardly limit the content of this chapter to dusty old relics that need
only cursory explanation. Although ODBC and DAO APIs might no longer be applicable in
mainstream coding circles, the technology provides the foundation for most databases supported
today.

Today you will

● Learn about the ODBC Architecture and API.
● Receive an introduction to the ODBC API calls.
● Learn about the DAO API.
● Receive an introduction to the DAO API calls.
● Explore the similarities and differences between ODBC and DAO.
● Understand the MFC wrapper classes for each API.

NOTE
This book focuses primarily on the newer OLE DB (ADO) technologies, but
remember that it is still in its infancy and OLE DB providers for many
databases are still in development. With this in mind, it is easy to see the
importance of understanding these legacy interfaces. Who knows, you
might have to provide support for an application using these APIs.

ODBC
Databases, and their programming APIs, come in a variety of flavors. Many different databases are
available to the developer, and each has a specific set of programming APIs. SQL was an attempt to
standardize the database programming interface. However, each database implementation of SQL
varies slightly.

NOTE

ANSI SQL-92 is the latest and most supported version of SQL, but the
specification only provides a guideline. It is up to the database vendor to
support all or part, as well as additional elements of the specification.

ODBC was the first cohesive attempt to provide an application layer that would allow access to many
different databases. ODBC provided a consistent specification for database vendors to develop ODBC
drivers that applications could connect to. Applications can make function calls to the ODBC driver to
send data to and receive data from a database, or in some cases multiple databases.

ODBC provides standardized access to databases. This enables the application developer to better
concentrate on the application and its user interface and not have to worry about database specifics for
every possible database on the market. To make things even simpler, the developers of ODBC decided
to implement the API layer as a SQL translation mechanism. By passing ODBC SQL to an ODBC
driver, the application can communicate with the database using SQL. Because there are many
different flavors of SQL, ODBC provides a single flavor that would be translated into a flavor that the
database could read.

NOTE
You might have heard that an ODBC driver is Level X-compliant as related
to the API. What does this mean? There are three levels of compliance:

Core Level-All drivers must support this level. Must be able to support
connections, SQL statement preparation and execution, data set
management, and transaction management.

Level 1-Must support all core-level compliance, as well as dialog-based
connectivity, and be able to obtain driver/datasource information, which
includes advanced connections using get and set options.

Level 2-Must support all the previous levels, plus the capability to list and
search the datasource connections, and advanced query mechanisms and
have support for scrollable cursors, among other things.

Figure 14.1 : The ODBC architecture overview.

The ODBC Driver Administrator
The Driver Administrator is a Control Panel applet responsible for defining the ODBC data sources. A
data source is simply the connection definition to a specific database. The connection definition
contains information about the type of database, as well as the pertinent location information for the

database. It then assigns a common name, called the Data Source Name (DSN), to the definition. The
ODBC Driver Manager and drivers use the name as an index into the data source table to find the
database-specific information.

Refer to Day 2, "Tools for Database Development in Visual C++ Developer Studio," for a description
of the steps to define DSNs.

The ODBC Driver Manager
The ODBC Driver Manager is a set of functions that receives requests from the application and
manages the subsequent driver actions for those requests. The primary functions of the Driver
Manager are to load and unload database drivers and pass function calls to the driver. You might be
thinking that this is a little bit of overkill. Why not just call the driver directly? Wouldn't it be faster?
Just imagine, however, if the Driver Manager didn't exist, and your application was responsible for
loading, unloading, and maintaining driver connections. Your application would be responsible for
every possible driver configuration available, including the data source definitions. (Registry
programming, anyone?) The Driver Manager makes the application developer's life easy, by
compartmentalizing this functionality.

If you look a little closer at the Driver Manager, you see that it does perform some processing related
to your application's requests. It implements some of the functions of the ODBC API. These include
SQLDataSources, SQLDrivers, and SQLGetFunctions. It also performs some basic error
checking, function call ordering, checking for null pointers, and validating of function arguments and
parameters.

NOTE
Note that the ODBC API calls start with SQL. There is good reason for this.
The ODBC API communicates through the SQL database interface instead
of calling the database's lower layer. This is done primarily to add some
level of consistency and standardization. ODBC does this by mapping
ODBC SQL to the database driver's specific SQL standard. Hence, the
naming convention for ODBC API function calls.

When the Driver Manager loads a driver, it stores the address of each function call in the driver and
then tells the driver to connect to the data source. The application specifies which data source to
connect to, using the data source name. The Driver Manager searches the DSN definition file for the
particular driver to load. When the application is done, it tells the Driver Manager to disconnect
(SQLDisconnect). The Driver Manager in turn hands this to the connected driver, which
disconnects from the data source. The Driver Manager will unload the driver from memory only when
the application frees the connection. The driver is kept in memory in case the application developer
decides he needs further access.

The ODBC Driver
To adequately discuss every aspect of developing ODBC drivers would require another book.
However, a cursory discussion is warranted. An ODBC driver must perform the following:

● Connecting to and disconnecting from the data source.
● Error checking not performed by the Driver Manager.
● Transaction management.
● Submitting SQL statements. This involves transposing the ODBC SQL to the SQL "speak" of

the database that is supported.
● Processing data.

A driver can be defined as one of two types. A file-based driver accesses the physical data directly. A
DBMS-based driver doesn't access the data directly but performs SQL functions on another wrapper.
This wrapper is referred to as an engine. The database engine for Microsoft Access is the Jet engine.

Programmatic Sequence for the ODBC API
Now that I've discussed the architecture of the ODBC specification, let's take a look at how to develop
an application by using the ODBC API.

NOTE
Although this section introduces certain steps in developing an ODBC
application, it isn't intended to be a complete reference. Many ODBC
programming references are available that provide in-depth discussions
about the API function calls.

Before I discuss the API function calls, let's make some sense out of processing a data request. First
you have to know where the data is (data source definition). Then you have to connect to it. After you
are connected, you need to ask the data source for information. After the information is in hand, you
process it and in most cases hand it back to the data source for safe keeping. When you are finished,
you disconnect from the data source.

Figure 14.2 : The ODBC programmatic flow chart.

Step 1: Connect to a Data Source

First you have to acquire an environment handle. Do this by calling SQLAllocHandle. At this point
you might be asking what an environment handle is. A handle is nothing more than a pointer to a
special structure. The environment mentioned here is generally considered the system and data source
information that the Driver Manager needs to store for the driver. You might also be asking why the

Driver Manager does this, not the driver. Recall that you have not connected yet, and therefore the
Driver Manager doesn't know what driver you will be using and will hold this information until it is
needed. Some applications might need to connect to multiple databases. If the Driver Manager did not
exist, the application would have to keep track of all the environment handles.

 SQLHENV envHandle1;
 SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE, &envHandle1);

After the Environment Handle is allocated, the application must then determine the attributes for the
handle. The most important of these attributes is the ODBC version attribute
(SQL_ATTR_ODBC_VERSION). Different versions of ODBC support different SQL statements and
parameters. In some cases, it is important to determine the ODBC version that the driver supports and
to know the differences.

Step 2: Allocate a Statement Handle

You can think of a statement in ODBC as being a SQL statement. As discussed earlier, ODBC
communicates with the SQL interface to the database. The Driver Manager maps the ODBC SQL to
the driver's SQL. However, a statement also carries attributes with it that define it in the context of the
connection to the data source. This includes, but is certainly not limited to, the resultsets that the
statement creates. Some statements require specific parameters in order to execute. These parameters
are also considered attributes of the statement. Therefore, each statement has a handle that points to a
structure that defines all the attributes of the statement. This handle also assists the driver in keeping
track of the statements, because a multitude of statements can be associated with a connection.

Statement handles are defined and allocated similarly to the environment handle. However, the handle
type is HSTMT. Remember that the Driver Manager allocates the handle structure and hands this off to
the driver whenever the connection to the driver is made.

Step 3: Prepare and Execute the SQL Statements

Here's where things can differ depending on what the application requires. If an application just wants
to read data from the database and display it to the user (that is, database viewer application), it won't
require some of the more complex SQL UPDATEs, INSERTs, or DELETEs.

NOTE
Because Day 15, "The ODBC API and the MFC ODBC Classes," discusses
the binding of parameters, this section skips the explanation and
demonstration of how to bind SQL parameters to the application's data.
However, it is important to bear in mind that when you are preparing a SQL
statement, this binding must take place.

There are two primary ways to prepare and execute the statements. The first is SQLExecDirect,
which essentially executes a SQL statement in a single step. For many application requirements, this is
okay. Some applications, however, might need to execute the same statement several times. To do
this, you should use the SQLPrepare and then the SQLExecute functions. You call
SQLPrepare once and then call SQLExecute as many times as necessary to execute the prepared
statement.

Step 4: Get the Results

After the SQL statement has been executed, the application must be prepared to receive the data. The
first part of this takes place when the application binds the results to the local variables. However, the
results aren't passed back to the application directly. The application has to tell the Driver Manager
that it is ready to receive the results. The application does this by calling SQLFetch. SQLFetch
only returns one row of data. Because the data is returned in columns, the application has to bind those
columns with the SQLBindCol call. Essentially, you have to do the following statements, in order, to
receive the resultset:

● SQLNumResultCols-Returns the number of columns.
● SQLDescribeCol-Gives you information about the data in the columns (name, data type,

precision, and so on).
● SQLBindCol-Binds the column data to a variable in the application.
● SQLFetch-Gets the data.
● SQLGetData-Gets any long data.

First the application calls SQLNumResultCols to find out how many columns are in each record.
SQLDescribeCol tells the application what type of data is stored in each column. The application
has to bind the data to variables in its address space in order to receive the data. Then the application
calls SQLFetch or SQLGetData to obtain the data. The application repeats this sequence for any
remaining statements.

Step 5: Committing the Transaction

When all the statements have been executed and the data received, the application calls SQLEndTran
to commit or roll back the transaction. This takes place if the commit mode is manual (application-
directed). If the commit mode is set to be automatic (which is the default), the command will be
committed whenever the SQL statement is executed.

NOTE

Think of a transaction as a single entity that contains any number of steps. If
any step or part of the transaction fails, the entire transaction fails. A
transaction can be either committed or rolled back. Committed indicates that
every part/step of the transaction was successful. If any part fails, then the
transaction is rolled back, which indicates that the original data is preserved.
Changing the commit mode to manual will assist in preserving data
integrity.

A Simple Example

Because Day 15 presents a more detailed example, this section shows only a portion of the program
flow. This example will fetch the last name for all the records stored in the AddressBook database.

Listing 14.1 A Simple ODBC Example to Retrieve the Last Name from the AddressBook
Database

 1: #include <SQL.H>
 2: #include <SQLEXT.H>
 3: void CAddressBookView::OnFillListBox()
 4: {
 5: RETCODE rcode;
 6:
 7: HENV henv1;
 8: HDBC hdbc1;
 9: HSTMT hstmt1;
10:
11: char szFirstName[50];
12: char szLastName[50];
13: char szPhoneNum[20];
14:
15: SDWORD sdODataLength;
16: unsigned char conStringOut[256];
17:
18: rcode = ::SQLAllocEnv(&henv1);
19: if (rcode == SQL_SUCCESS)
20: {
21: rcode = ::SQLAllocConnect(henv1, & hdbc1);
22: if (rcode == SQL_SUCCESS)
23: {
24: rcode = ::SQLDriverConnect(hdbc1, 0,
25: (unsigned char *)"DSN=AddressBookDb",
26: SQL_NTS, conStringOut, 256, NULL,
27: SQL_DRIVER_NOPROMPT);
28: if (rcode == SQL_SUCCESS)
29: {
30: rcode = ::SQLAllocStmt(hdbc1, &hstmt1);

31: if (rcode == SQL_SUCCESS)
32: {
33: rcode = ::SQLExecDirect(hstmt1,
34: (unsigned char *)
35: "SELECT szLastName FROM AddressTable",
36: SQL_NTS);
37:
38: for (rcode = ::SQLFetch(hstmt1);
39: rcode == SQL_SUCCESS;
40: rcode = SQLFetch(hstmt1))
41: {
42: ::SQLGetData(hstmt1, 1, SQL_C_CHAR,
43: szLastName, 50, & sdODataLength);
44: ::MessageBox(NULL, szLastName,
45: " from AddressBookDb ", MB_OK);
46: }
47: ::SQLFreeStmt(hstmt1, SQL_DROP);
48: }
49: ::SQLDisconnect(hdbc1);
50: }
51: ::SQLFreeConnect(hdbc1);
52: }
53: ::SQLFreeEnv(henv1);
54: }
55: }

Line 18 in Listing 14.1 calls SQLAllocEnv to instruct the ODBC Driver Manager to allocate
variables for this application and return an environment handle. Line 21 calls SQLAllocConnect,
which tells the Driver Manager to allocate variables to manage a connection and to obtain a
connection handle. Line 24 calls SQLDriverConnect to make a connection to the
AddressBookDb data source name.

You might have noticed that the section "Step One: Connect to a Data Source" discusses using the
SQLAllocHandle call to allocate any handle, including the environment handle.
SQLAllocHandle is an ODBC 3.0 call that replaces SQLAllocEnv, SQLAllocConnect, and
SQLDriverConnect. This was presented in this fashion to make the point that some legacy
applications might contain ODBC version 2.0 code.

Notice the #include declarations:

#include <SQL.H>
#include <SQLEXT.H>

These #include files are required for any function implementing the ODBC API.

Obviously, this listing is very simplistic and is presented here to assist you in understanding
programmatic flow of the ODBC API and working with databases.

MFC Wrappers for ODBC
As you can see from this simplistic listing, you must perform many steps just to obtain some data from
a database. There is an easier way.

NOTE
Although the MFC class library provides class wrappers for database
functions, the ODBC API function calls are still accessible from within the
application. Remember to include the SQL.H and the SQLEXT.H files.

The Microsoft Foundation Classes (MFC) are designed to make life simple for developers. They
enable developers to create Windows-based applications without having to know the underlying
Windows architecture. Because database applications are an important aspect of managing data,
Microsoft developed the MFC wrappers for the ODBC API. These classes present an object-oriented
approach to using the ODBC API.

NOTE
The MFC class wrappers for the ODBC API make life easier on the
programmer, linking to the MFC can make the application quite large.
Depending on how the MFC library is linked with the application, the MFC
DLLs might need to be distributed with the application's executable and
libraries.

CDatabase

The CDatabase class represents a connection to the database. It contains the m_hdbc member
variable, which represents the connection handle to a data source. To instantiate the CDatabase
class, call the constructor and then the OpenEx or Open member function. This will initialize the
environment handle and perform the connection to the data source. To close the connection, call the
Close member function.

NOTE
The application can use the CDatabase class for more than just one
database. If the application finishes using a database but needs to connect to
another database, the same instance of the CDatabase class can be reused.
Simply call Close to close the connection to the original data source; then
call the OpenEx member function to a different data source.

There are member functions that perform work on the connected database. After the application is
connected to a database, it is ready to begin work with the CDatabase instance. To begin a
transaction, the CDatabase class contains a member function called BeginTrans. After all the
processing is completed, the application will call the CommitTrans to commit the transaction or
Rollback to rollback the changes. Both CommitTrans and Rollback are member functions of
the CDatabase class.

NOTE
The CDatabase class also contains a member function that can execute SQL
statements that don't require a returned resultset (recordset). This function
member is the ExecuteSQL function.

There are also member functions that will return specific information about the data source. Some of
these are

● GetConnect-Is the ODBC connection string used to connect the CDatabase instance to a
specific data source.

● IsOpen-Indicates whether the CDatabase instance is connected to a data source.
● GetDatabaseName-Returns the data source name that the CDatabase instance is currently

connected to.
● CanTransact-Indicates whether the data source uses transactions.

As you can see, the CDatabase class provides the C++ programmer with an object-oriented
interface to the ODBC environment and connection API calls.

CRecordSet

The CRecordSet class defines the data that is received from or sent to a database. The recordset
could be defined as an entire table or simply one column of a table. The recordset is defined by its
SQL statement.

The m_hstmt member variable of the CRecordSet contains the statement handle for the SQL
handle that defines the recordset. The m_nFields member variable holds the number of fields in the
recordset. The m_nParams member variable holds the number of parameters used to define the
recordset. The recordset is connected to the data source through a pointer to the CDatabase object.
This pointer is the CRecordSet member variable m_pDatabase.

Other member variables are defined in the CRecordSet class declaration. The m_strFilter
member variable defines the WHERE clause used in the SQL statement. The m_strSort member
variable is used if the SQL statement uses an ORDER BY clause.

There are many ways that recordsets can be opened or defined. CRecordSet has an Open member

function that will actually perform the recordset query. The application can format a SQL SELECT
statement to pass in the Open function member of the CRecordSet class.

The first parameter for the Open member function defines how the recordset will be opened. You can
define and open a recordset by the following three methods:

● CRecordSet::dynaset-Dynamic recordsets that support bi-directional cursors and
synchronize with the underlying data of the database.

● CRecordSet::snapshot-A static snapshot of the table to be queried. Doesn't reflect any
other changes made to the table from other sources. The application must re-query the database
to obtain updates to the recordset. Supports bidirectional cursors.

● CRecordSet::forwardOnly-Similar to snapshot but doesn't support bidirectional,
scrollable cursors.

DAO
In 1995, Microsoft introduced the DAO API. This API was developed as the API for the Microsoft Jet
Database engine. The Microsoft Jet Database Engine is the database engine for Microsoft Access. The
Jet Database Engine contains an ODBC interface that enables both direct and indirect ODBC access to
other databases.

As opposed to being a layered API similar to ODBC, DAO was based on OLE Automation objects.
Coding directly to the ODBC API was a matter of calling API functions directly within the application
or using the MFC wrappers. This wasn't the case with DAO objects. If the programmer is proficient in
COM, programming directly to the API can be more convenient. Not all programmers are proficient
with COM, so Microsoft developed DAO wrappers within the Microsoft Foundation Classes (MFC).
To ease the transition from one API to another, the MFC classes are similar to the MFC ODBC
wrappers.

Not only does the DAO API provide an object-oriented method for accessing a database, but it also
provides the capability for database management. DAO has the capability to modify the database
schema. It does this by enabling the application to define queries and table structures within the
database and then applying SQL statements against those structures. New relationships and table
unions can also be defined from within the DAO API.

This section presents pertinent information for understanding the DAO objects and introduces key
steps in working with these objects. After this introduction, you will explore the MFC wrapper classes
for the DAO objects.

The Jet Database Engine

Before you jump into the DAO API object description, let's take a quick look at the underlying engine
that DAO was created for. The Jet Engine was primarily developed as the engine for the Microsoft
Access database. Microsoft, understanding that a proprietary database might not succeed, decided to

add two types of ODBC support to the engine.

DAO's Direct ODBC is similar in nature to pass-through SQL. ODBC calls are passed through the
engine and handed directly to the ODBC Driver Manager. Indirect ODBC requires that the ODBC
layer of the Jet Engine process the request. Access, for example, supports SQL statements.

The Jet Engine is also designed to interface to ISAM (indexed-sequential access files) as shown in
Figure 14.3. If an ISAM driver exists for the file database, it can be accessed through the ISAM layer
of the Jet engine.

Figure 14.3 : The Jet Database Engine interface diagram.

CdbDBEngine: The Root of It All

The relationship between the DAO classes is shown in Figure 14.4.

Figure 14.4 : DAO class diagram.

Note that the classes shown in Figure 14.4 are not MFC classes; they are classes provided in the DAO
SDK.

The CdbDBEngine class is the base class for the DAO classes. It contains and controls all other
DAO classes. You must create an instance of this class before any connections to the Jet database can
be performed. The DBEngine class is the class that contains the logic to connect to the Jet database
engine. For an application to connect to the Jet database, it must create a DBEngine object.

CdbDBWorkspace

Directly underneath the CdbDBEngine object is the CdbDBWorkspace object. The workspace
object manages the database. Remember that DAO provides the ability to modify the actual database
schema. This is done through the database object. The database that the workspace owns can contain
QueryDefs and TableDef objects that can be used to modify the database structure. The
workspace object also contains group and user objects that further define the database permissions
structures, and allows the application to add or modify them.

CdbDBDatabase

The workspace might contain any number of databases that it is connected to. A typical application
can access one database for employee information and another for payroll information to create a
history report. This would be done by instantiating the CdbDBDatabase object for each database
and assigning it to the workspace already created to manage the payroll history reporting.

CdbDBRecordsets

CdbDBRecordsets are similar in nature to the ODBC wrapper for the ODBC recordset. For each
SQL statement that is executed on any database, a recordset must exist to receive the data. Therefore, a
CdbDBRecordset object will be instantiated for each query or action.

MFC Wrappers for DAO
If you look at the MFC wrapper classes supplied for DAO, you will notice that they are similar in
some respects to the wrappers for ODBC. This was done to aid developers in migrating ODBC
applications that connected to databases designed to use the Jet engine. Because the object model for
DAO was developed with some of this in mind, some correlation exists between the DAO API and its
corresponding MFC wrapper classes. Because the DAO API is object-oriented, the wrapper classes are
much easier to comprehend.

CAUTION
The DAO API provides database security through the groups object and the
users object. The MFC wrapper, CDaoDatabase, doesn't grant access to
these objects, so a security risk could exist. See Technote 54 in the Visual
C++ documentation for details.

CDaoWorkspace

The CDaoWorkspace encapsulates the CdbDBWorkspace object. However, it doesn't stop there.
The application uses the workspace to manage the database itself.

CDaoDatabase

The CDaoDatabase wrapper class encapsulates the CdbDBDatabase object, and all connection
information is contained within it. An application will declare and instantiate the CDaoDatabase
and then store this connection information within the application for all processing related to the
database.

CDaoRecordSet

Like the ODBC MFC wrapper class, the recordset is managed and maintained by the
CDaoRecordSet class. There are many similarities to the ODBC wrapper, and at first glance it
would appear that applications programmatically perform the same functions.

A Simple Example

Listing 14.2 merely shows the general sequence for developing database applications; it doesn't really

do anything.

Listing 14.2 An Example Showing the General Sequence for Developing Database Applications

 1: #include <stdafx.h>
 2: #include <afxdao.h>
 3:
 4: void CAddressBookView::OnFillListBox()
 5: {
 6: CString lpszSQL_SELECT_ALL = "SELECT * FROM ADDRESSES";
 7: CString message;
 8: int nRetCode = 1;
 9:
10: CString filename = "c:\\tysdbvc\\AddressBook.mdb";
11:
12: // construct new database
13: CDaoDatabase *ppDatabase = new CDaoDatabase;
14:
15: if (ppDatabase == NULL) return -1; // fatal error
16:
17: try
18: {
19: (*ppDatabase)->Open(fileName);
20: }
21: catch (CDaoException *e)
22: {
23: // create a message to display
24: message = _T("Couldn't open database-Exception: ");
25: message += e->m_pErrorInfo->m_strDescription;
26: AfxMessageBox(message);
27: nRetCode = -1;
28: }
29:
30: CDaoRecordSet *ppRecSet = new CDaoRecordSet(ppDatabase);
31:
32: try
33: {
34: ppRecSet-
>Open(dbOpenSnapshot,lpszSQL_SELECT_ALL,dbReadOnly);
35: }
36: catch(CDaoException *e)
37: {
38: // create a message to display
39: message = _T("Couldn't open RecordSet-Exception: ");
40: message += e->m_pErrorInfo->m_strDescription;
41: AfxMessageBox(message);
42: nRetCode = -1;
43: }
44: }

Line 19 of Listing 14.2 attempts to open the database file (in this case, an Access database file). Line
34 opens a recordset defined by

SELECT * FROM ADDRESSES

This SQL statement will retrieve all columns in the Addresses table of the AddressBook.mdb
Access database. Notice the dbReadOnly flag passed as the last parameter. Table 14.1 shows some
of the option flags available in the DAO MFC wrapper CDaoRecordSet wrapper class.

Table 14.1 Options to Recordsets
Flag Description

dbAppendOnly Allows additional records but doesn't permit existing records to
be modified. (Dynasets only.)

dbDenyWrite Prevents data from being modified while a recordset is active.
(All)

dbDenyRead Basically locks the tables and doesn't allow records to be read by
other applications or users while the recordset is active. (Tables)

dbSQLPassThrough Passes the SQL statement directly to the data source (ODBC).
The DAO API won't perform any processing on the SQL
statement. (Dynaset and snapshots)

DbForwardOnly Allows the recordset to have forward-scrolling only. (Snapshot)
DbFailOnError The workspace will roll back any changes made if an error

occurs during the recordset processing. (All)

One thing that you will notice from Listing 14.2 is that the recordset was opened, but the data wasn't
mapped to any application variables. This is referred to as data binding and is covered in the next
chapter.

Again, this example is extremely simplistic, but it's presented to show the object-oriented nature of the
DAO MFC wrapper classes. In the next chapter you will actually build the simple Address Book
application. You will build it twice, once for the ODBC wrapper classes and once for the MFC
wrapper classes.

TIP
It is always good practice to use try/catch blocks for processing errors.

Summary

ODBC was the first good attempt at shielding the application programmer from all the nitty-gritty of
developing database applications. DAO was the follow-up API aimed at closely matching the object-
oriented programming nature of C++ with the relational nature of databases.

You might run across older applications that use the ODBC or DAO APIs. It helps to gain enough
understanding of the ODBC architecture and the API to be able to support legacy applications.

Today you the big picture of the two APIs. By understanding the environment of these APIs, you
become more proficient at migrating to the newer OLE DB and ADO technologies.

Q&A

Q How do I determine which MFC wrapper classes to use?
A The DAO API is designed to sit on top of and interface with the Jet database engine. It is

optimized for this. However, it enables the programmer to access other data sources
through the ODBC layer of the engine. This pass-through method is slower than using
the ODBC API directly. If the database is a Jet engine database or a local ISAM
database, use DAO; otherwise, use ODBC.

Q Why is the dbDBEngine object not directly mapped into the MFC DAO wrapper
classes?

A The MFC DAO wrapper class for CDaoWorkspace encapsulates this functionality.
The concept of the workspace is to present a transaction manager.

Q Can I create a data source directly from my application?
A Yes. The ODBC API function SQLConfigDataSource will do this for you. The

function takes four arguments. The first argument is the handle of the parent window.
The second argument is used to designate whether you want to add a DSN
(ODBC_ADD_DSN) or configure an existing one (ODBC_CONFIG_DSN). You might
also remove a DSN by passing ODBC_REMOVE_DSN. The third argument names the
driver, whereas the fourth argument names the data source.

Q Does the ODBC API have any built-in exception handling?
A Yes. Typically, the application should perform all database processing inside
try/catch blocks. Both the ODBC and the DAO will throw the CDBException
error. The application must provide the error handling inside the catch block.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. Name the MFC wrapper class that encapsulates the SQLConnect logic.
2. What is the environment handle used for, and who maintains it?
3. What is the root object in the DAO API? Does it have a corresponding MFC wrapper class?
4. What parameter should be passed to the recordset for it to be dynamic and allow the data in the

recordset to be synchronized with the data source?

Exercises

1. Use the OLE/COM Object Viewer to find the DAO classes on your system. View the type
library to see all the methods exposed by the DAO classes.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 2...
 In Review

On Day 8, you learned some power tools that relational database servers have to offer.
You learned about transactions, triggers, aggregate functions, and views. These tools
can enable you to build highly advanced database applications. Transactions enable
reliable changes to the data. Triggers make the database react automatically to changes
in the data. Aggregate functions cause the bulk of the data processing to happen at the
server. Finally, views enable you to customize the way people see your database.

In Day 9’s lesson, you learned the basics of COM. You learned that COM is based on
C++ abstract base classes, called interfaces. You also learned that the COM libraries
(part of the Win32 API) provide a way to create instances of classes indirectly, thereby
avoiding any build-time dependencies between clients and servers. Traditional DLLs are
good for sharing common code among concurrently running applications. However, to
build real component-based software, the capabilities afforded by COM are essential.

You learned in Day 10 how to program Microsoftís database client technologies.
Several database client technologies are available to C++ programmers. Each
technology has its own strengths and weaknesses, and each one has an historical context
that defines how it relates to the other technologies. The two database client
technologies that will be updated and improved on in the future are OLE DB and ADO.
ADO offers a good balance of code size, performance, and ease of use. You can best
understand the ADO object model by examining the MSADO15.TLH file and the
MSADO15.TLI files, coupled with the ADO documentation.

On Day 11, you learned how multitier applications promise easier updates and
maintenance than traditional client/server applications. The tools for building multitier

applications have evolved rapidly over the past few years. XML is a technology that in
the future will be widely used to transmit data in multitier applications. Some of the
more recent developments, such as ActiveX controls and RDS, promise to enable
client/server-type development in an intranet environment.

In Day 12’s lesson, you learned that the infrastructure necessary for multitier
applications is difficult and time-consuming to build yourself. MTS can do most of that
work for you. MTS components are COM DLLS that you can build with ATL. In your
component code, you can create ADO Recordsets from database queries and send the
Recordsets to applications on the client tier. IE4 can host ActiveX controls and, with
RDS, can instantiate and communicate over COM, DCOM, and HTTP with MTS
components that you build.

You learned, on Day 13, that melding an object-oriented application with a relational
database requires you to write a translation layer between the object code and the
relational database. This translation layer can be difficult and time-consuming to write.
However, your application and your database can derive great benefit from the
synergies of these two technologies.

On Day 14, you learned a history lesson in technology progression. ODBC was the first
good attempt at shielding the application programmer from all the nitty-gritty associated
with developing database applications. DAO was the follow-up API that was aimed at
closely matching the object-oriented programming nature of C++ with the relational
nature of databases. Hopefully, after reading this chapter, you can come closer to
understanding the big picture of the two APIs. By understanding the steps and
environment of these APIs, you will become more proficient at migrating to the newer
OLE DB and ADO technologies.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 3...
 At a Glance

This week, you expand your understanding of database programming by learning
additional database APIs.

● Day 15 You learn to use the ODBC API and the MFC ODBC classes.
● Day 16 You receive an introduction to OLE DB, the latest and most powerful

database API from Microsoft.
● Day 17 You learn to connect with a data source by using the OLE DB API.
● Day 18 You learn to retrieve data from a data source by using OLE DB.
● Day 19 You learn to scroll through data that you retrieve from a data source.
● Day 20 You learn OLE DB properties, transactions, and the Index object.
● Day 21 You learn mechanisms for integrating error handling into your OLE DB

applications.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 15
 The ODBC API and the MFC ODBC Classes

● The Address Book
● Using the MFC ODBC Wrapper Classes

❍ Creating the Application
❍ Getting Data
❍ Updating the Application's Variables

● Using the MFC DAO Wrapper Classes
❍ Taking a Closer Look
❍ Getting Data
❍ Other DAO Classes

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Yesterday, you explored the ODBC and DAO APIs and were introduced to the MFC wrapper classes
for both. Today, you will create a simple application using the wrapper classes and discuss the data
binding that takes place. You will also look at what the API is doing through the use of the wrapper
classes.

Today you will

● Bind data with the ODBC API.
● Implement ODBC MFC wrappers in an application.
● Bind data with the DAO API.
● Implement DAO MFC wrappers in an application.

The Address Book
This chapter focuses on using the wrapper classes that MFC provides for the ODBC and DAO APIs.
You do this by creating a simple application to list addresses for your friends, like the one in Figure
15.1. The database that you will be using was created with Access 97 and will contain a single table
(Addresses). This table will contain the fields shown in Figure 15.1:

Figure 15.1 : The Address book table (Addresses) structure.

To simplify things, you examine the application development code, using the MFC AppWizard for
creating your data bindings. After you do this, you will take a closer look at how the table data can be
manually bound to the application's variables.

Using the MFC ODBC Wrapper Classes
Day 14, "Legacy Database APIs," provides an introduction to the ODBC API and to the MFC
wrappers for the API. One important item that Day 14 doesn't discuss is the CRecordView class.
This class doesn't really wrap the API so much as it creates a go-between data-binding class that fits
into the MFC's Document/View architecture. CRecordView is derived from the CFormView class,
which ultimately is derived from CView. The view classes provide the user interface mechanisms to
display the data and handle Windows messages. The CRecordSet and CDatabase classes are
closely coupled with CRecordView, as you will see in your application code. It contains a member
variable to handle the actual data cursor. It does this in the form of a record pointer. If you have had
the opportunity to program database applications the hard way, you will definitely appreciate this
class. The CRecordView also contains a pointer to the CRecordSet class.

NOTE
If you are unfamiliar with MFC and the MFC Document/View architecture,
the following sections might appear to be a broad step from the explanation
of the API to the actual implementation of the application. This chapter does
this to highlight certain aspects of implementing database applications;
however, it does so using the most widely used approach.

Let's jump right in and create the sample application.

Creating the Application

Before the AppWizard creates the application, the database and ODBC data source must exist. You
can use the Control Panel ODBC applet to determine whether a database and ODBC data source exist
for the targeted application.

NOTE
The application code is included on the accompanying CD-ROM, which
includes the AddressBook database.

From the File menu, select New to start the MFC AppWizard. The screen shown in Figure 15.2
appears. Based on your system file structure and where your database and application files reside, fill
in the appropriate information shown in Figure 15.2. In this case, you are creating an executable that
will be MFC-based.

Figure 15.2 : MFC AppWizard Step 1: Creating the application.

Figure 15.3 shows the screen where you specify the database support for your application. At this
point, it is asking whether you want database support. (You can choose to skip this selection, by
choosing None, and then put it in later.) Select Database View Without File Support. After you select
the database support, the next step is to set the data source. For your example, select ODBC as shown
in Figure 15.3.

Figure 15.3 : MFC AppWizard Step 2: Defining database requirements.

You then select the table(s) that you would like to have support for.

The AppWizard will build the data relationships for the recordset that relates to the tables you select.
For every table that you select, the wizard will create a CRecordSet-based class that wraps the
table. You'll come back to this when you look at the code. Figure 15.4 shows the classes that
AppWizard will create.

Figure 15.4 : MFC AppWizard Step 6: Files created.

You only need to concern yourself with the CAddressBookODBCView class and the
CAddressBookODBCSet class. These two classes contain the information that will help you
understand how the data is passed from the data source to the application. Listing 15.1 is the definition
file for the CAddressBookODBCSet class.

Listing 15.1 The CADDRESSBOOKODBCSET Class Declaration

 1: // AddressBookODBCSet.h : interface of the
 2: // CAddressBookODBCSet class
 3: ///
 4:
 5: #if !defined(AFX_ADDRESSBOOKODBCSET_H__D21600E1_4140_
 11D2_9D78_000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKODBCSET_H__D21600E1_
 4140_11D2_9D78_000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12: class CAddressBookODBCSet : public CRecordset
13: {
14: public:
15: CAddressBookODBCSet(CDatabase* pDatabase = NULL);
16: DECLARE_DYNAMIC(CAddressBookODBCSet)
17:
18: // Field/Param Data
19: //{{AFX_FIELD(CAddressBookODBCSet, CRecordset)
20; long m_ID;
21: CString m_Last_Name;
22: CString m_First_Name;
23: CString m_Street;
24: CString m_City;
25: CString m_State;
26: long m_Zip;
27: CString m_Phone;
28: //}}AFX_FIELD
29:
30: // Overrides
31: // ClassWizard generated virtual function overrides
32: //{{AFX_VIRTUAL(CAddressBookODBCSet)
33: public:
34: virtual CString GetDefaultConnect(); // Default connection
string
35: virtual CString GetDefaultSQL(); // default SQL for Recordset
36: virtual void DoFieldExchange(CFieldExchange* pFX); // RFX
support
37: //}}AFX_VIRTUAL
38:
39: // Implementation
40: #ifdef _DEBUG
41: virtual void AssertValid() const;
42: virtual void Dump(CDumpContext& dc) const;
43: #endif
44:
45: };
46:
47: //{{AFX_INSERT_LOCATION}}
48: // Microsoft Developer Studio will insert additional
49: // declarations immediately before the preceding line.
50:

51: #endif // !defined(AFX_ADDRESSBOOKODBCSET_H__D21600E1_
 4140_11D2_9D78_000000000000__INCLUDED_)

Notice that line 19 is where the data mapping starts. The AFX_FIELD declaration indicates that this is
field data for the recordset. Just think of the number of SQLBindColumn calls that you would have
to make to declare each field if the table were very large.

The MFC DDX/DDV message-handling mechanism defines the connection between the table column
data and the applications variable used to present that data. The other part of the binding that takes
place here is the actual data attribute definition. The CString class is a wrapper for a C character
string. The CString class is mapped to the character data represented in the columns. The long is
mapped to the data type for the Zip code in the Access database. In this case, it is defined as an
integer.

Let's take a look at the CRecordView-based class. Here you see the implementation file for the
CAddressBookODBCView class in Listing 15.2.

Listing 15.2 The CADDRESSBOOKODBCVIEW Class Declaration

 1: // AddressBookODBCView.h : interface of the
 2: // CAddressBookODBCView class
 3: ///
 4:
 5: #if !defined(AFX_ADDRESSBOOKODBCVIEW_H__D21600DF_4140_
 11D2_9D78_000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKODBCVIEW_H__D21600DF_4140_11D2_
 9D78_000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12: class CAddressBookODBCSet;
13:
14: class CAddressBookODBCView : public CRecordView
15: {
16: protected: // create from serialization only
17: CAddressBookODBCView();
18: DECLARE_DYNCREATE(CAddressBookODBCView)
19:
20: public:
21: //{{AFX_DATA(CAddressBookODBCView)
22: enum{ IDD = IDD_ADDRESSBOOKODBC_FORM };
23: CAddressBookODBCSet* m_pSet;
24: // NOTE: the ClassWizard will add data members here

25: //}}AFX_DATA
26:
27: // Attributes
28: public:
29: CAddressBookODBCDoc* GetDocument();
30:
31: // Operations
32: public:
33:
34: // Overrides
35: // ClassWizard generated virtual function overrides
36: //{{AFX_VIRTUAL(CAddressBookODBCView)
37: public:
38: virtual CRecordset* OnGetRecordset();
39: virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
40: protected:
41: virtual void DoDataExchange(CDataExchange* pDX); //
DDX/DDV // support
42: virtual void OnInitialUpdate(); // called first time after
 // construct
43: virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
44: virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
45: virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
46: //}}AFX_VIRTUAL
47:
48: // Implementation
49: public:
50: virtual ~CAddressBookODBCView();
51: #ifdef _DEBUG
52: virtual void AssertValid() const;
53: virtual void Dump(CDumpContext& dc) const;
54: #endif
55:
56: protected:
57:
58: // Generated message map functions
59: protected:
60: //{{AFX_MSG(CAddressBookODBCView)
61: // NOTE - The ClassWizard will add and remove member
 // functions here.
62: // DO NOT EDIT what you see in these blocks of
generated // code!
63: //}}AFX_MSG
64: DECLARE_MESSAGE_MAP()
65: };
66:
67: #ifndef _DEBUG // debug version in AddressBookODBCView.cpp
68: inline CAddressBookODBCDoc* CAddressBookODBCView::GetDocument()
69: { return (CAddressBookODBCDoc*)m_pDocument; }
70: #endif
71:
72:
///
73:

74: //{{AFX_INSERT_LOCATION}}
75: // Microsoft Developer Studio will insert additional
declarations
76: // immediately before the preceding line.
77:
78: #endif // !defined(AFX_ADDRESSBOOKODBCVIEW_H__D21600DF_4140_
 11D2_9D78_000000000000__INCLUDED_)

The CAddressBookODBCView class contains quite a few more function members, but most are
related to the Document/View architecture of MFC. Notice on line 23 that you have a pointer to the
CAddressBookODBCSet class in the CAddressBookODBCView class. This pointer is the
primary link between the API wrapping and the Document/View architecture. The
CAddressBookODBCView class contains a document that is the application's data keeper. Data is
passed between the view and dialog classes and the GUI via the MFC DDX/DDV data exchange
mechanisms. The view gets access to the document directly via GetDocument; the document pumps
notifications (and hints) to the view via the
CDocument::UpdateAllViews/CView;;OnUpdate coupling. For data to be bound from a
database to the application, the application's view must know about the data structure. The m_pSet
pointer is the mechanism that accomplishes this. Let's take a look at what the Document class
contains. Notice that the document contains the RecordSet (line 21).

Something very interesting happens in Listing 15.3. By looking at the wrapper declarations for your
application, you have learned how the data binding takes place. The document class represents the
application's memory. The view class is your window into that data. But you are working with
databases, and the data in this case is stored on disk. The RecordSet is the API wrapper that will
provide the link to the data in the database. By containing the recordset, the document class essentially
maps the data into the application's memory.

Listing 15.3 The CADDRESSBOOKODBCDOC Class Declaration

 1: // AddressBookODBCDoc.h : interface of the CAddressBookODBCDoc
 // class
 2: //
 3:
///
 4:
 5: #if !defined(AFX_ADDRESSBOOKODBCDOC_H__D21600DD_4140_11D2_9D78_
 000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKODBCDOC_H__D21600DD_4140_11D2_9D78_
 000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:

12:
13: class CAddressBookODBCDoc : public CDocument
14: {
15: protected: // create from serialization only
16: CAddressBookODBCDoc();
17: DECLARE_DYNCREATE(CAddressBookODBCDoc)
18:
19: // Attributes
20: public:
21: CAddressBookODBCSet m_addressBookODBCSet;
22:
23: // Operations
24: public:
25:
26: // Overrides
27: // ClassWizard generated virtual function overrides
28: //{{AFX_VIRTUAL(CAddressBookODBCDoc)
29: public:
30: virtual BOOL OnNewDocument();
31: //}}AFX_VIRTUAL
32:
33: // Implementation
34: public:
35: virtual ~CAddressBookODBCDoc();
36: #ifdef _DEBUG
37: virtual void AssertValid() const;
38: virtual void Dump(CDumpContext& dc) const;
39: #endif
40:
41: protected:
42:
43: // Generated message map functions
44: protected:
45: //{{AFX_MSG(CAddressBookODBCDoc)
46: // NOTE - The ClassWizard will add and remove member
47: // functions here. DO NOT EDIT what you see in these
48 // blocks of generated code !
49: //}}AFX_MSG
50: DECLARE_MESSAGE_MAP()
51: };
52:
53:
///
54:
55: //{{AFX_INSERT_LOCATION}}
56: // Microsoft Developer Studio will insert additional declarations
57: // immediately before the previous 57: line.
58:
59: #endif //
!defined(AFX_ADDRESSBOOKODBCDOC_H__D21600DD_4140_11D2_
 9D78_000000000000__INCLUDED_)

You have now created an application that contains the ODBC wrappers that you will need to interface
to your database. However, the AppWizard really can't determine what you plan to do with the data. If
the application were to be built and executed at this point, you would see something similar to Figure
15.5.

Figure 15.5 : The Address Book ODBC application. First run.

For the application to do any real work, you first have to create controls for the data to be displayed in.

Getting Data

Look at Listing 15.4 to see how much the AppWizard really does for you.

Listing 15.4 The ONINITIALUPDATE Implementation

 1: void CAddressBookODBCView::OnInitialUpdate()
 2: {
 3: m_pSet = &GetDocument()->m_addressBookODBCSet;
 4: CRecordView::OnInitialUpdate();
 5: }

The OnInitialUpdate function member of your view class will set your recordset pointer. Notice
that it gets the RecordSet information from the document-remember our discussion about the
Document/View and how the RecordView tied everything together.

In Listing 15.5, the two functions GetDefaultConnect() and GetDefaultSQL() are used.
The GetDefaultConnect function member will provide the data source information that you need
to pass to the database open command. The GetDefaultSQL function member will pass back the
defining information for your fetch routines. (In this case, the SQL statement that queries the
Addresses table).

Listing 15.5 The GETDEFAULTCONNECT and GETDEFAULTSQL Implementations

 1: CString CAddressBookODBCSet::GetDefaultConnect()
 2: {
 3: return _T("ODBC;DSN=AddressBook");
 4: }
 5:
 6: CString CAddressBookODBCSet::GetDefaultSQL()

 7: {
 8: return _T("[Addresses]");
 9: }
10:
11: void CAddressBookODBCSet::DoFieldExchange(CFieldExchange* pFX)
12: {
13: //{{AFX_FIELD_MAP(CAddressBookODBCSet)
14: pFX->SetFieldType(CFieldExchange::outputColumn);
15: RFX_Long(pFX, _T("[ID]"), m_ID);
16: RFX_Text(pFX, _T("[Last Name]"), m_Last_Name);
17: RFX_Text(pFX, _T("[First Name]"), m_First_Name);
18: RFX_Text(pFX, _T("[Street]"), m_Street);
19: RFX_Text(pFX, _T("[City]"), m_City);
20: RFX_Text(pFX, _T("[State]"), m_State);
21: RFX_Long(pFX, _T("[Zip]"), m_Zip);
22: RFX_Text(pFX, _T("[Phone]"), m_Phone);
23: //}}AFX_FIELD_MAP
24: }

In Listing 15.6, notice line 4 from the modified OnInitialUpdate function. To open the recordset,
simply call the Open function member of the recordset and pass the SQL string. This isn't always
necessary. The GetDefaultSQL function member contains a shorthand version of the statement
listed previously. If the SELECT statement needs to change, simply insert the SQL statement in the
recordset's OPEN function.

Listing 15.6 The Modified ONINITIALUPDATE Implementation

 1: void CAddressBookODBCView::OnInitialUpdate()
 2: {
 3: m_pSet = &GetDocument()->m_addressBookODBCSet;
 4: m_pSet->Open(CRecordSet::snapshot,"SELECT * FROM
Addresses");
 5: CRecordView::OnInitialUpdate();
 6: }

NOTE
It is important to note here that the OnInitialUpdate routine will
actually perform the connecting and opening of the data source. It then will
set the pointer to the recordset.

Updating the Application's Variables

By using the AppWizard to generate this application, you didn't use the CDatabase class to connect
or open the data source. By letting AppWizard define the recordset parameters, the code generated
gets around this. If the support selected during the AppWizard phase does not include this support, the
application developer would have to add a CDatabase class and CRecordSet class
implementation in the CRecordView. More work, but essentially the same result.

What you haven't learned is how the table data is transferred to the application's data. Inside MFC
database support is the Record Field Exchange (RFX) mechanism. Similar to Dynamic Data Exchange
(DDX), the RFX layer performs the underlying field-to-data transfers. This is done at the message
interface level.

You have now created an application that uses the ODBC API. You will next explore the DAO API.

Using the MFC DAO Wrapper Classes
The steps needed to create the DAO application are similar to the steps needed to create an MFC
ODBC application. However, there are some minor differences. When asked for database support
(refer to Figure 15.3), select Database Support with File Support (the last selection). Remember the
discussion in Day 14 concerning the two APIs. ODBC uses a data source, which can be network-
resident and doesn't rely on the file system. DAO uses the Jet engine, which is file-based. After this
selection is made, the steps are identical to those for the ODBC application.

Many applications that you might run across will obviously have more than one recordset defined to
accept a query on just one table. The AppWizard gives the application developer a starting point. As
the application is created, notice that the files produced by the AppWizard are almost identical to those
created when you built the ODBC application. The MFC wrapper classes for the DAO API were
designed to closely match those created for the ODBC API, even though the APIs are completely
different. Taking a good look under the hood is beyond the scope of this book, but if you have the
opportunity, look at the MFC wrapper code for the DAO API classes that AppWizard creates. If you
compare the implementation of the CDaoRecordView class and the CRecordView class, you will
also see the similarities. Remember that the view is the coupling class to the MFC Document/View
architecture. Most of the differences will appear at the recordset class wrappers.

Taking a Closer Look

Let's take a look at in Listing 15.7 the class implementations that the AppWizard generated for us.
First, look at the Record Set class.

Listing 15.7 The DAO CADDRESSBOOKDAOSET Class Declaration

 1: // AddressBookDAOSet.h : interface of the CAddressBookDAOSet
class

 2: //
 3:
///
 4:
 5: #if !defined(AFX_ADDRESSBOOKDAOSET_H__990F28BF_41F8_11D2_9D79_
 000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKDAOSET_H__990F28BF_41F8_11D2_9D79_
 000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12: class CAddressBookDAOSet : public CDaoRecordset
13: {
14: public:
15: CAddressBookDAOSet(CDaoDatabase* pDatabase = NULL);
16: DECLARE_DYNAMIC(CAddressBookDAOSet)
17:
18: // Field/Param Data
19: //{{AFX_FIELD(CAddressBookDAOSet, CDaoRecordset)
20: long m_ID;
21: CString m_Last_Name;
22: CString m_First_Name;
23: CString m_Street;
24: CString m_City;
25: CString m_State;
26: long m_Zip;
27: CString m_Phone;
28: //}}AFX_FIELD
29:
30: // Overrides
31: // ClassWizard generated virtual function overrides
32: //{{AFX_VIRTUAL(CAddressBookDAOSet)
33: public:
34: virtual CString GetDefaultDBName(); // REVIEW: Get a
comment // here
35: virtual CString GetDefaultSQL(); // default SQL for
 // Recordset
36: virtual void DoFieldExchange(CDaoFieldExchange* pFX);
 // RFX support
37: //}}AFX_VIRTUAL
38:
39: // Implementation
40: #ifdef _DEBUG
41: virtual void AssertValid() const;
42: virtual void Dump(CDumpContext& dc) const;
43: #endif
44:
45: };
46:
47: //{{AFX_INSERT_LOCATION}}
48: // Microsoft Developer Studio will insert additional
declarations

49: // immediately before the previous line.
50:
51: #endif //

!defined(AFX_ADDRESSBOOKDAOSET_H__990F28BF_41F8_11D2_9D79_
 000000000000__INCLUDED_)

On line 34, notice the declaration of GetDefaultDBName(). This is different from the ODBC
configuration. Again, it's the file or data source difference between the two APIs. Other than that
difference, the declarations appear identical.

