
[ Team LiB ]

  
• Table of Contents
• Index
Sams Teach Yourself PHP in 24 Hours, Third Edition

By Matt Zandstra
 

Publisher: Sams Publishing

Pub Date: December 23, 2003

ISBN: 0-672-32619-1

Pages: 500

A quick, easy-to-understand introduction to creating dynamic Web sites with PHP 5, the latest version of this popular
programming language.

Updated and revised to cover features of the latest version of PHP,PHP 5.

Quickly teaches the reader the basics of PHP and how to make use of it in practical applications.

Teaches the reader to create dynamic Web applications and set-up a secure PHP environment.

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

  
• Table of Contents
• Index
Sams Teach Yourself PHP in 24 Hours, Third Edition

By Matt Zandstra
 

Publisher: Sams Publishing

Pub Date: December 23, 2003

ISBN: 0-672-32619-1

Pages: 500

   Copyright

   About the Author

   Acknowledgments

   Tell Us What You Think!

   Introduction

    Who Should Read This Book?

    How This Book Is Organized

   Part I:  Getting Started

    Hour 1.  PHP: From Home Page to Web Enterprise

    What Is PHP?

    What Need Does PHP Fulfill?

    What's New in PHP 5

    The Zend Engine

    Why Choose PHP?

    What's New in This Edition

    Summary

    Q&A

    Workshop

    Exercise

    Hour 2.  Installing PHP

    Platforms, Servers, Databases, and PHP

    Where to Find PHP and More

    Installing PHP for Linux and Apache

    Some configure Options

    Configuring Apache

    php.ini

    Help!

    Summary

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


   Summary

    Q&A

    Workshop

    Exercise

    Hour 3.  A First Script

    Our First Script

    Combining HTML and PHP

    Adding Comments to PHP Code

    Summary

    Q&A

    Workshop

    Exercise

   Part II:  The Language

    Hour 4.  The Building Blocks

    Variables

    Data Types

    Operators and Expressions

    Constants

    Summary

    Q&A

    Workshop

    Exercises

    Hour 5.  Going with the Flow

    Switching Flow

    Loops

    Code Blocks and Browser Output

    Summary

    Q&A

    Workshop

    Exercises

    Hour 6.  Functions

    What Is a Function?

    Calling Functions

    Defining a Function

    Returning Values from User-Defined Functions

    Dynamic Function Calls

    Variable Scope

    Saving State Between Function Calls with the static Statement

    More About Arguments

    Creating Anonymous Functions

    Testing for Function Existence

    Summary

    Q&A

    Workshop

    Exercise

    Hour 7.  Arrays

    What Is an Array?

    Creating Arrays

    Associative Arrays

    Multidimensional Arrays

    Accessing Arrays

    Manipulating Arrays

    Sorting Arrays

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Functions Revisited

    Summary

    Q&A

    Workshop

    Exercises

    Hour 8.  Working with Strings

    Formatting Strings

    Investigating Strings

    Manipulating Strings

    Summary

    Q&A

    Workshop

    Exercises

    Hour 9.  Objects

    What Is an Object?

    Creating an Object

    Object Properties

    Object Methods

    Limiting Access to Object Properties

    Limiting Access to Object Methods

    Constraining Arguments to Methods with Hints

    Inheritance

    Testing Classes and Objects

    Automatically Loading Include Files with ___autoload()

    Storing and Retrieving Objects

    Summary

    Q&A

    Workshop

    Exercises

   Part III :  Working with PHP

    Hour 10.  Working with Forms

    Superglobal Variables

    The $_SERVER Array

    A Script to Acquire User Input

    Importing User Input into Global Scope

    Accessing Form Input with User-Defined Arrays

    Combining HTML and PHP Code on a Single Page

    Using Hidden Fields to Save State

    Redirecting the User

    File Upload Forms and Scripts

    Summary

    Q&A

    Workshop

    Exercises

    Hour 11.  Working with Files

    Including Files with include()

    Using include_once() and include_path to Manage Larger Projects

    Testing Files

    Creating and Deleting Files

    Opening a File for Writing, Reading, or Appending

    Reading from Files

    Reading the Contents of a File with file_get_contents()

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Writing or Appending to a File

    Writing Data to a File with file_put_contents()

    Working with Directories

    Summary

    Q&A

    Workshop

    Exercises

    Hour 12.  Working with the DBA Functions

    Beneath the Abstraction

    Opening a Database

    Adding Data to the Database

    Amending Elements in a Database

    Reading from a Database

    Determining Whether an Item Exists in a Database

    Deleting an Item from a Database

    Adding Complex Data Structures to a Database

    An Example

    Summary

    Q&A

    Workshop

    Exercises

    Hour 13.  Database Integration—SQL

    A (Very) Brief Introduction to SQL

    Connecting to the MySQL Database Server

    Selecting a Database

    Finding Out About Errors

    Adding Data to a Table

    Acquiring the Value of an Automatically Incremented Field

    Accessing Information

    Changing Data

    SQLite: A Lightweight SQL Engine

    Selecting Data

    Using the PEAR DB Package

    Summary

    Q&A

    Workshop

    Exercises

    Hour 14.  Beyond the Box

    Server Variables Revisited

    A Brief Summary of an HTTP Client/Server Negotiation

    Getting a Document from a Remote Address

    Converting IP Addresses and Hostnames

    Making a Network Connection

    Sending Mail with the mail() Function

    An Introduction to Streams

    Summary

    Q&A

    Workshop

    Exercises

    Hour 15.  Images On-the-Fly

    Checking Your Configuration with gd_info()

    Creating and Outputting Images

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Acquiring Color

    Drawing Lines

    Applying Color Fills

    Drawing an Arc

    Drawing a Rectangle

    Drawing a Polygon

    Making a Color Transparent

    Working with Text

    Bringing It Together

    Summary

    Q&A

    Workshop

    Exercises

    Hour 16.  Working with Dates and Times

    Getting the Date with time()

    Converting a Timestamp with getdate()

    Converting a Timestamp with date()

    Creating Timestamps with mktime()

    An Example

    A Date Pull-down Library

    Summary

    Q&A

    Workshop

    Exercise

    Hour 17.  Advanced Objects

    Objects and Constants

    Static Properties

    Static Methods

    Intercepting Calls to Object Properties and Methods

    Final Methods

    Cleaning Up Using Destructors

    Managing Error Conditions with Exceptions

    Tools for Building Object Hierarchies

    Passing and Assigning Objects

    Summary

    Q&A

    Workshop

    Exercises

    Hour 18.  Working with Regular Expressions

    Perl Compatible Regular Expressions

    Summary

    Q&A

    Workshop

    Exercise

    Hour 19.  Saving State with Cookies and Query Strings

    Cookies

    Setting a Cookie with PHP

    Working with the Query String

    Creating a Query String

    Summary

    Q&A

    Workshop

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Exercises

    Hour 20.  Saving State with Session Functions

    What Are Session Functions?

    Starting a Session with session_start()

    Working with Session Variables

    Destroying Sessions and Unsetting Elements

    Passing Session IDs in the Query String

    Encoding and Decoding Session Variables

    Summary

    Q&A

    Workshop

    Exercises

    Hour 21.  Working with the Server Environment

    Opening Pipes to and from Processes with popen() and proc_open()

    Running Commands with exec()

    Running External Commands with system() or the Backtick Operator

    Plugging Security Holes with escapeshellcmd()

    Running External Applications with passthru()

    Calling an External CGI Script with the virtual() Function

    Summary

    Q&A

    Workshop

    Exercises

    Hour 22.  XML

    What Is XML?

    XML Parser Functions

    An Introduction to the DOM XML Functions

    XSL: A Brief Discussion

    Introducing SimpleXML

    Summary

    Q&A

    Workshop

    Exercises

   Part IV:  Extending PHP

    Hour 23.  PEAR: Reusable Components to Extend the Power of PHP

    What Is PEAR?

    Some PEAR Packages in Action

    PEAR and Your Own Code

    Summary

    Q&A

    Workshop

    Exercises

    Hour 24.  Toward a Framework for Larger Projects

    Principles and Problems

    The Controller Object

    The RequestHelper and DataStore Classes

    The CommandFactory Class

    The Command Class

    The Dispatcher Class

    Working with the Framework

    Where Now, and Was It Worth It?

    Summary

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Q&A

    Workshop

    Exercises

   Glossary

   Index

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Copyright
Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any means,
electronic, mechanical, photocopying, recording, or otherwise, without written permission from the publisher. No patent
liability is assumed with respect to the use of the information contained herein. Although every precaution has been
taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2003109402

Printed in the United States of America

First Printing: December 2003

06 05 04 03 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an "as is" basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information contained in this
book or from the use of the programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales.
For more information, please contact:

     U.S. Corporate and Government Sales
   1-800-382-3419
   corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

     International Sales
   +1-317-581-3793
   international@pearsontechgroup.com

Acquisitions Editor

Shelley Johnston

Development Editor

Scott D. Meyers

Managing Editor

Charlotte Clapp

Project Editor

George Nedeff

Production Editor

Megan Wade

Indexer

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Indexer

Heather McNeill

Proofreader

Juli Cook

Technical Editors

Steph Fox Brian France Sara Goteman Chris Newman

Team Coordinator

Vanessa Evans

Designer

Gary Adair

Page Layout

Stacey Richwine-DeRome

Dedication
For my father. Who would have approved.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

About the Author
Matt Zandstra is a writer and consultant specializing in server programming. With his business partner, Max
Guglielmino, he runs Corrosive (http://www.corrosive.co.uk), a technical agency that plans, designs, and builds
Internet applications. Matt is interested in all aspects of object-oriented programming and is currently exploring
enterprise design patterns for PHP 5. When he is not reading, writing, or thinking about coding in PHP and Java, Matt
shoots alien invaders in the park with his four-year-old daughter Holly. He lives by the sea in Brighton, Great Britain,
with his partner Louise McDougall and their children Holly and Jake.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Acknowledgments
As always, my greatest thanks go to Louise for knowing when to make me stop working. Our daughter Holly was born
during the writing of the first edition of this book, and our son Jake was born this time round. The three of you make up
my world.

Thanks to all at Sams who worked so hard to knock my code, prose, and time management into shape. Particular
thanks to Shelley Johnston, George Nedeff, and Steph Fox. Thanks and apologies must also go to Megan Wade, who
imposed order and coherence upon my writing. It could not have been fun.

Writing often takes me away from other duties. I am fortunate in having such supportive friends and colleagues at
Corrosive. Max Guglielmino and Tolan Blundell weathered my prolonged absence from the front line and filled the
breach magnificently.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion and want to
know what we're doing right, what we could do better, what areas you'd like to see us publish in, and any other words
of wisdom you're willing to pass our way.

You can email or write me directly to let me know what you did or didn't like about this book—as well as what we can
do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due to the high
volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or fax number. I
will carefully review your comments and share them with the author and editors who worked on the book.

Email: webdev@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Introduction
This is a book about PHP, arguably the most popular Web scripting language in the world. It is also a book about
programming. In the space available, it is neither possible to create a complete guide to programming in PHP nor to
cover every function and technique PHP offers. Nevertheless, whether you are an experienced programmer considering
a move to PHP or a newcomer to scripting, the steps in this book should provide enough information to get your
journey off to a good start.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Who Should Read This Book?
This book will take you from the first principles through to a good working knowledge of the PHP programming
language. No prior experience of programming is assumed, although if you have worked with a language such as C or
Perl in the past, you will find the going much easier.

PHP is a Web programming language. To get the most from this book, you should have some understanding of the
World Wide Web and of HTML in particular. If you are just starting out, you will still be able to use this book, although
you should consider acquiring an HTML tutorial. If you are comfortable creating basic documents and can build a basic
HTML table, you will be fine.

PHP is designed to integrate well with databases. Some of the examples in this book are written to work with SQL
databases. We include a short introduction to SQL, but if you intend to use PHP to work with databases, you might want
to spend some time reading up on the subject. Numerous introductory SQL tutorials are available online. If you intend
to work with a database other than MySQL, many of the examples in this book will be relatively easy to reproduce with
the equivalent PHP functions designed to query your database.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

How This Book Is Organized
This book is divided into four parts:

Part I, "Getting Started," is an introduction to PHP.

Part II, "The Language," covers the basic features of the language. Pay particular attention to this section if you
are new to programming.

Part III, "Working with PHP," covers PHP in more detail, looking at the functions and techniques you will need to
become a proficient PHP programmer.

Part IV, "Extending PHP," examines library code, both code that you can create yourself and PEAR, a repository
of library code you can include in your own projects.

Part I contains Hours 1–3 and handles the information you will need to get your first script up and running:

Hour 1, "PHP: From Home Page to Web Enterprise," describes the history and capabilities of PHP and looks at
some of the compelling reasons for deciding to learn this scripting language.

Hour 2, "Installing PHP," explains how to install PHP on a Unix system and discusses some of the configuration
options you might want to choose when compiling PHP. In this hour, we also examine ways of configuring PHP
after it is installed.

Hour 3, "A First Script," covers the different ways in which you can embed a PHP script in a document and
create a script that writes text to the user's browser.

Part II comprises Hours 4–9. In this part, you will learn the basic components of the PHP language:

Hour 4, "The Building Blocks," covers the basics of PHP. You will learn about variables, data types, operators,
and expressions.

Hour 5, "Going with the Flow," covers the syntax for controlling program flow in your scripts. In addition to if
and switch constructs, you will learn about loops using for and while statements.

Hour 6, "Functions," explores the use of functions to organize your code.

Hour 7, "Arrays," discusses the array data type that can be used to hold list information. We will also look at
some of the functions PHP provides to manipulate arrays.

Hour 8, "Working with Strings," covers the functions you can use to manipulate strings.

Hour 9, "Objects," introduces PHP's support for classes and objects. Throughout the course of the hour, we will
develop a working example.

Part III consists of Hours 10–22. In this part, you will come to grips with the features and techniques of the language:

Hour 10, "Working with Forms," introduces the dimension of user input through the mechanism of the HTML
form. You will learn how to gather data submitted via a form.

Hour 11, "Working with Files," shows you how to work with files and directories on the local machine.

Hour 12, "Working with the DBA Functions," demonstrates PHP's support for DBM-style database systems,
versions of which are available on most systems.

Hour 13, "Database Integration—SQL," provides a brief introduction to SQL syntax and introduces functions and
classes for working with the MySQL database, the SQLite library, and the PEAR::DB package.

Hour 14, "Beyond the Box," covers some of the details of HTTP requests and looks at PHP network functions.

Hour 15, "Images On-the-Fly," explores PHP's image functions. With these, you can create PNG files
dynamically.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


dynamically.

Hour 16, "Working with Dates and Times," covers the functions and techniques you can use for date arithmetic.
We create a calendar example.

Hour 17, "Advanced Objects," examines PHP's new extended support for objects and object-oriented
techniques.

Hour 18, "Working with Regular Expressions," introduces regular expression functions. You can use these to find
and replace complex patterns in strings.

Hour 19, "Saving State with Cookies and Query Strings," shows you some techniques for passing information
across scripts and requests.

Hour 20, "Saving State with Session Functions," extends the techniques explored in Hour 19, using PHP's built-
in session functions.

Hour 21, "Working with the Server Environment," shows you how to call external programs from your scripts
and incorporate their output into your own.

Hour 22, "XML," looks at PHP's support for the Extensible Markup Language (XML). We examine the XML Parser
functions as well as more advanced topics such as DOM and XSLT.

Part IV consists of Hours 23 and Hours 24. In these, we move beyond the core language to examine the ways in which
libraries can be used to extend PHP's functionality:

Hour 23, "PEAR: Reusable Components to Extend the Power of PHP," introduces the PHP Extension and
Application Repository. You learn how to install packages and work with some examples.

Hour 24, "Towards a Framework for Larger Projects," builds up a code library of your own. We explore some
techniques that might be used in deploying a Front Controller enterprise pattern. This example utilizes some of
PHP's most advanced object-oriented features.

Finally, we include a glossary that defines some of the more technical terms you might encounter as you work through
the book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part I: Getting Started
 HOUR 1 PHP: From Home Page to Web Enterprise

 HOUR 2 Installing PHP

 HOUR 3 A First Script

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 1. PHP: From Home Page to Web Enterprise
What You'll Learn In This Hour:

What PHP is

About PHP's history

What improvements can be found in PHP 5

Some options that add features to your PHP binary

Some reasons you should choose to work with PHP

Welcome to PHP! Throughout this book you will look at almost every element of the PHP language. But first, you will
explore PHP as a product—its history, features, and future.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is PHP?
PHP is a language that has outgrown its name. It was originally conceived as a set of macros to help coders maintain
personal home pages, and its name grew from its purpose. Since then, PHP's capabilities have been extended, taking it
beyond a set of utilities to a full-featured programming language, capable of managing huge database-driven online
environments.

As PHP's capabilities have grown, so too has its popularity. According to NetCraft (http://www.netcraft.com), PHP was
running on more than 1 million hosts in November 1999. As of September 2001, that figure had already risen to over 6
million hosts, and by October 2003 PHP was reportedly installed on almost 14 million hosts. According to
SecuritySpace.com, PHP is the most popular Apache module available, beating mod_ssl, Perl, and FrontPage.

PHP is officially known as PHP: Hypertext Preprocessor. It is a server-side scripting language often written in an HTML
context. Unlike an ordinary HTML page, a PHP script is not sent directly to a client by the server; instead, it is parsed by
the PHP engine. HTML elements in the script are left alone, but PHP code is interpreted and executed. PHP code in a
script can query databases, create images, read and write files, talk to remote servers—the possibilities are endless.
The output from PHP code is combined with the HTML in the script and the result sent to the user.

PHP is also installed as a command-line application, making it an excellent tool for scripting on a server. Many system
administrators now use PHP for the sort of automation that has been traditionally handled by Perl or shell scripting.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Need Does PHP Fulfill?
There have been scripting solutions for as long as there has been a World Wide Web. As the need to create sites with
dynamic content has grown in recent years, so has the pressure to create robust environments quickly and efficiently.
Although C can be a great solution for creating fast server tools, it is also hard to work with and can easily produce
security holes if not carefully deployed. Perl, a language originally developed for text processing naturally met the
demand for dynamic Web environments. Much easier to deploy safely than C, its slower performance has always been
more than balanced by the comparatively fast development cycle it offers. Even more useful has been the increasing
availability of a large number of stable code libraries for Perl.

So where does PHP fit in? PHP was written especially for the Web. Many of the issues and problems faced by Web
programmers are addressed within the language itself. Whereas a Perl programmer must use an external library or
write code to acquire data submitted by the user of a Web page, PHP makes this data automatically available. Whereas
a Perl programmer must install modules to enable her to write database-driven environments, PHP bundles a powerful
SQL database library and provides built-in support for a whole range of third-party databases. In short, because PHP
has been created for Web programmers, it has a set of functions for almost any typical problem you might encounter,
from managing user sessions to handling XML documents.

So, do we have to pay for this ease of use with even slower performance? Not at all. PHP is designed to run as a
module with many server applications, which means that there are none of the start-up overheads associated with CGI
scripts. The fact that many typical tasks are handled by PHP means that developers are freed from reliance on utility
libraries that can slow things down.

It is not the case that PHP does not provide libraries, though. Perl has the Comprehensive Perl Archive Network (CPAN),
and PHP has the PHP Extension and Application Repository (PEAR)—its own repository of powerful packages that extend
PHP's power.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What's New in PHP 5
PHP 5 introduces numerous new features that will make the programmer's life more interesting. Let's take a quick look
at some of them. If they don't make sense to you now, don't worry, we cover all these features in detail in this book:

PHP has new integrated for support for XML. The various functions and classes provided to handle XML in
different ways all now use the same underlying library (libxml2). This should make XML features more stable
and interoperable.

The SQLite SQL library is now bundled with PHP, together with all the functions you need to work with it.

PHP now supports private and protected methods and properties in classes.

PHP supports class constants.

Objects passed to functions and methods are now passed by reference. That is, a reference to an object is
passed around your script rather than copies of objects. This significantly reduces the likelihood of bugs in
object-oriented code.

PHP supports static methods and properties, making more advanced object-oriented designs possible.

Methods can now be declared to require particular object types.

The comparison operator (===) now checks that two references point to the same object. Previously, it was
hard to test objects in this way.

PHP now supports abstract classes and interfaces.

Many of these improvements are due to some fundamental changes under the hood.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The Zend Engine
When PHP 3 was written, an entirely new parser was created from the ground up. The introduction of PHP 4
represented a similar revolution in the code base. Zend is a scripting engine that sits below the PHP-specific modules. It
was optimized to ensure massively improved performance and extensibility.

PHP 5 brings new fundamental improvements with the introduction of the Zend Engine 2. We have already touched on
the great change ushered in by ZE2. The engine provides significantly enhanced support for object-oriented
programming. For the first time, objects and object-oriented design lie at the heart of PHP, making it an even more
suitable platform for large enterprise applications.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Why Choose PHP?
There are some compelling reasons to work with PHP. For many projects, you will find that the production process is
significantly faster than you might expect if you are used to working with other scripting languages. At Corrosive we
work with both PHP and Java. We choose PHP when we want to see results quickly without sacrificing stability. As an
open-source product, PHP is well supported by a talented production team and a committed user community.
Furthermore, PHP can be run on all the major operating systems and with most servers.

Speed of Development

Because PHP allows you to separate HTML code from scripted elements, you will notice a significant decrease in
development time on many projects. In many instances, you will be able to separate the coding stage of a project from
the design and build stages. Not only can this make life easier for you as a programmer, but it also can remove
obstacles that stand in the way of effective and flexible design.

PHP Is Open Source

To many people, open source simply means free, which is, of course, a benefit in itself.

Well-maintained open-source projects offer users additional benefits, though. You benefit from an accessible and
committed community that offers a wealth of experience in the subject. Chances are that any problem you encounter in
your coding can be answered swiftly and easily with a little research. If that fails, a question sent to a mailing list can
yield an intelligent, authoritative response.

You also can be sure that bugs will be addressed as they are found, and that new features will be made available as the
need is defined. You will not have to wait for the next commercial release before taking advantage of improvements.

There is no vested interest in a particular server product or operating system. You are free to make choices that suit
your needs or those of your clients, secure that your code will run whatever you decide.

Performance

Because of the powerful Zend engine, PHP shows solid performance compared with other server scripting languages,
such as ASP, Perl, and Java Servlets, in benchmark tests. To further improve performance, you can acquire a caching
tool (Zend Accelerator) from http://www.zend.com/; it stores compiled code in memory, eliminating the overhead of
parsing and interpreting source files for every request.

Portability

PHP is designed to run on many operating systems and to cooperate with many servers and databases. You can build
for a Unix environment and shift your work to NT without a problem. You can test a project with Personal Web Server
and install it on a Unix system running on PHP as an Apache module.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What's New in This Edition
Since the first edition of this book, PHP has consolidated its position as one of the best options for Web development.
PHP, in common with any popular open-source project, is a fast-moving target. In this edition we have extensively
checked and updated the examples and tutorials. Where new features have appeared, we have extended our coverage.
We have significantly revised our coverage of objects, XML, and SQL to take account of changes in PHP 5.

In addition to reviewing and extending existing material, we have added coverage for PEAR, an entirely new chapter on
advanced objects, and a set of libraries for managing larger projects.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, we introduced PHP. You learned the history of PHP from a simple set of macros to the powerful scripting
environment it has become. You found out about PHP and the Zend scripting engine, and how they incorporate new
features and more efficiency. Finally, you discovered some of the features that make PHP a compelling choice as a Web
programming language.

I hope that you've been convinced by this chapter that PHP is the language for you. In the next hour, we dive straight
in and install the PHP engine.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Is PHP an easy language to learn?

A1: In short, yes. You really can learn the basics of PHP in 24 hours. PHP provides an enormous wealth of
functions that allow you to do things for which you would have to write custom code in other languages.

Understanding the syntax and structures of a programming language is only the beginning of the journey.
You will only really learn by building your own projects and by making mistakes. You should see this book
as a starting point.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: True or false: PHP was originally developed for use in the banking industry.

2: How much does PHP cost?

3: What is the name of the scripting engine that powers PHP?

4: Name a new feature introduced with PHP 5.

Answers

A1: False. PHP was originally developed for Web publishing.

A2: PHP costs nothing at all.

A3: Sitting below PHP is a scripting engine called the Zend Engine 2.

A4: PHP 5 introduces (among other things) SQLite support, improved XML support, and a significantly
improved object model.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
1. Jot down the reasons you have for deciding to learn PHP. How will the features covered in this chapter help you

with your projects? Define two or three projects that you would like to be able to complete after you have
finished this book. As you read the book, keep a note of language features and techniques that will help you in
the development of these projects.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 2. Installing PHP
What You'll Learn in This Hour:

Which platforms, servers, and databases are supported by PHP

Where to find PHP and other useful open-source software

One way of installing PHP on Linux

Some options that add features to your PHP binary

Some configuration directives

How to find help when things go wrong

Before getting started with the PHP language, you must first acquire, install, and configure the PHP engine. PHP is
available for a wide range of platforms and works in conjunction with many servers.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Platforms, Servers, Databases, and PHP
PHP is truly cross-platform. It runs on the Windows operating system; most versions of Unix, including Linux; and
Macintosh OS X. Support is provided for a range of Web servers including Apache (itself open-source and cross-
platform), Microsoft Internet Information Server, WebSite Pro, the iPlanet Web Server, and Microsoft's Personal Web
Server. The latter is useful if you want to test your scripts offline on a Windows machine, although Apache can also be
run on Windows.

On most servers PHP can be installed as a server module. In other words, it runs as part of the server process rather
than as a separate application. PHP is also installed as a standalone command-line application.

In this book, we will concentrate on building Web applications, but do not underestimate the power of PHP as a general
scripting tool comparable to Perl. The fact that PHP runs as a command-line application means that any server that
supports CGI scripts should be able to work with it. Configuration, though, will vary from server to server.

PHP is designed to integrate easily with databases. This feature is one of the factors that makes the language such a
good choice for building sophisticated Web applications. PHP supports almost every database currently available, either
directly or via Open Database Connectivity (ODBC).

Throughout this book, we will use a combination of Linux, Apache, and MySQL. We will also introduce SQLite, a
lightweight but powerful SQL library that is newly bundled with PHP 5. All these are free to download and use and can
be installed relatively easily on a PC.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Where to Find PHP and More
You can find PHP at http://www.php.net/. PHP is open-source software, which means you won't need your credit card
when you download it.

The PHP Web site is an excellent resource for PHP coders. The entire manual can be read online at
http://www.php.net/manual/, complete with helpful annotations from other PHP coders. You can also download the
manual in several formats.

You can find out more about getting Linux for your computer at http://www.linux.org/help/beginner/distributions.html.
If you want to run Linux on a Power PC, you can find information about Yellow Dog Linux at
http://www.yellowdoglinux.com/. Mac OS X, Apple's latest operating system, is based on Unix BSD and can run PHP
with no problems. If you are running OS X, you can find installation information at
http://www.php.net/manual/en/install.macosx.php.

If you want to run PHP with Windows, you can find complete installation instructions at
http://www.php.net/manual/en/install.windows.php.

MySQL, one of the two databases we will use in this book, can be downloaded from http://www.mysql.com. Versions
are available for many operating systems, including Unix, Windows, and OS/2.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Installing PHP for Linux and Apache
In this section, we will look at one way of installing PHP with Apache on Linux. The process is more or less the same for
any Unix operating system. You might be able to find prebuilt versions of PHP for your system, which are simple to
install.

Compiling PHP, though, gives you greater control over the features built in to your binary.

Before you install, you should ensure that you are logged in to your system as the root user. If you are not allowed
access to your system's root account, you might need to ask your system administrator to install PHP for you.

There are two ways of compiling an Apache PHP module. You can either recompile Apache, statically linking PHP into it,
or you can compile PHP as a dynamic shared object (DSO). If your version of Apache was compiled with DSO support, it
is capable of supporting new modules without the need for recompiling the server. This method is the easiest way to
get PHP up and running, and it is the one we cover in this section.

To test that Apache supports DSOs, you should launch the Apache binary (httpd) with the -1 argument, like so:

/usr/local/apache/bin/httpd -1

Where Is Apache?

httpd, the Apache application, can be installed in different places on a
system. One standard location is /usr/local/apache/bin/httpd, but you may
find that it is somewhere else on your server. If it has been placed in your
path, you may not even have to use the full path in order to invoke the
application. You would then be able call apache like this:

httpd -1

You should see a list of modules. If you see

mod_so.c

among them, you should be able to proceed; otherwise, you might need to recompile Apache. The Apache distribution
contains full instructions for this.

Compile Apache with DSO Support

If you do install Apache, remember to ensure that you compile DSO
support in. You can do this by passing --enable-module=so to the configure
script, like this:

./configure --enable-module=so

If you have not already done so, you need to download the latest distribution of PHP (PHP 5.0.0b1 at the time of
writing). Your distribution will be archived as a tar file and compressed with gzip, so you will need to unpack it:

tar -xvzf php-5.0.0b1.tar.gz

After your distribution is unpacked, you should move to the PHP distribution directory:

cd php-5.0.0b1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Within your distribution directory you will find a script called configure. This accepts additional information that should be
provided when the configure script is run from the command line. These command-line arguments control the features
that PHP supports. For this example, we will include some useful command-line arguments, although you might want to
specify arguments of your own. We will discuss some of the configure options available to you later in the hour:

./configure \
  --prefix=/home/usr/local/php5/ \
  --with-mysql \
  --with-apxs=/usr/local/apache/bin/apxs \
  --with-xsl \
  --with-gdbm \
  --with-gd \
  --with-freetype=/usr/include/freetype/ \
  --with-zlib-dir=/usr/include \
  --with-ttf \
  --with-jpeg-dir=/usr/lib

Installing PHP with Apache 2

It is currently recommended that you run PHP with Apache 1.3 rather than
Apache 2. However, you can find full instructions for installing PHP with
Apache 2 at http://www.php.net/manual/en/install.apache2.php. The main
installation difference lies in a flag to the configure script. You should use -
-with-apxs2 rather than --with-apxs.

The directives chosen in this example are designed to support the features discussed in this book. Most of them require
that your system has certain libraries installed before you can compile PHP. The configure script will complain if the
relevant libraries cannot be located.

Of these configure options, the one that is absolutely essential is --with-apxs because it associates PHP with your server.
The argument you use depends on the location of Apache on your server. If you are running Linux and are not sure
where to find Apache, try running the locate command at the command line, like so:

locate apxs

It lists all the paths on your system that contain the string apxs.

After the configure script has run, you can run the make program. You need a C compiler on your system to run this
command successfully:

make
make install

These commands should end the process of PHP compilation and installation. You should now be able to configure and
run Apache.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Some configure Options
When we ran the configure script, we included some command-line arguments that determined the features the PHP
engine will include. The configure script itself gives you a list of available options. From the PHP distribution directory,
type the following:

./configure --help

The list produced is long, so you might want to add it to a file for reading at leisure:

./configure --help > configoptions.txt

Although the output from this command is very descriptive, we will look at a few useful options—especially those that
might be needed to follow this book.

--with-gdbm

The --with-gdbm option includes support for the Gnu Database Manager. This or another DBM-type library needs to be
supported for you to work with the DBA functions discussed in Hour 11, "Working with Files." If you are running Linux,
this library is probably present, but see Hour 12, "Working with the DBA Functions," for alternatives. If your DBM library
is in a nonstandard location, you might need to specify a path, as shown here:

--with-gdbm=/path/to/dir

--with-gd

--with-gd enables support for the GD library, which, if installed on your system, allows you to create dynamic GIF or PNG
images from your scripts. You can read more about creating dynamic images in Hour 15, "Images On-the-Fly." You can
optionally specify a path to your GD library's install directory:

--with-gd=/path/to/dir

If your compile fails, you should try explicitly setting the path when using this option.

Successful option combinations for compiling with GD support are subject to occasional change, so you should check the
manual at http://www.php.net/gd for the latest information.

At the time of writing, it is also necessary to specify a path to the zlib compression library (http://www.gzip.org/zlib/) to
install GD successfully. We specified the path for the standard location like so:

--with-zlib-dir=/usr/include

We also want to use the GD library to work with JPEG files, so we have compiled in support for this as well:

--with-jpeg-dir=/usr/lib

This path points to the standard install directory for the jpeg-6b library that can be downloaded from
ftp://ftp.uu.net/graphics/jpeg/.

--with-freetype

--with-freetype provides support for the FreeType 1 library that enables you to include fonts in any dynamic image you
create. To enable this option, you must have the FreeType 1 library installed. You can find out more about FreeType at
http://www.freetype.org. As with many other directives, if you run into problems you should try specifying a path:

--with-freetype=/path/to/dir

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


--with-mysql

--with-mysql enables support for the MySQL database:

--with-mysql=/path/to/dir

MySQL is no longer bundled with PHP 5, so you should include this option if you intend to work with MySQL. As you
know, PHP provides support for other databases. Table 2.1 lists some of them and the configure options you will need to
use them.

Table 2.1. Some Database configure Options
Database configure Option

DBA --with-dba

DBM --with-dbm

GDBM --with-gdbm

Adabas D --with-adabas

FilePro --with-filepro

msql --with-msql

informix --with-informix

iODBC --with-iodbc

OpenLink ODBC --with-openlink

Oracle --with-oracle

PostgreSQL --with-pgsql

Solid --with-solid

Sybase --with-sybase

Sybase-CT --with-sybase-ct

Velocis --with-velocis

LDAP --with-ldap

--with-xslt

This book explores a number of XML features in Hour 22, "XML." All PHP functions now use the same library—libxml2,
which is available from http://www.xmlsoft.org/. At the time of writing, of the standard sets of XML functions, only
XSLT needs to be explicitly referenced when you run the configure script. Include this option to ensure that you can run
all the examples in Hour 22.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Configuring Apache
After you have compiled PHP and Apache, you should check Apache's configuration file, httpd.conf, which you will find in
a directory called conf in the Apache install directory. Add the following lines to this file:

AddType application/x-httpd-php .php

This ensures that the PHP engine will parse files that end with the .php extension.

If you want to offer to your users PHP pages with extensions more familiar to them, you can choose any extension you
want. You can even ensure that files with the .html extension are treated as PHP files with the following:

AddType application/x-httpd-php .html

Note that treating files with the .html extension as PHP scripts could slow down your site because every page with this
extension will be parsed by the PHP engine before it is served to the user.

If PHP has been preinstalled and you have no access to the Apache configuration files, you might be able to change the
extensions that determine which files are treated as PHP executables by including an AddType directive in a file called
.htaccess. After you have created this file, the directive affects the enclosing directory, as well as any subdirectories. This
technique works only if the AllowOverride directive for the enclosing directory is set to either FileInfo or All.

Although the filename .htaccess is the default for an access control file, it might have been changed. Check the
AccessFileName directive in httpd.conf to find out. Even if you don't have root access, you might be able to read the
Apache configuration files.

An .htaccess file can be an excellent way of customizing your server space if you do not have access to the root account.
The principal way of configuring the behavior of PHP, however, is the php.ini file.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

php.ini

After you have compiled or installed PHP, you can still change its behavior with a file called php.ini. On Unix systems, the
default location for this file is /usr/local/lib; on a Windows system, the default location is the Windows directory. You
should find a sample php.ini file in your distribution directory, which contains factory settings. Factory settings are used
if no php.ini file is used. Directives in the php.ini file come in two forms: values and flags. Value directives take the form
of a directive name and a value separated by an equals sign. Possible values vary from directive to directive. Flag
directives take the form of directive name and a positive or negative term separated by an equals sign. Positive terms
can be 1, On, Yes, and True; negative terms can be 0, Off, No, and False. White space is ignored.

If PHP has been preinstalled on your system, you might want to check some of the settings in php.ini.

You can change your php.ini settings at any time; however, if you are running PHP as an Apache module, you should
restart the server for the changes to take effect.

short_open_tag

The short_open_tag directive determines whether you can begin a block of PHP code with the symbol <? and close it with
?>. If this has been disabled, you will see one of the following:

short_open_tag = Off
short_open_tag = False
short_open_tag = No

To enable the directive, you can use one of the following:

short_open_tag = On
short_open_tag = True
short_open_tag = Yes

You can read more about PHP open and close tags in Hour 3, "A First Script."

Error Reporting Directives

To diagnose bugs in your code, you should enable the directive that allows error messages to be written to the browser.
This is on by default:

display_errors = On

You should turn this off for production code—that is, code that is displayed to the general public. The reason for this is
that error messages displayed on the browser can give away weaknesses in your code to potential attackers. For
production code, you should log errors instead, like so:

log_errors = On

You can also set the level of error reporting. For the examples you'll be working through in this book, you should set
this to the following:

error_reporting = E_ALL & ~E_NOTICE

This will report all errors, apart from notices. This setting is the default and gives you a good sense of what is
happening in your scripts.

Variable Directives

PHP makes certain variables available to you as a result of a GET request, POST request, or cookie. You can influence
this in the php.ini file.

The register_globals directive determines whether values resulting from an HTTP request should be made available as
global variables. This is now officially deprecated, and register_globals is set to off by default:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


register_globals = Off

None of the scripts in this edition of Sams Teach Yourself PHP in 24 Hours rely on this directive, and you should keep it
disabled.

Changing php.ini Directives Locally

If you are running Apache with the module version of PHP and your configuration allows the use of the .htaccess file, you
can enable and disable php.ini directives on a per-directory basis.

Within the .htaccess file you can use the php_flag directive to set a php.ini flag (a directive that requires 'On' or 'Off') and
the php_value directive to set a php.ini value (a directive that requires a string or number):

php_flag  short_open_tag  On
php_value include_path ".:/home/corrdev"

If you are not running Apache, all is not lost. As of PHP 4.0.5, the function ini_set() was introduced. It enables you to set
some php.ini directives from within your code. ini_set() requires two strings—the directive name, and the value to set:

ini_set( "include_path", ".:/home/corrdev" );

You can read more about functions in Hour 6, "Functions."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Help!
Help is always at hand on the Internet, particularly for problems concerning open-source software. Wait a moment
before you hit the Send button, however. No matter how intractable your installation, configuration, or programming
problem might seem, chances are you are not alone. Someone will have already answered your question.

When you hit a brick wall, your first recourse should be to the official PHP site at http://www.php.net/, particularly the
annotated manual at http://www.php.net/manual.

If you still can't find your answer, don't forget that the PHP site is searchable. The advice you are seeking might be
lurking in a press release or a frequently asked questions file. Another excellent and searchable resource is the PHP
Builder site at http://www.phpbuilder.com.

Still no luck? You can search the mailing list archives at http://www.php.net/search.php. These archives represent a
huge information resource with contributions from many of the great and the good in the PHP community. Spend some
time trying out a few keyword combinations.

If you are still convinced that your problem has not been addressed, you may well be doing the PHP community a
service by exposing it.

You can join the PHP mailing lists at http://www.php.net/mailing-lists.php. Although these lists are often high volume,
you can learn a lot from them. If you are serious about PHP scripting, you should certainly subscribe at least to a digest
list. Once subscribed to the list that matches your concerns, you might consider posting your problem.

When you post a question, you should include as much information as possible (without writing a novel). The following
items often are pertinent:

Your operating system

The version of PHP you are running or installing

The configure options you chose

Any output from the configure or make commands that preceded an installation failure

A reasonably complete example of the code that is causing problems

Why all these cautions about posting a question to a mailing list? First, developing research skills will stand you in good
stead. A good researcher can generally solve a problem quickly and efficiently. Asking a naive question on a technical
list often involves a wait rewarded only by a message or two referring you to the archives where you should have
begun your search for answers.

Second, remember that a mailing list does not offer technical support as a right. No one is paid to answer your
questions. Despite this, you have access to an impressive resource of talent and knowledge, including that of some of
the creators of PHP itself. A good question and its answer will be archived to help other coders. Asking a question that
has been answered several times just adds more noise.

Having said this, don't be afraid to post a problem to the list. PHP developers are a civilized and helpful breed, and by
bringing a problem to the attention of the community, you might be helping others solve the same problem.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
PHP is open-source software. It is also open in the sense that it does not demand that you use a particular server,
operating system, or database.

In this hour, you learned where to locate PHP and other open-source software that can help you host and serve Web
sites. You learned how to compile PHP as an Apache module on Linux. If you download a PHP binary for another
platform, your distribution contains step-by-step instructions. You learned some of the configure options that can change
the features your binary supports. You also learned about php.ini and some of the directive it contains. Finally, you
learned about sources of support. You should now be ready to come to grips with the language itself.

In the next hour, we will write and run our first script. You will encounter some of the special syntax you will need to
use to distinguish HTML from PHP code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: You have covered an installation for Linux and Apache. Does that mean that this book will not
apply to my server and operating system?

A1: No; one of PHP's great strengths is that it runs on multiple platforms. If you are having trouble installing
PHP to work on your operating system or with your server, don't forget to read the files that came with
your PHP distribution. You should find comprehensive, step-by-step instructions for installation. If you are
still having problems, review the "Help!" section earlier in this hour. The online resources mentioned there
will almost certainly contain the answers you need.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Where can you find the PHP online manual?

2: From a Unix operating system, how would you get help on configuration options (the options you pass to
the configure script in your PHP distribution)?

3: What is Apache's configuration file typically called?

4: Which line should you add to the Apache configuration file to ensure that the .php extension is recognized?

5: What is PHP's configuration file called?

Answers

A1: The manual for PHP is available at http://www.php.net/manual/.

A2: You can get help on configuration options by calling the configure script in the PHP distribution folder and
passing it the --help argument:

./configure -help

A3: The Apache configuration file is called httpd.conf.

A4: The line is

AddType application/x-httpd-php .php

It ensures that Apache treats files ending with the .php extension as PHP scripts.

A5: PHP's configuration file is called php.ini.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
1. Install PHP on your system. If it is already in place, review your php.ini file and check your configuration.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 3. A First Script
What You'll Learn in This Hour:

How to create, upload, and run a PHP script

How to incorporate HTML and PHP in the same document

How to make your code clearer with comments

You installed and configured PHP in the last hour. It is now time to put it to the test. In this hour, you will create your
first script and spend a little time analyzing its syntax. By the end of the hour, you should be ready to create documents
that include both HTML and PHP.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Our First Script
Let's jump right in with a PHP script. To begin, open your favorite text editor. Like HTML documents, PHP files are made
up of plain text, so you can create them with any text editor, such as Notepad and HomeSite on Windows, Simple Text
and BBEdit on Mac OS, or VI and Emacs on Unix operating systems. Most popular HTML editors provide at least some
support for PHP.

Keith Edmunds maintains a handy list of PHP-friendly editors at
http://phpeditors.linuxbackup.co.uk.

Type in the example in Listing 3.1 and save the file. We'll name our file listing3.1.php.

Listing 3.1 A First PHP Script

1: <?php
2: phpinfo();
3: ?>

The code in Listing 3.1 causes information about our PHP installation to be output to the browser. The phpinfo() function
is very useful for debugging scripts because of the contextual information it provides.

The extension to the PHP document is important because it tells the server to treat the file as PHP code and invoke the
PHP engine. The default PHP extension for a PHP document is .php. This can be changed, however, by altering the
server's configuration. You saw how to do this in Hour 2, "Installing PHP." System administrators occasionally configure
servers to work with non-default extensions, so some server setups might expect extensions such as .phtml or .php5. As
you saw in the last hour, for example, Apache uses the AddType directive to determine how a file should be treated.
AddType is usually found in Apache's configuration file, http.conf:

AddType application/x-httpd-php .php

If you are not working directly on the machine that will be serving your PHP script, you will probably need to use an FTP
client, such as WS_FTP for Windows or RBrowser Lite for MacOS, to upload your saved document to the server.

For historical reasons, different operating systems use different character
combinations to denote the end of a line of text. You should save your PHP
documents with the correct line breaks for the operating system that runs
your server. A document with the wrong line breaks for the operating
system might be read as a single very long line of text by the PHP engine.
This usually causes no problems, but the occasional bug can result. Most
good text editors allow you to nominate your target operating system.

After the document is in place, you should be able to access it via your browser. If all has gone well, you should see the
script's output. Figure 3.1 shows the output from the listing3.1.php script.

Figure 3.1. Success: The output from Listing 3.1.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If PHP is not installed on your server or your file's extension is not recognized, you might not see the output shown in
Figure 3.1. In these cases, you might see the source code created in Listing 3.1, or you might be prompted to download
the file! The effect of a misconfiguration depends your platform, server and browser. Figure 3.2 shows what happens to
Internet Explorer when an unknown extension is encountered by Apache running PHP as a module on Linux.

Figure 3.2. Failure: The extension is not recognized.

If this happens, or you see the script's source code in the browser window, first check the extension with which you
saved your PHP script. If you are used to working with HTML files, for example, check that you have not saved your
script with a .html extension. If the file extension is as it should be, you might need to check that PHP has been installed
properly and that your server is configured to work with the extension you have used for your script. You can read
more about installing and configuring PHP in Hour 2. To produce the output shown in Figure 3.2, we removed the
AddType directive from Apache's configuration file.

Configuration problems vary between servers and platforms. Omitting the
Action directive from Apache's httpd.conf file when running PHP as a CGI
results in errors, for example.

If you encounter unexpected behavior, you should refer to the installation
instructions for your server. You can find complete instructions for setting
up PHP with most servers at http://www.php.net/installation.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Now that you have uploaded and tested your script, you can take a look at the code in a little more detail.

Beginning and Ending a Block of PHP Statements

When writing PHP, you need to inform the PHP engine that you want it to execute your commands. If you don't do this,
the code you write will be mistaken for HTML and will be output to the browser. You can do this with special tags that
mark the beginning and end of PHP code blocks. Table 3.1 lists four such PHP delimiter tags.

Table 3.1. PHP Start and End Tags
Tag Style Start Tag End Tag

Standard tags <?php ?>

Short tags <? ?>

ASP tags <% %>

Script tags <script language="php"> </script>

Of the tags in Table 3.1, only the standard and the script tags can be guaranteed to work on any configuration. The
short and ASP style tags must be explicitly enabled in your php.ini, which you examined in Hour 2.

To activate recognition for short tags, you must make sure that the short_open_tag switch is set to "On" in php.ini, like
so:

short_open_tag = On;

Short tags are enabled by default, so you need to edit php.ini only if you want to disable these.

To activate recognition for the ASP tags, you must enable the asp_tags setting, like so:

asp_tags = On;

After you have edited php.ini, you should be able to choose from any of the four styles for use in your scripts. Having
said this, it is not advisable to use anything but the standard <?php ?> tags. It is the officially supported syntax, it works
well with XML, and it works in any PHP context. Furthermore, there is no guarantee that short tags will be supported
forever.

The character sequence <? tells an XML parser to expect a processing
instruction:

version"1.0" encoding="UTF-8"?>

This syntax clashes with the PHP short tag. Used as part of an XML or
XHTML document, PHP short tags could confuse an XML validator, the PHP
engine, or both. Disable short tags if you intend to use PHP in an XML
context.

You should also avoid short or ASP tags if you want your script to be portable. Third-party servers might not be
configured to support these tags.

Let's run through some of the ways in which you can legally write the code in Listing 3.1. You could use any of the four
PHP start and end tags that you have seen:

<?
phpinfo ();
?>

<?php
phpinfo ();
?>

<%
phpinfo ();
%>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


%>

<script language="php">
phpinfo ();
</script>

Single lines of code in PHP also can be presented on the same line as the PHP start and end tags, like so:

<?php phpinfo(); ?>

Now that we have proved to ourselves that PHP is working, let's move on and write some more code.

The print () Function

In Listing 3.1 we used the phpinfo() function. In Listing 3.2 we change our script so that we print something to the
browser for ourselves.

Listing 3.2 Printing a Message

1: <?php
2: print "hello world";
3: ?>

print() is a language construct that outputs data. Although it is not a function, it behaves like one: It accepts a collection
of characters, known as a string. Strings must be enclosed by quotation marks, either single or double. The string
passed to print() is then output, usually to the browser or command line.

Similar to the print() statement is echo(), which behaves in the same way
(except that it does not return a value). For most examples in this book,
you could replace all uses of print() with echo() without any noticeable
effect.

Function calls generally require parentheses after their names, regardless
of whether they demand arguments. print() is, strictly speaking, a language
construct rather than a function and does not demand the use of
parentheses. As parentheses are omitted by convention, we will usually
omit them in our examples.

We ended our only line of code in Listing 3.2 with a semicolon. The semicolon informs the PHP engine that we have
completed a statement.

A statement represents an instruction to the PHP engine. Broadly, it is to PHP what a sentence is to written or spoken
English. A sentence should end with a period; a statement should usually end with a semicolon. Exceptions to this
include statements that enclose other statements and statements that end a block of code. In most cases, however,
failure to end a statement with a semicolon confuses the PHP engine and results in an error being reported at the
following line in the script.

Because the statement in Listing 3.3 is the final one in that block of code, the semicolon is optional.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Combining HTML and PHP
The code in Listing 3.1 and Listing 3.2 is pure PHP. You can incorporate this into an HTML document simply by adding
HTML outside the PHP start and end tags, as shown in Listing 3.3.

Listing 3.3 A PHP Script Including HTML

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3: "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 3.2 A PHP Script Including HTML</title>
 7: </head>
 8: <body>
 9: <div><b>
10: <?php
11: print "hello world";
12: ?>
13: </b></div>
14: </body>
15: </html>

As new devices access the Web running new browsers on ever more
platforms, standards are becoming increasingly important. Where possible,
the output from code examples in this book now conform to Extensible
Hypertext Markup Language (XHTML) standards. XHTML is an XML-based
version of HTML that can be parsed and validated. Because of this, it is
more accessible to lightweight browsers running on small memory devices.
XHTML also helps to promote genuinely cross-browser mark-up. You can
read more about XHTML at http://www.w3.org/TR/xhtml1/.

Notice that Listing 3.3 starts with a complex-looking element. This is
known as the DOCTYPE declaration, and it declares the XHTML version to
which the document conforms.

As you can see, incorporating HTML into a PHP document is simply a matter of typing in the code. The PHP engine
ignores everything outside PHP open and close tags. If you were to view Listing 3.3 with a browser, as shown in Figure
3.3, you would see the string hello world in bold. If you were to view the document source, as shown in Figure 3.4, the
listing would look like a normal HTML document.

Figure 3.3. The output of Listing 3.2 as viewed in a browser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 3.4. The output of Listing 3.2 as HTML source code.

You can include as many blocks of PHP code as you need in a single document, interspersing them with HTML as
required. Although you can have multiple blocks of code in a single document, they combine to form a single script. Any
variables defined in the first block usually are available to subsequent blocks.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Adding Comments to PHP Code
Code that seems clear at the time of writing can resemble a hopeless tangle when you try to amend it six months later.
Adding comments to your code as you write can save you time later and help other programmers more easily work with
your code.

A comment is text in a script that is ignored by the PHP engine. Comments can be used to make code more readable
or to annotate a script.

Single-line comments begin with two forward slashes (//) or a single hash sign (#). All text from either of these marks
until either the end of the line or the PHP close tag is ignored. Here's an example:

// this is a comment
# this is another comment

Multiline comments begin with a forward slash followed by an asterisk (/*) and end with an asterisk followed by a
forward slash (*/), as in the following:

/*
this is a comment
none of this will
be parsed by the
PHP engine
*/

The PHP Extension and Application Repository (PEAR) provides a growing
collection of libraries and scripts for extending PHP's functionality. It
includes a package called phpDocumentor, which can convert your inline
comments into hyperlinked documentation. This is extremely useful for
maintaining large projects. You can read more about PHPDocumentor at
http://phpdocu.sourceforge.net. We cover PEAR and phpDocumentor in
more detail in Hour 23, "PEAR: Reusable Components to Extend the Power
of PHP."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
You should now have the tools at your disposal to run a simple PHP script on a properly configured server.

In this hour, you created your first PHP script. You also learned how to use a text editor to create and name a PHP
document. You examined four sets of tags that you can use to begin and end blocks of PHP code, and you learned how
to use print() to send data to the browser. Then you brought HTML and PHP together into the same script. Finally, you
learned about comments and how to add them to PHP documents.

In the next hour, you will use these skills to test some of the fundamental building blocks of the PHP language,
including variables, data types, and operators.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Which are the best start and end tags to use?

A1: It is largely a matter of preference. For the sake of portability, the standard tags (<?php and ?>) are
probably the safest choice. Short tags are enabled by default and have the virtue of brevity, but to
promote portability, it might be safest to avoid them.

Q2: Which editors should I avoid when creating PHP code?

A2: Do not use word processors that format text for printing (such as Word or OpenOffice). Even if you save
files created using this type of editor in plain text format, hidden characters can creep into your code.

Q3: When should I comment my code?

A3: This is a matter of preference once again. Some short scripts will be self-explanatory to you, even after a
long interval. For scripts of any length or complexity, you should comment your code. This will save you
time and frustration in the long run

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Can a user read the source code of PHP script you have successfully installed?

2: What do the standard PHP delimiter tags look like?

3: What do the ASP PHP delimiter tags look like?

4: What do the script PHP delimiter tags look like?

5: What syntax would you use to output a string to the browser?

Answers

A1: No, the user sees only the output of your script.

A2: . . . .<?php
. . . . // your code here
. . . . ?>.

A3: . . . .<%
. . . .// your code here
. . . .%>.

A4: . . . .<script language="php">
. . . .// your code here
. . . .</script>.

A5: We would usually use print() to write to the browser, although we could use echo() with the same results.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
1. Familiarize yourself with the process of creating, uploading, and running PHP scripts. In particular, create your

own "hello world" script. Add HTML code to it and additional blocks of PHP. Experiment with the various PHP
delimiter tags. Which ones are enabled in your configuration? Take a look at your php.ini file to confirm your
findings, and don't forget to add some comments to your code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part II: The Language
 HOUR 4 The Building Blocks

 HOUR 5 Going with the Flow

 HOUR 6 Functions

 HOUR 7 Arrays

 HOUR 8 Working with Strings

 HOUR 9 Objects

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 4. The Building Blocks
What You'll Learn in This Hour:

About variables—what they are, why you need to use them, and how to use them

How to define and access variables

About data types

About some of the more commonly used operators

How to use operators to create expressions

How to define and use constants

In this hour, you will get your hands dirty with some of the nuts and bolts of the language.

There's a lot of ground to cover, and if you are new to programming, you might feel bombarded with information. Don't
worry—you can always refer to this chapter later. Concentrate on understanding rather than memorizing the features
covered.

If you're already an experienced programmer, you should at least skim this hour's lesson. It covers a few PHP-specific
features.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Variables
A variable is a special container you can define to hold a value. Variables are fundamental to programming. Without
them, you'd be forced to hard-code all the values in your scripts. In adding two numbers together and printing the
result, we have achieved something useful:

print (2 + 4);

This script is useful only for people who want to know the sum of 2 and 4, however. To get around this, we could write
a script for finding the sum of another set of numbers, say 3 and 5. This approach to programming is clearly absurd.
Variables enable you to create templates for operations (adding two numbers, for example) without worrying about
what values the variables contain. The variables are given values when the script is run, possibly through user input or
a database query.

You should use a variable whenever the data that is being subjected to an operation in your script is liable to change
from one script execution to another, or even within the lifetime of the script itself.

A variable consists of a name that you can choose, preceded by a dollar ($) sign. The variable name can include letters,
numbers, and the underscore character (_). Variable names cannot include spaces or characters that are not
alphanumeric, and they should begin with a letter or an underscore. The following code defines some legal variables:

$a;
$a_longish_variable_name;
$_2453;
$sleepyZZZZ;

Remember that a semicolon (;) is used to end a PHP statement. The semicolons in the previous fragment of code are
not part of the variable names.

A variable is a holder for a type of data. It can hold numbers, strings of characters, objects, arrays, or booleans. The
contents of a variable can be changed at any time.

As you can see, you have plenty of choices about naming. To declare a variable, you need only to include it in your
script. You usually declare a variable and assign a value to it in the same statement, like so:

$num1 = 8;
$num2 = 23;

The preceding lines declare two variables, using the assignment operator (=) to give them values. You will learn about
assignment in more detail in the section "Operators and Expressions," later in the hour. After you give your variables
values, you can treat them exactly as if they were the values themselves. In other words

print $num1;

is equivalent to

print 8;

as long as $num1 contains 8.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Data Types
Different types of data take up different amounts of memory and can be treated differently when they are manipulated
in a script. Some programming languages therefore demand that the programmer declare in advance which type of
data a variable will contain. By contrast, PHP is loosely typed, which means it calculates data types as data is assigned
to each variable. This is a mixed blessing. On the one hand, it means that variables can be used flexibly, holding a
string at one point and an integer at another. On the other hand, this can lead to problems in larger scripts if you
expect a variable to hold one data type when, in fact, it holds something completely different. You might have created
code designed to work with an array variable, for example. If the variable in question contains a number value instead,
errors might occur when the code attempts to perform array-specific operations on the variable.

Table 4.1 shows the six standard data types available in PHP.

Table 4.1. Standard Data Types
Type Example Description

Integer 5 A whole number

Double 3.234 A floating-point number

String "hello" A collection of characters

Boolean true One of the special values true or false

Object  See Hour 9, "Objects"

Array  See Hour 7, "Arrays"

Of PHP's six standard data types, we will leave arrays and objects for Hours 7 and 9.

PHP also provides two special data types, which are listed in Table 4.2.

Table 4.2. Special Data Types
Type Description

Resource Reference to a third-party resource (a database, for example)

NULL An uninitialized variable

Resource types are often returned by functions that deal with external applications or files. You will see examples of
resource types throughout the book. The type NULL is reserved for variables that have not been initialized (that is, they
have not yet had a value assigned to them).

You can use PHP's built-in function gettype () to acquire the type of any variable. If you place a variable between the
parentheses of the function call, gettype() returns a string representing the relevant type. Listing 4.1 assigns five
different data types to a single variable, testing it with gettype() each time.

You can read more about calling functions in Hour 6, "Functions."

Listing 4.1 Displaying the Type of a Variable

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 4.1 Testing the type of a variable</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title>Listing 4.1 Testing the type of a variable</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $testing; // declare without assigning
12: print gettype( $testing ); // NULL
13: print "<br />";
14: $testing = 5;
15: print gettype( $testing ); // integer
16: print "<br />";
17: $testing = "five";
18: print gettype( $testing ); // string
19: print "<br />";
20: $testing = 5.0;
21: print gettype( $testing ); // double
22: print "<br />";
23: $testing = true;
24: print gettype( $testing ); // boolean
25: print "<br />";
26: ?>
27: </div>
28: </body>

This script produces the following:

NULL
integer
string
double
boolean

When we declare our $testing variable in line 11, we do not assign a value to it. So, when we first use the gettype()
function to test the variable in line 12, we get the string NULL. After this, we assign values to $testing by using = before
passing it to gettype(). An integer (5), assigned to the $testing variable in line 14, is a whole or real number. In simple
terms, it can be said to be a number without a decimal point. A string ("five"), assigned to the $testing variable in line
17, is a collection of characters. When you work with strings in your scripts, they should always be surrounded by
double quotation marks (") or single quotation marks ('). A double (5.0), assigned to the $testing variable in line 20, is a
floating-point number. That is, it's a number that includes a decimal point. A boolean (true), assigned to the $testing
variable in line 23, can be one of two special values: true or false.

There is a difference between double quotation marks and single quotation
marks when used with strings. Double quotation marks allow the parsing
of variables. If you include a variable within double quotation marks the
PHP engine substitutes the variable's value, like so:

$name = "john";
print "hello, $name"; // hello, john

If you use single quotation marks to enclose the same string, the variable
is not substituted:

print 'hello, $name'; // hello, $name

Double-quoted strings are also parsed for escape characters. Escape
characters take on or lose special meaning when preceded by a backslash
(\) character. Notable among these are \n for a newline character, \t for a
tab, \" to print a double-quoted character within a double-quoted string, \\
to print a backslash, and \$ to print a dollar sign (so that it is not mistaken
for the start of a variable).

As a rule of thumb, if you want a string to be output exactly as you typed
it, you can use single quotation marks. This can help your code to run
more quickly because the interpreter does not have to parse the string. If
you want to take advantage of escape characters such as \n and use
variable substitution, you should use double quotation marks.

Prior to PHP 4, there was no boolean type. Although true was used, it was
actually a constant (a special kind of variable that we will cover later in
this chapter) with the integer value of 1.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


this chapter) with the integer value of 1.

Both NULL and Resource types were added with PHP 4.

Displaying Type Information with var_dump()

gettype() is a specialized tool. It does what it promises and returns a variable's type. var_dump() tells you a variable's
type and its contents. More than that, for complex types such as arrays and objects, var_dump() provides information
about all the types contained within the variable, as well as about the variable itself.

So, by altering line 11 of Listing 4.1, we can put var_dump() to the test:

$testing = 5;
var_dump( $testing );

This fragment gives us the following result:

int(5)

This tells us that the variable $testing contains an integer and that the value of that integer is 5. Notice that we did not
need to print the result of var_dump(); this is because the function prints its findings directly to the browser or command
line.

Testing for a Specific Data Type

gettype() is useful for debugging because it tells you exactly what type any variable is. Often, though, you will want to
check only whether a variable contains a specific type. PHP provides a special function corresponding to each data type.
These functions accept a variable or value and return a boolean. Table 4.3 lists these functions.

Table 4.3. Functions to Test Data Types
Function Description

is_array() Returns true if the argument is an array

is_bool() Returns true if the argument is boolean

is_double() Returns true if the argument is a double

is_int() Returns true if the argument is an integer

is_object() Returns true if the argument is an object

is_string() Returns true if the argument is a string

is_null() Returns true if the argument is null

is_resource() Returns true if the argument is a resource

In Hour 5, "Going with the Flow," we examine the if statement, which enables you to alter the behavior of a script
according to the results of a test. These type testing functions are frequently used in conjunction with if statements to
enforce the type of a variable passed to a function or object method.

Changing Type with settype()

PHP provides the function settype() to change the type of a variable. To use settype(), you must place the variable to
change (and the type to change it to) between the parentheses and separate them by commas. Listing 4.2 converts the
value 3.14 (a double) to the four types we are covering in this hour.

Listing 4.2 Changing the Type of a Variable with settype()

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 4.2 Changing the Type of a Variable with settype()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 4.2 Changing the Type of a Variable with settype()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $undecided = 3.14;
12: print gettype( $undecided ); // double
13: print " -- $undecided<br />"; // 3.14
14: settype( $undecided, string );
15: print gettype( $undecided ); // string
16: print " -- $undecided<br />"; // 3.14
17: settype( $undecided, int );
18: print gettype( $undecided ); // integer
19: print " -- $undecided<br />"; // 3
20: settype( $undecided, double );
21: print gettype( $undecided ); // double
22: print " -- $undecided<br />"; // 3.0
23: settype( $undecided, bool );
24: print gettype( $undecided ); // boolean
25: print " -- $undecided<br />"; // 1
26: ?>
27: </div>
28: </body>
29: </html>

In each case, we use gettype() to confirm that the type change worked and then print the value of the variable
$undecided to the browser. When we convert the string 3.14 to an integer in line 17, any information beyond the decimal
point is lost forever. That's why $undecided still contains 3 after we have changed it back to a double in line 20. Finally,
in line 23, we convert $undecided to a boolean.

Any number other than 0 becomes true when converted to a boolean. When printing a boolean in PHP, true is
represented as 1 and false as an empty string, so in line 21, $undecided is printed as 1.

Changing Type by Casting

By placing the name of a data type in parentheses in front of a variable, you create a copy of that variable's value
converted to the data type specified.

The principle difference between settype() and a cast is the fact that casting produces a copy, leaving the original
variable untouched. Listing 4.3 illustrates this.

Listing 4.3 Casting a Variable

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 4.3 Casting a Variable</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $undecided = 3.14;
12: $holder = ( double ) $undecided;
13: print gettype( $holder ) ; // double
14: print " -- $holder<br />"; // 3.14
15: $holder = ( string ) $undecided;
16: print gettype( $holder ); // string
17: print " -- $holder<br />"; // 3.14
18: $holder = ( integer ) $undecided;
19: print gettype( $holder ); // integer
20: print " -- $holder<br />"; // 3
21: $holder = ( double ) $undecided;
22: print gettype( $holder ); // double
23: print " -- $holder<br />"; // 3.14
24: $holder = ( boolean ) $undecided;
25: print gettype( $holder ); // boolean
26: print " -- $holder<br />"; // 1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


26: print " -- $holder<br />"; // 1
27: ?>
28: </div>
29: </body>
30: </html>

We never actually change the type of $undecided, which remains a double throughout. We illustrate this on line 25 by
using the gettype() function to output the type of $undecided.

In fact, by casting $undecided, we create a copy that is then converted to the type we specify. This new value is then
stored in the variable $holder, first in line 12 and then also in lines 15, 18, 21, and 24. Because we are working with a
copy of $undecided, we never discard any information from it as we did in lines 17 and 23 of Listing 4.2.

Now that we can change the contents of a variable from one type to another, either using settype() or a cast, we should
consider why this might be useful. It is certainly not a procedure you will use often because PHP automatically casts for
you when the context requires. However, an automatic cast is temporary, and you might want to make a variable
persistently hold a particular data type.

Numbers typed in to an HTML form by a user are made available to your script as a string. If you try to add two strings
containing numbers, PHP helpfully converts the strings into numbers while the addition is taking place. So

"30cm" + "40cm"

produces the integer 70. In casting the strings, PHP ignores the non-numeric characters. However, you might want to
clean up your user input yourself. Imagine that a user has been asked to submit a number. We can simulate this by
declaring a variable and assigning to it, like so:

$test = "30cm";

As you can see, the user has mistakenly added units to the number. We can ensure that the user input is clean by
casting it to an integer, as shown here:

$test = (integer)$test;
print "Your imaginary box has a width of $test centimeters";

More Ways of Changing Type

You have already seen two ways of converting data types: You can cast a value or use the settype() function. In addition
to these techniques, PHP provides functions to convert values into integers, doubles, and strings. These functions
accept values of any type apart from array or object and return a converted value. Table 4.4 lists these functions.

Table 4.4. Functions to Convert Data Types
Function Description

doubleval() Accepts a value and returns double equivalent

intval() Accepts a value and returns integer equivalent

strval() Accepts a value and returns string equivalent

Why Test Type?

Why might it be useful to know the type of a variable? Many circumstances occur in programming in which data is
passed to you from another source. In Hour 6, for example, you learn how to create functions in your scripts. Functions
can accept information from calling code in the form of arguments. For the function to work with the data it is given,
you often need to first check that it has been given values of the correct data type. A function that is expecting a
resource, for example, will not work well when passed a string.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Operators and Expressions
You can now assign data to variables, and you can even investigate and change the data type of a variable. A
programming language isn't very useful, though, unless you can manipulate the data you can store. Operators are
symbols that enable you to use one or more values to produce a new value. A value that is operated on by an operator
is referred to as an operand.

An operator is a symbol or series of symbols that, when used in conjunction with values, performs an action and
usually produces a new value.

An operand is a value used in conjunction with an operator. There are usually two operands to one operator.

Let's combine two operands with an operator to produce a new value:

4 + 5

4 and 5 are operands and are operated on by the addition operator (+) to produce 9. Operators almost always sit
between two operands, although you will see a few exceptions later in this hour.

The combination of operands with an operator to manufacture a result is called an expression. Although most
operators form the basis of expressions, an expression need not contain an operator. In fact, in PHP, an expression is
defined as anything that can be used as a value. This includes integer constants such as 654, variables such as $user,
and function calls such as gettype(). ( 4 + 5 ) therefore is an expression that consists of two further expressions and an
operator. When an expression produces a value, it is often said to resolve to that value. That is, when all
subexpressions are taken into account, the expression can be treated as if it were a code for the value itself.

An expression is any combination of functions, values, and operators that resolves to a value. As a rule of thumb, if
you can use it as if it were a value, it is an expression.

Now that we have the principles out of the way, it's time to take a tour of PHP's more common operators.

The Assignment Operator

You have seen the assignment operator each time we have initialized a variable. It consists of the single character =.
The assignment operator takes the value of its right operand and assigns it to its left operand, like so:

$name = "matt";

The variable $name now contains the string "matt". Interestingly, this construct is an expression. At first glance, it might
seem like the assignment operator simply changes the variable $name without producing a value, but in fact, a
statement that uses the assignment operator always resolves to a copy of the value of the right operand. Thus

print ( $name = "matt" );

prints the string "matt" to the browser in addition to assigning "matt" to $name.

Arithmetic Operators

The arithmetic operators do exactly what you would expect. Table 4.5 lists these operators. The addition operator adds
the right operand to the left operand, whereas the subtraction operator subtracts the right operand from the left. The
division operator divides the left operand by the right, and the multiplication operator multiplies the left operand by the
right. The modulus operator returns the remainder of the left operand divided by the right.

Table 4.5. Arithmetic Operators
Operator Name Example Example Result

+ Addition 10+3 13

- Subtraction 10-3 7

/ Division 10/3 3.3333333333333

* Multiplication 10*3 30

% Modulus 10%3 1

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The Concatenation Operator

The concatenation operator is a single period (.). Treating both operands as strings, it appends the right operand to the
left. So

"hello"." world"

is equivalent to

"hello world"

Regardless of the data types of the operands, they are treated as strings and the result is always a string. You will
encounter concatenation frequently throughout this book when we need to combine the results of an expression of
some kind with a string. Here's an example:

$centimeters = 212;
print "the width is ".($centimeters/100)." meters";

Combined Assignment Operators

Although there is really only one assignment operator, PHP provides a number of combination operators that transform
the left operand as well as return a result. As a rule, operators use their operands without changing their values;
however, assignment operators break this rule. A combined assignment operator consists of a standard operator
symbol followed by an equals sign. Combination assignment operators save you the trouble of using two operators
yourself. For example

$x = 4;
$x = $x + 4; // $x now equals 8

can instead be written as

$x = 4;
$x += 4; // $x now equals 8

There is an assignment operator for each of the arithmetic operators and one for the concatenation operator. Table 4.6
lists some of the most common ones.

Table 4.6. Some Combined Assignment Operators
Operator Example Equivalent to

+= $x += 5 $x = $x + 5

-= $x -= 5 $x = $x - 5

/= $x /= 5 $x = $x / 5

*= $x *= 5 $x = $x * 5

%= $x %= 5 $x = $x % 5

.= $x .= " test" $x = $x." test"

Each of the examples in Table 4.6 transforms the value of $x using the value of the right operand.

Comparison Operators

Comparison operators perform tests on their operands. They return the boolean value true if the test is successful and
return false otherwise. This type of expression is useful in control structures, such as if and while statements. You will
meet these in Hour 5.

To test whether the value contained in $x is smaller than 5, for example, you would use the less than operator:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$x < 5

If $x contained 3, this expression would be equivalent to the value true. If $x contained 7, the expression would resolve
to false.

Table 4.7 lists the comparison operators.

Table 4.7. Comparison Operators

Operator Name Returns True if
Example ($x is

4) Result

== Equivalence Left is equivalent to right $x == 5 false

!= Non-equivalence Left is not equivalent to right $x != 5 true

=== Identical Left is equivalent to right and they are the same
type

$x === 5 false

> Greater than Left is greater than right $x > 4 false

>= Greater than or equal
to

Left is greater than or equal to right $x >= 4 true

< Less than Left is less than right $x < 4 false

<= Less than or equal to Left is less than or equal to right $x <= 4 true

These operators are most commonly used with integers or doubles, although the equivalence operator is also used to
compare strings.

With the advent of PHP 5, === can be used to test whether two variables
hold the same object. PHP 4 implements === in a different way,
comparing the properties of two objects and returning true if all properties
match and both objects are instances of the same class. This behavior is
quite different in the two versions of PHP, in that two different objects of
the same type can have the same properties. In PHP 4, such objects would
be held to be equivalent, whereas in PHP 5 the objects would not match.

We cover objects in detail in Hour 9, "Objects," and Hour 17, "Advanced
Objects."

Creating More Complex Test Expressions with the Logical Operators

The logical operators test combinations of booleans. The or operator—which is indicated by two pipe characters (||) or
simply the characters or—returns true if either the left or the right operand is true. So

true || false

returns true.