In Listing 15.8, you can explore the document class declaration.

Listing 15.8 The DAO CADDRESSBOOKDAODOC Class Declaration

 1: // AddressBookDAODoc.h : interface of the CAddressBookDAODoc
class
 2: //
 3:
///
 4:
 5: #if !defined(AFX_ADDRESSBOOKDAODOC_H__990F28BB_41F8_11D2_9D79_
 000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKDAODOC_H__990F28BB_41F8_11D2_9D79_
 000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12:
13: class CAddressBookDAODoc : public CDocument
14: {
15: protected: // create from serialization only
16: CAddressBookDAODoc();
17: DECLARE_DYNCREATE(CAddressBookDAODoc)
18:
19: // Attributes
20: public:
21: CAddressBookDAOSet m_addressBookDAOSet;
22:
23: // Operations
24: public:
25:
26: // Overrides
27: // ClassWizard generated virtual function overrides
28: //{{AFX_VIRTUAL(CAddressBookDAODoc)

29: public:
30: virtual BOOL OnNewDocument();
31: virtual void Serialize(CArchive& ar);
32: //}}AFX_VIRTUAL
33:
34: // Implementation
35: public:
36: virtual ~CAddressBookDAODoc();
37: #ifdef _DEBUG
38: virtual void AssertValid() const;
39: virtual void Dump(CDumpContext& dc) const;
40: #endif
41:
42: protected:
43:
44: // Generated message map functions
45: protected:
46: //{{AFX_MSG(CAddressBookDAODoc)
47: // NOTE - The ClassWizard will add and remove member
functions // here.
48: // DO NOT EDIT what you see in these blocks of generated
 // code !
49: //}}AFX_MSG
50: DECLARE_MESSAGE_MAP()
51: };
52:
53:
///
54:
55: //{{AFX_INSERT_LOCATION}}
56: // Microsoft Developer Studio will insert additional
declarations
57: // immediately before the preceding line.
58:
59: #endif //

!defined(AFX_ADDRESSBOOKDAODOC_H__990F28BB_41F8_11D2_9D79_
 000000000000__INCLUDED_)

Notice that this again appears identical to the ODBC MFC Document wrapper class. Notice on line 21
that the document owns the recordset (your coupling).

Finally, the view class is explored in Listing 15.9.

Listing 15.9 The DAO CADDRESSBOOKDAOVIEW Class Declaration

 1: // AddressBookDAOView.h : interface of the CAddressBookDAOView

 // class
 2: //
 3:
///
 4:
 5: #if !defined(AFX_ADDRESSBOOKDAOVIEW_H__990F28BD_41F8_11D2_9D79_
 000000000000__INCLUDED_)
 6: #define AFX_ADDRESSBOOKDAOVIEW_H__990F28BD_41F8_11D2_9D79_
 000000000000__INCLUDED_
 7:
 8: #if _MSC_VER >= 1000
 9: #pragma once
10: #endif // _MSC_VER >= 1000
11:
12: class CAddressBookDAOSet;
13:
14: class CAddressBookDAOView : public CDaoRecordView
15: {
16: protected: // create from serialization only
17: CAddressBookDAOView();
18: DECLARE_DYNCREATE(CAddressBookDAOView)
19:
20: public:
21: //{{AFX_DATA(CAddressBookDAOView)
22: enum{ IDD = IDD_ADDRESSBOOKDAO_FORM };
23: CAddressBookDAOSet* m_pSet;
24: // NOTE: The ClassWizard will add data members here
25: //}}AFX_DATA
26:
27: // Attributes
28: public:
29: CAddressBookDAODoc* GetDocument();
30:
31: // Operations
32: public:
33:
34: // Overrides
35: // ClassWizard generated virtual function overrides
36: //{{AFX_VIRTUAL(CAddressBookDAOView)
37: public:
38: virtual CDaoRecordset* OnGetRecordset();
39: virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
40: protected:
41: virtual void DoDataExchange(CDataExchange* pDX);
 // DDX/DDV support
42: virtual void OnInitialUpdate(); // called first time after
 // construct
43: virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
44: virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
45: virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);
46: //}}AFX_VIRTUAL
47:
48: // Implementation
49: public:

50: virtual ~CAddressBookDAOView();
51: #ifdef _DEBUG
52: virtual void AssertValid() const;
53: virtual void Dump(CDumpContext& dc) const;
54: #endif
55:
56: protected:
57:
58: // Generated message map functions
59: protected:
60: //{{AFX_MSG(CAddressBookDAOView)
61: // NOTE - The ClassWizard will add and remove member
functions // here.
62: // DO NOT EDIT what you see in these blocks of
generated
 // code !
63: //}}AFX_MSG
64: DECLARE_MESSAGE_MAP()
65: };
66:
67: #ifndef _DEBUG // debug version in AddressBookDAOView.cpp
68: inline CAddressBookDAODoc* CAddressBookDAOView::GetDocument()
69: { return (CAddressBookDAODoc*)m_pDocument; }
70: #endif
71:
72:
///
73:
74: AFX_INSERT_LOCATION}}
75: // Microsoft Developer Studio will insert additional
declarations
76: // immediately before the preceding line.
77:
78: #endif //

!defined(AFX_ADDRESSBOOKDAOVIEW_H__990F28BD_41F8_11D2_9D79_
 000000000000__INCLUDED_)

Again, this looks identical to the ODBC implementation, and in many respects it is.

Getting Data

If you look implementation>at the OnInitialUpdate routine of your view class, you see that it,
too, is identical to the ODBC implementation. Do you see a pattern?

The GetDefaultDBName will return a string indicating the file and path information to the database
(see Listing 15.10). In the ODBC implementation, you had to go to the DSN table to find this
information.

Listing 15.10 DAO GETDEFAULTDBNAME Implementation

 1: CString CAddressBookDAOSet::GetDefaultDBName()
 2: {
 3: return _T("E:\\Teach_Yourself_stuff\\Database_21\\Day
 15\\Applications\\AddressBookDB.mdb");
 4: }

TIP
It's not generally good practice to hard-code string information. Modify this
to return a string variable that will contain the file and path declaration.

The DoFieldExchange, shown in Listing 15.11, is similar to the DoDataExchange for a dialog-
based view. The data from the database's columns are mapped to the application's memory by this
mechanism.

Listing 15.11 The DAO GETDEFAULTSQL and DOFIELDEXCHANGE Implementations

 1: CString CAddressBookDAOSet::GetDefaultSQL()
 2: {
 3: return _T("[Addresses]");
 4: }
 5:
 6: void CAddressBookDAOSet::DoFieldExchange(CDaoFieldExchange* pFX)
 7: {
 8: //{{AFX_FIELD_MAP(CAddressBookDAOSet)
 9: pFX->SetFieldType(CDaoFieldExchange::outputColumn);
10: DFX_Long(pFX, _T("[ID]"), m_ID);
11: DFX_Text(pFX, _T("[Last Name]"), m_Last_Name);
12: DFX_Text(pFX, _T("[First Name]"), m_First_Name);
13: DFX_Text(pFX, _T("[Street]"), m_Street);
14: DFX_Text(pFX, _T("[City]"), m_City);
15: DFX_Text(pFX, _T("[State]"), m_State);
16: DFX_Long(pFX, _T("[Zip]"), m_Zip);
17: DFX_Text(pFX, _T("[Phone]"), m_Phone);
18: //}}AFX_FIELD_MAP
19: }

Other DAO Classes

Both the ODBC and the DAO Address Book applications, as presented, are quite simplistic, and they
really don't do much. What if you decided that you need to add another phone number field to the
database? You could use Microsoft Access to add the field and rebuild these applications to read in
that field. You would also have to place controls on the views to display your new field. This is a little
bit of work, but what if you needed to let the application's users define temporary tables and queries?
Except for SQL DDL statements, ODBC doesn't give the programmer a method for modifying the
data source's schema. Because DAO is file-based, the programmer is able to easily modify the schema
programmatically.

MFC provides two class wrappers that enable the programmer to easily modify the structure of the
database. These are CDaoTableDef and CDaoQueryDef. These wrappers map to the TableDef
and QueryDef objects directly. These classes contain member functions that enable the programmer
to build new database structures as well as modify any database structures deemed as updatable.

In many cases, a database schema might be too limited to provide the application with the exact query
information that it needs. Instead of doing multiple queries and saving all this information locally
within the application for processing, the CDaoQueryDef function member will enable the
programmer to add a query definition to the database and then perform a query on the temporary query
just created.

If the database is large, temporary tables can be defined for the application that can hold temporary
indexes, report results, running totals, and other such items that might be expensive in the application.

TIP
Although this book isn't intended to instruct the database application
developer on programming the older APIs, you would be well adivsed to
build a few test applications to solidify your learning. The MFC source code
is distributed with the Developer Studio, and it is recommended that the
database application programmer review and investigate the wrapper
classes.

Summary
After reading this chapter, you will be able to view ODBC and DAO API applications and understand
the mechanisms used in ODBC and DAO applications.

MFC AppWizard provides a good start in creating ODBC and DAO appliations. The MFC wrapper
classes do much of the work for you as well. The MFC classes automatically perform the data and
provide the RFX mechanism. After you define the user interface controls to view the data, your
application is off and running. The only code that you have to write is code for reports and other data
manipulation.

Q&A

Q How do I determine which database support I need?
A On the MFC AppWizard, the database support without file support is primarily for the

ODBC API. Remember that ODBC works with data sources, and DAO works with files.
If file support is selected, you are essentially using the Jet database engine.

Q Can I modify the database table by adding fields (columns)?
A If the application is a DAO application, use the CDaoTableDef class to define a table.

The CDaoTableDef has a member function, CanUpdate, that can determine
whether field information in the table can be modified. CDaoTableDef can be used to
open an existing table or create a new table in a database schema.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is the mechanism that binds the column data in the database with the data in the
database?

2. How is the API attached to the MFC Document/View architecture?
3. What routine would have to be modified to change the database SQL Query?

Exercises

1. Taking the ODBC Address Book application, add controls to display the fields to the
RecordView. Is the data updated whenever the cursor selectors are pressed to move up and
down the list?

2. Repeat exercise 1 for the DAO application.
3. What would the code look like for adding another record to the table? Use (Smith, Jennifer,

234 WayWay St., Dublin, OH, 45400, 614-555-0101).

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 16
 The Ultimate Database API: OLE DB

● An API for All Data Sources
❍ The Components of an OLE DB Application
❍ Making Data Sources Available
❍ Comparing OLE DB to ODBC

● The OLE DB Object Hierarchy
❍ Enumerator
❍ DataSource
❍ Session
❍ Command
❍ Rowset
❍ Index
❍ Error
❍ Transaction

● Getting the Latest OLE DB Information
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Today's material introduces OLE DB and explains the OLE DB object hierarchy. Today's material also

relates the basic concepts of ODBC to concepts of OLE DB, enabling you to build on your knowledge
of database APIs and expand it to include OLE DB.

Today you will

● Look at the architecture of OLE DB.
● Explore the ODBC concepts found in OLE DB.
● Learn the OLE DB object hierarchy.
● Find sources for the latest information on OLE DB.

An API for All Data Sources
OLE DB is designed to provide a means for accessing data regardless of the data source. As shown in
Figure 16.1, OLE DB becomes the data access bridge for documents, email systems, file systems,
spreadsheets, COM components, and relational databases.

Figure 16.1 : The topology of OLE DB applications.

As you can see in Figure 16.1, an application that uses OLE DB can communicate with any data
source for which there is an OLE DB data provider. Because of the object-oriented (and COM) nature
of OLE DB, OLE DB data providers can be written to accommodate relational as well as nonrelational
data sources.

The Components of an OLE DB Application

Two basic components of an OLE DB implementation are the data provider and the data consumer.
An OLE DB data provider is an application that responds to queries and returns data in a usable form.
An OLE DB data provider responds to various OLE DB calls to provide the information from the data
source in a usable tabular form.

An OLE DB consumer is an application, or other COM component, that uses the OLE DB API to
access a data source. OLE DB enables an application to access the entire range of enterprise data,
regardless of where it is stored.

Making Data Sources Available

The key feature of OLE DB is that it simplifies the requirements for implementing a data provider.
With OLE DB, the only requirement for a data provider is to return data in a tabular form; the data
provider is not required to support a SQL language interface.

NOTE

To create an ODBC driver for a data source, it's necessary to build an SQL
processing engine that can interpret and execute SQL queries. However, to
create an OLE DB data provider, it's not necessary to build an SQL
processing engine.

An important component of OLE DB is the service provider. As shown in Figure 16.1, a service
provider is a middleman in the OLE DB architecture. Acting as a consumer of raw OLE DB data
sources and as a provider to other OLE DB consumers, a service provider can provide functionality
that OLE DB data providers don't implement themselves.

For instance, OLE DB service providers alleviate the need for OLE DB data providers to implement
their own SQL database engine. OLE DB offers a query-processing component as a service provider.
Developers of OLE DB data providers can use the query-processing service provider if they don't want
to implement a query-processing engine themselves.

Because OLE DB components provide a consistent interface, OLE DB data providers can use OLE
DB service providers if they need to, in order to offer complete OLE DB functionality to applications.
Also, some OLE DB service providers provide cursor engines, besides query-processing engines.
Other service providers built to provide additional functionality will be available in the future.

OLE DB extends the capabilities of ODBC by enabling less sophisticated data sources to have data
providers written for them. OLE DB extends ODBC, but many concepts of ODBC programming have
their counterparts in OLE DB.

Comparing OLE DB to ODBC

Open your ADOMFC1 project. Add a menu titled ODBC and add a drop-down menu item called
Simple. Use ClassWizard to implement a command handler in the View class for that menu choice.

You need to include the files SQL.H and SQLEXT.H in ADOMFC1View.cpp, as shown here:.

#include <SQL.H>
#include <SQLEXT.H>

You also need to use the ODBC import library, called Odbc32.lib, in your linker input (found under
the Project Settings menu), shown in Figure 16.2.

Figure 16.2 : ODBC import library.

Inside your command handler, add the code in Listing 16.1.

Listing 16.1 ODBC API Programming

 1: void CADOMFC1View::OnOdbcSimple()
 2: {
 3: RETCODE retcode;
 4: HENV henviron;
 5: HDBC hdbconn;
 6: HSTMT hstmt;
 7: char szCustFirstName[50];
 8: SDWORD sdOutputDataLen;
 9: unsigned char connStrOut[256];
10:
11: retcode = ::SQLAllocEnv(&henviron);
12: if (retcode == SQL_SUCCESS)
13: {
14: retcode = ::SQLAllocConnect(henviron, &hdbconn);
15: if (retcode == SQL_SUCCESS)
16: {
17: retcode = ::SQLDriverConnect(hdbconn, 0,
18: (unsigned char *)"DSN=OrdersDb",
19: SQL_NTS, connStrOut, 256, NULL,
20: SQL_DRIVER_NOPROMPT);
21: if (retcode == SQL_SUCCESS)
22: {
23: retcode = ::SQLAllocStmt(hdbconn, &hstmt);
24: if (retcode == SQL_SUCCESS)
25: {
26: retcode = ::SQLExecDirect(hstmt,
27: (unsigned char *)
28: "SELECT CustFirstName FROM Customers",
29: SQL_NTS);
30:
31: for (retcode = ::SQLFetch(hstmt);
32: retcode == SQL_SUCCESS;
33: retcode = SQLFetch(hstmt))
34: {
35: ::SQLGetData(hstmt, 1, SQL_C_CHAR,
36: szCustFirstName, 50,
37: &sdOutputDataLen);
38: ::MessageBox(NULL, szCustFirstName,
39: "Simple ODBC", MB_OK);
40: }
41: ::SQLFreeStmt(hstmt, SQL_DROP);
42: }
43: ::SQLDisconnect(hdbconn);
44: }
45: ::SQLFreeConnect(hdbconn);

46: }
47: ::SQLFreeEnv(henviron);
48: }
49: }

As you know, the code in Listing 16.1 is unrealistically simple. Listing 16.1 is intended merely to
provide a simple ODBC program for comparison with the simple OLE DB program that you will see
later in Listing 16.2.

Line 11 in Listing 16.1 calls SQLAllocEnv to instruct the ODBC driver manager to allocate
variables for this application and return an environment handle. Line 14 calls SQLAllocConnect to
instruct the ODBC driver manager to allocate variables to manage a connection and to obtain a
connection handle. Line 17 calls SQLDriverConnect to make a connection, using the OrdersDb
data source name. (SQLAllocEnv, SQLAllocConnect, and SQLDriverConnect are ODBC
2.0 functions that have been replaced in ODBC 3.0 with the SQLAllocHandle function.)

Line 23 allocates a statement handle. Line 26 calls SQLExecDirect, using that statement handle, to
execute a query against the database. Lines 31-40 use SQLFetch and SQLGetData to retrieve the
results of the query and display the first field in a series of message boxes. Lines 41-47 release all the
resources allocated earlier in the routine.

Compile the application and run it. Yes, the message boxes do make a lovely interface.

OLE DB programming is quite different from ODBC programming. OLE DB uses COM and COM
interfaces extensively.

To write a routine similar to Listing 16.1 for OLE DB is quite a bit more involved, so much more
involved that all I can show you today is the OLE DB code to load the OLE DB provider and initialize
it.

Add to your ADOMFC1 project a menu titled OLE DB and add a drop-down menu item called
Simple. Use ClassWizard to implement a command handler in the View class for that menu choice.

You need to include the files oledb.h, oledberr.h, msdaguid.h, and msdasql.h in ADOMFC1View.cpp,
as shown here:

#include <oledb.h>
#include <oledberr.h>
#include <msdaguid.h>
#include <msdasql.h>

You also need to use the OLE DB import library, called oledb.lib, in your linker input (found under
the Project Settings menu), as shown in Figure 16.3.

Figure 16.3 : OLE DB import library.

You also need to add a preprocessor definition of DBINITCONSTANTS under the C/C++ tab of the
Project Settings menu, as shown in Figure 16.4.

Figure 16.4 : The DBINITCONSTANTS preprocessor definition.

Inside your OLE DB Simple command handler, add the code in Listing 16.2.

Listing 16.2 OLE DB API programming

 1: void CADOMFC1View::OnOledbSimple()
 2: {
 3: IDBInitialize* pIDBInitialize = NULL;
 4:
 5: // Initialize The Component Object Module Library
 6: //CoInitialize(NULL);
 7:
 8: // Obtain Access To The OLE DB - ODBC Provider
 9: CoCreateInstance(CLSID_MSDASQL, NULL, CLSCTX_INPROC_SERVER,
10: IID_IDBInitialize, (void **) &pIDBInitialize);
11: pIDBInitialize->Initialize();
12:
13: // This Is Where You Would Utilize OLE DB . . .
14:
15: // Free Up Allocated Memory
16: pIDBInitialize->Uninitialize();
17: pIDBInitialize->Release();
18:
19: // Release The Component Object Module Library
20: //CoUninitialize();
21:
22: }

As you can see, the code in Listing 16.2 is unrealistically simple. Listing 16.2 is intended merely to
get you started with OLE DB programming. For the sake of code brevity, error checking is not
performed.

Line 3 in Listing 16.2 declares an IDBInitialize pointer. IDBInitialize is an interface used
to initialize and uninitialize data source objects and enumerators.

Lines 6 and 20 show the calls to CoInitialize and CoUninitialize. These calls are
commented out because the COM libraries are already being initialized elsewhere in the code in
ADOMFC1. They are shown in Listing 16.2 to illustrate the fact that the COM libraries must be
initialized when you are doing OLE DB programming, but not when doing ODBC programming.

Lines 9 and 10 call CoCreateInstance to load the OLE DB provider for ODBC data sources; the
provider resides in MSDASQL.DLL. The CoCreateInstance call requests a pointer to the
IDBInitialize interface for the MSDASQL object and stores it in pIDBInitialize. As you
know, the CoCreateInstance call will load MSDASQL.DLL into memory. Line 11 calls the
IDBInitialize::Initialize function to initialize the provider.

From here you could make calls directly into the OLE DB provider. You would use
QueryInterface to obtain pointers to the OLE DB interfaces exposed by the provider and would
call its member functions to perform operations on the database.

ODBC programming and OLE programming are similar in that the application, in both environments,
does the following:

● Calls API functions to load the appropriate DLL(s)
● Uses functions in the DLL(s) to connect to a data source
● Creates and executes queries
● Processes results
● Cleans up

For ODBC, to load the appropriate DLL(s), the application links with Odbc32.lib, which is the import
library for the ODBC Driver Manager. The Driver Manager DLL, Odbc32.dll, loads when the
application loads. The application calls ODBC API functions in the Driver Manager DLL, and the
Driver Manager in turn calls functions in the appropriate ODBC driver.

For OLE DB, the application initializes the COM libraries. The application loads the proper data
provider according to the CLSID parameter that it passes to the CoCreateInstance function.
After that, the application can obtain pointers to the interfaces that the provider exposes and can call
functions directly in the provider.

For ODBC, the application connects to the data source by calling SQLAllocEnv,
SQLAllocConnect, and SQLDriverConnect (or by calling SQLAllocHandle) to allocate a
connection handle. The application then builds a connection string containing the user ID, password,
and the name of the data source.

For OLE DB, the application connects to the data source by building an array of property structures
that contain the user ID, password, and the name of the data source. The application then calls
IDBProperties::SetProperties to set initialization properties. (Listing 16.2 doesn't show
this step, but tomorrow you will see the code for this.) Then the application calls
IDBInitialize::Initialize to initialize the data source object.

The fundamental differences between the model for OLE DB and the model for ODBC are

● OLE DB uses COM interfaces, whereas ODBC uses traditional DLLs and static linking with an
import library.

● OLE DB uses structures that contain the user ID, password, and DSN, whereas ODBC uses
keywords in a string variable.

● In OLE DB, setting the user ID, password, and DSN is separate from actually connecting to the
data source, which enables the connection properties to be persisted by the application more
easily than in ODBC.

● In OLE DB, the application uses COM interfaces to set properties in a query object and then
calls a member function to execute the query (you will see code for this later this week),
whereas ODBC uses the SQLAllocStmt and SQLExecDirect functions to send SQL
strings to the database.

● In OLE DB, the application receives results from queries in Rowset objects, whereas ODBC
uses the SQLGetData and SQLGetData functions to retrieve the data from queries.

As you can see, OLE DB takes an object-oriented, or COM, approach, whereas ODBC takes a
traditional API-based approach to database client programming.

The OLE DB Object Hierarchy
The OLE DB interface is composed of several major objects: Enumerator, DataSource,
Session, Command, Rowset, Index, Error, and Transaction. In Figure 16.5, you can see
the hierarchy of the OLE DB objects. During this week you will have a chance to look at each object
in detail. A brief survey of the major OLE DB objects follows.

Figure 16.5 : The OLE DB object hierarchy.

Enumerator

The Enumerator object retrieves information regarding the OLE DB providers and enumerators
available on this system. Much of the information about OLE DB providers is stored in the registry.
An Enumerator exposes the ISourcesRowset interface and returns a Rowset describing all
data sources and enumerators visible to the Enumerator.

Using the Enumerator object is better than directly accessing the registry, because in the future this
information might be stored somewhere else. The Enumerator object abstracts the source of the
data provider information from an application, enabling it to work even if a new enumeration method
is created.

DataSource

A data consumer uses a DataSource object to connect to a data provider. A data provider can be an

OLE DB application, a database, or an ODBC data source using the OLE DB ODBC data source
provider. When connecting to a database, a DataSource object encapsulates the environment and
connection information, including a username and password. A DataSource object can be made
persistent by saving its state to a file.

Session

A Session object provides a context for transactions. Sessions create an environment to
encapsulate transactions, generate rows of data from a data source, and generate commands that can
query and manipulate the data source. A DataSource object creates a Session object; a
DataSource object can create multiple Session objects.

Command

A Command object processes commands. An OLE DB data provider isn't required to process
commands. A Command object can create commands that can query or manipulate a data source. The
result of a query creates a Rowset object. A Command object can also create multiple row sets.
When accessing a data source, Command objects can create prepared statements and queries that
return multiple row sets.

Rowset

A Rowset object accesses information from a data source in a tabular form. A Rowset object can be
created as the result of executing a command. If the data provider doesn't support commands (which it
is not required to provide), a row set can be generated directly from the data provider. The capability
to create row sets directly is a requirement of all data providers. A Rowset object also is used when
accessing data source schema information. Depending on the functionality of the data provider, a
Rowset object can also update, insert, and delete rows.

Index

An Index object is a special case of a Rowset object. An Index object creates a row set that uses
an associated index, which allows ordered access to a data source row set.

Error

An Error object encapsulates errors that occur when accessing a data provider. An Error object
can be used to obtain extended return codes and status information. OLE DB Error objects use the
standard OLE Automation methodology of error handling. Although all OLE DB methods return error
codes indicating the success or failure of the method call, they are not required to support the extended
information provided by the Error object.

Transaction

A Transaction object encapsulates transactions with a data source. A transaction buffers changes
to the data source, giving the application the opportunity to commit or abort these changes.
Transactions can improve application performance when accessing a data source. If the OLE DB
provider supports them, distributed transactions, which enable multiple OLE DB data consumers to
participate in shared transactions, are possible. An OLE DB provider is not required to support the
transaction interface.

Getting the Latest OLE DB Information
The following Microsoft Web sites can help you keep up with the latest developments of OLE DB:

● http://www.microsoft.com/data/-The latest information on Microsoft's Universal
Data Access (MDAC) strategy

● http://www.microsoft.com/data/oledb/-The latest OLE DB information
● http://www.microsoft.com/data/ado/-The ADO Web site

The following Internet newsgroups might also be helpful:

● microsoft.public.oledb-General OLE DB information
● microsoft.public.oledb.sdk-Specific OLE DB SDK-related information
● microsoft.public.ado-ADO information

Summary
OLE DB builds on and expands the capabilities of ODBC.

Because of the need to implement a SQL processor in an ODBC driver, writing an OLE DB provider
for a data source is generally easier than writing an ODBC driver. Because OLE DB providers can be
written for nonrelational data sources, OLE DB provides an interface to relational as well as
nonrelational data sources.

OLE DB takes an object-oriented approach to database client development, whereas ODBC takes a
function-based API approach. The OLE DB object hierarchy consists of just a few objects, which
expose COM interfaces to perform well-defined sets of functions.

Q&A

Q I can see how OLE DB technology can help a large enterprise access all the
information it stores in disparate locations, but what about a small organization?
Small organizations don't have data stored all over the place, so what can OLE DB
do in that environment?

http://www.microsoft.com/data/
http://www.microsoft.com/data/oledb/
http://www.microsoft.com/data/ado/

A The data in a small organization might not be stored in many different locations, but
OLE DB technology can certainly be of help to everyone. First, OLE DB provides a
consistent and scalable interface to access data providers, no matter what the source.
Second, OLE DB enables you to use this consistent interface to retrieve information
previously inaccessible in a programmatically consistent manner. OLE DB potentially
opens all information in an organization to any application.

Q Does OLE DB support security?
A The security mechanisms in OLE DB are currently incomplete. OLE DB will permit

authentication, authorization, and the management of security options. Authentication
makes sure users are who they say they are and is generally implemented by a username
and password mechanism. When it's complete, OLE DB will support domain-based and
distributed authentication methodologies. Authorization methods make sure users access
only what they have privileges to access. The current version of OLE DB supports local
authorization methods by returning a flag if security restrictions cause a call to fail.
When it's complete, OLE DB will support Distributed Component Object Model
(DCOM) authorization methods. Finally, the complete OLE DB will support
mechanisms to manage permissions for users and groups.

Q Many complaints about using ODBC to access a database concern performance
issues. How will the additional layer of an OLE DB ODBC provider affect
performance? Are my applications going to run even more slowly?

A You should not notice much of a performance difference between the OLE DB ODBC
provider and using the ODBC API directly. Remember that OLE DB is based on COM
technology. COM is a way to provide a consistent interface so that two applications can
share functionality. The OLE DB ODBC provider is simply a mechanism that remaps
ODBC-specific calls into the OLE DB model; it doesn't add any overhead to this
process. As the OLE DB technology matures, you are sure to see more pure OLE DB
providers for data sources. Because the goal of COM and OLE DB is to create a plug-
and-play architecture for application components, applications designed today using the
OLE DB ODBC provider should be capable of using a pure OLE DB data provider with
very few modifications.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What are the two basic OLE DB components?
2. How does OLE DB currently enable access to ODBC data sources for which no OLE DB

provider is yet available?
3. What are the major OLE DB objects?

4. Which header files must be included to access OLE DB objects?
5. What is the URL for the OLE DB home page?

Exercises

1. Browse the OLE DB documentation and become familiar with it.
2. Visit the OLE DB Web site at http://www.microsoft.com/oledb.

© Copyright, Sams Publishing. All rights reserved.

http://www.microsoft.com/oledb

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 17
 Accessing a Data Source with OLE DB

● Data Consumers and Providers
● Interfaces

❍ Interface Factoring
❍ Interface Negotiations

● OLE DB Application Flow
● Enumerators

❍ The IParseDisplayName Interface
❍ The ISourcesRowset Interface
❍ The IDBInitialize Interface
❍ The IDBProperties Interface
❍ The ISupportErrorInfo Interface
❍ Using an Enumerator: A Simple Example

● The DataSource Object
❍ The IDBCreateSession Interface
❍ The IDBDataSourceAdmin Interface
❍ The IDBInfo Interface
❍ The IPersist Interface
❍ The IPersistFile Interface

● Connecting to a DataSource Object
❍ The OLE DB ODBC Provider
❍ Initialization Properties Used
❍ Example: Connecting to an OLE DB ODBC Data Source

● Summary

● Q&A
● Workshop

❍ Quiz
❍ Exercises_

As you learned yesterday, OLE DB is based on the Component Object Model (COM) architecture.
Today begins the process of integrating OLE DB into applications. You will explore the relationship
between COM and OLE DB and learn how COM technology influences the OLE DB programming
model.

NOTE
Much of today's material deals with COM and will help you understand and
integrate COM components, including OLE DB, into your applications.

Today you will

● Explore what OLE DB data consumers and providers are.
● Learn how to obtain an OLE DB interface.
● Understand the structure of an OLE DB application.
● Observe the flow of information from object to object.
● Work with enumerators.
● Use DataSource objects.
● Use properties to change the state of COM and OLE DB ODBC provider objects in a particular

object.
● Integrate the OLE DB objects discussed today.

Data Consumers and Providers
As you learned yesterday, OLE DB applications in their simplest form are composed of a data
provider and a data consumer. A data provider is a COM component that provides an OLE DB-
compliant interface. A data consumer is an application or component that uses an OLE DB interface
to access a data source. Figure 17.1 shows how OLE DB applications are structured in a give-and-take
manner:

● A data provider gives access to a data source through an interface.
● A data consumer takes the data from a data source by using that interface.

Figure 17.1 : The give-and-take nature of OLE DB applications.

OLE DB extends the key concept of the COM architecture. That is, it provides a well-defined and
structured mechanism for application components to "talk" with each other in order to access data. An
OLE DB data provider is not required to support the complete OLE DB interface; for example, a data
provider does not have to support commands. Lowering this barrier makes it easier to write OLE DB
data providers.

The interface layer of the COM architecture can tell you which aspects of the OLE DB specification a
given data provider supports. By querying a data provider's interfaces, you can determine which
portions of the OLE DB specification the data provider supports and how to write an application to
take full advantage of that provider.

Interfaces
The idea behind interfaces is best described through a real-world example. A standard electrical wall
outlet is a good example of an interface. The top two holes in the outlet provide the power to an
electrical device, and the bottom hole provides grounding.

Because an electrical outlet is a standard interface, it can support the power needs of any device,
current or future, that conforms to its standards, that is, has a compatible plug (one that fits in the
outlet's holes) and can use the standard 120 volts of power. A standard electrical outlet can supply
power to a diverse set of devices, from a device as simple as a toaster to something as complex as a
personal computer.

Another key aspect of an electrical outlet is the grounding receptacle. As you probably know, not
every electrical device uses the ground provided by the outlet, but that doesn't prevent the device from
being able to use the outlet. An electrical outlet provides a set of features, just like a well-designed
software component. A device doesn't have to use all the features of the interface in order to use the
interface.

You learned about COM interfaces in Day 9, "Understanding COM." Interfaces are the key aspect of
the COM architecture, as you can see in Figure 17.2. Interfaces describe the functionality provided by
the component and also supply the structured mechanism by which the components talk with each
other. You can think of a component as a collection of code that supports the functionality described
by the interface. The code is separate from the interface, and the details are hidden from the user of the
component.

Figure 17.2 : The role of the interface in an application that uses COM components.

If you have any previous experience with object-oriented programming, the preceding description of a
COM component should remind you of an object. In fact, a COM component is an object that uses the
rules in the COM specification to provide access to the component's interface.

Interface Factoring

One of the most important aspects of COM interfaces is that they don't change. After a COM
component interface is published, it remains static. When a new version of a component is released, a
new interface is created; however, the old version of the interface is still supported. Like the electrical
outlet that has two interfaces, one for two-pronged devices and another for three-pronged devices, a
COM component can support multiple interfaces.

A COM component can support any number of interfaces. Multiple interfaces enable older
applications to continue to use a COM component that has been upgraded with additional
functionality, even though the older applications were developed before the component was upgraded
and have no knowledge of the additional features. Figure 17.3 shows how a set of COM components
and their interfaces can define an application. Each set of interfaces defines a set of methods specific
to it.

Figure 17.3 : The partitioned nature of a COM application.

You can determine the interfaces that a COM component supports by calling the QueryInterface
method. When an application determines whether a component supports a specific interface, it is
guaranteed the functionality of that interface. Because an interface defines a complete set of functions,
interfaces are separated, or factored, by the functionality they support.

OLE DB uses interface factoring extensively. The OLE DB specification requires certain interfaces,
but OLE DB objects can support additional functionality. OLE DB consumers use the
QueryInterface method to determine the level of functionality an OLE DB object supports.

If you have previous experience with object-oriented programming, you might recognize the term
polymorphism. Polymorphism is the use of the same methods when you are accessing different
objects. The capability of COM components to support multiple interfaces helps to facilitate
polymorphism. Figure 17.4 shows that OLE DB applications designed to support the base level of
functionality can also be used with different OLE DB data providers. Various OLE DB providers can
be plugged into the same application, like the electrical outlet described earlier, and still be guaranteed
to work.

Figure 17.4 : The plug-in orientation of COM and the OLE DB architecture.

Interface Negotiations

How does an application determine which interfaces an object supports? The QueryInterface
method of the COM IUnknown interface checks whether an object supports an interface. The
QueryInterface method returns a pointer to the interface (in an out parameter) if the object
supports it; otherwise, the QueryInterface method places NULL in the out parameter. An
application uses this mechanism to determine the interface functionality that a component supports. At
a minimum, every COM component must support the IUnknown interface. (Ideally, a component
also supports other interfaces, or the component won't have any functionality!) All interfaces are
inherited from the IUnknown interface.

The IUnknown Object

The IUnknown interface is declared in the UNKNWN.H header file, which is part of the Win32
SDK. The IUnknown interface is essentially defined as this:

interface IUnknown
{
 virtual HRESULT stdcall QueryInterface(const IID &riid,
 void **ppvObject) = 0;
 virtual ULONG stdcall AddRef() = 0;
 virtual ULONG stdcall Release() = 0;
};

The actual declaration looks more complex, but this the essence of it.

NOTE
The stdcall option in the Iunknown definition tells the C++ compiler
to use the standard Pascal calling convention. Most Win32 API functions
use the Pascal calling convention. Most COM functions use this method,
also. With the Pascal calling convention, the function called is responsible
for removing calling arguments from the stack before it returns. If the
function takes a variable number of arguments, it uses the normal C/C++
calling convention cdecl, and the caller of the function is responsible for
removing arguments from the stack.

Because every interface that a COM component supports is inherited from the IUnknown interface,
any interface can be used to get to any other interface that a component supports. The
QueryInterface method determines whether a component supports an interface, and the AddRef
method adds to the reference count of an object (see the following note). The Release method
subtracts from the object reference count; when the reference count is 0, the resources used by the
component can be released by the system.

NOTE
Reference counting ensures that a COM object does not release its resources
(for example, the memory it is using) until the COM object is no longer
being used. Every time an object is obtained, it should be sandwiched
between an AddRef call to lock the component's resources and a Release
call to free up the resource when it's available. Failure to lock a component's
resources could cause them to be freed before your application has finished
using them. Failure to release a component when your application is
finished with it can cause resources to remain locked and associated
memory to be unreleased, even after you have finished with the component.

Table 17.1 describes the parameters used by the QueryInterface method:

virtual HRESULT __stdcall QueryInterface(const IID &riid,
 void **ppvObject) = 0;

Table 17.1 The QueryInterface Method Parameters
Parameter Description

riid_ The globally unique identifier (GUID) of the interface being queried.
ppvObject_ An address that, on return, will contain a pointer to the object whose

interface is queried.

You will see the GUIDs of various interfaces throughout the week. These interface identifiers are
generally constants. In the case of OLE DB, these constants are defined in the OLE DB library. If you
look back at Listing 16.2, you will see where you used an interface definition. Generally, all interface
definitions begin with IID. Listing 16.2 references the IID_IDBInitialize interface identifier. I
will explain the OLE DB interfaces in detail as you examine the objects that use them.

The QueryInterface method returns an HRESULT, which can be S_OK if an interface is
supported or E_NOINTERFACE if not. Because status codes returned in an HRESULT can vary (that
is, multiple status codes for success and failure), you can use the SUCCEEDED and FAILED macros to
determine whether the QueryInterface method succeeded or failed.

Listing 17.1 defines a function called CheckInterface. You could use the function in Listing 17.1
in OLE DB consumer applications to discover which interfaces an OLE DB data provider supports.
CheckInterface takes a single parameter that defines the interface ID and returns 1 if the
interface is supported or 0 if not.

Listing 17.1 The CHECKINTERFACE Function

 1: int CheckInterface(IUnknown* pInterface, REFIID pIID)
 2: {
 3: // Define a pointer to hold the interface being queried
 4: IUnknown* pChkInterface;
 5:
 6: // Query for the interface
 7: HRESULT hr = pInterface->QueryInterface(pIID, pChkInterface);
 8:
 9: if(SUCCEEDED(hr))

10: {
11: pCheckInterface->Release();
12: return TRUE;
13: }
14: else
15: return FALSE;

You can see from line 1 that the CheckInterface function takes an IUnknown pointer and an
interface ID as parameters. The pointer defined in line 4 is used only as a temporary variable in which
to store the pointer to the queried interface. Line 7 calls QueryInterface to get and stores the
HRESULT in a variable named hr. Line 11 causes the function to return the result of passing hr to the
SUCCEEDED macro.

OLE DB Application Flow
Figure 17.5 illustrates the typical flow of an OLE DB application. An Enumerator object
determines which OLE DB data source providers are available. Using the data source name returned
by the ISourcesRowset and IParseDisplayName interfaces, you can create a DataSource
object. The DataSource object defines access to the data source and also defines a security context.
Using the IDBCreateSession interface of the DataSource object, the CreateSession
method can create a Session object. The Session object provides a logical scope for transactions
and permits access to data source row sets and to data source schema information.

Figure 17.5 : The typical flow of an OLE DB application.

The CreateCommand method can use the IDBCreateCommand interface of the Session object
to create a Command object that performs provider-specific commands. For example, if the provider is
a database that can interpret SQL statements, these commands can be SQL commands. Using the
ICommand interface of the Command object, the Execute method can be used to create a Rowset
object. A Rowset object permits access to data source data in a tabular form.

Enumerators
The Enumerator object is a good place for you to start exploring the OLE DB classes. The
Enumerator object retrieves information regarding the OLE DB providers available on this system.
Much of the information about OLE DB providers is stored in the registry. Using the Enumerator
object is better than directly accessing the registry, because in the future this information might be
stored elsewhere. The Enumerator object abstracts the source of the data provider information from
an application, enabling it to work even if a new enumeration method is created.

NOTE

Enumerators and providers are defined in the registry, using the OLE DB enumerator
or provider subkey, and under the class ID of the enumerator or provider. Under the
HKEY_CLASS_ROOT key in the registry, an enumerator or provider requires the
following subkeys to be defined:

EnumOrProvID=DisplayName
EnumOrProvIDID\CLSID=EnumOrProvCLSID

Under the HKEY_CLASS_ROOT\CLSID subkey in the registry, the following
subkeys are also required:

EnumOrProvCLSID=DisplayName EnumOrProvCLSID\PROGID=EnumOrProvProgID
EnumOrProvCLSID\VersionIndependentProgID=VerIndProgID
EnumOrProvCLSID\InProcServer32=EnumOrProvDLL
EnumOrProvCLSID\InProcServer32\ThreadingModel=Apartment|Free|
Both
EnumOrProvCLSID\OLEDBEnumerator=Description

The TEnumerator object is defined as supporting the following interfaces:

TEnumerator {
 interface IParseDisplayName; // Required Interface
 interface ISourcesRowset; // Required Interface
 interface IDBInitialize;
 interface IDBProperties;
 interface ISupportErrorInfo;
};

TEnumerator is an OLE DB CoType. CoTypes are used to define groups of COM objects that have
similar characteristics and that implement certain mandatory interfaces.

An OLE DB Enumerator object is required to define the IParseDisplayName and
ISourcesRowset interfaces. The other interfaces are optional. The OLE DB SDK provides a root
enumerator, which searches the registry for other data providers and enumerators. The CLASS_ID of
this root enumerator is CLSID_OLEDB_ENUMERATOR. Before you look at the implementation
details of the Enumerator object, a review of the purpose and methods of the interfaces defined by
the Enumerator object is in order.

NOTE
The following presentation of individual OLE DB objects also considers the
methods that each object's interfaces provide, as well as the parameters
required by each method. For a more complete description of each inter-
face's methods and parameters, refer to the OLE DB documentation.

The IParseDisplayName Interface

The IParseDisplayName interface converts a displayable name string to a moniker. A moniker
contains the information that uniquely identifies a COM object. In a sample application later today,
you will see exactly how the display name and moniker are related. The IParseDisplayName
interface defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release. The interface provides one additional method, ParseDisplayName, which is defined as
follows:

HRESULT ParseDisplayName(LPBC pbc, LPOLECHAR lpszDisplayName,
 unsigned long *pchUsed, LPMONIKER
*ppMoniker);

When a display name is converted to a moniker, the BindMoniker method can access the object
described by the moniker. Figure 17.6 illustrates how a display name is converted to a moniker and
how a moniker is bound to an object and an interface.

NOTE
When an interface method returns an HRESULT, that value can be used to
check the success or failure of the method. The SUCCEEDED or FAILED
macros should be used to check whether the interface method was
successful.

Figure 17.6 : The process of converting a display name to a moniter and binding it to an object and
an interface.

The ISourcesRowset Interface

The ISourcesRowset interface accesses row set data from data sources and enumerators. (See Day
18, "Querying a Data Source," and Day 19, "Navigating the Result of a Query," for more on row sets.)
For now you will learn enough about the ISourcesRowset interface to use the Enumerator
class. The ISourcesRowset interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface provides one additional method,
GetSourcesRowset, which is defined as follows:

HRESULT GetSourcesRowset(IUnknown pAggInterface, REFIID riid,
 ULONG cPropertySets, DBPROPSET rgPropertySets[],
 IUnknown **ppSourcesRowset);own pAggInterface, REFIID
riid,

From an Enumerator object, the GetSourcesRowset method returns tabular information about
the available data sources. Table 17.2 displays the field names, types, and descriptions of the row set

returned by the GetSourcesRowset method. The columns returned in the row set are read-only;
they cannot be changed.

Table 17.2 The Row Set Returned by the GetSourcesRowset Method
Column Type Description

SOURCES_NAME DBTYPE_WSTR The name of the data source.
SOURCES_PARSENAME DBTYPE_WSTR The parse name of the data source, used by

the ParseDisplayName method to
create a moniker.

SOURCES_DESCRIPTION DBTYPE_WSTR The data source description.
SOURCES_TYPE DBTYPE_UI2 A flag describing the type of the source. If

the value is
DBSOURCETYPE_DATASOURCE, it
describes a data source. If the value is
DBSOURCETYPE_ENUMERATOR, it
describes an enumerator.

SOURCES_ISPARENT DBTYPE_BOOL If the source is an enumerator and the value
is TRUE, the enumerator is a parent
enumerator. Multiple enumerators can be
defined, and a parent enumerator can also
be enumerated.

The IDBInitialize Interface

The IDBInitialize interface initializes an enumerator. It is an optional interface for enumerators.
The root enumerator provided by the OLE DB SDK doesn't support the IDBInitialize interface.
You should use the QueryInterface method to determine whether the Enumerator object you
are using supports this interface. The IDBInitialize interface defines the standard IUnknown
interface methods QueryInterface, AdddRef, and Release. The interface provides two
additional methods: Initialize and Uninitialize. Neither method takes a parameter.
Obviously, the Initialize method initializes the enumerator. The Uninitialize method
returns the enumerator to an uninitialized state.

The IDBProperties Interface

The IDBProperties interface gets and sets the properties of an Enumerator object. Properties
define values that determine the state of an object. Like the IDBInitialize interface, the
IDBProperties interface is optional for Enumerator objects. The OLE DB SDK root
enumerator doesn't support the IDBProperties interface. Later today in the section on
DataSource objects, the IDBProperties interface is discussed briefly and then explained in
more detail on Day 20, "Properties, Transactions, and Indexes."

The IDBProperties interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface provides three additional methods:
GetProperties, GetPropertyInfo, and SetProperties. The GetProperties method
retrieves the value of a property. The GetPropertyInfo method returns information about all the
properties supported by the enumerator. The SetProperties method sets the value of a property.
These methods are defined as follows:

HRESULT GetProperties(ULONG cPropIDSets, const DBPROPIDSET
rgPropSets[],
 ULONG *pcPropSets, DBPROPSET **prgPropSets);
HRESULT GetPropertyInfo(ULONG cPropIDSets, const DBPROPIDSET
rgPropSets[],
 ULONG *pcPropInfoSets,
 DBPROPINFOSET **prgPropInfoSets,
 OLECHAR **ppDescription);
HRESULT SetProperties(ULONG cPropNum, DBPROPSET rgPropSets[]);

The ISupportErrorInfo Interface

The ISupportErrorInfo interface determines whether an interface supports Automation error
objects. OLE DB Error objects are returned using the same interface as the Automation error
objects. Error handling in OLE DB is discussed in more detail on Day 21, "OLE DB Error Handling."
The ISupportErrorInfo interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. This interface provides one additional method:
InterfaceSupportsErrorInfo. The InterfaceSupportsErrorInfo method is defined
as follows:

HRESULT InterfaceSupportsErrorInfo(REFIID riid);

If the interface supports error information, S_OK is returned; otherwise, S_FALSE is returned.
Remember to use the SUCCEEDED or FAILED macros to check the return value.

Using an Enumerator: A Simple Example

Now that you have a general idea of the interfaces that the Enumerator object supports, you need to
know how to obtain and use an Enumerator object to display the data sources it supports. Listing
17.2 defines the EnumTest application. This application accesses an Enumerator object and then
uses the ISourcesRowset interface to loop through the data providers available. The data
providers and enumerators are accessed, and the display and parse names are printed to cout.

This example also demonstrates the relationship between the display name and parse name (GUID) of
a data source provider. The details of how to access a row set are given tomorrow (Day 18). For now,
try to get a sense of how the Enumerator object and its associated interfaces are accessed.

To build the application, run Visual Studio and select the File New menu choice. Click the Projects tab

and specify a Win32 Console Application. Call the application EnumTest. Click the OK button and
then specify that you want to create an empty project; then click the Finish button. After AppWizard
runs, create a new C++ source file as part of the project. You can call it whatever you think is
appropriate, for example, main.cpp. Enter the code in Listing 17.2 into the source file. Note that the
code in lines 19 and 20 should actually be on one line. In other words, line 20 should be appended
onto line 19 in your source file. When you build the project, it should compile and link without errors
or warnings.