The and operator, which is indicated by either two ampersand characters (&&) or the characters and, returns true only if
both the left and right operands are true. So

true && false

returns false. It's unlikely that you would use a logical operator to test boolean constants, however. It would make more
sense to test two or more expressions that resolve to a boolean. For example

( $x > 2 ) && ( $x < 15 )

would return true if $x contained a value greater than 2 and smaller than 15. We include the parentheses to make the
code easier to read. Table 4.8 lists the logical operators.

Table 4.8. Logical Operators
Operator Name Returns True if... Example Result

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Operator Name Returns True if... Example Result

|| Or Left or right is true true || false true

or Or Left or right is true true || false true

xor Xor Left or right is true but not both true xor true false

&& And Left and right are true true && false false

and And Left and right are true true && false false

! Not The single operand is not true ! true false

Why are there two versions of both the or and the and operators? The answer lies in operator precedence, which we will
look at later in this section.

Automatically Incrementing and Decrementing an Integer Variable

When coding in PHP, you will often need to increment or decrement an integer variable. You usually need to do this
when you are counting the iterations of a loop. You have already learned two ways of doing this. We could increment
the integer contained by $x with the addition operator, like so:

$x = $x + 1; // $x is incremented

Or we could use a combined assignment operator, as shown here:

$x += 1; // $x is incremented

In both cases, the resultant integer is assigned to $x. Because expressions of this type are so common, PHP provides
some special operators that enable you to add or subtract the integer constant 1 from an integer variable and assign
the result to the variable itself. These are known as the post-increment and post-decrement operators. The post-
increment operator consists of two plus symbols appended to a variable name, as shown in this example:

$x++; // $x is incremented

This increments the variable $x by one. Using two minus symbols in the same way, we can decrements the variable:

$x--; // $x is decremented

If you use the post-increment or post-decrement operator in conjunction with a conditional operator, the operand is
modified only after the test has been completed:

$x = 3;
$x++ < 4; // true

In the previous example, $x contains 3 when it is tested against 4 with the less than operator, so the test expression
returns true. After this test is complete, $x is incremented.

In some circumstances, you might want to increment or decrement a variable in a test expression before the test is
performed. PHP provides the pre-increment and pre-decrement operators for this purpose. On their own, these
operators behave in exactly the same way as the post-increment and post-decrement operators. They are written with
the plus or minus symbols preceding the variable:

++$x; // $x is incremented
--$x; // $x is decremented

If these operators are used as part of a test expression, the incrementation occurs before the test is carried out, like
so:

$x = 3;
++$x < 4; // false

In the previous fragment, $x is incremented before it is tested against 4. The test expression returns false because 4 is
not smaller than 4.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Operator Precedence

When you use an operator, the PHP engine usually reads your expression from left to right. For complex expressions
that use more than one operator, though, the waters can become a little murky. First, consider a simple case:

4 + 5

There's no room for confusion, here. PHP simply adds 4 to 5. What about the next fragment?

4 + 5 * 2

This presents a problem. Does it mean the sum of 4 and 5, which should then be multiplied by 2, giving a result of 18?
Or, does it mean 4 plus the result of 5 multiplied by 2, resolving to 14? If you were to read simply from left to right, the
former would be true. In fact, PHP attaches different precedence to operators. Because the multiplication operator has
higher precedence than the addition operator does, the second solution to the problem is the correct one.

You can force PHP to execute the addition expression before the multiplication expression with parentheses:

(4 + 5) * 2

Whatever the precedence of the operators in a complex expression, you should use parentheses to make your code
clearer and save you from obscure bugs. Table 4.9 lists the operators covered in this hour in precedence order (highest
first).

Table 4.9. Order of Precedence for Selected Operators
Operators

++ -- (cast)

/ * %

+ -

< <= => >

== === !=

&&

||

= += -= /= *= %= .=

and

xor

or

As you can see, or has a lower precedence than || and and has a lower precedence than &&, so you could use the lower-
precedence logical operators to change the way a complex test expression is read. This is not necessarily a good idea,
however. The following two expressions are equivalent, but the second is much easier to read:

$x and $y || $z
$x && ($y || $z) )

The order of precedence is the only reason that both && and and are present in PHP. The same is true of || and or. In
most, if not all circumstances, however, use of parentheses makes for clearer code and fewer bugs than code that takes
advantage of the difference in precedence of these operators. Throughout this book, we will use the more common ||
and && operators.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Constants
Variables offer a flexible way of storing data because you can change their values and the type of data they store at any
time. If, however, you want to work with a value that you do not want to alter throughout your script's execution, you
can define a constant. You must use PHP's built-in function define() to create a constant. After you have done this, the
constant cannot be changed. To use the define() function, you must place the name of the constant and the value you
want to give it within the call's parentheses. These values must be separated by a comma, like so:

define ("CONSTANT_NAME", 42);

The value you want to set can only be a number or a string. By convention, the name of the constant should be in
uppercase letters. Constants are accessed with the constant name only; no dollar symbol is required. Listing 4.4 defines
and accesses a constant.

Listing 4.4 Defining a Constant

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 4.4 Defining a constant</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: define ("USER", "Gerald");
12: print "Welcome".USER;
13: ?>
14: </div>
15: </body>
16: </html>

Notice that in line 11 we used the concatenation operator to append the value held by our constant to the string
"Welcome". This is because the PHP engine has no way of distinguishing between a constant and a string within
quotation marks.

define() optionally accepts a third boolean argument that determines whether the constant name should be case
insensitive. By default, constants are case sensitive, but by passing true to the define() function you can change this
behavior. So, if we were to set up our USER constant in this way

Define ("USER", "Gerald", true);

we could access its value without worrying about case. So

print User;
print usEr;
print USER;

would all be equivalent. This feature can make scripts a little friendlier for programmers who work with your code, in
that they will not need to consider case when accessing a constant you have defined. On the other hand, the fact that
other constants are case sensitive could make for more rather than less confusion as programmers forget which
constants to treat in which way. Unless you have a compelling reason to act otherwise, the safest course is to keep
your constants case sensitive and define them using uppercase characters, which is an easily remembered convention.

Predefined Constants

PHP automatically provides some built-in constants for you. ___FILE___, for example, returns the name of the file
currently being read by the PHP engine, and ___LINE___ returns the line number of the file. These constants are useful
for generating error messages. You can also find out which version of PHP is interpreting the script with PHP_VERSION.
This can be useful if you want to limit a script to run on a particular PHP release.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
This hour covered some of the basic features of the PHP language. You learned about variables and how to assign to
them using the assignment operator. You were introduced to operators and learned how to combine some of the most
common of these into expressions. Finally, you learned how to define and access constants.

Now that you have mastered some of the fundamentals of PHP, the next hour will really put you in the driver's seat.
You will learn how to make scripts that can make decisions and repeat tasks, with help of course from variables,
expressions, and operators.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Why can it be useful to know the type of data a variable holds?

A1: Often the data type of a variable constrains what you can do with it. You might want to ensure that a
variable contains an integer or a double before using it in a mathematical calculation, for example.

Q2: Should I obey any conventions when naming variables?

A2: Your goal should always be to make your code easy to both read and understand. A variable such as $ab
123245 tells you nothing about its role in your script and invites typos. Keep your variable names short and
descriptive.

A variable named $f is unlikely to mean much to you when you return to your code after a month or so. A
variable named $filename, on the other hand, should make more sense.

Q3: Should I learn the operator precedence table?

A3: There is no reason why you shouldn't, but I would save the effort for more useful tasks. By using
parentheses in your expressions, you can make your code easy to read at the same time as defining your
own order of precedence.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which of the following variable names is not valid?

$a_value_submitted_by_a_user
$666666xyz
$xyz666666
$_____counter_____
$the first
$file-name

2: What will the following code fragment output?

$num = 33;
(boolean) $num;
print $num;

3: What will the following statement output?

print gettype("4");

4: What will be the output from the following code fragment?

$test_val = 5.4566;
settype( $test_val, "integer" );
print $test_val;

5: Which of the following statements does not contain an expression?

4;
gettype(44);
5/12;

6: Which of the statements in question 5 contains an operator?

7: What value will the following expression return, and what data type will the returned value be?

5 < 2

Answers

A1: The variable name $666666xyz is not valid because it does not begin with a letter or an underscore
character. The variable name $the first is not valid because it contains a space. $file-name is also invalid
because it contains a nonalphanumeric character.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A2: The fragment will print the integer 33. The cast to boolean produced a converted copy of the value stored
in $num. It did not alter the value actually stored there.

A3: The statement will output the string "string".

A4: The code will output the value 5. When a double is converted to an integer, any information beyond the
decimal point is lost.

A5: They are all expressions because they all resolve to values.

A6: The statement 5/12; contains a division operator.

A7: The expression will resolve to false, which is a boolean value.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a script that contains at least five different variables. Populate them with values of different data types

and use the gettype() function to print each type to the browser.

2. Assign values to two variables. Use comparison operators to test whether the first value is

The same as the second

Less than the second

Greater than the second

Less than or equal to the second

Print the result of each test to the browser.

Change the values assigned to your test variables and run the script again.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 5. Going with the Flow
What You'll Learn in This Hour:

How to use the if statement to execute code only when a condition is met

How to execute alternative blocks of code when the condition of an if statement is not met

How to use the switch statement to execute code based on the value returned by a test expression

How to repeat execution of code using a while statement

How to use for statements to make neater loops

How to break out of loops

How to nest one loop within another

How to use PHP's start and end tags within control structures

The scripts created in the last hour flow only in a single direction. The same statements are executed in the same order
every time a script is run. This does not leave much room for flexibility. We now will look at some structures that enable
your scripts to adapt to circumstances.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Switching Flow
Most scripts evaluate conditions and change their behavior accordingly. This facility to make decisions makes your PHP
pages dynamic, capable of changing their output according to circumstances. In common with most programming
languages, PHP enables you to do this with an if statement.

The if Statement

An if statement is a way of controlling the execution of a statement that follows it (that is, a single statement or a block
of code inside braces). The if statement evaluates an expression between parentheses. If this expression results in a
true value, the statement is executed. Otherwise, the statement is skipped entirely. This enables scripts to make
decisions based on any number of factors.

In the following fragment, we show the structure of an if statement. The test expression is represented by the string
'expression':

if (expression) {
  // code to execute if the expression evaluates to true
}

Listing 5.1 executes a block of code only if a variable contains the string "very".

Listing 5.1 An if Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.1 An if Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $satisfied = "very";
12: if ( $satisfied == "very" ) {
13:   print "We are pleased that you are happy with our service";
14:   // register customer satisfaction in some way
15: }
16: ?>
17: </div>
18: </body>
19: </html>

You use the comparison operator (==) to compare the variable $satisfied with the string "very". If they match, the
expression evaluates to true and the code block below the if statement is executed. Although the code block is wrapped
in braces in the example, this is only necessary if the block contains more than one line. The following fragment,
therefore, would be acceptable:

if ( $satisfied == "very")
  print "We are pleased that you are happy with our service";

Style guides often discourage the omission of braces from single-line code
blocks. Using braces, it is argued, promotes readability and guards against
errors that might occur when adding new lines to previously single-line
code blocks.

If you change the value of $satisfied to "no" and run the script, the expression in the if statement evaluates to false and
the code block is skipped. The script remains sulkily silent.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Using the else Clause with the if Statement

When working with the if statement, you will often want to define an alternative block of code that should be executed if
the expression you are testing evaluates to false. You can do this by adding else to the if statement followed by a further
block of code, like so:

if (expression) {
  // code to execute if the expression evaluates to true
} else {
  // code to execute in all other cases
}

Listing 5.2 amends the example in Listing 5.1 so that a default block of code is executed if $satisfied is not equivalent to
"very".

Listing 5.2 An if Statement That Uses else

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.2 An if Statement That Uses else</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: // $satisfied = "very";
12: if ( $satisfied == "very" ) {
13:   print "We are pleased that you are happy with our service";
14:   // register customer satisfaction in some way
15: } else {
16:   print "Please take a moment to rate our service";
17:   // present pulldown
18: }
19: ?>
20: </div>
21: </body>
22: </html>

Notice that the assignment to the $satisfied variable on line 11 has been commented out, so the expression in the if
statement in line 12 evaluates to false. This means the first block of code (line 13) is skipped. The block of code after
else, therefore, is executed and the message "Please take a moment to rate our service" is printed to the browser.

Using the else clause with the if statement enables scripts to make sophisticated decisions, but you currently are limited
to an either-or branch. PHP allows you to evaluate multiple expressions one after the other.

Using the else if Clause with the if Statement

You can use an if/else else/if construct to test multiple expressions before offering a default block of code:

if ( expression ) {
  // code to execute if the expression evaluates to true
} else if ( another expression ) {
  // code to execute if the previous expression failed
  // and this one evaluates to true
} else {
  // code to execute in all other cases
}

If the first expression does not evaluate to true, the first block of code is ignored. The else if clause then causes another
expression to be evaluated. Once again, if this expression evaluates to true, the second block of code is executed.
Otherwise, the block of code associated with the else clause is executed. You can include as many else if clauses as you
want, and if you don't need a default action, you can omit the else clause.

The else if clause can also be written as a single word: elseif. The syntax
you employ is a matter of taste.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 5.3 adds an else if clause to the previous example.

Listing 5.3 An if statement That Uses else and else if

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.3 An if statement That Uses else and else if</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $satisfied = "no";
12: if ( $satisfied == "very" ) {
13:   print "We are pleased that you are happy with our service";
14:   // register customer satisfaction in some way
15: } else if ( $satisfied == "no")  {
16:   print "We are sorry that we have not met your expectations";
17:   // request further feedback
18: } else {
19:   print "Please take a moment to rate our service";
20:   // present pulldown
21: }
22: ?>
23: </div>
24: </body>
25: </html>

Once again, $satisfied holds a string ("no") in line 11. This is not equivalent to "very", so the first block in line 13 is
ignored. The else if clause in line 15 tests for equivalence between the contents of $satisfied and "no", which evaluates to
true. This block of code is therefore executed. From line 18, we provide default behavior. If none of the test conditions
have been fulfilled, we simply print a message requesting input.

The switch Statement

The switch statement is an alternative way of changing program flow according to the evaluation of an expression. Some
key differences exist between the switch and if statements. Using the if statement in conjunction with else if, you can
evaluate multiple expressions. switch evaluates only one expression, executing different code according to the result of
that expression, as long as the expression evaluates to a simple type (a number, string, or Boolean). The result of an
expression evaluated as part of an if statement is read as either true or false, whereas the expression of a switch
statement yields a result that is tested against any number of values, as shown here:

switch (expression) {
    case result1:
      // execute this if expression results in result1
      break;
    case result2:
      // execute this if expression results in result2
      break;
    default:
      // execute this if no break statement
      // has been encountered hitherto
}

The switch statement's expression is often simply a variable. Within the switch statement's block of code, you find a
number of case statements. Each of these tests a value against the result of the switch statement's expression. If these
are equivalent, the code after the case statement is executed. The break statement ends execution of the switch
statement altogether. If this is omitted, the next case statement's expression is evaluated. If the optional default
statement is reached, its code is executed.

In most circumstances, don't forget to include a break statement at the end
of any code that will be executed as part of a case statement. Without
break, the program flow continues to the next case statement and
ultimately to the default statement. In most cases, this is not the behavior
you expect.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


you expect.

Having said that, this feature can also be used to your advantage. In
particular, you might want to omit a break for a case statement so that
multiple tests can result in a single action. In the following fragment, we
group case conditions together in this way:

switch ( $satisfied ) {
   case "very":
   case "quite":
   case "almost":
     print "We are pleased...";
     break;

   case "disatisfied":
   case "no":
   case "unhappy":
     print "We are sorry...";
     break;
// ...
}

Be aware of your breaks!

Listing 5.4 re-creates the functionality of the if statement example, using the switch statement.

Listing 5.4 A switch Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.4 A switch Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $satisfied = "no";
12: switch ( $satisfied ) {
13:   case "very":
14:     print "We are pleased that you are happy with our service";
15:     break;
16:   case "no":
17:     print "We are sorry that we have not met your expectations";
18:     break;
19:   default:
20:     print "Please take a moment to rate our service";
21: }
22: ?>
23: </div>
24: </body>
25: </html>

In line 11 the $satisfied variable is initialized to "no", and the switch statement in line 12 uses this variable as its
expression. The first case statement in line 13 tests for equivalence between "very" and the value of $satisfied. There is
no match, so script execution moves on to the second case statement in line 16. The string "no" is equivalent to the
value of $satisfied, so this block of code is executed. The break statement in line 18 ends the process.

Using the ? Operator

The ?, or ternary, operator is similar to the if statement but returns a value derived from one of two expressions
separated by a colon. Which expression is used to generate the value returned depends on the result of a test
expression:

(expression) ?returned_if_expression_is_true:returned_if_expression_is_false;

If the test expression evaluates to true, the result of the second expression is returned; otherwise, the value of the third

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If the test expression evaluates to true, the result of the second expression is returned; otherwise, the value of the third
expression is returned. Listing 5.5 uses the ternary operator to set the value of a variable according to the value of
$satisfied.

Listing 5.5 Using the ? Operator

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.5 Using the ? Operator</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $satisfied = "no";
12:
13: $pleased = "We are pleased that you are happy with our service";
14: $sorry = "We are sorry that we have not met your expectations";
15:
16: $text = ( $satisfied=="very" )?$pleased:$sorry;
17: print "$text";
18: ?>
19: </div>
20: </body>
21: </html>

In line 11, $satisfied is set to "no". Then, in line 16, $satisfied is tested for equivalence to the string "very". Because this
test returns false, the result of the third of the three expressions is returned. Note that variables are used on lines 13
and 14 to store the alternative output strings. This makes the code more readable than it would be with the strings
embedded in the ternary statement.

The ternary operator can be difficult to read but is useful if you are dealing with only two alternatives and like to write
compact code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Loops
So far we've looked at decisions a script can make about which code to execute. Scripts can also decide how many
times to execute a block of code. Loop statements enable you to achieve repetitive tasks. Almost without exception, a
loop continues to operate until either a condition is achieved or you explicitly choose to exit the loop.

The while Statement

The while statement looks similar in structure to a basic if statement:

while ( expression ) {
   // do something
}

As long as a while statement's expression evaluates to true, the code block is executed repeatedly. Each execution of the
code block in a loop is often called an iteration. Within the block, you usually change something that affects the while
statement's expression; otherwise, your loop continues indefinitely. Listing 5.6 creates a while loop that calculates and
prints multiples of 2 up to 24.

Listing 5.6 A while Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.6 A while Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $counter = 1;
12: while ( $counter <= 12 ) {
13:   print "$counter times 2 is ".($counter*2)."<br />";
14:   $counter++;
15: }
16: ?>
17: </div>
18: </body>
19: </html>

In this example, we initialize a variable called $counter in line 11. The while statement in line 12 tests the $counter
variable. As long as the integer contained by $counter is smaller than or equal to 12, the loop continues to run. Within
the while statement's code block, the value contained by $counter is multiplied by 2, and the result is printed to the
browser. $counter is incremented in line 14. This last stage is extremely important: If you were to forget to change
$counter, the while expression would never resolve to false and the loop would never end.

The do...while Statement

A do...while statement looks a little like a while statement turned on its head. The essential difference between the two is
that the code block is executed before the truth test and not after it, like so:

do  {
   // code to be executed
} while (expression);

The test expression of a do...while statement should always end with a
semicolon.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


This statement might be useful if you want the code block to be executed at least once even if the while expression
evaluates to false. Listing 5.7 creates a do...while statement in which the code block is executed a minimum of one time.

Listing 5.7 The do...while Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.7 The do...while Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $num = 1;
12: do {
13:   print "Execution number: $num<br />\n";
14:   $num++;
15: } while ( $num > 200 && $num < 400 );
16: ?>
17: </div>
18: </body>
19: </html>

The do...while statement tests whether the variable $num contains a value that is greater than 200 and smaller than 400.
In line 11, we have initialized $num to 1 so this expression returns false. Nonetheless, the code block is executed before
the expression is evaluated, so the statement prints a single line to the browser.

The for Statement

You cannot achieve anything with a for statement that you could not also manage with a while statement. On the other
hand, the for statement is often a neater and safer way of achieving the same effect. Earlier, Listing 5.6 initialized a
variable outside the while statement. The while statement then tested the variable in its expression, and the variable was
incremented within the code block. The for statement enables you to achieve this on a single line, making your code
more compact and making it less likely that you'll forget to increment a counter variable, thereby creating an infinite
loop. Here's its syntax:

for ( initialization expression; test expression; modification expression ) {
  // code to be executed
}

Each expression within the parentheses of the for statement is separated by a semicolon. Usually, the first expression
initializes a counter variable, the second expression is the test condition for the loop, and the third expression
increments the counter. Listing 5.8 shows a for statement that re-creates the example in Listing 5.6, which multiplies 12
numbers by 2.

Listing 5.8 Using the for Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.8 Using the for Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: for ( $counter=1; $counter<=12; $counter++ ) {
12: print "$counter times 2 is".($counter*2)."<br />";
13: }
14: ?>
15: </div>
16: </body>
17: </html>

The results of Listings 5.6 and 5.8 are exactly the same. The for statement, though, makes the code more compact.
Because $counter is initialized and incremented at the top of the statement, the logic of the loop is clear at a glance. In
line 11, within the for statement's parentheses, the first expression initializes the $counter variable and sets it to 1. The
test expression checks that $counter contains a value that is less than or equal to 12; then the final expression

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


test expression checks that $counter contains a value that is less than or equal to 12; then the final expression
increments the $counter variable.

When program flow reaches the for loop, the $counter variable is initialized and the test expression is evaluated. If the
expression evaluates to true, the code block is executed. The $counter variable is then incremented and the test
expression evaluated again. This process continues until the test expression evaluates to false.

Breaking Out of Loops with the break Statement

Both while and for statements incorporate a built-in test expression with which you can end a loop. The break statement,
though, enables you to break out of a loop according to additional tests. This can provide a safeguard against error.
Listing 5.9 creates a simple for statement that divides a large number by a variable that is incremented, printing the
result to the screen.

Listing 5.9 A for Loop That Divides 4000 by Ten Incremental Numbers

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.9 A for Loop That Divides Ten Numbers</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: for ( $counter=1; $counter <= 10; $counter++ ) {
12:   $temp = 4000/$counter;
13:   print "4000 divided by $counter is.. $temp<br />";
14: }
15: ?>
16: </div>
17: </body>
18: </html>

In line 11, this example initializes the variable $counter to 1. The for statement's test expression checks that $counter is
smaller than or equal to 10. Within the code block, 4000 is divided by $counter, printing the result to the browser.

This seems straightforward enough. But what if the value you place in $counter comes from user input? The value could
be a minus number or even a string. Let's take the first instance. Changing the initial value of $counter from 1 to –4
causes 4000 to be divided by 0 as the code block is executed for the fifth time, which is not advisable. Listing 5.10
guards against this by breaking out of the loop if the $counter variable contains 0.

Listing 5.10 Using the break Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.10 Using the break Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $counter = -4;
12: for ( ; $counter <= 10; $counter++ ) {
13:   if ( $counter == 0 ) {
14:     break;
15:   }
16:   $temp = 4000/$counter;
17:   print "4000 divided by $counter is.. $temp<br />";
18: }
19: ?>
20: </div>
21: </body>
22: </html>

Dividing a number by zero does not cause a fatal error in PHP. Instead, a
warning is generated and execution continues.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We use an if statement, shown in line 13, to test the value of $counter. If it is equivalent to zero, the break statement
immediately halts execution of the code block and program flow continues after the for statement.

Notice that we initialized the $counter variable in line 11, outside the for statement's parentheses, to simulate a situation
in which the value of $counter is set according to form input or a database lookup.

You can omit any of the expressions of a for statement, but you must
remember to retain the semicolons.

Skipping an Iteration with the continue Statement

The continue statement ends execution of the current iteration but doesn't cause the loop as a whole to end. Instead,
the next iteration is immediately begun. Using the break statement in Listing 5.10 is a little drastic. With the continue
statement in Listing 5.11, you can avoid a divide-by-zero error without ending the loop completely.

Listing 5.11 Using the continue Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.11 Using the continue Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $counter = -4;
12: for ( ; $counter <= 10; $counter++ ) {
13:   if ( $counter == 0 ) {
14:     continue;
15:   }
16:   $temp = 4000/$counter;
17:   print "4000 divided by $counter is .. $temp<br />";
18: }
19: ?>
20: </div>
21: </body>
22: </html>

In line 14, we have swapped the break statement for a continue statement. If the $counter variable is equivalent to zero,
the iteration is skipped and the next one immediately is started.

The break and continue statements can make code more difficult to read.
Because they often add layers of complexity to the logic of the loop
statements that contain them, they are best used with care.

Nesting Loops

Loop statements can contain other loop statements. This combination is particularly useful when working with
dynamically created HTML tables. Listing 5.12 uses two for statements to print a multiplication table to the browser.

Listing 5.12 Nesting Two for Loops

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 5.12 Nesting Two for Loops

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.12 Nesting Two for Loops</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: print "<table border=\"1\">\n";
12: for ( $y=1; $y<=12; $y++ ) {
13:   print "<tr>\n";
14:   for ( $x=1; $x<=12; $x++ ) {
15:     print "\t<td>";
16:     print ($x*$y);
17:     print "</td>\n";
18: }
19: print "</tr>\n";
20: }
21: print "</table>";
22: ?>
23: </div>
24: </body>
25: </html>

Before we examine the for loops, let's take a closer look at line 11 in Listing 5.12:

print "<table border=\"1\">\n";

Notice that we have used the backslash character (\) before each of the quotation marks within the string. This is
necessary to tell the PHP engine we want to quote the quotation character, rather than interpret it as the beginning or
end of a string. If we did not do this, the statement would not make sense to the engine, consisting as it would of a
string followed by a number followed by another string. This would generate an error. You will encounter this backslash
technique, known as escaping, again in Hour 7, "Arrays."

The outer for statement (line 12) initializes a variable called $y, setting its starting value to 1. It defines an expression
that tests whether $y is smaller or equal to 12 and defines the increment for $y. For each iteration, the code block prints
a TR (table row) HTML element (line 13) and defines another for statement (line 14). This inner loop initializes a variable
called $x and defines expressions along the same lines as for the outer loop. For each iteration, the inner loop prints a
TD (table cell) element to the browser (line 15), as well as the result of $x multiplied by $y (line 16). In line 17, we close
the table cell. After the inner loop has completed, we fall back through to the outer loop where we close the table row
on line 19, ready for the process to begin again. When the outer loop has finished, the result is a neatly formatted
multiplication table. We wrap things up by closing the table on line 21.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Code Blocks and Browser Output
In Hour 3, "A First Script," we established that you can slip in and out of HTML mode at will, using the PHP start and
end tags. In this chapter you have discovered that you can present distinct output to the user according to a decision-
making process you can control with if and switch statements. In this section, we will combine these two techniques.

Imagine a script that outputs a table of values only when a variable is set to the Boolean value true. Listing 5.13 shows
a simplified HTML table constructed with the code block of an if statement.

Listing 5.13 A Code Block Containing Multiple print() Statements

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.13 A Code Block Containing Multiple print() statements</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $display_prices = true;
12:
13: if ( $display_prices ) {
14:   print "<table border=\"1\">";
15:   print "<tr><td colspan=\"3\">";
16:   print "todays prices in dollars";
17:   print "</td></tr><tr>";
18:   print "<td>14</td><td>32</td><td>71</td>";
19:   print "</tr></table>";
20: }
21:
22: ?>
23: </div>
24: </body>
25: </html>

If $display_prices is set to true in line 11, the table is printed. For the sake of readability, we split the output into multiple
print() statements, and once again we escape any quotation marks. There's nothing wrong with that, but we can save
ourselves some typing by simply slipping back into HTML mode within the code block. In Listing 5.14, we do just that.

Listing 5.14 Returning to HTML Mode Within a Code Block

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 5.14 Returning to HTML Mode Within a Code Block</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $display_prices = true;
12:
13: if ( $display_prices ) {
14: ?>
15:   <table border="1">
16:   <tr><td colspan="3">todays prices in dollars</td></tr><tr>
17:   <td>14</td><td>32</td><td>71</td>
18:   </tr></table>
19: <?php
20: }
21:
22: ?>
23: </div>
24: </body>
25: </html>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


25: </html>

The important thing to note here is that the shift to HTML mode on line 14 occurs only if the condition of the if
statement is fulfilled. This can save you the bother of escaping quotation marks and wrapping your output in print()
statements. It might, however, affect the readability of your code in the long run, especially as your script begins to
grow.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned about control structures and the ways in which they can help make your scripts flexible and
dynamic. Most of these structures will reappear regularly throughout the rest of the book.

You learned how to define an if statement and how to provide for alternative actions with the else if and else clauses.
You learned how to use the switch statement to change flow according to multiple equivalence tests on the result of an
expression. You also learned about loops—in particular, the while and for statements—and learned how to use break and
continue to prematurely end the execution of a loop or skip an iteration. You learned how to nest one loop within
another and saw a typical use for this structure. Finally, you looked at a technique for using PHP start and end tags in
conjunction with conditional code blocks.

You should now have enough information to write scripts of your own. Your scripts can now make decisions and
perform repetitive tasks. In the next hour, we will examine a way of adding even more power to your applications.
Functions will enable you to organize your code, preventing duplication and improving reusability.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Must a control structure's test expression result in a Boolean value?

A1: Ultimately, yes. However, in the context of a test expression, zero, an undefined variable, or an empty
string is converted to false for the purposes of the test. All other values evaluate to true.

Q2: Must I always surround a code block in a control statement with brackets?

A2: If the code you want executed as part of a control structure consists of only a single line, you can omit the
brackets. The code examples in this book retain brackets to promote readability. Retaining the brackets
for single-line control statements can also help guard against bugs as new lines are added to the block
over time.

Q3: Does this hour cover every kind of loop there is?

A3: No. In Hour 7, you'll encounter the foreach statement, which enables you to loop through every element in
an array.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: How would you use an if statement to print the string "Youth message" to the browser if an integer variable,
$age, is between 18 and 35? If $age contains any other value, the string "Generic message" should be printed
to the browser.

2: How would you extend your code in question 1 to print the string "Child message" if the $age variable is
between 1 and 17?

3: How would you create a while statement that prints every odd number between 1 and 49?

4: How would you convert the while statement you created in question 3 into a for statement?

Answers

A1: $age = 22;

if ( $age >= 18 && $age <= 35 ) {
  print "Youth message<br />\n";
} else {
  print "Generic message<br />\n";
}

A2: $age = 12;

if ( $age >= 18 && $age <= 35 ) {
  print "Youth message<br />\n";
} else if ( $age >= 1 && $age <= 17 ) {
   print "Child message<br />\n";
} else {
  print "Generic message<br />\n";
}

A3: $num = 1;
while ( $num <= 49 ) {
  print "$num<br />\n";
  $num += 2;
}

A4: for ( $num = 1; $num <= 49; $num += 2 ) {
  print "$num<br />\n";
}

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Review the syntax for control structures. Think about how these techniques will help you in your scripting.

Perhaps some of the script ideas you are developing will be capable of behaving in different ways according to
user input or will loop to display an HTML table. Start to build the control structures you will be using. Use
temporary variables to mimic user input or database queries for the time being.

2. Review the section on the ternary operator. What distinguishes it from the control structures covered in the rest
of the chapter? Why might it be useful?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 6. Functions
What You'll Learn in This Hour:

How to define and call functions

How to pass values to functions and receive values in return

How to call a function dynamically using a string stored in a variable

How to access global variables from within a function

How to give a function a "memory"

How to pass data to functions by reference

How to create anonymous functions

How to check that a function exists before calling it

Functions are the heart of a well-organized script, making code easy to read and reuse. No large project would be
manageable without them.

Throughout this hour, we will investigate functions and demonstrate some of the ways in which they can save you from
repetitive work.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is a Function?
You can think of a function as a machine. A machine takes the raw materials you feed it and works with them to
achieve a purpose or produce a product. A function accepts values from you, processes them, and then performs an
action (printing to the browser, for example) or returns a new value, possibly both.

If you needed to bake a single cake, you would probably do it yourself. If you needed to bake thousands of cakes, you
would probably build or acquire a cake-baking machine. Similarly, when deciding whether to create a function, the most
important factor to consider is the extent to which it can save you from repetition.

A function, then, is a self-contained block of code that can be called by your scripts. When called, the function's code is
executed. You can pass values to functions, which they then work with. When finished, a function can pass a value back
to the calling code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Calling Functions
Functions come in two flavors—those built in to the language and those you define yourself. PHP has hundreds of built-
in functions. One of the earliest scripts in this book used the gettype() function:

gettype( $testing );

We called gettype() and passed it the $testing variable. The function then went about the business of testing the variable.
A function call consists of the function name—gettype in this case—followed by parentheses. If you want to pass
information to the function, you place it between these parentheses. A piece of information passed to a function in this
way is called an argument. Some functions require that more than one argument be passed to them. Arguments in
these cases must be separated by commas, like so:

some_function( $an_argument, $another_argument );

gettype() is typical in that it returns a value. Most functions give you some information back when they've completed
their task, if only to tell you whether their mission was successful. gettype() reports on its testing by returning a string
that contains the type of the argument it was passed.

abs() is another example of a built-in function. It requires a signed numeric value and returns the absolute value of that
number. Let's try it in Listing 6.1.

Listing 6.1 Calling the Built-in abs() Function

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.1 Calling the Built-in abs() function</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $num = -321;
12: $newnum = abs( $num );
13: print $newnum;
14: // prints "321"
15: ?>
16: </div>
17: </body>
18: </html>

In this example, we assign the value -321 to a variable $num. We then pass that variable to the abs() function, which
makes the necessary calculation and returns a new value. We assign this to the variable $newnum and print the result.
In fact, we could have dispensed with temporary variables altogether, passing our number straight to abs(), and directly
printing the result:

print( abs( -321 ) );

We used the temporary variables $num and $newnum, though, to make each step of the process as clear as possible.
Sometimes your code can be made more readable by breaking it up into a greater number of simple expressions.

You can call user-defined functions in exactly the same way we have been calling built-in functions.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Defining a Function
You can define a function using the function statement:

function some_function( $argument1, $argument2 ) {
   // function code here
}

The name of the function follows the function statement and precedes a set of parentheses. If your function is to require
arguments, you must place comma-separated variable names within the parentheses. These variables are filled by the
values passed to your function. If your function requires no arguments, you must nevertheless supply the parentheses.

Listing 6.2 declares a function.

Listing 6.2 Declaring a Function

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.2 Declaring a Function</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function bighello() {
12:   print "<h1>HELLO!</h1>";
13: }
14: bighello();
15: ?>
16: </div>
17: </body>
18: </html>

The script in Listing 6.2 simply outputs the string "HELLO" wrapped in an HTML <h1> element. We declare a function,
bighello(), that requires no arguments. Because of this, we leave the parentheses empty. bighello() is a working function
but is not terribly useful. Listing 6.3 creates a function that requires an argument and actually does something helpful
with it.

Listing 6.3 Declaring a Function That Requires Arguments

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.3 Declaring a Function That Requires Arguments</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function printBR( $txt ) {
12:   print ( "$txt<br />\n" );
13: }
14: printBR("This is a line");
15: printBR("This is a new line");
16: printBR("This is yet another line");
17: ?>
18: </div>
19: </body>
20: </html>

You can see the output from the script in Listing 6.3 in Figure 6.1. In line 11, the printBR() function expects a string, so
we place the variable name $txt between the parentheses when we declare the function. Whatever is passed to printBR()
is stored in $txt. Within the body of the function, in line 12, we print the $txt variable and append a <br /> element and a
newline character to it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


newline character to it.

Figure 6.1. A function that prints a string with an appended <br /> tag.

Now when we want to write a line to the browser, such as in line 14, 15, or 16, we can call printBR() instead of the built-
in print(), saving us the bother of typing the <br /> element.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Returning Values from User-Defined Functions
In our previous example, we output an amended string to the browser within the printBR() function. Sometimes,
however, you will want a function to provide a value you can work with yourself. If your function has transformed a
string you have provided, you might want to get the amended string back so you can pass it to other functions. A
function can return a value using the return statement in conjunction with a value. return stops the execution of the
function and sends the value back to the calling code.

Listing 6.4 creates a function that returns the sum of two numbers.

Listing 6.4 A Function That Returns a Value

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.4 A Function That Returns a Value</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function addNums( $firstnum, $secondnum ) {
12:   $result = $firstnum + $secondnum;
13:   return $result;
14: }
15: print addNums(3,5);
16: // will print "8"
17: ?>
18: </div>
19: </body>
20: </html>

The script in Listing 6.4 prints the number 8. Notice in line 11 that addNums() should be called with two numeric
arguments (line 15 shows those to be 3 and 5 in this case). These are stored in the variables $firstnum and $secondnum.
Predictably, addNums() adds the numbers contained in these variables together and stores the result in a variable called
$result.

The return statement can return a value or nothing at all. How a value passed by return is arrived at can vary. The value
could be hard-coded:

return 4;

It could also be the result of an expression:

return ( $a/$b );

Finally, it could be the value returned by yet another function call:

return ( another_function( $an_argument ) );
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Dynamic Function Calls
You can assign function names as strings to variables and then treat these variables exactly as you would the function
name itself. Listing 6.5 creates a simple example of this.

Listing 6.5 Calling a Function Dynamically

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.5 Calling a Function Dynamically</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function sayHello() {
12:   print "hello<br />";
13: }
14: $function_holder = "sayHello";
15: $function_holder();
16: ?>
17: </div>
18: </body>
19: </html>

A string identical to the name of the sayHello() function is assigned to the $function_holder variable on line 14. After this is
done, we can use this variable in conjunction with parentheses to call the sayHello() function. We do this on line 15.

Why would we want to do this? In the example, we simply made more work for ourselves by assigning the string
"sayHello" to $function_holder. Dynamic function calls are useful when you want to alter program flow according to
changing circumstances. We might want our script to behave differently according to a parameter set in a URL's query
string, for example. We could extract the value of this parameter and use it to call one of a number of functions.

PHP's built-in functions also use this feature. The array_walk() function, for example, uses a string to call a function for
every element in an array. You can see an example of array walk() in action in Hour 7, "Arrays."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Variable Scope
A variable declared within a function remains local to that function. In other words, it will not be available outside the
function or within other functions. In larger projects, this can save you from accidentally overwriting the contents of a
variable when you declare two variables of the same name in separate functions.

Listing 6.6 creates a variable within a function and then attempts to print it outside the function.

Listing 6.6 Variable Scope: A Variable Declared Within a Function Is Unavailable
Outside the Function

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.6 Local Variable Unavailable Outside a Function</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function test() {
12:    $testvariable = "this is a test variable";
13: }
14: print "test variable: $testvariable<br/>";
15: ?>
16: </div>
17: </body>
18: </html>

You can see the output of the script in Listing 6.6 in Figure 6.2. The value of the variable $testvariable is not printed
because no such variable exists outside the test() function. Note that the attempt in line 14 to access a nonexistent
variable does not cause an error.

Figure 6.2. Attempting to reference a variable defined within a function.

Attempting to access an undefined variable causes a NOTICE to be
generated. A NOTICE is an error message associated with nonfatal error
conditions. By default, NOTICE messages are not displayed. This behavior
is dependent on the php.ini error_reporting directive, however. If

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


is dependent on the php.ini error_reporting directive, however. If
error_reporting is set to include the E_NOTICE flag, such messages are
displayed.

You can enable all error messages apart from NOTICE messages by altering
the error_reporting flag in your php.ini file as follows:

error_reporting = E_ALL & -E_NOTICE

Similarly, a variable declared outside a function is not automatically available within it.

Accessing Variables with the global Statement

From within a function, by default you can't access a variable that has been defined elsewhere. If you attempt to use a
variable of the same name, you will set or access a local variable only. Let's put this to the test in Listing 6.7.

Listing 6.7 Variables Defined Outside Functions Are Inaccessible from Within a
Function by Default

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.7 No Default Access to Globals in Functions</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $life = 42;
12: function meaningOfLife() {
13:   print "The meaning of life is $life<br />";
14: }
15: meaningOfLife();
16: ?>
17: </div>
18: </body>
19: </html>

You can see the output from the script in Listing 6.7 in Figure 6.3. As you might expect, the meaningOfLife() function has
no access to the $life variable from line 11; $life is empty when the function attempts to print it. On the whole, this is a
good thing. We're saved from potential clashes between identically named variables, and a function can always demand
an argument if it needs information about the outside world. Occasionally, however, you might want to access an
important global variable from within a function without passing it in as an argument. This is where the global statement
comes into its own. Listing 6.8 uses global to restore order to the universe.

Figure 6.3. Attempting to print a global variable from within a function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 6.8 Accessing Global Variables with the global Statement

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.8 The global Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $life=42;
12:
13: function meaningOfLife() {
14:   global $life;
15:   print "The meaning of life is $life<br />";
16: }
17: meaningOfLife();
18: ?>
19: </div>
20: </body>
21: </html>

You can see the output from the script in Listing 6.8 in Figure 6.4. By placing global in front of the $life variable when we
declare it in the meaning_of_life() function (line 14), we make it refer to the global $life variable declared outside the
function (line 11).

Figure 6.4. Successfully accessing a global variable from within a function using
the global keyword.

You need to use the global statement for every function that wants to access a particular global variable.

Be careful, though. If you manipulate the contents of the variable within the function, $life is changed for the script as a
whole.

You can declare more than one variable at a time with the global statement; you simply separate each of the variables
you wish to access with commas:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


you wish to access with commas:

global $var1, $var2, $var3;

In Hour 10, "Working with Forms," you will encounter the $GLOBALS superglobal array, which is a way of accessing
global variables from anywhere in your script.

Usually, an argument is a copy of whatever value is passed by the calling
code; changing it in a function has no effect beyond the function block.
Changing a global variable within a function, on the other hand, changes
the original and not a copy. Use the global statement sparingly.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Saving State Between Function Calls with the static Statement
Variables within functions have a short but happy life on the whole. They come into being when the function is called
and die when execution is finished. This is as it should be. It is usually best to build a script as a series of self-contained
blocks, each with as little knowledge of others as possible. Occasionally, however, you might want to give a function a
rudimentary memory.

Let's assume we want a function to keep track of the number of times it has been called. Why? In our examples, the
function is designed to create numbered headings in a script that dynamically builds online documentation.

We could, of course, use our newfound knowledge of the global statement to do this. We have a crack at this in Listing
6.9.

Listing 6.9 Using the global Statement to Remember the Value of a Variable Between
Function Calls

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.9 Tracking with the global Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $num_of_calls = 0;
12: function numberedHeading( $txt ) {
13:   global $num_of_calls;
14:   $num_of_calls++;
15:   print "<h1>$num_of_calls. $txt</h1>";
16: }
17: numberedHeading("Widgets");
18: print "<p>We build a fine range of widgets</p>";
19: numberedHeading("Doodads");
20: print "<p>Finest in the world</p>";
21: ?>
22: </div>
23: </body>
24: </html>

This does the job. We declare a variable, $num_of_calls, on line 11, outside the function numberedHeading(). We make this
variable available to the function with the global statement on line 13. You can see the output of Listing 6.9 in Figure
6.5.

Figure 6.5. Using the global statement to keep track of the number of times a
function has been called.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Every time numberedHeading() is called, $num_of_calls is incremented (line 14). We can then print a heading complete
with a heading number.

This is not the most elegant solution, however. Functions that use the global statement cannot be read as standalone
blocks of code. In reading or reusing them, you need to look out for the global variables they manipulate.

This is where the static statement can be useful. If you declare a variable within a function in conjunction with the static
statement, the variable remains local to the function. On the other hand, the function "remembers" the value of the
variable from execution to execution. Listing 6.10 adapts the code from Listing 6.9 to use the static statement.

Listing 6.10 Using the static Statement to Remember the Value of a Variable
Between Function Calls

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.10 Using the static Statement</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function numberedHeading( $txt ) {
12:   static $num_of_calls = 0;
13:   $num_of_calls++;
14:   print "<h1>$num_of_calls. $txt</h1>";
15: }
16: ?>
17: numberedHeading( "Widgets" );
18: print "<p>We build a fine range of widgets</p>";
19: numberedHeading( "Doodads" );
20: print "<p>Finest in the world</p>";
21: </div>
22: </body>
23: </html>

numberedHeading() has become entirely self-contained. When we declare the $num_of_calls variable on line 12, we assign
an initial value to it. This assignment is made when the function is first called on line 17. This initial assignment is
ignored when the function is called a second time on line 19. Instead, the previous value of $num_of_calls is
remembered. We can now paste the numberedHeading() function into other scripts without worrying about global
variables. Although the output of Listing 6.10 is exactly the same as that for Listing 6.9, we have made the code more
elegant.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

More About Arguments
You've already seen how to pass arguments to functions, but there's more to cover yet. In this section, you'll look at a
technique for giving your arguments default values and explore a method of passing variables by reference rather than
by value. This means that the function is given an alias to the original value rather than a copy of it.

Setting Default Values for Arguments

PHP gives you a nifty feature to help build flexible functions. Until now, we've said that some functions demand one or
more arguments. By making some arguments optional, you can render your functions a little less autocratic.

Listing 6.11 creates a useful little function that wraps a string in an HTML heading element. We want to give the user of
the function the chance to change the heading element's size, so we demand a $size argument in addition to the string
(line 10). If the client code provides a $size argument of 1, the string provided in $txt is wrapped in an h1 element and
printed. If $size is 2, the string is wrapped in an h2 element, and so on.

Listing 6.11 A Function Requiring Two Arguments

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.11</title>
 7: </head>
 8: <body>
 9: <?php
10: function headingWrap( $txt, $size ) {
11:     print "<h$size>$txt</h$size>";
12: }
13: headingWrap("Book title", 1);
14: headingWrap("Chapter title",2);
15: headingWrap("Section heading",3);
16: ?>
17: </body>
18: </html>

You can see the output from the script in Listing 6.11 in Figure 6.6. Useful though this function is, we really only need
to change the heading size occasionally. Most of the time we would like to default to outputting an h3 element. By
assigning a value to an argument variable within the function definition's parentheses, we can make the $size argument
optional. If the function call doesn't define an argument for this, the value we have assigned to the argument is used
instead. Listing 6.12 uses this technique to make the $size argument optional.

Figure 6.6. A function that formats and outputs strings.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 6.12 A Function with an Optional Argument

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.11</title>
 7: </head>
 8: <body>
 9: <?php
10: function headingWrap( $txt, $size=3 ) {
11:   print "<h$size>$txt</h$size>";
12: }
13: headingWrap("Book title", 1);
14: headingWrap("Chapter title",2);
15: headingWrap("Section heading");
16: headingWrap("Another Section heading");
17: ?>
18: </body>
19: </html>

When the headingWrap() function is called with a second argument, as in line 13, this value is used to generate the
heading element. When we omit this argument, as in lines 15 and 16, the default value of 3 is used instead. You can
create as many optional arguments as you want, but when you've given an argument a default value, all subsequent
arguments should also be given defaults.

Passing References to Variables to Functions

When you pass arguments to functions, they are stored as copies in parameter variables. Any changes made to these
variables in the body of the function are local to that function and are not reflected beyond it. This is illustrated in
Listing 6.13.

Listing 6.13 Passing an Argument to a Function by Value

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.13</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function addFive( $num ) {
12:   $num += 5;
13: }
14: $orignum = 10;
15: addFive( $orignum );
16: print( $orignum );
17: ?>
18: </div>
19: </body>
20: </html>

The addFive() function accepts a single numeric value and adds 5 to it. It returns nothing. We assign a value to a
variable $orignum in line 14 and then pass this variable to addFive() in line 15. A copy of the contents of $orignum is
stored in the variable $num. Although we increment $num by 5, this has no effect on the value of $orignum. When we
print $orignum, we find that its value is still 10. By default, variables passed to functions are passed by value—in other
words, local copies of the values of the variables are made.

We can change this behavior by creating a reference to our original variable. You can think of a reference as a
signpost that points to a variable. In working with the reference, you are manipulating the value to which it points.

Listing 6.14 shows this technique in action. When you pass an argument to a function by reference, as in line 15, the
contents of the variable you pass ($orignum) are accessed by the argument variable and manipulated within the
function, rather than just a copy of the variable's value (10). Any changes made to an argument in these cases change

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


function, rather than just a copy of the variable's value (10). Any changes made to an argument in these cases change
the value of the original variable. You can pass an argument by reference by adding an ampersand to the argument
name in the function definition, as shown in line 11.

Listing 6.14 Using a Function Definition to Pass an Argument to a Function by
Reference

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.14</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: function addFive( &$num ) {
12:   $num += 5;
13: }
14: $orignum = 10;
15: addFive( $orignum );
16: print( $orignum );
17: ?>
18: </div>
19: </body>
20: </html>

Until recently, it was also usual to set up pass by reference from within the
calling code rather than at the function declaration. This technique is
referred to as call-time pass-by-reference and involves prepending an
ampersand to the variable in the function call rather than in the function
declaration. This technique has been deprecated and so should not be
used.

If you are using library code that falls foul of this deprecation, you can
temporarily suppress PHP's warning messages by setting the
allow_call_time_pass_reference directive to on in your php.ini file.

Returning References from Functions

Functions return by value. So, if you pass a variable to a function by reference and then return that variable to the
calling code, you return a copy of the variable's value. You do not, by default, return a variable reference. You can
change this behavior by prepending an ampersand to the name of your function, like so:

function &addFive( &$num ) {
  $num+=5;
  return $num;
}

$num is now both passed to addFive() and returned from it by reference. We can illustrate this by calling addFive():

$orignum = 10;
$retnum = & addFive( $orignum );
$orignum += 10;
print( $retnum ); // prints 25

In this fragment we assign the result of calling addFive() to another variable, $retnum. Notice that we place an
ampersand before the function call to enforce assignment by reference. Now when we add 10 to $orignum, the change is
reflected in $retnum. Both $orignum and $retnum now alias one another.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating Anonymous Functions
You can create functions on-the-fly during script execution. Because such functions are not themselves given a name
but are stored in variables or passed to other functions, they are known as anonymous functions. PHP provides the
create_function() function for creating anonymous functions; it requires two string arguments. The first argument should
contain a comma-delimited list of argument variables, exactly the same as the argument variables you would include in
a standard function declaration. The second argument should contain our function body.

In Listing 6.15, we create a simple anonymous function to add two numbers together.

Listing 6.15 A Simple Anonymous Function

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.15</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $my_anon = create_function( '$a, $b', 'return $a+$b;' );
12: print $my_anon( 3, 9 );
13:
14: // prints 12
15: ?>
16: </div>
17: </body>
18: </html>

Note that we used single quotation marks when passing arguments to create_function(). That saved us from having to
escape the variable names within the arguments. We could have used double quotation marks, but the function call
would have been a little more involved:

$my_anon = create_function( "\$a, \$b", "return \$a+\$b;" );

So, what use are anonymous functions? In practical terms you will probably use them only when built-in functions need
to be passed callback functions. A callback function is generally written by the user and designed to be invoked
(usually repeatedly) by the function to which it is passed. You will see examples of this in Hour 16, "Working with Dates
and Times."

The second argument to create_function() is the function body. Don't forget
to end the last statement in this string with a semicolon. The interpreter
will complain and your anonymous function will not be executed if you omit
it.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Testing for Function Existence
You have seen that you do not always know that a function exists before you try to invoke it. If your code were to work
with a function name stored in a variable, for example, it would be useful for you to be able to test whether the function
exists before you attempted to call it. Furthermore, different builds of the PHP engine can include different functionality.
If you are writing a script that might be run on multiple servers, you might want to check that key features are
available. You might write code that will use MySQL if mysql functions are available but simply log data to a text file
otherwise.

You can use function_exists() to check for the availability of a function. function_exists() requires a string representing a
function name. It returns true if the function can be located and false otherwise.

Listing 6.16 shows function_exists() in action and illustrates some of the other topics covered in this chapter.

Listing 6.16 Testing for a Function's Existence

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 6.16</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11:
12: function tagWrap( $tag, $txt, $func="" ) {
13:   if ( function_exists( $func ) )
14:     $txt = $func( $txt );
15:   return "<$tag>$txt</$tag>\n";
16: }
17:
18: function subscript( $txt ) {
19:   return "<sub>$txt</sub>";
20: }
21:
22: print tagWrap('b', 'make me bold');
23: // <b>make me bold</b>
24:
25: print tagWrap('i', 'shrink me too', "subscript");
26: // <i><sub>shrink me too</sub></i>
27:
28: print tagWrap('i', 'make me italic and quote me',
29:   create_function('$txt', 'return ""$txt"";'));
30: // <i>"make me italic and quote me"</i>
31:
32: ?>
33: </div>
34: </body>
35: </html>

We define two functions, tagWrap() (line 12) and subscript() (line 18). TagWrap() accepts three strings, a tag, the text to
be formatted, and an optional function name. It returns a formatted string. subscript() requires a single argument, the
text to be formatted, and returns the text wrapped in <sub> tags.

When we first call tagWrap() on line 22, we pass it the character b and the string make me bold. Because we haven't
passed a value for the function argument, the default value (an empty string) is used. On line 13, we check whether the
$func variable contains characters and, if it is not empty, we call function_exists() to check for a function by that name. Of
course, the $func variable is empty, so we wrap the $txt variable in <b> tags on line 15 and return the result.

We next call tagWrap() on line 25 with the string i, some text, and a third argument: subscript. function_exists() does find a
function called subscript() (line 13), so this is called and passed the $txt argument variable before any further formatting
is done. The result is an italicized string rendered as subscript.

Finally, we call tagWrap() on line 28 with an anonymous function (which wraps text in quotation entities). Of course, it
would be quicker to simply add the entities to the text to be transformed ourselves, but this does illustrate the point
that function_exists() works as well on anonymous functions as it does on strings representing function names.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned about functions and how to deploy them. You learned how to define and pass arguments to a
function. You learned how to use the global and static statements. You learned how to pass references to functions and
how to create default values for function arguments. Finally, you learned how to create anonymous functions and test
for function existence.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Apart from the global keyword, is there any way that a function can access and change global
variables?

A1: You can also access global variables anywhere in your scripts with a built-in associative array called
$GLOBALS. To access a global variable called $test within a function, you could reference it as
$GLOBALS['test'] You can learn more about associative arrays in the next hour.

You can also change global variables from within a function if it has been passed in by reference.

Q2: Can you include a function call within a string, as you can with a variable?

A2: No. You must call functions outside quotation marks.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: True or False: If a function doesn't require an argument, you can omit the parentheses in the function call.

2: How do you return a value from a function?

3: What would the following code fragment print to the browser?

$number = 50;

function tenTimes() {
  $number = $number * 10;
}

tenTimes();
print $number;

4: What would the following code fragment print to the browser?

$number = 50;

function tenTimes() {
  global $number;
  $number = $number * 10;
}

tenTimes();
print $number;

5: What would the following code fragment print to the browser?

$number = 50;

function tenTimes( $n ) {
  $n = $n * 10;
}

tenTimes( $number );
print $number;

6: What would the following code fragment print to the browser?

$number = 50;

function tenTimes( &$n ) {
  $n = $n * 10;
}

tenTimes( $number );
print $number;

Answers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A1: The statement is false. You must always include the parentheses in your function calls, whether or not you
are passing arguments to the function.

A2: You must use the return keyword.

A3: It would print 50. The tenTimes() function has no access to the global $number variable. When it is called, it
manipulates its own local $number variable.

A4: It would print 500. We have used the global statement, which gives the tenTimes() function access to the
$number variable.

A5: It would print 50. When we pass an argument to the tenTimes() function, it is passed by value. In other
words, a copy is placed in the parameter variable $n. Any changes we make to $n have no effect on the
$number variable.

A6: It would print 500. By adding the ampersand to the parameter variable $n, we ensure that this argument is
passed by reference. $n and $number point to the same value, so any changes to $n are reflected when you
access $number.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
1. Create a function that accepts four string variables and returns a string that contains an HTML table element,

enclosing each of the variables in its own cell.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 7. Arrays
What You'll Learn in This Hour:

What arrays are and how to create them

How to access data from and about arrays

How to access and sort the data contained in arrays

How to create more flexible functions using arrays

Arrays, and the tools to manipulate them, greatly enhance the scope and flexibility of PHP scripts. After you've
mastered arrays, you will be able to store and organize complex data structures.

This hour introduces arrays and some of the functions that help you work with them.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is an Array?
You already know that a variable is a "bucket" in which you can temporarily store a value. By using variables, you can
create a script that stores, processes, and outputs different information every time it is run. Unfortunately, you can
store only one value at a time in a variable. Arrays are special variables that enable you to overcome this limitation. An
array enables you to store as many values as you want in the same variable. Each value is indexed within the array by
a number or string. If a variable is a bucket, you can think of an array as a filing cabinet—a single container that can
store many discrete items.

Of course, if you have five values to store, you could always define five variables. So, why use an array rather than a
variable? First, an array is flexible. It can store two values or two hundred values without the need to define further
variables. Second, an array enables you to work easily with all its items. You can loop through each item or pull one out
at random. You can sort items numerically, alphabetically, or even according to a system of your own.

Each item in an array is commonly referred to as an element. Each element can be accessed directly via its index. An
index to an array element can be either a number or string.

By default, array elements are indexed by numbers, starting at 0. It's important to remember, therefore, that the index
of the last element of a sequential numerically indexed array is always one less than the number of elements the array
contains.

For example, Table 7.1 shows the elements in an array called users. Notice that the third element has an index of 2.

Table 7.1. The Elements in the users Array
Index Number Value Which Element?

0 Bert First

1 Sharon Second

2 Betty Third

3 Harry Fourth

Indexing arrays by string can be useful in cases where you need to store both names and values.

PHP provides tools to access and manipulate arrays indexed by both name and number.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating Arrays
By default, arrays are lists of values indexed by number. Values can be assigned to an array in two ways: with the
array() construct or directly using empty square brackets ([]). You'll meet both of these in the next two sections.

Defining Arrays with the array() Construct

The array() construct is useful when you want to assign multiple values to an array at one time. Let's define an array
called $users and assign four strings to it:

$users = array ("Bert", "Sharon", "Betty", "Harry");

You can now access the third element in the $user array by using the index 2:

print $users[2];

This would return the string Betty. The index of an array element is placed between square brackets directly after the
array name. You can use this notation to either set or retrieve a value.

Remember that arrays are indexed from zero by default, so the index of any element in a sequentially indexed array
always is one less than the element's place in the list.

Defining or Adding to Arrays with the Array Identifier

You can create a new array (or add to an existing one) by using the array identifier in conjunction with the array name.
The array identifier is a set of square brackets with no index number or name inside it.

Let's re-create our $users array in this way:

$users[] = " Bert";
$users[] = " Sharon";
$users[] = " Betty";
$users[] = " Harry";

Notice that we didn't need to place any numbers between the square brackets. PHP automatically takes care of the
index number, which saves you from having to work out which is the next available slot.

We could have added numbers if we wanted, and the result would have been exactly the same. It's not advisable to do
this, though. Take a look at the following code:

$users[0] = " Bert";
$users[200] = "Sharon";

The array has only two elements, but the index of the final element is 200. PHP will not initialize the intervening
elements, which could lead to confusion when attempting to access elements in the array. On the other hand, in some
circumstances you will want to use arbitrary index numbers in your array.

In addition to creating arrays, you can use the array identifier to add new values onto the end of an existing array. In
the following code, we define an array with the array() construct and use the array identifier to add a new element:

$users = array ("Bert", "Sharon", "Betty", "Harry");
$users[] = "Sally";

Populating an Array with array_fill()

If you want to pad an array with default values, you can use the array() function, like so:

$membertypes = array ("regular", "regular", "regular", $regular");

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$membertypes = array ("regular", "regular", "regular", $regular");

You could also use the empty brackets approach:

$membertypes[] = "regular";
$membertypes[] = "regular";
$membertypes[] = "regular";
$membertypes[] = "regular";

PHP provides a flexible function to automate this task. array_fill() requires three arguments: a number representing the
index from which to start filling, another integer representing the number of elements to populate, and the value to add
to the array. Using array_fill(), we can rewrite the previous fragments:

$membertypes = array_fill( 0, 4, "regular" );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Associative Arrays
Numerically indexed arrays are useful for storing values in the order they were added or according to a sort pattern.
Sometimes, though, you need to access elements in an array by name. An associative array is indexed with strings
between the square brackets rather than numbers. Imagine an address book. Which would be easier, indexing the name
field as 4 or as name?

Again, you can define an associative array using either array() or the array operator [].

The division between an associative array and a numerically indexed array
is not absolute in PHP. They are not separate types as arrays and hashes
are in Perl are. Nevertheless, you should treat them separately because
each demands different strategies for access and manipulation.

Defining Associative Arrays with the array() Construct

To define an associative array with the array() construct, you must define both the key and value for each element. The
following code creates an associative array called $character with four elements:

$character = array (
      "name" => "bob",
      "occupation" => "superhero",
      "age" => 30,
      "special power" => "x-ray vision"
      );

We can now access any of the fields of $character:

print $character['age'];

The keys in an associative array are strings, but in its default error reporting state the engine won't complain if array
keys aren't quoted.

Omitting quotation marks for array keys is poor practice, however. If you use unquoted strings as keys and your error
reporting is set to a higher-than-standard level, the engine will complain every time such an element is met. Even
worse, if an unquoted array key coincides with a constant, the value of the constant will be substituted for the key as
typed.

You should enclose an associative array key with quotation marks when
the key in question is a string literal:

print $character[age]; // wrong
print $character["age"]; // right

If the key is stored in a variable, you do not need to use quotation marks:

$agekey = "age";
print $character[$agekey]; // right

Directly Defining or Adding to an Associative Array

You can create or add a name/value pair to an associative array simply by assigning a value to a named element. In the
following, we re-create our $character array by directly assigning a value to each key:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


following, we re-create our $character array by directly assigning a value to each key:

$character["name"] = "bob";
$character["occupation"] = "superhero";
$character["age"] = 30;
$character["special power"] = "x-ray vision";
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Multidimensional Arrays
Until now, we've simply said that elements of arrays are values. In our $character array, three of the elements held
strings and one held an integer. The reality is a little more complex, however. In fact, an element of an array could be a
value, an object, or even another array. A multidimensional array is an array of arrays. Imagine an array that stores
an array in each of its elements. To access the third element of the second element, we would have to use two indices:

$array[1][2]

The fact that an array element can itself be an array enables you to create sophisticated data structures relatively
easily. Listing 7.1 defines an array that has an associative array as each of its elements.

Listing 7.1 Defining a Multidimensional Array

 1:<!DOCTYPE html PUBLIC
 2:  "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 7.1 Defining a Multidimensional Array</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11:
12: $characters = array (
13:       array (
14:         "name"=> "bob",
15:         "occupation" => "superhero",
16:         "age" => 30,
17:         "specialty" =>"x-ray vision"
18:       ),
19:       array (
20:         "name" => "sally",
21:         "occupation" => "superhero",
22:         "age" => 24,
23:         "specialty" => "superhuman strength"
24:       ),
25:       array (
26:         "name" => "mary",
27:         "occupation" => "arch villain",
28:         "age" => 63,
29:         "specialty" =>"nanotechnology"
30:       )
31:     );
32:
33: print $characters[0][occupation];
34: // prints "superhero"
35: ?>
36: </div>
37: </body>
38: </html>

Notice that we have nested array construct calls within an array construct call. At the first level, we define an array. For
each of its elements, we define an associative array.

Accessing $characters[2], therefore, gives us access to the third associative array (beginning on line 25) in the top-level
array (beginning on line 12). We can then access any of the associative array's fields. $characters[2]['name'] will be mary,
and $characters[2]['age'] will be 63.

When this concept is clear, you will be able to easily create complex combinations of associative and numerically
indexed arrays.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Accessing Arrays
So far, you've seen the ways in which you can create and add to arrays. In this section, you will examine some of the
tools PHP provides to allow you to acquire information about arrays and access their elements.

Getting the Size of an Array

You can access an element of an array by using its index:

print $user[4]

Because of the flexibility of arrays, however, you won't always know how many elements a particular array contains.
That's where the count() function comes into play. count() returns the number of elements in an array. In the following
code, we define a numerically indexed array and use count() to access its last element:

$users = array ("Bert", "Sharon", "Betty", "Harry" );
print $users[count($users)-1];

Notice that we subtract one from the value returned by count(). This is because count() returns the number of elements
in an array, not the index of the last element.

Although arrays are indexed from zero by default, you can change this. For the sake of clarity and consistency,
however, this is not usually advisable.

Although count() gives you the size of an array, you can use it to access the last element in the array only if you are
sure that array elements have been added consecutively. For example, say we had initialized the $user array with
values at arbitrary indices:

$users[66] = "Bert";
$users[100] = "Sharon";
$users[556] = "betty";
$users[703] = "Harry";

count() would not be of any use in finding the final element. The array still contains only four elements, but there is no
element indexed by 3. If you are not certain that your array is consecutively indexed, you can use the end() function to
retrieve the final element in the array. end() requires an array as its only argument and returns the given array's last
element. The following statement prints the final element in the $users array no matter how it was initialized:

print end($users);

Looping Through an Array

PHP's powerful foreach statement is the best way of looping through each element of an array. In the context of
numerically indexed arrays, you would use a foreach statement like this:

foreach( $array as $temp ) {
   //...
}

In this statement $array is the array you want to loop through and $temp is a variable in which you will temporarily store
each element.

In the following code, we define a numerically indexed array and use foreach to access each of its elements in turn:

$users = array ("Bert", "Sharon", "Betty", "Harry");
foreach ( $users as $val ) {
  print "$val<br />";
  }

You can see the output from this code fragment in Figure 7.1.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can see the output from this code fragment in Figure 7.1.

Figure 7.1. Looping through an array.

The value of each element is temporarily placed in the variable $val, which we then print to the browser. If you are
moving to PHP from Perl, be aware of a significant difference in the behavior of foreach: Changing the value of the
temporary variable in a Perl foreach loop changes the corresponding element in the array. Changing the temporary
variable in the preceding example would have no effect on the $users array.

Looping Through an Associative Array

To access both the keys and values of an associative array, you need to alter the use of foreach slightly.

In the context of associative arrays, you would use a foreach statement like this:

foreach( $array as $key=>$value ) {
   //...
}

In this statement $array is the array we are looping through, $key is a variable that temporarily holds each key, and
$value is a variable that temporarily holds each value.

Listing 7.2 creates an associative array and accesses each key and value in turn.

Listing 7.2 Looping Through an Associative Array with foreach

 1: <!DOCTYPE html PUBLIC
 2:  "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 7.2 Using foreach</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title>Listing 7.2 Using foreach</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $character = array (
12:       "name" => "bob",
13:       "occupation" => "superhero",
14:       "age" => 30,
15:       "special power" => "x-ray vision"
16:       );
17: foreach ( $character as $key=>$val ) {
18:   print "$key = $val<br />";
19: }
20:
21: ?>
22: </div>
23: </body>
24: </html>

The array is created on line 11, and we use the foreach statement on line 17 to loop through the character array. Each
key is placed in a variable called $key, and each value is placed in a variable called $val. They are printed on line 18. You
can see the output from Listing 7.2 in Figure 7.2.

Figure 7.2. Looping through an associative array.

Outputting a Multidimensional Array

You can now combine these techniques to output the multidimensional array created in Listing 7.1. Listing 7.3 defines a
similar array and uses foreach to loop through each of its elements.

Listing 7.3 Looping Through a Multidimensional Array

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 7.3 Looping Through a Multidimensional Array</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title>Listing 7.3 Looping Through a Multidimensional Array</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $characters = array (
12:       array (
13:         "name"=> "bob",
14:         "occupation" => "superhero",
15:         "age" => 30,
16:         "specialty" =>"x-ray vision"
17:       ),
18:       array (
19:         "name" => "sally",
20:         "occupation" => "superhero",
21:         "age" => 24,
22:         "specialty" => "superhuman strength"
23:       ),
24:       array (
25:         "name" => "mary",
26:         "occupation" => "arch villain",
27:         "age" => 63,
28:         "specialty" => "nanotechnology"
29:       )
30:     );
31:
32: foreach ( $characters as $val ) {
33:   print "<p>";
34:   foreach ( $val as $key=>$final_val ) {
35:     print "$key: $final_val<br />";
36:   }
37:   print "</p>";
38: }
39:
40: ?>
41: </div>
42: </body>
43: <html>

You can see the output from Listing 7.3 in Figure 7.3. We create two foreach loops (lines 32 and 34). The outer loop on
line 32 accesses each element in the numerically indexed array $characters, placing each one in $val. Because $val itself
then contains an associative array, we can loop through this on line 34, outputting each of its elements (temporarily
stored in $key and $final_val) to the browser.

Figure 7.3. Looping through a multidimensional array.

For this technique to work as expected, we need to ensure in advance that $val will always contain an array. To make

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


For this technique to work as expected, we need to ensure in advance that $val will always contain an array. To make
this code a little more robust, we could use the function is_array() to test $val. is_array() accepts a variable, returning true
if the variable is an array or false otherwise. Alternatively, we could cast the $val variable created on line 29 to an array,
thereby ensuring that it is always an array, whatever type it started out as. Here's how:

$val = (array) $val;

Examining Arrays with print_r()

Listing 7.3 demonstrates a way of using foreach loops to access elements in an array. This is fine for working with an
array or presenting data neatly. But if you only want a quick peek at an array's contents to debug a script, it seems like
a lot of work. The print_r() function accepts any variable and outputs information about the argument's contents and
structure. If you pass an array to print_r(), you get a listing of the array's elements. print_r() reports in full on each
element and explores all structures (such as objects or arrays) it finds. If you develop scripts of any size or complexity,
you will probably become a great friend of the print_r() function.

In Listing 7.4 we test this by passing a cut-down version of the $characters array to print_r().

Listing 7.4 Examining an Array with print_r()

 1: <!DOCTYPE html PUBLIC
 2:  "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 7.4 Testing the print_r() Function</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $characters = array (
12:       array (
13:         "name"=> "bob",
14:         "occupation" => "superhero",
15:       ),
16:       array (
17:         "name" => "sally",
18:         "occupation" => "superhero",
19:       )
20:    );
21:
22: print_r( $characters);
23:
24: /*
25: prints:
26: Array
27: (
28:   [0] => Array
29:     (
30:       [name] => bob
31:       [occupation] => superhero
32:     )
33:
34:   [1] => Array
35:     (
36:       [name] => sally
37:       [occupation] => superhero
38:     )
39:
40: )
41: */
42:
43: ?>
44: </div>
45: </body>
46: </html>

We create a cut-down version of the $characters array on line 11 and pass it to the print_r() function on line 22. That
effectively ends our script, but we include comments between lines 24 and 43 to show the script's output. Note that you
will not see the formatting if you view this script's output in a browser because the line breaks and spacing will be
ignored. You can restore the formatting by wrapping your call to print_r() in <pre> tags, like so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print "<pre>";
print_r( $characters );
print "</pre>";

As of PHP 4.3, you can capture the output from print_r() in a variable rather than printing directly to the browser.
print_r() optionally accepts Boolean as a second argument. If this is set to true, print_r() returns its output as a string:

$str = print_r( $characters, true );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Manipulating Arrays
You can now populate arrays and access their elements, but PHP has functions to help you do much more than that
with arrays. If you're used to Perl, you'll find some of these eerily familiar!

Joining Two Arrays with array_merge()

array_merge() accepts two or more arrays and returns a merged array combining all their elements. In the following
example, we create two arrays, joining the second to the first, and loop through the resultant third array:

$first = array("a", "b", "c");
$second = array(1,2,3);
$third = array_merge( $first, $second );

foreach ( $third as $val ) {
  print "$val<br />";
}

The $third array contains copies of all the elements of both the $first and $second arrays. The foreach statement prints this
combined array ('a', 'b', 'c', 1, 2, 3) to the browser with a <br /> tag between each element. Remember that the arrays
passed to array_merge() are not themselves transformed. If two arrays passed to array_merge() have elements with the
same string index, those of the first array are overwritten by their namesakes in the second.

Adding Multiple Variables to an Array

array_push() accepts an array and any number of further parameters, each of which is added to the array. Note that the
array_push() function is unlike array_merge() in that the array passed in as the first argument is transformed. array_push()
returns the total number of elements in the array. Let's create an array and add some more values to it:

$first = array ("a", "b", "c");
$total = array_push( $first, 1, 2, 3 );

print "There are $total elements in \$first<p>";
foreach ( $first as $val ) {
  print "$val<br/>";
}
print "</p>";

Because array_push() returns the total number of elements in the array it transforms, we can store this value (6) in a
variable and print it to the browser. The $first array now contains its original elements as well the three integers we
passed to the array_push() function. All of these are printed to the browser within the foreach statement.