Listing 17.2 The Enumeration Test Application

 1: #define UNICODE
 2: #define _UNICODE
 3:
 4: // Standard Application Includes
 5: #include <windows.h>
 6: #include <stdio.h>
 7: #include <iostream.h>
 8: #include <tchar.h>
 9: #include <stddef.h>
 10: // OLE DB Header Files
 11: #include <oledb.h>
 12: #include <oledberr.h>
 13:
 14: // OLE DB - ODBC Provider Header Files
 15: #include <msdaguid.h>
 16: #include <msdasql.h>
 17:
 18: #define NUMELEM(p1) (sizeof(p1) / sizeof(p1[0]))
 19: #define ROUND_TO_NEXT_BYTE(Size, Amount)
 20: (((DWORD)(Size) + ((Amount) - 1)) & ~((Amount) - 1))
 21: #define COLUMN_ALIGNVAL 8
 22:
 23: void EnumerateProviders();
 24:
 25: int main() {
 26: // Initialize The Component Object Module Library
 27: CoInitialize(NULL);
 28:
 29: EnumerateProviders();
 30:
 31: // Release The Component Object Module Library
 32: CoUninitialize();
 33:
 34: return(0);
 35: };

 36:
 37: void EnumerateProviders()
 38: {
 39: ULONG i, // Counter
 40: cRows = 0; // Number of rows returned
 41: ISourcesRowset* pISourceRowset = NULL; // Source Rowset
 // Interface
 42: IRowset* pIRowset = NULL; // Rowset
Interface
 43: IAccessor* pIAccessor = NULL; // Accessor
Interface
 44: BYTE* pData = NULL; // Data buffer
 45: DWORD dwOffset; // Offset counter
 46: HACCESSOR hAccessor = NULL; // Handle to
accesspr
 // interface
 47: DBBINDING rgBind[3]; // Data bindings
 // buffer
 48: HROW rghRows[256]; // Row handle
array
 49: HROW* pRows = &rghRows[0]; // Pointer to Row
 // handle array
 50: CHAR string[256];
 51:
 52: // Define A Structure That Represents The
 53: // Data Elements We Wish To Retrieve
 54: struct COLUMNDATA {
 55: DBSTATUS wStatus; // Column Status
 56: DWORD dwLength; // Column Length
 57: BYTE bData[1]; // Column Data
 58: };
 59:_
 60: // Define An Enumerator Type That Defines Each Of The
 61: // Data Columns Returned By The Source Rowset Interface
 62: enum enumSOURCES_COLUMNS {
 63: eid_SOURCES_NAME = 1,
 64: eid_SOURCES_PARSENAME,
 65: eid_SOURCES_DESCRIPTION,
 66: eid_SOURCES_TYPE,
 67: eid_SOURCES_ISPARENT,
 68: eid_SOURCES_CLSID,
 69: };
 70:
 71: // Define A Tagged Structure That Identifies The
 72: static struct tagSOURCES
 73: {
 74: ULONG iOrdinal;
 75: DBTYPE wType;
 76: ULONG cbMaxLen;
 77: } s_rgSources[3];
 78:
 79: // Initialize the Source Columns to retrieve
 80: s_rgSources[0].iOrdinal = eid_SOURCES_NAME;
 81: s_rgSources[0].wType = DBTYPE_STR;

 82: s_rgSources[0].cbMaxLen = 64;
 83: s_rgSources[1].iOrdinal = eid_SOURCES_PARSENAME;
 84: s_rgSources[1].wType = DBTYPE_WSTR;
 85: s_rgSources[1].cbMaxLen = 64 * sizeof(WCHAR);
 86: s_rgSources[2].iOrdinal = eid_SOURCES_TYPE;
 87: s_rgSources[2].wType = DBTYPE_UI4;
 88: s_rgSources[2].cbMaxLen = sizeof(ULONG);
 89:
 90: cout << "Enumerate The Providers\n" << "-------------------
\n";
 91:
 92: // Allocate the Rows Buffer
 93: memset(rghRows, 0, sizeof(rghRows));
 94:
 95: // Initialize the OLE DB Root Enumerator
 96: CoCreateInstance(CLSID_OLEDB_ENUMERATOR, NULL,
 97: CLSCTX_INPROC_SERVER, IID_ISourcesRowset,
 (LPVOID*)&pISourceRowset);
 98:
 99: // Retrieve the SourceRowset
100: pISourceRowset->GetSourcesRowset(NULL, IID_IRowset, 0,
NULL,
101: (IUnknown**)&pIRowset);
102:
103: // Allocate space for row bindings
104: memset(rgBind, 0, sizeof(rgBind));
105:
106: // Obtain access to the Accessor Interface
107: pIRowset->QueryInterface(IID_IAccessor,
 (LPVOID*)&pIAccessor);
108:
109: // Initialize the column bindings, from the Source Column
array
110: dwOffset = 0;
111: for(i=0; i< NUMELEM(s_rgSources); i++)
112: {
113: // Bind The Value, Length, And Status
114: rgBind[i].dwPart = DBPART_VALUE | DBPART_LENGTH |
 DBPART_STATUS;
115: // Reminder, This is not a parameter!
116: rgBind[i].eParamIO = DBPARAMIO_NOTPARAM;
117: // The ordinal location of the column to retrieve
118: rgBind[i].iOrdinal = s_rgSources[i].iOrdinal;
119: // Set the column type
120: rgBind[i].wType = s_rgSources[i].wType;
121: // Set the offset length of the column for the value
 // in the buffer
122: rgBind[i].obValue = dwOffset +
offsetof(COLUMNDATA,bData);
123: // Set the offset length of the column for the length
 // in the buffer
124: rgBind[i].obLength = dwOffset + offsetof
 (COLUMNDATA,dwLength);
125: // Set the offset length of the column for the status

 // in the buffer
126: rgBind[i].obStatus = dwOffset + offsetof
 (COLUMNDATA,wStatus);
127: // Set the maximum column length
128: rgBind[i].cbMaxLen = s_rgSources[i].cbMaxLen;
129: // Set the source for the data buffer allocation,
 // in this case the
130: // Enumerator client
131: rgBind[i].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
132: // Set to the next column
133: dwOffset += rgBind[i].cbMaxLen + offsetof
 (COLUMNDATA, bData);
134: // Round The Offset to the next byte
135: dwOffset = ROUND_TO_NEXT_BYTE(dwOffset,
COLUMN_ALIGNVAL);
136: }
137:
138: // Create The RowSet accessor
139: pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,
 NUMELEM(s_rgSources),
140: rgBind, dwOffset, &hAccessor, NULL);
141:
142: // Retrieve the providers
143: if(SUCCEEDED(pIRowset->GetNextRows(NULL, 0, 256, &cRows,
 &pRows)))
144: {
145: // Allocate block of memory to retrieve the row data
into.
146: pData = new BYTE[dwOffset];
147:
148: // Loop over the rows of data, collecting providers
149: // and discarding enumerators..
150: for(i=0; (i<cRows) && (i<256); i++)
151: {
152: // Allocate the data buffer
153: memset(pData, 0, dwOffset);
154:
155: // Get the row set data
156: pIRowset->GetData(rghRows[i], hAccessor, pData);
157: // Is it a data source? Not an Enumerator!
158: if(*((ULONG*)(pData + rgBind[2].obValue)) ==
159: DBSOURCETYPE_DATASOURCE)
160: {
161: // Convert the Parsename from Unicode to
 // a standard string
162: WideCharToMultiByte(CP_ACP, 0,
163: (WCHAR *)(pData + rgBind[1].
 obValue),
164: wcslen((WCHAR *)(pData +
rgBind[1].
 obValue)),
165: string, 256, NULL, FALSE);
166: string[wcslen((WCHAR *)(pData +
rgBind[1].obValue))]

 = '\0';
167: cout << "Provider # " << i << "\n\tName: " <<
168: (CHAR*)(pData + rgBind[0].obValue) <<
 "\n\tParse Name: " <<
169: string << "\n";
170: }
171: }
172: };
173:
174: // Free the Data buffer
175: if(pData)
176: delete[] pData;
177:
178: // Free the Accessor Interface
179: if(pIAccessor)
180: pIAccessor->Release();
181:
182: // Free the Rowset Interface
183: if(pIRowset)
184: pIRowset->Release();
185:
186: // Free the SourceRowset Interface
187: if(pISourceRowset)
188: pISourceRowset->Release();
189: };

Lines 1 and 2 of Listing 17.2 define this as a Unicode application. Lines 5-16 include the various
required headers. Lines 25-35 constitute the main function for the application. Note the calls to
CoInitialize and CoUninitialize in the main function. Lines 37-189 constitute the
EnumerateProviders function. Lines 39-88 define variables and structures the function will use.
Lines 95-101 create an instance of the OLE DB root enumerator and call its GetSourcesRowset
function. Lines 103-140 create an Accessor and bind it to variables in the function. Lines 142-172
call the Rowset GetNextRows function to get the providers and display them. Lines 174-188 do
the appropriate cleanup.

Note that the error checking in Listing 17.2 is minimized for brevity. The value of the HRESULTs
needs to be checked when you are querying for an interface.

Listing 17.3 shows the output of the EnumTest application. The output will vary, based on which
OLE DB providers are installed on the system.

Listing 17.3 Output from ENUMTEST

 1: Enumerate The Providers
 2: -----------------------
 3: Provider # 0
 4: Name: SampProv
 5: Parse Name: {E8CCCB79-7C36-101B-AC3A-00AA0044773D}
 6: Provider # 1
 7: Name: ADsDSOObject
 8: Parse Name: {549365d0-ec26-11cf-8310-00aa00b505db}
 9: Provider # 2
10: Name: MSDataShape
11: Parse Name: {3449A1C8-C56C-11D0-AD72-00C04FC29863}
12: Provider # 3
13: Name: MSPersist
14: Parse Name: {7C07E0D0-4418-11D2-9212-00C04FBBBFB3}
15: Provider # 4
16: Name: Microsoft.Jet.OLEDB.3.51
17: Parse Name: {dee35060-506b-11cf-b1aa-00aa00b8de95}
18: Provider # 5
19: Name: MSDAOSP
20: Parse Name: {dfc8bdc0-e378-11d0-9b30-0080c7e9fe95}
21: Provider # 6
22: Name: MSDAORA
23: Parse Name: {e8cc4cbe-fdff-11d0-b865-00a0c9081c1d}
24: Provider # 7
25: Name: SQLOLEDB
26: Parse Name: {0C7FF16C-38E3-11d0-97AB-00C04FC2AD98}
27: Provider # 8
28: Name: MSDASQL
29: Parse Name: {c8b522cb-5cf3-11ce-ade5-00aa0044773d}

The DataSource Object
The discussion of OLE DB objects continues with a review of the DataSource object. You create
the DataSource object by binding a moniker returned from the Enumerator class or directly
calling the CoCreateInstance, using the appropriate CLSID. The DataSource object abstracts
the actual data source you want to access. As shown in Figure 17.5, the DataSource object creates a
session, which can then create commands and row sets. When a DataSource object is created, if the
data provider supports the appropriate interface, it can be persisted (that's a fancy object-oriented way
of saying that the object is going to be saved) to a file. The OLE DB CoType for the DataSource
object is TDataSource. The TDataSource object is defined as supporting the following
interfaces:

TDataSource {
 interface IDBCreateSession; // Required Interface
 interface IDBInitialize; // Required Interface

 interface IDBProperties; // Required Interface
 interface IPersist; // Required Interface
 interface IDBDataSourceAdmin;
 interface IDBInfo;
 interface IPersistFile;
 interface ISupportErrorInfo;
};

An OLE DB DataSource object is required to define the IDBCreateSession,
IDBInitialize, IDBProperties, and IPersist interfaces. The other interfaces are
optionally supported. The OLE DB SDK supplies an ODBC OLE DB provider. If you look at the data
providers enumerated in the previous example, you can see this data provider listed as MSDASQL; the
class ID constant for the MSDASQL data provider is CLSID_MSDASQL.

This section starts with a survey of interfaces that the DataSource object supports and then shows
you how to use the DataSource object to connect to an ODBC data source, including how to
specify the ODBC data source name and security context. Earlier today, I discussed the
IDBInitialize, IDBProperties, and ISupportErrorInfo interfaces in conjunction with
the Enumerator object. (Unlike the Enumerator object though, the DataSource object
requires the IDBInitialize and IDBProperties interfaces.)

The IDBCreateSession Interface

The IDBCreateSession interface creates a new session with a data source. A session creates a
scope for transactions and provides a mechanism for creating commands and row sets. The
IDBCreateSession interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface provides one additional method,
CreateSession, which is defined as follows:

HRESULT CreateSession(IUnknown pAggInterface, REFIID riid,
 IUnknown **ppDBSession);

The CreateSession method creates a Session object, which I cover in more depth tomorrow.
An OLE DB DataSource object is required to support the IDBCreateSession interface.

NOTE
The IDBDataSourceAdmin interface manipulates the data sources
themselves (that is, where the data is actually stored), not the DataSource
objects.

The IDBDataSourceAdmin Interface

The optional IDBDataSourceAdmin interface creates, modifies, and deletes data sources.

The IDBDataSourceAdmin interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface provides four additional methods:
CreateDataSource, DestroyDataSource, GetCreationProperties, and
ModifyDataSource. These interfaces are defined as follows:

HRESULT CreateDataSource(ULONG cPropertySets, DBPROPSET
rgPropertySets[],
 IUnknown* pUnkOuter, REFIID riid,
 IUnknown** ppSession);
HRESULT DestroyDataSource();
HRESULT GetCreateProperties (ULONG cPropertyIDSets,
 const DBPROPIDSET rgPropertyIDSets[],
 ULONG* pcPropertyInfoSets,
 DBPROPINFOSET** prgPropertyInfoSets,
 OLECHAR** ppDescBuffer);
HRESULT ModifyDataSource(ULONG cPropSets, DBPROPSET rgPropSets[]);

The CreateDataSource method creates a new data source, and the DataSource object is
initialized to access the new data source. The DestroyDataSource method deletes the current
data source. When a data source is deleted, the DataSource object is returned to an uninitialized
state. The GetCreationProperties accesses the properties that describe the state of the
DataSource object. The ModifyDataSource method modifies the current data source according
to the set of new properties specified.

The IDBInfo Interface

The optional IDBInfo interface determines the keywords and literals that the data source uses to
create data source commands. The IDBInfo interface defines the standard IUnknown interface
methods QueryInterface, AddRef, and Release. The interface provides two additional
methods: GetKeyWords and GetLiteralInfo. These methods are defined as follows:

HRESULT GetKeywords(LPOLESTR *pwszKeywords);
HRESULT GetLiteralInfo(ULONG cLiterals,
 const DBLITERAL rgLiterals[],
 ULONG * pcLiteralInfo,
 DBLITERALINFO ** prgLiteralInfo,
 OLECHAR ** ppCharBuffer);

The GetKeywords method _returns a string of comma-separated keywords that the data source
supports. Table 17.3 lists the keywords recognized by OLE DB. The GetLiteralInfo method
determines the additional information about literals supported in command strings, such as a % used to
match zero, or more, characters in a SQL LIKE clause. Tomorrow, in more depth, I will explain the
SQL query language and the process of creating commands.

Table 17.3 The Keywords Recognized by OLE DB
ABSOLUTE ACTION ADD

ALL ALLOCATE ALTER
AND ANY ARE
AS ASC ASSERTION
AT AUTHORIZATION AVG
BEGIN BETWEEN BIT
BIT_LENGTH BOTH BY
CASCADE CASCADED CASE
CAST CATALOG CHAR
CHARACTER CHAR_LENGTH CHARACTER_LENGTH
CHECK CLOSE COALESCE
COLLATE COLLATION COLUMN
COMMIT CONNECT CONNECTION
CONSTRAINT CONSTRAINTS CONTINUE
CONVERT CORRESPONDING COUNT
CREATE CROSS CURRENT
CURRENT_DATE CURRENT_TIME CURRENT_TIMESTAMP
CURRENT_USER CURSOR DATE
DAY DEALLOCATE DEC
DECIMAL DECLARE DEFAULT
DEFERRABLE DEFERRED DELETE
DESC DESCRIBE DESCRIPTOR
DIAGNOSTICS DISCONNECT DISTINCT
DISTINCTROW DOMAIN DOUBLE
DROP ELSE END
END-EXEC ESCAPE EXCEPT
EXCEPTION EXEC EXECUTE
EXISTS EXTERNAL EXTRACT
FALSE FETCH FIRST
FLOAT FOR FOREIGN
FOUND FROM FULL
GET GLOBAL GO
GOTO GRANT GROUP
HAVING HOUR IDENTITY
IMMEDIATE IN INDICATOR

INITIALLY INNER INPUT
INSENSITIVE INSERT INT
INTEGER INTERSECT INTERVAL
INTO IS ISOLATION
JOIN KEY LANGUAGE
LAST LEADING LEFT
LEVEL LIKE LOCAL
LOWER MATCH MAX
MIN MINUTE MODULE
MONTH NAMES NATIONAL
NATURAL NCHAR NEXT
NO NOT NULL
NULLIF NUMERIC OCTET_LENGTH
OF ON ONLY
OPEN OPTION OR
ORDER OUTER OUTPUT
OVERLAPS PARTIAL POSITION
PRECISION PREPARE PRESERVE
PRIMARY PRIOR PRIVILEGES
PROCEDURE PUBLIC READ
REAL REFERENCES RELATIVE
RESTRICT REVOKE RIGHT
ROLLBACK ROWS SCHEMA
SCROLL SECOND SECTION
SELECT SESSION SESSION_USER
SET SIZE SMALLINT
SOME SQL SQLCODE
SQLERROR SQLSTATE SUBSTRING
SUM SYSTEM_USER TABLE
TEMPORARY THEN TIME
TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE
TO TRAILING TRANSACTION
TRANSLATE TRANSLATION TRIGGER
TRIM TRUE UNION

UNIQUE UNKNOWN UPDATE
UPPER USAGE USER
USING VALUE VALUES
VARCHAR VARYING VIEW
WHEN WHENEVER WHERE
WITH
YEAR ZONE

The IPersist Interface

The IPersist interface is the base interface for other persist-type interfaces. OLE objects can
typically support IPersistStorage, IPersistStream, and IPersistFile interfaces. The
IPersist interface is like a base class in that it's not usually used directly. The DataSource
object can optionally support the IPersistFile interface described next.

The IPersistFile Interface

The IPersistFile interface saves and retrieves a DataSource object to and from a file.
Although the IPersist interface is required, the IPersistFile interface is optional.
The IPersistFile interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface provides five additional methods:
IsDirty, Load, Save, SaveCompleted, and GetCurFile. These methods are defined as
follows:

HRESULT GetCurFile(LPOLESTR *ppszFileName);
HRESULT IsDirty();
HRESULT Load(LPCOLESTR pszFilename, DWORD dwFileMode);
HRESULT Save(LPCOLESTR pszFileName, BOOL fCurrentFile);
HRESULT SaveCompleted(LPCOLESTR pszFileName);

The GetCurFile method returns the path of the last file used to Save or Load. If no current
working file exists, the GetCurFile method returns the default save filename for the data source.
The IsDirty method returns S_OK if the current DataSource object has changed since the last
time it was saved to a file; otherwise, IsDirty returns S_FALSE. Both S_FALSE and S_OK will
resolve to TRUE when you use the SUCCEEDED macro. You will need to use SUCCEEDED and then
explicitly check for S_OK. If IsDirty returns anything other than S_OK, you should save the object.

The Load method retrieves the DataSource object from a file. The first parameter specifies the full
pathname to the file, and the second parameter specifies the mode to use to read the file. Table 17.4
summarizes and describes the mode value constants.

The Save method saves the DataSource object to a file. The first parameter of the Save method

specifies the full pathname to the file (if the filename is NULL, the current working file is used), and
the second Boolean parameter signals whether the filename specified should now be considered the
current working file. The SaveCompleted method determines whether the last Save command has
been completed. The SaveCompleted method is not usually used.

Table 17.4 A Summary of Mode Value Constants
Flag Description

 Save Type Flag Group
STGM_DIRECT Changes are saved as they occur.
STGM_TRANSACTED Changes are saved and only written when a commit

operation is specified.
STGM_SIMPLE Provides faster saves when used with compound flags.
 Read/Write Flag Group
STGM_READ Read-only flag.
STGM_WRITE Write-enabled flag.
STGM_READWRITE Read-enabled and write-enabled flag.
 Sharing Flag Group
STGM_SHARE_DENY_NONE If the file is already opened by another user, access will

not be denied.
STGM_SHARE_DENY_READ Denies other users the ability to read the file while it's

opened.
STGM_SHARE_DENY_WRITE Denies others the ability to write the file if it's opened by

another user.
STGM_SHARE_EXCLUSIVE A combination of the STGM_SHARE_DENY_READ and

STGM_SHARE_DENY_WRITE flags.
 Priority Flag Group
STGM_PRIORITY Open the file for priority access; no one else can commit

changes while the file is opened in this mode.
 Delete Flag Group
STGM_DELETEONRELEASE Used primarily for temporary files. The file is deleted

when the associated object is deleted.
Flag Description
 Creation Flag Group
STGM_CREATE If there is an existing file, delete it before any changes are

saved.
STGM_CONVERT Create a new data object and preserve any existing data.
STGM_FAILIFTHERE Don't create the file if an existing file has the same name.

STGM_NOSCRATCH Don't buffer the file in scratch space (applicable only
under Windows 95).

NOTE
File mode constants can be combined, but only one mode constant from
each group can be used.

Connecting to a DataSource Object
The last activity for today is to tie together the new information with the concepts you learned at the
end of the day yesterday. You will create another basic OLE DB application, which builds upon the
code you wrote in Listing 16.2.

Yesterday's example simply created and released a DataSource object. Although you are not yet
ready to do anything useful, such as access the data contained in a data source (see Days 18 and 19),
you can build on the earlier example. Today's application uses the OLE DB ODBC data provider to
access a data source. This time, you use the OLE DB ODBC data source provider object's properties to
specify the appropriate connection information: the data source name, username, and password.

Before looking at the code, you need to understand the steps necessary for building an OLE DB-
enabled application. The first step, mentioned yesterday, is to initialize the necessary COM-related
DLLs. The CoInitialize and CoUninitialize methods load and release the appropriate
COM-related DLLs. You must call these methods at the start and end of any application that uses
COM components.

After you initialize the COM environment, the next step is to create access to the DataSource
object's IDBInitialize interface from the OLE DB ODBC data provider. You could use the
Enumerator object, discussed earlier, to find the OLE DB ODBC data source provider, but if you
know which provider you want to access, you can directly access the interface by calling the
CoCreateInstance method. The definition of the CoCreateInstance method is

STDAPI CoCreatInstance(REFCLSID rclsid, LPUNKNOWN pAggInterface,
 DWORD dwClsContext, REFIID riid,
 LPVOID *ppInterface);

NOTE
When you are specifying an interface reference ID, you specify the
constants by using the prefix IID before the interface name.

The rclsid parameter specifies the class identifier of the COM object you want to use. To connect
to the OLE DB ODBC data provider, you can use the class ID CLSID_MSDASQL. The
pAggInterface parameter specifies whether this object is part of an aggregate. For this example,
the object is not part of an aggregate, so you can specify NULL. The dwClsContext specifies the
context for running the COM object. This application uses the CLSCTX_INPROC_SERVER, which
specifies that the COM object runs in the same process space as the caller. The riid specifies the
interface reference ID. You want to access the IDBInitialize interface, so you should use the
IID_IDBInitialize constant. The ppInterface parameter specifies the variable that retrieves
the interface.

The OLE DB ODBC Provider

As I mentioned earlier, the OLE DB ODBC provides access to an ODBC data source. For your
reference, Table 17.5 lists the interfaces that the OLE DB ODBC data source provider supports. Only
the OLE DB objects that can use these interfaces (either because they are mandatory or optional)
support them.

Table 17.5 Interfaces Supported by the OLE DB ODBC Data Source Provider
Interface
Iaccessor IColumnsInfo
IcolumnsRowset ICommand
IcommandPrepare ICommandProperties
IcommandText ICommandWithParameters
IconnectionPoint IConnectionPointContainer
IconvertType IDBCreateCommand
IDBCreateSession IDBInfoIDBInitialize
IDBProperties IDBSchemaRowset
IerrorLookup IGetDataSource
ImultipleResults IOpenRowset
IpersistFile IRowset
IrowsetChange IRowsetIdentity
IRowsetInfo IRowsetLocate
IRowsetResynch IRowsetUpdate
ISessionProperties ISourcesRowset
ISupportErrorInfo ITransaction
ItransactionLocal ITransactionOptions_

NOTE

The IPersistFile interface is supported only for the DataSource
object.

Initialization Properties Used

The DataSource object of the OLE DB ODBC data source provider must be initialized before it
can be used. Table 17.6 lists the properties that the IDBInitialize interface uses to specify the
prompt mode, data source name, username, and password needed to access the ODBC data source.
The SetProperties method of the IDBProperties interface sets the properties necessary to
access the ODBC data source.

Table 17.6 The Initialization Properties Used by the OLE DB ODBC Data Provider
Property Description

DBPROP_AUTH_PASSWORD The password required to access the ODBC data
source

DBPROP_AUTH_USERID The user ID required to access the ODBC data
source

DBPROP_INIT_DATASOURCE The name of the ODBC data source
DBPROP_INIT_HWND The HWND argument used by

SQLDriverConnect
DBPROP_INIT_LOCATION The name of the server used by

SQLDriverConnect
DBPROP_INIT_MODE The connection mode, either DB_MODE_READ or

DB_MODE_READWRITE
DBPROP_INIT_PROMPT Specifies the prompting mode used when

connecting to the data source
DBPROP_INIT_PROVIDERSTRING The complete ODBC connection string
DBPROP_INIT_TIMEOUT Specifies the time-out value for the login

Example: Connecting to an OLE DB ODBC Data Source

Listing 17.4 shows the ODBCTEST.CPP source code. This example extends the example in Listing
16.2 by setting the properties required to access the ODBC data source.

To build the application, run Visual Studio and select the File New menu choice. Click the Projects tab
and specify a Win32 Console Application. Call the application ODBCTEST. Click the OK button and
then specify that you want to create an empty project; click the Finish button. After AppWizard runs,
create a new C++ source file as part of the project. You can call it whatever you think is appropriate,
ODBCTEST.CPP, for example. Enter the code shown in Listing 17.4 into the source file.

TIP
You can modify this example to set the properties that specify the
connection context for the username, password, and data source name to
values that are appropriate for other ODBC data sources set up on your
system.

You need to change the input libraries for the linker to

oledbd.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib

You do this on the Link tab under the Project Settings menu. When you build the project, it should
compile and link without errors or warnings._

Listing 17.4 A Sample Application That Connects to an ODBC Data Source

 1: #define DBINITCONSTANTS
 2:
 3: // Standard Application Includes
 4: #include <windows.h>
 5: #include <stdio.h>
 6: #include <tchar.h>
 7: #include <stddef.h>
 8: #include <iostream.h>
 9:
10: // OLE DB Header Files
11: #include <oledb.h>
12: #include <oledberr.h>
13:
14: // OLE DB - ODBC Provider Header File
15: #include <msdasql.h>
16:
17: void main() {
18: IDBInitialize *pIDBInitialize = NULL;
19: IDBProperties *pIDBProperties;
20: DBPROP InitProperties[4];
21: DBPROPSET rgInitPropSet[1];
22: int i;
23:
24: // Initialize The Component Object Module Library
25: CoInitialize(NULL);
26:
27: // Obtain Access To The OLE DB - ODBC Provider
28: CoCreateInstance(CLSID_MSDASQL, NULL, CLSCTX_INPROC_SERVER,
29: IID_IDBInitialize, (void **) &pIDBInitialize);

30:
31: // Initialize the property values that are the same for each
32: // property
33: for (i = 0; i < 4; i++) {
34: VariantInit(&InitProperties[i].vValue);
35: InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
36: InitProperties[i].colid = DB_NULLID;
37: }
38:
39: // level of prompting that will be done
 // to complete the connection process
40: InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
41: InitProperties[0].vValue.vt = VT_I2;
42: InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;
43:
44: // Specify the User Name
45: InitProperties[1].dwPropertyID = DBPROP_AUTH_USERID;
46: InitProperties[1].vValue.vt = VT_BSTR;
47: // Note: The L cast directive casts the string into a UNICODE
// string
48: InitProperties[1].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
49:
50: // Specify the appropriate Password
51: InitProperties[2].dwPropertyID = DBPROP_AUTH_PASSWORD;
52: InitProperties[2].vValue.vt = VT_BSTR;
53: InitProperties[2].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
54:
55: // Specify the Data Source name
56: InitProperties[3].dwPropertyID = DBPROP_INIT_DATASOURCE;
57: InitProperties[3].vValue.vt = VT_BSTR;
58: InitProperties[3].vValue.bstrVal = SysAllocString((LPOLESTR)

L"OrdersDb");
59:
60: rgInitPropSet[0].guidPropertySet = DBPROPSET_DBINIT;
61: rgInitPropSet[0].cProperties = 4;
62: rgInitPropSet[0].rgProperties = InitProperties;
63:
64: // set initialization properties
65: pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void **)&pIDBProperties);
66: pIDBProperties->SetProperties(1,rgInitPropSet);
67: pIDBProperties->Release();
68:
69: // Call the Initialize method to establish the connection to
70: // the ODBC data source specified above
71: HRESULT hr = pIDBInitialize->Initialize();
72:
73: if SUCCEEDED(hr)
74: {
75: ::MessageBeep(MB_OK);
76: }

77:
78: // This Is Where You Would Utilize OLE DB to execute commands
and
79: // access row sets
80:
81: // Free Up Allocated Memory
82: pIDBInitialize->Uninitialize();
83: pIDBInitialize->Release();
84:
85: // Release The Component Object Module Library
86: CoUninitialize();
87: };_

Lines 20 and 21 in Listing 17.4 define two variables of the type DBPROPSET and DBPROP. The
DBPROPSET structure holds the set of properties, and the DBPROP structure holds an individual
property. The values of these variables are set in lines 31-62. After the properties are set to the
appropriate values, they are used by the IDBProperties interface in lines 64-67. The
SetProperties method specifies the appropriate security context for access to the ODBC data
source. After the properties are set, the Initialize method of the IDBInitialize interface is
called in line 71, and a connection is made to the ODBC data source. Line 75 calls MessageBeep if
the connection was made successfully.

Listing 17.4 minimizes the error checking for code brevity. In your code, you should check the return
values from CoCreateInstance and QueryInterface to be sure that the interface pointers
have been successfully returned.

Tomorrow you learn how to create a session, create commands, and access data source row sets.

Summary
The major components of OLE DB are data consumers and data providers. OLE DB uses COM
extensively. You learned about the COM architecture in more detail, the importance of interfaces in
the COM architecture, how OLE DB uses these interfaces, that a COM object can support multiple
interfaces at different functional levels, and the role of interface factoring in OLE DB. You also
learned how the COM architecture uses the QueryInterface method to determine whether an
object supports an interface.

You worked on two sample applications: The first uses the Enumerator object to list the available
data providers, and the second uses the OLE DB ODBC data provider to connect to an ODBC data
source.

The discussion of OLE DB objects continues tomorrow with a look at the Session and Command
objects. In addition, Day 18 begins the discussion of how to use OLE DB objects to obtain access to
the data contained in a data source.

Q&A
This section answers some common questions related to today's topics.

Q How does the COM architecture handle different versions of components?
A The COM architecture is well suited to versioning. As you might realize, when an

interface is published using COM, it cannot be changed. Therefore, if a COM
component needs to support some added functionality, the current interfaces supported
by the COM component are not changed to support this functionality. Instead, a new
interface (with a new interface identifier) is added to support these new features. The
QueryInterface mechanism determines the exact level of support provided by a
COM component. A new interface should be created under the following conditions:

● The number, type, or meanings of a method in an interface change.
● The number, order, return values, or meaning of functions change.

Q What is the best way to access an OLE DB data provider-through enumerators or
directly?

A You can use the Enumerator object to determine the data providers supported on the
computer on which the application is running. This method is good to use in an
application in which the end user can dynamically select the data source. If you know
the provider your application is required to use, the CoCreateInstance method is a
better method to use. It requires less overhead than the enumeration methodology
requires. Remember to check the HRESULT of the CoCreateInstance method to
ensure that the computer where the application is currently running actually supports the
provider of an interface you have chosen.

Q I know that some of the interfaces provided by OLE DB objects are optional. How
do I determine whether the data provider I am using supports a particular
interface for a specific object? Can I get this information at runtime?

A The QueryInterface mechanism determines whether a COM object supports a
particular interface. If the QueryInterface method doesn't return S_OK, the
interface is not supported. The QueryInterface method is used during runtime to
establish a "connection" between an application and a particular interface. An
application should call the QueryInterface method before it attempts to rely on any
methods supported by that interface.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. What is the role of a data provider and a data consumer in the OLE DB
architecture?

2. What is an interface? How does the COM architecture use an interface?
3. What is interface factoring?
4. What method is used to determine whether a COM object supports a particular interface?
5. Describe the basic flow of information in an OLE DB application.
6. What is an Enumerator object, and how is it used?
7. What interfaces are supported by an Enumerator object?
8. What is a DataSource object, and how is it used?
9. What interfaces does a DataSource object support?

10. What methods initialize and release the DLLs required by a COM application?

Exercises

1. Review the Visual C++ books online documentation (provided with Visual C++) for more
information regarding the specifics of COM programming.

2. The applications developed yesterday and today do not really consider error handling. How
would you integrate error handling into the application in Listing 17.4? (Hint: Most of the
COM related functions return an HRESULT type value.)

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 18
 Querying a Data Source with OLE DB

● Sessions
❍ The IGetDataSource Interface
❍ The IOpenRowset Interface
❍ The ISessionProperties Interface
❍ The IDBCreateCommand Interface
❍ The IDBSchemaRowset Interface
❍ The ITableDefinition Interface
❍ The IIndexDefinition Interface
❍ The ITransaction, ITransactionJoin, ITransactionLocal, and ITransactionObject

Interfaces
● Commands

❍ The IAccessor Interface
❍ The IColumnsInfo Interface
❍ The ICommand Interface
❍ The ICommandProperties Interface
❍ The ICommandText Interface
❍ The IConvertType Interface
❍ The IColumnsRowset Interface
❍ The ICommandPrepare Interface
❍ The ICommandWithParameters Interface

● A SQL Compendium
● SQL Queries-Data Manipulation Language

❍ SELECT

❍ Clauses
❍ INSERT INTO
❍ UPDATE
❍ DELETE

● SQL-Data Definition Language
❍ CREATE
❍ ALTER
❍ DROP

● Creating and Executing Commands
❍ Creating and Executing a Command

● Accessors
❍ Elements of a Parameter Accessor

● Command Parameters
● Multiple Resultsets
● Summary
● Q&A
● Workshop

❍ Quiz Questions
❍ Exercises

Day 18 continues the examination of OLE DB objects, specifically the Session and Command
objects and the interfaces they provide. You learn how to create a Session object by using the
IDBCreateSession interface of the DataSource object and how to create a Command object
using the IDBCreateCommand interface of the Session object. Although OLE DB data providers
don't have to support Command objects, the OLE DB ODBC data provider does support commands on
ODBC data sources. The section on Command objects includes a concise summary of Structured
Query Language (SQL). Today's examples focus on using the OLE DB ODBC data provider to access
a SQL Server data source.

Today you will

● Use Session objects to define a transaction context, create commands, and directly access
row sets.

● Work with interfaces supported by the Session object.
● Explore Command objects and how to use them to perform commands supported by the data

provider.
● Work with interfaces supported by the Command object.
● Discover the SQL query/command language.
● Understand the differences between SQL data manipulation and data definition commands.
● Use Accessors.
● Use Multiple resultsets

Sessions
The Session object provides a context for transactions and commands. The IDBCreatession
interface of the DataSource object creates a Session object. (The CreateSession method of
the IDBCreatession interface actually creates the Session object.) You can use the Session
object to

● Create a Command object.
● Access a row set directly.
● Create or modify data source tables and indexes.

The Session object is defined as supporting the following interfaces:

TSession {
 interface IGetDataSource; // Required Interface
 interface IOpenRowset; // Required Interface
 interface ISessionProperties; // Required Interface
 interface IDBCreateCommand;
 interface IDBSchemaRowset;
 interface IIndexDefinition;
 interface ISupportErrorInfo;
 interface ITableDefinition;
 interface ITransaction;
 interface ITransactionJoin;
 interface ITransactionLocal;
 interface ITransactionObject;
};

This is the TSession CoType. A CoType is a way to define a group of COM objects that have
similar characteristics. All COM objects that belong to the TSession CoType must expose its
mandatory interface. In addition, they can expose the optional interfaces.

The IGetDataSource Interface

The IGetDataSource interface obtains an interface pointer to an interface of the DataSource
object that created the Session object. This interface is required by the Session object. It defines
the standard IUnknown interface methods QueryInterface, AddRef, and Release and
provides one additional method, GetDataSource. The GetDataSource method is defined as
follows:

HRESULT GetDataSource(REFIID riid, IUnknown **ppDataSource);

The riid parameter specifies the interface of the DataSource object you want to access, and the
ppDataSource parameter returns a pointer to the DataSource interface you requested. This
method enables your application to access a DataSource object directly from a Session object
(that is, without using a variable to point to the desired object).

The IOpenRowset Interface

The IOpenRowset interface accesses a row set from a data source that doesn't support commands.
You will learn more about commands and the Command object later today. The IOpenRowset
interface is required by the Session object. The IOpenRowset interface defines the standard
IUnknown interface methods QueryInterface, AddRef, and Release and provides one
additional method, OpenRowset. The OpenRowset method is defined as follows:

HRESULT OpenRowset(IUnknown *pAggInterface, DBID *pTableID, DBID
*pIndexID,
 REFIID riid, ULONG cPropSet, DBPROPSET rdPropSet[],
 IUnknown **ppRowset);

The pAggInterface parameter is used if the row set is aggregated (that is, combined with other
row sets). If this parameter is NULL, that row set isn't being combined. The pTableID parameter is a
DBID structure that holds the name of the data source table you want open. The DBID structure helps
explain how the table name is passed. The DBID structure is defined as follows:

typedef struct tagDBID {
 union { // A union that holds either:
 GUID guid; // An actual GUID, or
 GUID *guid; // A pointer to a GUID
 } uGuid;
 DBKIND eKind; // A flag that determines the
 // type of ID being held in this
 // structure
 union { // A union that holds either:
 LPOLESTR pwszName; // A string name
 ULONG ulPropid; // A numeric ID
 } uName;
} DBID;

enum DBKINDENUM { // Values for the eKind flag
 // The ID is defined by the
 // following structure values:
 DBKIND_GUID_NAME, // A GUID and a Name
 DBKIND_GUID_PROPID, // A GUID and a Numeric ID
 DBKIND_NAME, // Just the Name
 DBKIND_PGUID_NAME, // A pointer to a GUID and a Name
 DBKIND_PGUID_PROPID, // A pointer to a GUID and a
Numeric ID
 DBKIND_PROPID, // Just a Numeric ID
 DBKIND_GUID // Just a GUID
};

As you can see, the DBID structure is defined to hold various ID combinations. The eKind flag
defines the combination used by the DBID structure to define the ID. The DBKINDENUM enumeration
structure defines the flags used by the eKind structure variable. For example, the following

specification defines a DBID that holds a table name:

DBID tableID;
LPWSTR pwszTableName = L"CUSTOMER";

tableID.eKind = DBKIND_NAME;
tableID.uname.pwszName = pwszTableName;

NOTE
The pwszName field of the DBID structure is defined as a LPOLESTR
(equivalent to the LPWSTR type), which defines a Unicode string. Unicode
strings use 16-bit character values to define strings of different languages.
The L above tells the compiler that the string literal is of type wchar t.
For more information on Unicode strings, please consult the Visual C++
online documentation.

The pIndexID parameter of the OpenRowset method is a DBID structure that represents the name
of the associated index to open. The riid parameter is a reference ID of the row set interface to
return. The interface must support row sets. Typically, this ID is IID_Rowset. The cPropSet
parameter specifies the number of properties specified in the DBPROPSET array. The rgPropSet
parameter is an array of DBPROPSET structures, which contain the row set properties. Finally, the
ppRowset parameter returns the row set interface pointer. (A detailed discussion of opening and
navigating row sets is part of Day 19, "Navigating the Resultset of a Query.")

The ISessionProperties Interface

The ISessionProperties interface gets and sets the properties of a Session object. Properties
define values that determine the state of an object. The ISessionProperties interface is required
for Session objects. It defines the standard IUnknown interface methods QueryInterface,
AddRef, and Release. Also, the interface provides two additional methods: GetProperties and
SetProperties. The GetProperties method retrieves the value of a property, and the
SetProperties method sets the value of a property. These methods are defined as follows:

HRESULT GetProperties(ULONG cPropIDSets, const DBPROPIDSET
rgPropSets[],
 ULONG *pcPropSets, DBPROPSET **prgPropSets);
HRESULT SetProperties(ULONG cPropNum, DBPROPSET rgPropSets[]);

The IDBCreateCommand Interface

The IDBCreateCommand interface creates a new Command object and is optional for Session
objects. This interface defines the standard IUnknown interface methods QueryInterface,
AddRef, and Release and provides one additional method, CreateCommand. The

CreateCommand method is defined as follows:

HRESULT CreateCommand(IUnknown pAggInterface, REFIID riid,
 IUnknown pCommandInt);

The pAggInterface parameter is used if the command is part of an aggregate. The riid
parameter specifies the Command interface to create. The pCommandInt parameter returns the
Command interface created.

The IDBSchemaRowset Interface

The IDBSchemaRowset retrieves data source schema information. Schema information describes
the data contained in the data source. The IDBSchemaRowset interface is optional for Session
objects. It defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release. The interface provides two additional methods: GetRowset and GetSchemas. The
GetRowset method returns a schema row set. The GetSchemas method returns an array of
available data source schemas. These methods are defined as follows:

HRESULT GetRowset(IUnknown *pAggInterface, REFGUID rguidSchema,
 ULONG cRestrictions, const VARIANT rgRectricts[],
 REFIID riid, ULONG cPropSets, DBPROPSET rdPropSet,
 IUnknown ppRowset);
HRESULT GetSchemas(ULONG *pSchemas, GUID **pgSchemas, ULONG
**pRestrictions);

For the GetRowset method, the pAggInterface parameter is used if the command is part of an
aggregate. The rguidSchema parameter defines a schema GUID. Table 18.1 defines the schema
GUIDs available. Refer to the OLE DB specification documentation for more information regarding
the row sets that these schemas return. The cRestrictions parameter defines the number of
column restrictions. The rgRestricts array parameter defines the column restrictions. The riid
parameter defines the interface ID of the row set interface to return; typically, this value is
IID_Rowset. The cPropSet parameter specifies the number of properties specified in the
DBPROPSET array. The rgPropSet parameter is an array of DBPROPSET structures, which contain
the row set properties. The ppRowset parameter is used to return the row set interface pointer.

For the GetSchemas method, the pSchemas parameter returns the number of schemas supported
by the data source. The pgSchemas parameter returns an array of schema GUIDs. The
pRestrictions parameter returns an array of schema row set column restrictions.

Table 18.1 Schema GUIDs
DBSCHEMA_ASSERTIONS

DBSCHEMA_CATALOGS

DBSCHEMA_CHARACTER_SETS

DBSCHEMA_COLLATIONS

DBSCHEMA_COLUMN_DOMAIN_USAGE

DBSCHEMA_COLUMN_PRIVILEGES

DBSCHEMA_COLUMNS

DBSCHEMA_CONSTRAINT_COLUMN_USAGE

DBSCHEMA_CONSTRAINT_TABLE_USAGE

DBSCHEMA_FOREIGN_KEYS

DBSCHEMA_INDEXES

DBSCHEMA_KEY_COLUMN_USAGE

DBSCHEMA_PRIMARY_KEYS

DBSCHEMA_PROCEDURE_COLUMNS

DBSCHEMA_PROCEDURE_PARAMETERS

DBSCHEMA_PROCEDURES

DBSCHEMA_PROVIDER_TYPES

DBSCHEMA_REFERENTIAL_CONSTRAINTS

DBSCHEMA_SCHEMATA

DBSCHEMA_SQL_LANGUAGES

DBSCHEMA_STATISTICS

DBSCHEMA_TABLE_CONSTRAINTS

DBSCHEMA_TABLE_PRIVILEGES

DBSCHEMA_TABLES

DBSCHEMA_TRANSLATIONS

DBSCHEMA_USAGE_PRIVILEGES

DBSCHEMA_VIEW_COLUMN_USAGE

DBSCHEMA_VIEW_TABLE_USAGE

DBSCHEMA_VIEWS

The ITableDefinition Interface

The ITableDefinition interface creates, deletes, and modifies data source tables. This interface
is optional. It defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release and provides four additional methods: AddColumn, CreateTable, DropColumn, and
DropTable. These methods are defined as follows:

HRESULT AddColumn(DBID *pTableID, DBCOLUMNDESC *pColDesc, DBID
**ppColId);
HRESULT CreateTable(IUnknown * pUnkOuter,
 DBID * pTableID,

 ULONG cColumnDescs,
 DBCOLUMNDESC rgColumnDescs[],
 REFIID riid,
 ULONG cPropertySets,
 DBPROPSET rgPropertySets[],
 DBID ** ppTableID,
 IUnknown ** ppRowset
HRESULT DropColumn(DBID *pTableID, DBID *pColumnID);
HRESULT DropTable(DBID *pTableID);

The DropColumn and DropTable methods should be self-explanatory, with both methods taking
the name of a table and column (if applicable) to delete. With the AddColumn method, the
pTableID parameter takes the name of the table to which the column will be added. The pColDesc
parameter describes the column to add. The pColId parameter returns a pointer to the column that
was just created. The CreateTable method pAggInterface parameter is used if the command
is part of an aggregate, and pTableID specifies the name of the table to create. The cColDescs
and pColDescs parameters define the number and description of the columns to create. The riid
parameter specifies the row set interface to return for the table you are creating. The cPropSet
parameter specifies the number of properties used in the DBPROPSET array. The rgPropSet
parameter is an array of DBPROPSET structures, which contain the table properties. Finally the
ppTableID and ppRowset parameters return pointers to the table ID and row set for the newly
created table. Listing 18.1 demonstrates how the CreateTable and DropTable methods are used.

Listing 18.1 Using the ITABLEDEFINITION to Create and Drop a Table

 1: DBID cTableID; // Holds the table
name
 2: DBCOLUMNDESC cColDescs[2]; // Column
definitions
 3: DBID *pNewTableID = NULL; // Interface to
newly
 4: // created table
 5: IRowset *pRowset = NULL; // Rowset interface
// pointer
 6:
 7: cTableID.eKind = DBKIND_NAME; // Specify the table
 8: // name to create
 9: cTableID.uname.pwszName = L"Table1";
10:
11: // Define Column 1
12: cColDescs[0].pwszTypeName = L"DBTYPE_CHAR"; // Specify the type
of
13: // column 1
14: cColDescs[0].pTypeInfo = NULL; // No additional

type
15: // information
16: cColDescs[0].rgPropertySets = NULL; // No special column
17: // properties
18: cColDescs[0].pclsid = IID_NULL; // If this is an OLE
19: // type column, this
is
20: // where the OLE
type is
21: // specified
22: cColDescs[0].cPropertySets = 0; // Number of
properties
23: // specified
24: cColDescs[0].ulColumnSize = 255; // Size of the
column,
25: // in this case 255
 // characters
26: cColDescs[0].dbcid.eKind = DBKIND_NAME; // Specify the field
name
27: cColDescs[0].dbcid.pwszName = L"Field1";
28: cColDescs[0].wType = DBTYPE_STR;
29: cColDescs[0].bPrecision = 0; // Only used for
30: cColDescs[0].bScale = 0; // floating-point
types
31:
32: cColDescs[1].pwszTypeName = L"DBTYPE_I4"; // Define Column 2
33: cColDescs[1].pTypeInfo = NULL;
34: cColDescs[1].rgPropertySets = NULL;
35: cColDescs[1].pclsid = IID_NULL;
36: cColDescs[1].cPropertySets = 0;
37: cColDescs[1].ulColumnSize = 0;
38: cColDescs[1].dbcid.eKind = DBKIND_NAME;
39: cColDescs[1].dbcid.pwszName = L"Field2";
40: cColDescs[1].wType = DBTYPE_I4;
41: cColDescs[1].bPrecision = 0;
42: cColDescs[1].bScale = 0;
43:
44: // Create the Table
45: MySession->CreateTable(NULL, &TableID, 2, &ColDescs,
IID_IRowset, 0, NULL,
46: &NewtableID, &pRowset);
47:
48: // --

49: // Drop the table named Table2
50: // --

51:
52: cTableID.eKind = DBKIND_NAME; // Specify the table
name
53: cTableID.uname.pwszName = L"Table2";
54: HRESULT DropTable(&cTableID);

Line 1 in Listing 18.1 defines a variable to hold the table name. Line 2 defines a column description
array with two elements, specifying that there will be two columns. See the comments following lines
1-25 to understand what the code is doing. Line 38 makes the CreateTable call to actually create
the table. Lines 45-47 drop a (different) table from the database.

NOTE
As you can see from this example, using the ITableDefinition
interface to create a table is time-consuming. If your data provider supports
a SQL command interface, you should use that instead when you create a
table.

The IIndexDefinition Interface

The IIndexDefinition interface enables data source indexes to be created and deleted. It is
optional and defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release. The interface provides two additional methods: CreateIndex and DropIndex, which
are defined as follows:

HRESULT CreateIndex(DBID * pTableID,
 DBID * pIndexID,
 ULONG cIndexColumnDescs,
 const DBINDEXCOLUMNDESC rgIndexColumnDescs[],
 ULONG cPropertySets,
 DBPROPSET rgPropertySets[],
 DBID ** ppIndexID
HRESULT DropIndex(DBID *pTableID, DBID *pIndexID);

The CreateIndex, pTableID, and pIndexID parameters define the table and index identifiers.
The cIndexCols parameter defines the number of index columns to use when creating the index.
The rdIndexColsDescs parameter defines an array of columns to use when creating the index.
The cPropSet parameter specifies the number of properties used in the DBPROPSET array. The
rgPropSet parameter is an array of DBPROPSET structures, which contain the index properties.
The ppIndexID parameter returns a pointer to thenew index. For the DropIndex method, the
pTableID and pIndexID parameters define the table and index identifiers of the index to delete.
(This book doesn't delve into the DropIndex method. Refer to the discussion of SQL later today for
more information about creating and deleting indexes by using the data definition capabilities of
SQL.)

The ITransaction, ITransactionJoin, ITransactionLocal, and
ITransactionObject Interfaces

Finally, the ITransaction, ITransactionJoin, ITransactionLocal, and

ITransactionObject interfaces create transactions. (See Day 20, "Properties, Transactions, and
Indexes.")

Commands
Command objects perform commands that the provider supports. Using the OLE DB ODBC provider
and a database such as SQL Server, you can use the Command object to execute SQL commands.
OLE DB data providers aren't required to support commands.

TIP
Remember that you can use the QueryInterface method to verify
whether a data provider supports commands. Use the
IID_IDBCreateCommand interface identifier when calling the
QueryInterface method. If the QueryInterface command
succeeds, the data provider supports commands!

This section begins with a discussion of the Command object and its associated interfaces and then
briefly reviews the SQL command language. After you understand the Command object and SQL, you
learn how to utilize these objects when using Visual C++.

NOTE
If the data provider you're using doesn't support commands, the only way
you can obtain data source data is by using the IOpenRowset interface
of the Session object.

The TCommand CoType supports the following interfaces:

TCommand {
 interface IAccessor; // Required Interface
 interface IColumnsInfo; // Required Interface
 interface ICommand; // Required Interface
 interface ICommandProperties; // Required Interface
 interface ICommandText; // Required Interface
 interface IConvertType; // Required Interface
 interface IColumnsRowset;
 interface ICommandPrepare;
 interface ICommandWithParameters;
 interface ISupportErrorInfo;
};

The ISupportErrorInfo interface was introduced yesterday and is covered in more detail on Day

21, "OLE DB Error Handling."

The IAccessor Interface

Accessors manage the buffer in which retrieved row sets or command parameters are stored. The
CreateAccessor method creates new Accessors. An Accessor is identified by its handle (an
HACCESSOR type), which is returned in an out parameter of the CreateAccessor method. An
Accessor created by a Command object is inherited by the row sets that the Command object
subsequently creates. Whenever the consumer finishes using an Accessor, the consumer must call
the ReleaseAccessor method to release the memory it holds. This section briefly describes the
IAccessor interface; a more detailed discussion of command parameters and Accessors appears at
the end of today. (Row set Accessors are covered in more detail tomorrow.)

The IAccessor interface is required by Command objects. This interface defines the standard
IUnknown interface methods QueryInterface, AddRef, and Release. The interface also
provides four additional methods: AddRefAccessor, CreateAccessor, GetBindings, and
ReleaseAccessor. These methods are defined as follows:

HRESULT AddRefAccessor(
 DBACCESSORFLAGS dwAccessorFlags,
 ULONG cBindings,
 const DBBINDING rgBindings[],
 ULONG cbRowSize,
 HACCESSOR * phAccessor,
 DBBINDSTATUS rgStatus[]);
HRESULT GetBindings(HACCESSOR hAccessor, DBACCESSORFLAGS *pdwFlags,
 ULONG *pNumBindings, DBBINDING *prgBinding);
HRESULT ReleaseAccessor(HACCESSOR hAccessor, ULONG *pRefCount);

Reference counts control how many times an Accessor is currently in use. If an Accessor is
being used in a multithreaded environment, each thread should call the AddRefAccessor method.
This procedure adds to the reference count of the Accessor. The ReleaseAccessor method
frees the memory used by an Accessor. Before the memory is actually freed, the reference count is
decremented. If the reference count is 0 (which means that the Accessor isn't being used anywhere
else), the memory is released. The CreateAccessor method creates and allocates the memory
required by is 0 (which means that the 000 isn't being used anywhere else), the memory is released.
The CreateAccessor method creates and allocates the memory required by a new Accessor.
The GetBindings method retrieves the data bindings associated withan Accessor. I explain these
methods in more detail later today and again tomorrow (Day 19).

The IColumnsInfo Interface

The IColumnsInfo method retrieves schema information for a prepared statement. Prepared
statements are commands that are precompiled to execute faster. The data provider interprets a
command once, when it is defined. Then when the command is executed later, it can be executed
quickly. The IColumnsInfo interface can work with a prepared statement to retrieve information

regarding the columns that will be returned in the row set when the command is executed. The
IColumnsInfo interface is required by the Command object. The IColumnsInfo interface
defines the standard IUnknown interface methods QueryInterface, AddRef, and Release.
The interface also provides two additional methods: GetColumnInfo and MapColumnIDs. These
methods are defined as follows:

HRESULT GetColumnInfo(ULONG *pNumColumns, DBCOLUMNINFO **prdColInfo,
 OLECHAR **ppBuffer);
HRESULT MapColumnIDs(ULONG cNumColIDs, const DBID rgColIDs, ULONG
rgCols);

The GetColumnInfo method retrieves information about the columns returned by a prepared
statement. The pNumColumns parameter returns the number of columns created by the prepared
statement. The prdColInfo is a DBCOLUMNINFO structure that contains the schema information
regarding the columns returned by the prepared statement. The ppBuffer parameter returns a
pointer to a block of memory, which is the memory that the GetColumnInfo method used to store
strings for the prdColInfo structure. After you review the prdColInfo structure, you must free
the memory through the COM task allocator by getting a pointer to IMalloc and calling its Free
function or by calling CoTaskMemFree to release this memory.

The MapColumnIDs method takes an array of column IDs rgColIDs and returns another array,
rgCols, which contains the ordinal position of each of these columns in the prepared statement. The
rgCols array elements match up with the rgColIDs elements. For example, if element 1 of the
rgCols array contains any value other than DB_INVALIDCOLUMN, such as the value 5, element 1
in the rgColIDs structure is the fifth column in the row set that the prepared statement will return. A
value of DB_INVALIDCOLUMN identifies a column that isn't contained in the prepared statement. The
cNumColIDs parameter specifies the number of columns contained in the rgColIDs array.

The ICommand Interface

The ICommand interface executes and manages executing commands. It is required by the Command
object and defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release. This interface also provides three additional methods: Cancel, Execute, and
GetDBSession. These methods are defined as follows:

HRESULT Cancel();
HRESULT Execute(IUnknown pAggInterface, REFIID riid, DBPARAMS
*pDBParams,
 LONG *pcNumRowsAffected, IUnknown **ppRowset);
HRESULT GetDBSession(REFID riid, IUnknown **ppSessionInterface);

TIP

In a multithreaded application, a thread can be spawned that executes the
command while a different thread is performing other processing. You can
use the ICommand interface commands to control execution of the
command. This control doesn't have to be performed in the same thread as
the executing command.

The Cancel method aborts command execution. The Execute command actually executes a
command. The pAggInterface parameter is used if the row set created by the command is part of
an aggregate. The riid parameter specifies the ID of the row set interface to create for the data
returned by the command, typically IID_IRowset. The pDBparams method specifies command
parameters; if the command doesn't use parameters, this value is NULL. The pcNumRowsAffected
parameter returns the number of rows that the command changes, deletes, adds, or returns. The
ppRowset command returns a pointer to the row set interface. Finally, the GetDBSesion method
returns a pointer to the Session object that creates the current Command object. The riid interface
specifies the Session interface to return. The ppSessionInterface parameter returns a pointer
to the specified Session interface.

The ICommandProperties Interface

The ICOmmandProperties interface gets and sets the properties for the command. You can use
this interface to specify the properties that the returned rowset must satisfy. As stated before,
properties define values that determine the state of an object. The ICommandProperties interface
is required for Command objects. It defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release and provides two additional methods:
GetProperties and SetProperties. The GetProperties method retrieves the value of a
property, and the SetProperties method sets the value of a property. These methods are defined
as follows:

HRESULT GetProperties(ULONG cPropIDSets, const DBPROPIDSET
rgPropSets[],
 ULONG *pcPropSets, DBPROPSET **prgPropSets);
HRESULT SetProperties(ULONG cPropNum, DBPROPSET rgPropSets[]);

The ICommandText Interface

The ICommandText interface sets and retrieves the actual command text, which specifies the data
source command to execute. The ICommandText interface is required to be implemented on all
Command objects. It defines the standard IUnknown interface methods QueryInterface,
AddRef, and Release and provides two additional methods: GetCommandText and
SetCommandText. These methods are defined as follows:

HRESULT SetCommandText(REFGUID gCmdDialect, LPCOLESTR *pwszCommand);
HRESULT GetCommandText(GUID *pgCmdDialect, LPCOLESTR *pwszCommand);

The SetCommandText method specifies the data source command. The gCmdDialect specifies
the command dialect GUID, for the dialect used in the command. Typically, for data sources that
support the SQL command syntax, this value is DBGUID_DBSQL. The pwszCommand parameter
specifies a string that contains the command. The GetTextCommand method retrieves a command
text. The pgCmdDialect parameter returns the command dialect GUID, and the pwszCommand
parameter returns the actual command text. Listing 18.2 demonstrates how to create and execute a
command. Note the comments in the source code for an explanation of what the code is doing. The
code in Listing 18.2 does no error checking, nor does it release the allocated interfaces. This is for
code brevity. Of course, you should check return codes and release interfaces that you allocate in your
code.

Listing 18.2 How to Create and Execute a Command by Using the COMMAND Object

 1: IDBCreateCommand *pCreateCommand;
 2: ICommandText *pCommandText;
 3: IRowset *pRowset;
 4: pwszCommandStr = OLESTR("SELECT * FROM TABLE1");
 5: LONG cNumRows;
 6:
 7: // Use a Session object to create a CreateCommand interface
 8: Session->CreateSession(NULL, IID_IDBCreateComand,
 9: (IUnknown **) &pCreateCommand);
10:
11: // Create a CommandText interface
12: pCreateCommand->CreateCommand(NULL, IID_ICommandText,
13: (IUnknown **) &pCommandText);
14:
15: // Free the CreateCommand interface pointer
16: pCreateCommand->Release();
17:
18: // Specify the command, using the SetCommandText method
19: pCommandText->SetCommandText(DBGUID_DBSQL, pwszCommandStr);
20:
21: // Execute the command
22: pCommandText->Execute(NULL, IID_Rowset, NULL, &cNumRows,
23: (IUnknown **) &pRowset);

The IConvertType Interface

The IConvertType interface determines whether a command can convert data types. The
IConvertType interface is required by the Command object and defines the standard IUnknown
interface methods QueryInterface, AddRef, and Release. The interface defines one additional
method, CanConvert, which is defined as follows:

HRESULT CanConvert(DBTYPE wTypeFrom, DBTYPE wTypeTo,
 DBCONVERTFLAGS wConvertFlag);

The wTypeFrom parameter specifies the type you want to convert from, and the wTypeTo parameter
specifies the type you want to convert to. The wConvertFlag parameter specifies how this
conversion is to be performed by using the constants DBCONVERTFLAGS COLUMN,
DBCONVERTFLAGS ISFIXEDLENGTH, DBCONVERTFLAGS ISLONG, DBCONVERTFLAGS
PARAMETER, and DBCONVERTFLAGS FROMVARIANT. If the method returns S_OK, the type
conversion can be performed; otherwise, it cannot. Listing 18.3 demonstrates how to check whether a
type conversion from an integer to a string can be performed on a parameter.

Listing 18.3 Checking Whether a Type Conversion Is Possible

 1: if(SUCCEEDED(pCommand->CanConvert(DBTYPE_I4, DBTYPE_STR,
 DBCONVERTFLAGS_PARAMETER))
 2: {
 3: cout << "Conversion can be performed!!!\n";
 4: }
 5: else
 6: {
 7: cout << "Conversion can NOT be performed!!!!\n");
 8: };

The IColumnsRowset Interface

The IColumnsRowset interface is similar to the IColumnsInfo interface in that
IColumnsRowset also returns a row set containing schema information about the columns created
by a command. This interface is optional and is provided only by more advanced data providers. It
defines the standard IUnknown interface methods QueryInterface, AddRef, and Release, as
well as two additional methods: GetAvailableColumns and GetColumnsRowset. These
methods are defined as follows:

HRESULT GetAvailableColumns(ULONG *pNumOptCols, DBID **ppOptCols);
HRESULT GetColumnsRowset(IUnknown *pAggInterface, ULONG cNumOptCols,
 const DBID rgOptCols[], REFIID riid,
 ULONG cNumPropSets, DBPROPSET rgPropSets[],
 IUnknown **pColumnRowset);

The GetAvailableColumns method determines the optional columns that a command could
return. The GetColumnsRowset returns a row set containing information about the columns
returned by a command.

TIP
The IColumnsInfo interface almost the same information as the
IColumnsRowset interface provides and is easier to use. Unless you
specifically require this schema information to be returned as a row set or
need to know what optional columns can be returned, use the
IColumnsInfo interface instead of the IColumnsRowset interface.

The ICommandPrepare Interface

The ICommandPrepare interface converts a command to a prepared command. A prepared
command has been precompiled so that it can execute faster after it is run. If you expect a command to
be executed repeatedly, it is useful to transform it into a prepared command. This technique improves
application performance. The ICommandPrepare interface defines the standard IUnknown
interface methods QueryInterface, AddRef, and Release. It defines two additional methods:
Prepare and Unprepare, which are defined as follows:

HRESULT Prepare(ULONG cNumUsages);
HRESULT Unprepare();

The Prepare method takes a single parameter, cNumUsages, which the command optimizer can
use to determine the appropriate way to save the command interpretation. If this value is 0, the default
optimization method is used. The higher the value, in theory, the more the data provider will try to
optimize the command. The Unprepare command deletes the precompiled command.

The ICommandWithParameters Interface

The last interface provided by the Command object is the optional ICommandWithParameters.
The ICommandWitParameters interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface defines three additional methods:
GetParameterInfo, MapParameterNames, and SetParameterInfo, which are defined as
follows:

HRESULT GetParameterInfo(ULONG *pNumParams, DBPARAMINFO prgParamInfo,
 OLECHAR **ppBuffer);
HRESULT MapParameterNames(ULONG cNumParams, const OLECHAR
*rgParamNames[],
 LONG rgParamOrds[]);
HRESULT SetParameterInfo(ULONG cNumParams, const ULONG rgParamOrds[],
 const DBPARAMBINDINFO rgParamBindInfo[]);

The GetParameterInfo method retrieves parameter information. The MapParameterNames
method maps parameter names to their ordinal positions. The SetParameterInfo method
specifies command parameter values. At the end of today's lesson, I'll show you how to create
commands that use parameters, and I'll explain the appropriate methods in more detail.

The next section is a brief survey of SQL. Using SQL is the easiest way to retrieve row sets and
manage the information contained in the data source. You should use SQL with any data source that
supports it.

A SQL Compendium
This section provides you with a concise summary. This summary of SQL should be helpful for you
when learning and working with OLE DB Command objects.

As you know, SQL is the standard language for manipulating relational database information. The
American National Standards Institute (ANSI) is responsible for defining computer industry standards.
The ANSI SQL-89 standard was established in 1989. Most relational databases comply to the 1989
standard (although each vendor's implementation of SQL is unique in some respects). In 1992 the
ANSI SQL-92 standard was introduced. Level I is the highest of the three levels of compliance to the
ANSI standard.

TIP
Use the GetProperties method of the IDBProperties interface to
determine the level of SQL supported by a particular data source.

You learned earlier that SQL provides two subsets of commands. One set of commands is used for
data manipulation, and the other subset is used for data definition. Data manipulation language
enables you to select and modify database data. Data definition language enables you to change the
database schema (tables, fields, and indexes).

SQL Queries-Data Manipulation Language
This overview of the SQL command language begins with the data manipulation command subset.
The data manipulation commands are the most frequently used SQL commands. The intent of this
brief discussion is to give you enough information to write most of the SQL commands your
applications will require.

NOTE
In the following discussion, SQL keywords appear in capital letters. This
style isn't a requirement of SQL, but it helps to identify the keywords in the
SQL statements you will write.

The following discussion assumes that you have a database named Customer, which contains Tables

18.2-18.4:

Table 18.2 Customers
Field Type

CustomerID Long integer
CompanyName 50-character string
ContactFirstName 30-character string
ContactLastName 50-character string
CompanyOrDepartment 50-character string
BillingAddress 255-character string
City 50-character string
StateOrProvince 20-character string
PostalCode 20-character string
Country 50-character string
ContactTitle 50-character string
PhoneNumber 30-character string
Extension 30-character string
FaxNumber 30-character string
EmailAddress 50-character string
Notes Memo

Table 18.3 Order Details
Field Type

OrderDetailID Long integer
OrderID Long integer
ProductID Long integer
DateSold Date
Quantity Double
UnitPrice Currency
Discount Double
SalePrice Currency
SalesTax Currency
LineTotal LineTotal

Table 18.4 Orders

Field Type
OrderID Long integer
CustomerID Long integer
Required-byDate Date
Promised-byDate Date
ShipName 50-character string
ShipAddress 255-character string
ShipCity 50-character string
ShipState 50-character string
ShipStateOrProvince 50-character string
ShipPostalCode 20-character string
ShipCountry 50-character string
ShipPhoneNumber 30-character string
ShipDate Date
ShippingMethodID Long integer
FreightCharge Currency
SalesTaxRate Double

SELECT

The SELECT statement retrieves subsets of records in the database. SELECT statements read data
from the database; they don't change any data. The results of SELECT statements are row sets; I'll
discuss this relationship and how to access and navigate row set data in more detail tomorrow.

The most basic SELECT statement has the following form:

SELECT fields FROM table

The fields parameter represents the fields of the table you want to access and the
table parameter represents the database table from which you want to access data.
The fields parameter can be the actual names of each field in your table, separated by
commas; if you want all the fields contained in the table, use the asterisk (*) instead. To
retrieve only the CustomerID and CompanyName fields from a table named
Customer, use the following SELECT statement:

SELECT CustomerID, CompanyName FROM Customer

To retrieve all the fields from the table named Customer, use the following SELECT statement:

SELECT * FROM Customer

Clauses

You can add various clauses to SQL commands to specify subsets of data to operate on, to change the
ordering and grouping of the data, and to specify access to external databases. The following
paragraphs explain how these clauses apply to the SELECT statement.

WHERE

The WHERE clause of a SELECT statement limits the set of records selected. The SELECT statement
controls which fields are retrieved from a table; the WHERE clause filters which data is selected from a
table. You can also use the WHERE clause to join two or more tables.

The next example shows how the WHERE clause filters the records from a table. A SELECT statement
with a WHERE clause has the following form:

SELECT fields FROM table
WHERE field COMPAREOP value {LOGICALOP field COMPAREOP value}...

The field parameter specifies the name of a field, and the value parameter specifies
the value of that field. The COMPAREOP parameter is a SQL comparison operator, and
the LOGICALOP parameter is a SQL logical operator. The portion of the WHERE clause
contained in the brackets is an optional expression, which can be repeated up to 40 times
to create complex SELECT statements.

Table 18.5 summarizes the SQL comparison operators, and Table 18.6 summarizes the SQL logical
operators. For the most part, these logical and comparison operators should be familiar to any
programmer who has constructed an IF statement.

NOTE
The action of a WHERE clause resembles the action of a classic IF
statement. After the SELECT statement retrieves the data from the table,
the WHERE clause tests the retrieved data values against the logical WHERE
clause statement. If the WHERE clause test passes, the record is included in
the SELECT subset; otherwise, it is excluded.

Table 18.5 The SQL Comparison Operators
Operator Use

= Equal to
< Less than

<= Less than or equal to
> Greater than
>= Greater than or equal to
<> Not equal to
LIKE Used to match a pattern
BETWEEN...AND Used to specify a range of values
IN Used to specify a set of values

Table 18.6 The SQL Logical Operators
Operator Use
AND Both conditions joined by the AND operator must be TRUE for the WHERE

clause to be TRUE.
OR Either condition joined by the OR operator must be TRUE for the WHERE clause

to be TRUE.
NOT Logical NOT.

The following SELECT statement builds on the earlier example. This statement retrieves only the
CustomerID and CompanyName fields from a table named Customer where the
StateOrProvince is NY.

SELECT CustomerID, CompanyName FROM Customer
WHERE StateOrProvince = 'NY'

TIP
You may enclose SQL string literals in either single quotes (') or double
quotes ("). As you will see later today, SQL commands are passed to OLE
DB as strings. Using single quotes is easier than using double quotes
because a \ precedes double quotes in C++ strings.

As the preceding example shows, you don't have to include a WHERE clause field in the fields that are
retrieved. However, a WHERE clause field must be a member of the table or tables from which you are
retrieving data. You're probably already familiar with how the =, <=, >=, and <> comparison
operators work. The IN, BETWEEN, and LIKE comparison operators are explained next.

The following SELECT statement retrieves all the fields from the Customer table where the
StateOrProvince is NY, NJ, or CA.

SELECT * FROM Customer
WHERE StateOrProvince IN ('NY', 'NJ', 'CA')

The IN operator requires a set of values to be defined. If the field's value is in the specified set, the
resulting subset of data will include that record.

The BETWEEN operator specifies a range of values that a field's value must be in. You can use the
following SELECT statement to retrieve all the fields from the Customer table where the
CustomerID is in the range 1 to 1000 inclusive:

SELECT * FROM Customers
WHERE CustomerID BETWEEN 1 AND 1000

You can combine the previous two SELECT statements to retrieve all the fields from the Customer
table where the CustomerID is between 1 and 1000 and the StateOrProvince is NY, NJ, or
CA. For example, look at the following code:

SELECT * FROM Customers
WHERE StateOrProvince IN ('NY', 'NJ', 'CA')
AND CustomerID BETWEEN 1 AND 1000

This example shows how you can combine the WHERE statement expressions to create complex filters.
WHERE expressions are evaluated from left to right; you may use parentheses to control the evaluation
order if necessary.

The LIKE operator can be used in pattern matching. To specify a match to a single character, the ? is
used. To specify a match to a number of characters, the * is used. This method is similar to wild card
matching with the DOS DIR command. Table 18.7 shows which values a sample LIKE statement will
match.

Table 18.7 Sample LIKE Statements
Like Statement Values Matched Values Not Matched
LIKE('*A*') CA, PA, CAN, DIANE, MARIE NY, NY, JOHN, Diane
LIKE('?A') CA, PA, WA MARIE, NY, NJ
LIKE('A?') AL, AK NY, NJ, WA

You can use the following SELECT statement to retrieve all the fields from the Customer table
where the StateOrProvince begins with an N:

SELECT * FROM Customers
WHERE StateOrProvince LIKE('N*')

You have seen how to use the WHERE clause to filter the data retrieved by the SELECT statement. The
WHERE clause can also link two or more tables into a single resulting set of data.

The capability to join multiple tables together is the real power of relational databases. You don't have

to worry about the details of how to accomplish this task; SQL handles these details for you. A
SELECT statement that joins two or more tables together has the simplest form:

SELECT table1.field1, table2.field2 FROM table1, table2
WHERE table1.field1 = table2.field2

This example illustrates two important new concepts. First, the FROM clause of the SELECT statement
specifies more than one table. Second, the . operator is introduced in naming fields, for example,
table1.field1. Field1 is a member of table1. If the fields you are selecting have different
names, the . operator isn't required. The . operator makes the name of the field you are selecting
unique. Although the . operator isn't required, it does help when you are creating complex queries.
You can combine the . operator with the * field specifier to retrieve all the fields from a table. The
statement table1.* would retrieve all the fields from table1.

The following SELECT statement retrieves all the customer information, along with an order number
for each associated order that the customer has placed from the sample database specified earlier:

SELECT Orders.OrderID, Customer.*
WHERE Orders.CustomerID = Customer.CustomerID

You don't have to include the Orders.CustomerID field in the set of fields that you are retrieving.
On the other hand, you must use the . operator; without it SQL wouldn't know whether you were
talking about the CustomerID field in the Orders table or the CustomerID field in the
Customer table.

The capability of the WHERE clause to filter selected data can be combined with the capability to join
two or more tables. For example, you can extend the preceding SELECT statement to return only the
records where the OrderId is between 1 and 2000:

SELECT Orders.OrderID, Customers.* FROM Customers, Orders
WHERE Orders.CustomerID = Customers.CustomerID
AND Order.OrderID BETWEEN 1 AND 2000

Earlier you saw how the IN comparison operator specifies a set of data for a field value. You can also
create this subset of data for the IN operator by using another query. A subquery creates a set of data
that a WHERE clause can use to match a field value. For example, the following SELECT statement
selects all the Customer fields that have an order Promised-byDate greater than 05/25/97:

SELECT Customers.* FROM Customers
WHERE CustomerID IN
 (SELECT Orders.CustomerID FROM Orders
 WHERE Orders.Promised-byDate > #05/25/97#)

NOTE

You must enclose date literals with the pound sign (#), as shown in the pre-
ceding code. Also, date literals must be in U.S. format, even if a non-U.S.
version of the database engine is being used.

This example performs two SELECT statements. One SELECT statement, the subquery, creates the set
of CustomerIDs from the Orders table that has a Promised-byDate greater than 05/25/97.
The other SELECT statement uses the results for the first SELECT statement with the IN logical
operator to filter the Customer records.

The general format for subqueries is

[ic:syntax]expression [NOT] IN (subquery)
comparison [ANY | ALL | SOME] (subquery)
[NOT] EXISTS (subquery)

You are already familiar with the IN operator. Similarly, you can use the ANY, ALL, or SOME
operators to match any, all, or just some of the fields in subquery. The EXISTS operator checks to
see whether subquery returns any records.

Aggregate Functions

Aggregate functions enable SELECT statements to return a result that applies to a group of records.
Table 18.5 summarizes the aggregate functions available in SQL.

Table 18.8 SQL Aggregate Functions
Function Use

AVG Returns the average value of a field
COUNT Returns the number of records
MAX Returns the maximum value of a field
MIN Returns the minimum value of a field
SUM Returns the sum of the values of a field

The following SELECT statement determines the total amount of all the orders in the Order
Detail table:

SELECT SUM([Order Detail].LineTotal) FROM [Order Detail]

NOTE

Brackets [] enclose table or field names that contain a space or
punctuation.

GROUP BY

The GROUP BY clause combines records with identical field values into a single record. The GROUP
BY clause is useful with SQL aggregate functions. For example, you can retrieve the total amount of
all orders for each CustomerID with the following SELECT statement:

SELECT [Order Detail].CustomerID, SUM([Order Detail].LineTotal)
FROM [Order Detail]

This SELECT statement will work, but it will return duplicate records-one for each order a customer
has placed. The GROUP BY clause eliminates these duplicate records. To use the GROUP BY clause,
you would rewrite this SELECT statement as

SELECT [Order Detail].CustomerID, SUM([Order Detail].LineTotal)
FROM [Order Detail]
GROUP BY [Order Detail].CustomerID

The rewritten statement will return a single record for each CustomerID. Each record will contain
the CustomerID and total of all orders in the Order Detail table for that CustomerID.

Aliasing Field Names

When data is selected from a table, the name of the field in the resulting row set is the same as the
name of the field in the table. You can change the name of the field in the resulting row set by using
the technique called field aliasing. For example, you can retrieve all the CustomerIDs from the
Customer table, calling the CustomerID field CustomerNum in the resulting row set, with the
following SELECT statement:

SELECT CustomerID AS CustomerNum FROM Customers

HAVING

The HAVING clause is used with the GROUP BY clause. The HAVING clause filters the grouped data
resulting from the GROUP BY clause in the same way that the WHERE clause filters the data of the
SELECT statement. HAVING and WHERE expressions are constructed in the same way, and both are
limited to 40 expressions. For example, you can retrieve the total amount of all orders for
CustomerIDs whose totals are greater than $1,000, with the following SELECT statement:

SELECT [Order Detail].CustomerID,
 SUM([Order Detail].LineTotal) AS TotalAmt
FROM [Order Detail]

GROUP BY [Order Detail].CustomerID
HAVING TotalAmt > 1000

ORDER BY

The ORDER BY clause sorts the SELECT statement resultant set of records. You may specify multiple
sort keys and sort records in ascending or descending order. For example, you can retrieve all the
records in the Customer table sorted by CompanyName in ascending order with the following
SELECT statement:

SELECT * FROM Customers
ORDER BY CompanyName ASC

The following SQL statement performs the same selection, sorted in descending order:

SELECT * FROM Customers
ORDER BY CompanyName DESC

To retrieve all the records in the Customer table sorted by StateOrProvince in ascending order,
and then CompanyName in ascending order, use the following:

SELECT * FROM Customers
ORDER BY StateOrProvince, CompanyName ASC

If the ordering directive (ASC or DESC) is omitted, the records will be sorted in ascending order by
default.

DISTINCT and DISTINCTROW

The DISTINCT clause removes duplicate records from the resulting data set. The following SELECT
statement retrieves the unique customer contact last names from the Customers table:

SELECT DISTINCT ContactLastName FROM Customers

If more than one customer contact has the last name Jones, the resulting subset of data will include
only one record.

The DISTINCTROW clause selects data that is distinct in any of the fields. For example, you can
retrieve all the nonduplicate records in the Customers table with the following SELECT statement:

SELECT DISTINCTROW * FROM Customers

TOP

The TOP clause is used with the ORDER BY clause. With the TOP clause, you can limit the number of

records returned to the TOP n number of records, where n is specified in the SELECT statement. For
example, you can retrieve the top 50 total amount of all orders for each CustomerID with the
following SELECT statement:

SELECT TOP 50 [Order Detail].CustomerID,
 SUM([Order Detail].LineTotal) AS TotalAmt
FROM [Order Detail]
GROUP BY [Order Detail].CustomerID
ORDER BY TotalAmt

The TOP clause can also specify a percentage. The following query returns the top 10% of total
amounts:

SELECT TOP 10 PERCENT [Order Detail].CustomerID,
 SUM([Order Detail].LineTotal) AS TotalAmt
FROM [Order Detail]
GROUP BY [Order Detail].CustomerID
ORDER BY TotalAmt

JOIN

Creating a join is one of the more powerful functions that a relational database can perform. Table
18.6 summarizes the three types of joins that relational databases can create.

Table 18.9 Relational Database Types of Joins
Join Type Result

INNER JOIN Records are included in the resulting data set only when the field
specified in the first table matches the field specified in the
second table.

RIGHT OUTER JOIN All the records from the second table are included with the
matching records from both tables.

LEFT OUTER JOIN All the records from the first table are included with the matching
records from both tables.

The JOIN clause is used in the following manner:

FROM table1 [LEFT | RIGHT | INNER] JOIN table2
ON table1.field1 = table2.field2

Creating an INNER JOIN is the same as creating a join by using the WHERE clause.
LEFT and RIGHT joins produce additional records, as specified in Table 18.6.

One way to retrieve customer information and an order number for each associated order that a
customer has placed (a SELECT statement using the WHERE clause) was shown earlier:

SELECT Orders.OrderID, Customers.* FROM Orders, Customers
WHERE Orders.CustomerID = Customer.CustomerID

You can achieve the same result by using the following SELECT statement with an INNER JOIN:

SELECT Orders.OrderID, Customers.*
FROM Orders INNER JOIN Customers
ON Orders.CustomerID = Customer.CustomerID

The preceding information should enable you to use the SQL language to retrieve data from a
database. The following sections introduce three SQL commands (INSERT INTO, UPDATE, and
DELETE) that enable you to modify records in the database.

INSERT INTO

The INSERT INTO command adds records to a table. You can insert records from the result of
another SELECT statement, or you can append single records by specifying their values. If any field is
omitted from the target of the table insert, it will become a NULL value. You can use the following
SQL statement to append a single record to the Customers table:

INSERT INTO Customers(CustomerID, CompanyName, ContactFirstName,
 ContactLastName, CompanyOrDepartment,
 BillingAddress, City, StateOrProvince,
 PostalCode, Country, ContactTitle, PhoneNumber,
 Extension, FaxNumber, EmailAddress)
VALUES (100, 'ABC Manufacturing', 'Marie', 'McCartan', 'Executive'
 '123 Main Street', 'Buffalo', 'New York', '14225', 'USA',
 'President', '716-555-1212', '123', '716-555-2121',
 'president@abcmfg.com')

UPDATE

The UPDATE command modifies records in a table, based on specified criteria. The UPDATE
command is useful for changing multiple records or fields in multiple tables. For example, here's how
to update the sales tax rate to 6% for all orders in the Orders table that are shipped to CA:

UPDATE Orders
SET SalesTaxRate = 0.06
WHERE Orders.ShipState = 'CA'

DELETE

The DELETE command removes records from a table that meet specified criteria. When records are
deleted, they cannot be recovered. Here's how to delete all the records from the Customers table
that represent customers from San Diego, CA:

DELETE FROM Customers
WHERE Customers.City = 'San Diego' AND
 Customers.StateOrProvince = 'CA'

SQL-Data Definition Language
In addition to retrieving, adding, and modifying records in database tables, SQL has three commands
that can modify the schema of the database:

● CREATE creates tables and indexes.
● DROP deletes tables.
● ALTER modifies table fields and indexes.

CREATE

The CREATE command creates new tables and indexes. The following example creates a new table
named Products:

CREATE TABLE Products (ProductID INTEGER, ProductDesc TEXT(50))

The new table contains two fields: the ProductID and the ProductDesc. As you can see, the type
of the field is specified after the field name.

The following SQL statement creates a new unique index on the ProductID field for the newly
created Products table:

CREATE UNIQUE INDEX ProdIndex ON Products (ProductID)

ALTER

The ALTER command adds or removes fields and indexes to or from a table. The following SQL
statement adds the new field SupplierID and ProductColor to the Products table:

ALTER TABLE Products ADD COLUMN SupplierID INTEGER
ALTER TABLE Products ADD COLUMN ProductColor TEXT(30)

Here's how to remove the ProductColor field from the Products table:

ALTER TABLE Products DROP COLUMN ProductColor

Here's how to add a secondary index on the SupplierID field in the Products table:

ALTER TABLE Products ADD CONSTRAINT ProdSuppIdx FOREIGN KEY SupplierID

And here's how to delete the newly created index from the Products table:

ALTER TABLE Products DROP CONSTRAINT ProdSuppIdx

DROP

The DROP command deletes tables. The DROP command removes the table and its associated indexes,
unlike the DELETE command that deletes the selected records from the table. Even if all the table
records are deleted from a table by using the DELETE command, the empty table and its indexes will
still be present. You cannot recover a dropped table. The following SQL statement deletes the
Products table that you just created and modified:

DROP TABLE Products

Creating and Executing Commands
Now that you have a better understanding of the Session objects, Command objects, and SQL, you
can begin to apply your knowledge by writing some code. Today's business concludes by discussing
several issues related to command processing:

● How to create and execute commands
● How to create commands with parameters and how to use parameter Accessors
● How to use command states
● How to create commands that return multiple resultsets

Creating and Executing a Command

The process of creating and executing commands is fairly straightforward (you might want to refer to
Listing 18.2 for a review):

1. Create a Command object by using the Session interface CreateCommand method.
2. Obtain access to the ICommandText interface of the Command object.
3. Specify the command string.
4. Use the Execute method of the Command object to actually run the command.
5. Navigate the row set created, if applicable (discussed in more detail tomorrow).
6. Release the interfaces accessed.

Listing 18.4 continues with the simple application from Listing 17.4. Listing 18.4 starts by using the
CreateSession method of the IDBCreateSession interface and adds some code to create a
Session object. The Session object is then used to create a Command object with the
CreateCommand method of the IDBCreateCommand interface. Finally, the command text is
specified, and the command is executed. A simple SQL query retrieves the fields CUSTID and
CUSTNAME from the CUSTOMERS table in the IDCDatabase and creates a row set that contains the
information found in the CUSTOMERS table. (I'll explain the process of navigating and accessing row

sets in more detail tomorrow.)

To build the application, run Visual Studio and select the File, New menu choice. Click the Projects
tab and specify a Win32 Console Application. Call the application COMMANDTEST. Click OK, specify
that you want to create an empty project, and click the Finish button. After AppWizard runs, create a
new C++ source file as part of the project. You can call it whatever you think is appropriate, such as
COMMANDTEST.CPP. Enter the code shown in Listing 18.4 into the source file.

You will need to change the input libraries for the linker to the following:

oledbd.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
 advapi32.lib
shell32.lib ole32.lib oleaut32.lib uuid.lib

You do this under the Project, Settings menu on the Link tab. When you build the project, it should
compile and link with no errors or warnings. For code brevity, the code in Listing 18.4 does no error
checking, nor does it release the allocated interfaces. Of course, you should check return codes and
release interfaces that you allocate in your code.

Listing 18.4 Creating and Executing a Simple Command

 1: #define UNICODE
 2: #define _UNICODE
 3: #define DBINITCONSTANTS
 4: #define INITGUID
 5:
 6: // Standard Application Includes
 7: #include <windows.h>
 8: #include <stdio.h>
 9: #include <tchar.h>
 10: #include <stddef.h>
 11: #include <iostream.h>
 12:
 13: // OLE DB Header Files
 14: #include <oledb.h>
 15: #include <oledberr.h>
 16:
 17: // OLE DB - ODBC Provider Header Files
 18: #include <msdaguid.h>
 19: #include <msdasql.h>
 20:
 21: void main() {
 22: IDBInitialize* pIDBInitialize = NULL;

 23: IDBCreateSession* pCreateSession = NULL;
 24: IDBCreateCommand* pCreateCommand = NULL;
 25: IRowset* pRowset = NULL;
 26: ICommandText* pCommandText = NULL;
 27: IDBProperties* pIDBProperties;
 28: DBPROP InitProperties[4];
 29: DBPROPSET rgInitPropSet[1];
 30: int i;
 31: LONG cNumRows;
 32:
 33: // The Command to execute
 34: LPCTSTR wCmdString =
 35: OLESTR("SELECT * FROM Customers");
 36:
 37: // Initialize the Component Object Module Library
 38: CoInitialize(NULL);
 39:
 40: // Obtain Access to the OLE DB - ODBC Provider
 41: CoCreateInstance(CLSID_MSDASQL, NULL, CLSCTX_INPROC_SERVER,
 42: IID_IDBInitialize, (void **)
&pIDBInitialize);
 43:
 44: // Initialize the property values that are the same for each
 45: // property. . .
 46: for (i = 0; i < 4; i++) {
 47: VariantInit(&InitProperties[i].vValue);
 48: InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 49: InitProperties[i].colid = DB_NULLID;
 50: }
 51:
 52: // level of prompting that will be done to complete the
connection // process
 53: InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 54: InitProperties[0].vValue.vt = VT_I2;
 55:
 56: // Specify the User Name
 57: InitProperties[1].dwPropertyID = DBPROP_AUTH_USERID;
 58: InitProperties[1].vValue.vt = VT_BSTR;
 59: // Note: The L cast directive casts the string into a UNICODE
// string....
 60: InitProperties[1].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
 61:
 62: // Specify the appropriate Password
 63: InitProperties[2].dwPropertyID = DBPROP_AUTH_PASSWORD;
 64: InitProperties[2].vValue.vt = VT_BSTR;
 65: InitProperties[2].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
 66:
 67: // Specify the Data Source name
 68: InitProperties[3].dwPropertyID = DBPROP_INIT_DATASOURCE;
 69: InitProperties[3].vValue.vt = VT_BSTR;
 70: InitProperties[3].vValue.bstrVal =
 71: SysAllocString((LPOLESTR)L"OrdersDb");

 72:
 73: rgInitPropSet[0].guidPropertySet = DBPROPSET_DBINIT;
 74: rgInitPropSet[0].cProperties = 4;
 75: rgInitPropSet[0].rgProperties = InitProperties;
 76:
 77: // set initialization properties
 78: pIDBInitialize->QueryInterface(IID_IDBProperties,
 79: (void **)&pIDBProperties);
 80: pIDBProperties->SetProperties(1,rgInitPropSet);
 81: pIDBProperties->Release();
 82:
 83: // Call the Initialize method to establish the connection to
 84: // the ODBC data source specified above
 85: pIDBInitialize->Initialize();
 86:
 87: // Create a Session object...
 88: pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 89: (void **) &pCreateSession);
 90:
 91: // Create a Command object...
 92: pCreateSession->CreateSession(NULL, IID_IDBCreateCommand,
 93: (IUnknown **) &pCreateCommand);
 94:
 95: // Access the ICommandText interface
 96: pCreateCommand->CreateCommand(NULL, IID_ICommandText,
 97: (IUnknown **) &pCommandText);
 98:
 99: // Specify the command text
100: pCommandText->SetCommandText(DBGUID_DBSQL, wCmdString);
101:
102: // Execute the command
103: HRESULT hr;
104: hr = pCommandText->Execute(NULL, IID_IRowset, NULL, &cNumRows,
105: (IUnknown **) &pRowset);
106:
107: // This is where we would navigate the rowset returned...
108: if (SUCCEEDED(hr))
109: {
110: ::MessageBeep(MB_OK);
111: }
112:
113: // Free Up Allocated Memory
114: pRowset->Release();
115: pCommandText->Release();
116: pCreateCommand->Release();
117: pCreateSession->Release();
118: pIDBInitialize->Uninitialize();
119: pIDBInitialize->Release();
120:
121: // Release the Component Object Module Library
122: CoUninitialize();
123: };

Read the comments in the Listing 18.4 source code to understand the details of what the code is doing.

Accessors
The last major topic for today is how to create commands that use parameters. Command parameters
are just like the parameters of methods or procedures in Visual C++. Command parameters accept
values that are specified at runtime. Accessors specify and store parameter values. You can use
parameters to input or retrieve values. The DBPARAMBINDINFO structure specifies parameters with
the SetParameterInfo method of the ICommandWithParametrs interface.

In SQL commands, parameters are specified by using the ? specifier. For example, the following SQL
statement creates a SQL command that inserts records into the Customers table:

INSERT INTO CUSTOMERS (CUSTID, CUSTNAME) VALUES (?, ?)

The values of the fields (shown as the two ?) are specified as parameters when the command is
executed. Before you examine code that creates a command that uses parameters, the following
section considers the DBPARAMBINDINFO structure.

Elements of a Parameter Accessor

The DBPARAMBINDINFO structure specifies parameter bindings. This structure has the following
definition:

typedef struct tagDBPARAMBINDINFO {
LPOLESTR pwszDataSourceType;
 LPOLESTR pwszName;
 ULONG ulParamSize;
 DBPARAMFLAGS dwFlags;
 BYTE bPrecision;
 BYTE bScale;
 } DBPARAMBINDINFO;

The pwszDataSourceType field defines the type of the parameter. The pwszName field specifies
the name of the parameter, if applicable; otherwise, it is NULL. The ulParamSize parameter
specifies the size of the parameter. The dwFlags parameter specifies the relevant parameter flags.
Table 18.10 describes the possible parameter flag values. The bPrecision field specifies the
number of digits used by a numeric value, if applicable. Finally, the bScale field specifies the
number of digits to the right of the decimal point if the number is positive or the number of digits to
the left if the number is negative.

Table 18.10 The Parameter Flag Values
Flag Value

DBPARAMFLAGS_ISINPUT Specifies an input parameter
DBPARAMFLAGS_ISOUTPUT Specifies an output parameter
DBPARAMFLAGS_ISSIGNED Specifies a signed numeric parameter
DBPARAMFLAGS_ISLONG Specifies a long integer parameter
DBPARAMFLAGS_ISNULLABLE Specifies that the parameter can be NULL

Command Parameters
Listing 18.5 demonstrates how to create and execute the parameterized INSERT command you looked
at earlier. Note that the ICommandWithParameters interface specifies the parameter values.
Tomorrow, you will learn more about using Accessors to specify field values before executing the
parameterized command.

Listing 18.5 How to Create a Parameterized Command

 1: IDBCreateCommand *pCreateCommand;
 2: ICommandText *pCommandText;
 3: ICommandWithParameters *pCommandWithParams;
 4: DBPARAMBINDINFO ParamBindInfo[2];
 5: ULONG ParamOrdinals[] = {1,2};
 6: LPCSTR pwszCommandStr =
 7: OLESTR("INSERT INTO Customers (CustNumber, CustLastName)
 8: [ic:ccc] VALUES (?, ?)");
 9:
10: // Use a Session object to create a CreateCommand interface
11: Session->CreateSession(NULL, IID_IDBCreateComand,
12: (IUnknown **) &pCreateCommand);
13:
14: // Create a CommandText interface
15: pCreateCommand->CreateCommand(NULL, IID_ICommandText,
16: (IUnknown **) &pCommandText);
17:
18: // Free the CreateCommand interface pointer
19: pCreateCommand->Release();
20:
21: // Specify the command, using the SetCommandText method
22: pCommandText->SetCommandText(DBGUID_DBSQL, pwszCommandStr);
23:
24: // Specify the command parameter information
25: ParamBindInfo[0].pwszDataSourceType = L"DBTYPE_II4";
26: ParamBindInfo[0].pwszName = L"CUST_ID";

27: ParamBindInfo[0].ulParamSize = sizeof(DWORD);
28: ParamBindInfo[0].dwFlags = DBPARAMFLAGS_ISINPUT;
29: ParamBindInfo[0].bPrecision = 0;
30: ParamBindInfo[0].bScale = 0;
31:
32: ParamBindInfo[1].pwszDataSourceType = L"DBTYPE_CHAR";
33: ParamBindInfo[1].pwszName = L"CUST_NAME";
34: ParamBindInfo[1].ulParamSize = 255;
35: ParamBindInfo[1].dwFlags = DBPARAMFLAGS_ISINPUT;
36: ParamBindInfo[1].bPrecision = 0;
37: ParamBindInfo[1].bScale = 0;
38:
39: pCommandText->QueryInterface(IID_ICommandWithParameters,
40: (void **) &pCommandWithParams);
41: pCommandWithParams->SetParameterInfo(2, ParamOrdinals,
ParamBindInfo);
42:
43: // Release interfaces
44: pCommandText->Release();
45: pCommandWithParams->Release();

Multiple Resultsets
If you specify a query that returns multiple resultsets, you need to use the IMultipleResults
interface. You can create multiple results by using stored procedures or by specifying multiple
commands in the Command object statement.

TIP
Refer to your data source documentation to determine whether it supports
stored procedures. Stored procedures are pieces of code that reside with the
database provider and execute directly on the database provider server.
Stored procedures are powerful and can help improve application
performance.

The IMultipleResults interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release. The interface defines one additional method,
GetResult. This method is defined as follows:

HRESULT GetResult(IUnknown *pAggInterface, LONG lResv, REFID riid,
 LONG *pNumRows, IUnknown **ppRowset);

The discussion of OLE DB objects resumes tomorrow with the Rowset object, which accesses the
results of queries. You will learn how to navigate these resulting query row sets and how to access the
data they contain.

Summary
Day 18 opens with discussions of the Session object and the Command object and their associated
interfaces. You learned how to create Session and Command objects and how to create and execute
commands. You read a compendium of the SQL command language, which is supported by some
OLE DB data providers, as well as its data manipulation and data definition aspects. One of today's
applications demonstrates how to connect to a data source, create a session, and specify and execute a
simple SQL command. You also learned about parameterized commands and the
DBBINDPARAMINFO structure. Day 18 ends with an explanation of how to manage commands that
can return multiple row sets.

Q&A
This section answers some common questions related to today's topics.

Q How do I determine the types supported by a data source?
A The IDBSchemaRowset interface determines the types a data source supports. Use

the GetSchemas method, using the DBSCHEMA_PROVIDER_TYPES GUID. I will
discuss how to navigate and retrieve this row set data tomorrow. Also, open the
OLEDB.H file or the OLE DB Specification help file and search for the DBTYPE string.
You will find an enumeration object that contains the definitions for each type supported
by OLE DB.

Q What's the best way to manage a data source: with methods such as
CreateTable and CreateIndex or with SQL commands?

A If your data source provider supports SQL language commands, you should definitely
use the SQL command language to manage your data source. As you can see from the
examples in this lesson, you use far less code to create a table with SQL commands than
you use when you create a table with the CreateTable command.