Notice that we used a backslash character when we printed the string "\$first". If you use a dollar sign followed by
numbers and letters within a string, PHP attempts to insert the value of a variable by that name. In the previous
example, we wanted to print the string '$first' rather than the value of the $first variable. To print the special character $,
therefore, we must precede it with a backslash. PHP will now print the character instead of interpreting it. This process
is often referred to as escaping a character.

Perl users beware! If you're used to working with Perl's push(), you should
note that, if you pass a second array variable to array_push(), it will be
added as a single element, creating a multidimensional array. If you want
to combine two arrays, use array_merge().

If you need to add new elements to the beginning of an array, you can use the array_unshift() function, which accepts an
array and any number of additional values. It will add the value arguments to the start of the given array. The following
amends our previous fragment to use array_unshift():

$first = array ("a", "b", "c");
$total = array_unshift( $first, 1, 2, 3 );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$first now contains the following:

1, 2, 3, "a", "b", "c"

array_unshift() returns the new size of the array it transforms.

Removing the First Element of an Array with array_shift()

array_shift() removes and returns the first element of an array passed to it as an argument. In the following example, we
use array_shift() in conjunction with a while loop. We test the value returned from count() to check whether the array still
contains elements:

<?php
$an_array = array("a", "b", "c");

while ( count( $an_array ) ) {
  $val = array_shift( $an_array);
  print "$val<br />";
  print "there are ".count( $an_array )." elements in \$an_array <br />";
}
?>

You can see the output from this fragment of code in Figure 7.4.

Figure 7.4. Using array_shift() to remove and print every element in an array.

array_shift() is useful when you need to create a queue and act on it until the queue is empty.

Slicing Arrays with array_slice()

array_slice() enables you to extract a chunk of an array. It accepts an array as an argument, a starting position (offset),
and a length (optional). If the length is omitted, array_slice() generously assumes that you want all elements from the
starting position onward returned. array_slice() does not alter the array you pass to it; it returns a new array containing
the elements you have requested.

In the following example, we create an array and extract a new three-element array from it:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$first = array ("a", "b", "c", "d", "e", "f");
$second = array_slice($first, 2, 3);

foreach ( $second as $var ) {
  print "$var<br />";
}

This prints the elements 'c', 'd', and 'e', separating each by a <br /> tag. Notice that the offset is inclusive if we think of it
as the index number of the first element we are requesting. In other words, the first element of the $second array is
equivalent to $first[2].

If we pass array_slice() an offset argument that is less than zero, the returned slice begins that number of elements from
the end of the given array.

If we pass array_slice() a length argument that is less than zero, the returned slice contains all elements from the offset
position to that number of elements from the end of the given array.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Sorting Arrays
Sorting is perhaps the greatest magic you can perform on an array. Thanks to the functions PHP offers to achieve just
this, you can truly bring order from chaos. This section introduces some functions that allow you to sort both
numerically indexed and associative arrays.

Sorting Numerically Indexed Arrays with sort()

sort() accepts an array as its argument and sorts it either alphabetically if any strings are present or numerically if all
elements are numbers. The function doesn't return any data, transforming the array you pass it. Note that it differs
from Perl's sort() function in this respect. The following fragment of code initializes an array of single character strings,
sorts it, and outputs the transformed array:

$an_array = array ("x", "a", "f", "c");
sort( $an_array );

foreach ( $an_array as $var ) {
  print "$var<br />";
}

Don't pass an associative array to sort(). You will find that the values are
sorted as expected but that your keys have been lost—replaced by
numerical indices that follow the sort order.

You can reverse sort a numerically indexed array by using rsort() in exactly the same way as sort().

Sorting an Associative Array by Value with asort()

asort() accepts an associative array and sorts its values just as sort() does. However, it preserves the array's keys:

$first = array("first"=>5,"second"=>2,"third"=>1);
asort( $first );

foreach ( $first as $key => $val ) {
  print "$key = $val<br />";
}

You can see the output from this fragment of code in Figure 7.5.

Figure 7.5. Sorting an associative array by its values with asort().

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can reverse sort an associative array by value with arsort().

Sorting an Associative Array by Key with ksort()

ksort() accepts an associative array and sorts its keys. Once again, the array you pass it is transformed and nothing is
returned:

$first = array("x"=>5,"a"=>2,"f"=>1);
ksort( $first );

foreach ( $first as $key => $val ) {
  print "$key = $val<br />";
}

You can see the output from this fragment of code in Figure 7.6.

Figure 7.6. Sorting an associative array by its keys with ksort().

You can reverse sort an associative array by key with krsort().
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Functions Revisited
Now that we have covered arrays, we can examine some built-in functions that could help you make your own functions
more flexible. If you have programmed in Perl before, you will know that you can easily create subroutines that accept
a variable number of arguments. PHP provides functions that make it just as easy.

Imagine that you have created a function that accepts three string arguments and returns a single string containing
each of the provided arguments wrapped in an HTML table, which includes the sum of the numbers in its final row:

function addNums( $num1, $num2 ) {
    $result = $num1 + $num2;
    $ret = "<table border=\"1\">";
    $ret .= "<tr><td>number 1: </td><td>$num1 </td></tr>";
    $ret .= "<tr><td>number 2: </td><td>$num2 </td></tr>";
    $ret .= "<tr><td>result: </td><td>$result</td></tr>";
    $ret .= "</table>";
    return $ret;
}

print addNums (49, 60);

This very simple function does its job well enough, but it is not very flexible. Imagine now that you are asked to amend
the function to handle four arguments, or six, or, well, pretty much any number of integers. The simplest solution would
be to ask that the calling code provide a single array containing all the numbers rather than two individual integers. This
would mean that a lot of code would have to be changed in the project as a whole as well as in the function. It would be
better, then, to change the function to accept any number of integers.

The tools for this job are func_num_args() and func_get_arg(). func_num_args() returns the number of arguments that have
been passed to the function; it does not itself require an argument. func_get_arg() requires an integer representing the
index of the argument required and returns its value. As with arrays, arguments are indexed from zero, so to get the
first argument passed to a function you would use

func_get_arg (0);

It is your responsibility to check that the index you pass to func_get_arg() is within the number of arguments that were
passed to the function you are testing. If the index is out of range, func_get_arg() returns false and an error is generated.
Now we can rewrite our addNums() function:

function addNums() {
    $ret = "<table border=\"1\">";
    for ($x=0; $x<func_num_args (); $x++) {
        $arg = func_get_arg ($x);
        $result += $arg;
        $ret .= "<tr><td>number ". ($x+1).": </td><td>$arg</td></tr>";
    }
    $ret .= "<tr><td>result: </td><td>$result</td><tr>";
    $ret .= "</table>";
    return $ret;
}

print addNums (49, 60, 44, 22, 55);

Notice that we do not provide any argument variables at all in the function declaration. Instead, we use a for loop to
access each of the arguments in turn. The loop executes just the right number of times because our upper limit is set
by func_num_args().

So, given that we haven't actually used an array in this example, why is this section in a chapter on arrays? First, the
way in which arguments to functions are indexed makes them somewhat array-like. Mainly, though, we have yet to
cover another function: func_get_args(). func_get_args() returns an array containing all the arguments passed to our
function. This means we can rewrite our example to work with a familiar foreach loop:

function addNums() {
    $args = func_get_args();
    $ret = "<table border=\"1\">";
    foreach( $args as $key => $val ) {
        $result += $val;
        $ret .= "<tr><td>number ". ($key+1).": </td><td>$val</td></tr>";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        $ret .= "<tr><td>number ". ($key+1).": </td><td>$val</td></tr>";
    }
    $ret .= "<tr><td>result: </td><td>$result</td></tr>";
    $ret .= </table>";
    return $ret;
}

print addNums ( 49, 60, 44, 22, 55 );

Rather than access our arguments one at a time, we simply decant the lot into an array variable called $args. Then it's
simply a matter of looping through the array.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned about arrays and some of the many tools PHP provides to work with them. You should now be
able to create both numerically indexed and associative arrays and output data from them using a foreach loop.

You should be able to combine arrays to create multidimensional arrays and loop through the information they contain.
You learned how to manipulate arrays by adding or removing multiple elements and examined some of the techniques
PHP makes available to sort arrays. Finally, you learned about functions that use array-like indexing to help make your
own functions more flexible.

In Hour 8, "Working with Strings," we complete our tour of PHP fundamentals by taking a look at PHP's support for
objects. PHP developers are increasingly creating libraries using classes and objects, so this is an area well worth
studying.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are there any functions for manipulating arrays that we have not covered here?

A1: PHP supports many array functions. You can find all these in the official PHP manual at
http://www.php.net/manual/ref.array.php.

Q2: I can discover the number of elements in an array, so should I use a for statement to loop
through an array?

A2: You should be cautious of this technique. If you are not absolutely sure that the array you are reading is
indexed by consecutively numbered keys, you might get unexpected results.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which construct can you use to define an array?

2: What is the index number of the last element of the array defined here?

$users = array ("Harry", "Bob", "Sandy");

3: Without using a function, what would be the easiest way of adding the element "Susan" to the $users array
defined previously?

4: Which function could you use to add the string "Susan" to the $users array?

5: How would you find out the number of elements in an array?

6: How would you loop through an array?

7: Which function would you use to merge two arrays?

8: How would you sort an associative array by its keys?

Answers

A1: You can create an array with the array() construct.

A2: The last element is $users[2]. Remember that arrays are indexed from zero by default.

A3: You should use $users[] = "Susan";.

A4: You should use array_push( $users, "Susan" );.

A5: You can count the number of elements in an array with the count() function.

A6: You can loop through an array using the foreach statement.

A7: You can merge arrays with the array_merge() function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: You can sort an associative array by its keys with the ksort() function.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a multidimensional array of movies organized by genre. This should take the form of an associative

array with genres as keys ("SF", "Action", "Romance", and so on). Each of this associative array's elements should
be an array containing movie names ("2001", "Alien", "Terminator", and so on).

2. Loop through the array you created in exercise 1, outputting each genre and its associated movies to the
browser.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 8. Working with Strings
What You'll Learn in This Hour:

How to format strings

How to determine the length of a string

How to find a substring within a string

How to break down a string into component parts

How to remove white space from the beginning or end of a string

How to replace substrings

How to change the case of a string

The World Wide Web is very much a plain-text environment. No matter how rich Web content becomes, HTML lies
behind it all. It is no accident, then, that PHP provides many functions with which you can format, investigate, and
manipulate strings.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Formatting Strings
Until now, we have simply printed any strings we want to display directly to the browser. PHP provides two functions
that allow you first to apply formatting, whether to round doubles to a given number of decimal places, define
alignment within a field, or display data according to different number systems. In this section, you learn a few of the
formatting options provided by printf() and sprintf().

Working with printf()

If you have any experience with C, you will be familiar with the printf() function. The PHP version is similar but not
identical. printf() requires a string argument, known as a format control string. It also accepts additional arguments of
different types. The format control string contains instructions as to how to display these additional arguments. The
following fragment, for example, uses printf() to output an integer as a decimal:

printf ("This is my number: %d", 55);
// prints "This is my number: 55"

Within the format control string (the first argument), we have included a special code, known as a conversion
specification.

A conversion specification begins with a percent (%) symbol and defines how to treat the corresponding argument to
printf(). You can include as many conversion specifications as you want within the format control string, as long as you
send an equivalent number of arguments to printf().

The following fragment outputs two numbers using printf():

printf ("First number: %d<br/>\nSecond number: %d<br/>\n", 55, 66);
// Output:
// First number: 55
// Second number: 66

The first conversion specification corresponds to the first of the additional arguments to printf(), which is 55. The second
conversion specification corresponds to 66. The d following the percent symbol requires that the data be treated as a
decimal integer. This part of a conversion specification is called a type specifier.

printf() and Type Specifiers

You have already come across one type specifier, d, which displays data in decimal format. Table 8.1 lists the other
available type specifiers.

Table 8.1. Type Specifiers
Specifier Description

d Displays an argument as a decimal number

b Displays an integer as a binary number

c Displays an integer as its ASCII equivalent

f Displays an integer as a floating-point number (double)

o Displays an integer as an octal number (base 8)

s Displays an argument as a string

x Display an integer as a lowercase hexadecimal number (base 16)

X Displays an integer as an uppercase hexadecimal number (base 16)

Listing 8.1 uses printf() to display a single number according to some of the type specifiers listed in Table 8.1.

Notice that we do not only add conversion specifications to the format control string. Any additional text we include will
be printed.

Listing 8.1 Demonstrating Some Type Specifiers

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 8.1 Demonstrating Some Type Specifiers

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 8.1 Demonstrating Some Type Specifiers</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $number = 543;
12: printf("Decimal: %d<br/>", $number );
13: printf("Binary: %b<br/>", $number );
14: printf("Double: %f<br/>", $number );
15: printf("Octal: %o<br/>", $number );
16: printf("String: %s<br/>", $number);
17: printf("Hex (lower): %x<br/>", $number );
18: printf("Hex (upper): %X<br/>", $number );
19: ?>
20: </div>
21: </body>
22: </html>

Figure 8.1 shows the output for Listing 8.1. As you can see, printf() is a quick way of converting data from one number
system to another and outputting the result.

Figure 8.1. Demonstrating conversion specifiers.

When you specify a color in HTML, you combine three hexadecimal numbers between 00 and FF, representing the
values for red, green, and blue. You can use printf() to convert three decimal numbers between 0 and 255 to their
hexadecimal equivalents, like so:

$red = 204;
$green = 204;
$blue = 204;
printf( "#%x%x%x", $red, $green, $blue);
// prints "#CCCCCC"

Although you can use the type specifier to convert from decimal to hexadecimal numbers, you can't use it to determine
how many characters the output for each argument should occupy. Within an HTML color code, each hexadecimal
number should be padded to two characters, which would become a problem if we changed our $red, $green, and $blue
variables in the previous fragment to contain 1, for example. We would end up with the output "#111". You can force
the output of leading zeroes by using a padding specifier.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Padding Output with the Padding Specifier

You can require that output be padded by leading characters. The padding specifier should directly follow the percent
sign that begins a conversion specification. To pad output with leading zeroes, the padding specifier should consist of a
zero followed by the number of characters you want the output to take up. If the output occupies fewer characters than
this total, the difference is filled with zeroes:

printf("%04d", 36);
// prints "0036"

To pad output with leading spaces, the padding specifier should consist of a space character followed by the number of
characters the output should occupy:

printf ("% 4d", 36);
// prints " 36"

A browser does not display multiple spaces in an HTML document.
However, you can force the display of spaces and newlines by placing
<pre> tags around your output:

<pre>
<?php
print "The spaces will be visible";
?>
</pre>

If you want to format an entire document as text, you can use the header()
function to change the Content-Type header, as shown here:

header("Content-Type: Text/Plain");

Remember that your script must not have sent any output to the browser
for the header() function to work as desired.

You can specify any character other than a space or zero in your padding specifier with a single quotation mark followed
by the character you want to use:

printf ( "%'x4d", 36 );
// prints "xx36"

We now have the tools we need to complete our HTML code example. Until now, we could convert three numbers, but
we could not pad them with leading zeroes:

$red = 1;
$green = 1;
$blue = 1;
printf( "#%02x%02x%02x", $red, $green, $blue);
// prints "#010101"

Each variable is output as a hexadecimal number. If the output occupies fewer than two spaces, leading zeroes are
added.

Specifying a Field Width

You can specify the number of spaces within which your output should sit. The field width specifier is an integer that
should be placed after the percent sign that begins a conversion specification (assuming no padding specifier is
defined). The following fragment outputs a list of four items, all of which sit within a field of 20 spaces. To make the
spaces visible on the browser, we place all our output within a PRE element:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print "<pre>";
printf ("%20s\n", "Books");
printf ("%20s\n", "CDs");
printf ("%20s\n", "Games");
printf ("%20s\n", "Magazines");
print "</pre>";

Figure 8.2shows the output of this fragment.

Figure 8.2. Aligning with field width specifiers.

By default, output is right-aligned within the field you specify. You can make it left-aligned by prepending a minus
symbol (-) to the field width specifier:

printf ("%-20s\n", "Left aligned");

Note that alignment applies to the decimal portion of any number you output. In other words, only the portion before
the decimal point of a double sits flush to the end of the field width when right aligned.

Specifying Precision

If you want to output data in floating-point format, you can specify the precision to which you want to round your data.
This is particularly useful when dealing with currency. The precision identifier should be placed directly before the type
specifier. It consists of a dot followed by the number of decimal places to which you want to round. This specifier has an
effect only on data that is output with the f type specifier:

printf( "%.2f", 5.333333);
// prints "5.33"

In the C language, you can use a precision specifier with printf() to specify
padding for decimal output. The precision specifier has no effect on
decimal output in PHP. Use the padding specifier to add leading zeroes to
integers.

Conversion Specifications: A Recap

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Conversion Specifications: A Recap

Table 8.2 lists the specifiers that can make up a conversion specification in the order in which they would be included.
Using both a padding specifier and a field width specifier is difficult—you should choose to use one or the other, but not
both.

Table 8.2. Components of Conversion Specification
Name Description Example

Padding Detemines the number of characters the ' 4'

specifier output should occupy and the characters to add otherwise  

Field width Determines the space within which output '20'

specifier should be formatted  

Precision Determines the number of decimal places '.4'

specifier to which a double should be rounded  

Type specifier Determines the data type that should be output 'd'

Listing 8.2 uses printf() to output a list of products and prices.

Listing 8.2 Using printf() to Format a List of Product Prices

 1: <!DOCTYPE html PUBLIC
 2: "-//W3C//DTD XHTML 1.0 Strict//EN"
 3: "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 8.2 Using printf() to Format a List of Product Prices</title>
 7: </head>
 8: <body>
 9: <?php
10: $products = array (
11:       "Green armchair"=>222.4,
12:       "Candlestick"=>4,
13:       "Coffee table"=>80.6
14:       );
15: print "<pre>";
16: printf ("%-20s%23s\n", "Name", "Price");
17: printf ("%'-43s\n", "");
18: foreach ( $products as $Key=>$val ) {
19:   printf ("%-20s%20.2f\n", $Key, $val);
20: }
21: print "</pre>";
22: ?>
23: </body>
24: </html>

We first define an associative array containing product names and prices on line 8. We print a PRE element so the
browser will recognize our spaces and newlines. Our first printf() call on line 12 defines the following format control
string:

"%-20s%23s\n"

The first conversion specification ("%-20s") uses a field width specifier of 20 characters, with the output left-justified. We
use a string type specifier, and the second conversion specification ("%23s") sets up a right-aligned field width. The
printf() call then outputs our field headers.

Our second printf() function call on line 13 draws a line of - characters across a field of 43 characters. We achieve this
with a padding specifier, which adds padding to an empty string.

The final printf() call on line 15 is part of a foreach statement that loops through our product array. We use two
conversion specifications. The first ("%-20s") prints the product name as a string left-justified within a 20-character
field. The second conversion specification ("%20.2f") uses a field width specifier to ensure that output will be right-
aligned within a 20-character field, and it also uses a precision specifier to ensure that the double we output is rounded
to two decimal places.

Figure 8.3 shows the output of Listing 8.2.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 8.3. Products and prices formatted with printf().

Argument Swapping

As of PHP 4.0.6, you can use the format control string to change the order in which the provided arguments are
incorporated into output.

Imagine, for example, that we are printing dates to the browser. We have the dates in a multidimensional array and are
using printf() to format the output:

<?php
$dates = array(
      array( 'mon'=> 12, 'mday'=>25, 'year'=>2001 ),
      array( 'mon'=> 5, 'mday'=>23, 'year'=>2000 ),
      array( 'mon'=> 10, 'mday'=>29, 'year'=>2001 )
      );
$format = include ("local_format.php");
foreach ($dates as $date) {
  printf( "$format", $date['mon'], $date['mday'], $date['year'] );
}
?>

We are getting our format control string from an include file called local_format.php. Assume that this file contains only
the following:

<?php
return "%02d/%02d/%d<br/>";
?>

Our output is therefore in the format mm/dd/yyyy:

12/25/2001
05/23/2000
10/29/2001

Imagine now that we are installing our script for a British site. In the United Kingdom, dates are commonly presented
with days before months (dd/mm/yyyy). The core code cannot be changed, but configuration files such as
local_format.php can. Luckily, we can now alter the order in which the arguments are presented from within the format
control code:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


return "%2\$02d/%1\$02d/%3\$d<br/>";

We can insert the argument number we are interested in after the initial percentage character that marks each
conversion specification, followed by an escaped dollar character ($). So, in the previous fragment we are demanding
that the second argument be presented, followed by the first, followed by the third. The result is a list of dates in British
format:

25/12/2001
23/05/2000
29/10/2001

Storing a Formatted String

printf() outputs data to the browser, which means that the results are not available to your scripts. You can, however,
use the function sprintf(), which works in exactly the same way as printf() except that it returns a string you can then
store in a variable for later use. The following fragment uses sprintf() to round a double to two decimal places, storing
the result in $dosh:

$dosh = sprintf("%.2f", 2.334454);
print "You have $dosh dollars to spend";

A particular use of sprintf() is to write a formatted data to a file. You can call sprintf() and assign its return value to a
variable that can then be printed to a file with file_put_contents().
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Investigating Strings
You do not always know everything about the data with which you are working. Strings can arrive from many sources,
including user input, databases, files, and Web pages. Before you begin to work with data from an external source, you
often need to find out more about it. PHP provides many functions that enable you to acquire information about strings.

A Note About Indexing Strings

We will frequently use the word index in relation to strings. You will have come across the word more frequently in the
context of arrays. In fact, strings and arrays are not as different as you might imagine. You can think of a string as an
array of characters. So, you can access individual characters of a string as if they were elements of an array:

$test = "scallywag";
print $test[0]; // prints "s"
print $test[2]; // prints "a"

It is important to remember, therefore, that when we talk about the position or index of a character within a string,
characters—like array elements—are indexed from 0.

Finding the Length of a String with strlen()

You can use strlen() to determine the length of a string. strlen() requires a string and returns an integer representing the
number of characters in the variable you have passed it. strlen() is typically used to check the length of user input. The
following fragment tests a membership code to ensure that it is four digits long:

if ( strlen( $membership ) == 4 ) {
  print "Thank you!";
} else {
  print "Your membership number must have 4 digits";
}

The user is thanked for his input only if the global variable $membership contains four characters; otherwise, an error
message is generated.

Finding a Substring Within a String with strstr()

You can use strstr() to test whether a string exists embedded within another string. strstr() requires two arguments: a
source string and the substring you want to find within it. The function returns false if the substring is absent; otherwise,
it returns the portion of the source string beginning with the substring. For the following example, imagine that we want
to treat membership codes that contain the string AB differently from those that do not:

$membership = "pAB7";
if ( strstr( $membership, "AB") ) {
  print "Thank you. Don't forget that your membership expires soon!";
} else {
  print "Thank you!";
}

Because our test variable, $membership, does contain the string AB, strstr() returns the string AB7. This resolves to true
when tested, so we print a special message. What happens if our user enters "pab7"? strstr() is case sensitive, so AB is
not found. The if statement's test fails, and the default message is printed to the browser. If we want to search for
either AB or ab within the string, we must use stristr(), which works in exactly the same way but is not case sensitive.

Finding the Position of a Substring with strpos()

strpos() tells you both whether a string exists within a larger string and where it is to be found. strpos() requires two
arguments: the source string and the substring you are seeking. The function also accepts an optional third argument,
an integer representing the index from which you want to start searching. If the substring does not exist, strpos()
returns false; otherwise, it returns the index at which the substring begins. The following fragment uses strpos() to
ensure that a string begins with the string mz:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ensure that a string begins with the string mz:

$membership = "mz00xyz";
if ( strpos($membership, "mz") === 0 ) {
  print "hello mz";
}

Notice the trick we had to play to get the expected results. strpos() finds mz in our string, but it finds it at the first
element of the string. Therefore, it returns zero, which resolves to false in our test. To work around this, we use PHP's
equivalence operator (===), which returns true if the left and right operands are equivalent and of the same type.

Extracting Part of a String with substr()

substr() returns a portion of a string based on the start index and length of the portion for which you are looking. strstr()
demands two arguments—a source string and the starting index. It returns all the characters from the starting index to
the end of the string you are searching. substr() optionally accepts a third argument, which should be an integer
representing the length of the string you want returned. If this argument is present, substr() returns only the number of
characters specified from the start index onward:

$test = "scallywag";
print substr($test,6); // prints "wag"
print substr($test,6,2); // prints "wa"

If you pass substr() a negative number as its second (starting index) argument, it counts from the end rather than the
beginning of the string. The following fragment writes a specific message to people who have submitted an email
address ending in .uk:

$test = "matt@corrosive.co.uk";
if ( $test = substr( $test, -3 ) == ".uk") {
  print "Don't forget our special offers for British customers";
} else {
  print "Welcome to our shop!";
}

Tokenizing a String with strtok()

You can parsea string word by word using strtok(). strtok() initially requires two arguments, the string to be tokenized
and the delimiters by which to split the string. The delimiter string can include as many characters as you want. strtok()
returns the first token found, and after strtok() has been called for the first time, the source string is cached. For
subsequent calls, you should pass only strtok() the delimiter string. The function returns the next found token every time
it is called, returning false when the end of the string is reached. strtok() usually is called repeatedly within a loop. Listing
8.3 uses strtok() to tokenize a URL, splitting the host and path from the query string and further dividing the name/value
pairs of the query string. Figure 8.4 shows the output from Listing 8.3.

Figure 8.4. Tokenzing a string.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 8.3 Dividing a String into Tokens with strtok()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 8.3 Dividing a string into
 7:     tokens with strtok()</title>
 8: </head>
 9: <body>
10: <div>
11: <?php
12: $test = "http://p24.corrosive.co.uk/tk.php";
13: $test .= "?id=353&sec=44&user=harry&context=php";
14:
15: $delims = "?&";
16: $word = strtok( $test, $delims );
17: while ( is_string( $word ) ) {
18:  if ( $word ) {
19:    print "$word<br/>";
20:  }
21:  $word = strtok( $delims );
22: }
23: ?>
24: </div>
25: </body>
26: </html>

strtok() is something of a blunt instrument, and a few tricks are required to work with it. We first store the delimiters we
want to work with in a variable, $delims on line 15. We call strtok() on line 16, passing it the URL we want to tokenize
and the $delims string. We store the first result in $word. Within the conditional expression of the while loop on line 17,
we test that $word is a string. If it isn't, we know that the end of the string has been reached and no further action is
required.

We are testing the return type because a string containing two delimiters in a row would cause strtok() to return an
empty string when it reaches the first of these delimiters. So, a more conventional test such as

while ( $word ) {
   $word = strtok( $delims );
}

would fail if $word were an empty string, even if the end of the source string had not yet been reached.

Having established that $word contains a string, we can work with it. If $word does not contain an empty string, we print
it to the browser on line 19. We must then call strtok() again on line 21 to repopulate the $word variable for the next
test. Notice that we don't pass the source string to strtok() a second time. If we were to do this, the first word of the
source string would be returned again and we would find ourselves in an infinite loop.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Manipulating Strings
PHP provides many functions that transform a string argument, subtly or radically.

Cleaning Up a String with trim(), Itrim(), and strip_tags()

When you acquire text from the user or a file, you can't always be sure that you haven't also picked up white space at
the beginning and end of your data. trim() shaves any white space characters, including newlines, tabs, and spaces,
from both the start and end of a string. It accepts the string to be modified, returning the cleaned-up version:

$text = "\t\t\tlots of room to breathe";
$text = trim( $text );
print $text;
// prints "lots of room to breathe";

Of course, this might be more work than you require. You might want to keep white space at the beginning of a string
but remove it from the end. You can use PHP's rtrim() function exactly the same as you would trim(). Only white space at
the end of the string argument is removed, however:

$text = "\t\t\tlots of room to breathe  ";
$text = rtrim( $text );
print $text;
// prints "      lots of room to breathe";

PHP provides the ltrim() function to strip white space only from the beginning of a string. Once again, this is called with
the string you want to transform and returns a new string, shorn of tabs, newlines, and spaces:

$text = "\t\t\tlots of room to breathe  ";
$text = ltrim( $text );
print "<pre>$text</pre>";
// prints    "lots of room to breathe   ";

Notice that we wrapped the $text variable in a <pre> element. Remember that the <pre> element preserves space and
newlines, so we can use it to check on the performance of the ltrim() function.

PHP by its nature tends to work with markup text. It is not unusual to have to remove tags from a block to present it
without formatting. PHP provides the strip_tags() function, which accepts two arguments, for this purpose. The first
argument it accepts is the text to transform. The second argument is optional and should be a list of HTML tags that
strip_tags() can leave in place. Tags in the exception list should not be separated by any characters, like so:

$string = "<p>I <i>simply</i> will not have it,";
$string .= "<br/>said Mr Dean</p><b>The end</b>";
print strip_tags( $string, "<br/>" );

In the previous code fragment, we create an HTML-formatted string. When we call strip_tags(), we pass it the $string
variable and a list of exceptions. The result is that the <p> and <br/> elements are left in place and all other tags are
stripped out.

Replacing a Portion of a String Using substr_replace()

substr_replace() works similarly to substr() except it enables you to replace the portion of the string you extract. The
function requires three arguments: the string you are transforming, the text you want to add to it, and the starting
index. It also accepts an optional length argument. substr_replace() finds the portion of a string specified by the starting
index and length arguments, replacing this portion with the string provided in the replace string argument and returning
the entire transformed string.

In the following code fragment, to renew a user's membership code, we must change its second two characters:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<?
$membership = "mz99xyz";
$membership = substr_replace( $membership, "00", 2, 2);
print "New membership number: $membership<br/>";
// prints "New membership number: mz00xyz"
?>

Replacing Substrings Using str_replace()

str_replace() replaces all instances of a string within another string. It requires three arguments: a search string, the
replacement string, and the string on which this transformation is to be effected. The function returns the transformed
string. The following example uses str_replace() to change all instances of 2000 to 2001 within a string:

$string = "Site contents copyright 2003.";
$string .= "The 2003 Guide to All Things Good in Europe";
print str_replace("2003","2004",$string);

As of PHP 4.05, str_replace() has been enhanced to accept arrays as well as strings for all its arguments. This enables
you to perform multiple search and replace operations on a subject string, and even on more than one subject string:

<?php
$source = array(
"The package which is at version 4.2 was released in 2000",
  "The year 2000 was an excellent period for PointyThing4.2" );
$search = array( "4.2", "2000" );
$replace = array ( "5.0", "2001" );
$source = str_replace( $search, $replace, $source );
foreach ( $source as $str )
  print "$str<br>";

// prints:
// The package which is at version 5.0 was released in 2001
// The year 2001 was an excellent period for PointyThing5.0
?>

When str_replace() is passed an array of strings for its first and second arguments, it attempts to switch each search
string with its corresponding replace string in the text to be transformed. When the third argument is an array, the
str_replace() returns an array of strings. The search and replace operations are executed upon each string in the array.

Converting Case

PHP provides several functions that enable you to convert the case of a string. When you write user-submitted data to a
file or database, you might want to convert it all to upper-or lowercase text first, to let you more easily compare it
later. To get an uppercase version of a string, use the function strtoupper(). This function requires only the string you
want to convert and returns the converted string:

$membership = "mz00xyz";
$membership = strtoupper( $membership );
print "$membership<P>"; // prints "MZ00XYZ"

To convert a string to lowercase characters, use the function strtolower(). Again, this requires the string you want to
convert and returns a converted version:

$home_url = "WWW.CORROSIVE.CO.UK";
$home_url = strtolower( $home_url );
if ( ! ( strpos ( $home_url, "http://") === 0) )
  $home_url = "http://$home_url";
print $home_url; // prints "http://www.corrosive.co.uk"

PHP also provides a case function that has a useful cosmetic purpose. ucwords() makes the first letter of every word in a
string uppercase. The following fragment makes the first letter of every word in a user-submitted string uppercase:

$full_name = "violet elizabeth bott";
$full_name = ucwords ( $full_name );
print $full_name; // prints "Violet Elizabeth Bott"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


print $full_name; // prints "Violet Elizabeth Bott"

Although this function makes the first letter of each word uppercase, it does not touch any other letters. So, if the user
had had problems with her Shift key in the previous example and submitted VIolEt eLIZaBeTH bOTt, our approach would
not have done much to fix the string. We would have ended up with VIolEt ELIZaBeTH BOTt, which isn't much of an
improvement. We can deal with this by making the submitted string lowercase with strtolower() before invoking
ucwords():

$full_name = "VIolEt eLIZaBeTH bOTt";
$full_name =  ucwords( strtolower($full_name) );
print $full_name; // prints "Violet Elizabeth Bott"

Wrapping Text with wordwrap() and nl2br()

When you present plain text within a Web page, you are often faced with the problems that newlines are not displayed
and your text runs together into a featureless blob. nl2br() is a convenient method that converts every newline into an
HTML break. So

$string = "one line\n";
$string .= "another line\n";
$string .= "a third for luck\n";
print nl2br( $string );

prints the following:

one line<br />
another line<br />
a third for luck<br />

Notice that the <br> tags are output in XHTML-compliant form. This was introduced in PHP 4.0.5.

nl2br() is great for honoring newlines that are already in the text you are converting. Occasionally, though, you might
want to add arbitrary line breaks to format a column of text. The wordwrap() function is perfect for this; it requires one
argument, the string to be transformed. By default, wordwrap() wraps lines every 75 characters and uses \n as its line-
break character. So, the code fragment

$string = "Given a long line, wordwrap() is useful as a means of";
$string .= "breaking it into a column and thereby making it easier to read";
print wordwrap($string);

would output

Given a long line, wordwrap() is useful as a means of breaking it into a
column and thereby making it easier to read

Because the lines are broken with the character \n, the formatting does not show up in HTML mode. wordwrap() has two
more optional arguments: a number representing the maximum number of characters per line and a string representing
the end of the line string you want to use. Applying the function call

print wordwrap( $string, 24, "<br/>\n");

to our $string variable, our output would be

Given a long line,<br/>
wordwrap() is useful as<br/>
a means of breaking it<br/>
into a column and<br/>
thereby making it easier<br/>
to read

wordwrap() doesn't automatically break at your line limit if a word has more characters than the limit. You can, however,
use an optional fourth argument to enforce this. The argument should be a positive integer. Using wordwrap() in
conjunction with the fourth argument, we can now wrap a string, even where it contains words that extend beyond the
limit we are setting. This fragment

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$string = "As usual you will find me at http://www.witteringonaboutit.com/";
$string .= "chat/eating_green_cheese/forum.php. Hope to see you there!";
print wordwrap( $string, 24, "<br/>\n", 1 );

outputs the following:

As usual you will find<br/>
me at<br/>
http://www.witteringonab<br/>
outit.com/chat/eating_gr<br/>
een_cheese/forum.php.<br/>
Hope to see you there!

Breaking Strings into Arrays with explode()

The delightfully named explode() function is similar in some ways to strtok(). explode(), though, breaks up a string into an
array, which you can then store, sort, or examine as you want. explode() requires two arguments: the delimiter string
you want to use to break up the source string and the source string itself. explode() optionally accepts a third argument
that determines the maximum number of pieces the string can be broken into. The delimiter string can include more
than one character, all of which form a single delimiter (unlike multiple delimiter characters passed to strtok(), each of
which is a delimiter in its own right). The following fragment breaks up a date and stores the result in an array:

$start_date = "2000-01-12";
$date_array = explode ("-",$start_date);
// $date[0] == "2000"
// $date[1] == "01"
// $date[2] == "12"

Formatting Numbers As Text

We have already looked at printf() and sprintf(), which are powerful functions for formatting numbers of all types in a
string context. printf() is not, however, an ideal tool for adding commas to larger numbers. For that, we can turn to
number_format().

At a minimum, number_format() accepts a number to be transformed. It returns a string representation of the number
with commas inserted after every three digits, as shown here:

print number_format(100000.56 );
// 100,001

In the previous fragment, we pass 100000.56 to number_format(), and it returns 100,001. It has removed the decimal part
and rounded the number up and has also inserted a comma. We might want to keep the full number, so number_format()
enables us to determine the precision we require using a second argument: an integer. Here's how:

print number_format (100000.56, 2 );
// 100,001.56
print number_format(100000.56, 4 );
// 100,001.5600

We can even alter the characters used to represent the decimal point and the thousands separator. To do this, we
should pass two further strings to number_format()—the first representing the thousands separator and the second
representing the decimal point:

print number_format (100000.56, 2, "-", " ");
// 100 000-56

Formatting Currency with money_format()

The money_format() function is not available on Windows platforms.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although the printf() function is a useful way of presenting currency data, as of PHP 4.3, a more specialized tool has
become available. money_format() is similar to printf() and sprintf() in that it works with a format specification to transform
its data.

money_format() requires two arguments: a string containing a format specification and a double. It returns a formatted
string. In contrast to printf(), you cannot pass the function additional arguments, so you should use it to format one
number at a time.

The format specification should begin with a percent symbol and can be followed by optional flags, a field width
specifier, left and right precision specifiers, and a conversion character. Of these, only the percent character and the
conversion character are required.

The output of this function is affected by the locale of your system. This determines the symbol used for currency, the
decimal point character, and other attributes that change from region to region. For our examples, we will use a
function called setLocale() to set the context to U.S. English explicitly:

setLocale (LC_ALL, 'en_US');

Having done this, we can set up some test values and store them in an array:

$cash_array = array( 235.31, 5, 2000000.45 );

Let's take a look at the most basic format specification possible:

foreach ( $cash_array as $cash ) {
  print money_format ("%\n", $cash);
}
/*
$235.31
$5.00
$2,000,000.45
*/

We pass a string and a floating-point number, stored in the $cash variable, to money_format(). The format specification is
made up of the % character and a conversion character (n), which stands for "national." This conversion character
causes the number to be formatted according to national conventions for money. In this case, it signifies the use of the
dollar character, as well as commas inserted to break up the thousands in larger numbers. The alternative conversion
specifier is i, which causes an international format to be applied. Replacing the n specifier with an i specifier in the
previous fragment would yield the following:

USD 235.31
USD 5.00
USD 2,000,000.45

A field width specifier can optionally follow the percent character (or follow the flags described next if they are set). This
provides padding to ensure that the output matches at least the given number of characters:

foreach ( $cash_array as $cash ) {
  print money_format("%40n\n", $cash);
}
/*
                 $235.31
                  $5.00
              $2,000,000.45
*/

In the previous fragment, we set the field width to 40 simply by adding 40 to the format specification after the percent
sign. Notice that the numbers are rightaligned by default.

We can also define padding for the left side of the decimal point in a number using a left precision specifier. This follows
the field width specifier and consists of a hash character (#) followed by a number representing the number of
characters to pad:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


foreach ( $cash_array as $cash ) {
  print money_format("%#10n\n", $cash);
}
/*
 $     235.31
 $      5.00
 $  2,000,000.45
*/

In the example, we used #10 to pad the left side of the decimal place. Notice that the gap between the dollar character
and the decimal place is greater than 10 characters—this allows room for the grouping characters (that is, the commas
that separate the thousands in numbers to aid readability). So, to combine a field width of 40 with a left precision of 10,
we would use %40#10n. This would give us the following output:

$    235.31
$     5.00
$ 2,000,000.45

We can also control the number of decimal places to display using the right precision specifier. This follows the left
precision specifier and consists of a decimal point and the number of decimal places to display. To show five decimal
places, we might extend the previous format specification: %40#10.5n. This would give the following output:

$    235.31000
$     5.00000
$ 2,000,000.45000

Finally, you can use optional flags directly after the percent character to change the way in which formatting occurs.
Table 8.3 lists the available flags and shows their effects on output when applied to a format specifier of %#10n. Let's
take a look at the effect of this format specifier without a flag:

print money_format("%#10n", -2000000.45);
/*
-$ 2,000,000.45
*/

Table 8.3. Format Specifier Flags
Flag Description Example Format Example Output

! Suppress currency character %!#10n - 2,000,000.45

^ Suppress number grouping %^#10n -$ 2000000.45

+ Include +/-symbol %+#10n -$ 2,000,000.45

( Use brackets to distinguish minus numbers %(#10n ($ 2,000,000.45)

- Left-justify (default is right-justify) %-#10n -$2,000,000.45

=n Use n character to fill left padding %=.#10n -$....2,000,000.45

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
Strings are PHP's principal means of communication with the outside world and of storing information for later use. This
hour has covered some of the functions that enable you to take control of the strings in your scripts.

You learned how to format strings with printf() and sprint(). You should be able to use these functions both to create
strings that transform data and to lay it out. You learned about functions that investigate strings. You should now be
able to discover the length of a string with strlen(), determine the presence of a substring with strpos(), and extract a
substring with substr(). You should also be able to tokenize a string with strtok().

Finally, you learned about functions that transform strings. You can now remove white space from the beginning or end
of a string with trim(), itrim(), and rtrim(). You can change case with strtoupper(), strtolower(), and ucwords(), and you can
replace all instances of a string with str_replace().

Finally, you learned about two functions for formatting numbers:

number_format () and money_format ().

Believe it or not, you are not finished with strings yet. PHP supports regular expressions, which are an even more
powerful means of working with strings than the functions already examined. We will look at these in detail in Hour 18,
"Working with Regular Expressions."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are there any other string functions that might be useful to me?

A1: Yes. PHP has about 60 string functions! You can read about them all in the PHP online manual at
http://www.php.net/manual/ref.strings.php.

Q2: In the example that demonstrated printf(), you showed the formatting by wrapping your output
in <pre> tags. Is this the best way of showing formatted plain text on a browser?

A2: <pre> tags can be useful if you want to preserve plain-text formatting in an HTML context. If you want to
output an entire text document to the browser, however, it is neater to tell the browser to format the
entire output as plain text. You can do this with the header() function:

Header ("Content-Type: Text/Plain");

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which conversion specifier would you use with printf() to format an integer as a double? Write down the full
syntax required to convert the integer 33.

2: How would you pad the conversion you effected in question 1 with zeroes so that the part before the
decimal point is four characters long?

3: How would you specify a precision of two decimal places for the floating-point number you have been
formatting in the previous questions?

4: Which function would you use to determine the length of a string?

5: Which function would you use to acquire the starting index of a substring within a string?

6: Which function would you use to extract a substring from a string?

7: How might you remove white space from the beginning of a string?

8: How would you convert a string to uppercase characters?

9: How would you break up a delimited string into an array of substrings?

Answers

A1: The conversion specifier f is used to format an integer as a double:

printf("%f", 33 );

A2: You can pad the output from printf() with the padding specifier—that is, a space or a zero followed by a
number representing the number of characters by which you want to pad:

printf("%04f", 33 );

A3: The precision specifier consists of a dot (.) followed by a number representing the precision you want to
apply. It should be placed before the conversion specifier:

printf("%4.2f", 33 );

A4: The strlen() function returns the length of a string.

A5: The strstr() function returns the starting index of a substring.

A6: The substr() function extracts and returns a substring.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A6: The substr() function extracts and returns a substring.

A7: The ltrim() function removes white space from the start of a string.

A8: The strtoupper() function converts a string to uppercase characters.

A9: The explode() function splits up a string into an array.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a function that works with two arguments. The first argument should be a username, and the second

should be an email address. Use case conversion functions to capitalize the first letter of the username. Convert
the email address to lowercase characters and check that it contains the @ sign. If you can't find the @
character, return false; otherwise, return an array containing the converted arguments. Test the function.

2. Create an array of doubles and integers. Loop through the array converting each element to a floating-point
number with a precision of 2. Right-align the output within a field of 20 characters.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 9. Objects
What You'll Learn in This Hour:

What objects and classes are

How to create classes and instantiate objects

How to create and access properties and methods

How to manage access to properties and methods

How to create classes that inherit functionality from others

How to find out about objects in your code

How to save objects to a string that can be stored in a file or database

Object-oriented programming is dangerous. It can change the way you think about coding, and once the concepts have
a hold on you, they don't let go. PHP, like Perl before it, has progressively incorporated more object-oriented aspects
into its syntax and structure. PHP 4 made it possible to use object-oriented code at the heart of a project. PHP 5 has
extended PHP's object-oriented features still further.

Throughout this hour, you'll take a tour of PHP's object-oriented features and apply them to some real-world code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is an Object?
An object is an enclosed bundle of variables and functions forged from a special template called a class. Objects hide a
lot of their inner workings away from the code that uses them, providing instead easy interfaces through which you can
send them orders and they can return information. These interfaces are special functions called methods. All the
methods of an object have access to special variables called properties.

By defining a class, you lay down a set of characteristics. By creating objects of that type, you create entities that share
these characteristics but might initialize them as different values. You might create an automobile class, for example.
This class would have a color characteristic. All automobile objects would share the characteristic of color, but some
would initialize it to "blue," others to "green," and so on.

Perhaps the greatest benefit of object-oriented code is its reusability. Because the classes used to create objects are
self-enclosed, they can be easily pulled from one project and used in another. Additionally, it is possible to create child
classes that inherit and override the characteristics of their parents. This technique can allow you to create
progressively more complex and specialized objects that can draw on base functionality while adding more of their own.

Perhaps the best way to explain object-oriented programming is to do it.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating an Object
To create an object, you must first design the template from which it can be instantiated. This template is known as a
class, and in PHP, you must declare it with the class keyword:

class Item {
  // a very minimal class
}

The Item class is the basis from which you can instantiate any number of Item objects. To create an instance of an
object, you must use the new statement:

$obj1 = new Item();
$obj2 = new Item();
print "\$obj1 is an ".gettype($obj1)."<br />";
print "\$obj2 is an ".gettype($obj2)."<br />";

You can test that $obj1 and $obj2 contain objects with PHP's gettype() function. gettype() accepts any variable and returns
a string that should tell you what you are dealing with. In a loosely typed language like PHP, gettype() is useful when
checking arguments sent to functions. In the previous code fragment, gettype() returns the string "object", which is then
written to the browser.

So you have confirmed that you have created two objects. Of course, they're not very useful yet, but they help to make
an important point. You can think of a class as a mold with which you can press as many objects as you want. Let's add
some more features to the class to make your objects a little more interesting.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Object Properties
Objects have access to special variables called properties. You can declare them anywhere within the body of your
class, but for the sake of clarity, you should define them at the top. A property can be a value, an array, or even
another object:

class Item {
  var $name = "item";
}

Notice that we declared our variable with the var keyword. In PHP 4, this was the only way to declare a property. We
will look at some additional approaches that PHP 5 makes available later in the hour. If you are writing code that needs
to be compatible with PHP 4, then you should use var.

Now any Item object that is created contains a property called $name with the value of "item". You can access this
property from outside the object and even change it:

class Item {
   var $name = "item";
}

$obj1 = new Item();
$obj2 = new Item();
$obj1->name = "widget 5442";
print "$obj1->name<br />";
print "$obj2->name<br />";

// prints:
// widget 5442
// item

The -> operator allows you to access or change the properties of an object. Although $obj1 and $obj2 were born with the
name of "item", we have given $obj2 an individual identity by assigning the string "widget 5442" to its $name property,
before using the -> operator once again to print each object's name property to the screen.

You can use objects to store information, but that makes them only a little more interesting than associative arrays. In
the next section, we will look at object methods, and your objects can get a little more active.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Object Methods
A method is a function defined within a class. Every object instantiated from the class has the method's functionality.
Listing 9.1 adds a method to the Item class (line 5).

Listing 9.1 A Class with a Method

 1: <?php
 2:class Item {
 3:  var $name = "item";
 4:
 5:  function getName() {
 6:    return "item";
 7:  }
 8: }
 9:
10: $item = new Item ();
11: print $item->getName ();
12: // outputs "item"
13: ?>

As you can see, a method looks and behaves much like a normal function. A method is always defined within a class,
however. You can call an object method using the -> operator. Importantly, methods have access to the class's
member variables. In Listing 9.2, we return the string "item" when asked for the Item object's name. Clearly, this isn't
good practice: the method's return value should be a copy of the $name property and not a string literal. You've already
seen how to access a property from outside an object, but how does an object refer to itself? Find out in Listing 9.2.

Listing 9.2 Accessing a Property from Within a Method

 1:<?php
 2:class Item {
 3:  var $name = "item";
 4:
 5:  function getName () {
 6:    return $this->name;
 7:  }
 8: }
 9:
10: $item = new Item ();
11: $item->name = "widget 5442";
12: print $item->getName ();
13: // outputs "widget 5442"
14: ?>

A class uses the special variable $this to refer to the currently instantiated object (line 6). You can think of it as a
personal pronoun. Although you refer to an object by the handle you have assigned it to ($item, for example), an object
must refer to itself by means of the $this variable. Combining the $this pseudovariable and ->, you can access any
property or method in a class from within the class itself.

Imagine that you want to allow some objects to have different $name property values than others. You could do this by
manually resetting the $name property as you did earlier, or you could create a method to do it for you, as shown in
Listing 9.3 on line 10.

Listing 9.3 Changing the Value of a Property from Within a Method

 1:<?php
 2: class Item {
 3:   var $name = "item";
 4:
 5:   function setName( $n ) {
 6:     $this->name = $n;
 7:   }
 8:
 9:   function getName() {
10:     return $this->name;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


10:     return $this->name;
11:   }
12: }
13:
14: $item = new Item();
15: $item->setName("widget 5442");
16: print $item->getName ();
17: // outputs "widget 5442"
18: ?>

The name property of the object begins as "item" (line 3), but after the object's setName() method is called on line 15, it
is changed to "widget 5442". Notice how the object is capable of adjusting its own property. Notice also that you can pass
arguments to the method in exactly the same way as you would to a normal function.

Object Constructors

In our previous example, we used a method, setName(), to amend the $name property. The initial value for the name
property was hard-coded into the class:

var $name = "item";

If we expect the $name property to hold a different value for every instance of the Item class, we would do better to
offer the client coder the chance to set the $name property when the object is initialized. We can use a special function
called a constructor to set properties and perform any other preparatory work we require. A constructor is
automatically called when the object is instantiated using the new keyword.

You can create constructors in two ways. Prior to PHP 5, the constructor was always a function that took the same
name as the class that contained it. Listing 9.4 adds a traditional constructor to the Item class. This code remains valid
in PHP 5.

Listing 9.4 A Class with a Constructor

 1:<?php
 2: class Item {
 3:   var $name;
 4:
 5:   function Item( $name="item") {
 6:     $this->name = $name;
 7:   }
 8:
 9:   function setName( $n) {
10: $this->name = $n;
11: }
12:
13: function getName () {
14: return $this->name;
15: }
16: }
17:
18: $item = new Item("widget 5442");
19: print $item->getName ();
20: // outputs "widget 5442"
21: ?>

The Item() constructor method on line 5 is automatically called when we instantiate an Item object. We set up a default
so that the string "item" is assigned to the parameter if we don't include an argument when we create our object.

PHP 5 introduces a new syntax for constructor methods. Instead of using the name of the class, you can use the special
syntax __construct(). So we could convert line 5 of Listing 9.4 to use the new syntax by replacing Item() with
___construct():

function __construct( $name="listing") {
  // ..
}

This is not change for its own sake. We will encounter a good reason for using the new constructor syntax later in the
chapter.

The ___construct() Method Works with PHP 5 Only

The __construct() method was introduced with PHP 5. The method name
does not have special significance in PHP 4, and the method is not called

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


does not have special significance in PHP 4, and the method is not called
automatically.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Limiting Access to Object Properties
PHP 4 provided no protection for object properties. Client code could get or set object properties at will. So what's
wrong with that? Often, there is no problem having publicly accessible properties, although it is generally good practice
to narrow access to your objects as much as possible. In Listing 9.5, we can see a condition in which we would
definitely want to limit access to the $name property in our Item class.

Listing 9.5 A Class with Public Properties

 1: <?php
 2: class item {
 3:   var $name;
 4:   var $code;
 5:   var $productString;
 6:
 7:   function Item( $name="item", $code=0 ) {
 8:     $this->name = $name;
 9:     $this->code = $code;
10:    $this->setName( $name );
11: }
12:
13: function getProductString () {
14:   return $this->productString;
15:  }
16:
17:  function setName( $n ) {
18:    $this->name = $n;
19:    $this->productString = $this->name." ".$this->code;
20:  }
21:
22:  function getName () {
23:    return $this->name;
24:  }
25: }
26:
27: $item = new Item ("widget", 5442);
28: print $item->getProductString ();
29: // outputs "widget 5442"
30:
31: print "<br />";
32:
33: $item->name = "widget-upgrade";
34: print $item->getProductString ();
35: // outputs "widget 5442", not "widget-upgrade 5442"
36: ?>

We have made some changes to the Item class in Listing 9.5. The constructor now expects two arguments on line 7,
$name and $code. In our example, then, a product has a human-readable name (such as widget) and a product code
(such as 5442) used by a database. We have a new property, $productString, which is a combination of the item's $name
and $code properties. Whenever client code uses setName() to change the name property on line 17, the method also
updates $productString. So when we bypass the setName() method on line 33 and set the $name property manually, we
break the object. The $productString property is no longer correct.

PHP 5 gives us a different way to declare our properties. In place of the var keyword, we could use one of three new
keywords. They will be familiar to anyone moving from Java to PHP. We list PHP 5's new property declaration keywords
in Table 9.1.

Table 9.1. PHP 5 Property Declaration Keywords
Privacy Level Description

public Accessible to all. Equivalent to var.

private Available only to the containing class.

protected Available only to the containing class and subclasses.

We can amend our properties in Listing 9.5 to make them private:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


private $name;
private $code;
private $productString;

Now, our attempt to change the $name property of the Item object on line 34 would result in the following error
message:

[View full width]

Fatal error: Cannot access private property Item::$name in /home/mz/htdocs/Listing 9.5.php on
 line 33

Client coders are now forced to use the setName() method to change the $name property.

The private keyword is the most extreme mechanism for ensuring privacy. You might often want child classes to have
access to a property. In these cases, you would use the protected keyword, which allows no access from client code but
does allow access by classes derived from the current class. We will look at inheritance and privacy in the section
"Inheritance."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Limiting Access to Object Methods
A principle of object-oriented code is that you should only expose as much of a class as you absolutely have to. Objects
should have clearly defined responsibilities and clear public interfaces. You might want to create all sorts of utility
methods for a function. Unless they are useful to client code, and part of the class's core responsibility, you should hide
them from the wider world. Let's say, for example, that we would like to delegate the creation of the $productString
property in Listing 9.5 to a method.

Currently, all work takes place in the setName() method:

function setName( $n ) {
  $this->name = $n;
  $this->productString = $this->name." ".$this->code;
}

Because the mechanism for creating product strings might become more complex, and because other methods might
want to reset the string themselves for various reasons, we extract the line that assigns to the $productString property,
replacing it with a call to a new method:

function setName( $n ) {
  $this->name = $n;
  $this->makeProductString( $n, $this->code );
}
function makeProductString( $string, $code) {
  return $this->productString = "$string $code";
}

Of course, we've now made trouble for ourselves because client code can access the makeProductString() method and
mess with our data. We want the object and only the object to construct this property. In PHP 5, we can apply privacy
to methods just as we can to properties:

private function makeProductString( $string, $code) {
  // ...

The makeProductString() function is now accessible only by methods in the Item class. You can apply three possible
privacy keywords to method declarations. public is the default and is implicit. A method declared with the public keyword
(or with no privacy keyword at all) is accessible from any context. Methods declared private are accessible only to other
methods in the enclosing class. Methods declared with the protected keyword are available only to the enclosing class
and any child classes that extend the closing class. Once again, we will cover child classes in the section "Inheritance,"
later in this chapter.

public, protected, and private Work with PHP 5 Only The keywords public,
protected, and private were introduced with PHP 5. Using them with methods
or properties in PHP 4 will cause your script to fail.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Constraining Arguments to Methods with Hints
In PHP 4, and most of the time in PHP 5, you have to rely on type-checking code and naming conventions to signal the
argument types your methods expect. This generally suffices but can lead to error-prone code when the wrong data
type is passed to the wrong argument variable.

Let's create a method that collects Item objects to illustrate some of the dangers that a relaxed attitude toward type can
bring:

class ItemLister {
  private $items = array();

  function addItem( $item ) {
    array_push( $this->items, $item );
  }

  function splurgeItems () {
    foreach( $this->items as $item ) {
      print $item->getProductString ();
      print "<br />";
    }
  }
 }

The ItemLister class is very simple indeed. It uses the addItem() method to collect Item objects. The splurgeItems() method
simply loops through all stored Item objects, calling the getProductString() method on each of them. Here's how we might
work with the ItemLister class:

$lister = new ItemLister();
$lister->addItem( new Item ("widget", 5442) );
$lister->addItem( new Item ("spogget", 676) );
$lister->addItem( new Item ("kapotchnak", 88) );
$lister->addItem( new Item ("floobit", 21) );
$lister->splurgeItems ();

As long as you are in charge of working with ItemLister, all should be well. What happens, though, if a coder joins your
project without a good understanding of Item and ItemLister objects and passes an ItemLister the wrong kind of object?

class WrongClass { }
$lister = new ItemLister();
$lister->addItem( new WrongClass() );
$lister->splurgeItems ();

This code generates an error, but only when the splurgeItems() method of the ItemLister object attempts to invoke
WrongClass::getProductString():

[View full width]

Fatal error: Call to undefined method wrongclass::getProductString() in /home/mz/htdocs
/wrongargs.php on line 11

In other words, the ItemLister class has stored the wrong kind of object in its $items property, and we only find out about
it some time later. This kind of separation between the cause of an error and its effect can be hard to debug. Ideally,
we want to catch the error when addItem() is called and not at some indeterminate future point.

We can do so in PHP 4 by adding type-checking code to addItem(). This is a timeconsuming chore, however, and in
practice usually omitted. We will cover techniques for testing object types in the section "Testing Classes and Objects."

PHP 5 gives us a neat way of constraining the type of object arguments. We can use hints. A hint is simply the name of
an object type placed before the argument variable in a method declaration:

function addItem( Item $item ) {
 array_push( $this->items, $item );
}

If anything other than an Item object is passed to addItem() in this fragment, a fatal error is generated:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If anything other than an Item object is passed to addItem() in this fragment, a fatal error is generated:

Fatal error: Argument 1 must be an instance of Item

Unfortunately, this kind of checking only works with objects. You still must manually test primitive types such as
integers and floats.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Inheritance
To create a class that inherits functionality from a parent class, we need to alter our class declaration slightly. Listing
9.6 simplifies the Item class and creates an inheriting class called PriceItem.

Listing 9.6 Creating a Class That Inherits from Another

 1:<?php
 2:class Item {
 3:  var $name;
 4:
 5:  function Item( $name="item", $code=0) {
 6:    $this->name = $name;
 7:    $this->code = $code;
 8:  }
 9:
10:  function getName() {
11:   return $this->name;
12:  }
13: }
14:
15: class PriceItem extends Item {
16:
17: }
18:
19: $item = new PriceItem( "widget", 5442 );
20: print $item->getName ();
21: // outputs "widget"
22:
23: ?>

In addition to the simple Item class defined on line 2, we have created an even more basic PriceItem class on line 15.
Notice the extends clause in the class declaration. This means that a PriceItem object inherits all the functionality laid
down in the Item class. Any PriceItem object will have access to a getName() method and a name property just as any Item
object would (depending upon privacy settings).

If that's not enough, there's even more magic in Listing 9.6. Notice that we didn't define a constructor method for the
PriceItem class. So how was the $name property changed from the default, "item", to the value ("widget") passed to the
PriceItem class? Because we didn't provide a constructor in PriceItem, the Item class's constructor was automatically
called.

If a class extending another doesn't contain a constructor method, the
parent class's constructor method will be called automatically when a child
object is created. This feature was introduced in PHP 4.

Overriding the Method of a Parent Class

The PriceItem class currently creates objects that behave in exactly the same way as Item objects. In object-oriented
code, child classes can override the methods of their parents, allowing objects instantiated from them to behave
differently, while otherwise retaining much of the same functionality. Listing 9.7 gives the PriceItem class its own
getName() method.

Listing 9.7 The Method of a Child Class Overriding That of Its Parent (PHP 4
Syntax)

 1:<?php
 2: class Item {
 3:   var $name;
 4:
 5:   function Item( $name="item", $code=0) {
 6:     $this->name = $name;
 7:     $this->code = $code;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 7:     $this->code = $code;
 8:   }
 9:
10:  function getName() {
11:    return $this->name;
12:  }
13: }
14:
15: class PriceItem extends Item {
16:   function getName() {
17:     return "(price)."$this->name;
18:   }
19: }
20:
21: $item = new PriceItem( "widget", 5442 );
22: print $item->getName();
23: // outputs "(price) widget"
24:
25: ?>

The getName() method in the PriceItem class (line 16) is called in preference to that in the parent class. At this point, we
can pause for a moment and consider the effect of making the $name property in the Item class private:

class Item {
  private $name;
  // ...

Making this change to Listing 9.7 would cause the output to change from the following:

(price) widget

The new output is

(price)

The PriceItem class does not have access to the $name property. If your child classes need to access methods or
properties of their ancestor classes, then you should use the protected keyword in preference to private.

Calling an Overridden Method

Occasionally, you want the functionality of a parent class's method as well as the benefit of your own additions. Object-
oriented programming allows you to have your cake and eat it, too. You can refer to a parent class using the parent
keyword. In Listing 9.8, the PriceItem's getName() method calls the method in the Item class that it has overridden.

Listing 9.8 Calling an Overridden Method (PHP 5 Syntax)

 1: <?php
 2: class Item {
 3:   private $name;
 4:
 5:   function __construct( $name="item", $code=0 ) {
 6:     $this->name = $name;
 7:     $this->code = $code;
 8:   }
 9:
10:  function getName() {
11:    return $this->name;
12:  }
13:}
14:
15:class PriceItem extends Item {
16:  function getName() {
17:    return "(price) ".parent::getName ();
18:  }
19:}
20:
21:$item = new PriceItem ("widget", 5442);
22:print $item->getName();
23:// outputs "(price) widget"
24:
25:?>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


25:?>

By using the following syntax, we can call any method that we have overridden:

parent::methodname ()

We do so in the PriceItem class's getName() method on line 17. Because the PriceItem class no longer works directly with
the Item class's $name property, we could at this point declare the $name property private, with no effect on output. If
you are working exclusively with PHP 5, it is good practice to lock down your methods and properties as far as you can.

Working with Constructors

We have seen that a parent class's constructor is automatically called if the child class does not define its own
constructor method. If the child class does define a constructor, it becomes responsible for calling the constructor of its
parent. In Listing 9.9, we add a constructor to our PriceItem class.

Listing 9.9 Adding a Constructor to PriceItem

 1:<?php
 2:class Item {
 3:  private $name;
 4:
 5:  function __construct( $name="item", $code=0 ) {
 6:    $this->name = $name;
 7:    $this->code = $code;
 8:  }
 9:
10:  function getName () {
11:    return $this->name;
12:  }
13:}
14:
15:class PriceItem extends Item {
16:  private $price;
17:
18:  function __construct( $name, $code, $price ) {
19:    parent::__construct( $name, $code );
20:    $this->price = $price;
21:  }
22:
23:  function getName() {
24:    return "(price) ".parent::getName ();
25:  }
26:}
27:
28:$item = new PriceItem ("widget", 5442, 5.20);
29:print $item->getName ();
30:// outputs "(price) widget"
31:
32:?>

We create a constructor method on line 18, accepting arguments for name and code and adding a new one for price.
We use the parent keyword to invoke the Item class's constructor (line 19) before setting the $price property ourselves.
It is here that we can see one reason for PHP 5's new syntax for constructors. The following line is nicely generic:

parent::__construct( $name, $code );

If we insert a new class into the inheritance hierarchy between Item and PriceItem, the constructor of the new class
would be invoked according to the altered extends clause of PriceItem. Prior to PHP 5, however, it was necessary to refer
to a parent class's constructor, which was the name of the parent class itself:

parent:Item( $name, $code );

It was a common bug in object-oriented code that a class's extends clause would be modified to point to an intermediate
parent class, and the constructor call would be forgotten, causing unexpected and hard-to-analyze errors. The new
syntax addresses this bug to some extent.

We will return to the Item and PriceItem classes in Hour 17, "Advanced Objects."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Testing Classes and Objects
We have already seen how we can use functions like gettype(), is_int(), and so on to test data types. This process is very
useful in ensuring that functions are supplied with the right arguments.

The Reflection API

If you want to examine your script's objects, methods, and properties in
fine detail at runtime, you should look at another feature new to PHP 5.
Discussing the Reflection API is beyond the scope of this book, but by the
time you read this, documentation for it should be available in the manual
at http://www.php.net/manual.

The Reflection API is a set of built-in classes with methods for discovering
everything you might need to know about an object's class given an
instance of the object. Typical uses for this tool include automatic
documentation and dynamic mechanisms for querying objects and saving
their data to relational databases.

All objects belong to the "object" data type, but we sometimes need more information than that.

Finding the Class of an Object

We have already seen that we can use hints with PHP 5 to ensure that we are working with an object belonging to a
particular type. Sometimes, you might still want to confirm the type of an object. You can query the type of any object
with the get_class() function. get_class() accepts an object and returns the name of its class (in lowercase letters). So
given an array of objects, you might want to test each one before working with it:

foreach ( $objectArray as $obj ) {
  if ( get_class( $obj ) == "priceitem" ) {
    print "doing a pricey thing\n";
  } else {
    die ("not designed to handle ".get_class( $obj ) );
  }
}

get_class() will only tell us that an object belongs to a certain class. This information is of limited use. We generally need
to know the type of an object rather than its class. In the preceding fragment, a subclass of PriceItem would fail the
get_class() test. This is probably not what we want because objects from PriceItem subclasses are guaranteed to support
the same interface as those instantiated from PriceItem itself.

Finding the Family of an Object

In PHP 4, the is_a() function provides us with the best tool for determining type. is_a() accepts an object and the name
of the class from which the object should be derived. If the object's class is the same as, or a subclass of, the class
argument provided, the function returns true; otherwise, it returns false.

So if you are not running PHP 5, or if you have written PHP 4 compatible code, you can test a method to an argument
using is_a():

function addItem( $item ) {
  if ( ! is_a( $item, "item" ) ) {
    die( "required a item object" );
  }
  array_push ( $this->items, $item );
}

When testing object types in PHP 5, you should use the new instanceof keyword. instanceof provides the same information
as the is_a() function, but it uses operator rather than function syntax. You can see it in action in the following
fragment:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


fragment:

if (! $item instanceof item) {
  //...
}

The object to be tested is the left operand, and the class name to test the object against is the right operand. The
entire expression reads like a sentence: "$item is an instance of item".

Checking for Class and Method Existence

As libraries grow, classes become increasingly interdependent. With this interdependence comes the possibility that a
class might attempt to invoke another that is not available to the script. PHP provides you with functions for testing
both class and method existence.

class_exists() requires a string representing a class name. If the user-defined class is found, the function returns true.
Otherwise, it returns false. class_exists() is especially useful when using class names stored in strings:

if ( class_exists( $class_name ) ) {
  $obj = new $class_name( );
}

method_exists() requires two arguments, an object and a string containing the name of the method you are checking for:

if ( method_exists( $filter_object, "filter") ) {
  print $filter_object->filter( "hello you<br />" );
}
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Automatically Loading Include Files with ___autoload()

In a large project, code files tend to fill up with calls to include_once(). Very often, you will find that you are loading
many files unnecessarily as you copy around amended source files. By the same token, you waste time adding
include_once() calls to class files, only to run the script and discover that more files need including. PHP 5 provides the
built-in __autoload() function, which is automatically called whenever you try to instantiate an nonexistent class.
__autoload() is passed a string variable representing the class name that was not found. You can then use this string to
include a source file:

<?php
function ___autoload ($class) {
  $file = "$class.inc.php";
  include_once( $file );
}
$test = new Artichoke ();
?>

In this fragment, we attempt to instantiate an object from a nonexistent Artichoke class. __autoload() is automatically
called. As long as a file called artichoke.inc.php exists and contains the Artichoke class, the file will be included and the
object instantiated. Remember, however, that __autoload was introduced with PHP 5.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Storing and Retrieving Objects
Usually, you separate your objects from data storage. In other words, you use saved data to construct objects, and
then when you are done, you store the data again. Occasionally, however, you want your object and data to persist
intact. PHP provides two functions to help you.

To "freeze-dry" an object, you should pass it to the serialize() function. serialize() produces a string that you can then
store in a file or a database or transmit to another script:

class apple {
  var $flavor="sweet";
}
$app = new apple();
$stored = serialize( $app );
print $stored;
// prints "0:5:"apple":1:{s:6:"flavor";s:5:"sweet";}"

You can convert the string produced by serialize() back into an object with the unserialize() function. If the original class is
present at the time unserialize() is called, an exact copy of the original object is produced:

$new_app = unserialize( $stored );
print $new_app->flavor;
// prints "sweet"

In some circumstances, you need your objects to clean up a little before storage. This cleanup is particularly important
if an object has a database connection open or is working with a file. By the same token, you might want your object to
perform some sort of initialization when it is woken up. You can handle these needs by including two special methods in
any object that might need to be serialized.

The __sleep() method is automatically called by serialize() before it packs up the object. This process allows you to
perform any cleanup operations you might need. For the serialization to work, your __sleep() method must return an
array of the property names that you want to be saved in the serialized string:

class apple {
  var $flavor="sweet";
  var $frozen = 0;
  function ___sleep( ) {
    $this->frozen++;
    // any clean up stuff goes here
    return array_keys( get_object_vars( $this) );
  }
}
$app = new apple ( );
$stored = serialize( $app );
print $stored;
// prints "0:5:"apple":2:{s:6:"flavor";s:5:"sweet";s:6:"frozen";i:1;}"

Notice the trick we used at the end of the __sleep() method to list the names of all the properties in the object. We used
the built-in function get_object_vars(). This function requires an object and returns an associative array of all the
properties belonging to it. We pass the result of our call to get_object_vars() to the array_keys() function. array_keys()
accepts an array (usually an associative array) and returns an array of its keys.

PHP also supports a special method called __wakeup(). If it is defined, it is automatically called by unserialize(). This
process enables you to resume database connections or to provide any other initialization the object might need. We
might add the following method to our apple class:

function __wakeup( ) {
  print "This apple has been frozen ".$this->frozen." time(s)";
  // any initialization stuff goes here
}

Now that we have added __wakeup(), we can call unserialize();

$new_app = unserialize( $stored );
// prints "This apple has been frozen 1 time(s)"
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
We have only scratched the surface of PHP's support for objects in this hour. We will cover more in Hour 17.

The extent to which you use objects and classes in your projects is a matter of choice. It is likely that heavily object-
oriented projects will be somewhat more resource-intensive at runtime than more traditional code. However, effective
deployment of object-oriented techniques can significantly improve the flexibility and organization of your code.

Throughout this hour, you learned how to create classes and instantiate objects from them. You learned how to create
and access properties and methods. You learned how to build new classes that inherit and override the features of other
classes.

Finally, you learned how to determine the class of an object and whether an object's class is a subclass of another.

Now that we have covered the core of the PHP language, we are ready to move on and begin to explore some of its
wider features. In the next hour, we look at PHP's support for handling HTML forms.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: This hour introduced some unfamiliar concepts. Do I really need to understand object-oriented
programming to become a good PHP programmer?

A1: The short answer is no. Most PHP scripts use little or no object-oriented code at all. The object-oriented
approach won't help you do things that you couldn't otherwise achieve. The benefits of object-oriented
programming lie in the organization of your scripts, their reusability, and their extensibility. The benefits of
object-oriented design can be enormous, however, which is one reason why PHP 5 provides extended
support for objects.

Even if you decide not to produce object-oriented code, you might need to decipher third-party programs
that contain classes. This hour should help you understand such code.

Q2: I'm confused by the special variable $this.

A2: Within a class, you sometimes need to call the class's methods or access its properties. By combining the
$this variable and the -> operator, you can do both. The $this variable is the handle a class is automatically
given to refer to itself and to its components.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: How would you declare a class called emptyClass() that has no methods or properties?

2: Given a class called emptyClass(), how would you create an object that is an instance of it?

3: How can you declare a property within a class?

4: How would you choose a name for a constructor method?

5: How would you prevent a method from being accessed except from within the current class and child
classes?

6: How would you create a private method in PHP 4?

7: How can you access and set properties or methods from within a class?

8: How would you access an object's properties and methods from outside the object's class?

9: What should you add to a class definition if you want to make it inherit functionality from another class?

Answers

A1: You can declare a class with the class keyword:

class emptyClass {
}

A2: You should use the new operator to instantiate an object:

$obj = new emptyClass( );

A3: In PHP 4, you can declare a property using the var keyword:

class Point {
  // properties
  var $x = 0;
  var $y = 0;
}

Using PHP 5, you can also use the private, protected, or public keywords.

A4: A constructor must either take the name of the class that contains it (for PHP 4 compatibility) or it should
be named ___construct().

A5: You can limit the availability of a method to the current class and child classes by using the protected

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A5: You can limit the availability of a method to the current class and child classes by using the protected
keyword:

protected function dontTouchMe( ) {
  // no access outside current class and children
}

A6: There is no way of enforcing privacy in PHP 4. There is, however, a convention that functions beginning
with an underscore character should be treated as private:

function _pleaseDontTouchMe () {
// not enforceable
}

A7: Within a class, you can access a property or method by combining the $this variable and the -> operator:

class Point {
  // properties
  public $x = 0;
  public $y = 0;

  // constructor
  function ___construct( $x, $y ) {
    // calling a method
    $this->moveTo( $x, $y );
  }

  // method
  public function moveTo( $x, $y ) {
    // setting properties
    $this->x = $x;
    $this->y = $y;
  }
}

A8: You can call an object's methods and access its properties using a reference to the object (usually stored
in a variable) in conjunction with the -> operator:

// instantiating an object
$p = new Point( 40, 60 );

// calling an object's method
$p->moveTo( 20, 200 );

// accessing an object's property
print $p->x;

A9: For a class to inherit from another, it must be declared with the extends keyword and the name of the class
from which you want to inherit:

class funkyPoint extends Point {
}

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a class called baseCalc() that stores two numbers as properties. Give it a calculate() method that prints the

numbers to the browser.

2. Create a class called addCalc() that inherits its functionality from baseCalc(). Override the calculate() method so
that the sum of the properties is printed to the browser.

3. Repeat activity 2 for a class called minusCalc(). Give minusCalc() a calculate method that subtracts the first
property from the second, outputting the result to the browser.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part III : Working with PHP
 HOUR 10 Working with Forms

 HOUR 11 Working with Files

 HOUR 12 Working with the DBA Functions

 HOUR 13 Database Integration—SQL

 HOUR 14 Beyond the Box

 HOUR 15 Images On-the-Fly

 HOUR 16 Working with Dates and Times

 HOUR 17 Advanced Objects

 HOUR 18 Working with Regular Expressions

 HOUR 19 Saving State with Cookies and Query Strings

 HOUR 20 Saving State with Session Functions

 HOUR 21 Working with the Server Environment

 HOUR 22 XML

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 10. Working with Forms
What You'll Learn in This Hour:

How to get and use server variables

How to access information from form fields

How to work with form elements that allow multiple selections

How to create a single document that contains both an HTML form and the PHP code that handles its
submission

How to save state with hidden fields

How to redirect the user to a new page

How to build HTML forms that upload files and how to write the PHP code to handle them

Until now, all the examples in this book have been missing a crucial dimension. You can set variables and arrays, create
and call functions, and work with objects. All this work is meaningless if users can't reach into a language's environment
to offer it information. In this hour, you will look at strategies for acquiring and working with user input.

On the World Wide Web, HTML forms are the principle means by which substantial amounts of information can pass
from the user to the server. PHP is designed to acquire and work with information submitted via HTML forms.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Superglobal Variables
Before you actually build a form and use it to acquire data, we need to make a small detour and look at superglobal
variables. We first met global variables in Hour 6, "Functions." A global variable is any variable declared at the "top
level" of a script—that is, declared outside a function. Superglobal variables are arrays built in to PHP. They are
populated for you automatically with useful elements, and they are available in any scope. You can access a superglobal
array within a function or method without using the global keyword. We will encounter superglobal variables throughout
the rest of this book. Table 10.1 provides a summary.

Table 10.1. PHP Superglobal Arrays
Array Description

$_COOKIE Contains keys and values set as browser cookies

$_ENV Contains keys and values set by the script's shell context

$_FILES Contains information about uploaded files

$_GET Contains keys and values submitted to the script using the HTTP get method

$_POST Contains keys and values submitted to the script using the HTTP post method

$_REQUEST A combined array containing values from the $_GET, $_POST, and $_COOKIES superglobal arrays

$_SERVER Variables made available by the server

$GLOBALS Contains all global variables associated with the current script

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The $_SERVER Array
The $_SERVER array contains elements set by your script's context, usually the server. There is no guarantee that any or
all of the common elements will be set in it. If you are running PHP as a server module, however, it is likely that you
will find at least the elements summarized in Table 10.2. They can be very useful in providing additional information
about the context of a user request.

In Listing 10.1, we loop through the $_SERVER array, printing the results to the browser.

Listing 10.1 Looping Through the $_SERVER Array

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.1 Looping through the $_SERVER array</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: foreach ( $_SERVER as $key=>$value ) {
12:    print "\$_SERVER[\"$key\"] == $value<br/>";
13: }
14: ?>
15: </div>
16: </body>
17: </html>

We use a foreach loop to access the keys and values in $_SERVER, printing to the browser on line 12. If PHP is running as
a server module, you should find the elements listed in Table 10.2 in the output.

Table 10.2. Some Common $_SERVER Elements
Variable Contains Example

$_SERVER['PHP_SELF'] The current script. Suitable for use in links and form
element action arguments.

/phpbook/source/listing10.1.php

$_SERVER['HTTP_USER_AGENT'] The name and version of the client. Mozilla/4.6 –(X11; I;Linux2.2. 6-
15apmac ppc)

$_SERVER['REMOTE_ADDR'] The IP address of the client. 158.152.55.35

$_SERVER['REQUEST_METHOD'] Whether the request was GET or POST. POST

$_SERVER['QUERY_STRING'] For GET requests, the encoded data sent appended to
the URL.

name=matt&address=unknown

$_SERVER['REQUEST_URI'] The full address of the request, including query string. /phpbook/source/listing10.1.php?
name=matt

$_SERVER['HTTP_REFERER'] The address of the page from which the request was
made.

http://p24.corrosive.co.uk/ref.html

Note the PHP_SELF element in particular. We use it to point forms and links back at their enclosing scripts in examples
throughout this book.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A Script to Acquire User Input
For now, we'll keep our HTML separate from our PHP code. Listing 10.2 builds a simple HTML form.

Listing 10.2 A Simple HTML Form

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.2 A Simple HTML Form</title>
 7: </head>
 8: <body>
 9: <div>
10: <form action="listing10.3.php" method="get">
11: <p><input type="text" name="user"/></p>
12: <p>
13: <textarea name="address" rows="5" cols="40">
14: </textarea>
15: </p>
16: <p><input type="submit" value="hit it!" /></p>
17: </form>
18: </div>
19: </body>
20: </html>>

We define a form that contains a text field with the name "user" on line 11, a text area with the name "address" on line
13, and a submit button on line 16. It is beyond the remit of this book to cover HTML in detail. If you find the HTML in
these examples hard going, take a look at Sams Teach Yourself HTML in 24 Hours or one of the numerous online HTML
tutorials. The form element's action argument points to a file called listing10.3.php, which processes the form information.
Because we haven't added anything more than a filename to the action argument, the file listing10.3.php should be in the
same directory on the server as the document that contains our HTML.

Listing 10.3 creates the code that receives our users' input.

Listing 10.3 Reading Input from the Form in Listing 10.2

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.3 Reading Input from the Form in Listing 10.2</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: print "Welcome <b>".$_GET['user']."</b><br/>\n\n";
12: print "Your address is: <br/><b>".$_GET['address']."</b>";
13: ?>
14: </div>
15: </body>
16: </html>

This script is the first script in this book that is not designed to be called by hitting a link or typing directly into the
browser's location field. We include the code from Listing 10.3 in a file called listing10.3.php. This file is called when a
user submits the form defined in Listing 10.2.

In the code, we have accessed two elements of the superglobal $_GET array, user and address. It should come as no
surprise that these variables contain the values that the user added to the text field named "user" and the text area
named "address". We use the $_GET array because the form uses the HTTP get method to submit its data. Had we used
the HTTP post method, we would have accessed elements of the $_POST array:

<form action="listing10.3.php" method="post">

We do not have to know or test the submission method used, however. PHP provides us with the $_REQUEST array. It
will contain the merged contents of $_POST, $_GET, and $_COOKIE. We could therefore rewrite the code to output our

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


will contain the merged contents of $_POST, $_GET, and $_COOKIE. We could therefore rewrite the code to output our
elements in Listing 10.3 so that the script would work with both post and get methods.

print "Welcome <b>".$_REQUEST['user']."</b><br/>\n\n";
print "Your address is: <br/><b>".$_REQUEST['address']."</b>"; mmnmnnnn ,, nn l ln ,

The register_globals php.ini Directive Is Disabled

Versions of PHP prior to 4.2 shipped with the php.ini register_globals directive
set to 'Yes' by default. This caused submitted parameters ('user' and
'address' in Listing 10.2) to be generated as global variables ($user,
$address). This functionality is now disabled by default, and register_globals
is set to 'No'. You can reverse this setting yourself by setting register_globals
back to 'Yes' in the php.ini file, but use of automatic globals is now actively
discouraged because of the potential security risks involved.

The superglobal variables $_GET, $_SET, and $_REQUEST are unaffected by
the register_globals directive.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Importing User Input into Global Scope
It is possible, but not recommended, to import fields from a form submission into global variables. This behavior was
once the default for PHP. Although it was useful for quick scripts, it represented a security risk, with the prospect of
user-submitted values overwriting script variables. You can change the new default by altering the php.ini file. You can
also import user input explicitly with the import_request_variables() function. This function requires a string representing
the types to import and another optional but advisable string that adds a prefix to all imported variable names. The
types argument can be any combination of g, p and c, standing for get, post, and cookies, respectively. If you only use
one or two of these letters, then only the corresponding parameters are imported. The order is important in that earlier
types are overwritten by later ones. That is, with the string gp, get variables are overwritten by post variables of the
same name. Suppose an input element called username is submitted via the get method:

<input type="text" name="username" />

We could call import_request_variables() in the following way:

import_request_variables( "g", "import_" );

This line would create a global variable called $import_username, containing the user-submitted value for the username
field. All other fields submitted would be similarly imported.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Accessing Form Input with User-Defined Arrays
The examples so far enable us to gather information from HTML elements that submit a single value per element name.
This leaves us with a problem when working with select elements. These elements make it possible for the user to
choose multiple items. Suppose we name the select element with a plain name:

<select name="products" multiple="multiple">

The script that receives this data will only have access to a single value corresponding to this name in
$_REQUEST['products']. We can change this behavior by renaming any elements of this kind so that its name ends with an
empty set of square brackets. We do so in Listing 10.4.

Listing 10.4 An HTML Form with a select Element

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.4 An HTML Form with a 'select' Element</title>
 7: </head>
 8: <body>
 9: <div>
10: <form action="listing10.5.php" method="post">
11: <p><input type="text" name="user" /></p>
12: <p>
13: <textarea name="address" rows="5" cols="40">
14: </textarea>
15: </p>
16: <p>
17: <select name="products[]" multiple="multiple">
18: <option>Sonic Screwdriver</option>
19: <option>Tricorder</option>
20: <option>ORAC AI</option>
21: <option>HAL 2000</option>
22: </select>
23: </p>
24: <p><input type="submit" value="hit it!" /></p>
25: </form>
26: </div>
27: </body>
28: </html>

In the script that processes the form input, we now find that input from the "products[]" form element created on line 17
will be available as an array indexed by the name products in either $_POST or $_REQUEST. products[] is a select element,
and we offer the user multiple choices using the option elements on lines 18 to 21. We demonstrate that the user's
choices are made available in an array in Listing 10.5.

Listing 10.5 Reading Input from the Form in Listing 10.4

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.5 Reading Input from the Form in Listing 10.4</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: print "Welcome <b>".$_POST['user']."</b><br/>\n";
12: print "Your address is:<br/><b>".$_POST['address']."</b><br/>\n";
13:
14: if ( is_array( $_POST['products'] ) ) {
15: print "<p>Your product choices are:</p>\n";
16: print "<ul>\n";
17:     foreach ( $_POST['products'] as $value ) {
18:        print "<li>$value</li>\n";
19:     }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


19:     }
20: print "</ul>\n";
21: }
22: ?>
23: </div>
24: </body>
25: </html>

On line 11, we access the $_POST['user'] element, which is derived from the user form element. On line 14, we test the
$_POST['products'] element. If the element is an array as we expect, we loop through it on line 17, outputting each choice
to the browser on line 18.

Although this technique is particularly useful with the select element, in fact it works with any form element at all. By
giving a number of check boxes the same name, for example, you can allow a user to choose many values within a
single field name. As long as the name you choose ends with empty square brackets, PHP compiles the user input for
this field into an array. We can replace the select element from lines 12–17 in Listing 10.4 with a series of check boxes
to achieve exactly the same effect:

<input type="checkbox" name="products[]" value="Sonic Screwdriver" />Sonic Screwdriver<br/>
<input type="checkbox" name="products[]" value="Tricorder" />Tricorder<br/>
<input type="checkbox" name="products[]" value="ORAC AI" />ORAC AI<br/>
<input type="checkbox" name="products[]" value="HAL 2000" />HAL 2000<br/>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Combining HTML and PHP Code on a Single Page
For some smaller scripts, you might want to include form-parsing code on the same page as a hard-coded HTML form.
Such a combination can be useful if you need to present the same form to the user more than once. You would have
more flexibility if you were to write the entire page dynamically, of course, but you would miss out on one of the great
strengths of PHP. The more standard HTML you can leave in your pages, the easier they will be for designers and page
builders to amend without reference to you. You should avoid scattering substantial chunks of PHP code throughout
your documents, however. This practice makes them hard to read and maintain. Where possible, you should create
functions that can be called from within your HTML code and can be reused in other projects.

For the following examples, imagine that we are creating a site that teaches basic math to preschool children and have
been asked to create a script that takes a number from form input and tells the user whether it is larger or smaller than
a target integer.

Listing 10.6 creates the HTML. For this example, we need only a single text field and some PHP to display the user
input.

Listing 10.6 An HTML Form That Calls Itself

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.6 An HTML Form that Calls Itself</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: if ( ! empty( $_POST['guess'] ) ) {
12:     print "last guess: ".$_POST['guess'];
13: }
14: ?>
15: <form method="post" action="<?php print $_SERVER['PHP_SELF']?>">
16: <p>
17: Type your guess here: <input type="text" name="guess" />
18: </p>
19: </form>
20: </div>
21: </body>
22: </html>

We open our form element on line 15. Notice that we use $_SERVER['PHP_SELF'] to point the form back at its enclosing
script. We could leave the action element out altogether, and most browsers would resubmit the form by default. That
would break our conformance to XHTML, however. On line 11, we test the $_POST array for the existence of a 'guess'
element and print it to the browser if we find it.

In Listing 10.7, we begin to build up the PHP logic of the page. First, we need to define the number that the user will
guess. In a fully working version, we would probably randomly generate it, but for now we keep it simple. We assign 42
to the $num_to_guess variable on line 2. Next, we need to decide whether the form has been submitted so that we do
not attempt to assess arguments that have not yet been made available. We test that the 'guess' element has been set
in the $_POST array on line 4. If a user has submitted the form, this element is set, even if he has submitted an empty
string or 0. So if the 'guess' element is absent, we can safely assume that the user has arrived at the page without
submitting a form. If the element is present, we can go ahead and test the value it contains.

Listing 10.7 A PHP Number-Guessing Script

 1: <?php
 2: $num_to_guess = 42;
 3: $message = "";
 4: if ( ! isset( $_POST['guess'] ) ) {
 5:    $message = "Welcome to the guessing machine!";
 6: } else if ( $_POST['guess'] > $num_to_guess ) {
 7:    $message = $_POST['guess']." is too big! Try a smaller number";
 8: } else if ( $_POST['guess'] < $num_to_guess ) {
 9:    $message = $_POST['guess']." is too small! Try a larger number";
10: } else { // must be equivalent
11:    $message = "Well done!";
12: }
13:
14: ?>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


14: ?>
15: <!DOCTYPE html PUBLIC
16:     "-//W3C//DTD XHTML 1.0 Strict//EN"
17:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
18: <html>
19: <head>
20: <title>Listing 10.7 A PHP Number Guessing Script</title>
21: </head>
22: <body>
23: <h1>
24: <?php print $message ?>
25: </h1>
26: <form method="post" action="<?php print $_SERVER['PHP_SELF']?>">
27: <p>
28: Type your guess here: <input type="text" name="guess" />
29: <input type="submit" value="submit" />
30: </p>
31: </form>
32: </body>
33: </html>

The logic of this script consists of an if statement that determines which string to assign to the variable $message. If the
$_POST['guess'] element has not been set, we assume that the user has arrived for the first time and assign a welcome
string to the $message variable on line 5.

Otherwise, we test the 'guess' element against the number we have stored in $num_to_guess and assign advice to
$message accordingly. We test whether 'guess' is larger than $num_to_guess on line 6 and whether it is smaller than
$num_to_guess on line 8. If 'guess' is neither larger nor smaller than $num_to_guess, we can assume that it is equivalent
and assign a congratulations message to the variable (line 11). Now all we need to do is print the $message variable
within the body of the HTML.

There are a few more additions yet, but you can probably see how easy it would be to hand this page over to a
designer. He can make it beautiful without having to disturb the programming in any way.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Using Hidden Fields to Save State
The script in Listing 10.7 has no way of knowing how many guesses a user has made. We can use a hidden field to keep
track of this. The mark-up for a hidden field is similar to that of a text field. From the user's perspective, however, it
has no output. A user cannot see a hidden field, unless he views the HTML source of the document that contains it.
Listing 10.8 adds a hidden field to the number-guessing script and some PHP to work with it.

Listing 10.8 Saving State with a Hidden Field

 1: <?php
 2: $num_to_guess = 42;
 3: $message = "";
 4: if ( ! isset( $_POST['guess'] ) ) {
 5:    $message = "Welcome to the guessing machine!";
 6: } else if ( $_POST['guess'] > $num_to_guess ) {
 7:    $message = $_POST['guess']." is too big! Try a smaller number";
 8: } else if ( $_POST['guess'] < $num_to_guess ) {
 9:    $message = $_POST['guess']." is too small! Try a larger number";
10: } else { // must be equivalent
11:    $message = "Well done!";
12: }
13: $guess = (int) $_POST['guess'];
14: $num_tries = (int) $_POST['num_tries'];
15: $num_tries++;
16: ?>
17: <!DOCTYPE html PUBLIC
18:     "-//W3C//DTD XHTML 1.0 Strict//EN"
19:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
20: <html>
21: <head>
22: <title>Listing 10.8 A PHP Number Guessing Script</title>
23: </head>
24: <body>
25: <div>
26: <h1>
27: <?php print $message ?>
28: </h1>
29: Guess number: <?php print $num_tries?><br/>
30:
31: <form method="post" action="<?php print $_SERVER['PHP_SELF']?>">
32: <p>
33: <input type="hidden" name="num_tries" value="<?php print $num_tries?>" />
34: Type your guess here: <input type="text" name="guess"
35:                         value="<?php print $guess?>"/>
36: </p>
37: </form>
38: </div>
39: </body>
40: </html>

The hidden field on line 33 is given the name "num_tries". We also use PHP to write its value. While we're at it, we do the
same for the "guess" field on line 27 so that the user can always see his last guess. This technique is useful for scripts
that parse user input. If we were to reject a form submission for some reason, we can at least allow our user to edit his
previous query.

You Can Automate print() with Short Opening Tags

When you need to output the value of an expression to the browser, you
can of course use print() or echo(). When you are entering PHP mode
explicitly to output such a value, you can also take advantage of a special
extension to PHP's short opening tags. If you add an equals (=) sign to the
short PHP opening tag, the value contained will be printed to the browser.
Note the following line:

<? print $test;?>

It is equivalent to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<?=$test?>

Remember, though, that the short open tag might be disabled on some
sites and interfere with XML.

The variables $guess and $num_tries were extracted from the $_POST array on lines 13 and 14. We cast the values to
integers and add one to $num_tries. The $num_tries variable is written to the value of the hidden field named 'num_tries' on
line 33. Every time the user submits the form, the $_POST['num_tries'] element will have been incremented.

Be Careful with Client Stored Data

Don't entirely trust hidden fields. You don't know where their values have
been! This isn't to say that you shouldn't use them; just be aware that
your users are capable of viewing and amending source code should they
want to cheat your scripts.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Redirecting the User
Our simple script still has one major drawback. The form is rewritten whether or not the user guesses correctly. The
fact that the HTML is hard-coded makes it difficult to avoid writing the entire page. We can, however, redirect the user
to a congratulations page, thereby sidestepping the issue altogether.

When a server script communicates with a client, it must first send some headers that provide information about the
document to follow. PHP usually handles this task for you automatically, but you can choose to send your own header
lines with PHP's header() function.

To call the header() function, you must be sure that no output has been sent to the browser. The first time that content
is sent to the browser, PHP sends out headers and it is too late for you to send your own. Any output from your
document, even a line break or a space outside of your script tags, causes headers to be sent. If you intend to use the
header() function in a script, you must make certain that nothing precedes the PHP code that contains the function call.
You should also check any libraries that you might be using.

Listing 10.9 shows a request (lines 1 and 2) followed by typical response headers sent to the browser by PHP.

Listing 10.9 A Request Prompts Response Headers from a PHP Script

 1: HEAD /phpbook/source/listing10.8.php HTTP/1.0
 2: Host:matt.corrosive.co.uk
 3:
 4: HTTP/1.1 200 OK
 5: Date: Wed, 03 Sep 2003 13:52:09 GMT
 6: Server: Apache/2.0.47 (Unix) PHP/5.0.0b1
 7: X-Powered-By: PHP/5.0.0b1
 8: Connection: close
 9: Content-Type: text/html; charset=ISO-8859-1

You Can Browse the Web with Telnet

You can see headers sent in response to a request by using a Telnet client.
Connect to a Web host at port 80 and then type

HEAD /path/to/file.html HTTP/1.0
Host:www.example.com

followed by two returns. The headers should appear on your client.

By sending a "Location" header instead of PHP's default, you can cause the browser to be redirected to a new page:

header( "Location: http://www.corrosive.co.uk" );

Assuming that we have created a suitably upbeat page called congrats.html, we can amend our number-guessing script
to redirect the user if she guesses correctly, as shown in Listing 10.10.

Listing 10.10 Using header() to Send Raw Headers

 1: <?php
 2: $num_to_guess = 42;
 3: $message = "";
 4: if ( ! isset( $_POST['guess'] ) ) {
 5:    $message = "Welcome to the guessing machine!";
 6: } else if ( $_POST['guess'] > $num_to_guess ) {
 7:    $message = $_POST['guess']." is too big! Try a smaller number";
 8: } else if ( $_POST['guess'] < $num_to_guess ) {
 9:    $message = $_POST['guess']." is too small! Try a larger number";
10: } else { // must be equivalent
11:     header("Location:congrats.html");
12:     exit;
13: }
14: $guess = (int) $_POST['guess'];

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


14: $guess = (int) $_POST['guess'];
15: $num_tries = (int) $_POST['num_tries'];
16: $num_tries++;
17: ?>
18: <!DOCTYPE html PUBLIC
19:     "-//W3C//DTD XHTML 1.0 Strict//EN"
20:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
21: <html>
22: <head>
23: <title>Listing 10.10 A PHP Number Guessing Script</title>
24: </head>
25: <body>
26: <div>
27: <h1>
28: <?php print $message ?>
29: </h1>
30: Guess number: <?php print $num_tries?><br/>
31:
32: <form method="post" action="<?php print $_SERVER['PHP_SELF']?>">
33: <p>
34: <input type="hidden" name="num_tries" value="<?php print $num_tries?>" />
35: Type your guess here: <input type="text" name="guess"
36:                         value="<?php print $guess?>"/>
37: </p>
38: </form>
39: </div>
40: </body>
41: </html>

The else clause of our if statement on line 10 now causes the browser to request congrats.html. We ensure that all output
from the current page is aborted with the exit statement on line 12, which immediately ends execution and output,
whether HTML or PHP.

Remember that sending content to the browser causes HTTP headers to be sent. If you then call the header() function,
you cause an error. You code defensively by checking that headers have not been sent before calling header():

if ( ! headers_sent() ) {
    header( "Location: http://www.example.com" );
    exit;
}

If headers have been sent, the headers_sent() function returns true. headers_sent() also optionally accepts two empty
variables, into which it places the filename and line number, defining the point at which headers were sent. This
function can be very useful for debugging:

if ( headers_sent( $file, $num ) ) {
    print "headers were sent in file: $file on line: $line";
}

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

File Upload Forms and Scripts
So far we've looked at simple form input. Browsers Netscape 2 or better and Internet Explorer 4 or better all support
file uploads, and so, of course, does PHP. In this section, you will examine the features that PHP makes available to deal
with this kind of input.

First, we need to create the HTML. HTML forms that include file upload fields must include an ENCTYPE argument:

ENCTYPE="multipart/form-data"

PHP also works with an optional hidden field that you can insert before the file upload field. It should be called
MAX_FILE_SIZE and should have a value representing the maximum size in bytes of the file that you are willing to accept.
This size cannot override the maximum size set in the upload_max_filesize field in your php.ini file that defaults to 2MB.
The MAX_FILE_SIZE field is obeyed at the browser's discretion, so you should rely upon the php.ini setting to cap
unreasonable uploads. After the MAX_FILE_SIZE field is entered, you are ready to add the upload field itself. It is simply
an input element with a type argument of "file". You can give it any name you want. Listing 10.11 brings all this work
together into an HTML upload form.

Listing 10.11 A Simple File Upload Form

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.11 A Simple File Upload Form</title>
 7: </head>
 8: <body>
 9: <form enctype="multipart/form-data"
10:    action="<?print $_SERVER['PHP_SELF']?>" method="post">
11: <p>
12: <input type="hidden" name="MAX_FILE_SIZE" value="102400" />
13: <input type="file" name="fupload" /><br/>
14: <input type="submit" value="upload!" />
15: </p>
16: </form>
17: </body>
18: </html>

Notice that once again, this form calls the page that contains it. We are going to add some PHP code to handle the
uploaded file. We limited file uploads to 100KB on line 12 and named our upload field "fupload" on line 13. As you might
expect, this name will soon become important.

When a file is successfully uploaded, it is given a unique name and stored in a temporary directory. On Unix systems,
the default temporary directory is /tmp, but you can set it with the upload_tmp_dir directive in php.ini.

Information about the uploaded file will become available to you in the superglobal $_FILES array, which will be indexed
by the names of each upload field in the form. The corresponding value for each of these keys is itself an associative
array. These fields are described in Table 10.2.

Table 10.2. $_FILE Elements
Element Contains Example

$ FILES['fupload']['name'] Name of uploaded file test.gif

$_FILES['fupload']['tmp_name'] Path to temporary file /tmp/phprDfZvN

$_FILES['fupload']['size'] Size (in bytes) of uploaded file 6835

$_FILES['fupload']['error'] An error code corresponding to a PHP constant UPLOAD_ERR_FORM_SIZE

$_FILES['fupload']['type'] MIME type of uploaded file (where given by client) image/gif

You can use the error element of an element in $_FILES to diagnose the reason for a failed upload. Assuming a file
upload named 'fupload', we would find the error code in

$_FILES['fupload']['error]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 10.3 lists the possible error codes.

Table 10.3. $_FILE Error Constants
Constant Name Value Explanation

UPLOAD_ERR_OK 0 No problem

UPLOAD_ERR_INI_SIZE 1 File size exceeds php.ini limit set in upload_max_filesize

UPLOAD_ERR_FORM_SIZE 2 File size exceeds limit set in hidden element named MAX_FILE_SIZE

UPLOAD_ERR_PARTIAL 3 File only partially uploaded

UPLOAD_ERR_NO_FILE 4 File was not uploaded

Armed with this information, we can write a quick and dirty script that displays information about uploaded files (see
Listing 10.12). If the uploaded file is in GIF format, the script will even attempt to display it.

Listing 10.12 A File Upload Script

 1: <!DOCTYPE html PUBLIC
 2:     "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:     "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 10.12 A File Upload Script</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: if ( isset( $_FILES['fupload'] ) ) {
12:
13:     print "name: ".     $_FILES['fupload']['name']       ."<br />";
14:     print "size: ".     $_FILES['fupload']['size'] ." bytes<br />";
15:     print "temp name: ".$_FILES['fupload']['tmp_name']   ."<br />";
16:     print "type: ".     $_FILES['fupload']['type']       ."<br />";
17:     print "error: ".    $_FILES['fupload']['error']      ."<br />";
18:
19:     if ( $_FILES['fupload']['type'] == "image/gif" ) {
20:
21:         $source = $_FILES['fupload']['tmp_name'];
22:         $target = "upload/".$_FILES['fupload']['name'];
23:         move_uploaded_file( $source, $target );// or die ("Couldn't copy");
24:         $size = getImageSize( $target );
25:
26:         $imgstr = "<p><img width=\"$size[0]\" height=\"$size[1]\" ";
27:         $imgstr .= "src=\"$target\" alt=\"uploaded image\" /></p>";
28:
29:         print $imgstr;
30:     }
31: }
32: ?>
33: </div>
34: <form enctype="multipart/form-data"
35:     action="<?php print $_SERVER['PHP_SELF']?>" method="post">
36: <p>
37: <input type="hidden" name="MAX_FILE_SIZE" value="102400" />
38: <input type="file" name="fupload" /><br/>
39: <input type="submit" value="upload!" />
40: </p>
41: </form>
42: </body>
43: </html>

In Listing 10.12, we first check that the $_FILES['fupload'] element exists. If so, we can assume that the user has at least
attempted to upload a file. We output each of the elements of the $_FILES['fupload'] array on lines 13 to 17. We then test
the $_FILES['fupload']['type'] element. If we are dealing with a GIF image file, we can go ahead and print an img element.
To do so, we need to move the uploaded file away from its temporary location (stored in $_FILES['fupload']['tmp_name'])
and to a directory in our Web space. We use a new function, move_uploaded_file(), to achieve this goal on line 23.
move_uploaded_file() requires two arguments, a source and a destination, and moves one to the other. It is the safest
way of working with uploaded files because it confirms that the source file referenced is an uploaded file and not a
server file that should not be exposed to the world at large. Having moved the file to our Web space, we call another
new function, getImageSize(). getImageSize() requires a path to an image and returns an array. The first two elements of
the return array are the width and height of the image. We now have enough information to write out an img element,
which we do on line 27.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


which we do on line 27.

Do Not Expect Sensible Filenames!

Beware of the names of uploaded files. Operating systems such as Mac OS
and Windows are pretty relaxed when it comes to file naming, so expect
uploaded files to come complete with spaces, quotation marks, and all
manner of other unexpected characters. It is therefore a good idea to filter
filenames. You can learn more about techniques for testing and checking
strings in Hour 8, "Working with Strings," and Hour 18, "Working with
Regular Expressions."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
If you've kept up so far, things should be getting exciting now. You have the tools to create truly sophisticated and
interactive environments. There are still a few things missing, of course. Now that you can get information from the
user, it would be nice to be able to do something with it—write it to a file, perhaps. That is the subject of the next hour.

Throughout this hour, you have learned how to work with the $_SERVER, $_POST, $_GET, $_REQUEST, and $_FILE
superglobal arrays to acquire predefined variables, form input, and uploaded file information. You have also learned
how to send raw headers to the client to redirect a browser. You have learned how to acquire list information from form
submissions and how to pass information from script call to script call using hidden fields.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Can I create arrays for values entered into elements other than select and check box fields?

A1: Yes, in fact any element name ending with empty square brackets in a form resolves to an array element
when the form is submitted. You can use this fact to group values submitted from multiple fields of any
type into an array.

Q2: The header() function seems powerful. Will we look at HTTP headers in more detail?

A2: We cover HTTP (Hypertext Transfer Protocol) in more detail in Hour 14, "Beyond the Box."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which $_SERVER array element could you use to determine the IP address of a user?

2: Which predefined variable could you use to find out about the browser that called your script?

3: What should you name your form fields if you want to find an array in the element $_REQUEST['form_array']?

4: Which superglobal associative array contains all values submitted as part of a GET request?

5: Which superglobal associative array contains all values submitted as part of a POST request?

6: What function would you use to redirect the browser to a new page? What string would you pass it?

7: How can you limit the size of a file that a user can submit via a particular upload form?

8: How can you set a limit on the size of upload files for all forms and scripts?

Answers

A1: The $_SERVER['REMOTE_ADDR'] element should store the user's IP address.

A2: Browser type and version, as well as the user's operating system, are usually stored in an element called
'HTTP_USER_AGENT' in the $_SERVER array.

A3: Creating multiple fields with the name form_array[] creates a populated array in $_REQUEST['form_array']
when the form is submitted.

A4: The superglobal array $ GET contains all values submitted as part of a GET request.

A5: The superglobal array $_POST contains all values submitted as part of a POST request.

A6: You can redirect a user by calling the header() function. You should pass it a Location header:

header("Location: anotherpage.html");

A7: When creating upload forms in PHP, you can include a hidden field called MAX_FILE_SIZE:

<input type="hidden" name="MAX_FILE_SIZE" value="51200" />

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: The php.ini option upload_max_filesize determines the maximum size of an upload file that any script will
accept. It is set to 2MB by default.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a calculator script that allows the user to submit two numbers and choose an operation to perform on

them (addition, multiplication, division, subtraction).

2. Use hidden fields with the script you created in exercise 1 to store and display the number of requests that the
user has submitted.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 11. Working with Files
What You'll Learn in This Hour:

How to include files in your documents

How to test files and directories

How to open a file before working with it

How to read data from files

How to write or append to a file

How to lock a file

How to work with directories

Testing, reading, and writing to files are staple activities for any full-featured programming language. PHP is no
exception, providing you with functions that make the process straightforward.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Including Files with include()

The include() statement enables you to incorporate files into your PHP documents. PHP code in these files can be
executed as if it were part of the main document. This can be useful for including library code in multiple pages.

Having created a killer function, your only option without include() would be to paste it into every document that needs
to use it. Of course, if you discover a bug or want to add a feature, you must find every page that uses the function to
make the change. The include() statement can save you from this chore. You can add the function to a single document
and, at runtime, read this into any page that needs it. The include() statement requires a single argument—a relative
path to the file to be included. Listing 11.1 creates a simple PHP script that uses include() to incorporate and output the
contents of a file.

PHP also provides the require() statement, which is identical to include() in
almost every respect. The key difference is that require() halts script
execution if the file it seeks to include cannot be found. The include()
statement generates a warning if a file cannot be found but does not stop
execution.

Listing 11.1 Using include()

 1: <!DOCTYPE html PUBLIC
 2:   "-/w3c//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.1 Using include()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: include("listing11.2.php");
12: ?>
13: </div>
14: </body>
15: </html>

The include() statement in Listing 11.1 incorporates the document listing11.2.php, the contents of which you can see in
Listing 11.2. When run, Listing 11.1 outputs the string "I have been included!!", which might seem strange, given that we
have included plain text within a block of PHP code. Shouldn't this cause an error? In fact, the contents of an included
file are displayed as HTML by default. If you want to execute PHP code in an included file, you must enclose it in PHP
start and end tags. In Listings 11.3 and 11.4, we amend the previous example so that code is executed in the included
file.

Listing 11.2 The File Included in Listing 11.1

1: I have been included!!

Listing 11.3 Using the include() Statement to Execute PHP in Another File

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.3 Using include() to Execute PHP in Another File</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title> Listing 11.3 Using include() to Execute PHP in Another File</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: include("listing11.4.php");
12: ?>
13: </div>
14: </body>
15: </html>

Listing 11.4 An Include File Containing PHP Code

1: <?php
2: print "I have been included!!<BR>";
3: print "But now I can add up.. 4 + 4 = ".(4 + 4);
4: ?>

Returning a Value from an Included Document

Included files in PHP can return a value in the same way as functions do. As in a function, using the return statement
ends the execution of code within the included file. Additionally, no further HTML is included. In Listings 11.5 and 11.6,
we include a file and assign its return value to a variable.

Listing 11.5 Using include() to Execute PHP and Assign the Return Value

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.5 Acquiring a Return Value with include()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $addResult = include("listing11.6.php");
12: print "The include file returned $addResult";
13: ?>
14: </div>
15: </body>
16: </html>

Listing 11.6 An Include File That Returns a Value

1: <?php
2: $retval = ( 4 + 4 );
3: return $retval;
4: ?>
5: This HTML should never be displayed because it comes after a return statement!

Returning values from included files would work in PHP 3 only if the return
statement was contained in a function. The code in Listing 11.6 would
cause an error.

Using include() Within Control Structures

You can use an include() statement in a conditional statement, and the referenced file is read only if the condition is met.
The include() statement in the following fragment is never called, for example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$test = false;
if ( $test ) {
  include( "a_file.txt" ); // won't be included
}

If you use an include() statement within a loop, it is replaced with the contents of the referenced file each time the
include() statement is called. This content is executed for every call. Listing 11.7 illustrates this by using an include()
statement in a for loop. The include() statement references a different file for each iteration.

Listing 11.7 Using include() Within a Loop

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.7 Using include() Within a Loop</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: for ( $x=1; $x<=3; $x++ ) {
12:  $incfile = "incfile".$x.".txt";
13:  print "<p>";
14:  print "Attempting include $incfile<br/>";
15:  include( "$incfile" );
16:  print "</p>";
17: }
18: ?>
19: </div>
20: </body>
21: </html>

When Listing 11.7 is run, it includes the content of three files: incfile1.txt, incfile2.txt, and incfile3.txt. Assuming that each
of these files simply contains a confirmation of its own name, the output should look something like this:

Attempting include incfile1.txt
This is incfile1.txt

Attempting include incfile2.txt
This is incfile2.txt

Attempting include incfile3.txt
This is incfile3.txt

include_once()

One of the problems caused by using multiple libraries within your code is the danger of calling include() twice on the
same file. This can occur in larger projects when different library files call include() on a common file. Including the same
file twice often results in the repeated declaration of functions and classes, thereby causing the PHP engine great
unhappiness.

The situation is saved by the include_once() statement, which requires the path to an include file and behaves in the
same way as include() the first time it is called. If include_once() is called again for the same file during script execution,
however, the file is not included again.

This makes include_once() an excellent tool for the creation of reusable code libraries.

PHP also provides the require_once() statement, which behaves in the same
way as include_once() with a single exception. If the target file is not
encountered when you use require_once(), script execution is halted with a
fatal error. If the target file is not encountered when you use
include_once(), a warning is generated but script execution continues.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Using include_once() and include_path to Manage Larger Projects
As your projects grow larger in scope and you find yourself including more and more files, keeping track of your work
can be difficult. You can recover control by organizing code into libraries and organizing your libraries into packages.

As you work on a project, you should look for opportunities to create libraries that might also be useful for other
projects. Try to create code that is as independent of your wider application as possible. The most reusable classes or
functions will require data and perform tasks without relying on global variables. As you add to your stock of code, you
can organize it using the file system itself. Let's imagine a programmer named Mary Jones. Mary has created the
following range of useful classes in files:

DatabaseLayer.php
XmlHelper.php
Logger.php

Mary might use directories to organize these libraries, like so:

maryjones/db/DatabaseLayer.php
maryjones/xml/XmlHelper.php
maryjones/util/Logger.php

When it comes to accessing her libraries, Mary faces a problem. She can use a relative path to reference a library, like
so:

include_once( "../lib/maryjones/db/DatabaseLayer.php" );

Or she could use an absolute path, like so:

include_once( "/home/mary/htdocs/lib/maryjones/db/DatabaseLayer.php" );

Both these approaches have their problems. The absolute path ties Mary's project to the current server, so she will not
be able to deploy the project on another server without changing the absolute paths throughout. The relative path
approach is better, but it forces Mary to include the maryjones packages within the calling project. It would be more
effective to make the libraries globally available. Furthermore, even relative paths reduce flexibility to some extent.
Mary cannot move the maryjones directory without updating all files that include it.

Mary can deal with this shortcoming using the include_path configuration option in the php.ini file. You can use include_path
to define a list of directories that will be searched when include() type functions specify relative paths. Directories should
be separated by colons (semicolons on Windows platforms), as shown here:

include_path=".:/home/mary/php_lib:/usr/local/lib/php"

In the previous fragment, Mary has added a path to a php_lib directory. She stores her maryjones directory there. Now
any PHP file can include a maryjones package library:

include_once("maryjones/db/DatabaseLayer.php");
include_once("maryjones/xml/XmlHelper.php");
include_once("maryjones/util/Logger.php");

As long as the include_path is set, Mary's code runs on another server without any changes.

If Mary has no access to the php.ini file on her server, she still has other options. If she is running Apache, she can set
the include_path option in an .htaccess file:

php_value include_path /home/mary/php_lib

She could also use the ini_set() function to set the option at runtime:

ini_set("include_path", "/home/mary/php_lib");

As of PHP 4.3, she can use the set_include_path() function to achieve the same effect, like so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


As of PHP 4.3, she can use the set_include_path() function to achieve the same effect, like so:

set_include_path( "/home/mary/php_lib" );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Testing Files
Before you work with a file or directory, you should learn more about it. PHP provides many functions that help you
discover information about files on your system. This section briefly covers some of the most useful ones.

Checking for Existence with file_exists()

You can test for the existence of a file with the file_exists() function, which requires a string representing an absolute or
a relative path to a file that might or might not be there. If the file is found, it returns true; otherwise, it returns false:

if ( file_exists ("test.txt") ) {
  print "The file exists!";
}

A File or a Directory?

You can confirm that the entity you are testing is a file, as opposed to a directory, with the is_file() function. is_file()
requires the file path and returns a Boolean value:

if ( is_file( "test.txt" ) ) {
  print "test.txt is a file!";
}

Conversely, you might want to check that the entity you are testing is a directory. You can do this with the is_dir()
function. is_dir() requires the path to the directory and returns a Boolean value:

if ( is_dir( "/tmp" ) ) {
  print "/tmp is a directory";
}

Checking the Status of a File

When you know that a file exists, and it is what you expect it to be, you can then find out some things you can do with
it. Typically, you might want to read, write to, or execute a file. PHP can help you with all these.

is_readable() tells you whether you can read a file. On Unix systems, you might be able to see a file but still be barred
from reading its contents. is_readable() accepts the file path as a string and returns a Boolean value:

if ( is_readable( "test.txt" ) ) {
  print "test.txt is readable";
}

is_writable() tells you whether you can write to a file. Once again, it requires the file path and returns a Boolean value:

if ( is_writable( "test.txt" ) ) {
  print "test.txt is writable";
}

is_executable() tells you whether you can run a file, relying on either the file's permissions or its extension depending on
your platform. It accepts the file path and returns a Boolean value:

if ( is_executable( "test.txt" ) {
  print "test.txt is executable";
}

Determining File Size with filesize()

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Given the path to a file, filesize() attempts to determine and return its size in bytes. It returns false if it encounters
problems:

print "The size of test.txt is. ";
print filesize( "test.txt" );

Getting Date Information About a File

Sometimes you will need to know when a file was last written to or accessed. PHP provides several functions that can
provide this information.

You can find out when a file was last accessed with fileatime(). This function requires the file path and returns the date
on which the file was last accessed. To access a file means either to read or write to it. Dates are returned from all
these functions in Unix epoch format—that is, the number of seconds since January 1, 1970. In our examples, we use
the date() function to translate this into human readable form. You'll learn more about date functions in Hour 16,
"Working with Dates and Times."

fileatime() does not work as advertised for operating systems that use a
FAT filesytem (such as Windows 95 and Windows 98).

$atime = fileatime( "test.txt" );
print "test.txt was last accessed on ";
print date("D d M Y g:i A", $atime);
// Sample output: Tue 19 Aug 2003 4:26 PM

You can discover the modification date of a file with the function filemtime(), which requires the file path and returns the
date in Unix epoch format. To modify a file means to change its contents in some way, like so:

$mtime = filemtime( "test.txt" );
print "test.txt was last modified on ";
print date("D d M Y g:i A", $mtime);
// Sample output: Tue 19 Aug 2003 4:26 PM

PHP also enables you to test the change time of a document with the filectime() function. On Unix systems, the change
time is set when a file's contents are modified or changes are made to its permissions or ownership. On other
platforms, the filectime() returns the creation date:

$ctime = filectime( "test.txt" );
print "test.txt was last changed on ";
print date("D d M Y g:i A", $ctime);
// Sample output: Tue 19 Aug 2003 4:26 PM

Creating a Function That Performs Multiple File Tests

Listing 11.8 creates a function that brings the file test functions we have looked at together into one script.

Listing 11.8 A Function to Output the Results of Multiple File Tests

 1: <?php
 2: function outputFileTestInfo( $file ) {
 3:   if ( ! file_exists( $file ) ) {
 4:     print "$file does not exist<br/>";
 5:     return;
 6:   }
 7:   print "$file is ".(    is_file( $file )?"":"not ")."a file<br/>";
 8:   print "$file is ".(    is_dir( $file )?"":"not ")."a directory<br/>";
 9:   print "$file is ".(  is_readable( $file )?"":"not ")."readable<br/>";
10:   print "$file is ".(  is_writable( $file )?"":"not ")."writable<br/>";
11:   print "$file is ".( is_executable( $file )?"":"not")."executable<br/>";
12:   print "$file is ".( filesize($file))." bytes<br/>";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12:   print "$file is ".( filesize($file))." bytes<br/>";
13:   print "$file was accessed on "
14:       .date( "D d M Y g:i A", fileatime( $file ) )."<br/>";
15:   print "$file was modified on "
16:       .date( "D d M Y g:i A", filemtime( $file ) )."<br/>";
17:   print "$file was changed on  "
18:       .date( "D d M Y g:i A", filectime( $file ) )."<br/>";
19: }
20: ?>
21: <!DOCTYPE html PUBLIC
22:   "-//W3C//DTD XHTML 1.0 Strict//EN"
23:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
24: <html>
25: <head>
26: <title>Listing 11.8 Multiple File Tests</title>
27: </head>
28: <body>
29: <div>
30: <?php
31: outputFileTestInfo( "test.txt" );
32: ?>
33: </div>
34: </body>
35: </html>

Notice that we have used the ternary operator as a compact way of working with some of these tests. Let's look at one
of these, found on line 7, in more detail:

print "$f is ".(is_file( $f )?"":"not ")."a file<br />";

We use the is_file() function as the right expression of the ternary operator. If this returns true, an empty string is
returned; otherwise, the string "not" is returned. The return value of the ternary expression is added to the string to be
printed with concatenation operators. This statement could be made clearer but less compact, as follows:

$is_it = is_file( $f )?"":"not ";
print "$f is $isit a file";

We could, of course, be even clearer with an if statement, but imagine how large the function would become if we had
used the following:

if ( is_file( $f ) ) {
  print "$fi is a file<br>";
} else {
  print "$f is not a file<br>";
}

Because the result of these three approaches is the same, the approach you take becomes a matter of preference.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating and Deleting Files
If a file does not yet exist, you can create one with the touch() function. Given a string representing a file path, touch()
attempts to create an empty file of that name. If the file already exists, the contents are not disturbed, but the
modification date is updated to the time at which the function executed:

touch("myfile.txt");

You can remove an existing file with the unlink() function. Once again, unlink() accepts a file path:

unlink("myfile.txt");

All functions that create, delete, read, write, or modify files on Unix systems require that the correct file or directory
permissions are set.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Opening a File for Writing, Reading, or Appending
Before you can work with a file, you must first open it for reading, writing, or both. PHP provides the fopen() function for
this. fopen() requires a string containing the file path, followed by a string containing the mode in which the file is to be
opened. The most common modes are read ('r'), write ('w'), and append ('a'). fopen() returns a file resource you will later
use to work with the open file. To open a file for reading, you would use the following:

$fp = fopen( "test.txt", 'r' );

You would use the following to open a file for writing:

$fp = fopen( "test.txt", 'w' );

To open a file for appending (that is, to add data to the end of a file), you would use this:

$fp = fopen( "test.txt", 'a' );

fopen() returns false if the file cannot be opened for any reason. Therefore, you should test the function's return value
before working with it. You can do this with an if statement:

if ( $fp = fopen( "test.txt", "w" ) ) {
  // do something with $fp
}

Or you can use a logical operator to end execution if an essential file can't be opened:

( $fp = fopen( "test.txt", "w" ) ) or die ("Couldn't open file, sorry");

If the fopen() function returns true, the rest of the expression isn't parsed and the die() function (which writes a message
to the browser and ends the script) is never reached. Otherwise, the right side of the or operator is parsed and the die()
statement is executed.

Assuming that all is well and you go on to work with your open file, you should remember to close it when you have
finished. You can do this by calling fclose(), which requires the file resource returned from a successful fopen() call as its
argument:

fclose( $fp );

If you are writing a binary file on a Windows system, you should add a 'b'
flag to your fopen() mode argument. This tells the operating system that
you are working with a binary file and that line endings should not be
translated. You can write files in this way:

$fp = fopen( "binary_file", "wb" );

and read them like this:

$fp = fopen( "binary_file", "rb" );

We often store the resource returned by fopen() in a variable called $fp.
This is a convention only. fp stands for file pointer. You might want to use
a more descriptive variable name in your projects. As always, it's a matter
of balancing brevity and clarity.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Reading from Files
PHP provides a number of functions for reading data from files. These enable you to read by the byte, the line, or even
the character.

Reading Lines from a File with fgets() and feof()

After you have opened a file for reading, you often need to access it line by line. To read a line from an open file, you
can use fgets(), which requires the file resource returned from fopen() as an argument. You must also pass it an integer
as a second argument. This specifies the number of bytes the function should read if it doesn't first encounter a line end
or the end of the file. The fgets() function reads the file until it reaches a newline character ("\n"), the number of bytes
specified in the length argument, or the end of the file:

$line = fgets( $fp, 1024 ); // where $fp is the file resource returned by fopen()

Although you can read lines with fgets(), you need some way of telling when you have reached the end of the file. The
feof() function does this, returning true when the end of the file has been reached and false otherwise. This function
requires a file resource as its argument:

feof( $fp ); // where $fp is the file resource returned by fopen()

You now have enough information to read a file line by line, as shown in Listing 11.9.

Listing 11.9 Opening and Reading a File Line by Line

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.9 Opening and Reading a File Line by Line</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $filename = "test.txt";
12: $fp = fopen( $filename, "r" ) or die("Couldn't open $filename");
13: while ( ! feof( $fp ) ) {
14:   $line = fgets( $fp, 1024 );
15:   print "$line<br/>";
16: }
17: ?>
18: </div>
19: </body>
20: </html>

We call fopen() on line 12 with the name of the file we want to read, using the or operator to ensure that script
execution ends if the file cannot be read. This usually occurs if the file does not exist or (on a Unix system) if the file's
permissions won't allow the script read access to the file. The actual reading takes place in the while statement on line
14. The while statement's test expression calls feof() for each iteration, ending the loop when it returns true. In other
words, the loop continues until the end of the file is reached. Within the code block, we use fgets() on line 14 to extract
a line (or 1024 bytes) of the file. We assign the result to $line and then print it to the browser on line 15, appending a
<br/> tag for the sake of readability.

Reading Arbitrary Amounts of Data from a File with fread()

Rather than reading text by the line, you can choose to read a file in arbitrarily defined chunks. The fread() function
accepts a file resource as an argument, as well as the number of bytes you want to read. It returns the amount of data
you have requested unless the end of the file is reached first:

$chunk = fread( $fp, 16 );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 11.10 Reading a File with fread()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 11.10 Reading a File with fread()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $filename = "test.txt";
12: $fp = fopen( $filename, "r" ) or die("Couldn't open $filename");
13: while ( ! feof( $fp ) ) {
14:   $chunk = fread( $fp,16 );
15:   print "$chunk<br/>";
16: }
17: ?>
18: </div>
19: </body>
20: </html>

Although fread() enables you to define the amount of data acquired from a file, it doesn't let you decide the position
from which the acquisition begins. You can set this manually with the fseek() function, which enables you to change your
current position within a file. It requires a file resource and an integer representing the offset from the start of the file
(in bytes) to which you want to jump:

fseek( $fp, 64 );

Listing 11.11 uses fseek() and fread() to output the second half of a file to the browser.

Listing 11.11 Moving Around a File with fseek()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title> Listing 11.11 Moving Around a File with fseek()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $filename = "test.txt";
12: $fp = fopen( $filename, "r" ) or die("Couldn't open $filename");
13: $fsize = filesize($filename);
14: $halfway = (int)( $fsize / 2 );
15: print "Halfway point: $halfway <br/>\n";
16: fseek( $fp, $halfway );
17: $chunk = fread( $fp, ($fsize - $halfway) );
18: print $chunk;
19: ?>
20: </div>
21: </body>
22: </html>

We calculate the halfway point of our file by dividing the return value of filesize() by 2 on line 14. We can then use this
as the second argument to fseek() on line 16, jumping to the halfway point. Finally, we call fread() on line 17 to extract
the second half of the file, printing the result to the browser.

Reading Characters from a File with fgetc()

fgetc() is similar to fgets() except that it returns only a single character from a file every time it is called. Because a
character is always 1 byte in size, fgetc() doesn't require a length argument. You simply need to pass it a file resource:

$char = fgetc( $fp );

Listing 11.12 creates a loop that reads the file test.txt a character at a time, outputting each character on its own line to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 11.12 creates a loop that reads the file test.txt a character at a time, outputting each character on its own line to
the browser.

Listing 11.12 Reading Characters with fgetc()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 11.12 Reading Characters with fgetc()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $filename = "test.txt";
12: $fp = fopen( $filename, "r" ) or die("Couldn't open $filename");
13: while ( ! feof( $fp ) ) {
14:  $char = fgetc( $fp );
15:  print "$char<br/>";
16: }
17: ?>
18: </div>
19: </body>
20: </html>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Reading the Contents of a File with file_get_contents()

The file reading functions we have covered so far give you a lot of control. If your objective is to read the contents of a
file into a variable, however, there is a nice blunt tool to get the job done. The file_get_contents() function requires a
string representing the path to a file and returns the file's contents:

$contents = file_get_contents( "test.txt" );

file_get_contents() was introduced with PHP 4.3. If you are using an older version of PHP, you can use the file() function to
achieve a similar effect. file() requires a file path and returns an array, and each element of the returned array contains
a line of the file's contents. You can then use the implode() function to join all the elements of the array to form a single
string:

$file_array = file( "test.txt" );
$contents = implode( $file_array );
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Writing or Appending to a File
The processes for writing to a file and appending to a file are similar. The difference lies in the fopen() call. When you
write to a file, you should use the mode argument "W" when you call fopen():

$fp = fopen( "test.txt", "w" );

All subsequent writing occurs from the start of the file. If the file doesn't already exist, it is created. Conversely, if the
file already exists, any prior content is destroyed and replaced by the data you write.

When you append to a file, you should use mode "a" in your fopen() call:

$fp = fopen( "test.txt", "a" );

Any subsequent writes to your file are added to the existing content.

Writing to a File with fwrite() or fputs()

fwrite() accepts a file resource and a string; it then writes the string to the file. fputs() works in exactly the same way:

fwrite( $fp, "hello world" );
fputs( $fp, "hello world" );

Writing to files is as straightforward as that. Listing 11.13 uses fwrite() to print to a file. We then append a further string
to the same file using fputs().

Listing 11.13 Writing and Appending to a File

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 11.13 Writing and Appending to a File</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $filename = "test2.txt";
12: print "Writing to $filename<br/>";
13: $fp = fopen( $filename, "w" ) or die("Couldn't open $filename");
14: fwrite( $fp, "Hello world\n" );
15: fclose( $fp );
16: print "Appending to $filename<br/>";
17: $fp = fopen( $filename, "a" ) or die("Couldn't open $filename");
18: fputs( $fp, "And another thing\n" );
19: fclose( $fp );
20: ?>
21: </div>
22: </body>
23: </html>
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Writing Data to a File with file_put_contents()

The file_put_contents() function was introduced with PHP 5. It eliminates the need for opening and closing a file:

file_put_contents( "test2.txt", "Hello world\n" );

If you need to append to a file, you can pass a FILE_APPEND flag to the function, like so:

file_put_contents( "test2.txt", "And another thing\n", FILE_APPEND );

A second flag can be used with file_put_contents(). FILE_USE_INCLUDE_PATH creates the function to look in your include
directories for the file to write to. This should be used with caution, if at all, because you could find yourself writing
somewhere unexpected or undesirable if your include path is changed.

Locking Files with flock()

The techniques you have learned for reading and amending files will work fine if you are presenting your script to only a
single user. In the real world, however, you would expect many users to access your projects more or less at the same
time. Imagine what would happen if two users were to execute a script that writes to one file at the same moment. The
file would quickly become corrupt.

PHP provides the flock() function to forestall this eventuality. flock() locks a file to warn other processes against writing to
or reading from a file while the current process is working with it. flock() requires a valid file resource and an integer
representing the type of lock you want to set. PHP provides predefined constants for each of the integers you are likely
to need. Table 11.1 lists three kinds of locks you can apply to a file.

Table 11.1. Integer Arguments to the flock() Function

Constant Integer
Lock
Type Description

LOCK_SH 1 Shared Allows other processes to read the file but prevents writing (used when reading a
file)

LOCK_EX 2 Exclusive Prevents other processes from either reading from or writing to a file (used when
writing to a file)

LOCK_UN 3 Release Releases a shared or exclusive lock

You should call flock() directly after calling fopen() and then call it again to release the lock before closing the file:

$fp = fopen( "test.txt", "a" ) or die("couldn't open");
flock( $fp, LOCK_EX ); // exclusive lock
// write to the file
flock( $fp, LOCK_UN ); // release the lock
fclose( $fp );

Locking with flock() is advisory. Only other scripts that use flock() will
respect a lock you set.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Working with Directories
Now that you can test, read, and write to files, let's turn our attention to directories. PHP provides many functions to
work with directories. You will look at how to create, remove, and read them.

Creating Directories with mkdir()

mkdir() enables you to create a directory. mkdir() also requires a string representing the path to the directory you want
to create and an integer that should be an octal number representing the mode you want to set for the directory. You
specify an octal (base 8) number with a leading 0. The mode argument has an effect only on Unix systems. The mode
should consist of three numbers between 0 and 7, representing permissions for the directory owner, group, and
everyone, respectively. This function returns true if it successfully creates a directory, or false if it doesn't. If mkdir() fails,
this is usually because the containing directory has permissions that preclude processes with the script's user ID from
writing. If you are not comfortable with setting Unix directory permissions, one of the following examples should fit your
needs. Unless you really need your directory to be world writable, you should probably use 0755, which allows the world
to read your directory but not write to it:

mkdir( "testdir", 0777 ); // global read/write/execute permissions
mkdir( "testdir", 0755 ); // world and group: read/execute only
             // owner: read/write/execute

Removing a Directory with rmdir()

rmdir() enables you to remove a directory from the file system, if the process running your script has the right to do so
and if the directory is empty. rmdir() requires only a string representing the path to the directory you want to create:

rmdir( "testdir" );

Opening a Directory for Reading with opendir()

Before you can read the contents of a directory, you must first obtain a directory resource. You can do this with the
opendir() function, which requires a string representing the path to the directory you want to open. opendir() returns a
directory handle unless the directory is not present or readable, in which case it returns false:

$dh = opendir( "testdir" );

Reading the Contents of a Directory with readdir()

Just as you use gets() to read a line from a file, you can use readdir() to read a file or directory name from a directory.
readdir() requires a directory handle and returns a string containing the item name. If the end of the directory has been
reached, readdir() returns false. Note that readdir() returns only the names of its items, rather than full paths. Listing
11.14 shows the contents of a directory.

Listing 11.14 Listing the Contents of a Directory with readdir()

 1: <!DOCTYPE html PUBLIC
 2:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 11.14 Listing the Contents

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title>Listing 11.14 Listing the Contents
 7: of a Directory with readdir()</title>
 8: </head>
 9: <body>
10: <div>
11: <?php
12: $dirname = ".";
13: $dh = opendir( $dirname );
14: while ( ! is_bool( $file = readdir( $dh )) ) {
15:   if ( is_dir( "$dirname/$file" ) ) {
16:     print "(D) ";
17:   }
18:   print "$file<br/>";
19: }
20: closedir( $dh );
21: ?>
22: </div>
23: </body>
24: </html>

We open our directory for reading with the opendir() function on line 13 and use a while statement to loop through each
of its elements on line 11. We call readdir() as part of the while statement's test expression, assigning its result to the
$file variable. Within the body of the while statement, we use the $dirname variable in conjunction with the $file variable
to create a full file path, which we can then test on line 15. If the path leads to a directory, we print "(D)" to the browser
on line 16. Finally, we print the filename on line 18.

We have used a cautious construction in the test of the while statement. Most PHP programmers (myself included)
would use something similar to the following:

while ( $file = readdir( $dh ) ) {
   print "$file<BR>\n";
}

The value returned by readdir() is tested. Because any string other than "0" resolves to true, there should be no problem.
Imagine, however, a directory that contains four files: "0", "1", "2", and "3". The output from the preceding code on my
system is as follows:

.

. .

When the loop reaches the file named "0", the string returned by readdir() resolves to false, causing the loop to end. The
approach in Listing 11.14 uses is_bool() in conjunction with the not (!) operator to check that the value returned by
readdir() is not a Boolean. As a string, "0" is not recognized as a Boolean, and the loop continues until readdir() returns
false.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned how to use include() to incorporate files into your documents and execute any PHP code
contained in include files. You learned how to use some of PHP's file test functions and explored functions for reading
files by the line, by the character, or in arbitrary chunks. You also learned how to write to files, either replacing or
appending to existing content. Finally, you learned how to create, remove, and read directories.

Now that you can work with files, you can save and access substantial amounts of data. If you need to look up data
from large files, however, your scripts will begin to slow down quite considerably. What you need is some type of
database. In the next hour, we will look at PHP's DBA functions, which provide relatively fast access to data on file
systems.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Will the include() statement slow down my scripts?

A1: Because an included file must be opened and parsed by the engine, it will add some overhead. The
benefits of reusable code libraries often outweigh the relatively low performance overhead, however.

Q2: Should I always end script execution if a file cannot be opened for writing or reading?

A2: You should always allow for this possibility. If your script absolutely depends on the file with which you
want to work, you might want to use the die() function, writing an informative error message to the
browser. In less critical situations, you still need to allow for the failure, perhaps adding it to a log file.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which functions could you use to add library code to the currently running script?

2: Which function would you use to find out whether a file is present on your file system?

3: How would you determine the size of a file?

4: Which function would you use to open a file for reading or writing?

5: Which function would you use to read a line of data from a file?

6: How can you tell when you have reached the end of a file?

7: Which function would you use to write a line of data to a file?

8: How would you open a directory for reading?

9: Which function would you use to read the name of a directory item after you have opened a directory for
reading?

Answers

A1: You can use the require() or include() statement to incorporate PHP files into the current document. You
could also use include_once() or require_once().

A2: You can test for the existence of a file with the file_exists() function.

A3: The filesize() function returns a file's size in bytes.

A4: The fopen() function opens a file. It accepts the path to a file and a character representing the mode. It
returns a file resource.

A5: The fgets() function reads data up to the buffer size you pass it, the end of the line, or the end of the
document, whichever comes first.

A6: The feof() function returns true when the file resource it is passed has reached the end of the file.

A7: You can write data to a file with the fputs() function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: The opendir() function enables you to open a directory for reading.

A9: The readdir() function returns the name of a directory item from an opened directory.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a form that accepts a user's first and second name. Create a script that saves this data to a file.

2. Create a script that reads the data file you created in exercise 1. As well as writing its contents to the browser
(adding a -<br /> tag to each line), print a summary that includes the number of lines in the file and the file's
size.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 12. Working with the DBA Functions
What You'll Learn in This Hour:

How to open a database

How to add data to the database

How to extract data from the database

How to change and delete items

How to store more complex types of data in DBM-style databases

Whichever platform you use, you will almost certainly have a DBM-style database system available to you. DBM stands
for database manager, and DBM-like systems enable you to store and manipulate name/value pairs on your system.

DBA stands for database abstraction layer, and these functions are designed to provide a common interface to a range
of file-based database systems.

Although DBA functions do not offer the power of a SQL database, they are flexible and easy to use. The fact that DBA
functions stand above a range of common database systems means that your code is likely to be portable even if the
database files themselves might not be.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Beneath the Abstraction
To use the DBA functions, you need to have one of the supported database systems installed. If you are running Linux,
you probably have the GNU Database Manager (GDBM) installed. For each system, there is a corresponding compile
option that should have been used when PHP was installed. You can see the supported databases and their
corresponding compile options in Table 12.1.

Table 12.1. DBM Systems Supported by the DBA Functions
Type Compile Option Further Information

cdbm --with-cdbm Read-only database system

cdb --with-cdb Read/write when bundled version is used; no updates allowed

db2 --with-db2 http://www.sleepycat.com/

db3 --with-db3 http://www.sleepycat.com/

db4 --with-db4 http://www.sleepycat.com/ (since PHP 5)

dbm --with-dbm The original DBM; deprecated

gdbm --with-gdbm GNU Database Manager

ndbm --with-ndbm Deprecated

flatfile --with-flatfile Backward compatibility; use is discouraged

inifile --with-inifile For management of .ini files (for example, php.ini)

If your system and PHP installation support one of these systems, you can use the DBA functions with no problems.
Note that support for the cdbm system (which is designed for fast access to static databases) is read-only. If you have
not compiled PHP with support for any of the DBA handlers listed in Table 12.1, your script will fail with an error when
you attempt to use any of the DBA functions.

You can check the handlers available to you with the dba_handlers() function. This returns an array of handler names.
Adding the following to a script gives you a quick listing of available handlers:

var_dump( dba_handlers() );

You could also use the phpinfo() function. The phpinfo() output page has a section on DBA that lists handlers and confirms
that DBA support is enabled.

The dba_handlers() function was introduced with PHP 4.3.

We will use the commonly available GDBM system in our examples.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Opening a Database
You can open a DBM-like database with the function dba_open(). This function requires three arguments: the path to the
database file, a string containing the flags with which you want to open the database, and a string representing the
database manager you want to work with (the "Type" column in Table 12.1). dba_open() returns a DBA resource that
you can then pass to other DBA functions to access or manipulate your database. Because dba_open() involves reading
from and writing to files, PHP must have permission to write to the directory that will contain your database.

The flags you pass to dba_open() determine the way in which you can work with your database. They are listed in Table
12.2.

Table 12.2. Flags for Use with dba_open()
Flag Description

r Open a database for reading only

w Open a database for writing and reading

c Create a database (or open for read/write access if it exists)

n Create a new database (truncate the old version if it exists)

The following code fragment opens a database, creating a new one if it does not already exist:

$dbh = dba_open( "./data/products", "c", "gdbm" )
        or die( "Couldn't open Database" );

Notice that we use a die() statement to end script execution if our attempt to open the database fails.

When you finish working with a database, you should close it using the function dba_close(). This is because PHP locks a
database you are working with so that other processes cannot attempt to modify the data you are reading or writing. If
you don't close the database, other processes have to wait longer before using the database. dba_close() requires a valid
DBA resource:

dba_close( $dbh );

As of PHP 4.3, you can extend the flag you pass to dba_open() to allow for
fine-grained control of database locking. Because basic locking is
implemented by default, these details are beyond the scope of this book.
You can, however, find more information at
http://www.php.net/manual/en/function.dba.open.php.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Adding Data to the Database
You can add name/value pairs to your open database with the function dba_insert(), which requires the name of a key,
the value you want to store, and a valid DBA resource (as returned by dba_open()). This function returns true if all is well
and false if an error occurs (such as an attempt to write to a database opened in read-only mode, or to overwrite an
element of the same name). If the element you are attempting to insert already exists, the data is not overwritten.

Listing 12.1 creates or opens a database called products and adds some data to it.

Listing 12.1 Adding Items to a Database

 1: <!DOCTYPE html PUBLIC
 2:  "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.1 Adding Items to a Database</title>
 7: </head>
 8: <body>
 9: <div>
10:
11: Adding products now...
12:
13: <?php
14: $dbh = dba_open( "./data/products", "c", "gdbm" )
15:       or die( "Couldn't open database" );
16:
17: dba_insert( "Sonic Screwdriver", 23.20, $dbh);
18: dba_insert( "Tricorder", 55.50, $dbh);
19: dba_insert( "ORAC AI", 2200.50, $dbh);
20: dba_insert( "HAL 2000", 4500.00, $dbh);
21:
22:
23: dba_close( $dbh );
24: ?>
25: </div>
26: </body>
27: </html>

To add values to the database, we use the dba_insert() functions (lines 17–20). All values are converted to strings when
added to the database. We can treat our price strings as floats when we extract them from the database, however. We
covered the float data type in Hour 4, "The Building Blocks." Notice that we can use keys that have more than one
word.

If we now attempt to call dba_insert() with the same key argument as one of the keys we have already used, dba_insert()
returns false and makes no change to the database. A warning is also generated. This level of protection prevents
accidental data loss. Sometimes, however, you want to overwrite existing data when you write to the database.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Amending Elements in a Database
You can amend an entry in a database with the dba_replace() function, which requires the name of a key, the new value
to add, and a valid DBA resource. It returns true if all goes well and false if an error occurs. Listing 12.2 amends the
code in Listing 12.1 so that keys are added regardless of existence.

Listing 12.2 Adding or Changing Items in a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.2 Adding or Changing Items
 7:    in a database</title>
 8: </head>
 9: <body>
10: <div>
11: Adding products now...
12: <?php
13: $dbh = dba_open( "./data/products", "c", "gdbm" )
14:       or die( "Couldn't open database" );
15: dba_replace( "Sonic Screwdriver", 25.20, $dbh );
16: dba_replace( "Tricorder", 56.50, $dbh );
17: dba_replace( "ORAC AI", 2209.50, $dbh );
18: dba_replace( "HAL 2000", 4535.50, $dbh );
19: dba_close( $dbh );
20: ?>
21: </div>
22: </body>
23: </html>

We have had to change only the function calls from dba_insert() to dba_replace() to change the functionality of the script.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Reading from a Database
Now that you can add data to your database, you need to find a way to fetch it. You can extract an individual element
from the database with the dba_fetch() function. dba_fetch() requires the name of the element you want to access and a
valid DBA resource, and it returns the value you are accessing as a string. So, to access the price of the "Tricorder" item,
you would use the following code:

$price = dba_fetch( "Tricorder", $dbh );

If the "Tricorder" element does not exist in the database, dba_fetch() returns false.

You won't always know the names of all the keys in the database, however. What would you do if you needed to output
every product and price to the browser without hard-coding the product names into your script? PHP provides a
mechanism by which you can loop through every element in a database.

You can get the first key in a database with the dba_firstkey() function, which requires a DBA resource and returns the
first key. This won't necessarily be the first element you added because DBM-like databases often maintain their own
ordering systems. After you've retrieved the first key, you can access each subsequent key with the dba_nextkey()
function. dba_nextkey() also requires a DBA resource and returns an element's key. By combining these functions with
dba_fetch(), you can now list an entire database.

Listing 12.3 outputs the products database to the browser. We acquire the first key in the database on line 24 using the
dba_firstkey() function. We then use a while loop on line 25 to work our way through all the elements in the database.
Elements are acquired with the call to dba_fetch() on line 26. After we have written the element to the browser, we use
dba_nextkey() on line 29 to acquire the next key and assign it to the $key variable. When there are no more keys to
acquire, dba_nextkey() returns false and the test expression on line 25 halts the loop.

Listing 12.3 Reading All Records from a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.3 Reading All
 7:    Records from  a Database </title>
 8: </head>
 9: <body>
10: <div>
11: <p>
12:  Here at the Impossible Gadget Shop
13:  we're offering the following exciting
14:  products:
15: </p>
16: <table border="1" cellpadding ="5">
17: <tr>
18: <td align="center"> <b>product</b></td>
19: <td align="center"> <b>price</b> </td>
20: </tr>
21: <?php
22: $dbh = dba_open( "./data/products", "c", "gdbm" )
23:       or die( "Couldn't open database" );
24: $key = dba_firstkey( $dbh );
25: while ( $key != false ) {
26:   $value = dba_fetch( $key, $dbh);
27:   print "<tr><td align = \"left\"> $key </td>";
28:   print "<td align = \"right\"> \$".sprintf( "%01.2f", $value )."</td></tr>";
29:   $key = dba_nextkey( $dbh );
30: }
31: dba_close( $dbh );
32: ?>
33: </table>
34: </div>
35: </body>
36: </html>

Figure 12.1 shows the output from Listing 12.3.