Q How do I know whether my data source supports the SQL command language?
A To determine whether a data source supports the SQL command language, you need to

use the GetProperties method of the DataSource object, checking for the
DBPROP_SQLSUPPORT property. The use of properties is discussed in greater detail
during Day 20. If the data source supports this property, it will also support the ANSI
standard SQL.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz Questions

1. What is the role of the Session object?
2. What Session interface method retrieves information about the data source schema?
3. What is the role of the Command object?
4. What Command interface method specifies an actual command?
5. How are parameters specified in commands, and why would you use them?
6. What Command interface method can you use to potentially increase the performance of a

query?

Exercises

1. Modify the code in Listing 18.4 to perform a data definition command such as the CREATE
TABLE, DROP TABLE, or ALTER TABLE command.

2. Modify the code in Listing 18.5 to perform a parameterized SELECT instead of an INSERT.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 19
 Navigating the Result of a Query

● Rowset Interfaces
❍ TheIRowset Interface
❍ The IRowsetInfo Interface
❍ The IConnectionPointContainer Interface
❍ The IRowsetChange Interface
❍ The IRowsetIdentity Interface
❍ The IRowsetLocate Interface
❍ The IRowsetResynch Interface
❍ The IRowsetScroll Interface
❍ The IRowsetUpdate Interface

● The Six-Step Plan to Retrieving Data
● Creating Bindings
● Row Set Accessors

❍ Retrieving Rows and Columns
● Navigation

❍ Bookmarks
❍ Deferred Access

● Column Types
❍ BLOBs

● Unicode String Processing
● Cursors

❍ Static Cursors
❍ KeySet Cursors

❍ Dynamic Cursors
● Summary
● Q&A
● Workshop

❍ Quiz Questions
❍ Exercises

Now that you know how to access a data source, create a session, and specify commands, you are
ready to learn how to navigate and access the data contained in the resulting row sets. Day 19 starts
with a discussion of the Rowset object and its associated interfaces. Today you start to bring together
the concepts presented in the previous three lessons so that you can begin to make productive use of
OLE DB. Many of today's examples focus on using the OLE DB ODBC provider to access a SQL
Server data source.

Today we will

● Use Rowset objects.
● Create bindings.
● Use Accessors to retrieve the data contained in a row set.
● Work with column types.
● Explore the issues involved in accessing columns that contain Binary Large Object (BLOB)

data.
● Process Unicode strings.
● Learn how to specify and use Static, KeySet, and Dynamic cursors.
● Create and use bookmarks.
● Release memory used by a row set when access is completed.

Rowset Interfaces
So far this week you have learned how to access a data source, create a session, and even create a
command that can generate a row set. However, you don't yet know how to retrieve and access the
data contained in these row sets. You are about to bridge this gap in your understanding of OLE DB.
OLE DB uses Rowset objects to provide access to data source data in a tabular form. The row sets
that result from executing a command are only one type of row set that OLE DB can generate. You
can use Session objects to create row sets and the IDBSchemaRowset interface of the Session
object to retrieve row sets that contain schema information. (Refer to Day 18, "Querying a Data
Source.")

The TRowset CoType supports the following interfaces:

TRowset {
 interface IAccessor; // Required Interface

 interface IColumnsInfo; // Required Interface
 interface IConvertType; // Required Interface
 interface IRowset; // Required Interface
 interface IRowsetInfo; // Required Interface
 interface IColumnsRowset;
 interface IConnectionPointContainer;
 interface IRowsetChange;
 interface IRowsetIdentity;
 interface IRowsetLocate;
 interface IRowsetResynch;
 interface IRowsetScroll;
 interface IRowsetUpdate;
 interface ISupportErrorInfo;
};

The following sections explain the interfaces supported by the Rowset object and describe how to
retrieve row set data.

NOTE
The ISupportErrorInfo interface was described on Day 17,
"Accessing a Data Source with OLE DB," and will be considered again on
Day 21, "OLE DB Error Handling." The IAccessor,
IColumnsInfo, IColumnsRowset, and IConvertType interfaces
were presented yesterday (Day 18). Column Accessors are covered in more
detail later today.

TheIRowset Interface

The IRowset interface is the primary interface used to access row sets and the data they contain. The
IRowset interface is required by the Rowset object and defines the standard IUnknown interface
methods QueryInterface, AddRef, and Release. The interface also provides five additional
methods: AddRefRows, GetData, GetNextRows, ReleaseRows, and RestartPosition.
These methods are defined as follows:

HRESULT AddRefRows(ULONG cNumRowHandles, const HROWS rhRows[],
 ULONG rgRefCounts[], DBROWSTATUS rRowStatus[]);
HRESULT GetData(HROW hRow, HACCESSOR hRowAccessor, void *pBuffer);
HRESULT GetNextRows(HCHAPTER hChapter, LONG lNumRowsToSkip,
 LONG lNumRows, ULONG *plNumRows, HROW **phRows);
HRESULT ReleaseRows(ULONG cNumRows, const HROW rhRows[],
 DBROWOPTIONS rRowOptions[], ULONG rRefCounts[],
 DBROWSTATUS rRowStatus[]);
HRESULT RestartPosition(HCHAPTER hChapter);

After looking at the remaining Rowset interfaces, today's presentation focuses on the implementation
details of obtaining and navigating row set data. Much of that discussion centers on using the

IRowset interface. This section explains what these interface methods do and the parameters they
use.

The GetNextRows method retrieves the next sequential set of rows from a row set. hChapter is
the chapter handle. For nonchaptered rowsets, hChapter is ignored. The lNumRowsToSkip
specifies the number of rows to skip before retrieving the next set of rows. If this value is 0, no rows
are skipped. The lNumRows parameter specifies the number of rows to retrieve. The plNumRows
parameter returns the number of rows actually retrieved. The phRows parameter returns an array of
row handles, which can be used to retrieve the actual row data.

The GetData method actually retrieves the row data. The hRow parameter specifies a row handle
returned by the GetNextRows method. The hRowAccessor parameter specifies the row
Accessor handle that retrieves the data. The pBuffer parameter specifies a memory buffer in
which the actual row data is stored.

The ReleaseRows method releases the set of rows obtained by the GetNextRows method. The
cNumRows parameter specifies the number of rows to release, and the rHRows parameter specifies
an array of row handles to release. The last three parameters typically will be NULL. The
rRowOptions parameter specifies additional options to be used when releasing a row, the
rRefCounts parameter specifies an array of row reference counts, and the rRowStatus parameter
returns the status of each row that was released.

The AddRefRows method increments row reference counts. The cNumRowHandles parameter
specifies the number of row handles passed. The rhRows array specifies the array of row handles to
increment the reference count for; the rgRefCounts parameter returns an array of new row
reference counts, once for each handle. The rRowStatus parameter returns the status of each row.

Finally, the RestartPosition method returns to the beginning of the row set when the next
GetNextRows method is called. RestartPosition takes a single parameter that is reserved for
future use.

The IRowsetInfo Interface

The IRowsetInfo retrieves information about a row set, including the maximum number of active
rows and how many modifications on a row set can be buffered before they can be committed. The
IRowsetInfo interface can also return to a bookmarked row. (I'll discuss bookmarks in more detail
later today.) The IRowsetInfo interface is required by the Rowset object and defines the standard
IUnknown interface methods QueryInterface, AddRef, and Release. The interface also
provides three additional methods: GetProperties, GetReferencedRowset, and
GetSpecification. These methods are defined as follows:

HRESULT GetProperties(ULONG cPropIDSets, const DBPROPIDSET
rgPropSets[],
 ULONG *pcPropSets, DBPROPSET **prgPropSets);
HRESULT GetReferencedRowset(ULONG iColumnNum, REFIID riid,

 IUnknown **ppRowsetInterface);
HRESULT GetSpecification(REFIID riid, IUnknown **pSpecInterface);

Day 17 covers the GetProperties method in relation to the IDBProperties interface;
GetProperties retrieves row set properties. The GetReferencedRowset method returns an
interface pointer to a bookmarked rowset. The iColumnNum parameter of the
GetReferencedRowset method identifies the ordinal position of the column that contains the
bookmark marker. The riid parameter specifies the interface ID of the interface to return in the
ppRowsetInterface parameter. The GetSpecification method retrieves an interface
pointer to the OLE DB object that created the row set. The riid parameter specifies an interface
GUID, and the pSpecInterface parameter returns a pointer to that interface.

The IConnectionPointContainer Interface

The IConnectionPointContainer interface is a standard COM interface and is used when
connecting data to other COM or OLE objects. It is an optional interface and defines the standard
IUnknown interface methods QueryInterface, AddRef, and Release. The interface also
provides two additional methods: EnumConnectionPoints and FindConnectionPoint.
These methods are defined as follows:

HRESULT EnumConnectionPoints(IEnumConnectionPoints **ppEnum);
HRESULT FindConnectionPoint(REFIID riid, IConnectionPoint
*ppConnectPoint);

NOTE
Refer to the Visual C++ documentation for more information regarding the
use of this interface with Rowset objects.

The IRowsetChange Interface

The IRowsetChange interface deletes rows, inserts rows, and modifies the data contained in a row.
It is an optional interface that defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release, as well as three additional methods: DeleteRows,
InsertRow, and SetData. As you can probably tell by their names, the DeleteRows method
deletes row set rows, the InsertRow method inserts a new row into a row set, and the SetData
method changes row set data. These methods are defined as follows:

HRESULT DeleteRows(HCHAPTER hChapter, ULONG cNumRows,
 const HROW rhRows[], DBROWSTATUS rRowStatus[]);
HRESULT InsertRow(HCHAPTER hChapter, HACCESSOR hAccesor,
 void *pBuffer, HROW *phRow);
HRESULT SetData(HROW hRow, HACCESSOR hAccessor, void *pBuffer);

For the DeleteRows method, the first parameter hChapter is the chapter handle. The cNumRows
parameter determines the number of rows to delete. The rhRows parameter defines an array of row
handles that are to be deleted. On return, the rRowStatus array is an array of row DBROWSTATUS
structures that define the status of each deleted row.

For the InsertRow method, the first parameter hChapter is the chapter handle. The hAccessor
parameter defines the Accessor for the row to insert. The pBuffer parameter defines the data
buffer, containing the actual row data, described by the Accessor. On return, the phRow parameter
is the row handle of the newly added row.

For the SetData method, the hRow parameter defines the handle of the row to modify. The
hAccessor parameter defines the Accessor for the row, and the pBuffer parameter defines the
buffer containing the modified row data.

TIP
SQL commands provide the same functionality as the IRowsetChange
interface methods and generally use less code to do so. You can use SQL to
delete, insert, and modify data. You should use the SQL commands if the
data provider supports them.

The IRowsetIdentity Interface

The IRowsetIdentity interface determines whether two row set rows are identical. Already, you
probably realize that row set rows are identified by handles. A handle is just a fancy name for a special
address that identifies where a row is stored in memory. You can use this interface to determine
whether two row handles actually point to the same row set. The IRowsetIdentify interface is
optional. It defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release and provides one additional method: IsSameRow. This method is defined as follows:

HRESULT IsSameRow(HROW hRow1, HROW hRow2);

The IsSameRow method takes two parameters, which are the handles of the rows to compare. If the
row handles point to the same row, this method returns S_OK. If not, it returns S_FALSE. Both these
values give a TRUE result when the SUCCEEDED macro is used. You will need to test for S_OK
explicitly or at least nest an explicit test under a SUCCEEDED macro.

The IRowsetLocate Interface

IRowsetLocate is an optional interface that retrieves rows nonsequentially from a row set. This
interface has methods that can use bookmarks to jump around in a row set. The standard IUnknown
interface methods QueryInterface, AddRef, and Release are defined by the
IRowsetLocate interface, as well as four additional methods: Compare, GetRowsAt,

GetRowsByBookmark, and Hash. These methods are defined as follows:

HRESULT Compare(HCHAPTER hChapter, ULONG cBookMarkLen1,
 const BYTE *pBookMark1, ULONG cBookMarkLen2,
 const BYTE *pBookMark2, DBCOMPARE *pCompare);
HRESULT GetRowsAt(HWATCHREGION hReservedHandle1, HCHAPTER hChapter,
 ULONG cBookMarkLen, const BYTE *pBookMark,
 LONG lNumRowsOffset, LONG lNumRowsToFetch,
 ULONG *lNumRowsRetrieved, HROW **phRows);
HRESULT GetRowsByBookmark(HCHAPTER hChapter, ULONG lNumRowsToFetch,
 const ULONG rBookmarksLen[],
 const BYTE *rBookmarks[],
 HROW rhRows[], DBROWSTATUS rRowStatus[]);
HRESULT Hash(HCHAPTER hChapter, ULONG lNumBookmarks,
 const ULONG rBookmarksLen[], const BYTE *rBookmarks,
 DWORD rHashedBookmarks[],DBROWSTATUS rRowStatus[]);

The Compare method compares two bookmarks to determine whether one is before, after, or points
to the same position as the other. The GetRowsAt method retrieves a row set from a bookmarked
position, as well as a specified offset. The GetRowsByBookmark method retrieves the rows that
match a set of bookmarks. The Hash method retrieves the hash value (a quick lookup key for a
record) that identifies a bookmarked record. If you would like more information about these methods,
refer to the OLE DB Specification help file.

The IRowsetResynch Interface

The IRowsetResynch interface synchronizes row sets when they are part of a transaction.
Transactions, as well as this interface, are covered in more detail on Day 20, "Properties, Transactions,
and Indexes." The IRowsetResynch interface is optional and defines the standard IUnknown
interface methods QueryInterface, AddRef, and Release. The interface also provides two
additional methods: GetVisibleData and ResynchRows. These methods are defined as follows:

HRESULT GetVisibleData(HROW hRow, HACCESSOR hAccessor, void *pBuffer);
HRESULT ResynchRows(ULONG cNumRowsToResynch, const HROW rhRows[],
 ULONG *pNumRowsResynched, HROW **phRowsResynched,
 DBROWSTATUS **pRowStatus);

The GetVisibleData method retrieves the row set data that is visible in the transaction scope. The
ResynchRows method synchronizes the data contained in the row set buffer with the actual data
source.

The IRowsetScroll Interface

The IRowsetScroll interface facilitates the integration of row sets with window scroll bars. This
interface is optional. A Rowset object must implement the IRowsetLocate interface to support
this interface. The IRowsetScroll interface defines the standard IUnknown interface methods
QueryInterface, AddRef, and Release and provides two additional methods:

GetApproximatePosition and GetRowsAtRatio. These methods are defined as follows:

HRESULT GetApproximatePosition(HCHAPTER hChapter, ULONG cLenBookmark,
 const BYTE *pBookmark, ULONG
*plPosition,
 ULONG *plNumRows);
HRESULT GetRowsAtRatio(HWATCHREGION hChapter,
 HCHAPTER hReserveredhandle2, ULONG lNumerator,
 ULONG lDemoninator, LONG lNumRowsToFetch,
 ULONG *plNumRowsFetched, HROW **phRows);

The GetApproximatePosition method approximately determines the row position of a
bookmarked row. The cLenBookmark parameter specifies the size of a bookmark, and the
pBookmark parameter specifies a pointer to the approximate position of the bookmark. The
plPosition parameter returns the approximate position, and the plNumRows parameter returns
the total number of rows.

The GetRowsAtRatio method retrieves a number of rows located at a specific percentage location
in the row set. The percentage location is determined by dividing the lNumerator parameter by the
lDenominator parameter. The lNumRowsToFetch parameter specifies the number of rows to
retrieve. The plNumRowsFetched parameter returns the number of rows actually retrieved, and the
phRows parameter returns an array of associated row handles.

The IRowsetUpdate Interface

The final interface supported by the Rowset object is the IRowsetUpdate interface, which is
optional. This interface buffers changes made with the IRowsetChange interface and defines the
standard IUnknown interface methods QueryInterface, AddRef, and Release. The interface
also provides five additional methods: GetOriginalData, GetPendingRows,
GetRowStatus, Undo, and Update. These methods are defined as follows:

HRESULT GetOriginalData(HROW hRow, HACCESSOR hAccessor, void
*pBuffer);
HRESULT GetPendingRows(HCHAPTER hChapter, DBPENDINGSTATUS dRowStatus,
 ULONG *plNumPendRows, HROW **phPendRows,
 DBPENDINGSTATUS **pPendStatus);
HRESULT GetRowStatus(HCHAPTER hChapter, ULONG lNumRows,
 const HROW rhStatusRows, DBPENDINGSTATUS
pStatus[]);
HRESULT Undo(HCHAPTER hChapter, ULONG lNumRows, const HROW
rhUndoRows[],
 ULONG *plNumRowsUndone, HROW **phRows,
DBROWSTATUS **pRowStatus);
HRESULT Update(HCHAPTER hChapter, ULONG lNumRows,
 const HROW rhUpdateRows[], ULONG *plNumRowsUpdated,
HROW **phRows, DBROWSTATUS **pRowStatus);

The GetOriginalData method is used to update the data from the data source, ignoring any

changes that have not been written back. For example, if you make changes to a row and they aren't
written back, you can use this method to return to the state before the changes were made. The hRow
parameter specifies the row handle to re-retrieve. The hAccessor parameter defines the Accessor
for the row to retrieve. The pBuffer parameter defines the data buffer that contains the actual row
data described by the Accessor.

The GetPendingRows method retrieves the rows of a row set that have some operation pending,
such as a new, changed, or deleted row. The status you're looking for is defined by the dRowStatus
parameter, which can be a combination of DBPENDINGSTATUS_NEW,
DBPENDINGSTATUS_CHANGED, or DBPENDINGSTATUS_DELETED. These flags can be
combined with a logical OR. The plNumPendRows parameter returns the number of rows with the
type of pending operation being searched. The phPendRows returns an array of row handles for each
of these rows, and the pPendStatus parameter returns an array containing the actual status of each
of these rows. The pPendStatus array is useful when you query more than one status type.

The GetRowStatus method is similar to the GetPendingRows method. The GetRowStatus
method doesn't search for a specific status, though; it returns the status of the group of rows specified.
The lNumRows parameter specifies the number of row handles in the array parameter
rhStatusRows. The row status will be retrieved for the row handles in this array. The pStatus
array is returned and contains the status of each row in the rhStatusRows array.

The Undo method returns a row to the state it was in before the last time it was written back to a data
source. You can use the Undo method on a group of row handles specified by the rhUndoRows
parameter that contains an array of row handles. The lNumRows parameter specifies the number of
rows in this array. The plNumRowsUndone parameter returns the number of rows that operation
attempted to undo. The phRows parameter returns an array of the undone row handles; if this
parameter is NULL, this array isn't returned. The pRowStatus parameter can return an array
containing the status of each row that was undone; if this parameter is NULL, the row status isn't
returned.

Finally, the Update method writes back a set of rows to the data source. You can use the Update
method on a group of row handles specified by the rhUpdateRows parameter that contains an array
of row handles. The lNumRows parameter specifies the number of rows in this array. The
plNumRowsUpdates parameter returns the number of rows that operation attempted to update. The
phRows parameter returns an array of the updated row handles; if this parameter is NULL, the array
isn't returned. The pRowStatus parameter can return an array containing the status of each row that
was updated; if this parameter is NULL, the row status isn't returned.

The Six-Step Plan to Retrieving Data
By now you are probably wondering how you can put the Rowset object and its associated interfaces
to work. You already understand how to use OLE DB to connect to a data source, initiate a session,
and even execute a command. This section explains a basic six-step plan for accessing the data
contained in a row set:

1. Identify the data contained in the row set with the GetColumnInfo method.
2. Obtain the column bindings using column information.
3. Create an Accessor with the CreateAccessor method.
4. Retrieve the row set handles with the GetNextRows method.
5. Retrieve the actual row data with the GetData method.
6. Release the row handles before retrieving the next set of row handles.

Step 1 uses the GetColumnInfo method to determine the data contained in the row set. To
understand this step, think back to Listing 18.4, in which you created an OLE DB application that
connects to an ODBC data source and performs a simple query. The query SELECT * FROM
Customers creates a row set that contains all the columns for all the records in the CUSTOMERS
table. After the Rowset object is created by executing the command, you can call the
GetColumnInfo method to retrieve the size, type, precision, and scale.

Listing 19.1 demonstrates how to obtain the IColumnsInfo interface and call its
GetColumnInfo method. In step 6 of this process, you will see how Listing 19.4 integrates all the
code from the listings developed in the past two days. Note that the code in Listing 19.1 doesn't check
the return value from QueryInterface. Without testing the HRESULT, there's no way to know
whether the pColumnsInfo interface pointer is valid. You will need to test for the return value in
any production code.

Listing 19.1 Using the GETCOLUMNIFO Method to Determine What Information Is Stored in
a Row Set

 1: IColumnsInfo* pColumnsInfo;
 2: DBCOLUMNINFO* pDBColumnInfo;
 3: ULONG lNumCols;
 4:
 5: // Obtain access to the IColumnsInfo interface, from the Rowset
 6: // object
 7: pRowset->QueryInterface(IID_IColumnsInfo, (void **)
&pColumnsInfo);
 8:
 9: // Retrieve the Column Information
10: pColumnsInfo->GetColumnInfo(&lNumCols, &pDBColumnInfo, NULL);
11:
12: // Free the Column Information Interface
13: pColumnsInfo->Release();

This code creates a structure that contains column information. The next step is to create column
bindings. Before going on to step 2, you need to know what bindings and Accessors are and how you
can use them.

Creating Bindings
When you retrieve a row of data by using the GetData method, you create a buffer that contains the
actual data in the data source row. How do you determine what's stored in this buffer? Where is the
buffer stored? OLE DB uses the DBBINDING structure to define the columns stored in this buffer.
The DBBINDING structure is defined as follows:

typedef struct tagDBBINDING {
 ULONG iOrdinal;
 ULONG obValue;
 ULONG obLength;
 ULONG obStatus;
 ITypeInfo * pTypeInfo;
 DBOBJECT * pObject;
 DBBINDEXT * pBindExt;
 DBPART dwPart;
 DBMEMOWNER dwMemOwner;
 DBPARAMIO eParamIO;
 ULONG cbMaxLen;
 DWORD dwFlags;
 DBTYPE wType;
 BYTE bPrecision;
 BYTE bScale;
} DBBINDING;

This binding structure defines how columns are stored in the row buffer. The iOrdinal field defines
the ordinal position of the field. The obValue field defines the buffer offset (the number of bytes
from the beginning of the row buffer) to where the column's value is stored. The obLength field
defines the buffer offset to where the length of the column is stored. The obStatus field defines the
buffer offset to where the status of the column is stored. The pObject field is used when accessing
OLE objects. The dwPart field describes which parts of the buffer are bound.

The dwPart field is created by logically ORing the DBPART_VALUE, DBPART_LENGTH, and
DBPART_STATUS constants. These constants define the parts of the column you want to store in the
buffer. The dwMemOwner field describes whether the buffer memory is client or provider owned;
typically, this field is DBMEMOWNER_CLIENTOWNED. The eParamIO parameter field defines the
type of parameter described. The values for this field can be DBPARAMIO_NOTPARAM for fields,
DBPARAMIO_INPUT for an input parameter, or DBPARAMIO_OUTPUT for an output parameter.
These constants can be logically ORed together.

The cbMaxLen field defines the maximum length of the column. The wType field defines the data
type of the column. The bPrecision field defines the column's precision, and the bScale field
defines the column's scale. The dwFlags field determines special field attributes, such as whether the
field is a bookmark index, whether it can be deferred, and whether it can hold a null value. The
pTypeInfo and pBindExt are reserved for future use. The pTypeInfo and pBindExt fields
should be NULL.

How do you know what to store in this binding structure? The binding structure should contain an
array of binding structures, with an element for each column in the row set. To fill in the fields of the
binding structure, you need to return to step 1, where you obtained the DBCOLUMNINFO structure.
The DBCOLUMNINFO structure is defined as follows:

typedef tagDBCOLUMNINFO {
 LPOLESTR pwszName;
 ITypeInfo *pTypeInfo;
 ULONG iOrdinal;
 DBCOLUMNFLAGS dwFlags;
 ULONG ulColumnSize;
 DBTYPE wType;
 BYTE bPrecision;
 BYTE bScale;
 DBID columnid;
} DBCOLUMNINFO;

Many fields in this structure are the same fields required by the binding structure. Therefore, after you
obtain the DBCOLUMNINFO structure, you can allocate space for a DBBINDING structure array, one
element for each column in the row set. You will step through each column in the DBCOLUMNINFO
and fill out the corresponding DBBINDING array element with the appropriate information. Listing
19.2 demonstrates step 2, which obtains the column bindings using column information.

Listing 19.2 Obtaining the Column Bindings Information from the Column Information
Structure

 1: // Create a DBBINDING array
 2: pBindings = new DBBINDING[lNumCols];
 3:
 4: // Using the ColumnInfo Structure, Fill Out the pBindings Array
 5: for(j = 0; j < lNumCols; j++) {
 6: // Ordinal Positions Start at 1
 7: pBindings[j].iOrdinal = j+1;
 8: // Buffer offset, re-calculated at the end of this loop
 9: pBindings[j].obValue = cbColOffset;
10: // You're Not Retrieving the Column Length
11: pBindings[j].obLength = 0;
12: // You're Not Retrieving the Column Status
13: pBindings[j].obStatus = 0;
14: // These Parameters Are for Future Use...
15: pBindings[j].pTypeInfo = NULL;
16: pBindings[j].pObject = NULL;
17: pBindings[j].pBindExt = NULL;
18: // We're Just Retrieving the Value Part
19: pBindings[j].dwPart = DBPART_VALUE;
20: // The Memory Will Be Client Owned
21: pBindings[j].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
22: // This Binding Does Not Define a Parameter

23: pBindings[j].eParamIO = DBPARAMIO_NOTPARAM;
24: // Use the ColumnInfo Structure to Get the Column Size
25: pBindings[j].cbMaxLen = pDBColumnInfo[j].ulColumnSize;
26: pBindings[j].dwFlags = 0;
27: // Use the ColumnInfo Structure to Get the Column Type
28: pBindings[j].wType = pDBColumnInfo[j].wType;
29: // Use the ColumnInfo Structure to Get the Column
Precision
30: pBindings[j].bPrecision = pDBColumnInfo[j].bPrecision;
31: // Use the ColumnInfo Structure to Get the Column Scale
32: pBindings[j].bScale = pDBColumnInfo[j].bScale;
33:
34: // Re-calulate the Next Buffer Offset by
35: // Adding the Current Offset to the Maximum Column Length
36: // Obtained from the ColumnsInfo Structure
37: cbColOffset = cbColOffset + pDBColumnInfo[j].ulColumnSize;
38: };

Now that you have created the column bindings, you need to create the row set Accessor.

Row Set Accessors
Accessors are easy. They are just handles to DBBINDING binding structures. These handles are
easier and faster to pass as parameters than passing around the whole DBBINDING binding structure.

TIP
You can create an Accessor by combining multiple DBBINDING structure
arrays. A row set can use more than one Accessor (for different views of the
row set data, depending on requirements). Today's focus is on using a single
binding structure and single Accessor to access row sets.

The CreateAccessor method of the IAccessor interface creates an Accessor handle from a
binding structure. After you have finished using an Accessor handle, you must release it with the
ReleaseAccessor method. Failure to release the Accessor handle when you have finished
using it will cause a memory leak. Listing 19.3 displays step 3 in the six-step process of retrieving data
from a row-creating an Accessor from the binding information array. Note that the code in Listing
19.3 doesn't check the return value from QueryInterface. You will need to test for the return
value in your production code.

Listing 19.3 Creating an Accessor with the Previously Created Binding Array

 1: // Obtain Access to the IAccessor Interface
 2: pRowset->QueryInterface(IID_IAccessor, (void **) &pAccessor);
 3:
 4: // Create an Accessor Handle, Using the CreateAccessor Method
 5: pAccessor->CreateAccessor(DBACCESSOR_ROWDATA, // We Are
 6: // Retrieving
Row
 // Data
 7: lNumCols, // The Number
of
 // Columns
 8: // We Are
 // Binding
 9: pBindings, // The
Bindings
 // Structure
10: 0, // Not Used
11: &hAccessor, // The
Returned
 // Accessor
12: // Handle
13: NULL); // We're Not
 // Returning
14: // Status
 // Information
15:
16: // Use The Accessor To Access The Row Data... Steps 4 Through
6
17:
18: // Free Up Allocated Memory
19: pAccessor->ReleaseAccessor(hAccessor, NULL);
20: pAccessor->Release();

You are now halfway through the process of accessing the previously defined row set data. The next
two steps retrieve a row from a row set and then retrieve the actual data described by the Accessor
you just created. Step 6 is a required housekeeping step that frees up any memory allocated for the
retrieved row data.

Retrieving Rows and Columns

Two Rowset object methods are instrumental to the process of getting the data: GetNextRows and
GetData. The GetNextRows method retrieves a set of rows from a row set. To improve
performance, more than one row can be read at a time. The GetData method creates a buffer, which
you can read using the binding information. You need to create two loops to read all the rows
generated by your query: an outer loop that retrieves a set of rows until all the sets have been returned
and an inner loop that loops through these row subsets and prints out the column information they
contain. After you use the row subset, you must call the ReleaseRows method to release the
memory allocated to the subset.

The GetData method fills a character buffer, and the binding structure determines where each field
begins in that buffer. The binding structure contains the obValue field, which defines the offset from
the beginning of the buffer to the location of the column's value. This offset value is an index into the
buffer returned by the GetData method. Depending on how you use these row values, you might
have to do some typecasting.

NOTE
The application is responsible for allocating and freeing the buffer used by
the GetData method. The size of this buffer is determined as you calculate
the current offset when defining the bindings. When that loop is complete,
the cbColOffset variable contains the length of the buffer. You allocate
a character string of that length. After you have finished using the
GetData method, you can free this buffer.

Now that you understand what's involved in these last three steps, you should be able to assemble all
the steps to access and display the row set data. Listing 19.4 presents the complete simple OLE DB
application. This application accesses the OrdersDb ODBC data source, creates a session, and
executes the SQL command SELECT CustNumber, CustFirstName FROM CUSTOMERS.
The application also displays the title of each column and the data contained in each row. The output
of this application appears in Listing 19.5.

To build the application, run Visual Studio and select File, New. Click the Projects tab and specify a
Win32 Console Application. Call the application ROWACCESS. Click OK, specify that you want to
create an empty project, and click Finish. After AppWizard runs, create a new C++ source file as part
of the project. You can call it whatever you think is appropriate, such as ROWACCESS.CPP. Enter the
code shown in Listing 19.4 into the source file.

You will need to change the input libraries for the linker to the following:

oledbd.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib
 advapi32.lib
shell32.lib ole32.lib oleaut32.lib uuid.lib

You do this under Project, Settings on the Link tab. When you build the project, it should compile and
link with no errors or warnings. Note that the code in Listing 19.4 doesn't check the return value from
QueryInterface. You will need to test for the return value in your production code.

Listing 19.4 The Completed ROWACCESS Application, Demonstrating How to Access and
Display Query Result Row Data

 1: #define UNICODE
 2: #define _UNICODE
 3: #define DBINITCONSTANTS
 4: #define INITGUID
 5:
 6: // Standard Application Includes
 7: #include <windows.h>
 8: #include <stdio.h>
 9: #include <tchar.h>
 10: #include <stddef.h>
 11: #include <iostream.h>
 12:
 13: // OLE DB Header Files
 14: #include <oledb.h>
 15: #include <oledberr.h>
 16:
 17: // OLE DB - ODBC Provider Header Files
 18: #include <msdaguid.h>
 19: #include <msdasql.h>
 20:
 21: void main() {
 22: IDBInitialize* pIDBInitialize = NULL;
 23: IDBCreateSession* pCreateSession = NULL;
 24: IDBCreateCommand* pCreateCommand = NULL;
 25: IRowset* pRowset = NULL;
 26: ICommandText* pCommandText = NULL;
 27: IDBProperties* pIDBProperties;
 28: IColumnsInfo* pColumnsInfo;
 29: IAccessor* pAccessor;
 30: HACCESSOR hAccessor;
 31: DBCOLUMNINFO* pDBColumnInfo;
 32: DBPROP InitProperties[4];
 33: DBPROPSET rgInitPropSet[1];
 34: int i;
 35: ULONG j,
 36: lNumCols,
 37: cbColOffset = 0;
 38: ULONG lNumRowsRetrieved;
 39: HROW hRows[5];
 40: HROW* pRows = &hRows[0];
 41: LONG cNumRows;
 42: DBBINDING* pBindings;
 43: char *pBuffer;
 44: WCHAR* pStringsBuffer;
 45:
 46: // The Command to execute
 47: LPCOLESTR wCmdString =
 48: OLESTR("SELECT CustNumber, CustFirstName FROM CUSTOMERS");
 49:
 50: // Initialize the Component Object Module Library

 51: CoInitialize(NULL);
 52:
 53: // Obtain Access to the OLE DB - ODBC Provider
 54: CoCreateInstance(CLSID_MSDASQL, NULL, CLSCTX_INPROC_SERVER,
 55: IID_IDBInitialize, (void **)
&pIDBInitialize);
 56:
 57: // Initialize the property values that are the same for each
 58: // property...
 59: for (i = 0; i < 4; i++) {
 60: VariantInit(&InitProperties[i].vValue);
 61: InitProperties[i].dwOptions = DBPROPOPTIONS_REQUIRED;
 62: InitProperties[i].colid = DB_NULLID;
 63: }
 64:
 65: // level of prompting that will be done to complete the
 66: // connection process
 67: InitProperties[0].dwPropertyID = DBPROP_INIT_PROMPT;
 68: InitProperties[0].vValue.vt = VT_I2;
 69: InitProperties[0].vValue.iVal = DBPROMPT_NOPROMPT;
 70:
 71: // Specify the Username
 72: InitProperties[1].dwPropertyID = DBPROP_AUTH_USERID;
 73: InitProperties[1].vValue.vt = VT_BSTR;
 74: // Note: The L cast directive casts the string into a UNICODE
// string....
 75: InitProperties[1].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
 76:
 77: // Specify the appropriate Password
 78: InitProperties[2].dwPropertyID = DBPROP_AUTH_PASSWORD;
 79: InitProperties[2].vValue.vt = VT_BSTR;
 80: InitProperties[2].vValue.bstrVal =
SysAllocString((LPOLESTR)L"");
 81:
 82: // Specify the Data Source name
 83: InitProperties[3].dwPropertyID = DBPROP_INIT_DATASOURCE;
 84: InitProperties[3].vValue.vt = VT_BSTR;
 85: InitProperties[3].vValue.bstrVal =
 86: SysAllocString((LPOLESTR)L"OrdersDb");
 87:
 88:
 89: rgInitPropSet[0].guidPropertySet = DBPROPSET_DBINIT;
 90: rgInitPropSet[0].cProperties = 4;
 91: rgInitPropSet[0].rgProperties = InitProperties;
 92:
 93: // set initialization properties
 94: pIDBInitialize->QueryInterface(IID_IDBProperties,
 95: (void **)&pIDBProperties);
 96: pIDBProperties->SetProperties(1,rgInitPropSet);
 97: pIDBProperties->Release();
 98:
 99: // Call the Initialize method to establish the connection to
100: // the ODBC data source specified above

101: pIDBInitialize->Initialize();
102:
103: // Create a Session object...
104: pIDBInitialize->QueryInterface(IID_IDBCreateSession, (void **)
105: &pCreateSession);
106:
107: // Create a Command object...
108: pCreateSession->CreateSession(NULL, IID_IDBCreateCommand,
109: (IUnknown **) &pCreateCommand);
110:
111: // Access the ICommandText interface
112: pCreateCommand->CreateCommand(NULL, IID_ICommandText, (IUnknown
**)
113: &pCommandText);
114:
115: // Specify the command text
116: pCommandText->SetCommandText(DBGUID_DBSQL, wCmdString);
117:
118: // Execute the command
119: pCommandText->Execute(NULL, IID_IRowset, NULL, &cNumRows,
120: (IUnknown **) &pRowset);
121:
122: //

123: // Step 1: Determine the data contained in the row set, using
the
124: // GetColumnInfo method.
125: //

126:
127: // Obtain access to the IColumnsInfo interface, from the Rowset
 // object
128: pRowset->QueryInterface(IID_IColumnsInfo, (void **)
&pColumnsInfo);
129:
130: // Retrieve the Column Information
131: pColumnsInfo->GetColumnInfo(&lNumCols, &pDBColumnInfo,
 &pStringsBuffer);
132:
133: // Free the Column Information Interface
134: pColumnsInfo->Release();
135:
136: //

137: // Step 2: Obtain the column bindings, using column
information.
138: //

139:
140: // Create a DBBINDING array
141: pBindings = new DBBINDING[lNumCols];
142:
143: // Using the ColumnInfo Structure, Fill Out the pBindings Array
144: for(j = 0; j < lNumCols; j++) {

145: // Ordinal Positions Start at 1
146: pBindings[j].iOrdinal = j+1;
147: // Buffer offset, re-calculated at the end of this loop
148: pBindings[j].obValue = cbColOffset;
149: // We're Not Retrieving the Column Length
150: pBindings[j].obLength = 0;
151: // We're Not Retrieving the Column Status
152: pBindings[j].obStatus = 0;
153: // These Parameters Are for Future Use...
154: pBindings[j].pTypeInfo = NULL;
155: pBindings[j].pObject = NULL;
156: pBindings[j].pBindExt = NULL;
157: // We're Just Retrieving the Value Part
158: pBindings[j].dwPart = DBPART_VALUE;
159: // The Memory Will Be Client Owned
160: pBindings[j].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
161: // This Binding Does Not Define a Parameter
162: pBindings[j].eParamIO = DBPARAMIO_NOTPARAM;
163: // Use the ColumnInfo Structure to Get the Column Size
164: pBindings[j].cbMaxLen = pDBColumnInfo[j].ulColumnSize;
165: pBindings[j].dwFlags = 0;
166: // Use the ColumnInfo Structure to Get the Column Type
167: pBindings[j].wType = pDBColumnInfo[j].wType;
168: // Use the ColumnInfo Structure to Get the Column
Precision
169: pBindings[j].bPrecision = pDBColumnInfo[j].bPrecision;
170: // Use the ColumnInfo Structure to Get the Column Scale
171: pBindings[j].bScale = pDBColumnInfo[j].bScale;
172:
173: // Re-calulate the Next Buffer Offset by
174: // Adding the Current Offset to the Maximum Column Length
175: // Obtained from the ColumnsInfo Structure
176: // Note: When Done with This Loop, This Value Will Be the
177: // Length Of the Record Buffer
178: cbColOffset = cbColOffset + pDBColumnInfo[j].ulColumnSize;
179: };
180:
181: //

182: // Step 3: Create an Accessor, using the binding information
and the
183: // CreateAccessor method.
184: //

185:
186: // Obtain Access to the IAccessor Interface
187: pRowset->QueryInterface(IID_IAccessor, (void **) &pAccessor);
188:
189: // Create an Accessor Handle, Using the CreateAccessor Method
190: pAccessor->CreateAccessor(DBACCESSOR_ROWDATA, // We Are
Retrieving
191: // Row Data
192: lNumCols, // The Number of
 // Columns

193: // We Are
Binding
194: pBindings, // The Bindings
 // Structure
195: 0, // Not used
196: &hAccessor, // The Returned
 // Accessor
197: // Handle
198: NULL); // We're Not
 // Returning
199: // Status
 // Information
200:
201: // Loop through the ColumnInfo Structure and Display
202: // Each Column Name...
203: for(j = 0; j < lNumCols; j++) {
204: // Note: the %S Let's Us Print Out UNICODE Strings from
printf
205: printf("%S\t",pDBColumnInfo[j].pwszName);
206: };
207: printf("\n--
-- \n");
208:
209: //

210: // Step 4: Retrieve the row set handles, using the GetNextRows
// method.
211: //

212:
213: // Get a Set of 5 Rows...
214: pRowset->GetNextRows(0, // For future use
215: 0, // Number of Rows
to // Skip
216: 5, // Number of Rows
to
217: // Retrieve
218: &lNumRowsRetrieved, // Number of Rows
219: // Returned
220: &pRows); // The Row Buffer
221:
222: // Allocate Space for the Row Buffer
223: pBuffer = new char[cbColOffset];
224:
225: // While We Have Retrieved Some Rows...Display Them
226: while(lNumRowsRetrieved > 0) {
227: // For Each Row in the Set We Retrieved, Print Out the
228: // Fields We Retrieved...
229: for(j = 0; j < lNumRowsRetrieved; j++) {
230: // Clear the Buffer
231: memset(pBuffer, 0, cbColOffset);
232:
233: //

234: // Step 5: Retrieve the actual row data using the GetData
method.
235: //

236:
237: // Get the Row Data Values
238: pRowset->GetData(hRows[j], hAccessor, pBuffer);
239: // Print Out The Field Values
240: // Note Our Typecast of the First Column to a Long,
Because
241: // It's a Numeric Field...Also We Will Print Only the
First
242: // 40 Characters of the Second Column
243: // Also, We Use the obvalue Value to Index The Buffer
244: printf("%ld\t%.40s\n", (ULONG)
pBuffer[pBindings[0].obValue],
245: &pBuffer[pBindings[1].obValue]);
246: };
247:
248: //

249: // Step 6: Release the row handles before retrieving the next
set of
250: // row handles.
251: //

252:
253: // Release the Rows Retrieved...
254: pRowset->ReleaseRows(lNumRowsRetrieved, hRows, NULL, NULL,
NULL);
255: // Get a Set of 5 Rows...
256: pRowset->GetNextRows(0, // For future use
257: 0, // Number of Rows
to
 // Skip
258: 5, // Number of Rows
to
259: // Retrieve
260: &lNumRowsRetrieved, // Number of Rows
261: // Returned
262: &pRows); // The Row Buffer
263:
264: };
265:
266: // Free Up All Allocated Memory
267: delete [] pBuffer;
268: pAccessor->ReleaseAccessor(hAccessor, NULL);
269: pAccessor->Release();
270: delete [] pBindings;
271: pRowset->Release();
272: pCommandText->Release();
273: pCreateCommand->Release();
274: pCreateSession->Release();
275: pIDBInitialize->Uninitialize();

276: pIDBInitialize->Release();
277:
278: // Release the Component Object Module Library
279: CoUninitialize();
280:
281: };

The code in Listing 19.5 should produce this output:

 1: CustNumber CustFirstName
 2: ------------------------------
 3: 1 Bruce
 4: 2 Homer
 5: 3 Clark
 6: 4 John
 7: 5 Bill

The key feature of this simple application is that it isn't tied to any particular query result. You can
modify the SQL command to access a different number of rows or for different tables, and the
application will still work!

Today's discussion of how to access row set information continues by examining the more advanced
aspects of data access and navigation: column types supported, handling these various types, defining
and using cursors, using bookmarks, and making changes to row data.

Navigation
Listing 19.4 shows you how to navigate a row set sequentially, using the GetNextRows method of
the IRowset interface. As you know, a cursor is a type of pointer that points to the current row you
are accessing. With the GetNextRows method, the cursor starts at the beginning of the row set and
moves sequentially through the row set as you call the GetNextRows method.

As demonstrated in the example, you can use the GetNextRows method to move the cursor a
number of rows at a time. The GetNextRows method functions until the end of the row set; then the
RestartPosition method of the IRowset interface repositions the cursor to the beginning of the
row set.

Bookmarks

If a data provider supports nonsequential access, it can access rows based on a key value, called a
bookmark in OLE DB terminology. OLE DB supports two types of bookmarks: numeric and key
value bookmarks.

TIP
Check the DBPROP_BOOKMARKTYPE of the DataSource object to
determine whether a data provider supports bookmarks.

As you may recall from the discussion of bindings earlier today, you can use the dwFlags field of
the binding structure to indicate whether a field can be used as a bookmark. This is done by setting the
dwFlags field to the DBCOLUMNSINFO_ISBOOKMARK flag. If a field is a bookmark, it can be used
as a search key. OLE DB also defines a set of standard bookmarks, which are outlined in Table 19.1.

Table 19.1 The Standard Predefined Bookmarks
Constant Description

DBBMK_INVALID An undefined bookmark
DBBMK_FIRST A bookmark to the first row
DBBMK_LAST A bookmark to the last row

Bookmarks are valid only while a row set is opened. After the row set is closed, all bookmarks on that
row set become invalid. The IRowsetLocate interface uses bookmarks to reposition the row set
cursor to access records nonsequentially. Listing 19.5 demonstrates how the GetRowsAt method
retrieves a specific row. This example assumes that the same query that was executed in Listing 19.4
and assumes that the CustomerID field has been defined as a bookmark type field. Note that the
code in Listing 19.5 doesn't check the return value from QueryInterface. You will need to test
for the return value in your production code.

Listing 19.5 Using the GETROWSAT Method to Jump to a Particular Record

 1: // Lookup CustomerID 3!
 2: lLookup = 3;
 3:
 4: // Obtain Access to the IRowsetLocate Interface
 5: pRowset->QueryInterface(IID_IAccessor, (void **)
&pRowsetLocate);
 6: pRowsetLocate->GetRowsAt(0, // Reserved for
Future
 // Use

 7: NULL, // Reserved for
Future
 // Use
 8: sizeof(lLookup), // Size of the
 // Bookmark
 9: (BYTE *) &lLookup, // The Bookmark
10: 0, // Number of Rows
to
 // Skip
11: 1, // Number of Rows
to
 // Retrieve
12: &lNumRowsRetrieved, // Number of Rows
 // Retrieved
13: &pRows); // Row Handles
14:
15: // Clear the Buffer and Retrieve the Data
16: memset(pBuffer, 0, cbColOffset);
17: pRowset->GetData(hRows[0], hAccessor, pBuffer);
18: // Print Out The Field Values
19: printf("%ld\t%.40s\n", (ULONG) pBuffer[pBindings[0].obValue],
20: &pBuffer[pBindings[1].obValue]);
21: pRowset->ReleaseRows(lNumRowsRetrieved, hRows, NULL, NULL,
NULL);

Deferred Access

One way to improve application performance is to set up columns to be deferred, that is, retrieved only
when the GetData method is called. If a column isn't deferred, its value is read when it is retrieved
from the data source. Deferring the column read can improve performance, especially if you retrieve
large columns or a large number of columns. To specify reading a column only when the GetData
method is called, you must set the DBPROP_DEFERRED property for the column. If a column
contains an OLE object, it is set to be a deferred column by default.

Column Types
OLE DB supports all the standard Windows data types. You can use these types to describe database
columns. A column's type is found in the wType field of both of the DBCOLUMNINFO and
DBBINDING structures. Table 19.2 lists all the column type constants and the associated descriptions
that OLE DB supports.

Table 19.2 OLE DB-Supported Data Types for Columns and Parameters
Type Constant Description

DBTYPE_EMPTY A type was not specified. Used when defining variant type
fields.

DBTYPE_NULL A NULL value. Used when defining variant type fields.
DBTYPE_RESERVED Reserved for future use.
DBTYPE_I1 A single-byte integer, signed.
DBTYPE_I2 A 2-byte integer, signed.
DBTYPE_I4 A 4-byte integer, signed
DBTYPE_I8 An 8-byte integer, signed.
DBTYPE_UI1 A single-byte integer, unsigned.
DBTYPE_UI2 A 2-byte integer, unsigned.
DBTYPE_UI4 A 4-byte integer, unsigned.
DBTYPE_UI8 An 8-byte integer, unsigned.
DBTYPE_R4 A single-precision floating point.
DBTYPE_R8 A double-precision floating point.
DBTYPE_CY A currency value.
DBTYPE_DECIMAL An exact numeric decimal value, stored in OLE form.
DBTYPE_NUMERIC An exact numeric decimal value, stored in standard form.
DBTYPE_DATE A date stored in OLE form.
DBTYPE_BOOL A Boolean value, stored in OLE form.
DBTYPE_BYTES An array of bytes. The length is specified by the cbMaxLen

field.
DBTYPE_BSTR A Unicode character string. The length of the string is stored

in the first two bytes.
DBTYPE_STR An ANSI NULL-terminated character string.
DBTYPE_WSTR A Unicode NULL-terminated character string.
DBTYPE_VARIANT A variant in OLE form.
DBTYPE_IDISPATCH A pointer to an OLE object.
DBTYPE_IUNKNOWN A pointer to an OLE interface.
DBTYPE_GUID A GUID (Globally Unique Identifier).
DBTYPE_ERROR An error code.
DBTYPE_BYREF A pointer to a type. Used in combination with the other data

types listed here. For example, to specify a pointer to a single-
byte signed integer, use DBTYPE_I1 | DBTYPE_BYREF.
(Note: The | specifies a logical OR operation.)

DBTYPE_ARRAY A pointer to a SAFEARRAY.

DBTYPE_VECTOR A DBVECTOR structure used to define an array of another
type; used in conjunction with another type. For example, to
specify a vector of single-byte signed integers, use
DBTYPE_I1 | DBTYPE_VECTOR.

DBTYPE_UDT A user-defined data type.
DBTYPE_DBDATE A DBDATE structure.
DBTYPE_DBTIME A DBTIME structure.
DBTYPE_DBTIMESTAMP A DBTIMESTAMP structure.