Figure 12.1. Reading all records from a database.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 12.1. Reading all records from a database.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Determining Whether an Item Exists in a Database
Before reading or setting an element in a database, it is sometimes useful to know whether the element exists. You can
do this with the dba_exists() function, which requires the name of the element for which you are testing and a valid DBA
resource. It returns true if the element exists:

if ( dba_exists("Tricorder", $dbh ) )
  print dba_fetch( "Tricorder", $dbh );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Deleting an Item from a Database
You can delete an item from a database using the dba_delete() function. dba_delete() requires the name of the element
you want to remove from the database and a valid DBA resource. It returns true if the item was successfully deleted
and false if the element did not exist to be deleted:

dba_delete( "Tricorder", $dbh );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Adding Complex Data Structures to a Database
All data in a DBM-like database is extracted in string format, so you are limited to storing integers, strings, and doubles.
Any other data type will be lost. Let's try to store an array, for example:

$array = array( 1, 2, 3, 4 );
$dbh = dba_open( "./data/test", "c", "gdbm" ) or die("Couldn't open test");
dba_insert("arraytest", $array, $dbh );
print gettype( dba_fetch("arraytest", $dbh) );
// prints "string"

We create an array and store it in the variable $array. We then open a database and attempt to insert an element called
"arraytest", passing it the $array variable as the value. We then test the return type from dba_fetch() when attempting to
access "arraytest" and ascertain that a string has been returned. In fact, if we printed the value stored in the "arraytest"
record, we would get the string "Array". That would seem to wrap up any hopes for storing arrays and objects.

Fortunately, PHP provides a feature that enables you to "freeze-dry" values of any data type in string format. The data
can then be stored in a database or file until it is needed. You can use this technique to store arrays and even objects in
a database.

To convert the array in the previous example to a string, we must use the serialize() function. serialize() requires a value
of any type and returns a string:

$array = array( 1, 2, 3, 4 );
print serialize( $array );
// prints a:4:{i:0;i:1;i:1;i:2;i:2;i:3;i:3;i:4;}

We can now store this string in the database. When we want to resurrect it, we can use the unserialize() function.
unserialize() requires a serialized string and returns a value of the appropriate data type.

This enables you to store complex data structures within the relatively simple format allowed by DBM-like databases.
Listing 12.4 serializes an associative array for each of the items in our list of products and adds the result to a
database.

Listing 12.4 Adding Complex Data to a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.4 Adding Complex Data to a Database</title>
 7: </head>
 8: <body>
 9: <div>
10: Adding complex data to database
11: <?php
12: $products = array(
13:     "Sonic Screwdriver" => array( "price"=>22.50,
14:                    "shipping"=>12.50,
15:                    "color"=>"green" ),
16:     "Tricorder"    => array( "price"=>55.50,
17:                    "shipping"=>7.50,
18:                    "color"=>"red" ),
19:     "ORAC AI"      => array( "price"=>2200.50,
20:                    "shipping"=>34.50,
21:                    "color"=>"blue" ),
22:     "HAL 2000"     => array( "price"=>4500.50,
23:                    "shipping"=>18.50,
24:                    "color"=>"pink" )
25:     );
26: $dbh = dba_open( "./data/products2", "c", "gdbm" )
27:       or die( "Couldn't open database" );
28: foreach ( $products as $key => $value ) {
29:   dba_replace( $key, serialize( $value ), $dbh );
30: }
31: dba_close( $dbh );
32: ?>
33: </div>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


33: </div>
34: </body>
35: </html>

We build a multidimensional array beginning on line 12, containing the product names as keys and four arrays of
product information as values. We then open the database on line 26 and loop through the array on line 28. For each
element, we pass the product name and a serialized version of the product array to dba_replace() (line 29). We then
close the database (line 31).

Listing 12.5 writes the code that extracts this data.

Listing 12.5 Retrieving Serialized Data from a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.5 Retrieving Serialized
 7:    Data from a Database</title>
 8: </head>
 9: <body>
10: <div>
11: <p>
12:   Here at the Impossible Gadget Shop
13:   we're offering the following exciting
14:   products:
15: </p>
16: <table border="1" cellpadding ="5">
17: <tr>
18: <td align="center"> <b>product</b> </td>
19: <td align="center"> <b>color</b> </td>
20: <td align="center"> <b>shipping</b> </td>
21: <td align="center"> <b>price</b> </td>
22: </tr>
23: <?php
24: $dbh = dba_open( "./data/products2", "c", "gdbm" )
25:       or die( "Couldn't open database" );
26:
27: $key = dba_firstkey( $dbh );
28: while ( $key != false ) {
29:   $prodarray = unserialize( dba_fetch( $key, $dbh) );
30: ?>
31:   <tr><td align="left">
32:     <?=$key?>
33:   </td><td align="left">
34:     <?=$prodarray['color']?>
35:   </td><td align="right">
36:     $<?=sprintf( "%01.2f", $prodarray['shipping'] )?>
37:   </td><td align="right">
38:     $<?=sprintf( "%01.2f", $prodarray['price'] )?>
39:   </td></tr>
40: <?php
41:   $key = dba_nextkey( $dbh );
42: }
43: dba_close( $dbh );
44: ?>
45: </table>
46: </div>
47: </body>
48: </html>

Listing 12.5 is similar to the example in Listing 12.3. In this case, though, we are displaying more fields. We open the
database on line 24 and then use dba_firstkey() (line 27) and dba_nextkey() (line 41) to loop through each item in the
database. We extract the value and use unserialize() to reconstruct the product array on line 29. Then printing each
element of the product array to the browser is easy. Notice that we enter HTML mode to write the table rows. We print
dynamic information using the short PHP tags in conjunction with an equals sign (=). This construction is very useful for
embedding dynamic values in HTML. So

<?= $value ?>

is equivalent to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<?php
echo $value;
?>

The former fragment is nicely compact. We are assuming that short open tags are enabled, which can be risky if you
expect to deploy your code on servers beyond your control.

Figure 12.2 shows the output from Listing 12.5.

Figure 12.2. Retrieving serialized data from a database.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

An Example
We now have enough information to build an example using some of the techniques discussed in this hour. Our brief is
to build a quick and dirty script to enable a site editor to change the prices in the products database created in Listing
12.2. The administrator should also be able to remove elements from the database and add new ones. The page will
not be hosted on a publicly available server, so security is not an issue for this project.

First, we must build a form that incorporates all the elements in the database. The user will be able to change any price
using a text field and choose which items to delete using a check box. She will also have two text fields for adding a
new item to the database. Listing 12.6 shows the code to create the form.

Listing 12.6 Building an HTML Form Based on Content from a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 12.6 Building an HTML Form Based
 7:    on Content From a Database</title>
 8: </head>
 9: <body>
10: <form method="post" action="<?php print $SERVER['PHP_SELF'] ?>">
11: <table border="1">
12: <tr>
13: <td>delete</td>
14: <td>product</td>
15: <td>price</td>
16: </tr>
17: <?php
18: $dbh = dba_open( "./data/products", "c", "gdbm" )
19:       or die( "Couldn't open database" );
20: $key = dba_firstkey( $dbh );
21: while ( $key != false ) {
22:   $price = dba_fetch( $key, $dbh );
23:
24:   print <<<LIST
25:   <tr><td>
26:     <input type="checkbox" name="delete[]" value="$key" />
27:   </td><td> $key </td><td>
28:     <input type="text" name="prices[$key]" value="$price" />
29:   </td></tr>
30: LIST;
31:
32:   $key = dba_nextkey( $dbh );
33: }
34: dba_close( $dbh );
35: ?>
36: <tr>
37: <td> </td>
38: <td><input type="text" name="name_add" /></td>
39: <td><input type="text" name="price_add" /></td>
40: </tr>
41: <tr>
42: <td colspan="3" align="right">
43: <input type="submit" value="amend" />
44: </td>
45: </tr>
46: </table>
47: </form>
48: </body>
49: </html>

In Listing 12.6, we use the 'heredoc' print statement syntax. Using this
syntax, print statements look like this:

    print <<<CHUNK
contents here
CHUNK;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


CHUNK;

The word CHUNK in the previous fragment is arbitrary. You can use your
own word, as long as you are consistent. The document terminator (the
second instance of CHUNK) should be flush with the left margin and must
be followed by a semicolon and no spaces. This syntax makes printing
multiple lines of text easy. Variables are substituted as they are in double-
quoted strings with the exception that you do not have to escape double-
quote characters within the string.

We begin an HTML form that points back to the current page (line 10).

Having written some table headers to the screen on lines 12–16, we open the database and loop through the contents
of it using dba_firstkey() (line 20) and dba_nextkey() (line 32) to get each key in turn. We then use dba_fetch() on line 22
to extract the value.

In the first table cell of each row, we create a check box (line 25). Notice that we give all these the name "delete[]". This
instructs PHP to construct an array element called delete containing all submitted values that share this name. The
delete element is stored in the $_POST array. We use the database element name (stored in $key) as the value for each
check box. When the form is submitted, therefore, we should have a delete element available to us in the built-in $_POST
array. The $_POST ['delete'] array will contain the names of all the database elements we want to delete.

We then print the element name to the browser on line 27 and create another text field on line 29. This field presents
the product price to the user, ready for amendment. We name the field 'prices' followed by square brackets containing
the name of the database element. When the form is submitted, PHP adds an associative array element called prices to
the $_POST superglobal. Each element in the $_POST['prices'] array will be indexed by a database key, and its value will
be the user-submitted price data.

We close the database (line 34) and write the final fields (lines 38 and 39). These allow the user to add new product
and price combinations. Only two fields are required, and we give them the names name_add and price_add.

Figure 12.3 shows the output from Listing 12.6.

Figure 12.3. Building an HTML form based on content from a database.

Now that we have created the form, we need to write code to deal with the user input. This is not as difficult as it
sounds. There are three possible actions we can take. First, we can delete items from the database; second, we can
amend prices in the database; and third, we can add new elements to the database.

User-submitted data is available to us in the superglobal $_POST array. We will work directly with this array in most
instances, but we need to save one element to an array variable:

$prices = $_POST['prices'];

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We might need to remove elements from the $prices array. If you need to manipulate user input, it is generally better to
work with a local version than directly on the built-in global.

If the form has been submitted, we know which items we need to delete because a $_POST['delete'] array variable will
have been made available. We need to loop through this array and delete the elements whose names it contains, like
so:

if ( ! empty( $_POST['delete'] ) ) {
  foreach( $_POST['delete'] as $val ) {
    unset( $prices[$val]);
    dba_delete( $val, $dbh );
  }
}

First, we test that the $_POST['delete'] array exists and has elements. If the user has only just arrived at the page or has
not chosen to delete any items, the $_POST array will not have a 'delete' element. If the element exists, we can loop
through it. For each string held in the $_POST['delete'] array, we call dba_delete(), removing the element by that name
from the database. We also remove the element of the same name from the $prices array.

To update the database according to the user amendments, we have a choice. We could update only those elements
that the user has elected to change. We would choose this option if we expected many users to be using the script at
the same time or if the database was likely to grow significantly. As it is, this script will be run by a single administrator
and is expected to deal with only a few products, so we opt to update every element in the database:

if ( ! empty( $prices ) ) {
  foreach ( $prices as $key=>$val ) {
    dba_replace( $key, (float)$val, $dbh );
  }
}

We test for the existence of the $prices array, which should contain a new version of the entire database. We then loop
through the array, calling dba_replace() for each of its elements.

Finally, we need to check whether the user has submitted a new product for inclusion in the database:

if ( ! empty( $_POST['name_add'] ) && ! empty( $_POST['price_add'] ) ) {
  dba_insert( $_POST['name_add'], (float)$_POST['price_add'], $dbh );
}

Instead of testing whether $_POST['name_add'] and $_POST['price_add'] are set, we test whether they are empty. This is a
subtle but important difference. When the user submits the form we have built, these variables are always set. They
can, however, contain empty strings. We do not want to add empty strings to our database, so we execute the code to
insert new values only if neither variable is empty.

We use dba_insert() rather than dba_replace() to guard against the user inadvertently overwriting an element that has
already been defined.

You can see the complete code in Listing 12.7; you can find the code that handles deletions on lines 6–10. The code to
update the database is on lines 13–17. We handle the insertion of new elements on lines 19–21.

Listing 12.7 The Complete Product Maintenance Code

 1: <?php
 2: $dbh = dba_open( "./data/products", "c", "gdbm" )
 3:       or die( "Couldn't open database" );
 4: $prices = $_POST['prices'];
 5:
 6: if ( ! empty( $_POST['delete'] ) ) {
 7:   foreach( $_POST['delete'] as $val ) {
 8:     unset( $prices[$val]);
 9:     dba_delete( $val, $dbh );
10:   }
11: }
12:
13: if ( ! empty( $prices ) ) {
14:   foreach ( $prices as $key=>$val ) {
15:     dba_replace( $key, (float)$val, $dbh );
16:   }
17: }
18:
19: if ( ! empty( $_POST['name_add'] ) && ! empty( $_POST['price_add'] ) ) {
20:   dba_insert( $_POST['name_add'], (float)$_POST['price_add'], $dbh );
21: }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


21: }
22: ?>
23: <!DOCTYPE html PUBLIC
24:   "-//W3C//DTD XHTML 1.0 Strict//EN"
25:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
26: <html>
27: <head>
28: <title>Listing 12.7 The Complete Product Maintenance Code</title>
29: </head>
30: <body>
31: <form method="post" action="<?php print $SERVER['PHP_SELF'] ?>">
32: <table border="1">
33: <tr>
34: <td>delete</td>
35: <td>product</td>
36: <td>price</td>
37: </tr>
38: <?php
39: $key = dba_firstkey( $dbh );
40: while ( $key != false ) {
41:   $price = dba_fetch( $key, $dbh );
42:
43:   print <<<LIST
44:   <tr><td>
45:     <input type="checkbox" name="delete[]" value="$key" />
46:   </td><td> $key </td><td>
47:     <input type="text" name="prices[$key]" value="$price" />
48:   </td></tr>
49: LIST;
50:
51:   $key = dba_nextkey( $dbh );
52: }
53: dba_close( $dbh );
54: ?>
55: <tr>
56: <td> </td>
57: <td><input type="text" name="name_add" /></td>
58: <td><input type="text" name="price_add" /></td>
59: </tr>
60: <tr>
61: <td colspan="3" align="right">
62: <input type="submit" value="amend" />
63: </td>
64: </tr>
65: </table>
66: </form>
67: </body>
68: </html>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned how to use PHP's powerful DBA functions to store and retrieve data. You learned how to use
dba_open() to acquire a DBA resource, which you can use with other DBA functions. You also learned how to add data to
a database with dba_insert(), alter it with dba_replace(), and delete it with dba_delete(). You learned how to use dba_fetch()
to retrieve data and how to use serialize() and unserialize() to save complex data structures to a database. Finally, you
worked through an example that uses many of the techniques we have examined.

The DBA functions are useful for storing relatively small amounts of data that need to be queried only in a simple way.
Inevitably, your needs will occasionally be more demanding than this. In the next chapter, we will cover MySQL, an
open source SQL database.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: When should I use a DBM-like database as opposed to a SQL database?

A1: A DBM-like database is a good option when you want to store small amounts of relatively simple data
(typically name/value pairs). If you want to store larger amounts of data or want to retrieve information
based on conditions of any type, you should consider a SQL solution.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which function would you use to open a database using the DBA functions?

2: Which function would you use to insert a record into a database?

3: Which function would you use to replace a record in a database?

4: How would you access a record from a database by name?

5: How would you get the name (as opposed to the value) of the first element in a database?

6: How would you get subsequent element names?

7: How would you delete a named element from a database?

Answers

A1: You can open a database with the dba_open() function.

A2: The dba_insert() function adds a record to a database.

A3: The dba_replace() function replaces a record in a database.

A4: The dba_fetch() function returns an element given a DBA resource and the element's name.

A5: dba_firstkey() returns the name of the first element in a DBM-like database.

A6: After calling dba_firstkey(), you can get subsequent element names by calling dba_nextkey().

A7: You can delete an element with dba_delete().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a database to keep track of usernames and passwords. Create a script that allows users to register their

combinations. Don't forget to check for duplications.

2. Create an authentication script that checks a username and password. If the user input matches an entry in the
database, present the user with a special message. Otherwise, re-present the login form to the user.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 13. Database Integration—SQL
What You'll Learn in This Hour:

A few SQL samples

How to connect to a MySQL database server

How to select, insert, and update data with the MySQL functions

How to select, insert, and update data with the SQLite functions

How to work with the PEAR::DB package

One of the defining features of PHP is the ease with which you can connect to and manipulate databases. In this chapter
we will look at three database packages that lie at the heart of PHP. MySQL has traditionally been the database of
choice for PHP developers. A vast number of scripts have been developed using the so-called triad of PHP, Apache, and
MySQL. We will also examine SQLite, which is new with PHP 5. The fact that it is bundled with the PHP distribution and
works efficiently with flat files, requiring no separate server, is likely to make it a favorite for developers who require a
lightweight solution. Finally, we will examine the PEAR::DB package, which stands above database-specific functions,
providing a unified interface that enables the programmer to write a project once and then run it seamlessly with
different database applications.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A (Very) Brief Introduction to SQL
SQL stands for Structured Query Language. It provides a standardized syntax by which different types of databases can
be queried. Most SQL database products provide their own extensions to the language, just as many browsers provide
their own extensions to HTML. Nonetheless, an understanding of SQL enables you to work with a wide range of
database products across multiple platforms.

This book cannot describe all the intricacies of SQL. In this section we attempt to cover a little background, however.

Most database applications such as MySQL run as a server daemon to which users on the same or even remote
machines can connect. Once connected to the server, you can select a database if you have the privileges to do so.

A database has a varying number of tables of data, and each table is arranged in rows and columns. The intersection
between a row and a column is the point at which each item of data you want to store and access sits. Each column
accepts only a predefined type of data, INT for integer, for example, or VARCHAR for a variable number of characters up
to a defined limit.

To create a new table within a database we have selected, we might use a SQL query like the following:

CREATE TABLE people ( first_name VARCHAR(30), second_name VARCHAR(30), age INT);

Our new table has three columns. first_name and second_name can contain strings of up to 30 characters, and age can
contain any integer.

To add data to this table, we could use an INSERT statement:

INSERT INTO mytable
( first_name, second_name, age )
VALUES ( 'John', 'Smith', 36 );

The field names to which we want to add data are defined in the first set of parentheses. The values we want to insert
are defined in the second.

To acquire all the data in a table, we would use a SELECT statement:

SELECT * FROM mytable;

The * symbol represents a wildcard, which means "all fields." To acquire the information from a single field, you can use
the column name in place of the wildcard:

SELECT age FROM mytable;

To change the values already stored in a table, you can use an UPDATE statement:

UPDATE mytable SET first_name = 'Bert';

This changes the first_name field in every row to Bert. We can narrow the focus of the SELECT and UPDATE statements
with a WHERE clause. For example

SELECT * FROM mytable WHERE first_name = 'Bert';

returns only those rows whose first_name fields contain the string Bert. This next example

UPDATE mytable SET first_name = 'Bert' WHERE second_name = 'Baker';

changes the first_name fields of all rows whose second_name fields contain Baker.

For more information on SQL, see Sams Teach Yourself SQL in 21 Days by Ryan K. Stephens et. al.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Connecting to the MySQL Database Server
MySQL is a popular open-source database. As a consequence, it has become one of the foundations of open-source Web
development. PHP no longer bundles MySQL but remains a perfect partner for it.

Because PHP is not bundled with MySQL, you should make certain that it is present on your system. You can get MySQL
together with all its installation instructions from http://www/mysql.com/.

To ensure that PHP works with MySQL you should configure it using the - -with-mysql flag, like so:

./configure - -with-mysql

If the previous fragment does not work for you, you may need to specify a path to the MySQL directory, like this:

./configure - -with-mysql=/path/to/mysql/dir

You will need to add your own path, of course, but this should be enough to get MySQL working with PHP.

Before you can begin working with your database, you must first connect to the server. PHP provides the mysql_connect()
function to do just this. mysql_connect() does not require any arguments but accepts up to five. The first three
arguments are strings: a hostname, a username, and a password. The fourth optional argument is a Boolean. If you
pass true for this, every call to mysql_connect() returns a new connection. Otherwise, mysql_connect() returns the currently
open connection for all calls that use the same arguments. The fifth optional argument enables you to pass integer flags
directly to the MySQL server.

If you omit these arguments, the function assumes localhost as the host and that no password or username has been set
up in the mysql user table, unless defaults have been set up in the php.ini file. Naturally, this is unwise for anything but a
test database, so we will always include a username and password in our examples. mysql_connect() returns a link
resource if the connection is successful. You can store this return value in a variable so that you can continue to work
with the database server.

The following code fragment uses mysql_connect() to connect to the MySQL database server:

$link = mysql_connect( "localhost", "p24_user", "cwaffie" );
if ( ! $link ) {
  die( "Couldn't connect to MySQL" );
}

If you are using PHP in conjunction with Apache, you could also connect to the database server with mysql_pconnect().
From the coder's perspective, this function works in exactly the same way as mysql_connect(). In fact, there is an
important difference. If you use this function, the connection does not die when your script stops executing or if you call
mysql_close() (which ends a standard connection to the MySQL server). Instead, the connection is left active, waiting for
another process to call mysql_pconnect(). In other words, the overhead of opening a new connection to the server can be
saved if you use mysql_pconnect() and a previous call to the script has left the connection open.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Selecting a Database
Now that we have established a connection to the MySQL daemon, we must choose which database we want to work
with. You can select a database with the mysql_select_db() function, which requires a database name and optionally
accepts a link resource. If you omit this, the resource returned from the last connection to the server is assumed.
mysql_select_db() returns true if the database exists and you are able to access it. In the following fragment, we select a
database called p24:

$database = "p24";
mysql_select_db( $database ) or die ( "Couldn't open $database );
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Finding Out About Errors
So far, we have tested the return values of the MySQL functions that we have used and called die() to end script
execution if a problem occurs. You might, however, want to print more informative error messages to the browser to
aid debugging. MySQL sets an error number and an error string whenever an operation fails. You can access the error
number with mysql_errno() and the error string with mysql_error(). Listing 13.1 brings our previous examples together into
a simple script that connects to the server and selects a database. We use mysql_error() to make our error messages
more useful. On line 14 we connect to the database. If this is successful, we then select a database on line 19 before
closing the connection on line 22. Notice that we suppress any warnings that might be generated by mysql_connect() and
mysql_select_db() using the at character (@).

Listing 13.1 Opening a Connection and Selecting a Database

 1: !DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 13.1 Opening a Connection to a Database</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $user = "p24_user";
12: $pass = "cwaffie";
13: $db = "p24";
14: $link = @mysql_connect( "localhost", $user, $pass );
15: if ( ! $link ) {
16:   die( "Couldn't connect to MySQL: ".mysql_error() );
17: }
18: print "<h2>Successfully connected to server</h2>\n\n";
19: @mysql_select_db( $db )
20:   or die ( "Couldn't open $db: ".mysql_error() );
21: print "Successfully selected database \"$db\"<br />\n";
22: mysql_close( $link );
23: ?>
24: </div>
25: </body>
26: </html>

If we change the value of the $db variable in line 13 to "unauthorized", we will be attempting to open a nonexistent
database. The output of our die() function call therefore looks something like the following:

[View full width]

Couldn't open unauthorized: Access denied for user:'p24_user@localhost' to database
 'unauthorized'

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Adding Data to a Table
Now that we have access to our database, we can add information to one of its tables. For the following examples,
imagine that we are building a site that allows people to buy domain names.

We have created a table within the p24 database called domains. The table was created with five columns: a primary key
field called id that automatically increments an integer as data is added, a domain field that contains a variable number
of characters ((VARCHAR)), a sex field that contains a single character (M or F), and a mail field that contains a user's
email address. The following SQL statement was used in the MySQL client to create the table:

create table domains (
                 id INT NOT NULL AUTO_INCREMENT,
        PRIMARY KEY( id ),
        domain VARCHAR( 200 ) ,
        sex ENUM('M', 'F') NOT NULL,
        mail VARCHAR( 200 ) );

To add data to this table, we need to construct and execute a SQL query. PHP provides the mysql_query() function for
this purpose; it requires a string containing a SQL query and, optionally, a link resource. If the resource is omitted, the
query is sent to the database server to which you last connected. mysql_query() returns true if the query is successful. If
your query contains a syntax error or you don't have permission to access the database in question, mysql_query()
returns false. Listing 13.2 extends our previous examples starting at line 15 and uses mysql_query() (line 17) to send an
INSERT statement to the domains table in the p24 database.

Listing 13.2 Adding a Row to a Table

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 13.2 Adding a Row to a Database</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $user = "p24_user";
12: $pass = "cwaffie";
13: $db = "p24";
14: $link = @mysql_connect( "localhost", $user, $pass );
15: if ( ! $link ) {
16:   die( "Couldn't connect to MySQL: ".mysql_error() );
17: }
18: print "<h2>Successfully connected to server</h2>\n\n";
19: @mysql_select_db( $db )
20:   or die ( "Couldn't open $db: ".mysql_error() );
21: print "Successfully selected database \"$db\"<br />\n";
22:
23: $query = "INSERT INTO domains( domain, sex, mail )
24:    values( 'example.com', 'F', 'sharp@example.com' )";
25: print "running query: <br />\n$query<br />\n";
26: mysql_query( $query, $link )
27:   or die ( "INSERT error: ".mysql_error() );
28:
29: mysql_close( $link );
30: ?>
31: </div>
32: </body>
33: </html>

Notice that we did not insert a value for the id column in line 15. This field auto-increments.

Of course, every time we reload the script in Listing 13.2, the same data is added to a new row. Listing 13.3 creates a
script that enters user input into our database.

Listing 13.3 Adding User Input to a Database

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 13.3 Adding User Input to a Database

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 13.3 Adding user input to a database</title>
 7: </head>
 8: <body>
 9: <?php
10:
11: if ( ! empty( $_REQUEST['sex'] ) &&
12:     ! empty( $_REQUEST['domain'] ) &&
13:     ! empty( $_REQUEST['mail'] ) ) {
14:   // check user input here!
15:   $dberror = "";
16:   $ret = add_to_database( $_REQUEST['domain'],
17:               $_REQUEST['sex'],
18:               $_REQUEST['mail'], $dberror );
19:   if ( ! $ret ) {
20:     print "Error: $dberror<br />\n";
21:   } else {
22:     print "Thank you very much<br />\n";
23:   }
24: } else {
25:   write_form();
26: }
27:
28: function add_to_database( $domain, $sex, $mail, &$dberror ) {
29:   $domain = mysql_real_escape_string( $domain );
30:   $sex = mysql_real_escape_string( $sex );
31:   $mail = mysql_real_escape_string( $mail );
32:   $link = mysql_pconnect( "localhost", "p24_user", "cwaffie" );
33:   if ( ! $link ) {
34:     $dberror = mysql_error();
35:     return false;
36:   }
37:   if ( ! mysql_select_db( "p24", $link ) ) {
38:     $dberror = mysql_error();
39:     return false;
40:   }
41:   $query = "INSERT INTO domains ( domain, sex, mail )
42:         values( '$domain', '$sex', '$mail' )";
43:   if ( ! mysql_query( $query, $link ) ) {
44:     $dberror = mysql_error();
45:     return false;
46:   }
47:   return true;
48: }
49:
50: function write_form() {
51:   print <<<EOF
52:     <form method="post" action="{$_SERVER['PHP_SELF']}">
53:
54:     <p><input type="text" name="domain" />
55:     The domain you would like</p>
56:
57:     <p><input type="text" name="mail" />
58:     Your mail address</p>
59:
60:     <p><select name="sex">
61:     <option value="F">Female</option>
62:     <option value="M">Male</option>
63:     </select></p>
64:
65:     <p><input type="submit" value="submit!" /></p>
66:     </form>
67: FORM;
68: }
69: ?>
70: </body>
71: </html>

To keep the example brief, we have left out one important process in Listing 13.3, testing user input. We are trusting
our users. We should, in fact, check any kind of user input to ensure that we are getting sensible values.

We check for the request parameters domain, sex, and mail on line 11. If they exist, we can be fairly certain that the user

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We check for the request parameters domain, sex, and mail on line 11. If they exist, we can be fairly certain that the user
has submitted data, and we can then call the add_to_database() function on line 16.

The add_to_database() function declared on line 28 requires four arguments: the $domain, $sex, and $mail variables
submitted by the user and a string variable called $dberror. We populate this last argument with any error strings we
encounter. For this reason, we accept $dberror as a reference to a variable. Any changes made to this string within the
function change the original argument rather than a copy. We use the function mysql_real_escape_string() to transform
the user-submitted values held by $domain, $sex, and $mail. This adds backslash characters into the string to escape
characters such as single and double quotation marks. You should always escape data that is passed in from the user.

We attempt to open a connection to the MySQL server on line 32. If this fails, we assign an error string to $dberror and
end the execution of the function by returning false on line 35. We select the database that contains the domains table on
line 37 and build a SQL query to insert the user-submitted values. We pass this to mysql_query() on line 43, which makes
the query for us. If either mysql_select_db() or mysql_query() fails, we assign the value returned by mysql_error() to $dberror
and return false. Assuming that all went well, the function returns true on line 47.

Back in the calling code, we can test the return value from add_to_database() on line 19. If the function returns true, we
can be sure that we have added to the database and thank the user on line 22. Otherwise, we write an error message
to the browser. We know that the $dberror variable we passed to add_to_database() now contains useful information, so
we include it in our error message.

If our initial if statement fails to find domain, sex, or mail request parameters, we can assume that no data has been
submitted and call another user-defined function—write_form()—on line 16 to output an HTML form to the browser.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Acquiring the Value of an Automatically Incremented Field
In our previous examples, we have added data to our database without worrying about the id column, which
automatically increments as data is inserted. If we need the value of this field for a record at a later date, we can
always extract it with a SQL query. What if we need the value immediately, though? It would be wasteful to look it up.
Luckily, PHP provides mysql_insert_id(), a function that returns the value of an auto-incremented key field after a SQL
INSERT statement has been performed. mysql_insert_id() optionally accepts a link resource as an argument. With no
arguments, it works with the most recent link established.

So, if we want to tell a user the number we have allocated to her order, we could call mysql_insert_id() directly after
adding the user's data to our database:

$query = "INSERT INTO domains ( domain, sex, mail ) ";
$query .= "values( '$domain', '$sex', '$mail' )";
mysql_query( $query, $link );
$id = mysql_insert_id();
print "Thank you. Your transaction number is $id.";
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Accessing Information
Now that we can add information to a database, we need to look at strategies for retrieving the information it contains.
As you might guess, you can use mysql_query() to make a SELECT query. How do you use this to look at the returned
rows, though? When you perform a successful SELECT query, mysql_query() returns a result resource. You can pass this
resource to other functions to access and gain information about a resultset.

Finding the Number of Rows Found by a Query

You can find the number of rows returned as a result of a SELECT query using the mysql_num_rows() function.
mysql_num_rows() requires a result resource and returns a count of the rows in the set. Listing 13.4 uses a SQL SELECT
statement to request all rows in the domains table that have a sex field containing F and then uses mysql_num_rows() to
determine the result set's size. If we only needed this figure, we could use MySQL's COUNT function. mysql_num_rows() is
useful when you want to work with a found set and need some summary information before you begin.

Listing 13.4 Finding the Number of Rows Returned by a SELECT Statement with
mysql_num_rows()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 13.4 Using mysql_num_rows()</title>
 7: </head>
 8: <body>
 9: <?php
10: $user = "p24_user";
11: $pass = "cwaffie";
12: $db = "p24";
13: $link = mysql_connect( "localhost", $user, $pass );
14: if ( ! $link ) {
15:   die( "Couldn't connect to MySQL: ".mysql_error() );
16: }
17:
18: mysql_select_db( $db, $link )
19:   or die ( "Couldn't open $db: ".mysql_error() );
20:
21: $result = mysql_query( "SELECT * FROM domains where sex='F'" );
22: $num_rows = mysql_num_rows( $result );
23:
24: print "<p>$num_rows women have added data to the table</p>\n";
25:
26: // summarise data
27:
28: mysql_close( $link );
29: ?>
30: </body>
31: </html>

The mysql_query() function returns a result resource. We then pass this to mysql_num_rows(), which returns the total
number of rows found.

We connect to the database on line 13 and select the database on line 18. On line 21 we call mysql_query(), passing it
our SQL query. The function returns a result resource that we can then use with mysql_num_rows() on line 22. Having
output summary information on line 24, we are ready to begin some more substantial work with our results. We do this
in the next section.

Accessing a Resultset

After you have performed a SELECT query and gained a result resource, you can use a loop to access each found row in
turn. PHP maintains an internal pointer that keeps a record of your position within a found set. This moves on to the
next row as each one is accessed.

You can easily get an array of the fields in each found row with mysql_fetch_row(). This function requires a result
resource, returning an array containing each field in the row. When the end of the found set is reached,
mysql_fetch_row() returns false. Listing 13.5 outputs selected rows from the domains table to the browser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mysql_fetch_row() returns false. Listing 13.5 outputs selected rows from the domains table to the browser.

Listing 13.5 Listing All Rows and Fields in a Table

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 13.5 Selecting Data</title>
 7: </head>
 8: <body>
 9: <?php
10: $user = "p24_user";
11: $pass = "cwaffie";
12: $db = "p24";
13: $link = mysql_connect( "localhost", $user, $pass );
14: if ( ! $link ) {
15:   die( "Couldn't connect to MySQL: ".mysql_error() );
16: }
17:
18: mysql_select_db( $db, $link )
19:   or die ( "Couldn't open $db: ".mysql_error() );
20:
21: $result = mysql_query( "SELECT * FROM domains where sex='F'" );
22: $num_rows = mysql_num_rows( $result );
23:
24: print "<p>$num_rows women have added data to the table</p>\n";
25:
26: print "<table border=\"1\">\n";
27: while ( $a_row = mysql_fetch_row( $result ) ) {
28:   print "<tr>\n";
29:   foreach ( $a_row as $field ) {
30:     print "\t<td>".stripslashes($field)."</td>\n";
31:   }
32:   print "</tr>\n";
33: }
34: print "</table>\n";
35: mysql_close( $link );
36: ?>
37: </body>
38: </html>

After we have connected to the server and selected the database, we use mysql_query() on line 21 to send a SELECT
statement to the database server. We store the returned result resource in a variable called $result and use this to
acquire the number of found rows as before.

In the test expression of our while statement on line 27, we assign the result of mysql_fetch_row() to the variable $a_row.
Remember that an assignment operator returns the value of its right-hand operand, so the assignment resolves to true
as long as mysql_fetch_row() returns a positive value. Within the body of the while statement, we loop through the row
array contained in $a_row on line 29, outputting each element to the browser embedded in a table cell.

You can also access fields by name in one of two ways. mysql_fetch_array() returns a numeric array, as does
mysql_fetch_row(). It also returns an associative array, with the names of the fields as the keys. The following fragment
rewrites the while statement from Listing 13.5, incorporating mysql_fetch_array() (this replaces lines 26–34):

print "<table border=\"1\">\n";
while ( $a_row = mysql_fetch_array( $result ) ) {
  print "<tr>\n";
  print "<td>".stripslashes($a_row['mail'])."</td>";
  print "<td>".stripslashes($a_row['domain'])."</td>";
  print "</tr>\n";
}
print "</table>\n";

The default behavior of mysql_fetch_array() is to return an array indexed by a string that also contains the same values
indexed numerically. This is fine if you want to refer to your fields individually. If, however, you need to dump all the
array values and keys, you will not want this duplication. mysql_fetch_array() accepts an optional second argument, and
this integer should be one of three built-in constants—MYSQL_ASSOC, MYSQL_NUM, or MYSQL_BOTH. Passing MYSQL_BOTH
is redundant in that it enforces the default behavior. Passing MYSQL_ASSOC to mysql_fetch_array() ensures that the return
array is indexed by strings only, and passing MYSQL_NUM to mysql_fetch_array() ensures that the return array is
numerically indexed.

If you are seeking the functionality provided by

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


mysql_fetch_array( $result, MYSQL_ASSOC );

you can use a shortcut function introduced with PHP 4.03. mysql_fetch_assoc() is functionally identical to a call to
mysql_fetch_array() with MYSQL_ASSOC.

You can also extract the fields from a row as properties of an object with mysql_fetch_object(). The field names become
the names of the properties. The following fragment rewrites the while statement from Listing 13.5, this time
incorporating mysql_fetch_object() (this replaces lines 26–34):

print "<table border=\"1\">\n";
while ( $a_row = mysql_fetch_object( $result ) ) {
  print "<tr>\n";
  print "<td>".stripslashes($a_row->mail)."</td>";
  print "<td>".stripslashes($a_row->domain)."</td>";
  print "</tr>\n";
}
print "</table>\n";

Both mysql_fetch_array() and mysql_fetch_object() make it easier for you to selectively extract information from a row.
Neither of these functions takes much longer than mysql_fetch_row() to execute. Which you choose to use is largely a
matter of preference, although mysql_fetch_array() is more commonly used.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Changing Data
You can change data using the mysql_query() function in conjunction with an UPDATE statement.

A successful UPDATE statement does not necessarily change any rows. You need to use a function to call
mysql_affected_rows() to discover whether you have changed data in your table. mysql_affected_rows() optionally accepts a
link resource; if this is missing, the most recent connection is assumed. This function can be used with any SQL query
that can alter data in a table row.

Listing 13.6 builds a script that enables an administrator to change any of the values in the domain column of our
sample table.

Listing 13.6 Using mysql_query() to Alter Rows in a Database

 1: <?php
 2: $user = "p24_user";
 3: $pass = "cwaffie";
 4: $db = "p24";
 5: $link = connect( $user, $pass, $db );
 6:
 7: function connect( $user, $pass, $db ) {
 8:   $link = mysql_connect( "localhost", $user, $pass );
 9:   if ( ! $link ) {
10:     die( "Couldn't connect to MySQL: ".mysql_error() );
11: }
12: mysql_select_db( $db, $link )
13:   or die ( "Couldn't open $db: ".mysql_error() );
14: return $link;
15: }
16:
17: function update( $dblink, $domain, $id ) {
18:   $id = mysql_real_escape_string( $id );
19:   $domain = mysql_real_escape_string( $domain );
20:   $query = "UPDATE domains SET domain='$domain' where id=$id";
21:   $result = mysql_query( $query );
22:   print "<h3>Table updated". mysql_affected_rows().
23:   " row(s) changed</h3>\n\n";
24: }
25:
26: function getSelect( $dblink, $id ) {
27:   $result = mysql_query( "SELECT * FROM domains" );
28:   $select = "<select name=\"id\">\n";
29:   while( $a_row = mysql_fetch_object( $result ) ) {
30:     $select .= "<option value=\"$a_row->id\"";
31:     if ( $id == $a_row->id ) {
32:       $select .= "selected=\"selected\" ";
33:     }
34:     $select .= ">$a_row->mail: $a_row->domain</option>\n";
35: }
36: $select .= "</select>\n";
37: return $select;
38: }
39: ?>
40: <!DOCTYPE html PUBLIC
41:   "-//W3C//DTD XHTML 1.0 Strict//EN"
42:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
43: <html>
44: <head>
45: <title>Listing 13.6 Updating Data</title>
46: </head>
47: <body>
48:
49: <h1>Correct domains</h1>
50:
51: <?php
52: if ( ! empty( $_REQUEST['domain'] ) &&
53:     ! empty( $_REQUEST['id'] ) ) {
54:   update( $link, $_REQUEST['domain'], $_REQUEST['id'] );
55: }
56: ?>
57:
58: <form action="<?php print $_SERVER['PHP_SELF'] ?>" method="post">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


58: <form action="<?php print $_SERVER['PHP_SELF'] ?>" method="post">
59: <div>
60: <?php
61: print getSelect( $link, $_REQUEST['id'] );
62: ?>
63: <input type="text" name="domain" />
64: </div>
65: </form>
66: </body>
67: </html>

We open a connection to the database server and select a database as normal using the function declared on line 7. We
test for the presence of the request arguments, domain and id, on line 17. If these are present, we call the update()
function, which is defined on line 17, passing it the database resource acquired from the connect() function and the id
and domain request parameters. The update() function builds a SQL UPDATE query on line 20 that changes the value of
the domain field where the id field contains the same value as our $id argument. We do not get an error if a nonexistent
id is used or if the $domain variable is the same as the current value for domain in the relevant row. Instead, the
mysql_affected_rows() simply returns 0. We print this return value (usually 1 in this example) to the browser on lines 22
and 23.

Starting on line 58, we print an HTML form to enable the administrator to make her changes. Most of the work is
delegated to the getSelect() function, which is declared on line 26. We use mysql_query() (line 27) again to extract the
values of the id and domain columns and incorporate them into an HTML SELECT element (lines 28–36). The
administrator uses this pop-up menu to choose which domain to change. If the administrator has already submitted the
form and the id value she chose matches the value of the id field we are currently outputting, we add the string
selected="selected" to the option element (line 32). This ensures that her changed value will be instantly visible to her in
the menu.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

SQLite: A Lightweight SQL Engine
PHP version 5 comes bundled with a SQL library that works with flat files, rather than with a database server. This is
useful for writing PHP scripts in environments that don't provide access to MySQL or to another third-party SQL server.

In this section we will discuss PHP's SQLite functions. You shouldn't need to do anything special to install SQLite, so let's
get straight to it with some code to open or create a new database. Because SQLite works with your file system, you
need to work with a directory your script can write to:

$db = "data/testdb";
$dbres = sqlite_open($db, 0666, $error);
if ( ! is_resource( $dbres ) ) {
  die( "sqllite error: $error" );
}

The sqlite_open() function requires a path to a database file, a mode, and an error variable. The mode argument is not
currently used by the SQLite functions, but you should use 0666 as a placeholder so the $error argument can be passed
to the sqlite_open() function.

The function returns a resource, which we use to work with SQLite; otherwise, it returns false if an error is encountered.
We store the return value in $resource and test it. If $resource contains false, we print the contents of the $error variable,
which will have been populated with error information.

Creating a Table in a SQLite Database

Now that we have opened or created a database, we can create a table with which to work. We execute SQL
statements with the sqlite_query() function, which requires a SQLite database resource and a string containing the query
to execute. For queries that return no resultset, the function returns true if the process was successful and false if an
error occurred. Let's drop and create a table:

@sqlite_query( $dbres, "DROP TABLE people" );
$create = "CREATE TABLE people ( id INTEGER PRIMARY KEY,
                 firstname varchar(255),
                 secondname varchar(255) )";
sqlite_query( $dbres, $create );

We use a DROP statement to ensure that no people table is in place when we create one. Notice that we use an @
character in front of our first call to sqlite_query(). This suppresses the error message we will encounter the first time this
script is run:

Warning: sqlite_query(): no such table: people

We then write the table. Although SQLite does not complain about the CREATE statement we use, the VARCHAR types we
specify are actually irrelevant. SQLite treats all its fields as strings, regardless of the field declaration. The only
exception to this is our first field. We have declared the id field as INTEGER PRIMARY KEY, ensuring that the id field will
contain an integer value that will be incremented automatically as rows are entered.

Entering and Updating Data

Now that we have encountered the sqlite_query() function, we are ready to add some data:

$insert = array(
      array( "firstname" => "joan",
          "secondname" =>"peel" ),
      array( "firstname" => "mary",
          "secondname" =>"biscuit" )
);

foreach ( $insert as $row ) {
  $insert = "INSERT INTO people ( 'firstname', 'secondname' )
             VALUES( '{$row['firstname']}',
                 '{$row['secondname']}' )";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


                 '{$row['secondname']}' )";
  sqlite_query( $dbres, $insert );
  print "Inserting {$row['firstname']} {$row['secondname']}: ";
  print "id: ".sqlite_last_insert_rowid( $dbres )."<br />\n";
}

In fact, most of the previous example is taken up with the creation of an array and with reporting back to the user. We
create a multidimensional array containing two array elements, each containing firstname and secondname elements. We
loop through this, building a SQL string for each iteration and passing it to the sqlite_query() function. We use a new
function, sqlite_last_insert_rowid(), to get the auto-incremented id for our insert. It is often useful to know the value of an
auto-incremented id after we have inserted a row. The sqlite_last_insert_rowid() function saves us the trouble of a second
query. The output from the previous fragment confirms that we have acquired id values:

Inserting joan peel: id: 1<br />
Inserting mary biscuit: id: 2<br />

Of course, we can also run an update query, as shown here:

$update = "UPDATE people SET firstname='John' where secondname='peel'";
sqlite_query( $dbres, $update );
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Selecting Data
We can use the sqlite_query() function to send a SELECT statement to SQLite. When we request data through
sqlite_query(), we get a result resource in return. We can use this with other SQLite functions to access our data. After
we have a result resource, we can access a row of data with sqlite_fetch_array():

$select = "SELECT * FROM people";
$res = sqlite_query( $dbres, $select );

while ( sqlite_has_more( $res ) ) {
  $row = sqlite_fetch_array( $res );
  print "row: {$row['id']} {$row['firstname']} {$row['secondname']}";
  print "<br />\n";
}

We call sqlite_query(), passing it our database resource, and a SELECT statement. We get a result resource in return. In
production code, we would test the return value to ensure that it is a valid resource. The sqlite_has_more() function
returns true if there is still more data to read in a resultset and false otherwise. We can therefore use it in the test
expression of a while loop.

sqlite_fetch_array() returns an associative array of the current row in a resultset, and we print the elements of each row
to the browser:

row: 1 John peel<br />
row: 2 mary biscuit<br />

Now that we have finished with our database for this request, we can call sqlite_close(). sqlite_close() requires a database
resource and closes the connection to the database, freeing it up for other processes:

sqlite_close( $db );

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Using the PEAR DB Package
The PHP Extension and Application Repository (PEAR) is a collection of powerful and quality-controlled libraries that can
be used to extend PHP's functionality. We cover PEAR in much more detail in Hour 23, "PEAR: Reusable Components to
Extend the Power of PHP." The DB package, however, is so enormously significant as a database tool, it would be a
serious omission to not include it here.

We have looked at two mechanisms for working with SQL. You might have notice how similar the functions we covered
are. Yet despite these similarities, shifting a project from one set of database functions to another is time-consuming.
You would have to go through your source code and change function names before the transfer would be complete.

Wouldn't it be better to have a library that hides these implementation details behind a common set of functions or
methods? When you choose to change a database, you can substitute a different implementation behind the common
database interface you are using without disturbing your code. Your code would continue to work with the functions it
has always called, and the functions would work with the new database functions on your behalf.

In previous editions of this book, we cooked up our own code to handle database abstraction to a certain extent. Now,
however, a standard library exists that is designed precisely for this purpose. The DB package supports a number of
databases, including MySQL, Dbase, FrontBase, Interbase, Mini SQL, PostgeSQL, Microsoft SQL Server, ODBC, Informix,
SyBase, and, of course, SQLite.

Let's begin to work with the DB package.

Installing the PEAR::DB Package

PEAR::DB should be bundled with your distribution of PHP 5. If you do not have it, though, you can install the PEAR::DB
package from the command line with this simple command:

pear install DB

You also might want to run another PEAR command, like so:

pear upgrade DB

This updates your DB package and ensures that you have the latest version, as well as support for even more database
applications.

Working with the PEAR::DB Package

In this section, we reproduce the code we wrote for SQLite using a MySQL database. The code has only one line of code
specific to MySQL.

The first thing we need to do to work with the DB package is acquire a DB object. This is achieved by calling the static
connect() method on the DB class. The connect() method requires what is known as a data source name (DSN). A DSN
string combines all the information that is needed to identify and establish a connection with a database server.

When assembled, a DSN looks a bit like a Web address. Table 13.1 lists most of the elements of a DSN.

Table 13.1. Some of the Parts of a Data Source Name
Part Description

data_app One of mysql, pgsql, ibase, msql, mssql, oci8, odbc, sybase, ifx, or fbsql

syntax SQL syntax (for example, sql92)

protocol Connection protocols, such as TCP and Unix

user The username

pass The password

host:port Host and port (the port is optional); for example, localhost:3306

database The database to work with

Table 13.1 shows many more elements than you would probably use in a DSN. They would be put together in the order

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Table 13.1 shows many more elements than you would probably use in a DSN. They would be put together in the order
in which they are listed:

data_app(syntax)://user:pass@protocol+host:port/database

In reality, you will probably use only a few of these parts to make up your DSN. Let's construct a DSN for working with
a MySQL database and use it to acquire a database object:

require_once("DB.php");
$user = "p24_user";
$pass = "cwaffie";
$host = "localhost";
$database = "p24";

$dsn = "mysql://$user:$pass@$host/$database";
$db = DB::connect($dsn);

We assemble our DSN with values for user, password, host, and database. We then pass the assembled string to the
DB::connect() method, which is a factory method. That is, it uses the information you pass it to decide which object you
need. The object it returns is always a child of DB_common. In our example, we acquire a DB_mysql object, which
provides the MySQL-specific functionality we need.

We could, of course, have configured the DB package to work with SQLite, like this:

$dsn = "sqlite://./mydb.db";
$db = DB::connect($dsn);

After we have connected to the database, our examples should run identically for either database.

If, for some reason, our call to DB::connect() fails, it returns a DB_error() object instead of the object we want. We can
test for an error with the DB::isError() method:

if ( DB::isError($db) ) {
  die ( $db->getMessage() );
}

DB::isError() tests the type of a DB package return value. If it is a DB_error object, the method returns true. DB_error
provides the getMessage() method, which enables us to print an informative error message to the browser.

We have set up the p24 database so that it contains a people table:

CREATE TABLE people
( id INT PRIMARY KEY,
 firstname VARCHAR(255),
 secondname VARCHAR(255) );

Let's clear the table of data, so that we are working with a clean sheet:

$delete_query = $db->query( "DELETE FROM people" );
if ( DB::isError( $delete_query ) ) {
  die ($delete_query->getMessage());
}

We introduce the query() method, which accepts a SQL query and returns different values according to the type of query
it is passed. If the query passed generates a resultset, we expect a DB_result object from query(). If, as in our fragment,
we pass a query that does not generate data, query() will return a positive integer. As before, we test for a DB_error
object using DB::isError(). You should write code that anticipates all possible error conditions and implement strategies
for recovery or failure. This is known as coding defensively. To keep our code clear of repetition, we will drop the error
tests in future fragments, but you should you test for errors in production code.

So, the query() method enables us to execute SQL statements. Where possible, you should try to keep your SQL as
standard as you can. If you use application-specific features, you risk undermining the portability the DB package
provides.

Let's add some data to the people database:

$insert = array(
      array( "firstname" => "joan",
          "secondname" =>"peel" ),

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


          "secondname" =>"peel" ),
      array( "firstname" => "mary",
          "secondname" =>"biscuit" )
);

foreach ( $insert as $row ) {
  $id = $db->nextId('people_sequence');
  $row['id'] = $id;
  print "Inserting {$row['firstname']} {$row['secondname']}: $id<br />\n";
  $db->autoExecute( 'people', $row, DB_AUTOQUERY_INSERT );
}

We have introduced a few new features of the DB package in the previous fragment. First, we build up some data that
we will use to populate our table. We use an array of associative arrays, with each subarray representing a row and
containing field values indexed by field names. We loop through our data array, calling a new method—nextID(). nextID()
is an example of a sequence, which is used to acquire unique IDs for primary keys. nextID() requires a sequence name.
This can be anything you want, but you should always use the same name for a table if you want to ensure that your ID
values are unique. Behind the scenes, our DB_common object has created a sequence table in the p24 database to keep
track of the ID values it has generated. We can therefore be sure that we will always get a unique ID as long as we call
nextID() with the same name and in relation to the same database.

Why have we used this relatively complicated way of generating a unique ID for our row, when MySQL and SQLite
automatically add an ID for us? The reason is portability. By using the interface provided by the DB package to
generate ID values, we ensure that we can change our code to work with another database with the minimum of
amendment. In fact, we should have to change only the DSN string.

So, we have an ID value that we tack onto the $row array generated for each iteration of the foreach loop. This means
that $row is an associative array containing the names and values for a complete row of the people table. We could use
this to generate an INSERT SQL statement. The DB package, however, provides a useful, convenient method. Let's look
at it again:

$db->autoExecute( 'people', $row, DB_AUTOQUERY_INSERT );

The autoExecute() method accepts a table name, an associative array containing field names and corresponding values,
and a mode value. The mode can be one of DB_AUTOQUERY_INSERT and DB_AUTOQUERY_UPDATE. If you want to update a
table, you can also pass a WHERE string as a fourth argument (such as id=5). The autoExecute() method constructs a SQL
string on your behalf and passes it to the database.

Like query(), the autoExecute() method returns a DB_result object if all goes well or a DB_Error object if a problem exists.

So, we have populated the people table with some sample data. Let's update the table before moving on to listing
information:

$update_query = "UPDATE people SET firstname='John' WHERE secondname='peel'";
$update_result = $db->query( $update_query );

The previous fragment should be familiar to you by now. We simply call the query() method with an UPDATE SQL
statement.

Finally, let's work with a SELECT statement:

$query = "SELECT * FROM people";
$query_result = $db->query( $query );

while ( $row = $query_result->fetchRow( DB_FETCHMODE_ASSOC ) ) {
  print "row: {$row['id']} {$row['firstname']} {$row['secondname']}";
  print "<br />\n";
}

Again, we use the query() method. We are expecting a DB_result object, which we can use to extract our resultset. Don't
forget that you should use DB::isError() to test production code.

The DB_result class provides the fetchRow() method that acquires row data from a resultset for us and advances the
pointer to the next row. It returns null when the data has all been read. You can pass an integer to fetchRow() to
influence the structure of the data it returns. We used DB_FETCHMODE_ASSOC because we want an associative array.
Also available is DB_FETCHMODE_ORDERED, which is the default value and causes the row to be returned as a numerically
indexed array. You can also pass fetchRow() the DB_FETCHMODE_OBJECT constant to cause an object to be returned
containing the row's field names as properties, populated with their respective field values.

Finally, we can free the results of our query from memory and disconnect from the database:

$query_result->free();
$db->disconnect();

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Calling the DB_result::free() method causes the result resource to be released by the DB_result object. The
DB_Common::disconnect() method relinquishes our connection to the database.

Database code is frequently a barrier to portability, and switching between database applications can be a real
headache. Used carefully, the DB package helps you avoid the issue of migrating from one database solution to
another.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you covered some of the basics of storing and retrieving information using SQL.

You learned how to connect to a MySQL database with mysql_connect() or mysql_pconnect().

You learned how make SQL queries using mysql_query() and how to access data using the result resource this function
returns.

You also found out how to use the SQLite functions to store and retrieve data. In particular, you learned how to open
databases with sqlite_open(), make queries with sqlite_query(), and fetch data with sqlite_fetch_array().

Finally, you learned about the PEAR::DB package. You learned how to use a DSN with the DB::connect() method to make
a connection to a database. You also learned how to make SQL queries with the DB_common::query() method and
automate data selects with DB_common::autoExecute().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Have we covered all the MySQL, SQLite, and PEAR::DB functions?

A1: By no means have we covered them all. There has really been space to cover only the basics in this
chapter. However, if you are comfortable with the concepts we have covered, you will easily understand
the remaining functions. You can read about the MySQL functions at http://www.php.net/mysql and find
out more about SQLite at http://www.php.net/sqlite. The PEAR::DB documentation is available at
http://pear.php.net/manual/en/package.database.php.

Q2: When should I use the PEAR::DB package in preference to working directly with database
functions?

A2: The PEAR::DB functions should be used if your code is likely be deployed in different contexts from that of
development. For example, if you are writing a script that you intend to share with other people, why limit
your users to a particular setup? On the other hand, if you are writing a quick local script, working directly
with MySQL or SQLite might be easier.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: How would you open a connection to a MySQL database server?

2: Which MySQL function would you use to select a database?

3: Which function would you use to send a SQL query to a MySQL database?

4: What does the mysql_insert_id() function do?

5: How would you declare an auto-increment field for a SQLite database?

6: Which function would you use to execute a SQL statement with the SQLite functions?

7: Which object is returned by DB::connect()?

8: How would you get a unique id for a row using the PEAR::DB package?

Answers

A1: You can connect to a MySQL daemon using the mysql_connect() function.

A2: The mysql_select_db() function attempts to select a database.

A3: You can send a SQL query to the database server with the mysql_query() function.

A4: mysql_insert_id() returns the value of an automatically incrementing field after a new row has been added to
a table.

A5: You can define an auto-increment field in a SQLite database by declaring a field as INTEGER PRIMARY KEY in
a CREATE statement, like so:

CREATE TABLE thing ( id INTEGER PRIMARY KEY, name VARCHAR(100) );

A6: The sqlite_query() function executes a SQL statement.

A7: DB::connect() returns an object of type DB_common. This is always a child implementation specific to a
database application.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: The DB_common::nextID() method can be used to get a unique id, as shown here:

$id = $db->nextId('sequencename');

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a database with three fields: email (up to 70 characters), message (up to 250 characters), and date (an

integer that contains a Unix timestamp). Build a script to allow users to populate the database.

2. Create a script that displays the information from the database you created in exercise 1.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 14. Beyond the Box
What You'll Learn in This Hour:

More about predefined variables

The anatomy of an HTTP connection

How to acquire a document from a remote server

How to create your own HTTP connection

How to connect to other network services

How to send email from your scripts

In this hour, we will look at some of the functions that enable you to gain information from or interact with the outside
world.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Server Variables Revisited
You have already encountered the predefined elements that PHP, in conjunction with your server, stores in the
superglobal $_SERVER array. Generally, $_SERVER elements are made available to PHP by the server (or the shell if you
are running a script from the command line). If you are running Apache, all the elements we discuss will likely be
accessible to you. If you are running another server, there is no guarantee that $_SERVER will have been populated with
all the elements discussed in this hour, so you should check before using them in scripts. Table 14.1 lists some of the
$_SERVER elements you might be able to use to find out more about your visitors (see Table 10.1 for a more complete
list of $_SERVER elements).

Table 14.1. Some Useful $_SERVER Elements
Variable Description

$_SERVER['HTTP_REFERER'] The URL from which the current script was called (the misspelling is deliberate).

$_SERVER['HTTP_USER_AGENT'] Information about the browser and platform the visitor is using.

$_SERVER['REMOTE_ADDR'] The visitor's IP address.

$_SERVER['REMOTE_HOST'] The visitor's hostname.

$_SERVER['QUERY_STRING'] The (encoded) string that can be appended to the URL (in the format ?
akey=avalue&anotherkey=anothervalue). These keys and values should become available
to your scripts in the $_GET and $_REQUEST superglobal arrays.

$_SERVER['PATH_INFO'] Additional information that can be appended to the URL.

Listing 14.1 builds a script that outputs the contents of these variables to the browser.

Listing 14.1 Listing Some Server Variables

 1: <html>
 2: <head>
 3: <title>Listing 14.1 Listing Some $_Server Elements</title>
 4: </head>
 5: <body>
 6: <?php
 7: $envs = array( "HTTP_REFERER", "HTTP_USER_AGENT", "REMOTE_ADDR",
 8:     "REMOTE_HOST", "QUERY_STRING", "PATH_INFO" );
 9: foreach ( $envs as $env )
10:   print "$env: $_SERVER[$env]<br>";
11: ?>
12: </body>
13: </html>

Figure 14.1 shows the output from Listing 14.1. The data in Figure 14.1 was generated as a result of calling the script
from a link in another page. The link that called the script looks like this:

Figure 14.1. Printing some $_SERVER elements to the browser.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


<a href="listing 14.1.php/my_path_info?query_key=query_value">listing 14.1</a>

As you can see, the link uses a relative path to call listing14.1 .php.

Additional path information (my_path_info) is included after the document name, which becomes available in
$_SERVER['PATH_INFO'].

We have hard-coded a query string (query_key=query_value) into the link, which becomes available in
$_SERVER['QUERY_STRING']. You will most often encounter a query string when using a form with a GET method
argument, but you can also build your own query strings to pass information from page to page. The query string
consists of name value pairs separated by ampersand symbols (&). These pairs are URL encoded, which means that any
characters that are illegal or have other meanings in URLs are converted to their hexadecimal equivalents. Although you
have access to the entire query string in the $_SERVER['QUERY_STRING'] superglobal variable, you will rarely need to use
this. Each key name is available to you as an element of the $_GET and $_REQUEST arrays ($_GET['query_value'] in our
example), and these hold a corresponding decoded value (query_value).

The $_SERVER['HTTP_REFERER'] element can be useful to you if you want to track which hits on your script originate from
which links. Beware, though: This and other environment variables can be easily faked. You will see how later in this
hour. Because correcting it would cause compatibility problems, we are stuck with the incorrect spelling of 'referrer'. Not
all browsers supply this header, so you should avoid relying on it.

You can parse the $_SERVER['HTTP_USER_AGENT'] element to work out the platform and browser the visitor is using. Once
again, this can be faked. This element can be useful if you need to present different HTML code or JavaScript according
to the browser type and version the visitor is using. Hour 8, "Working with Strings," and Hour 18, "Working with
Regular Expressions," give you the tools you need to extract any information you want from this string.

The $_SERVER['REMOTE_ADDR'] element contains the user's IP address and can be used to track unique visitors to your
site. Be aware, though, that many Web users do not have a fixed IP address. Instead, their Internet service providers
dynamically allocate them an address when they dial up. This means that a single IP address might be used by different
visitors to your site and a single visitor might enter using different IP addresses from the same account.

The $_SERVER['REMOTE_HOST'] variable might not be available to you, depending on the configuration of your server. If
available, it holds the hostname of the user. The presence of this variable requires that the server look up the hostname
for every request, so it is often disabled for the sake of efficiency. If you don't have access to this variable, you can
acquire it using the value of the $_SERVER['REMOTE_ADDR'] variable. You will see how to do this later in the hour.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A Brief Summary of an HTTP Client/Server Negotiation
It is beyond the scope of this book to explore all the information exchanged between server and client when a request
is made, not least because PHP handles most of these details for you. You should gain a basic understanding of this
process, however, especially if you intend to write scripts that fetch Web pages or check the status of Web addresses.

HTTP stands for Hypertext Transfer Protocol. It is essentially a set of rules that defines the process by which a client
sends a request and a server returns a response. Both client and server provide information about themselves and the
data to be transferred. Much of this information becomes available to you in superglobal arrays.

The Request

A client requests data from the server according to a strict set of rules. The request consists of up to three components:

A request line

A header section

An entity body

The request line is mandatory. It consists of a request method, typically GET, HEAD, or POST; the address of the required
document; and the HTTP version to be used (HTTP/1.0 or HTTP/1.1). A typical request for a document called mydoc.html
might look like this:

GET /mydoc.html HTTP/1.0

The client is making a GET request. In other words, it is requesting an entire document but sending no data itself (in
fact, you can send small amounts of data as part of a GET request by adding a query string to the URL). The HEAD
method would be used if you wanted only information about a document. The POST method is used to transfer data
from a client to the server, usually from an HTML form.

The request line is enough in itself to make a valid GET request. To inform the server that a request is complete, an
empty line must be sent.

Most clients follow the request line with a header section in which name/value pairs can be sent to the server. Some of
these become available to you as environment variables. Each client header consists of a key and value on one line
separated by a colon. Table 14.2 lists a few of these.

Table 14.2. Some Client Headers
Name Description

Accept The media types with which the client can work.

Accept-
Encoding

The types of data compression the client can handle.

Accept-
Charset

The character sets the client prefers.

Accept-
Language

The language the client prefers (en for English).

Host The host to which a request is being made. Some servers that maintain multiple virtual hosts rely
heavily on this header.

Referer The document from which a request is being made.

User-Agent Information about the client type and version.

For GET and HEAD methods, the header section ends the request and an empty line is sent to the server. For requests
made using the POST method, an empty line is followed by the entity body. An entity body consists of any data to be
sent to the server; this is usually a set of URL-encoded name/value pairs similar to those found in a query string.

Listing 14.2 shows a request sent to a server by Mozilla 5.0.

Listing 14.2 Typical Client Headers Sent by a Mozilla Browser

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 14.2 Typical Client Headers Sent by a Mozilla Browser

1: GET /index.html HTTP/1.1
2: Host: resources.corrosive.co.uk:9090
3: User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.2.1) Gecko/20030225
4: Accept: text/xml,application/xml,application/xhtml+xml,text/html;
5: Accept-Encoding: gzip, deflate, compress;q=0.9
6: Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
7: Keep-Alive: 300
8: Connection: keep-alive

The Response

After a server has received a client's request, it sends a response to the client. The response usually consists of three
parts:

A status line

A header section

An entity body

As you can see, there's a lot of symmetry between a request and a response. In fact, certain headers can be sent by
either client or server, especially those that provide information about an entity body.

The status line consists of the HTTP version the server is using (HTTP/1.0 or HTTP/1.1), a response code, and a text
message that clarifies the meaning of the response code.

Many response codes are available that a server can send to a browser. Each code provides some information about the
success or otherwise of the request. Table 14.3 lists some of the more common response codes.

Table 14.3. Some Response Codes
Code Text Description

200 OK The request was successful, and the requested data will follow.

301 Moved
Permanently

The requested data no longer exists on the server. A location header will contain a new
address.

302 Moved Temporarily The requested data has been moved. A location header will contain a new address.

404 Not Found The data could not be found at the supplied address.

500 Internal Server
Error

The server or a CGI script has encountered a severe problem in attempting to serve the
data.

A typical response line, therefore, might look something like the following:

HTTP/1.1 200 OK

The header section includes a series of response headers, formatted in the same way as request headers. Table 14.4
lists some headers commonly sent by servers.

Table 14.4. Some Common Server Headers
Name Description

Date The current date

Server The server name and version

Content-Type The MIME type of content in the entity body

Content-Length The size of the entity in bytes

Location The full address of an alternative document

Listing 14.3 shows a typical server response. After the headers have been sent (lines 2–6), the server sends an empty
line to the client (line 7) followed by the entity body (the document originally requested).

Listing 14.3 A Server Response

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 14.3 A Server Response

 1: HTTP/1.1 200 OK
 2: Date: Mon, 08 Sep 2003 19:24:35 GMT
 3: Server: Apache/2.0.47 (Unix) PHP/5.0.0b1
 4: X-Powered-By: PHP/5.0.0b1
 5: Connection: close
 6: Content-Type: text/html; charset=ISO-8859-1
 7:
 8: <!DOCTYPE html PUBLIC
 9:   "-//W3C//DTD XHTML 1.0 Strict//EN"
10:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
11: <html>
12: <head>
13: <title>Listing 14.3 A server response</title>
14: </head>
15: <body>
16: <div>
17: Hello
18: </div>
19: </body>
20: </html>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Getting a Document from a Remote Address
Although PHP is a server-side language, it can act as a client, requesting data from remote servers and making the
output available to your scripts. If you are already comfortable reading files from the server, you will have no problem
using PHP to acquire information from the Web. In fact, the syntax is exactly the same. You can use fopen() to connect
to a Web address in the same way as you would with a file. Listing 14.4 opens a connection to a remote server and
requests a page, printing the result to the browser.

Listing 14.4 Getting and Printing a Web Page with fopen()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.4 Getting a Web Page with fopen()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $webpage = "http://p24.corrosive.co.uk:9090/source/readthis.php";
12: $fp = fopen( $webpage, "r" ) or die("couldn't open $webpage");
13: while ( ! feof( $fp )) {
14:   print fgets( $fp, 1024 );
15: }
16: ?>
17: </div>
18: </body>
19: </html>

To take advantage of this feature, you need to ensure that the allow_url_fopen directive is set to On. This is the default
setting.

You most likely won't want to output an entire page to the browser. More commonly, you would parse the document
you download.

Prior to PHP 4.0.5, fopen() did not support HTTP redirects. When most
modern browsers are sent a 301 or 302 response header, they make a
new request based on the contents of the Location header. fopen() now
supports this, so URLs that reference directories no longer have to end
with a forward slash.

fopen() returns a file resource if the connection is successful and false if the connection cannot be established or the
page doesn't exist. After you have a file pointer, you can use it as normal to read the file. PHP introduces itself to the
remote server as a client. On my system, it sends the following request:

GET /source/readthis.php HTTP/1.0
Host: p24.corrosive.co.uk:9090

You can also access remote files using the include() statement. If the
allow_url_fopen directive is set to On and a valid URL is passed to include(),
then the result of a request for the remote file is incorporated into the
script.

Unless you are very sure about what you are doing, you should be
cautious of this feature. Including source code from third parties in your
own project is a big security risk.

This process is simple and is the approach you will use to access a Web page in most instances. There is more to fopen()
than we have covered yet. We look again at the function in the section "An Introduction to Streams," later in this
chapter.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


chapter.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Converting IP Addresses and Hostnames
Even if your server does not provide you with a $_SERVER['REMOTE_HOST'] variable, you will probably know the IP
address of a visitor from the $_SERVER['REMOTE_ADDR'] environment variable. You can use this in conjunction with the
function gethostbyaddr() to get the user's hostname. gethostbyaddr() requires a string representing an IP address and
returns the equivalent hostname. If an error occurs, it returns the IP address it was given. Listing 14.5 creates a script
that uses gethostbyaddr() to acquire the user's hostname if the $REMOTE_HOST variable is unavailable.

Listing 14.5 Using gethostbyaddr() to Get a Hostname

 1: <!DOCTYPE html PUBLIC
 2:  "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.5 Using gethostbyaddr() to get a host name</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: if ( ! empty( $_SERVER['REMOTE_HOST'] ) ) {
12:   print "Hello visitor at ".$_SERVER['REMOTE_HOST'];
13: } else if ( ! empty( $_SERVER['REMOTE_ADDR'] ) ) {
14:    print "Hello visitor at ";
15:    print gethostbyaddr( $_SERVER['REMOTE_ADDR'] );
16: } else {
17:   print "Hello you, wherever you are";
18: }
19: ?>
20: </div>
21: </body>
22: </html>

If we have access to the $_SERVER['REMOTE_HOST'] element, we simply print this to the browser on line 12. Otherwise, if
we have access to the $_SERVER['REMOTE_ADDR'] element, we attempt to acquire the user's hostname using
gethostbyaddr() on line 15. If all else fails, we print a generic welcome message on line 17.

To attempt to convert a hostname to an IP address, you can use gethostbyname(). This function requires a hostname as
its argument. It returns an IP address or, if an error occurs, the hostname you provided.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Making a Network Connection
So far, we have had it easy. This is because PHP makes working with a Web page on a remote server as simple as
opening a file on your own system. Sometimes, though, you need to exercise a little more control over a network
connection or acquire more information about it.

You can make a connection to an Internet server with fsockopen(), which requires a hostname or an IP address, a port
number, and two empty variables. The empty variables you pass to fsockopen() are populated to provide more
information about the connection attempt should it fail. You can also pass fsockopen() an optional timeout integer, which
determines how long fsockopen() will wait (in seconds) before giving up on a connection. If the connection is successful,
a resource variable is returned; otherwise, it returns false.

The following fragment initiates a connection to a Web server:

$fp = fsockopen( "www.corrosive.co.uk", 80, $errno, errdesc, 30 );

80 is the usual port number a Web server listens on.

The first empty variable, $errno, contains an error number if the connection is unsuccessful, and $errdesc might contain
more information about the failure.

After you have the file pointer, you can both write to the connection with fputs() and read from it with fgets() as you
might with a file. When you have finished working with your connection, you should close it with fclose().

We now have enough information to initiate our own connection to a Web server. Listing 14.6 makes an HTTP
connection, retrieving a page and storing it in a variable.

Listing 14.6 Retrieving a Web Page Using fsockopen()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.6 Retrieving a Web page using fsockopen()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $host = "www.corrosive.co.uk";
12: $page = "/index.html";
13: $fp = fsockopen( "$host", 80, $errno, $errdesc );
14: if ( ! $fp ) {
15:   die ( "Couldn't connect to $host:\nError: $errno\nDesc: $errdesc\n" );
16: }
17:
18: $request = "GET $page HTTP/1.0\r\n";
19: $request .= "Host: $host\r\n";
20: $request .= "Referer: http://www.corrosive.co.uk/refpage.html\r\n";
21: $request .= "User-Agent: PHP test client\r\n\r\n";
22:
23: $page = array();
24: fputs ( $fp, $request );
25: while ( ! feof( $fp ) ) {
26:   $page[] = fgets( $fp, 1024 );
27: }
28: fclose( $fp );
29: print "the server returned ".(count($page))." lines!";
30: ?>
31: </div>
32: </body>
33: </html>

Notice the request headers (lines 18–21) we send to the server in line 24. The Webmaster at the remote host sees the
value you sent in the User-Agent header in her log file. She also might assume that a visitor to our page connected
from a link at http://www.corrosive.co.uk/refpage.html. For this reason, you should be cautious of some of the
environment variables available to your scripts. Treat them as a valuable guide, rather than a set of facts.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


environment variables available to your scripts. Treat them as a valuable guide, rather than a set of facts.

There are some legitimate reasons you might want to fake some headers. You might need to parse some data that will
be sent only to Netscape-compatible browsers. One way you can do this is to include the word "Mozilla" in the User-
Agent header. Nevertheless, pity the poor Webmaster. Operational decisions are made as a result of server statistics,
so try not to distort the information you provide.

The example in Listing 14.6 adds little to PHP's built-in method of acquiring Web pages. Listing 14.7 uses fsockopen() to
check the status codes returned by servers when we request a series of pages.

Listing 14.7 Outputting the Status Lines Returned by Web Servers

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.7 Outputting Server Status Lines</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $to_check = array (
12:           "www.corrosive.co.uk" => "/index.html",
13:           "www.virgin.com"    => "/notthere.html",
14:           "www.4332blah.com"   => "/nohost.html"
15:       );
16:
17: foreach ( $to_check as $host => $page ) {
18:   print "<p>\n";
19:   $fp = @fsockopen( "$host", 80, $errno, $errdesc, 10);
20:   print "Trying $host<br/>\n";
21:   if ( ! $fp ) {
22:     print "Couldn't connect to $host:<br/>\n";
23:     print "Error: $errno<br/>\n";
24:     print "Desc: $errdesc<br/>\n";
25:   } else {
26:     print "Trying to get $page<br/>\n";
27:     fputs( $fp, "HEAD $page HTTP/1.0\r\n" );
28:     fputs( $fp, "Host: $host\r\n" );
29:     fputs( $fp, "\r\n" );
30:     print fgets( $fp, 1024 );
31:     fclose( $fp );
32:   }
33:   print "</p>\n";
34: }
35:
36: ?>
37: </div>
38: </body>
39: </html>

We create an associative array of the server names and page addresses we want to check starting at line 11. We loop
through this using a foreach statement on line 17. For every element, we initiate a connection using fsockopen() (line 19),
setting a timeout of 10 seconds. If the connection fails, we print a message to the browser. If the connection is
successful, however, we send a request to the server on lines 27–29. We use the HEAD method because we are not
interested in parsing an entity body. Notice that we send a Host header, which is required to ensure that the correct site
is referenced for a server with multiple virtual hosts. We use fgets() on line 30 to get the status line from the server. We
are not going to work with server headers for this example, so we close the connection with fclose() on line 31 and move
onto the next element in the list.

Figure 14.2 shows the output from Listing 14.7.

Figure 14.2. A script to print server response headers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If you are interested in writing sophisticated Web client applications, you
should look at the CURL package (http://curl.haxx.se/). As of PHP 4.02,
support was added for CURL which can handle many of HTTP's more tricky
aspects, including user and password authentication, cookies, and POST
form submissions. It can also handle secure transactions with HTTPS and a
range of other protocols. You can get more details from the PHP manual at
http://www.php.net/manual/en/ref.curl.php.

Making an NNTP Connection Using fsockopen()

fsockopen() can be used to make a connection to any Internet server. In Listing 14.8, we connect to an NNTP (Usenet)
server, select a newsgroup, and list the headers of the first message.

Listing 14.8 A Basic NNTP Connection Using fsockopen()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.8 A basic NNTP Connection Using fsockopen()</title>
 7: </head>
 8: <body>
 9: <?php
10: $server = "news"; // change this to your news server
11: $group = "sci.physics";
12: $line = " ";
13: print "<pre>\n";
14: print "-- Trying to connect to $server\n\n";
15:
16: $fp = @fsockopen( "$server", 119, $error, $description, 10 );
17: if ( ! $fp ) {
18: die("Couldn't connect to $server\n$errno\n$errdesc\n\n");
19: }
20:
21: print "-- Connected to $server\n\n";
22:
23: $line = fgets( $fp, 1024 );
24: $status = explode( " ", $line );
25:
26: if ( $status[0] != 200 && $status[0] != 201 ) {
27:   fputs( $fp, "close" );
28:   die("Error: $line\n\n");
29: }
30:
31: print "$line\n";
32: print "-- Selecting $group\n\n";
33: fputs( $fp, "group $group\n" );
34: $line = fgets( $fp, 1024 );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


34: $line = fgets( $fp, 1024 );
35: $status = explode( " ", $line );
36:
37: if ( $status[0] != 211 ) {
38:   fputs( $fp, "close" );
39:   die("Error: $line\n\n");
40: }
41:
42: print "$line\n";
43: print "-- Getting headers for first message\n\n";
44: fputs( $fp, "head\n" );
45: $line = fgets( $fp, 1024 );
46: $status = explode( " ", $line );
47: print htmlspecialchars("$line\n");
48:
49: if ( $status[0] != 221 ) {
50:   fputs( $fp, "close" );
51:   die("Error: $line\n\n");
52: }
53:
54: while ( ! ( strpos($line, ".") === 0 ) ) {
55:   $line = fgets( $fp, 1024 );
56:   print htmlspecialchars($line);
57: }
58:
59: fputs( $fp, "close\n" );
60: print "</pre>";
61: ?>
62: </body>
63: </html>

The code in Listing 14.8 does little more than demonstrate that an NNTP connection is possible with fsockopen(). In a
real-world example, you would want to handle the line parsing in a function to save repetition and extract more
information from the server's output. Rather than reinvent the wheel in this way, you might want to investigate PHP's
IMAP functions, which provide POP3 and NNTP connectivity and automate much of this work for you. On the other hand,
the example does illustrate the power and potential of PHP as a network-capable language.

We store the hostname of our server in a variable—$server—on line 10 and store the group we want to select in $group
on line 11. If you want to run this script, you should assign the hostname of your ISP's news server to the $server
variable.

If your ISP does not allow you access to a news server, you might be able
to run this script on a public news server. An excellent resource for public
servers can be found at http://www.newzbot.com/.

We use fsockopen() on line 16 to connect to the host on port 119, which is the usual port for NNTP connections. If a valid
file resource is not returned, we use die() on line 18 to print the error number and description to the browser and end
script execution. On connection, the server should have sent us a confirmation message, so we attempt to acquire this
with fgets() on line 23. If all is well, this string begins with the status code 200. To test this, we use explode() (on line 24)
to split the $line string into an array using the space character as the delimiter. To learn more about the explode()
function, refer to Hour 8. If the first element of this array is 200 or 201 (the status returned by servers that do not allow
posting), we can continue; otherwise, we end the script.

If all is proceeding as expected, we send the news server the "group" command that should select a newsgroup on line
33. If this is successful, the server should return a string beginning with the status code 211. We test this again on line
37 and end execution if we don't get what we are expecting.

Now that we have selected our newsgroup, we send the "head" command to the server on line 44, which requests the
headers for the first message in the group. Again, we test the server response on line 49, looking for the status code
221. Finally, we acquire the header itself. The server's listing of a header ends with a single dot (.) on its own line, so
we test for this in a while statement on line 49. As long as the server's output line does not begin with a dot, we request
and print the next line.

Finally, we close the connection. Figure 14.3 shows a typical output from Listing 14.8.

Figure 14.3. Making an NNTP connection.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 14.3. Making an NNTP connection.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Sending Mail with the mail() Function
PHP can automate the sending of Internet mail for you. The mail() function requires three strings representing the
recipient of the mail, the mail subject, and the message. mail() returns false if it encounters an error. In the following
fragment, we send an email:

$to = "someone@adomain.com";
$subject = "hi";
$message = "just a test message! ";
mail( $to, $subject, $message ) or print "Could not send mail";

If you are running PHP on a Unix system, mail() uses a mail application such as Sendmail. On other systems, the
function connects to a local or remote SMTP mail server. You should set this using the SMTP directive in the php.ini file.

You are not limited to the mail headers implied by the mail() function's required arguments. You can include as many
mail headers as you want in an optional fourth string argument. These should be separated by CRLF characters ('\r\n').
In the following example, we include a From field in our mail message, as well as an X-Priority header that some clients
recognize:

$to = "someone@example.com";
$from = "book@corrosive.co.uk";
$subject = "hi";
$message = "just a test message! ";
mail( $to, $subject, $message, "From: $from\r\nX-Priority: 1 (Highest)" )
or print "Could not send mail";

As of PHP 4.0.5, an additional fifth optional parameter can be used. This enables you to pass command-line-style
arguments directly to the mailer.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

An Introduction to Streams
A stream is a flow of data that can be read from and written to. Streams were introduced with PHP 4.3. You can work
with streams using resource variables and define them using specially structured strings. You might be surprised to
discover that we have already done quite a lot of work with streams. Let's revisit the fopen() function:

$fp = fopen( "/path/to/file.txt", "r" );
$wp = fopen( "http://www.example.com", "r" );

We use fopen() to acquire a resource that can then be used with methods such as fgets(). After we have this resource,
we can ignore the fact that the source of the stream we are working with is a Web page or a file. It is just a stream.

In the second call to fopen(), the engine provides an HTTP stream rather than a file stream because of the syntax of the
path argument. We refer to streams in two parts: the scheme (http in the fragment) and the target (www.example.com).
The scheme and the target are separated by the characters '://':

scheme://target
http://www.example.com

In the first call to fopen(), the scheme was omitted and the engine resorted to the default behavior, providing a file
stream. Table 14.4 lists some of the schemes PHP supports.

Table 14.4. Some Stream Protocols
scheme://target Description

file://path/file The file at path/file on the file system

ftp://host/path The object at host/path via FTP

ftp://user:pass@host The object at host/path via FTP (using user/pass)

ftps://host/path The object at host/path via secure FTP

ftps://user:pass@host The object at host/path via secure FTP (using user/pass)

http://host/path The object at host/path via HTTP

http://user:pass@host The object at host/path via HTTP (with authentication)

https://host/path The object at host/path via HTTPS

https://user:pass@host The object at host/path via HTTPS (with authentication)

php://input Raw POST data

php://output Output stream to browser or command line

With fopen(), we have a function that handles different stream protocols differently according to type. This is possible
because each protocol is managed behind the scenes by its own wrapper. A particular wrapper is invoked by a stream
function such as fopen() according to the scheme provided. The target information after the '://' is passed to the wrapper
and used to acquire the relevant resource. Also passed to the wrapper are any mode arguments (such as r for read and
w for write), options, and an optional context array. Streams sit behind most functions that open flows of data,
including file(), file_get_contents(), fsockopen(), and so on. We will deal with fopen() in our examples.

Streams and Contexts

PHP provides a mechanism by which stream wrappers can be passed fine-grained parameters to help them with their
reading, writing, or appending. Context options take the form of an array whose key should be the name of the
wrapper. The array's value should be an associative array of option names and values. Let's define an option array for
an HTTP stream:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$options = array(
      "http"=>array(
        "user_agent"=>"php24-test-script",
        "header"=>"Referer: http://www.example.com/index.html\r\n"
      )
     );

The $options array should be fairly clear. We will be telling our HTTP wrapper to use the Referer header and the
user_agent string supplied. Before we can pass these options to fopen(), we must first create a context resource:

$context = stream_context_create( $options );

Table 14.5 lists all the context options the HTTP wrapper accepts.

Table 14.5. The Context Options Supported by the HTTP Wrapper
Key Description

content Request information passed after the request header, typically in POST requests

header One or more request headers; each header should end with a newline

method The request method, usually GET or POST

user_agent The User-agent request header (if not overridden by a header option)

In Listing 14.9 we create a simple page that reports on the $_SERVER['HTTP_REFERER'] and $_SERVER['HTTP_USER_AGENT']
elements. We will use this to test our context resource.

Listing 14.9 Reporting the User Agent and Referrer

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 14.9 Reporting User Agent and Referrer</title>
 7: </head>
 8: <body>
 9: <div>
10: <p>
11: Browser: <b><?php print $_SERVER['HTTP_USER_AGENT'] ?></b><br />
12: Referring page: <b><?php print $_SERVER['HTTP_REFERER'] ?></b>
13: </p>
14: </div>
15: </body>
16: </html>

Now we can access this page using an HTTP wrapper. If all goes well, we should see our context options in the output.
In Listing 14.10 we create a context resource, passing it to fopen() to display the output from Listing 14.9.

Listing 14.10 Calling fopen() with a Context Resource

 1: <?php
 2: $url="http://p24.corrosive.co.uk:9090/source/listing14.9.php";
 3: $options = array(
 4:         "http"=>array(
 5:           "user_agent"=>"php24-test-script",
 6:          "header"=>"referer: http://www.example.com/index.html\r\n"
 7:         )
 8:       );
 9:
10: $context = stream_context_create( $options );
11:
12: $res = fopen( $url, 'r', 0, $context ) or
13:     die( "could not open page" );
14:
15: while ( ! feof( $res ) ) {
16:   print fgets( $res, 1024 );
17: }
18:
19: ?>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


19: ?>

We assign a full URL to the $url variable on line 2. This points to the simple script we created in Listing 14.9. We then
create an $options array, passing it to stream_context_create() on line 10 to acquire a context resource. We call fopen() on
line 12, passing it our $url variable, a mode string, a zero integer (meaning that we want to pass no special options),
and our context resource. Because the $url string begins with http://, an HTTP wrapper is invoked. It makes an HTTP
request, using the context options we passed to fopen(). On lines 15 and 16, we use fgets() and feof() to output the
stream to the browser. You can see the output from Listing 14.10 in Figure 14.4, confirming that Listing 14.9 reports
the headers we set.

Figure 14.4. Calling an HTTP wrapper with a context resource.

You can get a full list of stream wrappers and details of the context
options available for each one at
http://uk.php.net/manual/en/wrappers.php.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you saw how to use environment variables to learn more about your visitors. If you don't have access to a
user's hostname, you should now be able to use gethostbyaddr() to acquire it.

You learned some of the basics about the negotiation that takes place between a client and server when an HTTP
connection is made.

You learned how to use fopen() to get a document from the Web and how to use fsockopen() to make your own HTTP
connection. You should also be able to use fsockopen() to make connections to other network services. You learned how
to use mail() to send email from your scripts. Finally, you peeked below the hood to examine streams, the mechanism
by which data functions deal transparently with multiple protocols.

So far in this book, we have concentrated on text. In the next hour, we look at some functions that enable us to use
PHP to contruct and manipulate images.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: HTTP seems a little esoteric. Do I really need to know about it to write good PHP code?

A1: No. You can write excellent code with knowing the intricacies of client/server interaction. On the other
hand, a basic understanding of the process is useful if you want to do more than just download pages
from remote servers.

Q2: If I can send fake headers to a remote server, how suspicious should I be of environment
variables myself?

A2: You should not trust environment variables such as $_SERVER['HTTP_REFERER'] and
$_SERVER['HTTP_USER_AGENT'] if their accuracy is essential to the operation of your script. Remember,
though, that the vast majority of clients you deal with will tell you the truth. If you are merely ensuring a
productive user experience by detecting browser type or gathering overall statistical information, there is
no need to distrust this data.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which server variable might give you the URL of the referring page?

2: Why can you not rely on the $_SERVER['REMOTE_ADDR'] variable to track an individual user across multiple
visits to your script?

3: What does HTTP stand for?

4: Which client header line tells the server about the browser that is making the request?

5: What does the server response code 404 mean?

6: Without making your own network connection, which function might you use to access a Web page on a
remote server?

7: Given an IP address, which function could you use to get a hostname?

8: Which function would you use to make a network connection?

9: Which PHP function would you use to send an email?

Answers

A1: You can often find the URL of the referring page in the $_SERVER['HTTP_REFERER'] variable.

A2: Many service providers allocate a different IP address to their users every time they log on, so you cannot
assume a user will return with the same address.

A3: HTTP stands for Hypertext Transfer Protocol.

A4: A client might send a User-Agent header, which tells the server about the client version and operating
system that are running.

A5: The server response 404 means that the requested page or resource cannot be found on the server.

A6: The fopen() function can be used for Web pages on remote machines as well as files on your file system.

A7: The gethostbyaddr() function accepts an IP address and returns a resolved hostname.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: The fsockopen() function establishes a connection with a remote server.

A9: You can send email with the mail() function.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a script that accepts a Web hostname (such as http://www.microsoft.com) from user input. Send the

host a HEAD request using fsockopen() to create the connection. Print the response to the browser. Remember to
handle the possibility that no connection can be established.

2. Create a script that accepts a message from the user and mails it to you. Add server variables to the user's
message to tell you about her browser and IP address.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 15. Images On-the-Fly
What You'll Learn in This Hour:

How to create and output an image

How to work with colors

How to draw shapes, including arcs, rectangles, and polygons

How to fill areas with color

How to work with TrueType fonts

The functions included in this hour rely on a library called GD which is bundled with PHP.

The GD library is a set of tools that enables programmers to create and work with images on-the-fly. If PHP is compiled
with GD support, you can use PHP's image functions to create dynamic images. Due to licensing issues, the bundled
library does not support the GIF image format. We will output images as PNGs because they are available by default
with the bundled library and are supported by most browsers. With the GD functions you can create sophisticated
graphics on-the-fly.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Checking Your Configuration with gd_info()

Although the GD library is bundled with PHP, some features (such as JPEG support, for example) require external
libraries. You can see which features PHP is compiled to support with the gd_info() function. gd_info() requires no
arguments and returns an associative array describing your GD setup. Table 15.1 lists the elements of the array
returned by gd_info().

Table 15.1. The Array Returned by gd_info()
Element Description

GD Version The version of GD used; bundled (2.0.15 compatible), for example

FreeType Support Whether FreeType fonts are supported (0 or 1)

FreeType Linkage The library used to provide FreeType functionality; with TTF library, for example.

T1Lib Support Support for Type 1 fonts

GIF Read Support Read-only support for the GIF format (0 or 1)

GIF Create Support Support for creating and manipulating GIF data (0 or 1)

JPG Support Support for reading, creating, and manipulating JPEG data (0 or 1)

PNG Support Support for reading, creating, and manipulating PNG data (0 or 1)

WBMP Support Support for reading, creating, and manipulating wireless bitmap data (0 or 1)

XPM Support Support for reading, creating, and manipulating X Windows pixmap image data (0
or 1)

XBM Support Support for reading, creating, and manipulating X Windows bitmap image data (0
or 1)

JIS-mapped Japanese Font
Support

Support for Japanese International Standard character set (0 or 1)

We can run gd_info() in a script like so:

print "<pre>";
print_r( gd_info() );
print "</pre>";

Notice that we output the array using print_r() and maintain formatting by wrapping our output in a <pre> element. On
our system the output looks like this:

Array
(
  [GD Version] => bundled (2.0.15 compatible)
  [FreeType Support] => 1
  [FreeType Linkage] => with TTF library
  [T1Lib Support] =>
  [GIF Read Support] => 1
  [GIF Create Support] =>
  [JPG Support] => 1
  [PNG Support] => 1
  [WBMP Support] => 1
  [XPM Support] =>
  [XBM Support] => 1
  [JIS-mapped Japanese Font Support] =>
)

We can see from this output that it would be a mistake to attempt to output a GIF file, but we can work with the JPEG
and PNG formats.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating and Outputting Images
Before you can begin to work with an image, you must acquire an image resource. You can do this using the
imagecreate() function. imagecreate() requires two arguments, one for the image's height and another for its width. It
returns an image resource, which you will use with most of the functions we cover in this hour. You should be familiar
with resources from your work with files and databases. The image resource returned by imagecreate() is a required
argument for most of the functions in this book:

$image = imagecreate( 200, 200 );

Now that you have an image resource, you can allocate a color.

If you want to work with an existing image rather than create a new one,
PHP provides a range of functions to open files of different types. You can
open and work with a JPEG file, for example, by passing its path to
imagecreatefromjpeg(). You can also open and work with a PNG file by
passing a path to imagecreatefrompng(). You can then work with the image
resource returned by these functions as we do in the examples in this
hour. You will need to use gd_info() to check that GD is set up to work with
the format you want to read.

You can find these and other variations on imagecreate() at the Image
Functions section of the PHP manual, at http://www.php.net/gd.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Acquiring Color
To work with color, you need to acquire a color resource. You can do this with the imagecolorallocate() function, which
requires an image resource and three integers between 0 and 255 representing red, green, and blue. The function
returns an image resource that you can use to define the color of shapes, fills, and text:

$red = imagecolorallocate( $image, 255,0,0 );

Coincidentally, the first time you call imagecolorallocate(), you also set the default color for your image.

Now that you have an image resource and a color allocated, you are nearly ready to output your first image to the
browser. To do this, you need to use the imagepng() function, which requires the image resource as an argument.
imagepng() also accepts an optional path argument. If you provide a path here, PHP will attempt to write the data to a
file rather than to the browser. This can be useful for caching dynamically generated images.

Listing 15.1 uses these functions to create and output an image.

Listing 15.1 A Dynamically Created Image

1: <?php
2: header("Content-type: image/png");
3: $image = imagecreate( 200, 200 );
4: $red = imagecolorallocate( $image, 255, 0, 0 );
5: imagepng($image);
6: ?>

Notice that we sent a Content-type header to the browser (line 2) before doing anything else. We need to tell the
browser to expect image information; otherwise, it treats the script's output as HTML. This script can now be called
directly by the browser, or as part of an IMG element, like so:

<img src="listing15.1.php" alt="a PHP generated image">

Figure 15.1 shows the output of Listing 15.1.

Figure 15.1. A dynamically created image.

We have created a square, but we have no way as yet of controlling its color.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We have created a square, but we have no way as yet of controlling its color.

Depending on your setup, you might be able to output image formats
other than PNGs. To add JPEG support on a Unix system, for example, you
might need an external JPEG library from the Independent JPEG Group at
http://www.ijg.org/files/jpegsrc.v6b.tar.gz.

In the following fragment, we unpack the archive and install it from a
Linux command line:

tar -xvzf jpegsrc.v6b.tar.gz
cd jpeg-6b
./configure
  --enable-shared \
  --enable-static \
  --prefix=/usr
make
make install

After the JPEG library is installed, we can ensure that PHP can use it when
we run PHP's configure script:

./configure --with-apxs=/home/apache/bin/apxs' \
  --with-gd \
  --with-freetype=/usr/include/freetype/ \
  --with-ttf \
  --with-zlib-dir=/usr/include \
  --with-jpeg-dir=/usr/lib

After PHP is compiled, we can substitute imagejpeg() for imagepng() to write
JPEG rather than PNG data.

Like imagepng(), imagejpeg() accepts an image resource and optional second
argument, which you can use to write an image to a file. It also accepts a
third integer argument representing the quality of the image you want to
output. This can be a value between 1 and 100. If you omit the third
argument, a default of 75 is used.

As you read this, you might find that JPEG support is bundled with your
version of PHP. Use gd_info() to check your configuration before
recompiling.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Drawing Lines
Before you draw a line on an image, you need to determine the points from and to which you want to draw.

You can think of an image as a block of pixels indexed from 0 on both the horizontal and vertical axes. The origin is the
upper-left corner of the image.

In other words, a pixel with the coordinates 5, 8 is the sixth pixel along and the ninth pixel down, looking from left to
right, top to bottom.

The imageline() function draws a line between one pixel coordinate and another. It requires an image resource, four
integers representing the start and end coordinates of the line, and a color resource.

Listing 15.2 adds to the image created in Listing 15.1, drawing a line from corner to corner.

Listing 15.2 Drawing a Line with imageline()

1: <?php
2: header("Content-type: image/png");
3: $image = imagecreate( 200, 200 );
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255 );
6: imageline( $image, 0, 0, 199, 199, $blue );
7: imagepng($image);
8: ?>

We acquire two color resources, one for red (line 4) and one for blue (line 5). We then use the resource stored in the
variable $blue for the line's color on line 6. Notice that our line ends at the coordinates 199, 199 and not 200, 200;
that's because pixels are indexed from 0. Figure 15.2 shows the output from Listing 15.2.

Figure 15.2. Drawing a line with imageline().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Applying Color Fills
You can fill an area with color using PHP just as you can with your favorite graphics application. The function imagefill()
requires an image resource, starting coordinates for the fill it is to perform, and a color resource. It then transforms the
starting pixel and all adjacent pixels of the same color. Listing 15.3 adds a call to imagefill() to our script, making the
image a little more interesting.

Listing 15.3 Using imagefill()

1: <?php
2: header("Content-type: image/png");
3: $image = imagecreate( 200, 200 );
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255 );
6: imageline( $image, 0, 0, 199, 199, $blue );
7: imagefill( $image, 0, 199, $blue );
8: imagepng($image);
9: ?>

The only change we have made to our example is the call to imagefill() on line 7. Figure 15.3 shows the output from
Listing 15.3.

Figure 15.3. Using imagefill().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Drawing an Arc
You can add partial or complete arcs to your images with the imagearc() function. imagearc() requires an image object,
coordinates for the center point, an integer for width, an integer for height, a start point and end point (in degrees),
and a color resource. Arcs are drawn clockwise starting from 3 o'clock. The following fragment draws a quarter circle:

imagearc( $image, 99, 99, 200, 200, 0, 90, $blue );

This draws a partial arc, with its center at the coordinates 99, 99. The total height and width are both 200 pixels.
Drawing starts at 3 o'clock and continues for 90° (to 6 o'clock).

Listing 15.4 draws a complete circle and fills it with blue.

Listing 15.4 Drawing a Circle with imagearc()

1: <?php
2: header("Content-type: image/png");
3: $image = imagecreate( 200, 200 );
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255 );
6: imagearc( $image, 99, 99, 180, 180, 0, 360, $blue );
7: imagefill( $image, 99, 99, $blue );
8: imagepng($image);
9: ?>

As before, we acquire color resources (lines 4 and 5). On line 6, we call imagearc() to draw a complete circle; then the
call to imagefill() on line 7 fills our circle with blue.

Figure 15.4 shows the output from Listing 15.4.

Figure 15.4. Drawing a circle with imagearc().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Drawing a Rectangle
You can draw a rectangle in PHP using the imagerectangle() function. imagerectangle() requires an image resource, the
coordinates for your rectangle's upper-left corner, the coordinates for its bottom-right corner, and a color resource. The
following fragment draws a rectangle whose upper-left coordinates are 19, 19 and bottom-right coordinates are 179,
179:

imagerectangle( $image, 19, 19, 179, 179, $blue );

You could then fill this with imagefill(). Because this is such a common operation, however, PHP provides the
imagefilledrectangle() function, which expects exactly the same arguments as imagerectangle() but produces a rectangle
filled with the color you specify. Listing 15.5 creates a filled rectangle (line 6) and outputs the image to the browser.

Listing 15.5 Drawing a Filled Rectangle with imagefilledrectangle()

1: <?php
2: header("Content-type: image/png");
3: $image = imagecreate( 200, 200 );
4: $red = imagecolorallocate($image, 255,0,0);
5: $blue = imagecolorallocate($image, 0,0,255 );
6: imagefilledrectangle( $image, 19, 19, 179, 179, $blue );
7: imagepng( $image );
8: ?>

Figure 15.5 shows the output from Listing 15.5.

Figure 15.5. Drawing a filled rectangle with imagefilled rectangle().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Drawing a Polygon
You can draw more sophisticated shapes using imagepolygon(). This function requires an image resource, an array of
point coordinates, an integer representing the number of points in the shape, and a color resource. The array passed to
imagepolygon() should be numerically indexed. The first two elements give the coordinates of the first point, the second
two give the coordinates of the second point, and so on. imagepolygon() fills in the lines between the points,
automatically closing your shape by joining the final point to the first. You can create a filled polygon with the
imagefilledpolygon() function.

Listing 15.6 draws a filled polygon, outputting the result to the browser.

Listing 15.6 Drawing a Polygon with imagefilledpolygon()

 1: <?php
 2: header("Content-type: image/png");
 3: $image = imagecreate( 200, 200 );
 4: $red = imagecolorallocate($image, 255,0,0);
 5: $blue = imagecolorallocate($image, 0,0,255 );
 6: $points = array (   10, 10,
 7:       190, 190,
 8:       190, 10,
 9:       10, 190
10:       );
11: imagefilledpolygon( $image, $points, count( $points )/2 , $blue );
12: imagepng($image);
13: ?>

After acquiring image and color resources (lines 2–5), we create an array of coordinates on line 6. Notice that when we
call imagefilledpolygon() on line 11, we tell it the number of points we want to connect by counting the number of
elements in the $points array and dividing the result by 2. Figure 15.6 shows the output from Listing 15.6.

Figure 15.6. Drawing a polygon with imagefilled polygon().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Making a Color Transparent
PHP allows you to make selected colors within your image transparent with imagecolortransparent(), which requires an
image resource and a color resource. When you output your image to the browser, the color you pass to
imagecolortransparent() is transparent. Listing 15.7 changes our polygon code so that the shape floats on the browser
instead of sitting against a background color.

Listing 15.7 Making Colors Transparent with imagecolortransparent()

 1: <?php
 2: header("Content-type: image/png");
 3:
 4: $image = imagecreate( 200, 200 );
 5: $red = imagecolorallocate($image, 255,0,0);
 6: $blue = imagecolorallocate($image, 0,0,255 );
 7:
 8: $points = array (   10, 10,
 9:       190, 190,
10:       190, 10,
11:       10, 190
12:       );
13:
14: imagefilledpolygon( $image, $points, count( $points )/2 , $blue );
15: imagecolortransparent( $image, $red );
16: imagepng($image);
17: ?>

Listing 15.7 is identical to Listing 15.6 except for the call to imagecolortransparent() on line 15. Figure 15.7 shows the
output from Listing 15.7.

Figure 15.7. Making colors transparent with imagecolor transparent().

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Working with Text
In this section we will work primarily with PHP's TrueType functions, which are useful for creating sophisticated charts
or navigation. For a quick and easy way of writing to an image, however, the imagestring() function is the perfect tool.

Writing to an Image with the imagestring() Function

The imagestring() function is simple and useful. It requires an image resource, a font number, an x-axis location, and a
y-axis location (with location 0,0 being the upper-left corner of the image). The function also requires the string you
want to output and a color resource. Of these arguments, only the font numbers should need much explanation. These
are built-in fonts of ascending size. Font 1 is the smallest in size, font 2 is slightly larger, and so on up to font 5. In the
following fragment, we use imagestring() to write some text to an image:

header("Content-type: image/png");
$image = imagecreate( 200, 200 );
$red = imagecolorallocate($image, 255,0,0);
$blue = imagecolorallocate($image, 0,0,255 );

for ( $x=1; $x<=5; $x++ ) {
  imageString( $image, $x, (20*$x), (20*$x), "Welcome!", $blue );
}

imagepng($image);

We output a Content-type header and create an image and two color resources as before. Then we use a for loop to
increment a counter variable, $x from 1 to 5. For each iteration of the loop, we call imagestring(), passing it our image
resource, the font number held by the $x variable, and two location coordinates. We use the same string—Welcome!—
and the color blue for each call to imagestring().

You can see the output from this fragment in Figure 15.8.

Figure 15.8. Writing text to an image with imagestring().

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Working with TrueType Fonts

If you are working with the GD functions on a Windows system, you probably have access to the TrueType text
functions already. If you are working in a Linux context, however, you might need to tell PHP about the TrueType
library on your system when you compile it. We cover the installation process for a Linux system in Hour 2, "Installing
PHP."

When you have TrueType support, you can use text functions to create image-based charts or navigation elements. PHP
even gives you the tool you need to check that any text you write will fit within the space available.

Writing a String with imageTTFtext()

You can write text to your image with the imageTTFtext() function. This requires eight arguments: an image resource, a
size argument representing the height of the characters to be written, an angle, the starting coordinates (one argument
for the x-axis and another for the y-axis), a color resource, the path to a TrueType font, and the text you want to write.

The start point for any text you write determines where the baseline of the first character in the string will be.

Listing 15.8 writes a string to an image and outputs the result to the browser.

Listing 15.8 Writing a String with imageTTFtext()

 1: <?php
 2: header("Content-type: image/png");
 3:
 4: $image = imagecreate( 400, 200 );
 5: $red = imagecolorallocate($image, 255,0,0);
 6: $blue = imagecolorallocate($image, 0,0,255 );
 7: $font = "luxisri.ttf";
 8:
 9: imageTTFtext( $image, 50, 0, 20, 100, $blue, $font, "Welcome!");
10:
11: imagepng($image);
12: ?>

We create a canvas with a width of 400 pixels and a height of 200 pixels on line 4. We define two colors (lines 5 and 6)
and store the path to a TrueType font in a variable called $font (line 7).

Note that font files are likely to be stored in a different directory on your server. If you are not sure where, you could
try searching for files with the .ttf extension. If you still cannot find the fonts you need on your system, you should be
able to locate TrueType fonts on the Web and upload them to your Web space.

After we have stored the font path in the $font variable, we write the text Welcome! to the image on line 9.

For the call to imageTTFtext(), we define a size of 50, an angle of 0, a starting position of 20 on the x-axis, and a starting
position of 100 on the y-axis. We also pass the function the color resource stored in the $blue variable, the font path
stored in $font, and (finally) the text we want to output. You can see the result in Figure 15.9.

Figure 15.9. Writing text with imageTTFtext().

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Of course, we have to guess where to put the text at the moment. The size argument does not give us an accurate idea
of the text's height, and the width is a mystery. In fact, imageTTFtext() will return dimension information, but by then the
deed is done. Luckily, PHP provides a function that enables you to try before you buy.

Testing Text Dimensions with imageTTFbox()

You can get information about the dimensions of text using the imageTTFbox() function, which is so called because it tells
you about the text's bounding box. imageTTFbox() requires the font size, the angle, a path to a font file, and the text to
be written. It is one of the few image functions that does not require an image resource. It returns an eight-element
array, which is explained in Table 15.2.

Table 15.2. The Array Returned by imageTTFbox()
Index Description

0 Bottom-left (horizontal axis)

1 Bottom-left (vertical axis)

2 Bottom-right (horizontal axis)

3 Bottom-right (vertical axis)

4 Upper-right (horizontal axis)

5 Upper-right (vertical axis)

6 Upper-left (horizontal axis)

7 Upper-left (vertical axis)

All figures on the vertical axis are relative to the text's baseline, which is 0. Figures for the vertical axis at the top of the
text count down from this figure and are therefore usually minus numbers. Figures for the vertical axis at the bottom of
the text count up from 0, giving the number of pixels the text drops from the baseline.

So, if you test a string containing a y with imageTTFbbox(), for example, the return array might have a figure of 3 for
element 1 because the tail of the y drops 3 pixels below the baseline. It could have a figure of –10 for element 7
because the text is raised 10 pixels above the baseline.

To complicate matters, there seems to be a 2-pixel difference between the baseline as returned by imageTTFbbox() and
the visible baseline when drawing text. You might need to adjust for this by thinking of the height of the baseline as 2
pixels greater than that returned by the imageTTFbbox().

On the horizontal axis, figures for imageTTFbbox() on the left take account of text that begins before the given start point
by returning the offset as a minus number in elements 6 and 0. This is usually a small number, so whether you adjust
alignment to take account of this depends on the level of accuracy you require.

You can use the information returned by imageTTFbbox() to align text within an image. Listing 15.9 creates a script that
dynamically outputs text, centering it within our image on both the vertical and horizontal planes.

Listing 15.9 Aligning Text Within a Fixed Space Using imageTTFbbox()

 1: <?php
 2: header("Content-type: image/png");
 3: $height = 100;
 4: $width = 200;
 5: $fontsize = 50;
 6: if ( empty ( $_GET['text'] ) ) {
 7:   $text = "Change me!";
 8: } else {
 9:   $text = $_GET['text'];
10: }
11: $image = imagecreate( $width, $height );
12: $red = imagecolorallocate($image, 255,0,0);
13: $blue = imagecolorallocate($image, 0,0,255 );
14: $font = "luxisri.ttf";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


14: $font = "luxisri.ttf";
15: $textwidth = $width;
16: $textheight;
17: while ( true ) {
18:   $box = imageTTFbbox( $fontsize, 0, $font, $text );
19:   $textwidth = abs( $box[2] );
20:   $textbodyheight = ( abs($box[7]) )-2;
21:   if ( $textwidth < $width - 20 )
22:     break;
23:   $fontsize--;
24: }
25: $pngXcenter = (int) ( $width/2 );
26: $pngYcenter = (int) ( $height/2 );
27: imageTTFtext( $image, $fontsize, 0,
28:     (int) ($pngXcenter-($textwidth/2)),
29:     (int) ($pngYcenter+(($textbodyheight)/2) ),
30:     $blue, $font, $text );
31: imagepng($image);
32: ?>

We store the height and width of the image in the variables $height and $width (lines 3 and 4) and set a default font size
of 50 on line 5. On line 6, we test the built-in $_GET array for the presence of an element called 'text', setting a default
on line 9 if it isn't present. In this way, the image can accept data from a Web page, either in the query string of an
image URL or from form submission. We use imagecreate() on line 11 to acquire an image resource. We acquire color
resources in the usual way and store the path to a TrueType font file in a variable called $font (lines 12–14).

We want to fit the string stored in $text into the available space, but we have no way of knowing yet whether it will.
Within a while statement starting on line 17, we pass the font path and string to imageTTFbbox() on line 18, storing the
resultant array in a variable called $box. The element $box[2] contains the position of the lower-right corner on the
horizontal axis. We take this to be the width of the string and store it in $textwidth on line 21.

We want to center the text vertically, but only account for the area above the text's baseline. We can use the absolute
value of $box[7] to find the height of the text above the baseline, although we need to adjust this by 2 pixels. We store
this value in $textbodyheight on line 20.

Now that we have a working figure for the text's width, we can test it against the width of the image (less 10 pixels
border). If the text is smaller than the width of the canvas we are using, we end the loop on line 22. Otherwise, we
reduce the font size on line 23, ready to try again.

Dividing the $height and $width values by 2 (lines 25 and 26), we can find the approximate center point of the image.
We write the text to the image on line 27, using the figures we have calculated for the image's center point in
conjunction with the text's height and width to calculate the offset.

Finally, we write the image to the browser on line 31. Figure 15.10 shows the output from Listing 15.9.

Figure 15.10. Aligning text within a fixed space using imageTTFbbox().

This code can now be called from another page as part of an img element. The following fragment writes some simple
code that enables a user to add his own string to be included in the image:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


code that enables a user to add his own string to be included in the image:

<?php
$text = ( empty( $_GET['text'] ) )?"Dynamic":$_GET['text'];
?>
<form action="<?php print $_SERVER['PHP_SELF'] ?>" method="get">
<input type="text" name="text" />
</form>
<p>
<img src="listing15.9.php?text=<?php print urlencode($text) ?>" />
</p>

When we call the script in Listing 15.9 on line 10, we append a query string that includes the text to be added to the
image. You can learn more about this technique for passing information from script to script in Hour 19, "Saving State
with Cookies and Query Strings."

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Bringing It Together
Let's build an example that uses some of the functions we have examined in this hour. Suppose that we have been
asked to produce a dynamic bar chart that compares a range of labeled numbers. The bar chart must include the
relevant label below each bar. Our client must be able to change the number of bars on the chart, the height and width
of the image, and the size of the border around the chart. The bar chart will be used for consumer votes, and all that is
needed is an at-a-glance representation of the data. A more detailed breakdown will be included in the HTML portion of
the containing page.

To make our code reasonably reusable, we create a class called SimpleBar.

Before we even reach the constructor, we can set up some values that we don't intend to make changeable by the
client. We declare them private, like so:

private $xgutter = 20; // left/right margin
private $ygutter = 20; // top/bottom margin
private $bottomspace = 30; // gap at the bottom
private $internalgap = 10; // space between bars
private $cells = array(); // labels/amounts for bar chart

The $xgutter and $ygutter properties determine the margin around the chart horizontally and vertically. $internalgap
determines the space between the bars, and the $bottomspace property contains the space available to label the bars at
the bottom of the screen.

In the constructor, we assign some values to properties we want the client coder to be able to influence:

function __construct( $width, $height, $font ) {
  $this->totalwidth = $width;
  $this->totalheight = $height;
  $this->font = $font;
}

The constructor is called with a width, height, font, and properties set accordingly. Now we have most of the
parameters in place, except for the data to be displayed.

The easiest way of storing labels and values is in an associative array. Our class will have a property called $cells, and
we will allow client code to add to this array through a method called addBar():

function addBar( $label, $amount ) {
  $this->cells[ $label ] = $amount;
}

With our parameters in place, we can define a draw() method to work with them:

function draw() {
    $image = imagecreate( $this->totalwidth, $this->totalheight );
    $red = ImageColorAllocate($image, 255, 0, 0);
    $blue = ImageColorAllocate($image, 0, 0, 255 );
    $black = ImageColorAllocate($image, 0, 0, 0 );
//...

First, we acquire an image resource and set up some colors. We won't make color a factor that client code can change,
although we could consider this for the future:

    $max = max( $this->cells );
    $total = count( $this->cells );
    $graphCanX = ( $this->totalwidth - $this->xgutter*2 );
    $graphCanY = ( $this->totalheight - $this->ygutter*2
            - $this->bottomspace );
    $posX = $this->xgutter;
    $posY = $this->totalheight - $this->ygutter - $this->bottomspace;
    $cellwidth = (int)(( $graphCanX -
      ( $this->internalgap * ( $total-1 ) )) / $total) ;
    $textsize = $this->getTextSize( $cellwidth );

First, we cache the maximum value in our cells property and the number of elements it contains. We calculate the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


First, we cache the maximum value in our cells property and the number of elements it contains. We calculate the
graph canvas (the space in which the bars are to be written). On the x-axis, this is the total width minus twice the size
of the margin. On the y-axis, we also need to take account of the $bottomspace property to leave room for the labels.

$posX stores the point on the x-axis at which we will start drawing the bars, so we set this to the same value as $xgutter,
which contains the value for the margin on the $x axis. $posY stores the bottom point of our bars; it is equivalent to the
total height of the image less the margin and the space for the labels stored in $bottomheight.

$cellwidth contains the width of each bar. To arrive at this value, we must calculate the total amount of space between
bars, take this from the chart width, and divide this result by the total number of bars.

Before we can create and work with our image, we need to determine the text size. Our problem is that we don't know
how long the labels will be, and we want to ensure that each of the labels will fit within the width of the bar above it.
We call a private method—getTextSize()—and pass it the $cellwidth variable we have calculated:

private function _getTextSize( $cellwidth ) {
  $textsize = (int)($this->bottomspace);
  if ( $cellwidth < 10 ) {
    $cellwidth = 10;
  }
  foreach ( $this->cells as $key=>$val ) {
    while ( true ) {
      $box = ImageTTFbBox( $textsize, 0, $this->font, $key );
      $textwidth = abs( $box[2] );
      if ( $textwidth < $cellwidth ) {
        break;
      }
      $textsize--;
    }
  }
  return $textsize;
}

We then loop through the $cells property array to calculate the maximum text size we can use.

For each of the elements, we begin a loop, acquiring dimension information for the label using imageTTFbbox(). We take
the text width to be $box[2] and test it against the $cellwidth variable, which contains the width of a single bar in the
chart. We break the loop if the text is smaller than the bar width; otherwise, we decrement $textsize and try again.
$textsize continues to shrink until every label in the array fits within the bar width. We can now return a value for use in
the draw() method.

Finally, we can create an image resource and begin to work with it:

//...
    foreach ( $this->cells as $key=>$val ) {
      $cellheight = (int)(($val/$max) * $graphCanY);
      $center = (int)($posX+($cellwidth/2));
      imagefilledrectangle( $image, $posX, ($posY-$cellheight),
        ($posX+$cellwidth), $posY, $blue );
      $box = imageTTFbBox( $textsize, 0, $this->font, $key );
      $tw = $box[2];
      ImageTTFText( $image, $textsize, 0, ($center-($tw/2)),
          ($this->totalheight-$this->ygutter), $black,
          $this->font, $key );
      $posX += ( $cellwidth + $this->internalgap);
    }
    imagepng( $image );

Once again, we loop through our $cells array and calculate the height of the bar, storing the result in $cellheight. We
calculate the center point (on the x-axis) of the bar, which is $posX plus half the width of the bar.

Next, we draw the bar, using imagefilledrectangle() and the variables $posX, $posY, $cellheight, and $cellwidth.

To align our text, we use imageTTFbbox() again, storing its return array in $box. We use $box[2] as our working width and
assign this to a temporary variable, $tw. We now have enough information to write the label. We derive our x position
from the $center variable minus half the width of the text and derive our y position from the image's height minus the
margin.

We increment $posX to start working with the next bar.

Finally, we output the image.

Although our basic bar chart class has some ugly internals, its interface code is simplicity itself from the point of view of
a client coder:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$graph = new SimpleBar( 500, 300, "luxisri.ttf" );
$graph->addBar( "liked", 200 );
$graph->addBar( "hated", 400 );
$graph->addBar( "ok", 900 );
$graph->draw();

You can see the complete script in Listing 15.10 and sample output in Figure 15.11.

Figure 15.11. A dynamic bar chart.

Listing 15.10 A Dynamic Bar Chart

 1: <?php
 2: header("Content-type: image/png");
 3:
 4: class SimpleBar {
 5:   private $xgutter = 20; // left/right margin
 6:   private $ygutter = 20; // top/bottom margin
 7:   private $bottomspace = 30; // gap at the bottom
 8:   private $internalgap = 10; // space between bars
 9:   private $cells = array(); // labels/amounts for bar chart
10:   private $totalwidth; // width of the image
11:   private $totalheight; // height of the image
12:   private $font; // the font to use
13:
14:   function __construct( $width, $height, $font ) {
15:     $this->totalwidth = $width;
16:     $this->totalheight = $height;
17:     $this->font = $font;
18:   }
19:
20:   function addBar( $label, $amount ) {
21:     $this->cells[ $label ] = $amount;
22:   }
23:
24:   private function _getTextSize( $cellwidth ) {
25:     $textsize = (int)($this->bottomspace);
26:     if ( $cellwidth < 10 ) {
27:       $cellwidth = 10;
28:     }
29:     foreach ( $this->cells as $key=>$val ) {
30:       while ( true ) {
31:         $box = ImageTTFbBox( $textsize, 0, $this->font, $key );
32:         $textwidth = abs( $box[2] );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


32:         $textwidth = abs( $box[2] );
33:         if ( $textwidth < $cellwidth ) {
34:           break;
35:         }
36:         $textsize--;
37:      }
38:     }
39:     return $textsize;
40: }
41:
42: function draw() {
43:   $image = imagecreate( $this->totalwidth, $this->totalheight );
44:   $red = ImageColorAllocate($image, 255, 0, 0);
45:   $blue = ImageColorAllocate($image, 0, 0, 255 );
46:   $black = ImageColorAllocate($image, 0, 0, 0 );
47:
48:   $max = max( $this->cells );
49:   $total = count( $this->cells );
50:   $graphCanX = ( $this->totalwidth - $this->xgutter*2 );
51:   $graphCanY = ( $this->totalheight - $this->ygutter*2
52:          - $this->bottomspace );
53:   $posX = $this->xgutter;
54:   $posY = $this->totalheight - $this->ygutter - $this->bottomspace;
55:   $cellwidth = (int)(( $graphCanX -
56:     ( $this->internalgap * ( $total-1 ) )) / $total) ;
57:   $textsize = $this->_getTextSize( $cellwidth );
58:
59:   foreach ( $this->cells as $key=>$val ) {
60:     $cellheight = (int)(($val/$max) * $graphCanY);
61:     $center = (int)($posX+($cellwidth/2));
62:     imagefilledrectangle( $image, $posX, ($posY-$cellheight),
63:       ($posX+$cellwidth), $posY, $blue );
64:     $box = imageTTFbBox( $textsize, 0, $this->font, $key );
65:     $tw = $box[2];
66:     ImageTTFText( $image, $textsize, 0, ($center-($tw/2)),
67:         ($this->totalheight-$this->ygutter), $black,
68:         $this->font, $key );
69:     $posX += ( $cellwidth + $this->internalgap);
70:    }
71:
72:    imagepng( $image );
73:  }
74: }
75:
76: $graph = new SimpleBar( 500, 300, "luxisri.ttf" );
77: $graph->addBar( "liked", 200 );
78: $graph->addBar( "hated", 400 );
79: $graph->addBar( "ok", 900 );
80: $graph->draw();
81: ?>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
PHP's support for the GD library enables you to produce dynamic charts and navigation elements with relative ease.

In this hour, you learned how to use imagecreate() and imagepng() to create and output an image. You learned how to
acquire color resources with imagecolorallocate() and to use color resources with imagefill() to fill areas with color. You also
learned how to use line and shape functions to create outline and filled shapes. You learned how to use PHP's support
for the FreeType library to work with TrueType fonts and worked through an example that wrote text to an image.
Finally, you worked through a bar chart example that brought some of these techniques together into a single script.

Our next hour is timely indeed. It discusses dates and the many useful functions PHP provides to help you work with
them.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are there any performance issues with regard to dynamic images?

A1: A dynamically created image is slower to arrive at the browser than an image that already exists.
Depending on the efficiency of your script, the impact is not likely to be noticeable to the user if you use
dynamic images sparingly.

Remember that functions such as imagepng() and imagejpeg() accept an optional path argument that causes
the image to be written to a file. You can use this to cache your dynamic images, changing them only
when the information they present changes.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which header should you send to the browser before building and outputting a PNG image?

2: Which function could you use to acquire an image resource that you can use with other image functions?

3: Which function would you use to output your PNG after building it?

4: Which function could you use to acquire a color resource?

5: With which function would you draw a line on a dynamic image?

6: Which function would you use to fill an area in a dynamic image?

7: Which function might you use to draw an arc?

8: How might you draw a rectangle?

9: How would you draw a polygon?

10: Which function would you use to write a string to a dynamic image?

Answers

A1: To output a PNG image, you should use the header() function to send the line "Content-type: image/png" to
the browser.

A2: The imagecreate() function, returns an image resource. Functions such as imagecreatefrompng() can also be
used to acquire an image resource from a file on the server.

A3: You can output a PNG file with the imagepng() function.

A4: You can acquire a color resource with the imagecolorallocate() function.

A5: The imageline() function draws a line.

A6: The imagefill() function fills an area with color.

A7: You can draw an arc with the imagearc() function.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: You can draw an outline rectangle with the imagerectangle() function. If you want to draw a filled
rectangle, you can use imagefilledrectangle().

A9: You can draw a polygon with either imagepolygon() or imagefilledpolygon().

A10: You can write a string to a dynamic image with the imageTTFtext() function. You could also use the
imagestring() function if you needed less control over positioning, size, and font.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Write a script that creates a progress bar that could be used on a fundraising site to indicate how much money

has been raised in relation to the target.

2. Write a script that writes a headline image based on input from a form or query string. Allow user input to
determine the canvas size, background and foreground colors, and the presence and offset of a drop shadow.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 16. Working with Dates and Times
What You'll Learn in This Hour:

How to acquire the current date and time

How to get information about a date

How to format date information

How to test dates for validity

How to set dates

How to build a simple calendar script

How to build a class library to generate date pull-downs in HTML forms

Dates are so much a part of everyday life that it becomes easy to work with them without thinking. The quirks of your
calendar can be difficult to work with in programs, though. Fortunately, PHP provides powerful tools for date arithmetic
that make manipulating dates easy.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Getting the Date with time()

PHP's time() function gives you all the information you need about the current date and time. It requires no arguments
but returns an integer. This number is a little hard on the eyes, for us humans, but extremely useful nonetheless:

print time();
// sample output: 1061577460

The integer returned by time() represents the number of seconds elapsed since midnight GMT on January 1, 1970. This
moment is known as the Unix epoch, and the number of seconds that have elapsed since then is referred to as a
timestamp. PHP offers excellent tools to convert a timestamp into a form that humans are comfortable with. Even so,
isn't a timestamp a needlessly convoluted way of storing a date? In fact, the opposite is true. From just one number,
you can extract enormous amounts of information. Even better, a timestamp can make date arithmetic much easier
than you might imagine.

Think of a homegrown date system in which you record days of the month, as well as months and years. Now imagine a
script that needs to add one day to a given date. If this date happened to be December 31, 1999, rather than add 1 to
the date, you would have to write code to set the day of the month to 1, the month to January, and the year to 2000.
Using a timestamp, you need only add a day's worth of seconds to your current figure, and you are done. You can
convert this new figure into something more friendly at your leisure.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Converting a Timestamp with getdate()

Now that you have a timestamp to work with, you must convert it before you present it to the user. getdate() optionally
accepts a timestamp and returns an associative array containing information about the date. If you omit the timestamp,
it works with the current timestamp as returned by time(). Table 16.1 lists the elements contained in the array returned
by getdate().

Table 16.1. The Associative Array Returned by getdate()
Key Description Example

seconds Seconds past the minute (0–59) 28

minutes Minutes past the hour (0–59) 7

hours Hours of the day (0–23) 12

mday Day of the month (1–31) 20

wday Day of the week (0–6) 4

mon Month of the year (1–12) 1

year Year (four digits) 2004

Yday Day of year (0–365) 19

weekday Day of the week (name) Thursday

month Month of the year (name) January

0 Timestamp 948370048

Listing 16.1 uses getdate() (line 11) to extract information from a timestamp, using a foreach statement to print each
element (line 12). You can see a typical output example in Figure 16.1. getdate() returns the date according to the local
time zone.

Figure 16.1. Using getdate().

Listing 16.1 Acquiring Date Information with getdate()

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 16.1 Acquiring Date Information with getdate()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: $date_array = getdate(); // no argument passed so today's date will be used
12: foreach ( $date_array as $key => $val ) {
13:   print "$key = $val<br/>";
14: }
15: ?>
16: <hr/>
17: <p>
18: <?
19: print "Today's date: ";
20: print $date_array['mon']."/".$date_array['mday']."/".$date_array['year'];
21: ?>
22: </p>
23: </div>
24: </body>
25: </html>
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Converting a Timestamp with date()

You can use getdate() when you want to work with the elements it outputs. Sometimes, though, you only want to display
the date as a string. The date() function returns a formatted string representing a date. You can exercise an enormous
amount of control over the format that date() returns with a string argument you must pass to it. In addition to the
format string, date() optionally accepts a timestamp. Table 16.2 lists the codes a format string can contain; any other
data you include in the format string passed to date() is included in the return value.

Table 16.2. Format Codes for Use with date()
Format Description Example

a am or pm lowercase pm

A AM or PM uppercase PM

B Swatch beat (timezone-free 'Internet time') 771

d Day of month (number with leading zeroes) 08

D Day of week (three letters) Wed

F Month name October

g Hour (12-hour format—no leading zeroes) 6

G Hour (24-hour format—no leading zeroes) 18

h Hour (12-hour format—leading zeroes) 06

H Hour (24-hour format—leading zeroes) 18

i Minutes 31

I Daylight savings time (Boolean value) 1

j Day of the month (no leading zeroes) 8

l Day of the week (name) Wednesday

L Leap year (1 for yes, 0 for no) 0

m Month of year (number—leading zeroes) 10

M Month of year (three letters) Oct

n Month of year (number—no leading zeroes) 10

o Offset in hours from GMT (in [+-]HHMM format) +0100

r Full date standardized to RFC 822 (http://www.faqs.org/rfcs/rfc822.html) Wed, 8 Oct 2003 18:31:15+0100

s Seconds, with leading zeroes 15

S English suffix for date in month (e.g. 20th) th

t Number of days in the given month 31

T Timezone setting on the machine used BST

U Unix timestamp 1065634275

w Day of week (number indexed from Sunday = 0) 3

W Week of year 41

y Year (two digits) 03

Y Year (four digits) 2003

z Day of year (0–366) 280

Z Offset in seconds from GMT 3600

Listing 16.2 puts a few format codes to the test.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 16.2 Formatting a Date with date()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 16.2 Formatting a Date with date()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: print date("m/d/y G.i:s", time());
12: // 10/08/03 19.17:42
13: print "<br/>";
14: print "Today is ";
15: print date("jS of F Y, \a\\t g.i a", time());
16: // Today is 8th of October 2003, at 7.17 pm
17: ?>
18: </div>
19: </body>
20: </html>

In Listing 16.2 we call date() twice—the first time on line 11 to output an abbreviated date format, the second on line 15
for a longer format.

Although the format string looks arcane, it is easy to build. If you want to add a string to the format containing letters
that are format codes, you can escape them by placing a backslash (\) in front of them. For characters that become
control characters when escaped, you must escape the backslash that precedes them. "\n" should become "\\n", for
example, if you want to include an n in the format string. date() returns information according to your local time zone. If
you want to format a date in GMT, you should use the gmdate() function, which works in exactly the same way.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating Timestamps with mktime()

You can already get information about the current time, but you cannot yet work with arbitrary dates. mktime() returns
a timestamp you can then use with date() or getdate(). mktime() accepts up to six integer arguments in the following
order:

hour

minute

second

month

day of month

year

Listing 16.3 uses mktime() to get a timestamp that we then use with the date() function.

Listing 16.3 Creating a Timestamp with mktime()

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 16.3 Creating a Timestamp with mktime()</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: // make a timestamp for 1/5/04 at 2.30 am
12: $ts = mktime( 2, 30, 0, 5, 1, 2004 );
13: print date("m/d/y G.i:s", $ts);
14: // 05/01/04 2.30:00
15: print "<br/>";
16: print "The date is ";
17: print date("jS of F Y, \a\\t g.i a", $ts );
18: // The date is 1st of May 2004, at 2.30 am
19: ?>
20: </div>
21: </body>
22: </html>

We call mktime() on line 12, assigning the returned timestamp to the $ts variable. We can then use date() on lines 13 and
17 to output formatted versions of the date using $ts. You can choose to omit some or all of the arguments to mktime(),
and the value appropriate to the current time will be used instead. mktime() also adjusts for values that go beyond the
relevant range, so an hour argument of 25 translates to 1.00am on the day after that specified in the month, day, and
year arguments.

Testing a Date with checkdate()

You might need to accept date information from user input. Before you work with this date or store it in a database,
you should check that the date is valid. checkdate() accepts three integers: month, day, and year. checkdate() returns true
if the month is between 1 and 12, the day is acceptable for the given month and year (accounting for leap years), and
the year is between 0 and 32767. Be careful, though, because a date might be valid but not acceptable to other date
functions. For example, the following line returns true:

checkdate( 4, 4, 1066 )

If you were to attempt to build a date with mktime() using these values, you would end up with a timestamp of -1. As a
rule of thumb, do not use mktime() with years before 1902 and be cautious of using date functions with any date before
1970.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

An Example
Let's bring most of these functions together into an example. We are going to build a calendar that can display the
dates for any month between 1980 and 2010. The user will be able to select both month and year with pull-down
menus, and the dates for that month will be organized according to the days of the week. If the input is invalid or
absent, we will default to the first day of the current month. To develop our calendar, we will create three classes.

The DateIterator Class

The DateIterator class in Listing 16.4 is responsible for setting a pointer to the beginning of the given month and
counting each of its days.

Listing 16.4 The DateIterator Class

 1: <?php
 2: class DateIterator {
 3:   public static $ADAY = 86400;
 4:   private $pointer;
 5:
 6:   function __construct( $month, $day, $year ) {
 7:     $this->pointer= mktime ( 0, 0, 0, $month, $day, $year );
 8:   }
 9:
10:   function incrementDay() {
11:     $this->pointer += (DateIterator::$ADAY);
12:   }
13:
14:   function getMonthStartWDay() {
15:     $date_array = $this->getPointerArray();
16:     $date = mktime ( 0, 0, 0,
17:       $date_array['mon'],
18:       1, $date_array['year']);
19:     $array = getdate( $date );
20:     return $array['wday'];
21:   }
22:
23:   function getPointer() {
24:     return $this->pointer;
25:   }
26:
27:   function getPointerArray() {
28:     return getDate( $this->pointer );
29:   }
30: }
31: ?>

The DateIterator class includes a useful static property on line 3. DateIterator::$ADAY contains the number of seconds in a
day, and this value is used to move a DateIterator object's pointer forward day by day. The constructor accepts three
integer arguments for month of year, day of month, and year, respectively. We construct a timestamp representing the
required date on line 7 using the mktime() function.

The real business of the class takes place in the incrementDay() method (line 10). It simply advances the pointer forward
by one day.

The getMonthStartWDay() method on line 14 returns the day of the week index for the first day of the current month. This
is used later to work out whether a calendar cell should be filled.

The getPointer() method returns the current date timestamp. getPointerArray() uses the getDate() function to return an
associative array for the same date.

This simple class enables us to tick through the days in a month and is used by a QuickCalendar object.

The QuickCalendar Class

The QuickCalendar class steps through a calendar grid. The grid is indexed on the x-axis by days of the week and on the
y-axis by discrete weeks. You can see the class in Listing 16.5.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 16.5 The QuickCalendar Class

 1: <?php
 2: include_once( "listing16.4.php" );
 3:
 4: class QuickCalendar {
 5:   private $cellno=0;
 6:   private $month;
 7:   private $year;
 8:   private $dateIterator;
 9:
10:   function __construct( $month, $year ) {
11:     if ( empty( $month ) || empty( $year ) ) {
12:       $nowArray = getdate();
13:       $year = $nowArray['year'];
14:       $month = $nowArray['mon'];
15:     }
16:
17:     $this->dateIterator = new DateIterator( $month, 1, $year );
18:     $this->month = $month;
19:     $this->year = $year;
20:   }
21:
22:   function getCurrentArray() {
23:     return $this->dateIterator->getPointerArray();
24:   }
25:
26:   function cellBeforeMonthStart() {
27:     return ( $this->cellno < $this->dateIterator->getMonthStartWDay() );
28:   }
29:
30:   function cellAfterMonthEnd() {
31:     $current = $this->getCurrentArray();
32:     if ($this->month == 12) {
33:       return ( $this->year < $current['year'] );
34:     }
35:     return ( $this->month < $current['mon'] );
36:   }
37:
38:   function endOfRow() {
39:     return ( ! ( $this->cellno % 7 ) );
40:   }
41:
42:   function endOfGrid() {
43:     return ( $this->cellAfterMonthEnd() && $this->endOfRow() );
44:   }
45:
46:   function nextCell() {
47:     if ( $this->endOfGrid() ) {
48:     $ret = null;
49:   } else if ( $this->cellBeforeMonthStart() ||
50:         $this->cellAfterMonthEnd() ) {
51:     $ret = array();
52:   } else {
53:     $ret = $this->getCurrentArray();
54:     $this->dateIterator->incrementDay();
55:   }
56:   $this->cellno++;
57:   return $ret;
58:  }
59: }
60: ?>

The constructor accepts month and year integers and instantiates a DateIterator object. If these arguments are empty,
we use the current date and derive the month and year from that. We cache the starting month and year on lines 18
and 19.

The getCurrentArray() on line 22 returns the DateIterator object's pointer as an associative array (as derived from
getDate()).

Each cell can have a number of statuses. Our grid starts on a Sunday, so if the first day of a month is a Wednesday, the
cells between Sunday and Tuesday are empty. For these cells, the cellBeforeMonthStart() method (line 26) returns true. By
the same token, the last day of a month might not fall on the final cell in the grid. The cellAfterMonthEnd() method
returns true for each cell that is within the grid but after the end of the month. Every seventh cell is the last in a row
(that is, the end of a week). For these, the endOfRow() method returns true. Finally, for the last cell in a grid, the
endOfGrid() method returns true.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


endOfGrid() method returns true.

These tests are all used by the nextCell() method, which iterates a $cellno property and calls on the DateIterator object's
iterateDay() method. nextCell() returns an empty array for cells that fall before the start of a month or after the end of a
month. It returns a date array as returned by getCurrentArray() for cells within the month. Finally, when the grid is
finished, it returns null. Client code can call this method repeatedly and call on the test method endOfRow() to determine
when to break a row.

This class is not easy to grasp at a sitting. Let's look at the client code that uses it to get a sense of the interface:

<table border="1" cellpadding="5">
<tr>
<?php
$cal = new QuickCalendar( );
while ( ! is_null( $cell = $cal->nextCell() ) ) {
  if ( empty( $cell ) ) {
    print "<td> - </td>";
  } else {
    print "<td>".$cell['mday']." ".$cell['month']."</td>";
  }
  if ( $cal->endOfRow() && ! $cal->endOfGrid() ) {
    print "</tr><tr>";
  }
}
?>
</tr>
</table>

The client code instantiates a QuickCalendar object and calls nextCell() until it returns null. If getCell() returns an empty
array, it displays an empty cell; otherwise, it displays a cell containing a date. At the end of each iteration, the code
uses the QuickCalendar object's endOfRow() method to test whether it should end the table row and begin a new one. This
is all it takes to convert the virtual grid managed by QuickCalendar into a real grid. Because the display is entirely
divorced from the logic of the calendar, you could output calendar grids in different formats very easily.

Now that you can output a calendar, you need to build a mechanism with which the user can select a month and a year.
You will need to generate two pull-downs and headings for the HTML grid. Rather than embed it directly in HTML
markup, you'll tuck code to generate pull-downs into a helper class.

The DateViewHelper Class

This simple class consists of two static methods for generating pull-downs and two arrays that hold the days of the
week and months of the year. You can see the DateViewHelper class in Listing 16.6.

Listing 16.6 The DateViewHelper Class

 1: <?php
 2: class DateViewHelper {
 3:   static $MONTHS = array(
 4:         "January", "February", "March", "April",
 5:         "May", "June", "July", "August", "September",
 6:         "October", "November", "December");
 7:   static $DAYS = Array(
 8:         "Sunday", "Monday", "Tuesday", "Wednesday",
 9:         "Thursday", "Friday", "Saturday");
10:
11:   static function yearPulldown( $from, $to, $selected ) {
12:     $ret = "";
13:     for ( $x = $from; $x <= $to; $x++ ) {
14:       $ret .= "<option";
15:     $ret .= ($x == $selected )?' selected="selected"':"";
16:     $ret .= ">$x</option>\n";
17:   }
18:   return $ret;
19:  }
20:
21:  static function monthPulldown( $selected ) {
22:    for ( $x=1; $x <= 12; $x++ ) {
23:      $ret .= "<option value=\"$x\"";
24:      $ret .= ($x == $selected )?' selected="selected"':"";
25:      $ret .= ">".dateViewHelper::$MONTHS[$x-1]."</option>\n";
26:    }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


26:    }
27:    return $ret;
28:  }
29: }
30: ?>

The yearPulldown() method on line 11 requires starting and ending years as well as a selected year. It uses a for loop to
iterate through all the numbers between $from and $to, adding <option> elements to a return string as it does so. The
monthPulldown() method on line 21 is similar: It loops through the static $MONTHS array property to generate a string of
<option> elements.

These three classes are now ready to be used to output a calendar.

The Client Code

It is now really only a matter of working with the classes we have created and formatting the output. We do this in
Listing 16.7.

Listing 16.7 The Calendar Client Code

 1: <?php
 2: include_once( "listing16.5.php" );
 3: include_once( "listing16.6.php" );
 4:
 5: $cal = new QuickCalendar( $_REQUEST['month'],
 6:           $_REQUEST['year] );
 7: $current = $cal->getCurrentArray( );
 8: ?>
 9:
10: <!DOCTYPE html PUBLIC
11:   "-//W3C//DTD XHTML 1.0 Strict//EN"
12:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
13: <html>
14: <head>
15: <title>Calendar: <?php print $current['month']." ".
16:                 $current['year'] ?></title>
17: </head>
18: <body>
19:
20: <h1>Calendar: <?php print $current['month']." ".
21:                 $current['year'] ?></h1>
22:
23: <form method="post" action="<?php echo $_SERVER['PHP_SELF'] ?>">
24: <div>
25: <select name="month">
26: <?php print DateViewHelper::monthPulldown(
27:              $current['mon'] ); ?>
28: </select>
29:
30: <select name="year">
31: <?php print DateViewHelper::yearPulldown( 1980, 2010,
32:              $current['year'] ); ?>
33: </select>
34:
35: <input type="submit" value="Go!" />
36: </div>
37: </form>
38:
39: <table border="1" cellpadding="5">
40: <tr><td><b>
41: <?php print implode( "</b></td><td><b>",
42:              DateViewHelper::$DAYS ); ?>
43: </b></td></tr>
44: <tr>
45: <?
46: while ( ! is_null( $cell = $cal->nextCell() ) ) {
47:   if ( empty( $cell ) ) {
48:     print "<td> - </td>";
49:   } else {
50:     print "<td>".$cell['mday']." ".$cell['month']."</td>";
51:   }
52:   if ( $cal->endOfRow() && ! $cal->endOfGrid() ) {
53:     print "</tr><tr>";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


53:     print "</tr><tr>";
54:   }
55: }
56: ?>
57: </tr>
58: </table>
59: </body>
60: </html>

We first include the QuickCalendar and DateViewHelper classes on lines 2 and 3. We instantiate a QuickCalendar object,
passing it the submitted parameters 'month' and 'year' on line 5. We then assign it to the variable $cal. If we are visiting
this page for the first time, the 'month' and 'year' arguments have not yet been filled. Our QuickCalendar object deals with
this for us, though, by working to the current date.

We call the QuickCalendar object's getCurrentArray() method to get a date array for the first day of the month in question.
We use this to output a descriptive title detailing the month and year we will be displaying.

Between lines 25 and 28, we output a pull-down of months, calling the DateViewHelper class's static monthPulldown()
method. Notice that we do not not need to instantiate a DateViewHelper object to call a static method on the class.
Between lines 30 and 33, we do the same thing for a month's pull-down by calling the DateViewHelper class's
yearPulldown() method.

We need our grid to be labelled with the days of the week. We could type them out, but we have opted to save typing
by accessing the DateViewHelper class's static $DAYS array, calling the implode() function to output the day strings,
separated by table cell element tags.

Finally, we work with our QuickCalendar object to output the cells in a loop starting on line 46. We have already looked at
this fragment, which calls on the nextCell(), endOfRow(), and endOfGrid() methods to format the output.

You can see the output from a call to this script in Figure 16.2.

Figure 16.2. The calendar script.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

A Date Pull-down Library
Because dates are so ubiquitous in Web interfaces and because working with dates is often comparatively nontrivial,
now would seem to be a good time to look at a class library to automate some of the work that dates can present.
Along the way we will revisit some of the techniques we have already covered. The simple date_pulldown library was
born during the creation of a freelance job listing site. The project necessarily involved the presentation of multiple date
pulldowns allowing employers to select both the start and end of contract periods, and for candidates to indicate periods
of availability. A date pull-down, in this instance, is three separate select elements—one for day of the month, one for
month, and another for year.

When a user submits a page, the script checks his input. If a problem exists, the page must be represented with the
user's input still in place. This is easy to accomplish with text boxes but is more of a chore with pull-down menus. Pages
that display information pulled from a database present a similar problem. Data can be entered straight into the value
attributes of text type input elements, but dates need to be split into month, day, and year values and then the correct
option elements must be selected.

The date_pulldown class makes date pull-downs sticky (to remember settings from page to page) and easy to set.

To create our class, we first need to declare it and create a constructor. We can also declare some class properties, like
so:

class date_pulldown {
  private $name;
  private $timestamp = -1;
  private $months = array("Jan", "Feb", "Mar", "Apr", "May", "Jun",
            "Jul", "Aug", "Sep", "Oct", "Nov", "Dec");
  private $yearstart = -1;
  private $yearend = -1;

  function __construct( $name ) {
    $this->name = $name;
  }
// ...

We declare the $name property, which is used to name the HTML select elements. The $timestamp property holds a Unix
timestamp, and the $months array property contains the strings we will display in our month pull-down. $yearstart and
$yearend are both set to -1 pending initialization. They will eventually hold the first and last years of the range that will
be presented in the year pull-down.