BLOBs

Binary Large Objects (BLOBs) can hold images, long text fields, or other large binary field types.
OLE DB supports BLOB fields if your data provider also supports them. Consult your data source
documentation to determine how to create a BLOB type field. BLOB columns can be retrieved as one
large chunk and stored in memory, or they can be retrieved one piece at a time. When you are
accessing a BLOB column or one chunk of data, the process of retrieving the field data is the same as
for any other column. The only difference is that you need to allocate a large buffer. Listing 19.6
demonstrates how to retrieve a 7,500-byte BLOB column from a data source. This example assumes
that this column will never be bigger than 7,500 bytes. Typically, a BLOB field has the type
DBTYPE_BYTES, DBTYPE_WSTR, or DBTYPE_STR.

Listing 19.6 How to Retrieve a BLOB Column as a Single Memory Object

1: #define BLOB_LENGTH 7500
2:
3: HACCESSOR hAccessor;
4: DBBINDING pBinding[1];
5: IRowset *pRowset;
6: IAccessor *pAccessor;
7: void *pData;
8: HROW *phRow;
9: ULONG lNumRows;
10:
11: // The First Column
12: pBindings[0].iOrdinal = 1;
13: // Buffer offset, Just one column in our row set
14: pBindings[0].obValue = 0;
15: // We're Not Retrieving the Column Length
16: pBindings[0].obLength = 0;
17: // We're Not Retrieving the Column Status

18: pBindings[0].obStatus = 0;
19: // These Parameters Are for Future Use...
20: pBindings[0].pTypeInfo = NULL;
21: pBindings[0].pObject = NULL;
22: pBindings[0].pBindExt = NULL;
23: // We're Just Retrieving the Value Part
24: pBindings[0].dwPart = DBPART_VALUE;
25: // The Memory Will Be Client Owned
26: pBindings[0].dwMemOwner = DBMEMOWNER_CLIENTOWNED;
27: // This Binding Does Not Define a Parameter
28: pBindings[0].eParamIO = DBPARAMIO_NOTPARAM;
29: // A 7500 Byte Wide Column
30: pBindings[0].cbMaxLen = BLOB_LENGTH;
31: pBindings[0].dwFlags = 0;
32: // Use the ColumnInfo Structure to Get the Column Type
33: pBindings[0].wType = DBTYPE_BYTES;
34: // Use the ColumnInfo Structure to Get the Column Precision
35: pBindings[0].bPrecision = pDBColumnInfo[j].bPrecision;
36: // Use the ColumnInfo Structure to Get the Column Scale
37: pBindings[0].bScale = pDBColumnInfo[j].bScale;
38:
39: // Obtain Accessor Interface
40: pRowset->QueryInterface(IID_Accessor, (void **) &pAccessor);
41:
42: // Create an Accessor, Using the Binding Information
43: pAccessor->CreateAccessor(DBACCESSOR_ROWDATA, // A Row
44: 1, // 1 Column
45: pBinding, // The
Bindings
46: BLOB_LENGTH, // 7500
bytes
47: &hAccessor, // The
Accessor
48: NULL); // No Status
 // Returned
49:
50: Data = new char[BLOB_LENGTH]; // Cast it to the appropriate type
 // later
51:
52: pRowset->GetNextRows(NULL, 0, 1, &lNumRows, &phRow);
53: pRowset->GetData(phRow[0], hAccessor, pData);
54 // Remember to release pAccessor;

As this example shows, the process of accessing a BLOB column as a single in-memory object isn't
very difficult. You can also access a BLOB column by using the OLE streaming interfaces. Day 20
covers these interfaces in more detail, including how to use them to access BLOB columns.

Unicode String Processing

Unicode strings are used to support international character sets. Many strings defined by OLE DB are
defined as Unicode character strings. Each Unicode character is 16-bits, twice the size of an ANSI
character string. For the most part, NULL-terminated Unicode strings can be manipulated like NULL-
terminated ANSI strings. The following special considerations apply to Unicode strings:

● When using the printf function, use the %S format directive to print Unicode strings.
● You can use the functions MultiByteToWideChar and WideCharToMultiByte to

convert ANSI strings to Unicode strings, and vice versa.
● Many functions defined for ANSI character strings are also defined for Unicode character

strings, for example, lstrcat and lstrlen.
● To use the generic string functions for Unicode characters in Visual C++, you must use the
#define _UNICODE directive and include the <wchar.h> header files.

Cursors
The final topic for today is cursors. Cursors are used to navigate a row set. If you have used Data
Access Objects (DAO), Remote Data Objects (RDO), or Open Database Connectivity (ODBC) you
are probably already familiar with different types of cursors that facilitate record navigation and
locking. This discussion concentrates on the various types of cursors, why they are used, and the
Rowset object properties that must be set to invoke them. Tomorrow's topics (Day 20) include OLE
DB object properties and the implementation of cursors in more detail.

Static Cursors

When using a Static cursor, the order of the rows is in the natural data source order, and if the row set
is changed in any way while it is opened, those changes aren't reflected. Changes are recognized only
when the row set is closed and reopened. To specify that a row set uses a static type of cursor, the
DBPROP_CANSCROLLBACKWARDS property is set to VARIANT_TRUE and the
DBPROP_OTHERINSERT and DBPROP_OTHERUPDATEDELETE properties are set to
VARIANT_FALSE.

KeySet Cursors

When you use a KeySet cursor, the order of the rows is in some sorted order based on a key. As with a
Static cursor, if the row set is changed in any way while it is opened, those changes aren't reflected
immediately. If a row is updated, the changes will be reflected the next time the row is retrieved, but if
a row is deleted or inserted, the change is recognized only when the row set is closed and reopened. To
specify that a row set uses a KeySet type of cursor, the DBPROP_CANSCROLLBACKWARDS and
DBPROP_OTHERUPDATEDELETE properties are set to VARIANT_TRUE, and the
DBPROP_OTHERINSERT is set to VARIANT_FALSE.

Dynamic Cursors

When you use a Dynamic cursor, the currently open row set actively reflects all changes to the row
set. Changes are reflected the next time the row is retrieved. To specify that a row set should use a
Dynamic type of cursor, the DBPROP_CANSCROLLBACKWARDS,
DBPROP_OTHERUPDATEDELETE, and DBPROP_OTHERINSERT properties are set to
VARIANT_TRUE.

Summary
Day 19 opens with a survey of the Rowset object and its interfaces, then sets out a six-step plan for
retrieving data, and finally explains how to handle BLOB columns and specify various cursor types.

Today you learned how to access row set data sequentially, how to use bookmarks to access row set
data in a random fashion, and how to use deferred access to improve application performance. Day 19
ends with a discussion of different types of cursors, how they affect row set access, and the Rowset
properties that must be set to invoke these cursor types. The discussion of OLE DB continues
tomorrow with a more detailed look at properties, transactions, and OLE DB streaming mechanisms.

Q&A
This section answers some common questions related to today's topics.

Q Does OLE DB provide any way for me to search for a particular value in a row set?
A OLE DB provides the IRowsetIndex interface, which I didn't discuss in this lesson.

You can use this interface with an associated data source index to search for specific
rows in a row set, based on key values. A data provider must support indexing to use
this interface.

Q Are queries the only way to create row sets?
A No, row sets can be generated directly from the Session object if a data provider

doesn't support the Rowset object. Row sets generated in this manner will contain the
complete contents of a data provider object in a tabular form. (In the case of a database,
a data provider object would typically be the contents of a table.) The
IDBSchemaRowset interface can also be used to generate row sets that contain data
source schema information.

Q How does OLE DB handle multiuser row set access?
A OLE DB provides a Transaction object for managing record locking and sharing in

a multiuser environment. Day 20 covers the Transaction object in more detail.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to

real-life situations.

Quiz Questions

1. What is the OLE DB Rowset object, and what is it used for?
2. What Rowset interface is used to perform basic column data retrieval and navigation?
3. List the six steps used to retrieve column data.
4. What information is stored in the DBCOLUMNINFO structure?
5. What structure stores column bindings? How do column bindings relate to the row buffer?
6. What are BLOB columns? What are the two ways OLE DB provides for accessing their

contents?
7. List and describe the different cursor types that OLE DB supports.

Exercises

1. Modify the application in Listing 19.4 to display schema information for the result of the
query. Include the column name, type, length, and so on. Hint: Look at what's stored in the
DBCOLUMNINFO structure and at the IDBSchemaRowset interface.

2. Lines 156-164 use the DBCOLUMNINFO structure to discover the columns and their types.
Lines 194 through 199 show the column names. You can simply add code here that uses the
information from lines 156-164.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 20
 Properties, Transactions, and Indexes

● Properties and Groups
❍ Getting Properties
❍ Setting Properties
❍ A Review of OLE DB Object Properties

● Transactions
❍ The ITransaction Interface
❍ The ITransactionLocal Interface
❍ The ITransactionOptions Interface
❍ The ITransactionObject Interface
❍ The ITransactionJoin Interface
❍ Creating Transactions
❍ Committing and Aborting Transactions
❍ Nesting Transactions
❍ Isolation Levels and Locking

● The Index Object
❍ The IRowsetIndex Interface
❍ Using the Index Object

● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

Today's lesson covers three important topics in OLE DB application development: properties,
transactions, and the Index object. You have already learned about OLE DB objects and have used
their methods, but you haven't yet discovered how to change the state of an object. Today you will
learn how to use properties to control the state of an object, or in other words, how to set and retrieve
property values of OLE DB objects by using special interfaces. The other major topics for today are
the Transaction object and the Index object.

Today you will

● Learn how to use properties and groups to set the state of various OLE DB objects by using the
interfaces they provide.

● Retrieve and set property values.
● Explore the major properties supported by OLE DB objects.
● Create, commit, and abort Transaction objects by using the supported interfaces.
● Use transactions to ensure data security and integrity.
● Use the interfaces supported by the Index object.
● Use the Index object to search for a row in the row set by using a key value.

Properties and Groups
Properties specify the attributes of an OLE DB object and can determine how the object behaves.
Some properties can only be read, whereas others can be read and written. Properties are identified by
globally unique identifier (GUID) constants and grouped according to the object on which they
function. The following objects have special properties: Columns, DataSource, DataSource
initialization objects, Index, Rowset, Session, and Table. Today's explanation of properties
begins by discussing how to retrieve a property value.

Getting Properties

Most OLE DB objects use the GetProperties method to retrieve property values. Table 20.1
summarizes the methods used by each OLE DB object to access its properties. Because most objects
use the GetProperties method, this section focuses on that mechanism for retrieving property
values.

Table 20.1 The Methods Used by OLE DB Objects to Retrieve Property Values
OLE DB Object Interface Method

Columns IcolumnsRowset GetColumnsRowset

DataSource IDBProperties GetProperties
Index IRowsetIndex GetIndexInfo

Rowset IRowsetInfo
IcommandInfo
IcommandProperties

GetProperties
GetProperties
GetProperties

Session IsessionProperties GetProperties
Table ITableDefinition CreateTable

The GetProperties method is defined as follows:

GetProperties(ULONG lNumPropIDs, DBPROPIDSET rPropIDs[],
 ULONG lNumPropSets, DBPROPSET **prPropSets);

The lNumPropIDs parameter specifies the number of elements in the rPropIDs array. The
rPropIDs array contains a collection of DBPROPIDSET structures that specify the collection of
properties for which you want to see values. The DBPROPIDSET structure is defined as follows:

typedef struct tagDBPROPIDSET {
 DBPROPID *rgPropertyIDs;
 ULONG cPropertyIDs;
 GUID guidPropertySet;
} DBPROPIDSET;

The rgPropertyIDs field defines an array of Property IDs. That is, the DBPROPIDSET holds
a collection of property IDs, and the GetProperties method actually takes a collection of
DBPROPIDSET structures, which in themselves contain a collection of property IDs. You will
typically define a single DBPROPIDSET structure, which contains a collection of the property IDs
you want to retrieve. The cPropertyIDs field defines the number of elements in the
rgPropertyIDs array. The guidPropertySet field holds a GUID that defines the property
group to which the properties in the rgPropertyIDs array belong. Table 20.2 defines the group
GUID constants and the OLE DB object they define.

Table 20.2 The OLE DB Property Groups
OLE DB Object Group GUID Constant

Column DBPROPSET_COLUMN
DataSource DBPROPSET_DATASOURCE
DataSource (information) DBPROPSET_DATASOURCEINFO
DataSource (initialization) DBPROPSET_DBINIT
Index DBPROPSET_INDEX
Rowset DBPROPSET_ROWSET
Session DBPROPSET_SESSION
Table DBPROPSET_TABLE

To retrieve a property value, you must create the DBPROPIDSET structure that contains the properties
you want to retrieve. On return, the prPropSet parameter contains a pointer to an array of
DBPROPSET structures, and each array element contains a collection of property values. The
DBPROPSET structure is defined as the following:

typedef struct tagDBPROPSET {
 DBPROP *rgProperties;
 ULONG cProperties;
 GUID guidPropertySet;
} DBPROPSET;

NOTE
The memory used by the prPropSet parameter is allocated by the call to
the GetProperties method. The Free method of the Imalloc interface
should be used to deallocate this memory when it is no longer required. You
can also use the CoTaskMemFree API call if you don't have a pointer to
the IMalloc interface available. It saves several lines of code, and it's
functionally equivalent.

The rgProperties field defines an array of DBPROP structures. The DBPROP structures hold the
actual property values. The cProperties field defines the number of elements in the
rgProperties array. The guidProperties defines the property group to which the properties
in the rgProperties array belong. The DBPROP structure, which holds the actual property values,
is defined as follows:

typedef struct tagDBPROP {
 DBPROPID dwPropertyID;
 DBPROPOPTIONS dwOptions;
 DBPROPSTATUS dwStatus;
 DBID colid;
 VARIANT vValue;
} DBPROP;

The dwPropertyID field defines the property ID; it is defined as a simple DWORD type. The
dwOptions field determines whether the property is optional or required and what to do if much of
processing is required to set the value. The dwOptions field is a combination of the constants:
DBPROPOPTIONS_REQUIRED if the value is required and DBPROPOPTIONS_SETIFCHEAP to
determine whether it should be set if it takes much processing. The dwStatus determines the status
of the property. Table 20.3 defines the possible values of the dwStatus field and their meanings.
The colid field defines the column for which this property is defined. The colid is a DBID type
structure, as you might recall from Day 18, "Querying a Data Source." Finally the vValue field
defines the value of the property; it's defined as a standard C++ VARIANT type.

Table 20.3 The Property Status Values

Status Value Description
DBPROPSTATUS_OK The property's value has been successfully set.
DBPROPSTATUS_BADCOLUMN The colid field doesn't define a valid field.
DBPROPSTATUS_BADOPTION The dwOptions field contained an illegal

value.
DBPROPSTATUS_BADVALUE The vValue field contained an illegal value.
DBPROPSTATUS_CONFLICTING Changing the value of this property would result

in a conflicting state; the operation was
performed.

Status Value Description
DBPROPSTATUS_NOTALLSETTABLE When trying to set a property that applies to a set

of columns, the operation was denied because it
couldn't be set for all columns.

DBPROPSTATUS_NOTSET The DBPROPOPTIONS_SETIFCHEAP option
prevented the property from being set.

DBPROPSTATUS_NOTSETTABLE You can't set the value of a read-only property.
DBPROPSTATUS_NOTSUPPORTED The data provider doesn't support the specified

property.

Now that you have the background information you need in order to use the GetProperties
method, you can construct the appropriate structures to retrieve a property's value and interpret the
results. You need to define one structure to define the property ID you want to retrieve, and you need
to define one structure to return the actual property values. (A listing and descriptions of OLE DB
object property IDs appear later in this lesson.)

In the Day 18 compendium of the SQL command language, I discussed the use of the
GetProperties method of the IDBProperties interface to determine whether the data provider
supported the SQL command language. The property ID to check for SQL support is
DPROP_SQLSUPPORT. This property is represented as a long integer, which determines the level of
SQL support provided by the data provider. Listing 20.1 demonstrates how to retrieve the
DBPROP_SQLSUPPORT property of the DataSource object to determine the level of SQL support
provided by the data provider. Note that for brevity, the code in Listing 20.1 doesn't check the return
value from GetProperties. Without testing the HRESULT, you have no way of knowing whether
the properties were actually returned. In your production code, you will need to test for the return
value.

Listing 20.1 Determining the Level of SQL Support Provided by a Data Provider, Using the
DBSQL_SUPPORT Property

 1: PropID = DBPROP_SQLSUPPORT; // SQL Support
 2: // Interface
 3: PropIDSet.rgPropertyIDs = &PropID; // Specify the
 4: // property ID
 5: PropIDSet.cPropertyIDs = 1; // Only one Property
ID
 6: PropIDSet.guidPropertySet = DBPROPSET_DATASOURCEINFO;
 // It's a DataSource
 7: // object Property
 8:
 9: // Retrieve the Properties
10: pIDBProperties->GetProperties(1, &PropIDSet, &lNumProps,
 &pPropSet);
11:
12: // Interpret the property value
13: if(pPropSet->rgProperties->vValue.lVal & DBPROPVAL_SQL_NONE) {
14: cout << "SQL Commands are not supported\n";
15: };
16:
17: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ODBC_MINIMUM) {
18: cout << "ODBC Minimum SQL Commands supported\n";
19: };
20:
21: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ODBC_CORE) {
22: cout << "ODBC Core SQL Commands supported\n";
23: };
24:
25: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ODBC_EXTENDED) {
26: cout << "ODBC Extended SQL Commands supported\n";
27: };
28:
29: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ANSI92_ENTRY) {
30: cout << "ANSI 92 Entry SQL Commands supported\n";
31: };
32:
33: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_FIPS_TRANSITIONAL) {
34: cout << "FIPS Transitional SQL Commands supported\n";
35: };
36:
37: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ANSI92_INTERMEDIATE) {
38: cout << "ANSI 92 Intermediate SQL Commands supported\n";
39: };
40:
41: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ANSI92_FULL) {
42: cout << "ANSI 92 Full SQL Commands supported\n";
43: };
44:

45: if(pPropSet->rgProperties->vValue.lVal &
 DBPROPVAL_SQL_ANSI89_IEF) {
46: cout << "ANSI 89 Integrity Enhancement Facility
 SQL Commands supported\n";
47: };

NOTE
OLE DB also provides the GetPropertyInfo and
GetCreationProperties methods to retrieve additional information
about the properties that each object makes available.

Setting Properties

To establish a connection to the DataSource object by using the OLE DB ODBC provider, you
used the SetProperties method (refer to Day 18) to specify the required ODBC connection
parameters. The primary method that OLE DB objects use to specify property values is the
SetProperties method. The SetProperties method is defined as follows:

SetProperties(ULONG cPropertySets, DBPROPSET rgPropertySets[]);

The cPropertySets parameter specifies the number of elements in the rgPropertySets array.
This array contains a collection of property values. The rgPropertySets parameter is a
DBPROPSET type, discussed earlier today. To set the value of a property, you need to create the
rgPropertySets array and call the SetProperties method.

TIP
On return from the SetProperties method, check the status of each
property to determine whether it was set properly.

Property status values are listed in Table 20.3. Table 20.4 lists the methods that each OLE DB object
uses in order to specify property values.

Table 20.4 The Methods Used by OLE DB Objects to Specify Property Values
OLE DB Object Interface Method

Columns IColumnsRowset AddColumn

DataSource IDBProperties SetProperties
Index IRowsetIndex GetIndexInfo
Rowset IRowsetInfo GetProperties

 ICommandProperties SetProperties
Session ISessionProperties SetProperties
Table ITableDefinition CreateTable

Now that you understand the structures involved in specifying a property, you can specify a property
value and check the status of the property set operation. Listing 20.2 demonstrates how to use the
DBPROP_INIT_TIMEOUT property. (The complete source code is on the CD-ROM.) This property
is part of the DBPROPSET_DBINIT group and is used to specify the number of seconds to wait while
a connection to the data source is established. Note that for brevity, the code in Listing 20.2 doesn't
check the return values. In your production code, you will need to test for the return values.

Listing 20.2 How to Use the SETPROPERTIES Method to Set the DBPROP_INIT_TIMEOUT
Property

 1: // Obtain Access To The OLE DB - ODBC Provider
 2: CoCreateInstance(CLSID_MSDASQL, NULL, CLSCTX_INPROC_SERVER,
 3: IID_IDBInitialize, (void **)
&pIDBInitialize);
 4:
 5: // Initialize the property values
 6: VariantInit(&InitProperties[0].vValue);
 7: InitProperties[0].dwOptions = DBPROPOPTIONS_REQUIRED;
 8: InitProperties[0].colid = DB_NULLID;
 9: InitProperties[0].dwPropertyID = DBPROP_INIT_TIMEOUT;
10: InitProperties[0].vValue.vt = VT_I4;
11:
12: // Set the timeout value to 90 seconds
13: InitProperties[0].vValue.lVal = 90;
14:
15: // Specify the Property Set
16: rgInitPropSet[0].guidPropertySet = DBPROPSET_DBINIT;
17: rgInitPropSet[0].cProperties = 1;
18: rgInitPropSet[0].rgProperties = InitProperties;
19:
20: // set initialization properties
21: pIDBInitialize->QueryInterface(IID_IDBProperties,
 (void **)&pIDBProperties);
22: pIDBProperties->SetProperties(1,rgInitPropSet);
23: // Remember to release pIDBInitialize and pIDBProperties.

A Review of OLE DB Object Properties

Table 20.5 lists all the properties that OLE DB objects support. This table lists each property ID and
its variant type. An asterisk (*) after a property name signifies that it is a read-only property.

NOTE
Certain data providers might provide their own set of properties, so check
the data provider documentation for more information. For example, the
OLE DB ODBC data provider supports its own set of properties. These
properties are part of two OLE DB ODBC provider-specific groups:
DBPROPSET_PROVDERDATASOURCEINFO and
DBPROPSET_PROVIDERROWSET.

Table 20.5 The Properties Supported by OLE DB Objects
Property Description

Column Object Properties
DBPROP_COL_AUTOINCREMENT A VT_BOOL type property. If it's

true, the column will automatically
increment.

DBPROP_COL_DEFAULT A property of any type. It specifies
the default value of a column.

DBPROP_COL_DESCRIPTION A VT_STR type property. It
specifies a column description.

DBPROP_COL_FIXEDLENGTH A VT_BOOL type property. If it's
true, the column has a fixed length.

DBPROP_COL_NULLABLE A VT_BOOL type property. If it's
true, the column can contain NULL
values.

DBPROP_COL_PRIMARYKEY A VT_BOOL type property. If it's
true, this column is part of the
primary key.

DBPROP_COL_UNIQUE A VT_BOOL type property. If it's
true, this column must be unique.

DataSource Object Properties
DBPROP_CURRENTCATALOG A VT_BSTR type property. It

names the current data source
catalog.

DataSource Object Properties (Information)

DBPROP_ACTIVESESSIONS * A VT_I4 type property. It
specifies the maximum number of
sessions; if 0, sessions are unlimited.

DBPROP_ASYNCTXNABORT * A VT_BOOL type property. If it's
true, transactions can be aborted
asynchronously.

DBPROP_ASYNCTXNCOMMIT * A VT_BOOL type. If it's true,
transactions can be committed
asynchronously.

DataSource Object Properties (Information)
DBPROP_BYREFACCESSORS * A VT_BOOL type property. If it's

true, the data source can accept
parameters passed by reference (as
pointers).

DBPROP_CATALOGLOCATION * A VT_I4 type property. It returns
DBPROPVAL_CL_START if the
catalog name is at the beginning or
DBPROPVAL_CL_END if it's at the
end.

DBPROP_CATALOGTERM * A VT_BSTR type property. It
specifies the name that a data source
uses for a catalog.

DBPROP_CATALOGUSAGE * A VT_I4 type property. It's used to
determine where catalog names are
supported.

DBPROP_COLUMNDEFINITION * A VT_I4 type property. It's used
to determine valid column states.

DBPROP_CONCATNULLBEHAVIOR A VT_I4 type property. It
determines how NULL strings are
handled when added to other
character strings.

DBPROP_DATASOURCENAME * A VT_BSTR type property. It
specifies the name of the data source.

DBPROP_DATASOURCEREADONLY * A VT_BOOL type property. If it's
true, the data source is read-only.

DBPROP_DBMSNAME * A VT_BSTR type property. It
specifies the name of the data
provider.

DBPROP_DBMSVER * A VT_BSTR type property. It
specifies the version of the data
provider.

DBPROP_DSOTHREADMODEL * A VT_I4 type property. It
specifies the threading model
supported by the data provider.

DBPROP_GROUPBY * A VT_I4 type property. It
specifies how the GROUP BY clause
functions.

DBPROP_HETEROGENEOUSTABLES * A VT_I4 type property. It
specifies whether joins can be
performed across providers or
catalogs.

DBPROP_IDENTIFIERCASE * A VT_I4 type parameter. It
specifies whether the case of
identifiers is significant.

DBPROP_MAXINDEXSIZE * A VT_I4 type parameter. It
specifies the maximum size of a key;
if 0, there is no limit.

DataSource Object Properties (Information)
DBPROP_MAXROWSIZE * A VT_I4 type parameter. It

specifies the maximum length of a
row; if 0, there is no limit.

DBPROP_MAXROWSIZEINCLUDESBLOB * A VT_BOOL type parameter. If it's
true, the DBPROP_MAXROWSIZE
property includes BLOB fields.

DBPROP_MAXTABLESINSELECT * A VT_I4 type parameter. It
specifies the maximum number of
tables that can be used in a SELECT
statement.

DBPROP_MULTIPLEPARAMSETS * A VT_BOOL type parameter. If it's
true, the data source supports
multiple parameter sets.

DBPROP_MULTIPLERESULTS * A VT_I4 type parameter. It
specifies whether the data source can
support multiple resultsets.

DBPROP_MULTIPLESTORAGEOBJECTS * A VT_BOOL type parameter. If it's
true, the data source can open
multiple objects at the same time.

DBPROP_MULTITABLEUPDATE * A VT_BOOL type parameter. If it's
true, the data source can update
row sets that contain multiple tables.

DBPROP_NULLCOLLATION * A VT_I4 type parameter. It
specifies how NULL values are
handled when sorting.

DBPROP_OLEOBJECTS * A VT_I4 type parameter. It
specifies whether BLOB and OLE
objects can be accessed through
streaming or storage objects.

DBPROP_ORDERBYCOLUMNSINSELECT * A VT_BOOL type parameter. If it's
true, the columns specified in an
ORDER BY clause must be part of
the SELECT statement.

DBPROP_OUTPUTPARAMETERAVAILABILITY * A VT_I4 type parameter. It
specifies when output parameters can
be accessed.

DBPROP_PERSISTENTIDTYPE * A VT_I4 type parameter. It
specifies the type of persistent DBID
supported by a data source.

DBPROP_PREPAREABORTBEHAVIOR * A VT_I4 type parameter. It
specifies what happens to a prepared
statement when it's aborted in a
transaction.

DataSource Object Properties (Information)
DBPROP_PREPARECOMMITBEHAVIOR * A VT_I4 type parameter. It

specifies what happens to a prepared
statement when it's committed in a
transaction.

DBPROP_PROCEDURETERM * A VT_BSTR type parameter. It
specifies what the data source calls a
procedure.

DBPROP_PROVIDERNAME * A VT_BSTR type parameter. It
specifies the executable filename of
the provider.

DBPROP_PROVIDEROLEDBVER * A VT_BSTR type parameter. It
specifies the OLE DB specification
version supported by the provider.

DBPROP_PROVIDERVER * A VT_BSTR type parameter. It
specifies the version of the data
provider.

DBPROP_QUOTEDIDENTIFIERCASE * A VT_I4 type parameter. It
specifies how case is handled for
quoted identifiers.

DBPROP_ROWSETCONVERSIONSONCOMMAND * A VT_BOOL type parameter. If it's
true, an inquiry can be made about
conversions on the row sets of a
command.

DBPROP_SCHEMATERM * A VT_BSTR type parameter. It
specifies the term used by the data
source for a schema.

DBPROP_SCHEMAUSAGE * A VT_I4 type parameter. It
specifies how schema names can be
used in commands.

DBPROP_SQLSUPPORT * A VT_I4 type parameter. It
specifies the level of SQL supported
by the data source.

DBPROP_STRUCTUREDSTORAGE * A VT_I4 type parameter. It
specifies streaming interfaces
supported for row sets.

DBPROP_SUBQUERIES * A VT_I4 type parameter. It
specifies whether subqueries are
supported in commands.

DBPROP_SUPPORTEDTXNDDL * A VT_I4 type parameter. It
specifies whether data definition
commands are supported in
transactions.

DBPROP_SUPPORTEDTXNISOLEVELS * A VT_I4 type parameter. It
specifies the transaction isolation
levels supported by the data source.

DataSource Object Properties (Information)
DBPROP_SUPPORTEDTXNISORETAIN * A VT_I4 type parameter. It

specifies the retention levels
supported by transaction isolation.

DBPROP_TABLETERM * A VT_BSTR type parameter. It
specifies the term used by the data
source for tables.

DBPROP_USERNAME * A VT_BSTR type parameter. It
specifies the name of the user
attached to the data source.

DataSource Object Properties (Initialization)
DBPROP_AUTH_CACHE_AUTHINFO A VT_BOOL type parameter. If it's

true, the data source can store
password and user information in a
local cache.

DBPROP_AUTH_ENCRYPTPASSWORD A VT_BOOL type parameter. If it's
true, the data source requires the
password to be sent in an encrypted
form.

DBPROP_AUTH_INTEGRATED A VT_BSTR type parameter. It
specifies the name of the
authentication service to be used.

DBPROP_AUTH_MASK_PASSWORD A VT_BOOL type parameter. If it's
true, the password must be masked
before it's sent to the data source.

DBPROP_AUTH_PASSWORD A VT_BSTR type parameter. This
is the password used for
authentication (can be masked).

DBPROP_AUTH_PERSISTENCRYPTED A VT_BOOL type parameter. If it's
true, the data source must save
authentication information.

DBPROP_AUTH_PERSIST_SENSITIVEAUTHINFO A VT_BOOL type parameter. If it's
true, the data source is allowed to
persist authentication information.

DBPROP_AUTH_USERID A VT_BSTR type parameter. It
specifies the username used to
connect to the data source.

DBPROP_INIT_DATASOURCE A VT_BSTR type parameter. This
is the name of the data source to
connect to.

DBPROP_INIT_HWND A VT_I4 type parameter. This is
the window handle used if a prompt
window must be displayed when
accessing the data source.

DataSource Object Properties (Initialization)
DBPROP_INIT_IMPERSONATIONLEVEL A VT_I4 type parameter. It

specifies the impersonation level
used for remote procedure calls.

DBPROP_INIT_LCID A VT_I4 type parameter. It
specifies the location identifier.

DBPROP_INIT_LOCATION A VT_BSTR type parameter. It
specifies the location of the data
source (that is, the name of the
server).

DBPROP_INIT_MODE A VT_I4 type parameter. It
specifies the read, write, share access
level to the data source.

DBPROP_INIT_PROMPT A VT_I4 type parameter. It
specifies whether a prompt should be
displayed for user/data source
information if it's required when
connecting to a data source.

DBPROP_INIT_PROTECTION_LEVEL A VT_I4 type parameter. It
specifies the remote procedure call
connection level used.

DBPROP_INIT_PROVIDERSTRING A VT_BSTR type parameter. It
specifies provider-specific
connection parameters.

DBPROP_INIT_TIMEOUT A VT_I4 type parameter. It
specifies the amount of time to wait
for a connection to complete.

Index Object Properties
DBPROP_INDEX_AUTOUPDATE A VT_BOOL type parameter. If it's

true, the index is automatically
updated whenever a change is made.

DBPROP_INDEX_CLUSTERED A VT_BOOL type parameter. If it's
true, the index uses clustering.

DBPROP_INDEX_FILLFACTOR A VT_I4 type parameter. It
specifies the B+tree fill factor for
the index.

DBPROP_INDEX_INITIALSIZE A VT_I4 type parameter. It
specifies the initial size to allocate
for the index.

DBPROP_INDEX_NULLCOLLATION A VT_I4 type parameter. It
specifies how NULL values are
treated in the sorting order.

Index Object Properties
DBPROP_INDEX_NULLS A VT_I4 type parameter. It

specifies whether an index can use
NULL values.

DBPROP_INDEX_PRIMARYKEY A VT_BOOL type parameter. If it's
true, this index is based on the
primary key.

DBPROP_INDEX_SORTBOOKMARKS A VT_BOOL type parameter. If it's
true, the index sorts bookmarks.

DBPROP_INDEX_TEMPINDEX A VT_BOOL type parameter. If it's
true, the index is temporary.

DBPROP_INDEX_TYPE A VT_I4 type parameter. It
specifies the type of index
mechanisms used by the data source.

DBPROP_INDEX_UNIQUE A VT_BOOL type parameter. If it's
true, the index keys must be
unique.

RowSet Object Properties
DBPROP_ABORTPRESERV A VT_BOOL type parameter. If it's

true, the row set is preserved even
after an aborted transaction.

DBPROP_APPENDONLY A VT_BOOL type parameter. If it's
true, rows can only be added to the
row set. You use this when creating
new tables.

DBPROP_BLOCKINGSTORAGEOBJECTS A VT_BOOL type parameter. If it's
true, storage objects could prevent
other operations.

DBPROP_BOOKMARKS A VT_BOOL type parameter. If it's
true, bookmarks can be used by the
row set.

DBPROP_BOOKMARKSKIPPED A VT_BOOL type parameter. If it's
true, the GetRowsAt method can
skip deleted bookmark rows.

DBPROP_BOOKMARKTYPE A VT_I4 type parameter. It
specifies the type of bookmarks
used: numeric or key.

DBPROP_CACHEDEFERRED A VT_BOOL type parameter. If it's
true, deferred columns can be
cached.

DBPROP_CANFETCHBACKWARDS A VT_BOOL type parameter. If it's
true, methods used to get rows can
retrieve rows before the current row.

RowSet Object Properties
DBPROP_CANHOLDROWS A VT_BOOL type parameter. If it's

true, additional rows can be
fetched when changes are pending.

DBPROP_CANSCROLLBACKWARDS A VT_BOOL type parameter. If it's
true, you can retrieve rows before
the current row.

DBPROP_CHANGEINSERTEDROWS A VT_BOOL type parameter. If it's
true, you can make modifications
to rows that have been added to the
row set.

DBPROP_COLUMNRESTRICT * A VT_BOOL type parameter. If it's
true, access can be restricted at the
column level.

DBPROP_COMMANDTIMEOUT A VT_I4 type parameter. It
specifies the amount of time before a
command times out.

DBPROP_COMMITPRESERVE A VT_BOOL type parameter. If it's
true, the row set is preserved after
the transaction has been committed.

DBPROP_DEFERRED A VT_BOOL type parameter. If it's
true, the column data is retrieved
only when the GetData method is
called.

DBPROP_DELAYSTORAGEOBJECTS A VT_BOOL type parameter. If it's
true, updates to storage objects are
delayed.

DBPROP_IAccessor A VT_BOOL type parameter. If it's
true, the row set supports the
Iaccessor interface.

DBPROP_IColumnsInfo A VT_BOOL type parameter. If it's
true, the row set supports the
IcolumnsInfo interface.

DBPROP_IColumnsRowset A VT_BOOL type parameter. If it's
true, the row set supports the
IcolumnsRowset interface.

DBPROP_IConnectionPointContainer A VT_BOOL type parameter. If it's
true, the row set supports the
IconnectionPointContainer
interface.

DBPROP_IConvertType A VT_BOOL type parameter. If it's
true, the row set supports the
IconvertType interface.

DBPROP_IRowset A VT_BOOL type parameter. If it's
true, the row set supports the
IRowset interface.

DBPROP_IRowsetChange A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetChAnge interface.

DBPROP_IRowsetIdentity A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetIdentity interface.

DBPROP_IRowsetInfo A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetInfo interface.

DBPROP_IRowsetLocate A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetLocate interface.

DBPROP_IRowsetResynch A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetResynch interface.

DBPROP_IRowsetScroll A VT_BOOL type parameter. If it's
true, the row set supports the
IRowsetScroll interface.

DBPROP_IRowsetUpdate A VT_BOOL type parameter. If it's
true, the row set supports the
IRowseUpdate interface.

DBPROP_ISupportErrorInfo A VT_BOOL type parameter. If it's
true, the row set supports the
IsupportErrorInfo interface.

DBPROP_ILockBytes A VT_BOOL type parameter. If it's
true, the row set supports the
ILockBytes storage interface.

DBPROP_ISequentialStream A VT_BOOL type parameter. If it's
true, the row set supports the
IsequentialStream storage
interface.

DBPROP_IStorage A VT_BOOL type parameter. If it's
true, the row set supports the
Istorage storage interface.

DBPROP_IStream A VT_BOOL type parameter. If it's
true, the row set supports the
IStream storage interface.

DBPROP_IMMOBILEROWS A VT_BOOL type parameter. If it's
true, updated rows will not be
reordered.

DBPROP_LITERALBOOKMARKS A VT_BOOL type parameter. If it's
true, bookmarks can be compared
in an ordinal fashion.

DBPROP_LITERALIDENTITY * A VT_BOOL type parameter. If it's
true, row handles can be compared
to see whether they are the same.

RowSet Object Properties
DBPROP_MAXOPENROWS * A VT_I4 type parameter. It

specifies the maximum number of
rows that can be opened at once; if
0, there is no limit.

DBPROP_MAXPENDINGROWS * A VT_I4 type parameter. It
specifies the maximum number of
rows that can simultaneously have
pending updates.

DBPROP_MAXROWS * A VT_I4 type parameter. It
specifies the maximum number of
rows that can be in a row set, and if
0, there is no limit.

DBPROP_MAYWRITECOLUMN A VT_BOOL type parameter. If it's
true, a column is writable.

DBPROP_MEMORYUSAGE A VT_I4 type parameter. It
specifies the percentage of memory
that a row set can use. If it's 0, there
is no limit.

DBPROP_NOTIFICATIONGRANULARITY A VT_I4 type parameter. It
specifies when notification occurs.

DBPROP_NOTIFICATIONPHASES * A VT_I4 type parameter. It
specifies when notifications are
supported by the data provider.

DBPROP_NOTIFYCOLUMNSET * A VT_I4 type parameter. It
specifies when notifications are
generated by a column set.

DBPROP_NOTIFYROWDELETE * A VT_I4 type parameter. It
specifies when notifications are
generated by a row delete.

DBPROP_NOTIFYROWFIRSTCHANGE * A VT_I4 type parameter. It
specifies when notifications are
generated by a first row change.

DBPROP_NOTIFYROWINSERT * A VT_I4 type parameter. It
specifies when notifications are
generated by an insert.

DBPROP_NOTIFYROWRESYNCH * A VT_I4 type parameter. It
specifies when notifications are
generated by a row set
resynchronization.

DBPROP_NOTIFYROWSETRELEASE * A VT_I4 type parameter. It
specifies when notifications are
generated by a row set release.

DBPROP_NOTIFYROWSETFETCHPOSITIONCHANGE* A VT_I4 type parameter. It
specifies when notifications are
generated by a position change.

RowSet Object Properties
DBPROP_NOTIFYROWUNDOCHANGE * A VT_I4 type parameter. It

specifies when notifications are
generated by an undo of a change.

DBPROP_NOTIFYROWUNDODELETE * A VT_I4 type parameter. It
specifies when notifications are
generated by an undo of a delete.

DBPROP_NOTIFYROWUNDOINSERT * A VT_I4 type parameter. It
specifies when notifications are
generated by an undo of an insert.

DBPROP_NOTIFYROWUPDATE * A VT_I4 type parameter. It
specifies when notifications are
generated by a row update.

DBPROP_ORDEREDBOOKMARKS A VT_BOOL type parameter. If it's
true, bookmarks can be compared
in an ordinal fashion.

DBPROP_OTHERINSERT A VT_BOOL type parameter. If it's
true, rows inserted by others into a
row set can be seen when they are
inserted.

DBPROP_OTHERUPDATEDELETE A VT_BOOL type parameter. If it's
true, changes by other users are
visible.

DBPROP_OWNINSERT A VT_BOOL type parameter. If it's
true, rows inserted by this user into
the row set can be seen when they
are inserted.

DBPROP_OWNUPDATEDELETE A VT_BOOL type parameter. If it's
true, rows updated or deleted by
this user are visible.

DBPROP_QUICKRESTART A VT_BOOL type parameter. If it's
true, the command that generated
the row set is not re-executed when
restarting.

DBPROP_REENTRANTEVENTS * A VT_BOOL type parameter. If it's
true, reentrant events (events that
can happen at the same time) are
supported.

DBPROP_REMOVEDELETED A VT_BOOL type parameter. If it's
true, rows that have been marked
for deletion are not included in the
row set.

DBPROP_REPORTMULTIPLECHANGES * A VT_BOOL type parameter. If it's
true, updates and deletes on row
sets that affect multiple rows can be
handled.

RowSet Object Properties
DBPROP_RETURNPENDINGINSERTS * A VT_BOOL type parameter. If it's

true, rows with pending changes
are included in the row set.

DBPROP_ROWRESTRICT * A VT_BOOL type parameter. If it's
true, access to rows can be
specified on a row basis.

DBPROP_ROWTHREADMODEL A VT_I4 type parameter. It
specifies the threading model used
by row sets.

DBPROP_SERVERCURSOR A VT_BOOL type parameter. If it's
true, the data source supports
server-side cursors.

DBPROP_STRONGIDENTITY * A VT_BOOL type parameter. If it's
true, row handles to newly inserted
rows can be compared with existing
rows in an ordinal fashion.

DBPROP_TRANSACTEDOBJECT A VT_BOOL type parameter. If it's
true, data changes for a column
must be made through transactions.

DBPROP_UPDATABILITY A VT_I4 type parameter. It
specifies the change methods
supported by the row set.

Session Object Properties
DBPROP_SESS_AUTOCOMMITISOLEVELS A VT_I4 type parameter. It

specifies the isolation level of
transactions while the Autocommit
mode is active.

Table Object Properties

DBPROP_TBL_TEMPTABLE A VT_BOOL type parameter. If it's
true, this is a temporary table.

Now that you understand how to set and retrieve properties, and you know all the properties supported
by OLE DB objects, you can begin to manipulate OLE DB objects at a higher level of detail. You will
use these properties in the examples presented during the remainder of the book.

Transactions
Transactions control operations on a data source and encapsulate data source operations. A transaction
starts before an operation begins and can commit the operation or abort the changes an operation
makes. Transactions can coordinate multiuser operations on a data source. Typically, transactions
enable a user to start some data source operation and to abort this operation at a later point. The use of
transactions can also significantly improve application performance. The OLE DB TTransaction
CoType is defined as follows:

TTransaction {
 interface IConnectionPointContainer; // Required Interface
 interface ITransaction; // Required Interface
 interface ISupportErrorInfo;
};

The IConnectionPointContainer and ISupportErrorInfo are discussed in previous
lessons (Day 19, "Navigating the Result of a Query," and Day 17, "Accessing a Data Source with OLE
DB"), and error handling is discussed in more detail on Day 21, "OLE DB Error Handling." On Day
17 you learned that the Session object supports the following Transaction-related interfaces:
ITransaction, ITransactionJoin, ITransactionLocal, and
ITransactionObject. I'll discuss these interfaces in detail before examining the actual
mechanics of using them.

The ITransaction Interface

The ITransaction interface controls a transaction; it commits transactions, aborts transactions,
and obtains the current transaction status. The ITransaction interface is required by the

Transaction object but optional for the Session object. The ITransaction interface defines
the standard IUnknown interface methods QueryInterface, AddRef, and Release. The
interface also provides three additional methods: Abort, Commit, and GetTransactionInfo.
These methods are defined as follows:

HRESULT Abort(BOID *pboidReason, BOOL fRetaining, BOOL fAsync);
HRESULT Commit(BOOL fRetaining, DWORD grfCommitType, DWORD
grfReserved);
HRESULT GetTransactionInfo(XACTTRANSINFO *pTransInfo);

The Abort method aborts a series of operations performed on a data source. For logging purposes,
the pboidReason parameter specifies a reason that the transaction is being aborted. This parameter
is a BOID type, which is defined as follows:

typedef struct BOID {
 BYTE rgb[16];
};

This simply defines a 16-byte buffer. If no reason is required, the BOID_NULL constant is used. The
fRetaining parameter defines the retain behavior of the abort operation, which is sometimes
referred to as Autocommit mode. If true, when the abort operation is carried out and subsequent
transactions are created, the abort is performed in a separate (server-side) process thread. If false, a
new thread is not created to carry out the abort. The fAsync flag determines whether the operation is
carried out in the background. If true, the abort command returns immediately, and the abort
processing happens in the background.

CAUTION
You must use the ITransactionOutcomeEvents interface to retrieve
the results of the abort operation. If the abort is not asynchronous, you get
the abort result in the return value from the Abort method call.

The Commit method commits a series of operations performed on a data source. The fRetaining
parameter functions in the same way as it does in the Abort method, controlling the Autocommit
mode. The grfCommitType parameter specifies the type of commit to be performed. Table 20.6
defines and describes the various types of commit parameters. The grfReserved parameter is
reserved for future use and should always be 0.

Table 20.6 Commit Parameters
Commit Type Description

XACTTC_ASYNC The commit is performed in an asynchronous mode. The
Commit method returns immediately, and commit
processing is carried out in the background.

XACTTC_SYNC_PHASEONE The Commit method returns after the first phase of the
commit operation is performed. Commit methods are
usually performed in two phases.

XACTTC_SYNC_PHASETWO The Commit method returns after the second phase of the
commit operation is performed; that is, it returns when the
entire operation is complete.

XACTTC_SYNC The commit is performed in a synchronous mode, the same
as the XACTTC_SYNC_PHASETWO commit type.

The last method of the ITransation interface, GetTransactionInfo, retrieves information
about a transaction. It returns a single parameter, pTransInfo, which is a pointer to an
XACTTRANSINFO structure. This structure holds information about the transaction and is defined as
follows:

typedef struct tagXACTTRANSINFO {
 XACTUOW uow;
 ISOLEVEL isoLevel;
 ULONG isoFlags;
 DWORD grfTCSupported;
 DWORD grfRMSupported;
 DWORD grfTCSupportedRetaining;
 DWORD grfRMSupportedRetaining;
} XACTRANSINFO;

The uow field defines the level at which the transaction works, typically row. The XACTUOW type is
defined as the BOID type that was defined earlier. The isoLevel field specifies the isolation level
(discussed in more detail shortly) of this transaction. The isoFlags field is reserved for future use
and will always be 0. The grfTCSupported field specifies special transactional-level flags. The
grfRMSupported, grfTCSupportedRetaining, and grfRMSupportedRetaining are
reserved for future use and will currently return 0. Unless you need to determine the isolation level of
a previously started transaction, the GetTransactionInfo method currently does not return much
more useful information.

The ITransactionLocal Interface

Just as you can use the ITransaction interface to end a transaction by committing or aborting it,
you can use the ITransactionLocal interface of the Session object to begin a transaction. The
ITransactionLocal interface is optional for the Session object and is supported only if the
data provider supports transactions. The ITransactionLocal interface defines the standard
IUnknown interface methods QueryInterface, AddRef, and Release. The interface also
provides two additional methods: GetOptionsObject and StartTransaction. These
methods are defined as follows:

HRESULT GetOptionsObject(ITransactionOptions **pOptionsInt);
HRESULT StartTransaction(ISOLEVEL isoLevel, ULONG isoFlagsResv,

 ITransactionOptions *pIOptions,
 ULONG *lNewTransLevel);

The StartTransaction method begins a set of operations that will be enveloped by a transaction.
The isoLevel parameter specifies the isolation level of the transaction. The lisoFlagResv
parameter is reserved for future isolation level flags, but for now it should be 0. The pIOptions
parameter specifies a pointer to the ITransactionsOption interface. If options aren't required,
you can pass a NULL value. Next I will discuss how to obtain and use the ITransactionsOption
interface. The lNewTransLevel parameter returns the new transaction level.

The GetOptionsObject obtains access to the ITransactionOptions interface. A pointer to
this interface is returned in the pOptionsInt parameter. What options, then, can be specified for a
transaction?

The ITransactionOptions Interface

As I stated earlier, the ITransactionOptions interface specifies transaction-level options. This
interface is accessed through the GetOptionsObject method. The ITransactionOptions
interface defines the standard IUnknown interface methods QueryInterface, AddRef, and
Release. Also, the interface provides two additional methods: SetOptions and GetOptions.
These methods are defined as follows:

HRESULT SetOptions(XACTOPT *pOptions);
HRESULT GetOptions(XACTOPT *pOptions);

The names tell us that these methods set and retrieve option values. Both methods take a single
parameter, a pointer to an XACTOPT structure, which defines the transaction options. This structure is
defined as follows:

typedef struct tagXACTOPT {
 ULONG ulTImeout;
 unsigned char szDescription[MAX_TRANS_DESC];
} XACTOPT;

The ulTimeout field defines the number of milliseconds that the transaction can remain open before
it's automatically aborted. If this value is 0, there will be no time limit. The szDescription field
defines the transaction's description.