The constructor is simple: It accepts a string, which we then use to assign to the $name property.

Now that we have the basis of our class, we need a set of methods by which the client code can set the date:

// ...
  function setDate_request( ) {
    if ( ! $this->setDate_array( $_REQUEST[$this->name] ) ) {
      return $this->setDate_timestamp( time() );
    }
    return true;
  }

  function setDate_timestamp( $time ) {
    $this->timestamp = $time;
    return true;
  }

  function setDate_array( $inputdate ) {
    if ( is_array( $inputdate ) &&
      isset( $inputdate['mon'] ) &&
      isset( $inputdate ['mday'] ) &&
      isset( $inputdate ['year'] ) ) {
      $this->timestamp = mktime( 11, 59, 59,
        $inputdate['mon'], $inputdate['mday'], $inputdate ['year'] );
      return true;
    }

    return false;
  }
// ...

Of these methods, setDate_timestamp() is the simplest. It requires a Unix timestamp and assigns it to the $timestamp

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Of these methods, setDate_timestamp() is the simplest. It requires a Unix timestamp and assigns it to the $timestamp
property.

setDate_array() expects an associative array with at least three keys: 'mon', 'mday', and 'year'. These fields contain data in
the same format as in the array returned by getdate(). This means that setDate_array() accepts a hand-built array such as

array( 'mday' => 5, 'mon' =>7, 'year' => 1999 );

or the result of a call to getDate() such as

getdate( 931172399 );

It is no accident that the pull-downs we will be building later will be constructed to produce an array containing 'mon',
'mday', and 'year' fields. The method uses the mktime() function to construct a timestamp that is then assigned to the
$timestamp variable.

The setDate_request() method is called by default. It attempts to find a request argument (as held in the superglobal
$_REQUEST array) with the same name as the object's $name property. This is passed to setDate_array(). If a global
variable of the right structure is discovered, it is used to create the $timestamp variable. Otherwise, the current date is
used.

The range for days and months is fixed, but years are a different matter. We create a few methods to allow the client
coder to set her own range of years (although we also provide default behavior):

// ...
  function setYearStart( $year ) {
    $this->yearstart = $year;
  }

  function setYearEnd( $year ) {
    $this->yearend = $year;
  }

  function getYearStart() {
    if ( $this->yearstart < 0 ) {
      $nowarray = getdate( time() );
      $this->yearstart = $nowarray['year']-5;
    }
    return $this->yearstart;
  }

  function getYearEnd() {
    if ( $this->yearend < 0 ) {
      $nowarray = getdate( time() );
      $this->yearend = $nowarray['year']+5;
    }
    return $this->yearend;
  }
// ...

The setYearStart() and setYearEnd() methods are straightforward. A year is directly assigned to the appropriate property,
and getYearStart() tests whether the $yearstart property has been set. If the property is not set, it assigns a $yearstart 5
years before the current year. getYearEnd() performs a similar operation. We're now ready to create the business end of
the class:

// ...
  function output( ) {
    if ( $this->timestamp < 0 ) {
      $this->setDate_request();
    }
    $datearray = getdate( $this->timestamp );
    $out = $this->day_select( $this->name, $datearray );
    $out .= $this->month_select( $this->name, $datearray );
    $out .= $this->year_select( $this->name, $datearray );
    return $out;
  }

  function day_select( $fieldname, $datearray ) {
    $out = "<select name=\"$fieldname"."[mday]\">\n";
    for ( $x=1; $x<=31; $x++ ) {
      $selected = ($datearray['mday']==($x)?
        ' selected="selected"':"");
      $out .= "<option value=\"$x\"$selected>".sprintf("%02d", $x );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


      $out .= "<option value=\"$x\"$selected>".sprintf("%02d", $x );
      $out .= "</option>\n";
    }
    $out .= "</select>\n";
    return $out;
  }

  function month_select( $fieldname, $datearray ) {
    $out = "<select name=\"$fieldname"."[mon]\">\n";
    for ( $x = 1; $x <= 12; $x++ ) {
      $selected = ($datearray['mon']==($x)?
        ' selected="selected"':"");
      $out .= "<option value=\"$x\"$selected>".$this->months[$x-1];
      $out .= "</option>\n";
    }
    $out .= "</select>\n";
    return $out;
  }

  function year_select( $fieldname, $datearray ) {
    $out = "<select name=\"$fieldname"."[year]\">";
    $start = $this->getYearStart();
    $end = $this->getYearEnd();
    for ( $x= $start; $x < $end; $x++ ) {
      $selected = ($datearray['Year']==($x)?
        ' selected="selected"':"");
      $out .= "<option value=\"$x\"$selected>$x";
      $out .= "</option>\n";
    }
    $out .= "</select>\n";
    return $out;
  }
}

The output() method orchestrates most of this code. It first checks the $timestamp property. Unless the client coder has
called one of the setDate methods, it is set to -1 and setDate_global() is called by default. The timestamp is passed to the
getdate() function to construct a date array, and a method is called for each pull-down to be produced.

day_select() simply constructs an HTML select element with an option element for each of the 31 possible days in a
month. The object's 'current' date is stored in the $datearray argument variable, which is used during the construction of
the element to set the selected attribute of the relevant option element. Notice that we use sprintf() to format the day
number, adding a leading zero to days 1–9. month_select() and year_select() use similar logic to construct the month and
year pull-downs.

In Listing 16.8, we create some code that calls the library class.

Listing 16.8 Using the date_pulldown Class

 1: <!DOCTYPE html PUBLIC
 2:   "_//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 16.8 using the date_pulldown class</title>
 7: </head>
 8: <?php
 9: include("date_pulldown.class.php");
10: $date1 = new date_pulldown("fromdate");
11: $date2 = new date_pulldown("todate");
12: $date3 = new date_pulldown("foundingdate");
13: $date3->setYearStart(1971);
14: if ( empty( $_REQUEST['foundingdate'] ) ) {
15:   $date3->setDate_array( array( 'mday' =>26, 'mon'=>4, 'year'=>1984 ) );
16: }
17: ?>
18: <body>
19: <div>
20:
21: <form action="<?php echo $PHP_INFO ?>" method="post">
22: <p>
23: From:<br/>
24: <?php print $date1->output( ); ?>
25: </p>
26:
27: <p>
28: To:<br/>
29: <?php print $date2->output( ); ?>
30: </p>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


30: </p>
31:
32: <p>
33: Company founded:<br/>
34: <?php print $date3->output( ); ?>
35: </p>
36:
37: <p>
38: <input type="submit" value="do it" />
39: </p>
40: </form>
41:
42: </div>
43: </body>
44: </html>

Notice that we've tucked the class itself away in a library file called date_pulldown. class.php, which we access using the
include() statement on line 9. We use the class's default behavior for all the pull-downs except for 'foundingdate'. For this
object, we override the default year start, setting it to 1972 on line 13. We also define an arbitrary date on line 14 for
this pull-down that will be displayed until the form is submitted (see Figure 16.3).

Figure 16.3. The pull-downs generated by the date-pulldown class.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned how to use time() to get a date stamp for the current date and time. You learned how to use
getdate() to extract date information from a timestamp and date() to convert a timestamp into a formatted string. You
also learned how to create a timestamp using mktime() and how to test a date for validity with checkdate(). You worked
through an example script, which applies some of the tools you have looked at, and built a class library that automates
some of the more tedious aspects of working with dates in forms.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are there any functions for converting between different calendars?

A1: Yes. PHP provides an entire suite of functions that covers alternative calendars. You can read about these
in the official PHP manual at http://www.php.net/manual/ref.calendar.php.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: How would you acquire a Unix timestamp representing the current date and time?

2: Which function accepts a timestamp and returns an associative array representing the given date?

3: Which function would you use to format date information?

4: How would you acquire a timestamp for an arbitrary date?

5: Which function could you use to check the validity of a date?

Answers

A1: The time() function returns the current date in timestamp format.

A2: The getdate() function returns an associative array whose elements contain aspects of the given date.

A3: The date() function is used to format a date.

A4: Given arguments representing the hour, minute, second, month, day of month, and year, the mktime()
function returns a Unix timestamp.

A5: You can check a date with the checkdate() function.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
1. Create a birthday count-down script. Given form input of month, day, and year, output a message that tells the

user how many days, hours, minutes, and seconds until the big day.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 17. Advanced Objects
What You'll Learn in This Hour:

How to define class constants

How to define and work with static properties and methods

How to overload calls to object properties and methods

How to prevent a child class from overriding a method

How to automate clean-up when an object is discarded

How to handle error conditions

How to define types using abstract classes and interfaces

In Hour 9, "Objects," we covered the least you should know to work with objects in PHP. In this hour, we are going to
look at objects in more detail. We will look especially at some of the many new features that PHP 5 has introduced. With
PHP 5, the language became much more amenable to object-oriented design. In this hour, we will discover how the
language has changed and what you can do to take advantage of the new features.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Objects and Constants
In Hour 4, "The Building Blocks," we looked at defining global constants. Remember that constants hold values that
cannot be changed during script execution. You define global constants using the define() function.

As of PHP 5, you can define constants within classes. You declare a constant using the const keyword at the top of your
class:

class MyClass {
        const PI = 3.14;
//...

Constants are available via the class rather than an object:

print MyClass::PI;

This aspect makes a class constant useful when the value it contains applies equally to all objects of the type and when
the value should be fixed and unchangeable.

Let's work through a simple example. In Listing 17.1, we present a fragment of an Item class. An Item in this example is
an item of stock in a shop. We want to store an integer $status property for every Item. This single integer will combine
multiple flags. We want the flags to be available globally, and we need them to be read-only.

Listing 17.1 A Class That Uses Class Constants

 1: <?php
 2:
 3: class Item {
 4:   const DISCONTINUED = 1;
 5:   const PROMOTIONAL = 2;
 6:   const STOCKED_OFFSITE = 4;
 7:   private $status = 0;
 8:
 9:   public function addStatus( $num ) {
10:     $this->status | = $num;
11:   }
12:
13:   public function isPromotional() {
14:     return ( Item::PROMOTIONAL & $this->status )?true:false;
15:   }
16:
17:   public function isDiscontinued() {
18:     return ( Item::DISCONTINUED & $this->status )?true:false;
19:   }
20:
21:   public function isOffsiteItem() {
22:     return ( Item::STOCKED_OFFSITE & $this->status )?true:false;
23:   }
24: }
25:
26: $item = new Item();
27: $item->addStatus( Item::STOCKED_OFFSITE );
28: $item->addStatus( Item::PROMOTIONAL );
29: $item->addStatus( Item::DISCONTINUED );
30:
31: if ( $item->isOffsiteItem() ) {
32:   print "This item is stocked at our warehouse. Delivery within 4 days";
33: }
34: ?>

We define three class constant flags on lines 4 to 6. It's easiest to think of these flags in binary terms:

001 = 1
010 = 2
100 = 4

The idea is that we can combine each of those numbers in a single $status property by using the binary or (|) operator.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The idea is that we can combine each of those numbers in a single $status property by using the binary or (|) operator.
This process sets the bits that are set in either one operand or the other:

1  | 2  ==   3
001 or 010 equals 011

We perform the operation to combine flags in the addStatus() method on line 9. We call addStatus() on lines 27 to 29,
setting all the available bits. Notice how we access the status flags using the class name and not the object handle.

The rest of the class consists of methods to check the $status array. Let's look at isDiscontinued() on line 17. We use the
binary and (&) operator to compare $status with the constant flag Item::DISCONTINUED. This test compares the bits in the
two operands and resolves to a new number that contains only the bits that the two numbers have in common:

111  $status
001  DISCONTINUED
001  result of 'and' operation

The effect of this operation is that isDiscontinued() will only return true if Item::DISCONTINUED has been passed to
addStatus().

Another common use for class constants is to store error codes that can be set and tested when an object fails in an
operation.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Static Properties
Static properties were also introduced with PHP 5. They are similar in some senses to class constants in that a static
property is available via the class rather than the object. Static properties can be changed at runtime, however, making
them useful when greater flexibility is required.

We declare a static variable with the static keyword:

class Item {
  public static $SALES_TAX=9;
  //...

Notice that we can also determine the access level for a static property. We access the static class property via the
class name:

print "the tax to be levied on all items is";
print Item::$SALES_TAX;
print "%";

We could change Item::$SALES_TAX at any time, and the value would change for all instances of Item and for all client
code.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Static Methods
It is not only properties that can be declared static. As of PHP 5, you can declare a method static:

static function doOperation() {
//...

Some classes make static the utility methods that do not depend upon member variables, to make the tool more widely
available. We might supply a calcTax() method in Item, for example:

class Item {
  public static $SALES_TAX=10;
  private $name;
  public static function calcTax( $amount ) {
    return ( $amount + ( $amount/(Item::$SALES_TAX/100)) );
  }
}

The calcTax() method uses the static $SALES_TAX property to calculate a new total given a starting amount. Crucially, this
method does not attempt to access any standard properties. Because static methods are called outside of object
context (that is, using the class name and not an object handle), they cannot use the $this pseudo-variable to access
methods or properties. Let's use the calcTax() method:

$amount = 10;
print "given a cost of $amount, the total will be";
print Item::calcTax( $amount );
// prints "given a cost of 10, the total will be 110"

The benefit of using a static method in this example was that we did not need to create or acquire an Item object to
gain access to the functionality in calcTax().

Let's look at another common use for static methods and properties. In Listing 17.2, we create a Shop class. Our system
design calls for a central Shop object. We want client code to be able to get an instance of this object at any time, and
we want to ensure that only one Shop object is created during the life of a script execution. All objects requesting a Shop
object will be guaranteed to get a reference to the same object and will therefore work with the same data as one
another.

Listing 17.2 Using Static Methods and Properties to Limit Instances of a Class
(PHP 5 Only)

 1: <?php
 2:
 3: class Shop {
 4:   private static $instance;
 5:   public $name="shop";
 6:
 7:   private function ___construct() {
 8:     // block attempts to instantiate
 9:   }
10:
11:   public static function getInstance() {
12:     if ( empty( self::$instance ) ) {
13:     self::$instance = new Shop();
14:     }
15:     return self::$instance;
16:   }
17: }
18:
19: // $s = new Shop();
20: // would fail because ___construct() is declared private
21:
22: $first = Shop::getInstance();
23: $first-> name="Acme Shopping Emporium";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


23: $first-> name="Acme Shopping Emporium";
24:
25: $second = Shop::getInstance();
26: print $second -> name;
27: // prints "Acme Shopping Emporium"
28: ?>

Listing 17.2 shows an example of a design pattern called singleton. It is intended to ensure that only one instance of a
class exists in a process at any time and that any client code can easily access that instance. We declare a private static
property called $instance on line 4. On line 5, we declare and assign to a property called $name. We will use it to test our
class later. Notice that we declared the constructor private on line 7. This declaration makes it impossible for any
external code to create an instance of the Shop object. We declare a static method called getInstance() on line 11.
Because it is static, getInstance() can be called through the class rather than the object instance:

Shop::getInstance();

As a member function, getInstance() has privileged status. It can set and get the static $instance property. It can also
create a new instance of the shop object using new. We test $instance and assign a Shop object to it if it is empty. After
the test, we can be sure that we have a Shop object in the $instance property, and we return it to the user on line 15.

We use the self keyword to access the $instance property. self refers to the current class in the same way that $this refers
to the current object.

We call getInstance() on line 25, acquiring a Shop object. To test the class, we change the $name property on line 23 and
then call getInstance() once again on line 25. We confirm that the $second variable contains a reference to the same
instance of Shop on line 26 by printing $shop->name.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Intercepting Calls to Object Properties and Methods
PHP 5 introduces three built-in methods that you can use to trap messages to your objects and alter default behavior.

Usually, if an undefined method is called, a fatal error will be generated and your script will fail. If you define a __call()
method in your class, however, you can catch the message and decide what to do with it. Every time an undeclared
method is called on your object, the __call() method will be invoked. Two arguments will automatically be populated for
you: a string variable holding the name of the method that was called and an array variable holding any arguments that
were passed. Anything you return from __call() is returned to the client code as if the undefined method existed. Let's
put some code together to illustrate this point:

class TestCall {
  function __call( $method, $args ) {
    $ret = "method '$method' called<br />\n";
    $ret .= "<pre>\n";
    $ret .= print_r( $args, true );
    $ret .= "</pre>";
    return $ret;
  }
}
$item = new TestCall();
print $item->arbitrary( "a", "b", 1 );

We create a class called TestCall and give it a __call() method. __call() expects the method name and an array of method
arguments. It assigns a string quoting the contents of both of these to a variable, $ret, and returns it to the calling
code. We call the nonexistent $test->arbitrary() method and print the result:

method 'arbitrary' called<br />
<pre>
Array
(
  [0] => a
  [1] => b
  [2] => 1
)
</pre>

The output from this code fragment illustrates that __call() intercepted our method call and accessed both the method
name and arguments. As Harry Fuecks points out in his article at http://www.phppatterns.com/index.php/article/article-
view/28/1/2, one of the best uses of __call() is in the construction of wrapper objects, which provide object-based
interfaces to built-in or third-party standalone functions.

Let's look at an example. In Listing 17.3, we simulate a procedural third-party library provided by an online store called
Bloggs. We cannot change these functions, which add items from our shop to the Bloggs store, but we would like to be
able to tell an Item object to add itself to or remove itself from the Bloggs store using our object interface. We could
create methods that mirror each of the functions. If however there are a lot of functions to mirror, and the functions
expect similar arguments, then we can create virtual methods to map to functions dynamically.

Listing 17.3 Intercepting Method Calls with the __call() Method (PHP 5 Only)

 1: <?php
 2:
 3: // third party function
 4: function bloggsRegister( $item_array, $immediately=false ) {
 5:   return "Registering item with Bloggs stores<br />\n";
 6: }
 7:
 8: // third party function
 9: function bloggsRemove( $item_array, $immediately=false ) {
10:   return "Removing item from Bloggs stores<br />\n";
11: }
12:
13:
14: class Item {
15:   public $name = "item";
16:   public $price = 0;
17:
18:   function __call( $method, $args ) {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


18:   function __call( $method, $args ) {
19:     $bloggsfuncs = array ( "bloggsRegister", "bloggsRemove" );
20:     if ( in_array( $method, $bloggsfuncs ) ) {
21:       array_unshift( $args, get_object_vars( $this ) );
22:       return call_user_func( $method, $args );
23:     }
24:   }
25: }
26:
27: $item = new Item();
28: print $item->bloggsRegister( true );
29: print $item->bloggsRemove( true );
30: ?>

We set up two fake third-party methods, bloggsRegister() and bloggsRemove() on lines 4 and 8. They do nothing but report
that they have been called. We create an Item class on line 14, providing some sample properties. The heart of the class
is the __call() method on line 18. We set up an array of acceptable methods on line 19 and store it in the local
$bloggsfuncs variable. We don't want to work with methods that we know nothing about, so we test whether the method
name used by the client code is stored in the $bloggsfuncs array. If the method name is found in the array, we call the
standalone function of the same name, passing it an array consisting of the Item object's properties and the first user-
defined argument (extracted from the $args array). We return the function's return value.

On lines 28 and 29, we test our dynamic methods. When we call the bloggsRegister() method, __call() is invoked because
the Item class does not define bloggsRegister(). The string "bloggsRegister" is passed to __call() and stored in the $method
argument. Because the string is found in $bloggsfuncs, the bloggsRegister() function is called.

With just two functions in our example, there is little gain, but if you imagine a Bloggs API with tens of utility functions,
we could create an effective object wrapper quickly and easily.

You might want to do something similar with built-in functions. You might, for example, bundle a suite of file-related
methods into a single MyFile class.

The __get() and __set() methods are similar in nature to __call(). __get() is called whenever client code attempts to access
a property that is not explicitly defined. It is passed the name of the property accessed:

function __get( $prop ) {
         print "property $prop was accessed";
}

__set() is called when client code attempts to assign a value to a property that has not been explicitly defined. It is
passed a string argument containing the name of the property and a mixed argument (an argument of any type)
containing the value the client code attempted to set:

function __set( $prop, $val ) {
         print "client wishes to store $val in $prop";
}

In Listing 17.4, we use these methods to create a read-only property that always holds the current date array.

Listing 17.4 Intercepting Property Access with __get() and __set() (PHP 5 Only)

 1: <?php
 2: class TimeThing {
 3:   function __get( $arg ) {
 4:     if ( $arg == "time" ) {
 5:       return getdate();
 6:     }
 7:   }
 8:
 9:   function __set( $arg, $val ) {
10:     if ( $arg == "time" ) {
11:       trigger_error( "cannot set property $arg" );
12:       return false;
13:     }
14:   }
15: }
16:
17: $cal = new TimeThing();
18: print $cal->time['mday']."/";
19: print $cal->time['mon']."/";
20: print $cal->time['year'];
21:
22: // illegal call
23: $cal->time = 555;
24: ?>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


24: ?>

We create a class called TimeThing on line 2. The __get() method on line 3 tests the property name provided by the client
code. If the string is "time"—that is, if the client coder has attempted to access a $time property—then the method
returns the date array as generated by getdate() on line 5. When we access the $time property on lines 18 to 20, we see
that it is automatically populated with the date array.

We don't want the client coder to be able to override the $time property, so we implement a __set() method on line 9. If
we detect an attempt to write to $time, we trigger an error message. We block all attempts to set nonexistent properties
by providing no further implementation. To allow dynamic setting of properties we would have included the following
line:

$this->$arg=$val;

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Final Methods
Sometimes, you do not want subclasses to be able to override methods that you define or implement. Perhaps the
functionality you define there is exactly the way things should be:

class Item {
  private $id = 555;
  final function getID() {
    return $this->id;
  }
}

By declaring the getID() method final in this example, we ensure that any attempt to override it in a subclass will cause
an error. Notice the following code:

class PriceItem extends Item {
  function getID() {
    return 0;
  }
}

It generates the following error:

Fatal error: Cannot override final method item::getid()

On the whole, you should use final sparingly. Your class might fit uses that you do not yet know about, and flexibility is
worth maintaining.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Cleaning Up Using Destructors
In Hour 9, we saw that PHP 5 provides the __construct() method to help us set up an object upon instantiation. Objects
have their allotted span, and PHP 5 provides us with a means of easing their passing as well as welcoming their arrival.
The __destruct() method is automatically called when an object is about to be expunged from memory. This generally
happens when no part of your script process holds a reference to the object any longer. The process enables you to
handle any last-minute clean-up that your object might need to take care of, such as closing database handles.

In Listing 17.5, we set up another Item scenario. We invent an ItemUpdater class. In theory, this class generates objects
responsible for saving Item objects. An Item object will hold a reference to its own updater. Such structures are useful
ways of ensuring that objects focus on their core responsibilities. Item objects are responsible for managing information
concerning shop items. ItemUpdater objects are responsible for saving Item objects. All that an Item object knows about
an ItemUpdater is that it has an update() method. It does not know whether it is going to be saved to an XML file by
XmlItemUpdater or to a database by MysqlItemUpdater.

Listing 17.5 Cleaning Up with the __destruct Method (PHP 5 Only)

 1: <?php
 2:
 3: class ItemUpdater {
 4:   public function update( Item $item ) {
 5:     print "updating.. ";
 6:     print $item->name;
 7:   }
 8: }
 9:
10: class Item {
11:   public $name = "item";
12:   private $updater;
13:
14:   public function setUpdater( ItemUpdater $update ) {
15:     $this->updater=$update;
16:   }
17:   function __destruct() {
18:     if ( ! empty( $this->updater )) {
19:       $this->updater->update( $this );
20:     }
21:   }
22: }
23:
24: $item = new Item();
25: $item->setUpdater( new ItemUpdater() ) ;
26: unset( $item );
27: ?>

We create an ItemUpdater class on line 3. It has a single method, update() which demands an Item object. In our
example, it merely writes a message to the browser announcing its intention of saving the Item it has been passed. We
create an Item class on line 10 containing a setUpdater() method on line 14.

setUpdater() simply caches an ItemUpdater object for later use. On line 17, we define our __destruct() method. It tests
whether an ItemUpdater object has been cached in the $updater property. If an ItemUpdater object is available, we call its
update() method.

We test our classes on line 24 by creating a new Item object, setting an ItemUpdater object. We then cruelly unset the
Item object, effectively destroying it. When this code is run, the __destruct() method is called, invoking the ItemUpdater
object's update method. The following is written to the browser:

updating.. item

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Managing Error Conditions with Exceptions
Although it was possible to set a custom error handler in PHP 4, most scripts prior to PHP 5 made do with relatively
crude error handling. Methods that ran into trouble would generally choose between using die() to end script execution
completely or returning a flag value such as false or -1.

PHP 5 introduces exceptions, allowing methods to hand responsibility back to client code when particular errors are
encountered.

An exception is an object that can be automatically populated with information about the error that has occurred and
its script context. You must instantiate Exception objects yourself with the new keyword just as you would with any
object. Once you have an Exception object, you can literally throw it back to the client code:

function doThing() {
  // uh oh. Trouble!
  throw new Exception( "A generic error", 666 );

  print "this will never be executed";
}

The Exception class's constructor optionally accepts an error string and an error code. When the Exception is thrown with
the throw keyword, method execution ends abruptly. Responsibility for handling the problem is passed back to the
calling code.

Suppose we were to call the doThing() method as normal:

$test = new ThingDoer();
$test->doThing();

We run into the following error:

Fatal error: Uncaught exception 'exception'! in Unknown on line 0

When you throw an exception in an invoked method, you must make sure that you catch it in the calling code. To do so,
you need at least two clauses, try and catch. Within the try block, you attempt to execute the code that might generate
an error. Within the catch block, you handle the error condition should it arise:

 try {
  $test = new ThingDoer();
  $test->doThing();
} catch ( Exception $e ) {
  print $e->getMessage();
}

You must declare an argument in the catch clause, as you would in a method declaration. The $e argument in the
preceding fragment is automatically populated with an Exception object that you can work with. Notice that we use a hint
to make the type of object that we are expecting explicit. The reason this step is necessary will become clear in a little
while.

An Exception object has the following methods:

function exception( $message, $errorcode );
function getmessage();
function getcode();
function getfile();
function getline();

You can use them to construct error messages.

If you fail to catch an exception from within a method, then that method will implicitly throw the uncaught exception. It
is then up to the method that invoked the current one to catch the exception, and so on. Your script fails if the
exception is not handled at some point up the chain.

Defining Custom Exception Classes

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Although the default Exception object is useful, you can make it more so by subclassing it and adding your own
enhancements. The value can be as much in the names of your subclasses as in any additional methods you define.

Let's extend Exception to report on all its fields:

class MyException extends Exception {
  public function summarize() {
    $ret = "<pre>\n";
    $ret .=  "msg: ".$this->getMessage()."\n"
         ."code: ".$this->getCode()."\n"
         ."line: ".$this->getLine()."\n"
         ."file: ".$this->getFile()."\n";
    $ret .= "</pre>\n";
    return $ret;
  }
}

In this fragment, we define a class called MyException that extends Exception. We create a new method called summarize()
which collates the output of all the Exception object's reporting methods.

In Listing 17.6, we take exception handling a stage further by using two additional custom Exception classes. Notice that
we gain value from them without adding any further functionality at all.

Listing 17.6 Using Custom Exceptions to Handle Different Circumstances

 1: <?php
 2:
 3: class MyException extends Exception {
 4:   public function summarize() {
 5:     $ret = "<pre>\n";
 6:     $ret .=  "msg: ".$this->getMessage()."\n"
 7:          ."code: ".$this->getCode()."\n"
 8:          ."line: ".$this->getLine()."\n"
 9:          ."file: ".$this->getFile()."\n";
10:     $ret .= "</pre>\n";
11:     return $ret;
12:   }
13: }
14:
15: class FileNotFoundException extends MyException { }
16:
17: class FileOpenException extends MyException { }
18:
19: class Reader {
20:   function getContents( $file ) {
21:     if ( ! file_exists( $file ) ) {
22:       throw new FileNotFoundException( "could not find '$file'" );
23:     }
24:     $fp = @fopen( $file, 'r' );
25:     if ( ! $fp ) {
26:       throw new FileOpenException( "unable to open '$file'" );
27:     }
28:     while ( ! feof( $fp ) ) {
29:       $ret .= fgets( $fp, 1024 );
30:     }
31:     fclose( $fp );
32:     return $ret;
33:   }
34: }
35:
36: $reader = new Reader();
37: try {
38:   print $reader->getContents( "blah.txt" );
39: } catch ( FileNotFoundException $e ) {
40:   print $e->summarize();
41: } catch ( FileOpenException $e ) {
42:   print $e->summarize();
43: } catch ( Exception $e ) {
44:   die("unknown error");
45: }
46: ?>

We define the MyException class on line 3 and then extend it on line 15 and line 17, creating the empty

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We define the MyException class on line 3 and then extend it on line 15 and line 17, creating the empty
FileNotFoundException and FileOpenException classes. On line 19, we define a class called Reader, which will use our
Exception classes. Its getContents() method is designed to read and return the contents of a text file. It requires the path
to a file as its sole argument. If a file cannot be found in that path, we throw a FileNotFoundException object on line 22.
We then attempt to open the file. If we are unable to acquire a file resource, we throw a FileOpenException on line 26.
Assuming we pass these hurdles, we go on to read the file and return its contents.

We try to work with the Reader class on line 36 and onward. Because we know getContents() is liable to throw Exception
objects, we wrap our call to the method in a try clause. On line 39, we catch a FileNotFoundException, printing the return
value of the summarize() method we defined in the MyException class to the browser. On line 41, we catch the
FileOpenException. This is where the empty custom Exceptions come into their own. We are able to provide different
behaviors according the type of Exception thrown. If the getContents() method throws a FileNotFoundException, then the
relevant catch clause is invoked. We might give a user the chance to re-enter some data in this clause but give up
altogether in confusion if the FileOpenException catch clause is invoked. On line 43, we catch a plain Exception object. This
line is our backstop; we will deal with any exceptions we have not planned for here. There should be no unexpected
Exception objects in our example, but it is often a good idea to keep a backstop in place anyhow, in case new exceptions
are added during development.

Exceptions are a great way of keeping your methods clear. You can return the data type your client code expects
without confusing matters by returning error flags when things go wrong. Your method can focus on the task at hand,
ignoring special cases without damaging the design of your script. You also benefit by forcing client code to take
responsibility for error conditions, making for less buggy code. Finally, using multiple catch clauses, you can build up
sophisticated responses to errors.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Tools for Building Object Hierarchies
In this section, we delve even deeper into object-oriented design issues. We have already seen how useful the hints are
in method arguments introduced with PHP 5. Hints are important because we can be sure that when using them we will
be working with an object of a particular type. We encountered this earlier in this hour:

public function update( Item $item ) {
  print "updating.. ";
  print $item->name;
}

The update() method knows that it has an Item object and can go ahead and work with the $name property that it knows
will be accessible. So by constraining the type of the argument passed to the method, we ensure the interface of the
object.

Abstract classes and interfaces are ways of doing a similar thing. Each ensures the availability of features for client
code.

Abstract Classes

Abstract classes are deceptively simple but very useful. You must define an abstract class using the abstract keyword:

abstract class ItemUpdater {
}

The effect is that it is now impossible to directly instantiate an ItemUpdater object. Notice the following line:

$updater = new ItemUpdater();

It results in the following error:

Fatal error: Cannot instantiate abstract class itemupdater

An abstract class is a template for its children, rather than a functional class in its own right. Let us assume that all
ItemUpdater objects should have update(), delete(), and retrieve() methods. We can enforce this rule within the abstract
ItemUpdater() class by declaring abstract methods:

abstract class ItemUpdater {
  abstract public function update( Item $item );
  abstract public function retrieve( $identifier );
  abstract public function delete( Item $item );
}

Now, if we subclass ItemUpdater, we are required to take on the responsibilities the parent has laid down. Let's try
dodging our duty:

class XmlItemUpdater extends ItemUpdater {
}

PHP will not let us create a concrete XMLItemUpdater class that extends ItemUpdater but does not implement its methods:

[View full width]

Fatal error: Class xmlitemupdater contains 3 abstract methods and must therefore be
 declared abstract (itemupdater::update, [itemupdater::retrieve, itemupdater::delete, ...)

We could, if we want, defer the problem by declaring XmlItemUpdater abstract as well. Instead, let's provide a concrete
subclass for ItemUpdater that reports when the update() method is invoked. We can also create two further subclasses, as
shown in Listing 17.7, and use them to revisit our __destruct() example in Listing 17.5.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 17.7 An Abstract Class and Concrete Implementations

 1: <?php
 2:
 3: class Item {
 4:   public $name = "item";
 5:   private $updater;
 6:
 7:   public function setUpdater( ItemUpdater $update ) {
 8:     $this->updater=$update;
 9:   }
10:   function __destruct() {
11:     if ( ! empty( $this->updater )) {
12:       $this->updater->update( $this );
13:     }
14:   }
15: }
16:
17: abstract class ItemUpdater {
18:   abstract public function update( Item $item );
19:   abstract public function retrieve( $identifier );
20:   abstract public function delete( Item $item );
21: }
22:
23: class ReportItemUpdater extends ItemUpdater {
24:
25:   public function update( Item $item ) {
26:     print get_class( $this )."::update(): $item->name<br />\n";
27:     return true;
28:   }
29:
30:   public function retrieve( $id ) {
31:     print get_class( $this )."::retrieve(): id $id<br />\n";
32:     return new Item();
33:   }
34:
35:   public function delete( Item $item ) {
36:     print get_class( $this )."::delete(): id $id<br />\n";
37:     return true;
38:   }
39: }
40:
41: class XmlItemUpdater extends ReportItemUpdater { }
42:
43: class MysqlItemUpdater extends ReportItemUpdater { }
44:
45: $item = new Item();
46: $item->setUpdater( new XmlItemUpdater );
47: unset( $item );
48: // prints "xmlitemupdater::update(): item<br />"
49:
50: $item = new Item();
51: $item->setUpdater( new MysqlItemUpdater );
52: unset( $item );
53: // prints "mysqlitemupdater::update(): item<br />"
54: ?>

For convenience, we re-present the Item class from Listing 17.4. The key features to note are the setUpdater() method
on line 7 and the __destruct() method on line 10. setUpdater() requires an ItemUpdater object, which it stores in the private
$updater property. The __destruct() method is automatically invoked before an Item object is destroyed and calls on the
ItemUpdater object's update() method.

We define the abstract ItemUpdater on line 17 and a concrete subclass ReportItemUpdater on line 23. ReportItemUpdater
does nothing but report on calls to its methods: implementations of update(), retrieve(), and delete(). We subclass
ReportItemUpdater on lines 41 and 43, creating an empty XmlItemUpdater class and an empty MysqlUpdater class. Were this
production code, we would of course implement both MysqlItemUpdater and XmlItemUpdater to write, delete, and retrieve
Item objects. For this example, any method call through objects of these types will default to the ReportItemUpdater
implementation, printing a report to the browser so that we can see what is going on.

On line 45, we instantiate an Item object and then pass an XmlItemUpdater object to its setUpdater() method. We destroy
the Item object on line 47 by calling the unset() function. This step invokes its __destruct() method, thereby causing it to
call XmlItemupdater::update(). This is confirmed by script output.

On line 50, we repeat the process with a MysqlItemUpdater object. The point of this exercise is to demonstrate the
interchangeable nature of our ItemUpdater objects. The Item object does not know or care how it is being saved and
retrieved. It knows only that it has been passed an ItemUpdater object for storage and use. The abstract ItemUpdater
base class ensures that there will be an implemented update() method but leaves the implementation details up to its

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


base class ensures that there will be an implemented update() method but leaves the implementation details up to its
subclasses. This model, with variable functionality in different subclasses hidden behind a common ancestry and
interface, is known as polymorphism.

So we can use argument hints in conjunction with an abstract class to ensure that a particular interface will be available
in an object passed to a method.

We also use abstract classes to fix the definition of a method. Not only did we ensure the presence of a update() method
when we defined ItemUpdater, but also we ensured that the update() method would always expect an Item object as its
argument.

Unfortunately, PHP does not provide you with a way of defining a return type when you define an abstract. We can
demand that all implementations of delete() must be passed an Item object, but we can't demand that all
implementations of retrieve() return an Item object. There are still some things that we must take on trust.

Although our ItemUpdater class contained no implementation, a partial implementation is allowed in abstract classes.
This is useful when all subclasses are likely to want to share the same implementation of a method. The best place to
put it is usually in the base class. You will often see methods in abstract classes calling their own abstract methods:

abstract class OutputComponent {

  abstract function getComponentText();
  abstract function filterComponentText( $txt );
  abstract function writeComponentText();

  function doOutput() {
    $txt = $this->getComponentText();
    $txt = $this->filterComponentText( $txt );
    $this->writeComponentText( $txt );
  }
}

So in the preceding fragment, we define three abstract methods. In doOutput(), we work with the methods, leaving the
details of implementation to subclasses. This neat trick (documented as the "template method" design pattern)
illustrates once again the value of the interface in object-oriented programming. Different OutputComponent subclasses
use different techniques to access text and apply different kinds of filters. Subclasses can generate output in different
ways from one another. For all this potential for difference, the doOutput() method remains valid, ignoring the details
hidden behind the interface. Template methods are often declared final, ensuring that all subclasses work in the same
way.

Interfaces

We have talked a lot about a type's interface during this hour. To confuse matters, we are now going to discuss a
language feature called an interface. An interface is similar in some ways to an abstract class. It allows you to define a
set of methods that a related class is obligated to implement.

There are some key differences between abstract classes and interfaces. You declare interfaces with the interface
keyword:

interface Serializable {
  function writeObject();
}

You are not allowed to add any implementation at all to an interface, only properties and method definitions. You do not
have to declare your method definitions abstract; it is done for you implicitly.

Classes do not extend interfaces; they implement them. A class can extend another class and implement as many
interfaces as you want. By implementing an interface, a class becomes that type, in addition to its type by inheritance:

class User extends Person implements Costable {
  // ...
}

So in the preceding example, the User class must implement any methods defined by the Costable interface. Any User
objects will be of both type 'Person' and type 'Costable'. This means that we can use interfaces to aggregate objects that
derive from different roots but share common facets. In Listing 17.8, we define an interface called Serializable and define
two classes that implement it.

Listing 17.8 Defining and Using an Interface

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 17.8 Defining and Using an Interface

 1: <?php
 2:
 3: interface Serializable {
 4:   public function writeObject();
 5: }
 6:
 7: class Point implements Serializable {
 8:   public $x;
 9:   public $y;
10:
11:   public function writeObject() {
12:     return serialize( $this );
13:   }
14: }
15:
16: class Item implements Serializable {
17:   public function writeObject() {
18:     return serialize( $this );
19:   }
20: }
21:
22: class Serializer {
23:   private $sArray = array();
24:
25:   function register( Serializable $obj ) {
26:     $this->sArray[] = $obj;
27:   }
28:
29:   function output() {
30:     foreach ( $this->sArray as $obj ) {
31:       print $obj->writeObject()."\n";
32:     }
33:   }
34: }
35:
36: $serializer = new Serializer();
37: $serializer->register( new Item() );
38: $serializer->register( new Point() );
39: print "<pre>";
40: $serializer->output();
41: print "</pre>";
42: ?>

We define our interface, Serializable, on line 3. We define a method writeObject() on line 4 that implementing classes must
include. We set up two test classes, Point (line 7) and Item (line 16), both of which implement Serializable. In each case,
the writeObject() method merely calls and returns PHP's serialize() function (lines 12 and 18).

We set up a demonstration class called Serializer on line 22. Serializer has a register() method that will only accept
Serializable objects. Any object passed to register() is saved in the private $sObjects property. The output() method on line
29 loops through $sArray, calling writeObject() on each object in the array. We know that we can call writeObject() because
the only mechanism we have provided for populating $sArray is the update() method.

On lines 36 through 41, we run Serializer through its paces, instantiating a Serializer object, registering Item and Point
objects, and then calling Serializer::output(). Because they both implement Serializable, the Item and Point objects are
recognized as type Serializable, and the update() method's type hinting causes no problems. The output() method prints
the results to the browser:

O:4:"item":0:{}
O:5:"point":2:{s:1:"x";N;s:1:"y";N;}
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Passing and Assigning Objects
Before we leave the subject of PHP and objects, it is important to stress a particular difference between PHP 4 and PHP
5. In PHP 4, objects were passed to and from functions by value. Let's pass an object around a bit to test this process:

class PassObj {
  function PassObj( $item ) {
    $item->name="harry";
  }
}

class Item {
  var $name = "bob";
}

$item = new Item();
$pass = new PassObj( $item );
print $item->name;

The PassObj class in the fragment has a constructor that accepts an Item object. It changes the $name property of the
Item object and does nothing else. If we were to run this code with PHP 4, a copy of an Item object would be passed to
the PassObj constructor. The original object would not be affected by the change, and the script would output "bob", the
default $name value for Item objects.

If we were to run the code fragment in PHP 5, the script would output "harry". PHP 5 passes and assigns objects by
reference rather than value. There would be only one Item object in the script, and different handles would refer to it.
This behavior is more natural for an object-oriented language.

To forcibly pass and assign by reference in PHP 4, you need to do so explicitly, using the ampersand (&) character. The
following fragment of PHP 4 code passes, assigns, and returns a variable by reference:

function & addItem( &$item ) {
  $this->items[] = &$item;
  return $item;
}

We tell the function to return by reference by placing an ampersand before the function name. We enforce pass by
reference in the method definition by placing the ampersand before the argument variable, and we assign by reference
by placing the ampersand after the assignment operator. Failure to do all of these things would result in at least one
copy of the Item object being made. PHP 5 would require no ampersands to get the same result.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
As we have seen, with version 5, PHP has dramatically enhanced its object support. We have now covered most of
PHP's object-oriented features. If you are excited by the prospect of working with objects and PHP, realize that this
chapter is not even the end of the beginning. Object-oriented design is a vast subject but very rewarding. It is likely
that PHP 5 will encourage a small revolution in design books for PHP, so keep your eyes on the bookshop shelves.

In this hour, you learned about class constants and explored a trick for using constant flags to store status settings. You
learned how to use static properties and methods to control access to an object. You used the __call(), __get(), and
__set() methods to overload object calls and the __destruct() method to handle the end of an object's life. You learned
how to define, throw, and catch exceptions. Finally, you defined type functionality using abstract classes and interfaces.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: You mentioned books about object-oriented design. Can you be more specific?

A1: Because PHP 5 is so new, there are few books focusing on object-oriented design with PHP at the time of
writing. This will probably not be the case as you read this sentence, so you might consider a visit to your
local bookstore. If you have any knowledge of C++, we recommend a book called Design Patterns:
Elements of Reusable Object-Oriented Software by Erich Gamma et al. If you have a background in Java,
we recommend Design Patterns Explained by Alan Shalloway and James R. Trott. The magazine
PHP|architect focuses on objects in many of its articles (http://www.phparchitect.com). Another good
source for object-oriented information is phpPatterns at http://www.phppatterns.com.

Q2: Is there any way of simulating abstract classes or interfaces in PHP 4?

A2: It would be hard to emulate an interface with PHP 4. Abstract classes, however, can be simulated. Define
a base class, and ensure that every "abstract" method contains a die() statement:

function doThing() {
   die( "doThing() is abstract and must be overridden" );
}

This is clearly not as satisfactory as PHP 5's abstract classes, but it can be deployed quite effectively
nevertheless.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: What keyword would you use to define a class constant?

2: A static property cannot be changed at runtime. True or false?

3: Can a static method access normal object properties using the $this pseudo variable?

4: What built-in method could you implement to catch an attempt to access a nonexistent property?

5: How would you prevent a method being overridden?

6: What built-in method will be called when an object is about to be destroyed?

7: What keyword would you use to send an exception to client code?

8: What clause would you define to handle a specific exception in client code?

9: How would you instantiate an abstract class?

Answers

A1: You would define a class constant with the const keyword:

const DJ="John Peel"

A2: False. A static property can be changed throughout script operation. Statics are properties that are set at
class rather than object level.

A3: No. Static methods have no direct access to object properties because they do not exist in object context.

A4: You can implement the __get() method to catch attempts to read nonexistent properties.

A5: You can prevent a method from being overridden by declaring it final:

final function getDJ() {
  return "john peel";
}

A6: The __destruct() method is called when an object is about to be destroyed.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A7: You can send an exception to calling code with the throw keyword:

throw new WrongDjException("not John Peel");

A8: You can handle a specific exception using a catch clause:

try {
  getRightDJ();
} catch ( WrongDjException $e ) {
  print "Sorry an error occurred";
}

A9: This is a trick question. You cannot instantiate an abstract class; you must subclass it and instantiate a
concrete child class.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Take a look at your own projects. Can you find anything that would benefit from an object-oriented approach?

Is there any functionality that you could extract and develop as a reusable class?

2. We covered the database abstraction (DBA) layer functions in Hour 12, "Working with the DBA Functions." Write
a class for reading and writing with DBA functions. What exceptions might you need to throw?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 18. Working with Regular Expressions
What You'll Learn in This Hour:

How to match patterns in strings using regular expressions

The basics of regular expression syntax

How to replace text in strings using regular expressions

How to use regular expressions to split a string into an array

Regular expressions are a powerful way of examining and modifying text. They enable you to search for patterns within
a string, extracting matches flexibly and precisely. Be warned that because they are more powerful, they are also
slower than the more basic string function examined in Hour 8, "Working with Strings." You should use string functions,
therefore, if you don't need the extra power afforded by the use of a regular expression function.

PHP supports two flavors of regular expressions. It has a set of functions that emulate regular expressions as employed
in Perl and a set of functions that support the more limited POSIX regular expressions. Because Perl-compatible regular
expressions are the more powerful of the two, we will concentrate on them.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Perl Compatible Regular Expressions
Perl is a powerful scripting language. It was originally designed as a replacement for more limited Unix shell tools, and
one of its core features is an extended regular expression engine. PHP provides support for the Perl regular expression
syntax, giving you a suite of flexible tools for managing and transforming text.

A regular expression is a combination of symbols that match a pattern in text. Learning how to use regular
expressions, therefore, is much more than learning the arguments and return types of PHP's regular expression
functions. We will begin with the functions and use them to introduce regular expression syntax.

Matching Patterns with preg_match()

preg_match() accepts four arguments: a regular expression string, a source string, an array variable (which stores
matches), and an optional fourth flag argument. preg_match() returns 0 if a match is found and 1 otherwise. These
numbers represent the number of matches the function can make in a string. Your regular expression string should be
enclosed by delimiters, conventionally forward slashes, although you can use any character that isn't alphanumeric
(apart from the backslash character).

Let's search the string "aardvark advocacy" for the letters "aa":

print "<pre>\n";
print preg_match("/aa/", "aardvark advocacy", $array) . "\n";
print_r( $array );
print "</pre>\n";

// output:
// 1
// Array
// (
//   [0] => aa
// )

The letters aa exist in aardvark, so preg_match() returns 1. The first element of the $array variable is also filled with the
matched string, which we print to the browser. This might seem strange given that we already know the pattern we are
looking for is "aa". We are not, however, limited to looking for predefined characters. We can use a single dot (.) to
match any character:

print "<pre>\n";
print preg_match("/d./", "aardvark advocacy", $array);
print "</pre>\n";
print_r( $array );

// output:
// 1
// Array
// (
//   [0] => dv
// )

d. matches "d" followed by any character. We don't know in advance what the second character will be, so the value in
$array[0] becomes useful.

If you pass an integer constant flag, PREG_OFFSET_CAPTURE, to preg_match() as the fourth argument, matches in the
$array variable are returned as two element arrays, with the first element containing the match and the second
containing the number of characters from the start of the search string where the match was found. Suppose we amend
our previous call to preg_match():

preg_match("/d./", "aardvark advocacy", $array, PREG_OFFSET_CAPTURE );

$array will contain a subarray, containing the matched string "dv" and the number 3, representing the number of
characters before the match:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


// Array
// (
//   [0] => Array
//     (
//       [0] => dv
//       [1] => 3
//     )
//
// )

Using Quantifiers to Match a Character More Than Once

When you search for a character in a string, you can use a quantifier to determine the number of times this character
should repeat for a match to be made. The pattern a+, for example, will match at least one "a" followed by "a" zero or
more times. Let's put this to the test:

if ( preg_match("/a+/","aaaa", $array) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => aaaa
// )

Notice that this regular expression greedily matches as many characters as it can. Table 18.1 lists the quantifiers you
can use to test for a recurring character.

Table 18.1. Quantifiers for Matching a Recurring Character
Symbol Description Example

* Zero or more instances a*

+ One or more instances a+

? Zero or one instance a?

{n} n instances a{3}

{n,} At least n instances a{3,}

{,n} Up to n instances a{,2}

{n1, n2} At least n1 instances, no more than n2 instances a{1,2}

The numbers between braces in Table 18.1 are called bounds. Bounds define the number of times a character or range
of characters should be matched in a regular expression. You should place your upper and lower bounds between
braces after the character you want to match:

a{4,5}

This line matches no fewer than four and no more than five instances of the character a.

PCREs and Greediness

By default, regular expressions attempt to match as many characters as possible. Notice the following line:

"/p.*t/"

It will find the first "p" in a string and match as many characters as possible until the last possible "t" character is
reached. So this regular expression matches the entire test string in the following fragment:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$text = "pot post pat patent";
if (preg_match ( "/p.*t/", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => pot post pat patent
// )

By placing a question mark (?) after any quantifier, you can force a PCRE to be more frugal. Notice the following line:

"p.*t"

It means "p followed by as many characters as possible followed by t." But now notice the next line:

"p.*?t"

It means "p followed by as few characters as possible followed by t."

The following fragment uses this technique to match the smallest number of characters starting with "p" and ending
with "t":

$text = "pot post pat patent";
if ( preg_match( "/p.*?t/", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => pot
// )

Matching Ranges of Characters with Character Classes

Until now, we have either matched specified characters or used . to match any character. Character classes enable
you to match any one of a group of characters. To define a character class, you surround the characters you want to
match in square brackets. [ab] will match "a" or "b." After you define a character class, you can treat it as if it were a
character. So [ab]+ will match "aaa," "bbb," or "ababab."

You can also match ranges of characters with a character class: [a-z] will match any lowercase letter, [A-Z] will match
any uppercase letter, and [0-9] will match any number. You can combine ranges and individual characters into one
character class, so [a-z5] will match any lowercase letter or the number 5.

In the following fragment, we are looking for any lowercase alphabetical character or the numbers 3, 4, and 7:

if ( preg_match("/[a-z347]+/", "AB dkfd773sxFF", $array) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => dkfd773sx
// )

You can also negate a character class by including a caret (^) character after the opening square bracket: [^A-Z] will
match anything apart from an uppercase character.

Let's negate the characters in the character class we defined in the previous example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


if ( preg_match("/[^a-z347]+/","AB dkfd773sxFF", $array) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => AB
// )

PCREs and Backslashed Characters

You can escape certain characters with PCREs, just as you can within strings. \t, for example, represents a tab
character, and \n represents a newline. PCREs also define some escape characters that will match entire character
types. Table 18.2 lists these backslash characters.

Table 18.2. Escape Characters That Match Character Types
Character Matches

\d Any number

\D Anything other than a number

\s Any kind of whitespace

\S Anything other than whitespace

\w Alphanumeric characters (including the underscore character)

\W Anything other than an alphanumeric character or an underscore

These escape characters can vastly simplify your regular expressions. Without them, you would be forced to use a
character class to match ranges of characters. Compare the following valid methods for matching word characters:

preg_match( "/p[a-zA-Z0-9_]+t/", $text, $array );
preg_match( "/p\w+t/", $text, $array );

Both the examples match "p" followed by one or more alphanumeric characters followed by "t." The second example is
easier to write and read, however.

PCREs also support a number of escape characters that act as anchors. Anchors match positions within a string,
without matching any characters. They are listed in Table 18.3.

Table 18.3. Escape Characters That Act As Anchors
Character Matches

\A Beginning of string

\b Word boundary

\B Not a word boundary

\Z End of string (matches before final newline or at end of string)

\z End of string (matches only at very end of string)

Let's put the word boundary character to the test:

$text = "pot post pat patent";
if ( preg_match( "/\bp\w+t\b/", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => pot
// )

The preg_match() call in the previous fragment will match the character "p" but only if it is at a word boundary, followed
by any number of word characters, followed by "t," but only if it is at a word boundary. The word boundary escape
character does not actually match a character; it merely confirms that a boundary exists for a match to take place.

You can also escape characters to turn off their meanings. To match a "." character, for example, you should add a
backslash to the character in your regular expression string:

preg_match( "/\./", $string, $array );

Working with Subpatterns

A subpattern is a pattern enclosed in parentheses (sometimes referred to as an atom). After you define a subpattern,
you can treat it as if it were itself a character or character class. In other words, you can match the same pattern as
many times as you want using the syntax described in Table 18.1.

Subpatterns are also used to change the way a regular expression is interpreted, usually by limiting the scope of a set
of alternatives.

Finally, you can use subpatterns to save the results of a submatch within a regular expression for later use.

In the next fragment, we define a pattern and use parentheses to match individual elements within it:

$test = "Whatever you do, don't panic!";
if ( preg_match( "/(don't)\s+(panic)/", $test, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => don't panic
//   [1] => don't
//   [2] => panic
// )

The first element of the array variable that is passed to preg_match() contains the complete matched string. Subsequent
elements contain each individual atom matched. This means that you can access the component parts of a matched
pattern as well as the entire match.

In the following code fragment, we match an IP address and access not only the entire address, but also each of its
component parts:

$test = "158.152.55.35";
if ( preg_match( "/(\d+)\.(\d+)\.(\d+)\.(\d+)/", $test, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => 158.152.55.35
//   [1] => 158
//   [2] => 152
//   [3] => 55
//   [4] => 35
// )

Notice that we used a backslash (\) to escape the dots in the regular expression. By doing so, we signal that we want to
strip . of its special meaning and treat it as a specific character. You must do the same for any character that has a

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


strip . of its special meaning and treat it as a specific character. You must do the same for any character that has a
function in a regular expression if you want to refer to it.

Branches

You can combine patterns with the pipe (|) character to create branches in your regular expressions. A regular
expression with two branches will match either the first pattern or the second. This process adds yet another layer of
flexibility to regular expression syntax. In the next code fragment, we match either .com or .co.uk in a string:

$test = "www.example.com";
if ( preg_match( "/www\.example(\.com|\.co\.uk)/", $test, $array ) ) {
  print "it is a $array[1] domain<br/>";
}
// output:
// it is a .com domain

We illustrate two aspects of a subpattern in the preceding example. First, we capture the match of .com or .co.uk,
making it available in $array[1], and second, we define the scope of the branch. Without the parentheses, we would
match either www.example.com or .co.uk, which is not what we want at all.

Anchoring a Regular Expression

Not only can you determine the pattern you want to find in a string, you also can decide where in the string you want to
find it. To test whether a pattern is at the beginning of a string, prepend a caret (^) symbol to your regular expression.
^a will match "apple," but not "banana."

To test that a pattern is at the end of a string, append a dollar ($) symbol to the end of your regular expression. a$ will
match "flea" but not "dear."

Finding Matches Globally with preg_match_all()

It is a feature of preg_match() that it only matches the first pattern it finds in a string. So searching for words beginning
with "p" and ending with "s," we will match only the first found pattern. Let's try it out:

$text = "I sell pots, plants, pistachios, pianos and parrots";
if ( preg_match( "/\bp\w+s\b/", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => pots
// )

As we would expect, the first match, "pots," is stored in the first element of the $array variable. None of the other words
are matched.

We can use preg_match_all() to access every match in the test string in one call. preg_match_all() accepts a regular
expression, a source string, and an array variable and will return true if a match is found. The array variable is
populated with a multidimensional array, the first element of which will contain every match to the complete pattern
defined in the regular expression.

Listing 18.1 tests a string using preg_match_all(), the print_r() function to output the multidimensional array of results.

Listing 18.1 Using preg_match_all() to Match a Pattern Globally

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Using preg_match_all() to Match a Pattern Globally</title>
 7: </head>
 8: <body>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 8: <body>
 9: <?php
10: $text = "I sell pots, plants, pistachios, pianos and parrots";
11: if ( preg_match_all( "/\bp\w+s\b/", $text, $array ) ) {
12:   print "<pre>\n";
13:   print_r( $array );
14:   print "</pre>\n";
15: }
16:
17: // output:
18: // Array
19: // (
20: //   [0] => Array
21: //     (
22: //       [0] => pots
23: //       [1] => plants
24: //       [2] => pistachios
25: //       [3] => pianos
26: //       [4] => parrots
27: //     )
28: //
29: // )
30:
31: ?>
32: </body>
33: </html>

The first and only element of the $array variable that we passed to preg_match_all() on line 11 has been populated with
an array of strings. This array contains every word in the test string that begins with "p" and ends with "s."

preg_match_all() populates a multidimensional array to store matches to subpatterns. The first element of the array
argument passed to preg_match_all() will contain every match of the complete regular expression. Each additional
element will contain the matches that correspond to each atom (subpattern in parentheses). Notice the following call to
preg_match_all():

$text = "01-05-99, 01-10-99, 01-03-00";
preg_match_all( "/(\d+)-(\d+)-(\d+)/", $text, $array );

$array[0] will store an array of complete matches:

$array[0][0]: 01-05-99
$array[0][1]: 01-10-99
$array[0][2]: 01-03-00

$array[1] will store an array of matches that corresponds to the first subpattern:

$array[1][0]: 01
$array[1][1]: 01
$array[1][2]: 01

$array[2] will store an array of matches that corresponds to the second subpattern:

$array[2][0]: 05
$array[2][1]: 10
$array[2][2]: 03

And so on. We can change this behavior by passing a constant integer flag, PREG_SET_ORDER, to preg_match_all() as its
optional fourth argument:

$text = "01-05-99, 01-10-99, 01-03-00";
preg_match_all( "/(\d+)-(\d+)-(\d+)/", $text, $array, PREG_SET_ORDER );

This will change the structure of $array. Each element will be an array as before. Of the subarrays in $array, the first
element of each will be a complete match, and each subsequent element will be a submatch. So the first element of
$array will contain all aspects of the first match:

$array[0][0]: 01-05-99
$array[0][1]: 01
$array[0][2]: 05
$array[0][3]: 99

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$array[0][3]: 99

The second array will contain all aspects of the second match:

$array[1][0]: 01-10-99
$array[1][1]: 01
$array[1][2]: 10
$array[1][3]: 99

And so on.

Using preg_replace() to Replace Patterns

Until now, we have searched for patterns in a string, leaving the search string untouched. preg_replace() enables you to
find a pattern in a string and replace it with a new substring. preg_replace() requires three strings: a regular expression,
the text with which to replace a found pattern, and the text to modify. It optionally accepts a fourth integer argument,
which sets a limit to the number of replacements the function should perform. preg_replace() returns a string, including
the modification if a match was found or an unchanged copy of the original source string otherwise. In the following
fragment, we search for the name of a club official, replacing it with name of her successor:

$test = "Our Secretary, Sarah Williams is pleased to welcome you.";
print preg_replace("/Sarah Williams/", "Rev. P.W. Goodchild", $test);
// output:
// Our Secretary, Rev. P.W. Goodchild is pleased to welcome you.

Note that although preg_match() will only match the first pattern it finds, preg_replace() will find and replace every
instance of a pattern, unless you pass a limit integer as a fourth argument.

Using Back References with preg_replace()

Back references make it possible for you to use part of a matched pattern in the replacement string. To use this
feature, you should use parentheses to wrap any elements of your regular expression that you might want to use. The
text matched by these subpatterns will be available to the replacement string if you refer to them with a dollar
character ($) and the number of the subpattern ($1, for example). Subpatterns are numbered in order, outer to inner,
left to right, starting at $1.$0 stores the entire match.

The following fragment converts dates in dd/mm/yy format to mm/dd/yy format:

$test = "25/12/2000";
print preg_replace("|(\d+)/(\d+)/(\d+)|", "$2/$1/$3", $test);
// output:
// 12/25/2000

Notice that we used a pipe (|) symbol as a delimiter. This is to save us from having to escape the forward slashes in the
pattern we want to match.

Instead of a source string, you can pass an array of strings to preg_replace(), and it will transform each string in turn. In
this case, the return value will be an array of transformed strings.

You can also pass arrays of regular expressions and replacement strings to preg_replace(). Each regular expression will
be applied to the source string, and the corresponding replacement string will be applied. The following fragment
transforms date formats as before but also changes copyright information in the source string:

$text = "25/12/99, 14/5/00. Copyright 2003";
$regs = array( "|\b(\d+)/(\d+)/(\d+)\b|", "/([Cc]opyright) 2003/" );
$reps = array( "$2/$1/$3", "$1 2004" );
$text = preg_replace( $regs, $reps, $text );
print "$text<br />";
// output:
// 12/25/99, 5/14/00. Copyright 2004<br />

We create two arrays. The first, $regs, contains two regular expressions, and the second, $reps, contains replacement
strings. The first element of the $regs array corresponds to the first element of the $reps array, and so on.

If the array of replacement strings contains fewer elements than the array of regular expressions, patterns matched by
those regular expressions without corresponding replacement strings will be replaced with an empty string.

If you pass preg_replace() an array of regular expressions but only a string as replacement, the same replacement string
will be applied to each pattern in the array of regular expressions.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Modifiers

PCREs allow you to modify the way that a pattern is applied through the use of pattern modifiers.

A pattern modifier is a letter that should be placed after the final delimiter in your PCRE. It will refine the behavior of
your regular expression.

Table 18.4 lists some PCRE pattern modifiers.

Table 18.4. PCRE Modifiers
Pattern Description

/i Case insensitive.

/e Treats replacement string in preg_replace() as PHP code.

/m $ and ^ anchors match at newlines as well as the beginning and end of the string.

/s Matches newlines (newlines are not normally matched by .).

/x Whitespace outside character classes is not matched to aid readability. To match whitespace, use \s, \t, or
\.

/A Matches pattern only at start of string (this modifier is not found in Perl).

/E Matches pattern only at end of string (this modifier is not found in Perl).

/U Makes the regular expression ungreedy; the minimum number of allowable matches is found (this modifier
is not found in Perl).

Where they do not contradict one another, you can combine pattern modifiers. You might want to use the x modifier to
make your regular expression easier to read, for example, and also the i modifier to make it match patterns regardless
of case. Note the following line:

/ b \S* t /ix

It will match "bat" and "BAT" but not "B A T," for example. Unescaped spaces in a regular expression modified by x are
there for aesthetic reasons only and will not match any patterns in the source string.

The m modifier can be useful if you want to match an anchored pattern on multiple lines of text. The anchor patterns ^
and $ match the beginning and end of an entire string by default. The following fragment uses the m modifier to change
the behavior of $:

$text = "name: matt\noccupation: coder\neyes: blue\n";
if ( preg_match_all( "/^\w+:\s+(.*)$/m", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => Array
//     (
//       [0] => name: matt
//       [1] => occupation: coder
//       [2] => eyes: blue
//     )
//
//   [1] => Array
//     (
//      [0] => matt
//      [1] => coder
//      [2] => blue
//     )
//
// )

We create a regular expression that will match any word characters followed by a colon and any number of space
characters. We then match any number of characters followed by the end of string ($) anchor. Because we have used
the m pattern modifier, $ matches the end of every line rather than the end of the string.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The s modifier is useful when you want to use . to match characters across multiple lines. The following fragment
attempts to access the first and last words of a string:

$text = "start with this line\nand you will reach\na conclusion in the end\n";
if ( preg_match( "/^(\w+).*?(\w+)$/", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

This code will print nothing. Although the regular expression will find word characters at the beginning of the string, the
. will not match the newline characters embedded in the text. The s modifier will change this:

$text = "start with this line\nand you will reach\na conclusion in the end\n";
if ( preg_match( "/^(\w+).*?(\w+)$/s", $text, $array ) ) {
  print "<pre>\n";
  print_r( $array );
  print "</pre>\n";
}

// output:
// Array
// (
//   [0] => start with this line
// and you will reach
// a conclusion in the end
//   [1] => start
//   [2] => end
// )

The e modifier can be particularly powerful. It allows you to treat the replacement string in preg_replace() as if it were
PHP. You can pass back references to functions as arguments, for example, or process lists of numbers. In the following
example, we use the e modifier to pass matched numbers in dates to a function that returns the same date in a new
format:

function convDate( $month, $day, $year ) {
  $year = ($year < 70 )?$year+2000:$year;
  $time = ( mktime( 0,0,0,$month,$day,$year) );
  return date("l d F Y", $time);
}

$dates = "3/18/03<br />\n7/22/04";
$dates = preg_replace( "/([0-9]+)\/([0-9]+)\/([0-9]+)/e",
      "convDate($1,$2,$3)", $dates);
print $dates;

// output:
// Tuesday 18 March 2003<br />
// Thursday 22 July 2004

We match any set of three numbers separated by slashes, using parentheses to capture the matched numbers. Because
we are using the e modifier, we can call the user-defined function convDate() from the replacement string argument,
passing the three back references to the function. convDate() simply takes the numerical input and produces a more
verbose date, which replaces the original. Because in our example, we are matching numbers, we do not need to
enclose the backreferences in quotes. If we were matching strings, quotes would be necessary around each string
backreference.

Using preg_replace_callback() to Replace Patterns

preg_replace_callback() allows you to assign a callback function that will be called for every full match your regular
expression finds. preg_replace_callback() requires a regular expression, a reference to a callback function, and the string
to be analyzed. Like preg_replace(), it also optionally accepts a limit argument.

The callback function should be designed to accept a single array argument. It will contain the full match at index 0 and
each submatch in subsequent positions in the array. Whatever the callback function returns will be incorporated into the
string returned by preg_replace_callback().

We can use preg_replace_callback() to rewrite our date-replacement example:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


function convDate( $matches ) {
  $year = ($year < 70 )?$matches[3]+2000:$matches[3];
  $time = ( mktime( 0,0,0,$matches[1],$matches[2],$matches[3]) );
  return date("l d F Y", $time);
}

$dates = "3/18/03<br />\n7/22/04";
$dates = preg_replace_callback( "/([0-9]+)\/([0-9]+)\/([0-9]+)/",
      "convDate", $dates);
print $dates;

// output:
// Tuesday 18 March 2003<br />
// Thursday 22 July 2004

This example calls the convDate() function twice, once for each time the regular expression matches. The day, month,
and year figures are then easy to extract from the array that is passed to convDate() and stored in the $matches
argument variable.

Using preg_split() to Break Up Strings

In Hour 8, you saw that you could split a string of tokens into an array using explode(). This is powerful but limits you to
a single set of characters that can be used as a delimiter. PHP's preg_split() function enables you to use the power of
regular expressions to define a flexible delimiter. preg_split() requires a string representing a pattern to use as a
delimiter and a source string. It also accepts an optional third argument representing a limit to the number of elements
you want returned and an optional flag argument. preg_split() returns an array.

The following fragment uses a regular expression with two branches to split a string on a comma followed by a space or
the word and surrounded by two spaces:

$text = "apples, oranges, peaches and grapefruit";
$fruitarray = preg_split( "/, | and /", $text );
print "<pre>\n";
print_r( $fruitarray );
print "</pre>\n";

// output:
// Array
// (
//   [0] => apples
//   [1] => oranges
//   [2] => peaches
//   [3] => grapefruit
// )

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
Regular expressions are a huge subject, and we've really only scraped the surface of their power in this hour.
Nevertheless, you should now be able to use regular expression functions to find and replace complex patterns in text.

You should be able to use the preg_match() regular expression function to find patterns in strings and the preg_replace()
function to replace all instances of a pattern in a string. You should be able to find ranges of characters using character
classes, multiple patterns using quantifiers, and alternative patterns using branches. You should be able to extract
subpatterns and refer to them with backreferences. You should be able to use escape characters to anchor patterns or
to match character types. You should be able to use modifiers to change the way in which PCREs work.

In the next hour, we will examine some core techniques for creating environments that can retain information across
multiple requests.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Regular expressions seem very powerful. Is there anywhere I can find out more about them?

A1: The relevant section in the PHP manual at http://www.php.net/pcre will offer some information about
regular expression syntax. You can also find some useful information at http://www.perldoc.com—in
particular, an introduction to Perl regular expressions at
http://www.perldoc.com/perl5.8.0/pod/perlretut.html. For a challenging but comprehensive guide to
regular expressions, you should acquire Mastering Regular Expressions by Jeffrey Friedl.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: What regular expression function would you use to match a pattern in a string?

2: What regular expression syntax would you use to match the letter "b" at least once but not more than six
times?

3: How would you specify a character range between "d" and "f?"

4: How would you negate the character range you defined in question 3?

5: What syntax would you use to match either any number or the word "tree?"

6: What regular expression function would you use to replace a matched pattern?

7: The regular expression

.*bc

will match greedily; that is, it will match "abc000000bc" rather than "abc." How would you make the
preceding regular expression match only the first instance of a pattern it finds?

8: What backslash character will match whitespace?

9: What function could you use to match every instance of a pattern in a string?

10: Which modifier would you use in a PCRE function to match a pattern independently of case?

Answers

A1: You can use the preg_match() function to find a pattern in a string.

A2: You can use braces containing the minimum and maximum instances (the bounds) of a character to
match:

b{1,6}

A3: You can specify a character range using square brackets:

[d-f]

A4: You can negate a character range with the caret symbol:

[^d-f]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A5: You can match alternative branches with the pipe (|) character:

[0-9] |tree

A6: You can use the preg_replace() function to replace a matched pattern with a given alternative.

A7: By adding a question mark to a quantifier, you can force the match to be nongreedy:

/.*?bc/

A8: \s will match whitespace in a PCRE.

A9: The preg_match_all() function will match every instance of a pattern in a string.

A10: The /i modifier will make a PCRE function match independently of case.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercise
Use regular expressions to extract email addresses from a file. Add them to an array and output the result to the
browser. Refine your regular expression across a number of files.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 19. Saving State with Cookies and Query
Strings
What You'll Learn in This Hour:

What cookies are and how they work

How to read a cookie

How to set a cookie

How to use cookies to store site usage information in a database

About query strings

How to build a function to turn an associative array into a query string

HTTP is a stateless protocol. Therefore, every page a user downloads from your server represents a separate
connection. On the other hand, Web sites are perceived by users and publishers alike as environments, as spaces within
which a single page is part of a wider whole. It's not surprising, therefore, that strategies to pass information from page
to page are as old as the Web itself.

In this hour, we will examine two methods of storing information on one page that can then be accessed on subsequent
pages.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Cookies
Netscape originated the "magic cookie" back in the days of Netscape 1. The origin of the name is the subject of some
debate, although it seems reasonable to assume that the fortune cookie might have played a role in the thinking behind
it. Since then, the standard has been embraced by other browser producers.

A cookie is a small amount of data stored by the user's browser in compliance with a request from a server or script. A
host can request that up to 20 cookies be stored by a user's browser. Each cookie consists of a name, a value, and an
expiry date, as well as host and path information. An individual cookie is limited to 4KB.

After a cookie is set, only the originating host can read the data, ensuring that the user's privacy is respected.
Furthermore, the user can configure his browser to notify him of all cookies set or even to refuse all cookie requests.
For this reason, cookies should be used in moderation and should not be relied on as an essential element of an
environment design without first warning the user.

Having said that, cookies can be an excellent way of saving small amounts of information about a user from page to
page or even from visit to visit.

The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a cookie directly on a browser). A PHP
script that sets a cookie might send headers that look something like this:

HTTP/1.1 200 OK
Date: Mon, 25 Aug 2003 13:40:22 GMT
Server: Apache/2.0.47 (Unix) PHP/5.0.0b1
X-Powered-By: PHP/5.0.0b1
Set-Cookie: vegetable=artichoke; expires=Mon, 25-Aug-2003 14:40:27 GMT; path=/;
domain=corrosive.co.uk
Connection: close
Content-Type: text/html; charset=ISO-8859-1

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path, and a domain. The name and
value are URL encoded. The expires field is an instruction to the browser to forget the cookie after the given time and
date. The path field defines the position on a Web site below which the cookie should be sent back to the server,
whereas the domain field determines the Internet domains to which the cookie should be sent. The domain cannot be
different from the domain from which the cookie was sent, but it can nonetheless specify a degree of flexibility. In the
preceding example, the browser sends the cookie to the server corrosive.co.uk. You can read more about HTTP headers
in Hour 14, "Beyond the Box."