The ITransactionObject Interface

The ITransactionObject interface obtains access to a Transaction object by specifying its
level. This interface is especially useful when using nested transactions (which are discussed shortly).
This interface is provided through the Session object and is available only if transactions are
supported. The ITransactionObject interface defines the standard IUnknown interface
methods QueryInterface, AddRef, and Release. The interface provides one more method:

GetTransactionObject. This method is defined as follows:

HRESULT GetTransactionObject(ULONG lTransLevel, ITransaction
**ppITrans);

The lTransLevel specifies the transaction level for which you are searching. The pITrans
parameter returns the level's corresponding Transaction object.

The ITransactionJoin Interface

The final transaction interface discussed today is the ITransactionJoin interface, which supports
distributed transactions. This interface is provided through the Session object and is available only
if transactions are supported. The ITransactionJoin interface defines the standard IUnknown
interface methods QueryInterface, AddRef, and Release. The interface provides two
additional methods: GetOptionsObject and JoinTransaction. These methods are defined as
follows:

HRESULT GetOptionsObject(ITransactionOptions **ppITransOptions);
HRESULT JoinTransaction(IUnknown *punkDistTrans, ISOLEVEL isoLevel,
 ULONG isoFlags, ITransactionOptions
 *pITransOptions);

The GetOptionsObject retrieves distributed transaction options. The JoinTransaction
method joins a distributed transaction, a transaction in which multiple clients can take part. Currently,
the OLE DB ODBC data provider doesn't support distributed transactions.

Creating Transactions

To create a transaction that encapsulates a series of operations, you must first obtain access to the
ITransactionLocal interface and then use the StartTransaction method to open the
transaction. The transaction remains opened until it's committed or aborted. Listing 20.3 demonstrates
how to use the StartTransaction method to open a database transaction. Note that for brevity,
the code in Listing 20.3 doesn't check the return values. In your production code, be sure you test for
the return values.

Listing 20.3 How to Start a Transaction

 1: // Create a Session object...
 2: pIDBInitialize->QueryInterface(IID_IDBCreateSession,
 3: (void **) &pCreateSession);

 4:
 5: // Create a Command object...
 6: pCreateSession->CreateSession(NULL, IID_IDBCreateCommand,
 7: (IUnknown **) &pCreateCommand);
 8:
 9: // Access the ICommandText interface
10: pCreateCommand->CreateCommand(NULL, IID_ICommandText,
11: (IUnknown **) &pCommandText);
12:
13: // Specify the command text
14: pCommandText->SetCommandText(DBGUID_DBSQL, wCmdString);
15:
16: // Access the Transaction Interface
17: pCreateCommand->QueryInterface(IID_ITransactionLocal,
18: (void **) &pTransLocal);
19:
20: // Start the Transaction
21: pTransLocal->StartTransaction(ISOLATIONLEVEL_SERIALIZABLE, 0,
22: NULL, &lTransLevel);
23: cout << "Transaction Level = " << lTransLevel << "\n";
24:
25: // Execute the command
26: pCommandText->Execute(NULL, IID_IRowset, NULL, &cNumRows,
27: (IUnknown **) &pRowset);
28: // Remember to release the interface pointers.

Committing and Aborting Transactions

When the StartTransaction method is called, all database operations are saved until they are
committed or aborted. When a transaction is committed, all the operations that have been saved are
actually carried out on the data source. As you saw earlier, the commit operation enables you to
specify whether it is carried out asynchronously, semi-synchronously, or synchronously and whether
Autocommit mode is used. The state of any open row sets depends on the
DBPROP_COMMITPRESERVE property (a Rowset object group property). If
DBPROP_COMMITPRESERVE is true, the row set remains valid and is automatically synchronized
when the transaction is committed or aborted; otherwise, the row set becomes invalid. This property is
set on the basis of row set by row set. The Commit method is provided through the ITransaction
interface, so you must access this interface to access the Commit method. The Commit method will
commit the transaction at the current level. Listing 20.4 demonstrates how to commit the transaction
started in Listing 20.3. Note that you should check the return value of QueryInterface in your
production code.

Listing 20.4 How to Commit the Current Transaction

 1: // Commit The Transaction
 2: pCreateCommand->QueryInterface(IID_ITransaction,
 (void **) &pTrans);
 3: pTrans->Commit(FALSE,XATTC_SYNC,0);

Aborting a transaction is just as easy. Listing 20.5 demonstrates how to use the Abort method to
abort a transaction at the current level. Again, note that you should check the return value of
QueryInterface in your production code.

Listing 20.5 How to Abort the Current Transaction

 1: // Abort The Transaction
 2: pCreateCommand->QueryInterface(IID_ITransactionLocal,
 (void **) &pTrans);
 3: pTrans->Abort(NULL, FALSE, TRUE);

Nesting Transactions

If the data provider supports it, transactions can be nested. A nested transaction is created by starting a
transaction while another transaction is already open. The inner transaction must be released before
outer transactions can be committed or aborted.

Isolation Levels and Locking

OLE DB supports four levels of transaction isolation, which ensures coherent access to a data source.
The transaction levels are Read Uncommitted, Read Committed, Repeatable Read, and Serializable.

With Read Committed isolation, any row sets that are created will view only rows that have been
changed after those changes have been committed. Operations in this type of isolation level will see
any rows that have been added or deleted. With Repeatable Read isolation, any changes to rows
already read will not be seen, and any operation that deletes a row will not be seen. Any new rows that
have been added will be visible. With Read Uncommitted, no attempt is made to isolate any types of
changes. Rows that are retrieved will reflect the current database state. Finally, with Serializable

isolation, the rows retrieved are guaranteed to be in the consistent state, reflecting only the changes of
the current transaction.

Provider-specific, user-defined locking mechanisms implement these isolation levels. Table 20.7
defines the constants related to each isolation level. The isolation level is determined when the
StartTransaction method starts a transaction.

Table 20.7 The OLE DB Isolation Levels
Isolation Constant Description

ISOLATIONLEVEL_UNSPECIFIED Used only with the JoinTransaction
method

ISOLATIONLEVEL_CHAOS Preserves changes made by higher-level
transactions

ISOLATIONLEVEL_READUNCOMMITTED Read Uncommitted isolation
ISOLATIONLEVEL_BROWSE Read Uncommitted isolation
ISOLATIONLEVEL_READCOMMITTED Read Committed isolation
ISOLATIONLEVEL_CURSORSTABILITY Read Committed isolation
ISOLATIONLEVEL_REPEATABLEREAD Repeatable Read isolation
ISOLATIONLEVEL_SERIALIZABLE Serializable isolation
ISOLATIONLEVEL_ISOLATED Serializable isolation

The Index Object
The final OLE DB object today is the Index object. The Index object can directly access a data
source index through a row set mechanism. Index objects access data source tables in a sorted
manner and search for records, based on a key value. The TIndex CoType is defined as follows:

TIndex {
 interface IAccessor; // Required Interface
 interface IColumnsInfo; // Required Interface
 interface IConvertType; // Required Interface
 interface IRowset; // Required Interface
 interface IRowsetIndex; // Required Interface
 interface IRowsetInfo; // Required Interface
 interface IRowsetChange;
 interface ISupportErrorInfo;
};

You have already seen all these interfaces-except for the IRowsetIndex interface-in the context of
the Rowset object. The next section describes the IRowsetIndex interface and explains how to
implement the Index object.

The IRowsetIndex Interface

The IRowsetIndex interface is required by the Index object. It retrieves index information,
searches for specific key values, and limits the set of visible rows to a range of key values. The
IRowsetIndex interface defines the standard IUnknown interface methods QueryInterface,
AddRef, and Release. The interface also provides three more methods: GetIndexInfo, Seek,
and SetRange. These methods are defined as follows:

HRESULT GetIndexInfo(ULONG *plNumKeyCols, DBINDEXCOLUMNDESC
 **pprdIdxColDesc, ULONG *plNumIdxProps,
 DBPROPSET **prgIdxProps);
HRESULT Seek(HACCESSOR hAccessor, ULONG lNumKeys, void *pSeekData,
 DBSEEK dwSeekOpt);
HRESULT SetRange(HACCESSOR hAccessor, ULONG lNumStartKeyCols,
 void *pStartKeyData, ULONG lNumEndKeyCols,
 void *pEndKeyData, DBRANGE dwRangeOpt);

The GetIndexInfo method retrieves information about the index. The plNumKeyCols parameter
returns the number of key columns in this index. The prdIdxColDesc parameter returns an array
that describes each column. The plNumIdxProps parameter returns the number of elements in the
prgIdxProps array. The prgIdxProps parameter returns an array that holds a collection of index
properties.

TIP
Partial key searches are possible with the Seek method. You must supply
the complete key set binding and then include only the partial key value for
the key value.

The Seek method searches for a specific record in the index row set. The hAccessor parameter
holds an Accessor to a set of bindings that describe the key structure. The lNumKeys parameter
specifies the number of keys in the search criteria. The pSeekData parameter specifies the key set
data for which you are searching. The dwSeekOpt parameter specifies the seek options. Seek options
are outlined in Table 20.8.

Table 20.8 The OLE DB Seek Options
Seek Constant Description

DBSEEK_FIRSTEQ Searches for the first value that matches the key specified.
DBSEEK_LASTEQ Searches for the last value that matches the key specified.
DBSEEK_GE Searches for the first value that is greater than or equal to the key

specified.
DBSEEK_GT Searches for the first value that is greater than the key specified.

DBSEEK_LE Searches for the first value that is less than or equal to the key
specified.

DBSEEK_LT Searches for the first value that is less than the key specified.

The SetRange method restricts the rows visible in the index row set to a range of key values. The
hAccessor parameter holds an Accessor to a set of bindings that describe the key structure. The
lNumStartKeyCols defines the number of key columns in the start range key. The
pStartKeyData parameter specifies the start key data. The lNumEndKeyCols defines the
number of key columns in the end range key. The pEndKeyData parameter specifies the end key
data. The dwRangeOpt parameter specifies how the start and end keys will be used to limit the rows
that will be visible. Table 20.9 defines the range options. These options can be combined with a
logical OR operation.

Table 20.9 The OLE DB Range Options
Range Option Description

DBRANGE_INCLUSIVESTART Includes all keys greater than or equal to the start key.
DBRANGE_EXCLUSIVESTART Includes all keys greater than the start key.
DBRANGE_INCLUSIVEEND Includes all keys less than or equal to the end key.
DBRANGE_EXCLUSIVEEND Includes all keys less than the end key.
DBRANGE_EXCLUDENULLS Excludes NULL values from the range.
DBRANGE_PREFIX Uses the start key as a prefix, which enables faster

searches on some data sources.
DBRANGE_MATCH Includes only keys that are equal to the start key. The

end key must be NULL if this flag is set.

Using the Index Object

Here's how to open and use an Index object:

1. Open an index row set, using the IOpenRowset->OpenRowset method of the Session
object.

2. Retrieve the columns information, using the IColumnsInfo->GetColumnInfo method
of the Index object.

3. Create a binding structure that includes the rows that are part of the index. The dwFlags field
of the column information structure will contain the flag value
DBCOLUMNFLAGS_ISBOOKMARK if the column is a key field.

4. Use the binding structure to create an Accessor, using the IAccessor->CreateAccessor
method of the Index object.

5. Use the IRowsetIndex interface methods to manipulate the index.

NOTE
Rather than rely on your OLE DB provider's support for the
IRowsetIndex interface, you might need to use the appropriate SQL
commands to retrieve specific rows or to retrieve rows in a specific order.

Summary
Day 20 focuses on three main topics: OLE DB properties and groups, the Transaction object, and
the Index object. Today you learned how to retrieve and set property values and how to use the
different types associated with properties. You reviewed the set of properties that OLE DB objects
support and how to use these properties to determine whether a data source supports use of the SQL
command language. You learned how to use the Transaction object to encapsulate your data
source operations and to commit and abort transactions. Other transaction-related topics discussed
today are nesting transaction, transaction isolation levels, and how to control locking. Today's final
topic is the Index object, its associated interfaces, and how to use the Index object to search for
specific rows in a row set that contain specific key values. Tomorrow's theme is how to integrate error
handling into your OLE DB applications.

Q&A
This section answers some common questions related to today's topics.

Q How can you use transactions to improve application performance?
A When a transaction is opened, all operations that are performed are buffered until they

are committed or aborted. In a client/server environment, using transactions can cut
down on the network traffic. Only transactions that actually commit are transmitted to
the server data source. This performance improvement doesn't come without a cost,
however. In this case, the cost can be higher memory requirements (physical or disk
space) on the client side. In a multiuser environment, though, this tradeoff can be
worthwhile because it can yield significant performance improvements under the right
conditions.

Q How do isolation levels relate to specific locking schemes?
A OLE DB doesn't specify the locking mechanisms used by a provider. The OLE DB

specification leaves it to the data provider to implement its own appropriate locking
methods that support the defined isolation levels. When using OLE DB, you should
focus on isolation levels rather than on specific locking mechanisms, and you must use
transactions to invoke these locking methodologies.

Q How can you determine whether a data provider supports its own set of
properties?

A You can use the GetPropertyInfo method of the IDBProperties interface to
return information about all properties supported by the data provider. This method
returns a DBPROPINFOSET structure that contains information about each property
supported by a data provider. You must navigate through this structure to determine the
provider-specific properties it supports.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. List the major property groups.
2. What structure returns the collection of property values?
3. Name the property that determines the level of SQL command support provided by an OLE DB

data provider?
4. What method opens a transaction?
5. What isolation level maintains the most consistent access to a row set in a multiuser

environment?
6. What property ensures that a row set is retained in a valid state after a transaction is closed?
7. What Index object method searches for a specific key value in an index?

Exercises

1. Review the properties supported by the OLE DB objects.
2. Open the OLE DB ODBC provider Help file and review the provider-specific properties it

supports.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Day 21
 OLE DB Error Handling

● Basic Error Handling
❍ Checking Error Results

● Automation Error Objects
❍ The ISupportErrorInfo Interface
❍ The IErrorInfo Interface

● OLE DB Error Objects
❍ The IErrorRecords Interface
❍ The IErrorLookup Interface
❍ The ISQLErrorInfo Interface
❍ The Completed DispErrorInfo Source Code
❍ How to Integrate the DispErrorInfo Procedure

● Error-Handling Considerations
● Returning Error Objects

❍ Threads
● A Summary of OLE DB HRESULT Error Codes
● Summary
● Q&A
● Workshop

❍ Quiz
❍ Exercises

The focus this week has been OLE DB objects, their interfaces, and some simple OLE DB
applications. OLE DB also provides a means for you to build robust applications by using mechanisms
to integrate error handling into your applications. The first step in error handling is to examine the
value returned by a method, which is where today's discussion of OLE DB error handling begins. OLE
DB uses the basic error-handling techniques of Automation, the technology formerly known as OLE
Automation, and adds another layer of error handling that can return multiple provider-specific errors.
The goal of Day 21 is to show you how to integrate these techniques into your own applications.

Today you will

● Integrate basic error handling into your OLE DB applications.
● Check the result of a call to an OLE DB method with the SUCCEEDED and FAILED macros.
● Look at OLE DB interface extensions to Automation error handling.
● Work with advanced error-handling issues, including multithreading.
● Understand OLE DB HRESULT error codes.

Basic Error Handling
Although all the OLE DB interface methods discussed this week return an HRESULT type value, the
OLE DB code you have written so far assumes that all method calls always execute successfully.
Obviously, this approach isn't the way to build a robust application that can handle unexpected
situations. Therefore, the first step in adding robustness to OLE DB applications is to check the
method's result value.

NOTE
A robust application can handle all error conditions without crashing. As an
application developer, you have the responsibility of handling all errors that
your application might generate.

Checking Error Results

As you know, the HRESULT type return value indicates the success or failure of a method. (Later
today you will explore the status codes that a method can return.) Visual C++ provides two macros
that you can use to determine generally whether a method was successful. These macros are aptly
named SUCCEEDED and FAILED. The SUCCEEDED macro returns true if the call to the method
was successful, and the FAILED macro returns true if the call to the method was unsuccessful. If a
call to a method is successful, it returns the constant value S_OK. A method can return other success
and error values as well. Typically, the success value constants begin with an S_ or DB_S_, and the
error value constants begin with an E or DB_E. You will learn about these status value constants later
today, also. Listing 21.1 demonstrates how to check the HRESULT value of a method to determine
whether it executed successfully.

NOTE
The standard error and success return codes are defined in the Visual C++
documentation.

Listing 21.1 Checking the HRESULT Value of a Method

 1: // Create a Command object...
 2: if(FAILED(pCreateSession->CreateSession(NULL,
IID_IDBCreateCommand,
 3: (IUnknown **)
 &pCreateCommand)))
{
 4: printf("The Create Session Method Failed!\n");
 5: };

As you can see, checking the status of a call to an OLE DB method is fairly simple. That information
enables your application to take the necessary steps to prevent a failure. In addition, OLE DB and
Automation support interfaces that can help you retrieve more-detailed information regarding the
failure of a method. The following section explains how to integrate these interfaces to retrieve
additional error information. The immediate goal here is to build a procedure you can use in your
application to display this additional error information.

Automation Error Objects
The OLE DB specification is an extension of the Automation interface. Automation defines two
interfaces that assist in the error-handling process. These interfaces are not required by OLE DB data
providers. The first interface, ISupportErrorInfo, determines whether the additional support is
provided. The second interface, IErrorInfo, assists in retrieving additional specific error
information, including a more complete description of the error and whether any further information is
available in an associated help file.

The ISupportErrorInfo Interface

The ISupportErrorInfo interface determines whether an object supports the necessary interfaces
to retrieve additional error information. The ISupportErrorInfo defines a single method,

InterfaceSupportsErrorInfo, which is defined as follows:

HRESULT InterfaceSupportsErrorInfo(REFIID riid);

This method takes a single parameter, riid, which represents the interface you are checking to
determine whether it supports additional error information. If the interface supports additional error
information, the InterfaceSupportsErrorInfo method returns S_OK.

Listing 21.2 demonstrates the first step in creating a procedure that retrieves and displays the
additional error information if it's supported. The procedure DispErrorInfo takes two parameters:
a pointer to the interface that generated the error and the globally unique identifier (GUID) of that
interface. Because this procedure should function for any type of OLE DB object, it will pass the
pointer to the interface that generated the error as a pointer to the generic IUnknown type.

CAUTION
You must always call the InterfaceSupportsErrorInfo method
before attempting to retrieve additional error information. If the interface
doesn't support additional error information and you call any of the
additional error-information methods, you will generate yet another error!
Never create error-handling routines that generate more errors themselves.

Listing 21.2 The First Step in Building a Procedure to Handle and Display OLE DB Errors

 1: HRESULT DispErrorInfo(IUnknown *pErrorInt, GUID ErrorIID) {
 2: ISupportErrorInfo *pSupportErrorInfo;
 3:
 4: // Obtain Access to the ISupportErrorInfo Interface
 5: if(SUCCEEDED(pErrorInt->QueryInterface(IID_ISupportErrorInfo,
 6: (void **) &pSupportErrorInfo)))
{
 7: // Check if Extended Error Information is Available
 8: if(pSupportErrorInfo->InterfaceSupportsErrorInfo(ErrorIID)
 == S_OK) {
 9: // Process the Error Information Available Here!...
10: } else {
11: cerr << "Extended Error Information Unavailable!\n";
12: };
13: pSupportErrorInfo->Release();
14: } else {
15: cerr << "Could Not Obtain Access To The ISupportErrorInfo

 Interface\n";
16: cerr << "Additional Error Information Unavailable!\n";
17: };
18: return S_OK;
 };

As Listing 21.2 demonstrates, after the ISupportErrorInfo interface is successfully obtained,
you can use the InterfaceSupportsErrorInfo method to determine whether the object
supports the IErrorInfo interface. The next section explains the IErrorInfo interface.

The IErrorInfo Interface

The IErrorInfo interface is the generic Automation interface that retrieves extended error
information about a single error. However, OLE DB objects don't use this interface directly. As you
already know, the ISupportErrorInfo interface determines whether the application supports the
IErrorInfo interface. The IErrorInfo interface defines five methods: GetDescription,
GetGUID, GetHelpContext, GetHelpFile, and GetSource. These methods are defined as
follows:

HRESULT GetDescription(BSTR *pbstrDesc);
HRESULT GetGUID(GUID *pGUID);
HRESULT GetHelpContext(DWORD *pwHelpContext);
HRESULT GetHelpFile(BSTR *pbstrHelpFile);
HRESULT GetSource(BSTR *pbstrSource);

The GetDescription method returns a string that contains a natural-language description of the
error that occurred. This description is suitable to display to an end user.

The GetGUID method returns the interface ID of the interface that generated the error. If the error
isn't attributable to a specific interface, the value of the GUID is set to DBGUID_NULL.

The GetHelpContext and GetHelpFile methods retrieve the name of the help file and help file
lookup. This information can launch the help viewer and place the user in a context that displays
additional error information. These values are returned only if the data provider supports a help file.
The GetHelpContext method returns a context value, and the GetHelpFile method returns a
string that contains the name of the help file, including the path.

The GetSource method returns the name of the source operating-system object that generated the
error. The source name is generally the name of the dynamic link library (DLL) that encapsulates the
data provider interfaces.

NOTE

The consumer must use the SysFreeString method to deallocate any
string values that the IErrorInfo interfaces return.

OLE DB Error Objects
The IErrorInfo interface works quite well for standard COM objects. However, the OLE DB has
two requirements that the standard IErrorInfo interface can't meet:

● OLE DB needs to return provider-error information.
● OLE DB needs to return multiple error values simultaneously. (The IErrorInfo interface

returns information regarding only one error at a time.)

Therefore, OLE DB defines three additional interfaces to overcome these limitations. These interfaces
are IErrorRecords, IErrorLookup, and ISQLErrorInfo. The IErrorRecords interface
returns multiple errors simultaneously. The IErrorLookup interface provides extended error-
description information. Finally, the ISQLErrorInfo interface returns custom SQL error
information.

A detailed explanation of these interfaces and the methods they provide follows. When you understand
how to use these interfaces, you can integrate them into the completed DispErrorInfo procedure
started in Listing 21.1.

The IErrorRecords Interface

Rather than return one record as defined by the IErrorInfo interface, OLE DB methods can return
multiple errors. The IErrorRecords interface navigates and manages this collection of error
records. The reason OLE DB needs to return multiple errors is that an error can have a cascading
effect. This record structure enables these multiple cascading errors to be captured and returned. Each
error record contains the following information:

● An ERRORINFO structure
● Parameters defined in the error message
● A pointer to a custom error object (for example, ISQLErrorInfo)
● A dynamic error ID
● A lookup ID

I explain each of the preceding components in the following discussion of the specific OLE DB error
interfaces. The IErrorRecords interface defines the following methods: AddErrorRecord,
GetBasicErrorInfo, GetCustomErrorObject, GetErrorInfo,
GetErrorParameters, and GetRecordCount. These methods are defined as follows:

HRESULT GetBasicErrorInfo(ULONG lRecNum, ERRORINFO *pErrorInfo);

HRESULT GetCustomErrorObject(ULONG lRecNum, REFIID riid,
 IUnknown **ppCustomErrorInt);
HRESULT GetErrorInfo(ULONG lRecNum, LCID LocaleID,
 IErrorInfo **ppErrorInfoInt);
HRESULT GetErrorParameters(ULONG lRecNum, DISPPARAMS *pDispParam);
HRESULT GetRecordCount(ULONG *plNumRecs);
HRESULT AddErrorRecord(ERRORINFO *pErrorInfo, DWORD dwLookupID,
 DISPPARAMS *pDispParam, IUnknown
*pCustomErrorInt,
 DWORD dwDynamicID);

The GetBasicErrorInfo method retrieves the basic ERRORINFO structure for the record number
specified in the lRecNum parameter. The ERRORINFO structure holds basic information about an
error. The structure is defined as follows:

typedef struct tagERRORINFO
 HRESULT hrError;
 DWORD dwMinor;
 CLSID clsid;
 IID iid;
 DISPID dispid;
} ERRORINFO;

The hrError field contains the HRESULT error value for the record specified. Each record can have
an HRESULT value different from the one that the method initially returned. The dwMinor field
contains a provider-specific error value. You must consult the documentation for the data provider for
more information about the meanings of this value. The clsid field contains the class ID of the OLE
DB object that generated this error. The iid parameter contains the interface ID of the interface that
generated this error. If the method belongs to multiple interfaces, the interface ID where the method is
defined first is returned. The dispid field contains the method that generated the error. This method
ID may or may not be defined, depending on the data provider.

The GetCustomErrorObject method retrieves a provider-specific customer error. OLE DB
provides one custom error interface, ISQLErrorInfo (discussed shortly), for providers that support
the SQL command language. The GetCustomErrorObject method parameter lRecNum
specifies the error record number to access. The riid parameter specifies the interface ID of the
custom error object you want to retrieve. The ppCustomErrorInt parameter returns a pointer to
the interface requested. If the requested custom error interface isn't available, ppCustomErrorInt
will be NULL on return. If this method succeeds, ppCustomErrorInt returns S_OK.

The GetErrorInfo method retrieves an IErrorInfo interface for the specified record number.
The lRecNum parameter specifies the record number to retrieve. The LocalID parameter specifies
the locale ID. The locale ID specifies the current location and selects the appropriate language version
of the error descriptions. The ppErrorInfoInt parameter returns a pointer to IErrorInfo
interface for the selected record number.

TIP

To retrieve the default system locale ID, use the standard Visual C++
method GetSystemDefaultLCID().

The GetErrorParameters method retrieves error message parameters. Some error messages
might use parameters, as in the following example: Access to table <table1> denied. In this case,
<table1> is a parameter. If the parameter <table1> had the value CUSTOMERS, the error
message would be automatically reformatted as follows: Access to table CUSTOMERS denied. A
consumer usually won't use a parameter structure without knowing which values are available in that
structure. The lRecNum parameter specifies the record number. The pDispParams parameter
retrieves the error message parameters.

The GetRecordCount method returns the number of error records available. The parameter
plNumRecs returns the number of error records available. Error records have the index values 0 to
plNumRecs -1.

The AddErrorRecord method is used only by data providers. It adds a new error record to the error
records collection. The pErrorInfo structure holds a pointer to a filled-in ERRORINFO structure,
specifying information about the error. The dwLookupID specifies the error's lookup ID. The
pDispParam parameter specifies the error's message parameters. The pCustomErrorInt
parameter specifies the custom error object, if applicable. The dwDynamicID parameter specifies the
error ID if the provider uses dynamic errors; otherwise, it has a value of 0. You will generally not use
this method.

You will use the IErrorRecords interface extensively to complete the DispErrorInfo
procedure from Listing 21.2. In its final form, the procedure loops through and retrieves the
information in each error record. First, though, you need to look at the IErrorLookup and
ISQLErrorInfo interfaces.

The IErrorLookup Interface

Data providers use the IErrorLookup interface to retrieve help file information, combine the error
parameters with the error message to create a completed error message, and release dynamic error
information. The IErrorLookup interface defines three methods: GetErrorDescription,
GetHelpInfo, and ReleaseErrors. These methods are defined as follows:

HRESULT GetErrorDescription(HRESULT hError, DWORD dwLookupID,
 DISPPARAMS *pDispParam, LCID lcid,
 BSTR *pErrorObject, BSTR *pDesc);
HRESULT GetHelpInfo(HRESULT hError, dwLookupID, LCID lcid,
 BSTR *pHeloFileName, DWORD *pContext);
HRESULT ReleaseErrors(const DWORD dwDynErrorID);

The GetDescription method retrieves the source error object string, specified in the
pErrorObject parameter, and the error description, specified in the pDesc parameter. The

GetHelpInfo method retrieves an error's associated help file information, if applicable. The
GetErrorDescription and GetHelpInfo functions return BSTRs that must be freed by the
caller, using SysFreeString.

The ISQLErrorInfo Interface

The final error-related interface covered today is the ISQLErrorInfo interface. This interface is
used in the custom error object pointer of an error record. You access the ISQLErrorInfo interface
by using the GetCustomErrorObject method of the IErrorRecord interface. The
ISQLErrorInfo interface defines a single method: GetSQLInfo. This method is defined as
follows:

HRESULT GetSQLInfo(BSTR *pSQLStateStr, LONG *plSQLErrorNum);

The pSQLStateStr parameter returns a string containing the current SQL state. The
plSQLErrorNum returns the provider-specific SQL error number. The pSqlStateStr is an
[out] bstr, so the caller must free it by using SysFreeString.

The Completed DispErrorInfo Source Code

Armed with the information provided by these error interfaces, you are ready to return to the
DispErrorInfo procedure in Listing 21.2. The final procedure accesses the IErrorRecord
interface and loops through each available error record, one at a time. DispErrorInfo retrieves an
IErrorInfo interface for each error record and uses that IErrorInfo interface to access the error
description, source, and GUID. The GetCustomErrorObject is accessed for each record. If a
ISQLErrorInfo interface is available, the current SQL state and error number are also displayed.
The complete DispErrorInfo procedure appears in Listing 21.3.

NOTE
Remember to use the SysFreeString method to release the returned
string memory. The BSTR type is a Unicode type string. (Refer to Day 19,
"Navigating the Result of a Query," for more information about the methods
available to process Unicode strings.)

Listing 21.3 The Completed DISPERRORINFO Procedure

 1: HRESULT DispErrorInfo(IUnknown *pErrorInt, GUID ErrorIID) {

 2: ISupportErrorInfo *pSupportErrorInfo;
 3: IErrorInfo *pErrorInfo,
 4: *pErrorInfoRecord;
 5: IErrorRecords *pErrorRecords;
 6: ISQLErrorInfo *pSQLErrorInfo;
 7: BSTR pDescription = NULL;
 8: BSTR pSource = NULL;
 9: BSTR pSQLState = NULL;
10: GUID ErrorGUID;
11: ULONG i,
12: lNumRecs;
13: LONG lSQLErrorNum;
14: HRESULT retcode = S_OK;
15:
16: // Obtain Access to the ISupportErrorInfo Interface
17: if(SUCCEEDED(pErrorInt->QueryInterface(IID_ISupportErrorInfo,
18: (void **)
&pSupportErrorInfo))) {
19: // Check if Extended Error Information is Available
20: if(SUCCEEDED(pSupportErrorInfo->InterfaceSupportsErrorInfo
 (ErrorIID))) {
21: // Access the Error Info interface
22: if(SUCCEEDED(GetErrorInfo(0,&pErrorInfo))) {
23: // Retrieve the Error Records Interface
24: if(SUCCEEDED(pErrorInfo-
>QueryInterface(IID_IErrorRecords,
25: (void **)
&pErrorRecords))) {
26: // Retrieve the Number of Error Records
27: if(SUCCEEDED(pErrorRecords-
>GetRecordCount(&lNumRecs))) {
28: for(i=0; i < lNumRecs; i++) {
29: // Get the Error Info Interface
30: pErrorRecords-
>GetErrorInfo(i,GetSystemDefaultLCID(),
31: &pErrorInfoRecord);
32: // Get the Error Description
33: pErrorInfoRecord->GetDescription(&pDescription);
34: // Get the Error Source
35: pErrorInfoRecord->GetSource(&pSource);
36: // Get the Error GUID
37: pErrorInfoRecord->GetGUID(&ErrorGUID);
38: // Print the Error Record Interface
39: fprintf(stderr,"Error GUID: %lx\n",ErrorGUID);
40: fprintf(stderr,"Source: %S\n",pDescription);
41: fprintf(stderr,"Description:
%S\n\n",pDescription);
42: // Free the Strings
43: SysFreeString(pDescription);
44: SysFreeString(pSource);
45: // Get SQL State if Available
46: if(SUCCEEDED(pErrorRecords-
>GetCustomErrorObject(i,
47: IID_ISQLErrorInfo,

48: (IUnknown **)
&pSQLErrorInfo))) {
49: pSQLErrorInfo->GetSQLInfo(&pSQLState,
 &lSQLErrorNum);
50: fprintf(stderr,"SQL State: %S\n",pSQLState);
51: fprintf(stderr,"SQL Error Number:
 %ld",lSQLErrorNum);
52: SysFreeString(pSQLState);
53: pSQLErrorInfo->Release();
54: };
55: // Release the Interface
56: pErrorInfoRecord->Release();
57: };
58: } else {
59: fprintf(stderr,"Can't retrieve the number
 of error records!\n");
60: retcode = E_FAIL;
61: };
62: pErrorRecords->Release();
63: } else {
64: fprintf(stderr,"Can't retrieve the ErrorRecords
 interface\n");
65: retcode = E_FAIL;
66: };
67: pErrorInfo->Release();
68: } else {
69: fprintf(stderr,"Can't retrieve the ErrorInfo
 interface.\n");
70: retcode = E_FAIL;
71: };
72: pSupportErrorInfo->Release();
73: } else {
74: fprintf(stderr,"Extended Error Information
Unavailable!\n");
75: retcode = E_FAIL;
76: };
77: } else {
78: fprintf(stderr,
79: "Could Not Obtain Access To
 The ISupportErrorInfo Interface\n");
80: fprintf(stderr,"Additional Error Information
Unavailable!\n");
81: retcode = E_FAIL;
82: };
83: return(retcode);
84: };

How to Integrate the DispErrorInfo Procedure

When you call an OLE DB method, you should check the HRESULT return value, as I mentioned at

the beginning of the day. If the method fails, you can call the DispErrorInfo procedure to display
any additional error information that's available. Listing 21.4 demonstrates how to integrate the
DispErrorInfo method into an OLE DB method call.

Listing 21.4 How to Integrate the DISPERRORINFO Procedure into an OLE DB Method Call

 1: if(FAILED(pCommandText->Execute(NULL, IID_Rowset, NULL,
&cNumRows,
 2: (IUnknown **) &pRowset))) {
 3: // The Execute method Failed! Display Error!
 4: DispErrorInfo(pCommandText,IID_ICommandText);
 5: // Exit and call free pCommandText and CoUninitialize?...
 6: exit(0);
 7: };

Error-Handling Considerations
So far, you have learned about Automation and OLE DB error-handling interfaces, created a
procedure to assist in the interpretation of errors that occurred, and integrated the error-handling
interfaces into your applications. Here is a review of the basic steps in error handling:

1. Check the HRESULT value of a method when it is called.
2. If the method didn't succeed, possibly print some error information.
3. If the error is critical to the execution of the application, gracefully end the application. Be sure

to release any allocated memory and close any open data sources and files.
4. If the error isn't critical (perhaps the data provider doesn't support a specific method),

dynamically change the functionality of the application. For example, an application feature
might not be available with lower-level data providers.

Returning Error Objects
Now that you know what a data consumer expects from a data provider, the data provider
implementation requirements should be easy to understand. The final part of today's discussion of
error handling explains how to implement error handling from the data provider side, including how a
multithreaded environment affects data provider error handling.

Listing 21.5 demonstrates how an error is created and returned by a data provider method. The

following survey of the basic steps involved in returning an error from a provider will help you
understand that listing:

1. Call the SetErrorInfo method to clear out any current errors.
2. If the current operation fails, begin by using the GetErrorInfo method to access the

IErrorInfo interface. If the interface isn't available, use the CreateInstance method of
the IClassFactory interface to create a new IErrorInfo interface.

3. Fill in the ERRORINFO structure with the appropriate information.
4. Obtain access to the IErrrorRecords interface and use the AddErrorRecord method to

add the newly created error record.
5. Call the SetErrorInfo method to pass the error to the Automation interface, signaling an

error occurred.

The SetErrorInfo method sets the current ErrorInfo object, and the GetErrorInfo method
retrieves the current ErrorInfo object.

Listing 21.5 How an OLE DB Data Provider Returns an Error

 1: IErrorInfo pErrorInfoObj = NULL;
 2: IErrorRecords pErrorRecs;
 3: ERRORINFO ErrorInf;
 4:
 5: // Clear any current errors
 6: SetErrorInfo(0, NULL);
 7:
 8: // Perform whatever is necessary to implement the method
 9: // Save error result in hrError and set Error flag
10:
11: // Check if an Error Occurred?
12: if(Error) {
13: if(FAILED(GetErrorInfo(0, &pErrorInfoObj)) ||
 (!pErrorInfoObj)) {
14: pClassFactoryObject->CreateInstance(NULL,
15: CLSID_EXTENDEDERRORINFO, (void *) &pErrorInfoObj);
16: };
17: if (pErrorInfoObj) {
18: // Create the ERRORINFO record
19: pErrorInfoObj->QueryInterface(IID_IErrorRecords,
 (void *)
&pErrorRecs);
20: ErrorInf.hrError = hrError; // Set error result
21: ErrorInf.dwMinor = INTERNAL_ERROR; // Set Internal
Error

 // Number
22: ErrorInf.clsid = CURRENT_CLSID; // Set the Current
CLSID
23: ErrorInf.iid = IID_CURRENT; // Set current IID
24: ErrorInf.dispid = DISPID_CURRENT; // Set current
DISPID
25:
26: // Add the Error Record
27: pErrorRecs->AddErrorRecord(&ErrorInf, ErrorInf.dwMinor,
28: NULL, NULL, 0);
29:
30: // Set the Error
31: SetErrorInfo(0,pErrorInfo);
32:
33: // Release Error Interfaces
34: pErrorRecs->Release();
35: pErrorInfo->Release();
36: pErrorInfoObj->Release();
37: }
38: };

Threads

When operating in a multithreaded application, an error message generated by a previously called
method might be sitting in the message queue when another message is called. (Recall that in the OLE
DB environment, each application thread has only one error object.) To clear out the error message
queue, the OLE data provider must call the SetErrorInfo method when a method is called. This
step ensures that only the most current errors are in the queue on return.

A Summary of OLE DB HRESULT Error Codes
The first thing you did today was to check the HRESULT of a method to determine whether it
succeeded. Table 21.1 lists the HRESULT values specifically defined by OLE DB. Refer also to the
Visual C++ documentation for information about generic HRESULT constants.

Table 21.1 The HRESULT Values Defined by OLE DB
HRESULT Constant Description

 Warning Results
DB_S_BADROWHANDLE A row handle is invalid.
DB_S_BOOKMARKSKIPPED A bookmark was skipped for a row that

was deleted or filtered.
DB_S_BUFFERFULL The buffer that holds fields or parameters

is full.

DB_S_CANTRELEASE A lock could not be released until the
transaction is complete.

DB_S_COLUMNSCHANGED While re-executing a query during a cursor
reposition operation, the order or number
of columns changed.

DB_S_COLUMNTYPEMISMATCH Some columns cannot be converted during
the copy operation because of type-
conversion incompatibilities.

DB_S_COMMANDREEXECUTED The command was re-executed.
DB_S_DELETEDROW A row handle refers to a previously deleted

row.
DB_S_DIALECTIGNORED The language of the command was

ignored; translated command returned.
DB_S_ENDOFROWSET The end of the current row set was

encountered.
DB_S_ERRORSINTREE An error occurred in the validation tree.
DB_S_ERRORSOCCURRED An unspecified error occurred.
DB_S_ERRORSRETURNED Errors were encountered and returned.
DB_S_GOALCHANGED The current goal was changed to an

unsupported value.
DB_S_LOCKUPGRADED A record lock was upgraded.
DB_S_MULTIPLECHANGES The requested change affects multiple data

source rows.
DB_S_NONEXTROWSET End of multiple return row sets reached.
DB_S_NORESULT End of results reached.
DB_S_PARAMUNAVAILABLE The specified parameter is invalid.
DB_S_PROPERTIESCHANGED The properties of the object were changed

successfully.
 Warning Results
DB_S_ROWLIMITEXCEEDED The number of requested rows is greater

than the number of active rows that the
Rowset object supports.

DB_S_STOPLIMITREACHED Execution of a command was halted
because of a resource limit; the results
returned are incomplete.

DB_S_TOOMANYCHANGES Too many changes were encountered; data
must be refreshed.

DB_S_TYPEINFOOVERRIDDEN The type of the parameter was overridden.

DB_S_UNWANTEDPHASE Notifications for this phase are no longer
desired.

DB_S_UNWANTEDREASON Notifications for this phase are no longer
desired for a specific reason.

 Error Results
DB_E_ABORTLIMITREACHED The command was aborted because of

resource limitations; no results returned.
DB_E_ALREADYINITIALIZED The data source was previously initialized.
DB_E_BADACCESSORFLAGS The Accessor flag is not valid.
DB_E_BADACCESSORHANDLE The Accessor handle is not valid.
DB_E_BADACCESSORTYPE The Accessor specified is invalid.
DB_E_BADBINDINFO The binding information is not valid.
DB_E_BADBOOKMARK_ The bookmark is not valid.
DB_E_BADCHAPTER The chapter specified is not valid.
DB_E_BADCOLUMNID_ The column ID specified is not valid.
DB_E_BADCONVERTFLAG_ The conversion flag specified is not valid.
DB_E_BADCOPY An error was encountered while copying.
DB_E_BADDYNAMICERRORID_ The DynamicError ID specified is not

valid.
DB_E_BADHRESULT_ The HRESULT value specified is not valid.
DB_E_BADID_ The table ID value specified is not valid.
DB_E_BADLOCKMODE_ The lock mode specified is not valid.
DB_E_BADLOOKUPID_ The lookup ID specified is not valid.
DB_E_BADORDINAL_ The column specified is not valid.
DB_E_BADPARAMETERNAME_ The specified parameter name is not valid.
DB_E_BADPRECISION_ The precision value specified is not valid.
DB_E_BADPROPERTYVALUE_ The property value is not valid.
 Error Results
DB_E_BADRATIO_ The ratio specified is not valid (greater

than 1 or undefined).
DB_E_BADRECORDNUM_ The record number specified is not valid.
DB_E_BADREGIONHANDLE_ The region handle specified is not valid.
DB_E_BADROWHANDLE_ The row handle is not valid.
DB_E_BADSCALE_ The scale value specified is not valid.
DB_E_BADSOURCEHANDLE_ The source handle specified is not valid.

DB_E_BADSTARTPOSITION_ The offset position specified is past the end
or before the beginning of the row set;
rows not retrieved.

DB_E_BADSTATUSVALUE_ The status flag specified is not valid.
DB_E_BADSTORAGEFLAG_ The storage flag specified is not valid.
DB_E_BADSTORAGEFLAGS_ The storage flags specified are not valid._
DB_E_BADTYPE_ The type specified is not valid.
DB_E_BADTYPENAME_ The type name specified is not valid.
DB_E_BADVALUES_ The value specified is not valid.
DB_E_BOOKMARKSKIPPED_ No row was found that matched the

bookmark.
DB_E_BYREFACCESSORNOTSUPPORTED_ Cannot pass Accessor by reference for this

data provider.
DB_E_CANCELED_ The command was canceled; changes not

saved.
DB_E_CANNOTFREE_ Cannot deallocate this memory.
DB_E_CANNOTRESTART_ Cannot restart the new row set.
DB_E_CANTCANCEL_ Cannot stop the current command.
DB_E_CANTCONVERTVALUE_ Cannot convert the specified value

correctly.
DB_E_CANTFETCHBACKWARDS_ Cannot retrieve the row set rows

backwards.
DB_E_CANTSCROLLBACKWARDS_ The row set cannot scroll backwards.
DB_E_CANTTRANSLATE_ Cannot translate the current command tree.
DB_E_CHAPTERNOTRELEASED_ The chapter was not released.
DB_E_CONCURRENCYVIOLATION_ A concurrency violation was encountered.
DB_E_COSTLIMIT_ When attempting to optimize the query, the

cost constraints could not be met.
DB_E_DATAOVERFLOW_ A command value caused an overflow.
DB_E_DELETEDROW_ The row handle points to a deleted row.
 Error Results
DB_E_DIALECTNOTSUPPORTED_ The language of the command is not

supported.
DB_E_DUPLICATECOLUMNID_ A column was duplicated.
DB_E_DUPLICATEDATASOURCE_ The data source name is already in use.
DB_E_DUPLICATEINDEXID_ The index specified is already in use.

DB_E_DUPLICATETABLEID_ The table specified already exists.
DB_E_ERRORSINCOMMAND_ Errors were encountered in the command.
DB_E_ERRORSOCCURRED_ An unspecified error occurred.
DB_E_GOALREJECTED_ The goal specified was not valid; current

goal unchanged.
DB_E_INDEXINUSE_ The index specified is already opened.
DB_E_INTEGRITYVIOLATION_ A column value violated integrity

constraints for that object.
DB_E_INVALID_ Cannot use bookmarks on this row set.
DB_E_INVALIDTRANSITION_ The transition specified is not valid.
DB_E_LIMITREJECTED_ Cost limits specified were not valid.
DB_E_MAXPENDCHANGESEXCEEDED_ The maximum number of pending changes

has been exceeded.
DB_E_MULTIPLESTATEMENTS_ Multiple statement commands are not

supported.
DB_E_MULTIPLESTORAGE_ More than one storage object opened

concurrently.
DB_E_NEWLYINSERTED_ Cannot establish the identity of the new

rows.
DB_E_NOAGGREGATION_ This object does not support aggregation.
DB_E_NOCOMMAND_ The command has not been specified.
DB_E_NOINDEX_ The specified index is not valid.
DB_E_NOLOCALE_ The locale ID specified is not valid.
DB_E_NONCONTIGUOUSRANGE_ The set of rows specified are not

contiguous.
DB_E_NOQUERY_ The query was not defined.
DB_E_NOTABLE_ The table specified does not exist.
DB_E_NOTAREFERENCECOLUMN_ The column does not contain a bookmark

or chapter identifier.
DB_E_NOTASUBREGION_ The region specified is not a valid

subregion.
DB_E_NOTFOUND_ Cannot find the specified key value.
DB_E_NOTPREPARED_ Cannot prepare the specified command.
DB_E_NOTREENTRANT_ A method was called while another was

still executing.
 Error Results

DB_E_NOTSUPPORTED_ The method specified is not supported.
DB_E_NULLACCESSORNOTSUPPORTED_ Cannot pass NULL value Accessor to this

data provider.
DB_E_OBJECTOPEN_ Operation performed on an object that was

not opened.
DB_E_PARAMNOTOPTIONAL_ A value was not specified for a required

parameter.
DB_E_PARAMUNAVAILABLE_ The parameter specified is not available.
DB_E_PENDINGCHANGES_ Changes are pending on an unreferenced

row.
DB_E_PENDINGINSERT_ Cannot perform the pending insert.
DB_E_READONLYACCESSOR_ Accessor is read-only; write invalid.
DB_E_ROWLIMITEXCEEDED_ Adding this row exceeds the number of

active rows for this row set.
DB_E_ROWSETINCOMMAND_ Cannot copy a command that contains row

sets.
DB_E_ROWSNOTRELEASED_ The current row handles were not released

before retrieving new rows.
DB_E_SCHEMAVIOLATION_ The values supplied are inconsistent with

the data source schema.
DB_E_TABLEINUSE_ The table specified is already opened.
DB_E_UNSUPPORTEDCONVERSION_ Cannot perform the requested type

conversion.
DB_E_WRITEONLYACCESSOR_ The specified Accessor can only be

written.
DB_SEC_E_AUTH_FAILED_ Security error; data source access

authorization was not successful.
DB_SEC_E_PERMISSIONDENIED Permission denied because of a security

violation.

Summary
Day 21 explains how to integrate error handling into OLE DB applications. You learned how to
implement basic error-handling techniques and how to check the HRESULT of a method with the
SUCCEEDED and FAILED macros to determine whether the method executed correctly. Then you
learned how to use the ISupportErrorInfo interface to determine whether an OLE DB object
supports extended error information.

You used the IErrorRecords and ISQLErrorInfo methods to create the DispErrorInfo

procedure, which can display extended error information for any OLE DB object.

Q&A
This section answers some common questions related to today's topics.

Q Should my application look for and try to interpret specific HRESULT values?
A If you look at the OLE DB error information, you will see that as each method is

defined, the most common HRESULT values that the method can return are listed. A
useful exercise is to try to interpret certain warning result values. You can be assured
only that an OLE DB provider supports the methods and interfaces that are required. If
you attempt to access an optional interface, you will need to be sure that your
application can still function if the data provider doesn't support that interface.

Q Is there any way other than checking the HRESULT value of each method call to
add error handling to my OLE DB application?

A Unfortunately, no. To ensure the highest degree of error checking in your applications,
you must check each method's HRESULT value. You must realize that one failed method
can cause a cascading error effect. Again, the best technique is to design your
applications to be robust so that they offer only the functionality provided by the OLE
DB data provider. A robust application is one that can handle all error conditions
without crashing for the end user. As an application developer, you are responsible for
handling all errors that your application might generate.

Workshop
The Workshop quiz questions test your understanding of today's material. (The answers appear in
Appendix F, "Answers.") The exercises encourage you to apply the information you learned today to
real-life situations.

Quiz

1. Name the two macros used to check the result of an OLE DB method call.
2. Which interface checks whether an OLE DB object supports extended error information?
3. What are the special requirements of OLE DB error handling that aren't resolved by

Automation error-handling objects?
4. What information does the GetBasicErrorInfo method return? Describe the elements of

this structure.
5. How do you retrieve a custom error object? What custom error objects does OLE DB provide?
6. List the basic techniques for OLE DB error handling.
7. Which method does a data provider use to add a new error?
8. Explain the difference between HRESULT constants with the prefix DB_S and those with the

prefix DB_E.

Exercises

1. Review the generic HRESULT return values. They can be found in the Visual C++
documentation.

2. A sample called DECODE is available in the Microsoft Software Library. The DECODE
application enables you to enter an HRESULT in a dialog and have it decoded to its text
description.

3. Integrate the DispErrorInfo procedure and error checking into one of the data consumer
examples created in an earlier lesson.

4. Listing 21.4 shows how to call the DispErrorInfo procedure from within another program.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Week 3...
 In Review

In Day 15, to start your final week of study, you learned to view ODBC and DAO API
applications and understand the mechanisms used to process databases. You took a look
at using the MFC wrapper classes. Also, you saw that data binding is automatically
performed and the RFX mechanism is configured.

In Day 16's lesson, you saw how OLE DB builds on and expands the capabilities of
ODBC. Because OLE DB providers can be written for nonrelational data sources, OLE
DB provides an interface to relational, as well as nonrelational, data sources. OLE DB
takes an object-oriented approach to database client development, whereas ODBC takes
a function-based API approach. The OLE DB object hierarchy consists of just a few
objects, which expose COM interfaces to perform well-defined sets of functions.

You learned on Day 17 the process of integrating OLE DB into applications by
examining the relationship between COM and OLE DB and seeing how COM
technology influences the OLE DB programming model.

On Day 18, you examined OLE DB objects, specifically the Session and Command
objects, and the interfaces they provide. You learned how to create a Session object
by using the IDBCreateSession interface of the DataSource object and how to
create a Command object by using the IDBCreateCommand interface of the
Session object. The section on Command objects includes a brief review of
Structured Query Language (SQL). Examples also focus on using the OLE DB ODBC
data provider to access a SQL Server data source.

In Day 19's lesson, you started with a discussion of the Rowset object and its
associated interfaces. You brought together the concepts presented in the previous three
lessons so that you could begin to make productive use of OLE DB.

You learned, on Day 20, three important topics in OLE DB application development:
properties, transactions, and the Index object. Other topics covered include how to use
properties to control the state of an object, the Transaction object, and the Index
object.

In your final lesson in this book, you learned the mechanisms that OLE DB provides at
multiple levels to integrate error handling into your applications. OLE DB uses the basic
error-handling techniques of OLE Automation and adds another layer of error handling
that can return multiple provider-specific errors. You learned how to integrate these
techniques into your own applications.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix A

What's on the CD?

On the back of this book, you'll find a CD-ROM containing the code that you work on as you go
through the lessons. The following is an explanation of the directories and files you will find on the
CD.

● AddressBookDB.mdb: A Microsoft Access database that is used on Days 14 and 15.
● AddressBookODBC: A Visual C++ project that uses ODBC. It is covered on Days 14 and 15.
● AddressBookDAO: A Visual C++ project that uses DAO. It is covered on Days 14 and 15.
● ADOMFC1: A Visual C++ project that uses MFC and ADO. It is a database client application

that you begin working on in Day 4.
● ATLTest1: A simple ATL COM application that you build in Day 9.
● ADOSDK: An ADO application that uses ADO without the #import directive. It is

mentioned in Day 4.
● COMMANDTEST: A Win32 console application that uses the OLE DB Command object. It

is covered in Day 18.
● DataProject1: A Visual Studio project that uses ODBC to access a database inside the Visual

Studio environment. You create a project similar to this on Day 2.
● EnumTest: A Win32 console application that enumerates the OLE DB providers installed on

your machine. You create this application on Day 17.
● MTSComp1: An ATL COM application that builds a COM component that runs under MTS

and returns a disconnected ADO Recordset. You create this application on Day 12.
● ODBCTest: A Win32 console application that uses the OLE DB ODBC provider to attach to

an ODBC data source. You create this application in Day 17.
● Polymorph: A Win32 console application that demonstrates polymorphism with virtual

functions in C++. You create this application on Day 9.
● ClientTier.asp: An Active Server Page that presents a database client UI, using an ActiveX

grid control and RDS. You create this on Day 11.
● ClientTierAsync.asp: An Active Server Page that presents a database client UI, using an

ActiveX grid control and RDS. It can retrieve data from a database asynchronously. You create
this on Day 11.

● ClientTierForMTSADORs.asp: An Active Server Page that uses MTSComp1, the MTS
component you created on Day 12. You create this ASP on Day 12.

● DataInHtml.htm: A simple HTML page that demonstrates the difficulty of building a
database interface in straight HTML. You create this on Day 11.

● Sample.xml: A simple XML sample that demonstrates how a database recordset can be
represented in XML. You create this on Day 11.

● VCDb.mdb: A Microsoft Access database for which you write SQL code. You begin using it
on Day 2.

● VCDbNormalized.mdb: Similar to VCDb.mdb, except that VCDbNormalized.mdb contains
the changes you made to the database when you learned about database design on Day 7.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix B

Additional Resources

One of the best sources of information on modern database technology and C++ programming is the
World Wide Web. There are several Web sites where you can find valuable technical information. The
topics of information and the sites include

● XML information, at http://www.microsoft.com/XML
● Microsoft Internet Client SDK, at
http://msdn.microsoft.com/developer/sdk/inetsdk

● Microsoft's Universal Data Access (MDAC) strategy, at
http://www.microsoft.com/data/

● OLE DB information, at http://www.microsoft.com/data/oledb/
● The ADO Web site, at http://www.microsoft.com/data/ado/
● Persistence Software, for object-oriented software and relational database tools, at
http://www.persistence.com

● Searchable Internet newsgroup archives, at http://www.dejanews.com
● My first C++ ADO article, at http://www.vcdj.com/vcdj/jan98/ado.htm

© Copyright, Sams Publishing. All rights reserved.

http://www.microsoft.com/XML
http://msdn.microsoft.com/developer/sdk/inetsdk
http://www.microsoft.com/data/
http://www.microsoft.com/data/oledb/
http://www.microsoft.com/data/ado/
http://www.persistence.com/
http://www.dejanews.com/
http://www.vcdj.com/vcdj/jan98/ado.htm

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix C

Installing the Microsoft Data Access Components

The latest version of the Microsoft Data Access Components (MDAC) can always be found on the
MDAC Web site.

1. Go to the Microsoft Universal Data Access Web site at
http://www.microsoft.com/data.

2. Navigate to the page that lists the free downloads.
3. Click the link for the Microsoft Data Access Components. Read through the information on

this page pertaining to system and software requirements.
4. Click the link for registering and downloading the MDAC.
5. After you have registered, you will get the download page. Select the appropriate download to

begin the download process, which will result in an .EXE file being downloaded to your
system.

6. Run the .EXE file to start the installation of the MDAC.

© Copyright, Sams Publishing. All rights reserved.

http://www.microsoft.com/data

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix D

Interpreting HRESULTS

When you use the #import directive with ADO, as in this book, ADO will usually throw an
exception rather than return an HRESULT for runtime errors. Because exceptions provide detailed
information on the error and its cause(s), it is generally easy to figure out what went wrong.

HRESULTs, on the other hand, are just numbers. HRESULTs by themselves provide very little
information to enable you to figure out what went wrong. For those times when you are forced to
decipher an HRESULT, it is sometimes very helpful to know the meaning of HRESULT return codes.

There are several resources to which you can turn to discover the meaning of HRESULT return codes.
The Microsoft Knowledge Base has several articles that deal with HRESULTs. The best way to find
these articles is to search the Knowledge Base for HRESULT ADO. You can also search for adovc to
find ADO C++ articles, some of which deal with decoding HRESULTs.

One Knowledge Base article, "Q168354," contains a list of the frequently encountered HRESULTs
and their meanings. Specifically, the article explains the HRESULTs that you could receive from the
underlying OLE DB providers when using ADO.

Other Knowledge Base articles show sample code for decoding, or cracking, HRESULTs. The
Knowledge Base article "Q169498" illustrates a method you can use to interpret an HRESULT with a
function and display the text description.

Two code samples from Microsoft contain code that shows how to crack HRESULTs. These are the
ADOVC sample and the DECODE sample. You can obtain these from the Microsoft Software Library
or from MSDN.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix E

Using ADO via the OLE DB SDK

To use ADO in your C++ applications, you can use the ADO header files and import library from the
OLE DB SDK. You include the ADO header files (adoid.h and adoint.h) in your source, and add the
ADO import library adoid.lib to your linker input. This enables you to create instances of the ADO
objects and access their member functions. The code listings that follow show the changes you would
need to make to a typical MFC application to use ADO via the OLE DB SDK. A sample MFC
application called ADOSDK is on the CD.

Listing E.1 Additions to StdAfx.h

 1: #include <adoid.h>
 2: #include <adoint.h>
 3: #include <comdef.h>

Listing E.2 Additions to the Document Header File

 1: class CADOSDKDoc : public CDocument
 2: {
 3: protected: // create from serialization only
 4: CADOSDKDoc();
 5: DECLARE_DYNCREATE(CADOSDKDoc)

 6:
 7: // Attributes
 8: public:
 9: ADOConnection* m_piConnection;
10: BOOL m_ConnectionOpen;

Lines 9 and 10 are the new lines you need to add. The other lines should be there already.

Listing E.3 Additions to the Document Constructor

 1: CADOSDKDoc::CADOSDKDoc()
 2: {
 3: m_piConnection = NULL;
 4: m_ConnectionOpen = FALSE;
 5: }

Lines 4 and 5 are the new lines you need to add. The other lines should be there already.

Listing E.4 Additions to the ONNEWDOCUMENT Function

 1: BOOL CADOSDKDoc::OnNewDocument()
 2: {
 3: if (!CDocument::OnNewDocument())
 4: return FALSE;
 5:
 6: HRESULT hr;
 7:
 8: hr = CoCreateInstance(CLSID_CADOConnection, NULL,
 9: CLSCTX_INPROC_SERVER, IID_IADOConnection,
10: (LPVOID *)&m_piConnection);
11: if (!FAILED(hr))
12: {
13: hr = m_piConnection->Open(bstr_t(
14: _ L"Provider=Microsoft.Jet.OLEDB.3.51;Data
 Source=c:\\tysdbvc\\vcdb.mdb;"),
15: NULL, NULL);
16: if (!FAILED(hr))
17: {
18: m_ConnectionOpen = TRUE;
19: }
21: }
22:

23: return TRUE;
24: }

Lines 6-21 are the new lines you need to add. The other lines should be there already. Line 14 will
change, depending on the location of the file.

Listing E.5 Additions to the ONCLOSEDOCUMENT Function

 1: void CADOSDKDoc::OnCloseDocument()
 2: {
 3: if (m_ConnectionOpen)
 4: {
 5: m_piConnection->Close();
 6: m_ConnectionOpen = FALSE;
 7: }
 8: if (m_piConnection)
 9: {
10: m_piConnection->Release();
11: }
12:
13: CDocument::OnCloseDocument();
14: }

Lines 3-11 are the new lines you need to add. The other lines should be there already from
ClassWizard.

Listing E.6 Additions to the ONRBUTTONDOWN Function

 1: void CADOSDKView::OnRButtonDown(UINT nFlags, CPoint point)
 2: {
 3: CADOSDKDoc * pDoc = GetDocument();
 4: HRESULT hr;
 5: ADORecordset * pRs = NULL;
 6: short sEOF;
 7: _variant_t vLastName;
 8:
 9: if (pDoc->m_ConnectionOpen)
10: {
11: hr = pDoc->m_piConnection->Execute(
12: _bstr_t(L"SELECT * FROM Customers"),
13: &(_variant_t(0L)),

14: adCmdText,
15: &pRs);
16:
17: if (SUCCEEDED(hr))
18: {
19: pRs->get_EOF(&sEOF);
20: while (!sEOF)
21: {
22: hr = pRs->get_Collect(_variant_t(L"CustLastName"),
 &vLastName);
23: if (SUCCEEDED(hr))
24: {
25: TRACE("Last Name:%s.\n", (LPCTSTR) (_bstr_t)
vLastName);
26: }
27: pRs->MoveNext();
28: pRs->get_EOF(&sEOF);
29: }
30: pRs->Close();
31: pRs->Release();
32: }
33:
34: }
35:
36: CView::OnRButtonDown(nFlags, point);
37: }

Lines 3-34 are the new lines you need to add. The other lines should be there already from
ClassWizard.

© Copyright, Sams Publishing. All rights reserved.

Teach Yourself Database Programming
with Visual C++ 6 in 21 days

Appendix F

Answers
● Day 1, "Choosing the Right Database Technology"

❍ Quiz
❍ Exercises

● Day 2, "Tools for Database Development in Visual C++ Developer Studio"
❍ Quiz
❍ Exercises

● Day 3, "Retrieving Data Through Structured Query Language (SQL)
❍ Quiz
❍ Exercises

● Day 4, "Retrieving SQL Data Through a C++ API"
❍ Quiz
❍ Exercises

● Day 5, "Adding, Modifying, and Deleting Data"
❍ Quiz
❍ Exercises

● Day 6, "Harnessing the Power of Relational Database Servers"
❍ Quiz
❍ Exercises

● Day 7, "Database Design"
❍ Quiz
❍ Exercises

● Day 8, "Utilizing the Capabilities of Database Servers"
❍ Quiz
❍ Exercises

● Day 9, "Understanding COM"
❍ Quiz
❍ Exercises

● Day 10, "Database Client Technologies and the Secrets of ADO"
❍ Quiz
❍ Exercises

● Day 11, "Multitier Architectures"
❍ Quiz

● Day 12, "Using Microsoft Transaction Server to Build Scalable Applications"
❍ Quiz
❍ Exercises

● Day 13, "Melding Object-Oriented Programming with Relational Databases"
❍ Quiz
❍ Exercises

● Day 14, "Legacy Database APIs"
❍ Quiz
❍ Exercises

● Chapter 15, "The ODBC API and the MFC ODBC Classes"
❍ Quiz
❍ Exercises

● Day 16, "The Ultimate Database API: OLE DB"
❍ Quiz

● Day 17, "Accessing a Data Source with OLE DB"
❍ Quiz
❍ Exercises

● Chapter 18, "Querying a Data Source with OLE DB"
❍ Quiz

● Day 20, "Properties, Transactions, and Indexes"
❍ Quiz

● Day 21, "OLE DB Error Handling"
❍ Quiz

Day 1, "Choosing the Right Database Technology"

Quiz

1. What are the primary benefits of using a record manager (such as Btrieve) rather than inventing
your own database routines?
If you use a record manager (such as Btrieve), you don't have to build the code for navigation,

searching, indexing, and locking for multiple users.
2. What do the desktop databases provide that record managers do not?

Desktop databases provide data files that contain metadata, so the data files are self-describing.
Record managers do not.

3. What are the benefits of using a database technology that provides open, accessible data stores?
If you use a database technology that provides open, accessible data stores, your application
will live longer. Also, in the future, you will not be derided by your customers and other
developers for your lack of vision in building an inaccessible database with your application.

4. Which database technologies provide open, accessible data stores?
The database technologies that provide open, accessible databases are desktop databases and
relational database servers.

5. What is the significance of server-side processing of set-based operations in a client/server
architecture?
Server-side processing of set-based operations means less network traffic and greater
scalability of your application.

Exercises

1. The code in Listing 1.1 creates a data file that contains order information. Write a program that
reads the order data from that file.
The code below opens the data.dat file and reads the date and product. It then sends the product
name to the display.

ifstream is("data.dat", ios::binary | ios::nocreate);
 if(is)
 {
 is.read((char *) &dt, sizeof(dt));
 is.read((char *) &prod, sizeof(prod));
 cout << prod.szName << endl;
 }
 else
 {
 cout << "ERROR: Cannot open file 'data.dat'." << endl;
 }
)

2. Decide which database technology would be most appropriate for the sample application
described earlier. Create a list of capabilities that the database for this application needs to
provide. Justify your decision by comparing the database requirements with the capabilities of
the database technology that you have chosen.
The database for this application needs to work well in a LAN environment, provide multiple
users with simultaneous access to the data, give good performance so that people don't have to
wait long when placing their orders, and use an open database format so that the data can be
analyzed by managers. Also, of course, you don't want to spend a long time just building the
database. A desktop database such as Access fills most requirements, except perhaps in the area
of performance. If the number of users (the sales reps who take the phone calls) is fewer than
five or six, Access's performance will probably be adequate. If the number of users is more

than five or six, a relational database server is the technology that will fill all the requirements.

Day 2, "Tools for Database Development in Visual C++
Developer Studio"

Quiz

1. Which editions of Visual C++ enable viewing and editing data from relational databases inside
Visual Studio?
The Visual C++ Professional and Enterprise Editions.

2. What is a DSN?
A DSN is a data source name. The term DSN refers to an ODBC data source created on a
computer, which points to some database and specifies some ODBC driver that can read from
and write to that database.

3. What gives a database its value and why?
A database's value is derived from its structure. The better, the more complete, the more
descriptive, the more widely accepted the structure of a database, the more valuable its data can
be.

4. What is the fundamental requirement for records in relational database?
Each record must be unique. There must not be any duplicate records in a relational database.

5. What mechanism is used to relate records in different tables to one another?
Records in different tables are related to each other through primary and foreign keys. A
record's primary key uniquely identifies it in the database. That primary key can appear in other
tables to indicate a relationship between that record and the records in other tables. A primary
key that appears in another table is called a foreign key.

Exercises

1. Open the Orders table in the database project you created today. Note the foreign keys that
appear in the table. Open the Customers and Products tables and see primary keys for
customers and products. Try to change one of the foreign key values, such as a customer
number, to a number that doesn't exist as a primary key. What happens? Does the database help
enforce the integrity of the data?
When you try to change one of the foreign key values in the Orders table, such as a customer
number, to a number that does not exist as a primary key, the database will not accept the
change, and you will get an error message saying that this change would violate referential
integrity rules.

2. Open the Orders table in the database project you created today. Try to change one of the
order numbers in the table by typing in letters for the contents of the field. When you move the
cursor off that record, what happens? Does the database validate the data type you tried to
enter? (You can press Esc to abort the edit.)

Day 3, "Retrieving Data Through Structured Query

Language (SQL)

Quiz

1. What is SQL?
SQL is an acronym for Structured Query Language. SQL is a data manipulation and definition
language designed specifically for relational databases.

2. What is an SQL join?
An SQL join is a SELECT statement that produces a resultset by using data from two or more
tables in a relational database.

3. What is wrong with this SQL query?

SELECT customers.*
WHERE customers.custnumber = 3

The query is missing the FROM clause. It needs to say the following:

SELECT customers.*
FROM customers
WHERE customers.custnumber = 3

4. What is an aggregate function?
An aggregate function operates on multiple records and returns a single value.

5. What does a cursor make possible?
A cursor defines a position in a resultset and makes it possible to move through the resultset
one record at a time.

Exercises

1. Discover what happens when you add a table name to the FROM clause without mentioning that
table in the WHERE class of an SQL SELECT statement, like this:

SELECT customers.*
FROM customer, orders
WHERE customers.custnumber = 3

The resultset contains a Cartesian product of the two tables, meaning that if one table has 3
records and the other has 5 records, the resultset will contain 15 records. In the case of the
database you've been using today, the resultset will contain 4 records.

2. Add a join to the SQL query shown in Figure 3.22 to retrieve the name of the customer who
placed the most recent order.
You must nest the subquery that finds the last order date in the subquery that finds the customer
number, which subquery you must nest in the query to obtain the customer information.

SELECT 'Customers'.*
FROM 'Customers'
WHERE custnumber IN
(
 SELECT 'Orders'.customernumber
 FROM 'Orders'
 WHERE orderdate =
 (
 SELECT MAX(orderdate)
 FROM Orders
)
)

Day 4, "Retrieving SQL Data Through a C++ API"

Quiz

1. What does a database API do?
A database API translates between the type system of C++ and the type system of the database.
It also provides a means for passing SQL code to the database's interpreter for execution and a
means for retrieving data queried from the database.

2. What database APIs work with nonrelational data sources?
OLE DB and ADO.

3. What does an ADO Connection object do?
ADO Connection object encapsulates the functionality of logging in to and out of a database,
making queries, and retrieving resultsets.

4. What does the current record mean?
The current record is the record at which the cursor in the recordset is positioned.

Exercises

1. Change the code in Listing 4.12 so that the customers are sorted by last name.
You need to change line 7 in Listing 4.12 to include an ORDER BY clause on the last-name
field.

2. Change the code in Listing 4.12 to display the customer number as well as the customer first
and last name.
You need to add a column to the list control for the customer number. You must also add a call
to the Recordset GetCollect function to retrieve the customer number field and store it
in a _variant_t. After the GetCollect call, you can simply cast this _variant_t to a
_bstr_t, even though the original data type is numeric. _variant_t and _bstr_t handle
the conversion for you.

Day 5, "Adding, Modifying, and Deleting Data"

Quiz

1. What is a forward-only cursor?
A forward-only cursor is a cursor that moves only forward through the resultset.

2. What function do you use to place a value in a field of the current record in an ADO
Recordset?
The PutCollect function places a value in a field in the current record of an ADO
Recordset.

3. What is wrong with this SQL statement?

DELETE FROM customers

Perhaps nothing is wrong with it. However, it's crucial to note that this statement will delete
every record in the Customerstable because it has no WHEREclause.

4. What are the two arguments that you must pass to the ADO Recordset AddNew function?
You must pass two arrays of VARIANTs, the first containing the list of fields and the second
containing the list of data values to be placed in those fields.

5. What happens if you specify only one field/value pair in the SET clause of the SQL UPDATE
function?
Only the data in that one field is updated. The other fields are unchanged.

Exercises

1. Discover what happens in the Price field when you specify only the PartNumber and
ProductName fields in a SQL INSERT statement for the Products table, like this:

INSERT INTO Products(PartNumber, ProductName)
VALUES ('xxx', 'yyy')

The database will place a default value in the field. In this case, zero is the default value for the
Pricefield, so zero will appear in the Pricefield of the new record.

2. Modify the code in Listing 5.1 so that it doesn't specify a price for the new record.
You need to change the CreateOneDim function call so that the arrays have two elements
instead of three. Then you delete the code that defined the third elements (the Price field
name and data) in each array.

// Create an array for the list of fields in
// the Products table.
COleSafeArray vaFieldlist;
vaFieldlist.CreateOneDim(VT_VARIANT,2);
// Fill in the field names now.
long lArrayIndex[1];
lArrayIndex[0] = 0;
vaFieldlist.PutElement(lArrayIndex,

 &(_variant_t("PartNumber")));
lArrayIndex[0] = 1;
vaFieldlist.PutElement(lArrayIndex,
 &(_variant_t("ProductName")));
// Create an array for the list of values to go in
// the Products table.
COleSafeArray vaValuelist;
vaValuelist.CreateOneDim(VT_VARIANT,2);
// Fill in the values for each field.
lArrayIndex[0] = 0;
vaValuelist.PutElement(lArrayIndex,
 &(_variant_t("8TRACK-003")));
lArrayIndex[0] = 1;
vaValuelist.PutElement(lArrayIndex,
 &(_variant_t("Bell Bottom Hits")));

Day 6, "Harnessing the Power of Relational Database
Servers"

Quiz

1. What is a single-tier application?
A single-tier application consists of a single program that contains all the code and logic, which
runs in one process and tries to accomplish all the work of the application.

2. How do you make the SQL INSERT statement insert multiple records?
You make the SQL INSERT statement insert multiple records by replacing the VALUES clause
with a SELECT statement that returns multiple rows.

3. What databases help you preserve the referential integrity of your data?
The databases that help you preserve the referential integrity of your data are relational
database servers and Microsoft Access.

4. How is a stored procedure in a relational database different from a Query in Microsoft Access?
A Query in Microsoft Access is not compiled like a stored procedure. A Query in Microsoft
Access doesn't execute at the server like a stored procedure. Also, a Query in Microsoft Access
is treated as a View in Visual Studio.

5. Where can you find the data types available for use in ADO Parameter objects?
You can find the data types available for use in ADO Parameter objects in the
ParameterDirectionEnum in msado15.tlh.

Exercises

1. Modify the SELECT statement in Listing 6.2 so that the customer number is not hard-coded.
Make it so that the customer number is retrieved based on the customer's last name.
To retrieve the customer number based on the customers last name, the SELECT statement
needs to use a subquery. It would look like this:

SELECT 4, { d '1998-11-16' },

 (SELECT custnumber
 FROM customers
 WHERE custlastname = 'clinton'),
 PartNumber, Price,
 4, 'MC 1223 9873 2028 8374 9/99'
FROM Products
WHERE (PartNumber LIKE '8TRACK%')

2. Add code to the OrderedSinceDate handler shown in Listing 6.8 to change the value of
the parameter after it has been appended to the command but before the Command has been
executed.
The code to change the value of a parameter attached to an ADO Command object could look
like this:

(pCommand->Parameters->GetItem(_variant_t("ParamDate")))
->PutValue(_variant_t(COleDateTime(1998, 11, 15, 0, 0, 0)));

Day 7, "Database Design"

Quiz

1. What is the highest normal form in the relational database model?
The highest normal form in the relational model is the domain/key normal form.

2. What are entity relationships?
Entity relationships are the relationships between records in various tables in a relational
database.

3. How can you guarantee that a table conforms to the second normal form?
The second normal form requires that no fields apply to only part of the primary key. If a table
has a single key field, the table is guaranteed of conforming to 2NF.

4. What is the proper term for the structure (the tables, indexes, constraints, and so on) of a
relational database?
The structure of a relational database is called its schema.

5. What does a referential integrity constraint do?
A referential integrity constraint ensures that the records related through primary and foreign
keys are not deleted independently of each other. The constraint keeps the records in related
tables in synch with each other.

Exercises

1. Write a SELECT statement that shows all the products purchased on each order. Hint: The
SELECT statement should perform a join between the NewOrders, ProductsPurchased,
and Products tables.
This SELECT statement shows all the products purchased on each order:

SELECT neworders.ordernumber, products.productname

FROM neworders, productspurchased, products
WHERE neworders.ordernumber = productspurchased.ordernumber
AND productspurchased.partnumber = products.partnumber

2. Write a SELECT statement showing the products purchased by each customer.
This SELECT statement shows the products purchased by each customer:

SELECT customers.custfirstname, customers.custlastname,
products.productname
FROM neworders, productspurchased, products, customers
WHERE neworders.ordernumber = productspurchased.ordernumber
AND productspurchased.partnumber = products.partnumber
AND neworders.customernumber = customers.custnumber

Day 8, "Utilizing the Capabilities of Database Servers"

Quiz

1. What are the ACID properties of a transaction?
The ACID properties of a transaction are atomicity, consistency, isolation, and durability.

2. What is the isolation level of a transaction?
The isolation level of a transaction is a setting in the database that specifies how zealous it
should be in protecting a user's work from interaction with the work of other concurrent users.

3. How does the GROUP BY clause interact with the SQL aggregate functions?
Placing a GROUP BY clause with an aggregate function in a SELECT statement causes the
aggregate function to perform its calculation on sets of records that are determined by the
GROUP BY clause.

4. How many triggers can be attached to a table in Microsoft SQL Server?
Three triggers can be attached to a table in Microsoft SQL Server: an insert trigger, an update
trigger, and a delete trigger.

5. Does a view on a large table occupy much room in the database? Why or why not?
A view on a large table doesn't occupy much room in the database because the view stores no
records. Only the SQL SELECT statement that defines the view is stored in the database (and a
SELECT statement is relatively small).

Exercises

1. Modify the SELECT statement in Listing 8.7 so that the resultset is sorted by the total sales
volume, from the highest volume to the least.
The code to sort the resultset in order to total sales, the highest first, would look like this:

SELECT neworders.ordernumber,
SUM(price + shippingandhandling)
FROM neworders, productspurchased
WHERE neworders.ordernumber = productspurchased.ordernumber
GROUP BY neworders.ordernumber

ORDER BY SUM(price + shippingandhandling) DESC

2. Modify the SELECT statement in Listing 8.7 so that the query returns the average product
price, from the highest to the least.
The code to return the average product price, from the highest to the least, would look like this:

SELECT neworders.ordernumber,
AVG(price)
FROM neworders, productspurchased
WHERE neworders.ordernumber = productspurchased.ordernumber
GROUP BY neworders.ordernumber
ORDER BY AVG(price) DESC

Day 9, "Understanding COM"

Quiz

1. Why can't you load a DLL into memory and send messages to it from your app?
When your application loads a DLL into memory, the DLL becomes part of your app. Your
app cannot send messages (window messages or otherwise) to the DLL and have the DLL act
independent of your application. The DLL code is mapped into your app's address space, and
any objects the DLL creates, your app owns.

2. What makes a C++ class an abstract base class?
An abstract base class must have at least one pure virtual function as a member. A pure virtual
function is a function with =0 after its declaration.

3. What is a class factory?
A class factory is a class that knows how to create instances of a class that is a COM server. A
class factory must be implemented in every COM DLL and EXE. The class factory exposes a
function named CreateInstance, which the OS can call to get pointers to instances of the
COM servers whose code resides in that file.

4. Why is it necessary for a COM client to call Release on a COM server after it's finished with
it?
The Release function decrements the usage count for that COM object (the server). When
the usage count reaches zero, the server object is deleted or is told to delete itself. If no clients
are using a server object, it can and should be deleted to free its resources.

5. What is a CLSID, and why must all CLSIDs be unique?
A CLSID uniquely identifies a COM server. The CLSID is used in the registry to store
information on the location of the DLL or EXE file that contains the COM server code. If there
were duplicate CLSIDs, there would be a chance that one CLSID could be overwritten by
another in the registry, preventing the first one from ever being launched. Also, COM clients
expect certain behavior and support for certain interfaces from COM servers, based on the
CLSID. The uniqueness of the CLSID makes that expectation possible.

Exercises

1. Add another method to the IDbComponent interface. Make this method take, as a parameter,
an address to a variable of some sort. Modify this variable in the server code and make sure it
gets back okay to the client.
The important thing for a parameter that is passed in to the server to be modified and returned
is that it be marked as [out] in the Parameters edit box in the Add Method to Interface dialog.

2. Use the ATL COM AppWizard to create a COM server in an EXE. Expose a function in its
interface that is similar to one in the DLL COM server. Compare the performance of the EXE-
based COM server (the out-of-proc server) versus the DLL -based COM server (the inproc
server).
You should find that the out-of-proc server is much slower-has much more function call
overhead-than the inproc server.

Day 10, "Database Client Technologies and the Secrets
of ADO"

Quiz

1. What is the goal or purpose of ODBC?
The goal or purpose of ODBC is to provide a uniform API for communicating with relational
databases from different vendors.

2. How is ODBC's call-level interface different from embedded SQL?
ODBC's call-level interface differs from embedded SQL in that the SQL code in an ODBC
application is not compiled by a precompiler and translated to native database calls. Rather, the
SQL code in an ODBC application is interpreted at runtime by the database (or by the
database's ODBC driver).

3. Where does the ADO type library reside and how can you view it?
The ADO type library resides in the ADO DLL, which is called MSADO15.DLL and is
typically installed in the C:\Program Files\Common Files\System\ADO directory. You can
view the ADO type library by using the OLE-COM Object Viewer included with Microsoft
Visual Studio.

4. Why does ADO throw exceptions when errors occur?
ADO throws exceptions when errors occur because that is how the high-level ADO functions
produced by #import are implemented. The code for the high-level ADO functions can be
found in the MSADO15.TLI file.

5. What function that you use with #import does not throw exceptions but returns a failed
HRESULT instead?
The smart pointer CreateInstance function doesn't throw exceptions but returns a failed
HRESULT in the case of an error.

Exercises

1. Set break points in the inline functions in MSADO15.TLI, such as the
_Connection::Open function, and run ADOMFC1 in debug mode to develop a feel for

how code in MSADO15.TLH and MSADO15.TLI is executed. Debug step into all the
functions to discern when you are executing code in your ADOMFC1 project and when you are
executing code in the ADO DLL
When you set breakpoints in the MSADO15.TLI file, you will find that the functions with the
raw_ prefix directly call into the ADO library.

2. Modify the code in Listing 10.7 so that the call to the ADO Command Execute function in
line 24 directly calls the low-level Execute function.
The code for the Execute call should look like this:

22: _RecordsetPtr pRS;
23:
24: hr = pCommand->Raw_Execute(&vNull, &vNull, adCmdUnknown,
Â&pRS);

Day 11, "Multitier Architectures"

Quiz

1. Interfaces and abstractions are the two pillars on which multitier applications rest. Each tier that
provides an effective level of abstraction has interfaces that are understandable and distinct.
Distinct interfaces between the tiers enable the tiers to be updated independently of each other.

2. Thin client programs are often more desirable than fat clients, because they do not require
updates as often as fat client programs.

3. HTML specifies how information will be displayed. XML specifies what the data is and what it
means.

4. In a typical RDS application, the RDS DataControl object is instantiated on the client
machine in the browser's process space. Often COM server(s) such as ActiveX controls are also
instantiated in the browser to enable a feature-rich UI. The RDS DataControl object causes
a DataFactory object to be instantiated on the middle tier (Web server) machine.

5. The security risk posed by the RDS COM servers is caused by the fact that the DataFactory
object can be instantiated on a Web server machine. This can provide access to the database to
anyone on the Web who knows a valid data source, username, and password for that database.

Day 12, "Using Microsoft Transaction Server to Build
Scalable Applications"

Quiz

1. DCOM alone is insufficient for building multitier applications because DCOM by itself
provides no support for transactions, thread pooling, or database connection pooling. You
would have to write those features yourself to develop a multitier application with just DCOM
and without MTS.

2. [out, retval] is the specification in IDL for a parameter that is the return value of the

method.
3. Yes, MTS will run on Windows 98, if the machine has at least 32MB of RAM.
4. Each MTS package specifies a process in which MTS components are to run. This enables

process isolation, as well as common security settings for the collection of components that
reside in the package.

5. A disconnected Recordset is an ADO Recordset that contains data but currently has no a
connection to a database. Disconnected Recordsets can be sent between COM servers and
clients as a flexible and powerful data structure.

Exercises

1. The linker will produce an error because it cannot open the DLL file for writing. This is
because the DLL is loaded. To fix the problem, you need to click the Refresh button on IE4 or
exit IE4 completely. Sometimes even this does not work. At those times, you need to shut
down the server processes using the Transaction Server Explorer by right-clicking My
Computer and selecting Shutdown Server Process.

2. Run the Transaction Server Explorer and navigate to the package that contains
MTSComp1.Component1. Select MTSComp1.Component1 and press the Delete key to remove
the component from MTS. To register the DLL so that you can use it as a normal COM server,
enter regsvr32 MTSComp1.DLL from the DOS prompt in the directory where the DLL
resides. You might need to mark it safe for scripting and initialization again.

Day 13, "Melding Object-Oriented Programming with
Relational Databases"

Quiz

1. You can't store C++ objects in relational database fields because the only things that the
database lets you store in fields are instances of the data types that exist in the database's type
system.

2. You can't use SQL for object-oriented programming because the language has no object
constructs or mechanisms. Its sole purpose is to manipulate data in two-dimensional tables
inside relational databases.

3. C++ object databases directly support the C++ type system, including types (classes) that
programmers create themselves. Data in C++ object databases is accessible only to C++
programs that understand the types (the classes) that are stored therein. A relational database
supports only the data types that it defines. The data in relational databases is accessible to any
application that can understand the relational model and that can map between its type system
and the database's type system.

4. When you are designing an application that will use object and relational technology, it is
generally best to start by designing the relational database schema. You can then use the
schema as the basis for the object schema.

5. The benefits of a live object cache include greatly improved application performance because

of reduced database access, and reduced network traffic, again because of reduced database
access.

Exercises

1. This SELECT statement retrieves the shoe type based on the shoe ID from the Shoes table.

SELECT ShoeType
FROM Shoes
WHERE ShoeID = 1

2. This SELECT statement shows the products purchased by each customer.

SELECT Shoes.*, BasketballShoes.*
FROM Shoes, BasketballShoes
WHERE Shoes.ShoeID = BasketballShoes.ShoeID

Day 14, "Legacy Database APIs"

Quiz

1. CDatabase
2. The environment handle saves information necessary for the application to connect to a data

source. The Driver Manager will construct the handle and then give the connected driver a
copy.

3. dbDBEngine. No
4. CRecordSet::dynaset

Exercises

1. You can find the DAO classes in the OLE/COM Object Viewer by expanding the All Objects
element in the tree control in the left window pane. The DAO classes all start with DAO. To
view the type information, double-click one of the classes to instantiate the object, double-click
one of the non-IUnknown interfaces, and click the View Type Info button.

Chapter 15, "The ODBC API and the MFC ODBC
Classes"

Quiz

1. The Record Field Exchange (RFX) implemented by DoFieldExchange().
2. The document class contains the recordset. The Document in the MFC Document/View

architecture represents the application's data store, whereas the View is a window to that data.
3. OnInitialUpdate
4. CRecordSet::dynaset

Exercises

1. The edit boxes should match the field declarations in the AddressBook database. Yes, the
fields are updated whenever the cursor is moved. This is accomplished via the Record Field
Exchange (RFX) implemented by DoFieldExchange(). The ODBC wrappers implement
the cursor as part of the recordset, and the View automatically creates a message interface from
the cursor buttons to the recordset's cursors.

2. Identical to answer 1.
3. The code should look something like this:

rs.AddNew();
rs.m_Last_Name = "Smith";
rs.m_First_Name = "Jennifer";
rs.Street = "234 WayWay St.";
rs.m_City = "Columbus";
rs.m_State = "OH";
rs.m_Zip = 45400;
rs.m_Phone = "614-5550101";
rs.Update();

Day 16, "The Ultimate Database API: OLE DB"

Quiz

1. What are the two basic OLE DB components?
A data provider and a data consumer. A data provider is an application that responds to queries
and returns data in a usable form. A data consumer is an application, or other COM component,
that uses the OLE DB API to access a data source.

2. How does OLE DB currently enable access to ODBC data sources for which no OLE DB
provider is yet available?
The OLE DB SDK contains an OLE DB provider for ODBC data, called MSDASQL, which
allows you to access ODBC data sources from OLE DB consumer applications. The OLE DB
provider for ODBC resides in MSDASQL.DLL.

3. What are the major OLE DB objects?
The OLE DB. The major OLE DB components are called CoTypes. The OLE DB CoTypes are
TDataSource, TDBSession, TCommand, TRowset, TIndex, TErrorObject, and
TTransaction.

4. Which header files must be included to access OLE DB objects?
The header files OLEDB.H and OLEDBERR.H must be included for OLE DB applications.
These header files are used to include the OLE DB classes and OLE DB error-handling classes,
respectively.

5. What is the URL for the OLE DB home page?
The URL of the OLE DB Web site is http://www.microsoft.com/data/oledb/.

Day 17, "Accessing a Data Source with OLE DB"

Quiz

1. What is the role of a data provider and a data consumer in the OLE DB architecture?
A data provider is a COM component that provides an OLE DB-compliant interface. A data
consumer is an application or component that uses an OLE DB interface to access a data
source.

2. What is an interface? How does the COM architecture use an interface?
Interfaces describe the functionality provided by the component and also provide the structured
mechanism that these components use to talk with each other. A COM component is an object
that uses the rules in the COM specification to provide access to the interfaces provided by a
component.

3. What is interface factoring?
Interface factoring is the capability of COM objects to support multiple interfaces, which can
provide different levels of functionality, depending on the consumer. A consumer uses the
interface appropriate to its needs.

4. What method is used to determine whether a COM object supports a particular interface?
The interfaces supported by a COM component can be determined by calling the
QueryInterface method. When an application determines whether a component supports a
specific interface, it is guaranteed the functionality of that interface.

5. Describe the basic flow of information in an OLE DB application.
The consumer application uses the Enumerator object to determine which OLE DB data
source providers are available. It then creates a DataSource object and uses the
DataSource object to create a Session object. Then the application uses the Session
object to create a Command object. The application uses the Command object's Execute
function to create a Rowset object. Next, the application navigates through the Rowset
containing the data. Finally, the application releases the objects.

6. What is an Enumerator object, and how is it used?
The Enumerator class retrieves information regarding all the OLE DB providers available
on the system.

7. What interfaces are supported by an Enumerator object?
The Enumerator object supports the following interfaces: IparseDisplayName,
IsourcesRowset, IDBInitialize, IDBProperties, and IsupportErrorInfo.

8. What is a DataSource object, and how is it created?
The DataSource object abstracts the actual data source. It is created by binding a moniker
returned from the Enumerator class or by directly calling CoCreateInstance, using the
appropriate CLSID.

9. What interfaces does a DataSource object support?
The DataSource object supports the following interfaces: IDBCreateSession,
IDBInitialize, IDBProperties, Ipersist, IDBDataSourceAdmin, IDBInfo,
IpersistFile, and IsupportErrorInfo.

http://www.microsoft.com/data/oledb/

10. What methods initialize and release the DLLs required by a COM application?
The CoInitialize and CoUninitialize functions load and release the appropriate
COM-related DLLs. You must call these functions at the start and end of any application that
uses COM.

Exercises

1. Review the Visual C++ books online documentation (provided with Visual C++) for more
information regarding the specifics of COM programming.
Several places in the online documentation deal with COM. The best way to find them is to
search for terms such as COM, QueryInterface, and OLE DB. When you find a useful article
(or document), press the Locate button to find that article in the table of contents. Often you
will find other useful information in the neighboring documents.

2. The applications developed yesterday and today do not really consider error handling. How
would you integrate error handling into the application in Listing 17.4? (Hint: Most of the
COM related functions return an HRESULT type value.)
You should always check the value of the HRESULTs returned by COM functions.

Chapter 18, "Querying a Data Source with OLE DB"

Quiz

1. The Session object provides a context for transactions and commands. A Session object is
created by using the IDBCreateSession interface of the DataSource object. The
CreateSession method of this interface actually creates a session. You can use the
Session object to create a Command object, to access a row set directly, and to create or
modify data source tables and indexes.

2. The IDBSchemaRowset retrieves data source schema information. Schema information
describes the data contained in the data source. The IDBSchemaRowset interface is optional
for Session objects.

3. The Command object performs commands that the provider supports. Using the SQL Server
data provider (or even the OLE DB ODBC provider) and a database such as SQL Server, you
can use the Command object to execute SQL commands. OLE DB data providers aren't
required to support commands.

4. The ICommandText interface sets and retrieves the actual command text, which specifies the
data source command to execute. The Command object requires the ICommandText
interface.

5. In SQL, parameters in commands are usually specified with the ? placeholder. The actual
parameter value replaces the ?. Parameterized statements are similar to procedures in any
programming language; they are useful for executing a particular statement repeatedly. A
parameterized statement can execute a command whose parameters are specified while an
application is running.

6. The ICommandPrepare interface converts a command to a prepared command. A prepared
command is a command that has been precompiled so that it can execute faster. If you expect a

command to be executed repeatedly, transforming it into a prepared command can improve
application performance.

Day 20, "Properties, Transactions, and Indexes"

Quiz

1. List the major property groups.
The major property groups are DBPROPSET_COLUMN_DATASOURCE,
DBPROPSET_DATASOURCEINFO, DBPROPSET_DATAINIT, DBPROPSET_INDEX,
DBPROPSET_ROWSET, DBPROPSET_SESSION, and DBPROPSET_TABLE. These groups
are used to group properties in the DBPROPIDSET and DBPROPSET structures.

2. What structure returns the collection of property values?
The DBPROPSET structure holds the collection of property values when retrieving and setting
properties.

3. Name the property that determines the level of SQL command support provided by an OLE DB
data provider?
The DBPROP_SQLSUPPORT property determines the level of SQL command support
provided by an OLE DB data provider.

4. What method opens a transaction?
The StartTransaction method opens a transaction.

5. What isolation level maintains the most consistent access to a row set in a multiuser
environment?
The ISOLATIONLEVEL_SERIALIZABLE flag specifies the serializable isolation level,
which offers the highest level of data integrity inside a transaction.

6. What property ensures that a row set is retained in a valid state after a transaction is closed?
The Rowset property DBPROP_COMMITPRESERVE determines the state of a row set when a
transaction is committed or aborted. If true, the row set is resynchronized to reflect the results
of the transaction; otherwise, the row set becomes invalid.

7. What Index object method searches for a specific key value in an index The Seek method of
the Index object searches for a specific key value.

Day 21, "OLE DB Error Handling"

Quiz

1. Name the two macros used to check the result of an OLE DB method call.
Visual C++ provides two macros that can determine generally whether a method was
successful. These macros are SUCCEEDED and FAILED. As you can tell by their names, the
SUCCEEDED macro returns true if the call to the method is successful, and the FAILED
macro returns true if the call to the method is not successful.

2. Which interface checks whether an OLE DB object supports extended error information?
The IsupportErrorInfo interface determines whether an object supports the necessary

interfaces to retrieve additional error information. The IsupportErrorInfo defines a
single method, InterfaceSupportsErrorInfo, that returns S_OK if additional error
information is supported.

3. What are the special requirements of OLE DB error handling that aren't resolved by
Automation error-handling objects?
The OLE DB has two requirements that the standard IerrorInfo interface does not meet:

❍ OLE DB must return provider-specific error information.
❍ OLE DB must return multiple error values at the same time, but the IerrorInfo interface can

return information regarding one error only.
4. What information does the GetBasicErrorInfo method return? Describe the elements of

this structure.
The GetBasicErrorInfo method retrieves the basic ERRORINFO structure for the record
number specified in the 1RecNum parameter. The ERRORINFO structure holds basic
information about an error.

5. How do you retrieve a custom error object? What custom error objects does OLE DB provide?
The GetCustomErrorObject method retrieves a provider-specific custom error. OLE DB
provides one custom error interface for providers that support the SQL command language:
ISQLErrorInfo. The ISQLErrorInfo method returns the current SQL status and error
value. The dwMinor field contains a provider-specific error value. The clsid field contains
the class ID of the OLE DB object that generated this error. The iid parameter contains the
interface ID of the interface that generated this error. The dispid field contains the method
that generated the error.

6. List the basic techniques for OLE DB error handling.
The basic error-handling techniques are the following:

❍ Check the HRESULT value of a method when it is called.
❍ If the method did not succeed, possibly print some error information.
❍ If the error is critical to the execution of the application, gracefully end the application.

Be sure to release any allocated memory and close any open data sources and files.
❍ If the error is not critical (perhaps the data provider doesn't support a specific method),

dynamically change the functionality of the application. For example, an application
feature might not be available with lower-level data providers.

7. Which method does a data provider use to add a new error?
Data providers use the AddErrorRecord method to add new error records.

8. Explain the difference between HRESULT constants with the prefix DB_S and those with the
prefix DB_E. HRESULT constants that begin with S or DB_S are values that indicate success,
and HRESULT constants that begin with E or DB_E are error value constants.

© Copyright, Sams Publishing. All rights reserved.

Sams Teach Yourself Database Programming
with Visual C++6 in 21 Days

Copyright © 1999 by Sams Publishing

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photo-copying, recording, or otherwise,
without written permission from the publisher. No patent liability
is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the
preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information
contained herein.

HTML conversion by :
LEVEL X L.L.C.,
Warren, New Jersey, 800-422-3475.
e-mail : compudoc@compudocinc.com

© Copyright, Macmillan Computer Publishing. All rights reserved.

http://www.compudocinc.com/
mailto:compudoc@compudocinc.com

	DB Book
	Index
	Introduction
	Week 1 - At a Glance
	Day 1-Choosing the Right Database Technology
	Day 2-Tools for Database Development in Visual C++ Developer Studio
	Day 3-Retrieving Data Through Structured Query Language (SQL)
	Day 4-Retrieving SQL Data Through a C++ API
	Day 5-Adding, Modifying, and Deleting Data
	Day 6-Harnessing the Power of Relational Database Servers
	Day 7-Database Design
	Week 1 - In Review
	Week 2 - At a Glance
	Day 8-Utilizing the Capabilities of Database Servers
	Day 9-Understanding COM
	Day 10-Database Client Technologies and the Secrets of ADO
	Day 11-Multitier Architectures
	Day 12-Using Microsoft Transaction Server to Build Scalable Applications
	Day 13-Melding Object-Oriented Programming with Relational Databases
	Day 14-Legacy Database APIs
	Week 2 - In Review
	Week 3 - At a Glance
	Day 15-The ODBC API and the MFC ODBC Classes
	Day 16-The Ultimate Database API: OLE DB
	Day 17-Accessing a Data Source with OLE DB
	Day 18-Querying a Data Source with OLE DB
	Day 19-Navigating the Result of a Query
	Day 20-Properties, Transactions, and Indexes
	Day 21-OLE DB Error Handling
	Week 3 - In Review
	Appendix A-What's on the CD?
	Appendix B-Additional Resources
	Appendix C-Installing the Microsoft Data Access Components
	Appendix D-Interpreting HRESULTS
	Appendix E-Using ADO via the OLE DB SDK
	Appendix F-Answers
	Copyright