If the browser is configured to store cookies, it keeps this information until the expiry date. If the user points the
browser at any page that matches the path and domain of the cookie, it resends the cookie to the server. The browser's
headers might look something like this:

GET /phpbook/source/listing19.1.php HTTP/1.1
Host: matt.corrosive.co.uk:9090
User-Agent: Mozilla/5.0 (X11; U; Linux ppc; en-US; rv:1.2.1) Gecko/20030228
Accept: text/xml,application/xml,application/xhtml+xml,text/html ...
Accept-Language: en-us, en;q=0.50
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Keep-Alive: 300
Connection: keep-alive
Cookie: vegetable=artichoke
Cache-Control: max-age=0

A PHP script then has access to the cookie in the superglobal array variable $_COOKIE["vegetable"]:

print $_COOKIE['vegetable']."<br/>"; // prints "artichoke"

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Setting a Cookie with PHP
You can set a cookie in a PHP script in two ways. You can use the header() function to set the Set-Cookie header. You
encountered the header() function in Hour 10, "Working with Forms." header() requires a string that is included in the
header section of the server response. Because headers are sent automatically for you, header() must be called before
any output is sent to the browser:

[View full width]

header ("Set-Cookie: vegetable=artichoke; expires=Wed, 25-Aug-04 14:39:58 GMT; path=/;
 domain=corrosive.co.uk ");

Although not difficult, this method of setting a cookie requires you to build a function to construct the header string.
Formatting the date as in this example and URL encoding the name/value pair would not be a particularly arduous task.
It would, however, be an exercise in wheel reinvention because PHP provides a function that does just that.

setcookie() does what the name suggests—it outputs a Set-Cookie header. For this reason, it should be called before any
other content is sent to the browser. The function accepts the cookie name, cookie value, expiry date in Unix epoch
format, path, domain, and integer (which should be set to 1 if the cookie is to be sent only over a secure connection).
All arguments to this function are optional apart from the first (cookie name) parameter.

Listing 19.1 uses setcookie() to set a cookie.

Listing 19.1 Setting and Printing a Cookie Value

 1:<?php
 2: setcookie( "vegetable", "artichoke", time()+3600, "/",
 3:      "corrosive.co.uk", 0 );
 4: ?>
 5:<!DOCTYPE html PUBLIC
 6:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 7:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 8: <html>
 9: <head>
10: <title>Listing 19.1 Setting and Printing a Cookie Value</title>
11: </head>
12: <body>
13: <?php
14: if ( isset( $_COOKIE['vegetable'] ) ) {
15: print "<p>Hello again, your chosen vegetable is ";
16: print "{$_COOKIE['vegetable']}</p>";
17: } else {
18: print "<p>Hello you. This may be your first visit</p>";
19: }
20: ?>
21: </body>
22: </html>

If you want Listing 19.1 to run on your server, you must change the
setCookie() function's host argument to match your domain, like so:

setcookie( "vegetable", "artichoke", time()+3600, "/",
"example.com", 0 );

You can also omit the last two arguments completely, and your current
domain will be used implicitly:

setcookie( "vegetable", "artichoke", time()+3600, "/" );

Even though we set the cookie (line 2) when the script is run for the first time, the $vegetable variable is not created at
this point. A cookie is read only when the browser sends it to the server, which doesn't happen until the user revisits a
page in your domain. We set the cookie name to "vegetable" on line 2 and the cookie value to "artichoke". We use the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


page in your domain. We set the cookie name to "vegetable" on line 2 and the cookie value to "artichoke". We use the
time() function to get the current time stamp and add 3600 to it (there are 3600 seconds in an hour). This total
represents our expiry date. We define a path of "/", which means a cookie should be sent for any page within our server
environment. We set the domain argument to "corrosive.co.uk", which means a cookie will be sent to any server in that
group (www.corrosive.co.uk as well as dev.corrosive.co.uk, for example). If you want the cookie returned only to the server
hosting your script, you can use the $_SERVER['SERVER_NAME'] server variable instead of hard-coding the server name.
The added advantage of this is that your code will work as expected even if you move it to a new server. Finally, we
pass 0 to setcookie() signaling that cookies can be sent in an insecure environment.

Although you can omit all but the first argument, you should include all the arguments with the exception of the domain
and the secure flag. This is because the path argument is required by some browsers for cookies to work as they
should. Additionally, without the path argument the cookie is sent only to documents in the current directory or its
subdirectories.

Passing setcookie() an empty string ("") for string arguments or 0 for integer fields causes these arguments to be
skipped.

Deleting a Cookie

Officially, to delete a cookie, you should call setcookie() with the name argument only:

setcookie( "vegetable" );

This does not always work well, however, and should not be relied on. It is safest to set the cookie with a date that has
already expired:

setcookie( "vegetable", "", time()-60, "/", "corrosive.co.uk", 0);

You should also be sure to pass setcookie() the same path, domain, and secure parameters as you did when originally
setting the cookie.

Creating Session Cookies

To create a cookie that lasts only as long as the user is running her browser, pass setcookie() an expiry argument of 0.
While the user's browser continues to run, the cookie is returned to the server. The browser does not remember the
cookie, however, after it has been quit and restarted.

This can be useful for scripts that validate a user with a cookie, allowing continued access to personal information on
multiple pages after a password has been submitted. You will not want the browser to have continued access to these
pages after it has been restarted because you can't be sure that it has not been taken over by a new user:

setcookie( "session_id", "55435", 0 );

An Example—Tracking Site Usage

Imagine that we have been given a brief by a site publisher to use cookies and SQLite to gather statistics about visitors
to the site. The client wants to get figures for the number of individual visitors to the site, average number of hits per
visit for each visitor, and average time spent on the site for each user.

Our first duty will be to explain the limitations of cookies to the client. First, not all users will have cookies enabled on
their browsers. If not passed a cookie by a browser, a cookie script is likely to assume that this is the user's first visit.
The figures are therefore likely to be skewed by browsers that won't or can't support cookies. Furthermore, you cannot
be sure that the same user will use the same browser all the time or that a single browser won't be shared by multiple
users.

Having done this, we can move on to fulfilling the brief. In fact, we can produce a working example in fewer than 100
lines of code!

We need to create a database table with the fields listed in Table 19.1.

Table 19.1. Database Fields
Name Type Description

id integer An autoincremented field that produces and stores a unique ID for each visitor

first_visit integer A timestamp representing the moment of the first page request made by a visitor

last_visit integer A timestamp representing the moment of the most recent page request made by a visitor

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


num_visits integer The number of distinct sessions attributed to the visitor

total_duration integer The estimated total time spent on the site (in seconds)

total_clicks integer The total number of requests made by the visitor

Rather than create it manually we will embed the code to generate our table in the script itself. Once we have a table to
work with, we need to write the code that will open a database connection and check for the existence of a cookie. If
the cookie does not exist, we need to create a new row in our table, setting up the initial values for the fields we will
maintain. We create this code in Listing 19.2.

Listing 19.2 A Script to Add New User Information to a SQLite Database

 1: <?php
 2: $GLOBALS['dbres'] = connect( "data/testdb" );
 3: $GLOBALS['visit_id'] = $_COOKIE['visit_id'];
 4:
 5: if ( empty( $visit_id ) ) {
 6:   newuser( );
 7:   print "<p>Welcome, first time user!</p>";
 8: } else {
 9:   print "<p>Welcome back $visit_id</p>";
10: }
11:
12: function newuser( ) {
13:   $visit_data = array (
14:         'first_visit' => time(),
15:         'last_visit' => time(),
16:         'num_visits' => 1,
17:         'total_duration' => 0,
18:         'total_clicks' => 1
19:         );
20:
21:   insert_visit( $visit_data );
22:   setcookie( "visit_id", $visit_data['id'],
23:        time()+(60*60*24*365*10), "/" );
24:   return $visit_data;
25: }
26:
27: function connect( $db ) {
28:   $dbres = sqlite_open($db, 0, $error);
29:   if ( ! is_resource( $dbres ) ) {
30:     die( "sqllite error: $error" );
31:   }
32:   $create = "CREATE TABLE track_visit (
33:         id INTEGER PRIMARY KEY,
34:         first_visit INTEGER,
35:         last_visit INTEGER,
36:         num_visits INTEGER,
37:         total_duration INTEGER,
38:         total_clicks INTEGER)";
39:   @sqlite_query( $dbres, $create );
40:    return $dbres;
41: }
42:
43: function insert_visit( &$visit_data ) {
44:   $query = "INSERT INTO track_visit ( ";
45:   $query .= implode( ", ", array_keys( $visit_data ) );
46:   $query .= " ) VALUES( ";
47:   $query .= implode(", ", array_values( $visit_data ) );
48:   $query .= " );";
49:   $result = sqlite_query( $GLOBALS['dbres'], $query );
50:   $visit_data['id'] = sqlite_last_insert_rowid( $GLOBALS['dbres'] );
51: }
52: ?>

We generate an SQLite resource variable using a convenience function called connect(), declared on line 27. This opens
the database file on line 28, checking that a valid resource has been created on line 29 (you can read more about
working with SQLite in Hour 13, "Database Integration—SQL"). We also create the 'track_visit' table on line 39 by passing
a SQL CREATE statement to the sqlite_query() function. If the table already exists, a warning is generated, so we
suppress this by adding an "at" character to the function call, like so:

@sqlite_query( $dbres, $create );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The connect() function returns a SQLite resource value that is stored in a global variable called $GLOBALS['dbres']. This is
accessed by all functions that work with the database. On line 3, we attempt to extract the 'visit_id' element from the
$_COOKIE array and assign it to a variable: $visit_id. On line 4, we test $visit_id. If the variable is empty, we assume that
we are dealing with a new user, calling a function we have named newuser().

newuser() is declared on line 12, requires no arguments, and returns an array of the values we will add to our table.
Within the function, we create an array called $visit_data on line 13. We set the first_visit and last_visit elements to the
current time in seconds. Because this is the first visit, we set the num_visits and total_clicks elements to 1. No time has
elapsed in this visit, so we set total_duration to 0.

On line 21 we call the insert_visit() function (declared on line 43) that accepts the $visit_data array and uses its elements
to create a new row in our table, setting each field to the value of the element of the same name. Notice that we use
the built-in implode() function on line 45 to construct our SQL statement. Because the id field autoincrements, this does
not need to be inserted. We can subsequently access the value set for id using the sqlite_last_insert_rowid () function on
line 50. Now that we have an ID for our new visitor, we add this to our $visit_data array, which then accurately reflects
the visitor's row in the SQLite table. The $visit_data array was passed to insert_visit() by reference, so the array we
manipulate here is also referenced from the variable of the same name in the calling newuser() function.

Finally, in the newuser() function, we use setcookie() on line 22 to set a visit_id cookie and return the $visit_data array to
the calling code on line 24.

The next time our visitor hits this script, the $visit_id variable will have been populated with the value of the visit_id
cookie. Because this variable is set, the user will be welcomed and no action will be taken.

In fact, we will need to update information in the track_visit table if we detect the return of a known visitor. We will need
to test whether the current request is part of an ongoing visit or represents the beginning of a new visit. We do this
with a global variable that defines a time in seconds. If the time of the last request added to this interval is greater than
the current time, we assume that the current request is part of a session in progress. Otherwise, we are welcoming
back an old friend.

Listing 19.3 adds new functions to the code created in Listing 19.2.

Listing 19.3 A Script to Track Users Using Cookies and a SQLite Database

 1: <?php
 2: $GLOBALS['slength'] = 300;
 3: $GLOBALS['dbres'] = connect( "data/testdb" );
 4: $GLOBALS['visit_id'] = $_COOKIE['visit_id'];
 5: $GLOBALS['user_stats'];
 6:
 7: if ( empty( $visit_id ) ) {
 8:   $user_stats = newuser( );
 9:   print "<p>Welcome, first time user!</p>";
10: } else {
11:   print "<p>Welcome back $visit_id</p>";
12:   $user_stats = olduser( $visit_id );
13: }
14:
15: function newuser( ) {
16:   $visit_data = array (
17:         'first_visit' => time(),
18:         'last_visit' => time(),
19:         'num_visits' => 1,
20:         'total_duration' => 0,
21:         'total_clicks' => 1
22:         );
23:
24:   insert_visit( $visit_data );
25:   setcookie( "visit_id", $visit_data['id'],
26:        time()+(60*60*24*365*10), "/" );
27:   return $visit_data;
28: }
29:
30: function olduser( $visit_id ) {
31:   $now = time();
32:   $visit_data = get_visit( $visit_id );
33:   if ( ! $visit_data ) {
34:     return newuser( );
35:   }
36:   $visit_data['total_clicks']++;
37:   if ( ( $visit_data['last_visit'] + $GLOBALS['slength'] ) > $now ) {
38:     $visit_data['total_duration'] +=
39:            ( $now - $visit_data['last_visit'] );
40:   } else {
41:     $visit_data['num_visits']++;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


41:     $visit_data['num_visits']++;
42:   }
43:   $visit_data['last_visit'] = $now;
44:   update_visit( $visit_data );
45:   return $visit_data;
46: }
47:
48: function connect( $db ) {
49:   $dbres = sqlite_open($db, 0, $error);
50:   if ( ! is_resource( $dbres ) ) {
51:     die( "sqlite error: $error" );
52:   }
53:   $create = "CREATE TABLE track_visit (
54:         id INTEGER PRIMARY KEY,
55:         first_visit INTEGER,
56:         last_visit INTEGER,
57:         num_visits INTEGER,
58:         total_duration INTEGER,
59:         total_clicks INTEGER)";
60:   @sqlite_query( $dbres, $create );
61:   return $dbres;
62: }
63:
64: function get_visit( $visit_id ) {
65:   $query = "SELECT * FROM track_visit WHERE id=$visit_id";
66:   $result = sqlite_query( $GLOBALS['dbres'], $query);
67:
68:   if ( ! sqlite_num_rows( $result ) ) {
69:     return false;
70:   }
71:   return sqlite_fetch_array( $result, SQLITE_ASSOC );
72: }
73:
74: function update_visit( &$visit_data ) {
75:   $update_pairs = array();
76:   foreach( $visit_data as $field=>$val ) {
77:     if ( ! is_int( $field ) ) {
78:       array_push( $update_pairs, "$field=$val" );
79:     }
80:   }
81:   $query = "UPDATE track_visit SET ";
82:   $query .= implode( ", ", $update_pairs );
83:   $query .= " WHERE id=".$visit_data['id'];
84:   sqlite_query( $GLOBALS['dbres'], $query );
85: }
86:
87: function insert_visit( &$visit_data) {
88:   $query = "INSERT INTO track_visit ( ";
89:   $query .= implode( ", ", array_keys( $visit_data ) );
90:   $query .= " ) VALUES( ";
91:   $query .= implode(", ", array_values( $visit_data ) );
92:   $query .= " );";
93:   $result = sqlite_query ( $GLOBALS['dbres'], $query );
94:   $visit_data['id'] = sqlite_last_insert_rowid( $GLOBALS['dbres'] );
95: }
96: ?>

Remember that you can alter the length of a session timeout in Listing
19.3 by changing the value of $GLOBALS['slength'] on line 2. This global
variable defines the interval of time (in seconds) that the script will accept
before declaring one visit over and another started. Although the value of
300 that we use would be acceptable in a real-world situation, you might
want to set a smaller value (such as 30) for testing purposes, like this:

$GLOBALS['slength'] = 30;

We add a new global variable to the script called $slength on line 2. This defines the interval after which we assume that
a new visit is taking place. If the $visit_id variable contains a value, we know that the cookie was in place. We call the
olduser() function on line 10, passing it the $visit_id variable.

Within the olduser() function, we first acquire visit data by calling the get_visit() function on line 32. get_visit() is declared
on line 64 and requires the visit ID, which it stores in an argument variable called $visit_id. This is used to extract the
relevant row from the track_visit table using sqlite_query() on line 66. Assuming we have located the row in our table that

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


relevant row from the track_visit table using sqlite_query() on line 66. Assuming we have located the row in our table that
matches the visit_id cookie, we use sqlite_fetch_array() on line 71 to populate to return an associative array. The calling
code on line 32 assigns this associative array to the $visit_data variable. The olduser() function should now have a
populated $visit_data array containing fields for all the columns in our table. If not, we give up and call newuser() (line
34), which adds a row to the database.

On line 37, we test whether the value of the $visit_data['last_visit'] element added to the interval stored in
$GLOBALS['slength'] is greater than the current time. If so, fewer than $GLOBALS['slength'] seconds have elapsed since the
last hit and we can assume that this request is part of a current session. We therefore add the time elapsed since the
last hit to the $visit_data['total_duration'] element on line 38.

If the request represents a new visit, we increment $visit_data['num_visits'] on line 41.

Finally, we pass $visit_data to update_visit() on line 44. update_visit() is declared on line 67 and constructs a SQL UPDATE
statement by looping through the altered values in the array. The statement is passed to sqlite_query() on line 84 to
update the user's row in the track_visit table. olduser(), the function that called update_visit() on line 44, returns the
altered $visit_data array to the calling code.

Now that we've created the code, we should create a quick function to demonstrate it in action. The outputStats()
function simply calculates the current user's averages and prints the result to the browser. In reality, you would
probably want to create some analysis screens for your client, which would collate overall information. Listing 19.4
creates the outputStats() function. The code from previous examples is incorporated into this script using an include()
statement.

Listing 19.4 A Script to Output Usage Statistics Gathered in Listing 19.3

 1: <?php
 2: include("listing19.3.php");
 3: outputStats();
 4: function outputStats() {
 5:   global $user_stats;
 6:   $clicks = sprintf( "%.2f",
 7:        ($user_stats['total_clicks']/$user_stats['num_visits']) );
 8:   $duration = sprintf( "%.2f",
 9:        ($user_stats['total_duration']/$user_stats['num_visits']) );
10:   print "<p>Hello! Your id is ".$user_stats['id']."</p>\n\n";
11:   print "<p>You have visited
12:        ".$user_stats['num_visits']." time(s)</p>\n\n";
13:   print "<p>Av clicks per visit: $clicks</p>\n\n";
14:   print "<p>Av duration of visit: $duration seconds</p>\n\n";
15: }
16: ?>

Figure 19.1 shows the output from Listing 19.4. We use an include() statement on line 2 to call the tracking code we
have written. We will be including a similar line on every page of our client's site. The outputStats() function called on line
3 and declared on line 4 works with the global $user_stats array variable. This was returned by either newuser() or
olduser() and contains the same information as our user's row in the track_visit table.

Figure 19.1. Reporting usage statistics

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


On line 6, to calculate the user's average number of clicks, we divide the $user_stats['total_clicks'] element by the number
of visits we have detected. Similarly on line 8, we divide the $user_stats['total_duration'] element by the same figure. We
use sprint() to round the results to two decimal places. All that remains is to write a report to the browser.

We could, of course, extend this example to track user preference on a site, as well as to log browser types and IP
addresses. Imagine a site that analyzes a user's movements and emphasizes content according to the links he chooses.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Working with the Query String
The great drawback of the cookie is its dependence on the client. Not only are you at the mercy of the user, who might
choose not to allow cookies, but you must also rely on the browser's implementation of the standard. Some browsers
have documented bugs concerning the way they deal with cookies. If you want to save state only for a single session,
you might decide to use a more traditional approach.

When you submit a form using the GET method, its fields and values are URL encoded and appended to the URL to
which the form is sent. They then become available to the server and your scripts. Assuming a form with two fields,
user_id and name, the query string should end up looking something like the following:

http://p24.corrosive.co.uk/qstring.php?name=344343&user_id=matt+zandstra

Each name and value is separated by an equals (=) sign, and each name/value pair is separated by an ampersand (&).
PHP decodes this string and makes each of the pairs available in the superglobal $_GET array which stores all arguments
submitted via a GET request. So, to access the user_id GET parameter, you would use the $_GET array like this:

$_GET['user_id'];

You are not limited to using forms to send query strings. You can build your own relatively easily and in so doing pass
substantial amounts of information from page to page.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Creating a Query String
To create a query string, you need to be able to URL encode the keys and values you want to include. Assume that we
want to pass a URL to another page as part of a query string. The forward slashes and the colon in a full URL would
create ambiguity for a parser. We must therefore convert the URL into hexadecimal characters. We can do this using
PHP's urlencode() function, which accepts a string and returns an encoded copy:

print urlencode("http://p24.corrosive.co.uk");
// prints http%3A%2F%2Fp24.corrosive.co.uk

Now that you can URL encode text, you can build your own query string. The following fragment builds a query string
from two variables:

<?php
$interest = "arts";
$homepage = "http://p24.corrosive.co.uk";
$query = "homepage=".urlencode( $homepage );
$query .= "&interest=".urlencode( $interest );
?>
<a href="newpage.php?<?php print $query ?>">Go</a>

The URL in the link reaches the browser including an encoded query string:

newpage.php?homepage=http%3A%2F%2Fp24.corrosive.co.uk&interest=arts

The homepage and interest parameters become available within newpage.php as global variables.

This approach is clumsy, however. Because we have hard-coded variable names into the query string, we cannot reuse
the code easily. To pass information effectively from page to page, we need to make it easy to embed names and
values into a link and generate a query string automatically. This is especially important if we are to maintain the
benefit of PHP that it is easy for a nonprogrammer to work around.

As of PHP 5, a new function was introduced to automate this process: http_build_query() accepts an associative array or
object and returns a URL-encoded string suitable for adding to a URL in your script.

In Listing 19.5, we use the http_build_query() method to build a query string dynamically.

Listing 19.5 A Function to Build Query Strings

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 19.5 Using http_build_query() to Build Query Strings</title>
 7: </head>
 8: <body>
 9: <?php
10: $q = array (
11:     'name' => "Arthur Harold Smith",
12:     'interest' => "Cinema (mainly art house)",
13:     'homepage' => "http://p24.corrosive.co.uk/harold/"
14:     );
15: $query = http_build_query( $q );
16: print $query;
17:
18: // prints name=Arthur+Harold+Smith&interest=Cinema+%28mainly+art+house
19: //    %29&homepage=http%3A%2F%2Fp24.corrosive.co.uk%2Fharold%2F
20:
21: ?>
22: <p>
23: <a href="anotherpage.php?<?php print $query ?>">Go!</a>
24: </p>
25: </body>
26: </html>

We construct an array on line 10 with elements 'name', 'interest', and 'homepage'. We then pass the array to

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We construct an array on line 10 with elements 'name', 'interest', and 'homepage'. We then pass the array to
http_build_query() on line 15, storing the returned string in a variable called $query. As a test, we print $query to the
browser before using the query string in a link on line 23.

Using this function, we can pass information between pages with the minimum of PHP code within HTML elements.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
This hour looked at the two ways of passing information between requests. You can use these to create multiscreen
applications and sophisticated environments that respond to user preferences.

You learned how to use the setcookie() function to set cookies on the user's browser. Developing this, you saw how a
database could be used in conjunction with cookies to store information about a user between sessions. You learned
about query strings and how to encode them, and you developed a function to automate their creation.

PHP is nothing if not versatile, and in the next hour you will examine some built-in functions for automating many of the
tasks in this chapter.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are any serious security or privacy issues raised by cookies?

A1: A server can access only a cookie set from its own domain. Although a cookie can be stored on the user's
hard drive, there is no other access to the user's file system. You can, however, set a cookie in response
to a request for an image. So, if many sites include images served from a third-party ad server or counter
script, the third party might be able to track a user across multiple domains.

Q2: The query string looks ugly in the browser window. Would it be true to say that cookies are the
neatest way of saving state?

A2: Unfortunately, it isn't that simple. At best, cookies are a transparent way of saving state. Some users,
however, set their browsers to warn them every time a cookie is set. These users are likely to find a site
that saves state information frequently somewhat frustrating.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which function is designed to allow you to set a cookie on a visitor's browser?

2: How would you delete a cookie?

3: Which function could you use to escape a string for inclusion in a query string?

4: Which element in the $_SERVER array can contain the raw query string?

5: The name/value pairs submitted as part of a query string will be included in a built-in associative array.
What is its name?

Answers

A1: The setcookie() function enables you to set a cookie (although you could also output a Set-Cookie header
using the header() function).

A2: You can delete a cookie by calling setcookie() with a date that has already passed.

A3: The urlencode() function translates a string so that it can be included in a query string.

A4: The entire query string is made available to you in the $_SERVER['QUERY_STRING'] element.

A5: The $_GET array contains the name/value pairs submitted as part of a query string.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a user preference form in which a user can choose a page color and enter a name. Use a cookie to

ensure that the user is greeted by name on subsequent pages and that the page is set to the color of her
choice.

2. Amend the scripts you created in exercise 1 so that the information is stored in a query string rather than a
cookie.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 20. Saving State with Session Functions
What You'll Learn in This Hour:

What session variables are and how they work

How to start or resume a session

How to work with variables in a session

How to destroy a session

How to unset session variables

In the previous hour, we looked at saving state from page to page, using a cookie or a query string. Once again, PHP is
one step ahead of us. As of PHP 4, functions for managing user sessions were built in to the language. These use
techniques similar to those explored in the previous hour but build them into the language, making saving state as easy
as calling a function.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Are Session Functions?
Session functions implement a concept you have already seen. That is the provision to users of a unique identifier,
which can then be used from access to access to acquire information linked to that ID. The difference is that most of
the work is already done for you. When a user accesses a session-enabled page, she will either be allocated a new
identifier or reassociated with one that has already been established for her in a previous access. Any variables that
have been associated with the session become available to your code. If the php.ini register _globals directive is set,
session data becomes available in the global namespace. Otherwise, you can access them through the superglobal
$_SESSION associative array. Remember that register_globals is disabled by default, so it is generally the best policy to
work with the $_SESSION array.

Both the techniques for transmitting information from request to request that you looked at in the previous hour are
automatically supported by PHP's session functions. Cookies are used by default, but you can ensure success for all
clients by encoding the session ID into all links in your session-enabled pages.

Session state is usually stored in a temporary file, although you can implement database storage using a function called
session_set_save_handler(). session_set_save_handler() is beyond the scope of this book, but you can get more information
at http://www.php.net/manual/en/function.session-set-save-handler.php.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Starting a Session with session_start()

You need to explicitly start or resume a session unless you have changed your php.ini configuration file. By default,
sessions do not start automatically. In php.ini, you will find a line containing the following:

session.auto_start = 0

By changing the value of session.auto_start to 1, you ensure that a session is initiated for every PHP document. If you
don't change this setting, you need to call the session_start() function.

PHP uses files to store session data between requests so you should also check the session.save_path directive in your
php.ini file. session.save_path defines the directory on your filesystem to which session files are saved. You should ensure
that it exists and that your PHP process has permission to write to it:

session.save_path = "/tmp"

After a session has been started, you instantly have access to the user's session ID via the session_id() function.
session_id() allows you to either set or get a session ID. Listing 20.1 starts a session and prints the session ID to the
browser.

Listing 20.1 Starting or Resuming a Session

 1: <?php
 2: session_start();
 3: ?>
 4: <!DOCTYPE html PUBLIC
 5:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 6:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 7: <html>
 8: <head>
 9: <title>Listing 20.1 Starting or Resuming a Session</title>
10: </head>
11: <body>
12: <?php
13: print "<p>Welcome, your session ID is ".session_id()."</p>\n\n";
14: ?>
15: </body>
16: </html>

When this script is run for the first time from a browser, a session ID is generated by the session_start() function call on
line 2. If the page is later reloaded or revisited, the same session ID is allocated to the user. This presupposes, of
course, that the user has cookies enabled on his browser. If you examine headers output by the script in Listing 20.1,
you can see the cookie being set:

HTTP/1.1 200 OK
Date: Tue, 26 Aug 2003 16:54:44 GMT
Server: Apache/2.0.47 (Unix) PHP/5.0.0b1
X-Powered-By: PHP/5.0.0b1
Set-Cookie: PHPSESSID=b3228ce5e66834bc2ced42a899328796; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Connection: close
Content-Type: text/html; charset=ISO-8859-1

Because start_session() attempts to set a cookie when initiating a session for the first time, you need to call it before you
output anything else to the browser. Notice that no expiry date is set in the cookie that PHP sets for the session. This
means that the session remains current only as long as the browser is active. When the user restarts his browser, the
cookie is not stored. You can change this behavior by altering the session.cookie_lifetime setting in your php.ini file. This
defaults to 0, but you can set an expiry period in seconds. This causes an expiry date to be set for any session cookies
sent to the browser.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Working with Session Variables
Accessing a unique identifier on each of your PHP documents is only the start of PHP's session functionality. You can set
any number of variables as elements of the superglobal $_SESSION array. After these are set, they are available to
future requests in the session.

Listing 20.2 registers two variables with a session (lines 10 and 11).

Listing 20.2 Registering Variables with a Session

 1: <?php
 2: session_start();
 3: ?>
 4: <!DOCTYPE html PUBLIC
 5:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 6:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 7: <html>
 8: <head>
 9: <title>Listing 20.2 Registering Variables with a Session</title>
10: </head>
11: <body>
12: <div>
13: <?php
14: $_SESSION['product1'] = "Sonic Screwdriver";
15: $_SESSION['product2'] = "HAL 2000";
16: print "The products have been registered";
17: ?>
18: </div>
19: </body>
20: </html>

The magic in Listing 20.2 will not become apparent until the user moves to a new page. Listing 20.3 creates a separate
PHP script that accesses the variables registered in Listing 20.2 (line 11).

Listing 20.3 Accessing Session Variables

 1: <?php
 2: session_start();
 3: ?>
 4: <!DOCTYPE html PUBLIC
 5:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 6:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 7: <html>
 8: <head>
 9: <title>Listing 20.3 Accessing Session Variables</title>
10: </head>
11: <body>
12: <div>
13: <?php
14: print "Your chosen products are:\n\n";
15: ?>
16: <ul>
17: <li><?php print $_SESSION['product1'] ?></li>
18: <li><?php print $_SESSION['product2'] ?></li>
19: </ul>
20: </div>
21: </body>
22: </html>

Figure 20.1 shows the output from Listing 20.3. As you can see, you have access to the product1 and product2 elements
of the $_SESSION array in an entirely new page.

Figure 20.1. Accessing session variables.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 20.1. Accessing session variables.

So, how does the magic work? Behind the scenes, PHP is writing to a temporary file. You can find out where this is
being written on your system with the session_save_path() function, which optionally accepts a path to a directory and
then writes all session files to this. If you pass it no arguments, it returns a string representing the current directory to
which session files are saved. On my system

print session_save_path();

prints /tmp. A glance at my /tmp directory reveals a number of files with names like the following:

sess_2638864e9216fee10fcb8a61db382909
sess_76cae8ac1231b11afa2c69935c11dd95
sess_bb50771a769c605ab77424d59c784ea0

Opening the file that matches the session ID I was allocated when I first ran Listing 20.1, I can see how the registered
variables have been stored:

product1|s:17:"Sonic Screwdriver";product2|s:8:"HAL 2000";

When an element is added to the $_SESSION array, PHP writes the element name and value to a file. This can be read
later, and the element resurrected.

After you have created a session element, you can amend it at will during the execution of your script, and the altered
value is reflected in the session file.

The example in Listing 20.2 demonstrates the process of registering elements with a session. It is not very flexible,
however. Ideally, you should be able to register a varying number of values. You might want to let users pick products
from a list, for example. Luckily, $_SESSION elements do not have to be scalars. You can add arrays or even objects and
their data is encoded and stored for you.

Listing 20.4 creates a form that enables a user to choose multiple products. You should then be able to use session
elements to create a rudimentary shopping cart.

Listing 20.4 Registering an Array Variable with a Session

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Listing 20.4 Registering an Array Variable with a Session

 1: <?php
 2: session_start();
 3:
 4: if ( empty( $_SESSION['products'] ) ) {
 5:   $_SESSION['products']=array();
 6: }
 7:
 8: if ( is_array( $_REQUEST['form_products'] ) ) {
 9:   $_SESSION['products'] = array_unique(
10:     array_merge( $_SESSION['products'],
11:           $_REQUEST['form_products'] )
12:   );
13: }
14: ?>
15: <!DOCTYPE html PUBLIC
16:   "-//W3C//DTD XHTML 1.0 Strict//EN"
17:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
18: <html>
19: <head>
20: <title>Listing 20.4 Registering an Array Element with a Session</title>
21: </head>
22: <body>
23: <div>
24: <h1>Product Choice Page</h1>
25: <form action="<?php print $_SERVER['PHP_SELF']?>" method="post">
26: <p>
27: <select name="form_products[]" multiple="multiple" size="3">
28: <option>Sonic Screwdriver</option>
29: <option>Hal 2000</option>
30: <option>Tardis</option>
31: <option>ORAC</option>
32: <option>Transporter bracelet</option>
33: </select>
34: </p>
35: <p>
36: <input type="submit" value="choose" />
37: </p>
38: </form>
39: <a href="listing20.5.php">A content page</a>
40: </div>
41: </body>
42: </html>

We begin an HTML form on line 25 and, on line 27, create a select element named form_products[], which contains option
elements for several products. HTML form elements that allow multiple selections should have square brackets
appended to the value of their name arguments. This makes the user's choices available in an array.

We start or resume a session with session_start() on line 2. This should give us access to any previously set session
elements. We test the $_SESSION['products'] element on line 4, setting it as an empty array if it does not already exist.
We then test the superglobal $_REQUEST array for the presence of the form_products array element (line 8). If the array
is present, we can assume that the form has been submitted and go on to assign any new items to the
$_SESSION['products'] array. We do this in a single statement, merging the $_REQUEST['form_products'] array with
$_SESSION['products'] and assigning the unique elements back to $_SESSION['products'](lines 9–11). Note that in this
example code, we do not check user input. In a real-world situation, we would not blindly assign user input to a session
but would first check all input against an array of acceptable values.

At the end of Listing 20.4 (line 39), a link to another script is used to demonstrate our access to the products the user
has chosen. We create this new script in Listing 20.5.

Listing 20.5 Accessing Session Variables

 1: <?php
 2: session_start();
 3: ?>
 4: <!DOCTYPE html PUBLIC
 5:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 6:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 7: <html>
 8: <head>
 9: <title>Listing 20.5 Accessing Session Elements</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 9: <title>Listing 20.5 Accessing Session Elements</title>
10: </head>
11: <body>
12: <div>
13: <h1>A Content Page</h1>
14: <?php
15: if ( is_array( $_SESSION['products'] ) ) {
16:   print "<b>Your cart:</b><ol>\n";
17:   foreach ( $_SESSION['products'] as $p ) {
18:     print "<li>$p</li>";
19:   }
20:   print "</ol>";
21: }
22: ?>
23: <a href="listing20.4.php">Back to product choice page</a>
24: </div>
25: </body>
26: </html>

Again, we use session_start() to resume the session (line 2). We test for the presence of the products session element on
line 15. If it exists, we loop through it on line 17, printing each of the user's chosen items to the browser.

For a real shopping cart program, of course, you would keep product details in a database and test user input, rather
than blindly storing and presenting it, but Listings 20.4 and 20.5 demonstrate the ease with which you can use session
functions to access array variables set in other pages.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Destroying Sessions and Unsetting Elements
You can use session_destroy() to end a session, erasing all session variables. session_destroy() requires no arguments. You
should have an established session for this function to work as expected. The following code fragment resumes a
session and abruptly destroys it:

session_start();
session_destroy();

When you move on to other pages that work with a session, the session you have destroyed will not be available to
them, forcing them to initiate new sessions of their own. Any variables that have been registered will have been lost.

However, session_destroy() does not instantly destroy elements of the $_SESSION array. These remain accessible to the
script in which session_destroy() is called (until it is reloaded). The following code fragment resumes or initiates a session
and registers a session element called test, which we set to 5. Destroying the session does not destroy the registered
variable:

session_start();
$_SESSION['test'] = 5;
session_destroy();
print $_SESSION['test']; // prints 5

To remove all $_SESSION elements, you should simply assign an empty array to the variable, like so:

session_start();
$_SESSION['test'] = 5;
session_destroy();
$_SESSION=array();
print $_SESSION['test']; // prints nothing. The test element is no more

You can remove individual elements by calling unset() on them, like so:

unset( $_SESSION['test'] );
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Passing Session IDs in the Query String
So far, you have relied on a cookie to save the session ID between script requests. On its own, this is not the most
reliable way of saving state because you cannot be sure that the browser will accept cookies. You can build in a failsafe,
however, by passing the session ID from script to script embedded in a query string. PHP makes a name/value pair
available in a constant called SID if a cookie value for a session ID cannot be found. You can add this string to any HTML
links in session-enabled pages:

<a href="anotherpage.html?<?php print SID; ?>">Another page</a>

will reach the browser as

<a href="anotherpage.html?
PHPSESSID=08ecedf79fe34561fa82591401a01da1">Another page</a>

The session ID passed in this way is automatically recognized in the target page when session_start() is called, and you
have access to session variables in the usual way.

If the php.ini directive session.use_trans_sid is set to on, this query string is automatically added to every link in your
pages. This option is disabled by default, however, so explicitly adding the SID constant to links makes your scripts
more portable.

There are security issues with regard to session IDs in query strings. Links pasted into emails by users or left in the
history of a browser could be hijacked by third parties. If you use session IDs in URLs, you should be aware of this risk.
Consider implementing an expiry scheme for sessions that have been idle for longer than a fixed length of time, or even
requiring your users to enable cookies.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Encoding and Decoding Session Variables
You have already seen the way in which PHP encodes and saves (serializes) session variables when you peeked into a
session file. You can, in fact, gain access to the encoded string at any time with session_encode(). This can be useful in
debugging your session-enabled environments. You can use session_encode() to reveal the state of all session variables:

session_start();
print session_encode()."<br/>";
// sample output: products|a:2:{i:0;s:8:"Hal 2000";i:1;s:6:"Tardis";}

From the sample output in the previous fragment, you can see the session variables that are stored. You can use this
information to check that variables are being registered and updated as you expect. session_encode() is also useful if you
need to freeze-dry session variables for storage in a database or file.

After having extracted an encoded string, you can decode it and resurrect its values using session_decode(). The
following code fragment demonstrates this process:

session_start();
$_SESSION = array(); // there should now be no session variables
session_decode( "products|a:2:{i:0;s:8:\"Hal 2000\";i:1;s:6:\"Tardis\";}" );
foreach ( $_SESSION['products'] as $p ) {
  print "$p<br/>\n";
}
// Output:
// Hal 2000
// Tardis

We start a session as usual. To ensure that we are working with a blank canvas, we clear all session elements by
assigning an empty array to $_SESSION. We then pass an encoded string to session_decode(). Rather than returning
values, session_decode() populates the $_SESSION array with the unserialized variables. We confirm this by looping
through the newly resurrected $_SESSION['products'] array.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour and the previous hour, you learned different ways of saving state in a stateless protocol. All methods use
some combination of cookies and query strings, sometimes combined with the use of files or databases. These
approaches all have their benefits and problems.

A cookie is not intrinsically reliable and cannot store much information. On the other hand, it can persist over a long
period of time.

Approaches that write information to a file or database involve some cost to speed that might become a problem on a
popular site. Nonetheless, a simple ID can unlock large amounts of data stored on disk.

A query string is unlikely to persist as a cookie will and looks ugly in the location window. Even so, it can pass relatively
large amounts of information from request to request. The choice you make depends on the circumstances of your
project.

In this hour, you learned how to initiate or resume a session with session_start(). Once in a session, you can register
variables with it using the $_SESSION array and access session elements from request to request. You should be able to
destroy a session with session_destroy().

To ensure that as many users as possible get the benefit of your session-enabled environment, you can now use the
SID constant to pass a session ID to the server as part of a query string.

In the next hour, you examine ways that you can use PHP to access other tools on your server.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are there any pitfalls with session functions I should be aware of?

A1: The session functions are generally reliable. However, remember that cookies cannot be read across
multiple domains, so if your project uses more than one domain name on the same server (perhaps as
part of an e-commerce environment), you might need to consider disabling cookies for sessions by setting
the session.use_cookies directive to 0 in the php.ini file.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which function would you use to start or resume a session?

2: Which function contains the current session's ID?

3: How can you associate a variable with a session?

4: How would you end a session and erase all traces of it for future visits?

5: How would you destroy session variables both within the current script and the session?

6: What does the SID constant return?

Answers

A1: You can start a session with the session_start() function.

A2: You can access the session's ID with the session_id() function.

A3: You set an element in the superglobal $_SESSION array.

A4: The session_destroy() function removes all traces of a session for future requests.

A5: You can unset session elements by unsetting all elements of the $_SESSION array, like so:

$_SESSION = array();

A6: If cookies are not available, the SID constant contains a name/value pair that can be incorporated in a
query string. This will pass the session ID from script request to script request.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. In the previous hour's "Exercises" section, you created a script that uses a cookie or query string to save user

preferences from page to page. Each page in the environment should display a user-defined background color
and greet the user by name. Re-create this using PHP's session functions.

2. Create a script that uses session functions to remember which pages in your environment the user has visited.
Provide the user with a list of links on each page to make it easy for her to retrace her steps.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 21. Working with the Server Environment
What You'll Learn in This Hour:

How to pipe data to and from external applications

Other ways of sending shell commands and displaying the results on the browser

The security implications of interprocess communication from a PHP script

In previous hours, we have looked at techniques for communicating with remote machines and gaining input from the
user. In this hour, we look outward again, this time at some techniques for running external programs on your own
machine. The examples in this hour are designed for Unix operating systems, but most of the principles hold true for
Windows.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Opening Pipes to and from Processes with popen() and proc_open()

Just as you open a file for writing or reading with fopen(), you can open a pipe to a process with popen(). popen() requires
the path to a command and a string representing a mode (read or write). It returns a file pointer that can be used
similarly to the file pointer returned by fopen(). You can pass popen() one of two mode flags: "w" to write to the process
and "r" to read from it. You cannot, however, both read and write to a process in the same connection.

When you have finished working with the file handle returned by popen(), you must close the connection by calling
pclose(), which requires a valid file handler.

Reading from popen() is useful when you want to parse the output from a process on a line-by-line basis. Listing 21.1
opens a connection to the GNU version of the who command and parses its output, adding a mailto link to each
username.

Listing 21.1 Using popen() to Read the Output of the Unix who Command

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 21.1 Using popen() to Read the
 7:     Output of the Unix 'who' Command</title>
 8: </head>
 9: <body>
10: <div>
11: <h1>Administrators currently logged on to the server</h1>
12: <?php
13: $ph = popen( "who", "r" )
14:     or die( "Couldn't open connection to 'who' command" );
15: $host="corrosive.co.uk";
16: while ( ! feof( $ph ) ) {
17:   $line = fgets( $ph, 1024 );
18:   if ( strlen( $line ) <= 1 ) {
19:     continue;
20:   }
21:   $line = preg_replace( "/^(\S+).*/",
22:       "<a href=\"mailto:$1@$host\">$1</a><br />\n",
23:       $line );
24:   print "$line";
25: }
26: pclose( $ph );
27: ?>
28: </div>
29: </body>
30: </html>

We acquire a file pointer from popen() on line 13 and then use a while statement on line 16 to read each line of output
from the process. If the output is a single character, we skip the rest of the current iteration (lines 14 and 15).
Otherwise, we use preg_replace() on line 21 to add an HTML link to the string before printing the line on line 24. Finally,
we close the connection with pclose() on line 26. Figure 21.1 shows sample output from Listing 21.1.

Figure 21.1. Reading the output of the Unix who command.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


You can also use a connection established with popen() to write to a process. This is useful for commands that accept
data from standard input in addition to command-line arguments. Listing 21.2 opens a connection to the column
application using popen().

Listing 21.2 Using popen() to Pass Data to the column Application

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 21.2 Using popen() to Pass
 7:    Data to the 'column' Command</title>
 8: </head>
 9: <body>
10: <div>
11: <?php
12: $products = array(
13:     array( "HAL 2000", 2, "red" ),
14:     array( "Tricorder", 3, "blue" ),
15:     array( "ORAC AI", 1, "pink" ),
16:     array( "Sonic Screwdriver", 1, "orange" )
17:     );
18: $ph = popen( "column -tc 3 -s / > purchases/user3.txt", "w" )
19:   or die( "Couldn't open connection to 'column' command" );
20: foreach ( $products as $prod ) {
21:   fputs( $ph, join('/';, $prod). "\n");
22: }
23: pclose( $ph );
24: ?>
25: </div>
26: </body>
27: </html>

The purpose of the script in Listing 21.2 is to take the elements of a multidimensional array (defined on line 12) and
output them to a file as an ASCII table. We open a connection to the column command on line 18, adding some
command-line arguments. -t requires that the output should be formatted as a table, -c 3 determines the number of
columns we require, and -s / sets the "/" character as the field delimiter. We ensure that the results will be written to a
file called user3.txt. Note that the purchases directory must exist on your system and that your script must be capable of
writing to it.

Notice that we are doing more than one thing with this command. We are calling the column command and writing its
output to a file. In fact, we are issuing commands to a noninteractive shell. This means that, in addition to piping
content to a process, we can initiate other processes as well. We could even have the output of the column command
mailed to someone, like so:

popen( "column -tc 3 -s / | mail matt@corrosive.co.uk", "w" )

This level of flexibility can open your system to a grave threat if you ever pass user input to a PHP function that issues
shell commands. We will look at precautions you can take later in the hour.

Having acquired a pipe resource, we loop through the $product array on line 20. Each value is itself an array, which we
convert to a string using the join() function on line 21. Rather than joining on a space character, we join on the delimiter
we established as part of our command-line arguments. Using the "/" character to join the array is necessary because
the spaces in the product array would otherwise confuse the column command. Having joined the array, we pass the
resultant string and a newline character to the fputs() function.

Finally, we close the connection. Taking a peek into the user3.txt file, we should see the table neatly formatted:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


HAL 2000     2 red
Tricorder    3 blue
ORAC AI     1 pink
Sonic Screwdriver 1 orange

We could have made the code more portable by formatting the text using the sprintf() function. This would be the
preferred approach. Listing 21.2 illustrates a technique that can be useful either for working with third-party commands
that have no equivalent within PHP or when you want to build a quick, nonportable script that uses system commands.

In some situations, you will need finer control of a child process. The proc_open() function allows you to spawn a
process, write to it, read from it, and read its error output. proc_open() requires a string representing the process to
start, an array of descriptors that define modes of communication with the process, and an array that's populated with
pipes.

The array of descriptors should consist of three elements. Each element should itself take the form of an array
containing the string 'pipe' or 'file'. If the first element is 'pipe', this descriptor represents a read or write pipe between
the process and the script and the second element should be either of 'r' for read or 'w' for write. If the first element is
'file', the descriptor represents a read from, or write to, a file and the second element should be a path to a file. The
third element should be 'r' for read, 'w' for write, or 'a' for append. Here's an example:

$descriptors = array( 0 => array( "pipe", r ),
            1 => array( "pipe", w ),
            2 => array( "file", "errors.txt", a )
           );
$proc = proc_open( "my_cmd", $descriptors, $pipes );

The $descriptors array in the previous fragment initializes two pipes. The first pipe represents the standard input from
which the process reads, and the second pipe represents the standard output to which the process writes. The third
element represents a standard error. In this case, the process appends errors to file called errors.txt. Notice that
reading, writing, and appending are all defined from the point of view of the process and not the script. We call
proc_open(), passing it a string pointing to a command called 'my_cmd', the $descriptor array, and an as-yet-empty
variable called $pipes. The proc_open() function returns a resource and populates $pipes with an array of resources that
mirror the $descriptors array. We can write to $pipes[0] and read from $pipes[1] just as we would with file resources.
Errors are written to the 'errors.txt' file without our intervention:

fwrite( $pipes[0], "some input text" );
while ( ! feof( $pipes[1] ) ) {
  print fgets( $pipes[1], 1024 );
}

After we have written to our command and read from it we should close any open pipes (in this case, the read and write
pipes) before calling proc_close. proc_close() requires a single argument: the resource returned by proc_open(). Here's the
code:

fclose( $pipes[0] );
fclose( $pipes[1] );
proc_close( $proc );

Listing 21.3 creates a small class called Grepper that uses proc_open() to work with the standard Unix grep command.

Listing 21.3 A Class That Uses proc_open()

 1: <?php
 2:
 3: class Grepper {
 4:   private static $descriptors = array( 0 => array( "pipe", r ),
 5:                      1 => array( "pipe", w ),
 6:                      2 => array( "pipe", w )
 7:                  );
 8:
 9:  static function grep ( $in, $arg ) {
10:    $proc = proc_open( "grep $arg", self::$descriptors, $pipes );
11:    if ( ! is_resource( $proc ) ) {
12:      throw new Exception( "proc_open did not return a resource" );
13:    }
14:    fwrite( $pipes[0], $in );
15:    fclose( $pipes[0] );
16:    while ( ! feof( $pipes[1] ) ) {
17:      $ret .= fgets($pipes[1], 1024);
18:    }
19:    fclose( $pipes[1] );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


19:    fclose( $pipes[1] );
20:    try {
21:      self::checkError( $pipes[2] );
22:    } catch( Exception $e ) {
23:      throw $e;
24:    }
25:    proc_close( $proc );
26:    return $ret;
27:  }
28:
29:  static private function checkError( $pipe ) {
30:    $ret = "";
31:    while ( ! feof( $pipe ) ) {
32:      $ret .= fgets( $pipe );
33:    }
34:    fclose( $pipe );
35:    if ( $ret ) {
36:      throw new Exception( $ret );
37:    }
38:    return false;
39:  }
40: }
41:
42: $string = "mary had a little lamb\n";
43: $string .= "it's fleece was white as snow\n";
44: $string .= "and everywhere that mary went\n";
45: $string .= "the lamb was sure to go\n";
46:
47: try {
48:   print ( Grepper::grep( $string, "mary" ));
49: } catch ( Exception $e ) {
50:   print "error: ".$e->getMessage();
51: }
52: ?>

The Grepper class uses proc_open() to call the Unix command grep, which performs a fast search for patterns in strings or
files. We set up our descriptors array on line 3, making the $descriptors property private and static. We make $descriptors
static because we are going to allow our class to be called statically (that is without the need for creating a Grepper
object). Notice that in this example, we are using a pipe for standard error rather than a file. The class has only one
public method—grep()—which starts on line 9. The method requires a string to be searched, $in, and a string
representing the pattern to find, $arg. Notice that we have declared it static. This means that client coders can call the
grep() method using the Grepper class rather than a Grepper object, like this:

Grepper::grep( "search for gold", "gold" );

We call proc_open() on line 10, passing it the grep command and the client-supplied argument in a single string. We pass
it the $descriptors property and an uninitialized $pipes variable.

We check that proc_open() returned a valid resource on line 11. If not, we throw an exception and thereby end method
execution.

On line 14, we write the string to be searched to $pipe[0], passing the data to the grep command. We have nothing more
to say to grep, so we close the pipe on line 15.

On lines 16–18 we read any output from grep, storing it in a return variable before closing the read pipe.

We call a method named checkError() on line 21, passing it our last remaining pipe: the error descriptor. The checkError()
method simply reads from the pipe it is supplied (line 31). If it finds any content, it instantiates and throws an Exception
object, which would be rethrown in the grep() method (line 23). In fact, we do not need to manually rethrow an
exception. By failing to catch an exception in a method, we implicitly throw it back to the calling code. In Listing 21.3
we catch any Exception object thrown by checkError() and throw it manually to make our code clearer.

Assuming that checkError() does not throw an exception, the grep() method calls proc_close() on line 25 and returns the
output it has gathered.

We test the class on line 42, creating a nursery rhyme string and passing it to the grep() method together with the
search string "mary". We wrap the call to grep() in a try clause. If an exception is thrown, we output its message to the
browser on line 50; otherwise, we print the results of the grep() method on line 48.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Running Commands with exec()

exec() is one of many functions that enable you to pass commands to the shell. The function requires a string
representing the path to the command you want to run. It also optionally accepts an array variable that is populated
with the command's output and a scalar variable that is populated with the command's return value.

To get a listing for the current working directory, for example, you might pass exec() the command "ls -al .". We do this
in Listing 21.4 (line 7), printing the result to the browser.

Listing 21.4 Using exec() to Produce a Directory Listing

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 21.4 Using exec() to Produce a Directory Listing</title>
 7: </head>
 8: <body>
 9: <div>
10: <?php
11: exec( "ls -al .", $output, $return );
12: print "<p>Returned: $return</p>";
13: foreach ( $output as $file ) {
14:   print "$file<br />";
15: }
16: ?>
17: </div>
18: </body>
19: </html>

Figure 21.2 shows the output from Listing 21.4.

Figure 21.2. Using exec() to produce a directory listing.

Notice that the ls command returns 0 on success. If it were unable to find or read the directory passed to it, it would
have returned 1.

Once again, we have reinvented the wheel to a certain extent with this example. We could have used the opendir() and
readdir() functions to acquire a directory listing. Sometimes, however, a command on your system can achieve an effect

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


readdir() functions to acquire a directory listing. Sometimes, however, a command on your system can achieve an effect
that would take a long time to reproduce using PHP's functionality. You might have created a shell or Perl script that
performs a complex task. If speed of development is an important factor in your project, you might decide that it is
worth calling the external script instead of porting it to PHP, at least in the short term. Remember, though, that calling
an external process always adds an overhead to your script in terms of both time and memory usage.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Running External Commands with system() or the Backtick Operator
The system() function is similar to the exec() function in that it launches an external application. It requires the path to a
command and, optionally, a variable, which is populated with the command's return value. system() prints the output of
the shell command directly to the browser. The following code fragment prints the manual page for the man command
itself:

<?php
print "<pre>";
system( "man man | col -b", $return );
print "</pre>";
?>

We print pre tags to the browser to maintain the formatting of the page. We use system() to call man, piping the result
through another application called col, which reformats the text for viewing as ASCII. We capture the return value of
our shell command in the $return variable, and system() returns its output.

You can achieve a similar result by using the backtick operator. This involves surrounding a shell command in backtick
(`) characters. The enclosed command is executed and any output is returned. You can print the output or store it in a
variable.

We can re-create the previous example using backticks:

print "<pre>";
print 'man man | col -b';
print "</pre>";

Note that you must explicitly print the return value from the backtick operator.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Plugging Security Holes with escapeshellcmd()

Before looking at escapeshellcmd(), let's examine the danger it guards against. We want to allow users to type in the
names of manual pages and view output online. Now that we can output one manual page, it is a trivial matter to
output any available page. Do not install the code in Listing 21.5; we are deliberately leaving a major security gap
unplugged.

Listing 21.5 Calling the man Command

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 21.5 Calling the 'man' Command.
 7:    This Script is NOT Secure</title>
 8: </head>
 9: <body>
10: <div>
11: <form action="<?php print $PHP_SELF ?>" method="post">
12: <p>
13: <input type="text" value="<?php print $_REQUEST['manpage'] ?>" name="manpage" />
14: </p>
15: </form>
16: <pre>
17: <?php
18: if ( isset( $_REQUEST['manpage'] ) ) {
19:   system( "man ".$_REQUEST['manpage']." | col -b" );
20: }
21: ?>
22: </pre>
23: </div>
24: </body>
25: </html>

We extend our previous examples a little by adding a text field on line 13 and including the value from the form
submission to the shell command we pass to the system() function on line 19. We are being trusting, however. On a Unix
system, a malicious user could add his own commands to the manpage field, thus gaining limited access to the server.
Figure 21.3 shows a simple hack that could be applied to this script.

Figure 21.3. Calling the man command.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The malicious user has submitted the value xxx; ls -al via the form. This value is stored in the $_REQUEST['manpage']
element. After we combine this text with the shell command string we pass to system(), we end up with the following
string:

"man xxx; ls -al | col -b"

This instructs the shell to fetch the manual page for xxx, which doesn't exist. It then performs a full directory listing,
running the output through the col command. If you think that this is as bad as it gets, think again. An unfriendly visitor
can list any readable directory on your system. He can even read your /etc/passwd file by adding the following line to the
form field:

xxx; cat /etc/passwd

Vulnerabilities due to programming errors or omissions are very common
on the Internet. Large, well-resourced companies and organizations have
famously left their systems open to attackers by failing to check user input
or leaving administration tools open to the public.

It is easy to become complacent. As you code, try to keep security issues
in mind at all times.

This clearly represents a grave breach in security and we cannot allow it to happen. The safest way of protecting
against this is never to pass user input directly to a shell. You can make yourself a little safer, though, by using the
escapeshellcmd() function to add backslashes to any metacharacters the user might submit. escapeshellcmd() requires a
string and returns a converted copy. We can now amend our code, making our script a little safer, as shown in Listing
21.6.

Listing 21.6 Escaping User Input with the escapeshellcmd() Function

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>Listing 21.5 Escaping user input with
 7:    the escapeshellcmd() function</title>
 8: </head>
 9: <body>
10: <div>
11: <form action="<?php print $PHP_SELF ?>" method="post">
12: <p>
13: <input type="text" value="<?php print $_REQUEST['manpage'] ?>" name="manpage" />
14: </p>
15: </form>
16: <pre>
17: <?php
18: if ( isset( $_REQUEST['manpage'] ) ) {
19:   $manpage = escapeshellcmd( $_REQUEST['manpage'] );
20:   system( "man $manpage | col -b" );
21: }
22: ?>
23: </pre>
24: </div>
25: </body>
26: </html>

The only addition to this example is the use of escapeshellcmd() on line 19. If the user attempts to enter "xxx; cat
/etc/passwd " now, it is amended to "xxx\; cat /etc/passwd ", preventing a new command from being issued. In fact, he will
be presented with the manual page for the cat command rather than our password file!

Although you can improve security by using escapeshellcmd(), avoid passing user-submitted content to the shell. You
could make your script even safer by compiling a list of all valid manual pages on your system and testing user input
against this before calling system(). We do something similar in the next section.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Running External Applications with passthru()

passthru() is similar to system() except that any output from the shell command you send is not buffered. This makes it
suitable for running commands that produce binary as opposed to text data. passthru() accepts a shell command and an
optional variable, which is filled with the return value of the command.

Let's construct an example. We want to create a script that outputs images as thumbnails and that can be called from
HTML or PHP pages. We are going to let external applications do all the work so that our script will be simple. Listing
21.7 shows the code that locates the image and outputs the data to the browser.

Listing 21.7 Using passthru() to Output Binary Data

 1: <?php
 2: if ( isset( $_REQUEST['image'] ) && file_exists( $_REQUEST['image'] ) ) {
 3:   header( "Content-type: image/gif" );
 4:   $image = $_REQUEST['image'];
 5:   passthru(  "giftopnm $image |
 6:         pnmscale -xscale .5 -yscale .5 |
 7:         ppmquant 256 | ppmtogif" );
 8: } else {
 9:   print "The image ".$_REQUEST['image']." could not be found";
10: }
11: ?>

Notice that we have not used escapeshellcmd(). Instead, we have tested the user input against our file system on line 2
using the file_exists() function. We will not pass the $_REQUEST['image'] argument to the shell if the image requested does
not exist. For additional security, we could also limit the extension we will accept and the directory that can be
accessed.

In the call to passthru() on line 5, we issue a command that calls four commands. Note that for this script to work on
your system, you must have these commands installed, and they must be available in your path. First, we call giftopnm,
passing it the $image variable. This reads a GIF image and outputs data in portable anymap format. This output is piped
to pnmscale, which scales the image to 50% of its original size. The output from pnmscale is in turn piped to ppmquant and
ppmtogif, which convert the data to GIF palette and format. This data is finally output to the browser.

We can now call this script from any Web page:

<img src="listing21.7.php?image=<?php print urlencode("/path/to/image.gif") ?>">

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Calling an External CGI Script with the virtual() Function
If you are converting a site from plain HTML to PHP-enabled pages, you might have noticed that your server-side
includes no longer work. If you are running PHP as an Apache module, you can use the virtual() function to call CGI
scripts, such as Perl or C Web counters, and include their output in your pages. Any CGI script you write must output
HTTP headers.

Let's write a simple Perl CGI script. If you don't know Perl, don't worry about this. It simply outputs an HTTP header
and all the environmental variables available to it:

#!/usr/bin/perl -w
print "Content-type: text/html\n\n";
foreach ( keys %ENV ){
  print "$_: $ENV{$_}<br />\n";
}

Assuming that this script is saved in an executable file called test.pl in a cgi-bin directory, you can now call it with the
virtual() function, including its output in your PHP document:

<?php
virtual("/cgi-bin/test.pl");
?>

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this hour, you learned how to communicate with the shell and through it with external applications. PHP is a powerful
language, but it sometimes is faster to call on an application than it is to create similar functionality yourself.

You learned how to pipe data to and from a command using the popen() function. This approach is useful for applications
that accept data on standard input and when you want to parse data as it is sent to you by an application.

You learned how to use exec(), system(), and the backtick operator to pass commands to the shell and to acquire user
input. You learned about the dangers of passing user input to the shell and examined the escapeshellcmd() function,
which will afford you some protection from malicious input. You learned how to use the passthru() function to accept
binary data resulting from a shell command. Finally, you learned how to emulate server-side includes with the virtual()
function.

In the next hour, we will examine PHP's support for XML. In addition to the stable PHP parser functions, we will explore
some functions that were so new at the time of writing that they were still under development!

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: You've mentioned security a lot in this hour. Where can I go to get more information about
security on the Web?

A1: Probably the most authoritative introduction to Web security is the Frequently Asked Questions document
by Lincoln Stein (author of the famous Perl module, CGI.pm). You can find this at
http://www.w3.org/Security/Faq/.

Q2: When should I consider calling an external process rather than re-creating its functionality in a
script?

A2: The issues you should consider when weighing this are portability, speed of development, and efficiency.

If you build functionality into your script instead of relying on an external process, your script should run
easily on different platforms or on systems that don't include the third-party application you would be
calling. For simple tasks (such as obtaining a directory listing), handling the problem within your code is
probably more efficient, saving you the overhead of spawning a second process every time your script is
called.

On the other hand, some tasks can be difficult to achieve in PHP or slow to complete (grepping a large file,
for example). In these cases, you might need to use a tool specifically designed for the job.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: Which function would you use to open a pipe to a process?

2: How would you read data from a process after you have opened a connection?

3: How can you write data to a process after you have opened a connection to it?

4: Will the exec() function print the output of a shell command directly to the browser?

5: What does the system() function do with the output from an external command it executes?

6: What does the backtick operator return?

7: How can you escape user input to make it a little safer before passing it to a shell command?

8: How might you execute an external CGI script from within your script?

Answers

A1: You open a connection to a process with the function popen().

A2: You can read from a process you have opened with popen() as you would from a file. In other words, you
can use functions such as feof() and fgets().

A3: You can write to a process as you could with a file, usually with the fputs() function.

A4: The exec() function accepts an array variable, which it fills with the output of the shell command it makes.
Output is not sent directly to the browser.

A5: The system() function prints the output of the external command directly to the browser.

A6: The backtick operator returns the output of the external command it calls. This can be stored, parsed, or
printed.

A7: You can escape user input to make it safer using the escapeshellcmd() function. The safest way to execute
shell commands, though, is to refrain from passing user input at all.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A8: The virtual() function calls an external CGI script.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a script that uses the Unix ps command to output the currently running processes to the browser. Given

that knowledge is power, it might not be good idea to make this script available to your users!

2. Check the ps man page for command-line arguments for the ps command. Add a form to your script to enable
users to choose from a range of command-line arguments to ps so they can change the information output. Do
not send any user input directly to the command line.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 22. XML
What You'll Learn in This Hour:

Some basics about XML

How to parse XML documents with the XML Parser functions

How to create XML documents with the DOM functions

How to traverse an XML data structure

How to use an XSL document to transform XML

How to parse XML documents with the SimpleXML extension

It would have been hard to miss the buzz created by XML in recent years. XML is fast becoming a tremendously
important tool for sharing data between applications and separating logic from presentation in larger projects. Since the
first release of this book, PHP has continued to improve its support for XML. With PHP and Zend increasingly at the
heart of larger e-business applications, reliable support for XML is essential. For the Web programmer, too, an
understanding of XML is no longer an optional extra.

As of version 5, PHP's XML support has been enhanced in two ways. First, PHP has bundled a very reliable and efficient
XML library (Gnome's libxml2) upon which all its XML functions are now based. Second, PHP 5 now provides an
extremely easy tool for working with XML, called SimpleXML.
[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is XML?
XML stands for Extensible Markup Language, and its very flexibility makes it notoriously hard to define. It is beyond the
scope of this book to provide a complete introduction to XML, but we can cover some of the basics. If you would like to
read more about XML, please read Sams Teach Yourself XML in 24 Hours (ISBN 0-672-32213-7). For a formal
definition, see http://www.w3.org/XML/.

XML is a markup language that enables you to define your own markup languages. In fact, it is more a set of rules than
a language in itself. These rules determine the ways in which you can define tags and elements (similar to HTML
elements). As long as you obey the rules, you have complete freedom to create languages that fulfill a whole range of
functions. Because the rules are strict, XML interpreters can easily read XML documents and make their contents
available to scripts that can then act on the instructions they contain.

An XML document usually starts with an XML declaration, like so:

<?xml version="1.0"?>

It also might refer to a document type declaration (DTD). DTDs are beyond the scope of this book, but they define
which elements a document can contain, and in what order. Here's an example of one:

<!DOCTYPE rootel SYSTEM "http://www.corrosive.co.uk/sample.dtd">

The rest of an XML document is made up primarily of tags that combine to form elements and attributes. XML elements
look very similar to HTML elements. An XML element is made up of starting and ending tags that can surround text or
other elements.

A starting tag consists of a less than sign (<) followed by an element name followed by a greater than sign (>). Open
tags can also contain attributes that consist of an attribute name and a quoted attribute value separated by an equals
sign. The following fragment illustrates an open tag containing an attribute:

<newsitem type="world">

Both attribute and element names must begin with a letter or an underscore followed by any combination of letters and
numbers. No element name can begin with the letters xml.

A closing tag consists of a less than sign (<), a forward slash (/) followed by an element name followed by a greater
than sign (>), as shown here:

</newsitem>

As you can see, XML elements look pretty familiar. One variation you might not be used to, however, is the empty
element. These are compressed into a single tag, so

<nothinghere></nothinghere>

would become

<nothinghere />

Listing 22.1 pulls all this together into a sample XML document. This is a shortened version of the XML document that
we will be working on throughout the chapter.

Listing 22.1 An XML Document

 1: <?xml version="1.0"?>
 2: <banana-news>
 3:     <newsitem type="world">
 4:         <headline>Banana sales reach all time high</headline>
 5:         
 6:         <byline>William Curvey</byline>
 7:         <article>Research published today by the World Banana
 8:             Tribunal suggests that we have never had it so
 9:             good banana-wise...</article>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 9:             good banana-wise...</article>
10:     </newsitem>
11:
12:     <newsitem type="home">
13:         <headline>Domestic banana use beggars belief</headline>
14:         
15:         <byline>Charles Split</byline>
16:         <article>Bananas are for more than eating it seems. Local
17:             Innovation Centers have been showcasing some
18:             exciting banana related technologies...</article>
19:     </newsitem>
20: </banana-news>

Although Listing 22.1 looks a little like an HTML document, you can see that it contains entirely made-up element
names. That is the point of XML. It hands the control and the responsibility over to the developer. An XML interpreter
validates syntax and lets you easily access the elements, but it is up to you to write code to act on the information
received.

In our example we have illustrated a structure for news items. The entire document is enclosed by a single element,
<banana-news> (lines 2–20). This is called the root element. A document must have a single root element that encloses
all other elements in a document, and every subsequent element must completely enclose any children it might have.
Any elements that overlap generate an error in any compliant XML parser, as shown here:

<a><b></a></b>

Am XML document is often represented as a tree of data. Listing 22.1 is drawn out in this way in Figure 22.1. <banana-
news> is at the root, branching out to two sibling <newsitem> elements. The <newsitem> elements further divide, leading
to the deepest elements.

Figure 22.1. An XML document represented as a tree.

So, what is XML for? Well, the short answer is that it is up to you. But in practical terms, XML documents tend to fulfill a
range of purposes, including

To structure data logically for sharing (as in Listing 22.1)

To format data (as in XHTML)

To send instructions to an interpreter (whether local or remote)

In this chapter we will concentrate on the first use. Our banana news structure is designed to provide structures that
enable us and our partners to easily work with news items.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

XML Parser Functions
In this section, we will examine PHP's event-based XML parser functions. Prior to PHP 5, these were based on Jim
Clarke's Expat library (XML Parser Toolkit), which is available from http://www.jclark.com/xml/expat.html. As of PHP 5,
all PHP's XML functions use libxml2 (http://www.xmlsoft.org/). Event-based models for parsing XML are not the easiest
to use, but they can be very efficient. Handler functions are invoked as XML elements are encountered, whereas
alternatives such as DOM require that entire documents are modeled in memory before you work with them.

Acquiring a Parser Resource

To begin parsing a document, you need a parser resource. You can acquire one of these with the xml_parser_create()
function. xml_parser_create() does not require any arguments and returns a parser resource if all goes well; otherwise, it
returns false. The function optionally accepts a string containing one of three character encodings: ISO-8859-1, which is
the default; US-ASCII; and UTF-8. We will stick to the default:

$parser = xml_parser_create();

When you have finished working with the parser resource, you might want to free up the memory it is using to reduce
your script's overhead. xml_parser_free() requires a valid parser resource and returns a boolean—true if the operation
was successful, and false otherwise:

xml_parser_free( $parser );

Setting XML Handlers

Seven XML events can be associated with a handler; of these, we will cover the three you are most likely to use
frequently. That is, the start and end of an element and character data.

To associate a function with element events, you should use the xml_set_element_handler() function. This requires three
arguments: a valid parser resource, the name of handler for start elements, and the name of a handler for end
elements.

You should build the functions in question, designing the start element handler to accept three arguments. The first is a
parser resource, the second is a string containing the element's name, and the third is an associative array of
attributes. The end element handler should be designed to accept two arguments—the parser resource and the name of
the element. Unless you have specified otherwise, all element and attribute names are converted to uppercase
characters:

// ...
xml_set_element_handler( $parser, "start_handler", "end_handler" );
// ...
function start_handler( $parser, $el_name, $attribs ) {
  print "START: $el_name: <br />\n";
  foreach( $attribs as $at_name=>$at_val ) {
    print "\t$at_name=>\"$at_val\"<br />\n";
  }
}

function end_handler( $parser, $el_name ) {
  print "END: $el_name<br />\n";
}

The previous fragment illustrates two very simple element handlers. The start element handler prints the element name
and a list of attribute names and values. This is called for the beginning of every element encountered in an XML
document. The end handler merely prints the element name again.

Now that we know where elements begin and end, it would be nice to access any text they might contain. We can do
this by setting up a character handler with the xml_set_character_data_handler() function, which requires a valid parser
resource and the name of a handler function. The handler function should be designed to accept a parser resource and
the found string, like so:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


function char_data( $parser, $data ) {
  print "\tchar data:<i>".trim($data)."</i><br />\n";
}

You can read about the other XML events supported by PHP at the appropriate PHP manual page
(http://www.php.net/manual/en/ref.xml.php). You can also see the complete list in Table 22.1.

Table 22.1. The XML Handler Functions
Function Trigger Event

xml_set_character_data_handler() Character data

xml_set_default_handler() Events not covered by specific handlers

xml_set_element_handler() Element start and end

xml_set_external_entity_ref_handler() External entities

xml_set_notation_decl_handler() Notation declaration

xml_set_processing_instruction_handler() Processing instructions

xml_set_unparsed_entity_decl_handler() Unparsed entity (NDATA)

xml_parser_set_option()

I mentioned that element names are passed to handlers as uppercase strings by default. This is not advisable because
element names should be case sensitive. You can turn off this feature using the xml_parser_set_option() function. This
function requires a parser resource, an integer that determines which option is to be set, and the value for the option
itself. To turn off the feature that renders element names uppercase (also called case folding), you can use the built-in
constant XML_OPTION_CASE_FOLDING and pass 0 to the function:

xml_parser_set_option( $parser, XML_OPTION_CASE_FOLDING, 0 );

You can also change the target character encoding using this function. To do this, you call xml_parser_set_option() with a
$parser resource, the constant XML_OPTION_TARGET_ENCODING, and a string value set to one of ISO-8859-1, US-ASCII,
or UTF-8. This makes the parser convert character encoding before passing data to your handlers. By default, the
target encoding is the same as that set for the source encoding (ISO-8859-1 by default, or whatever you set with the
xml_parser_create() function).

Parsing the Document

So far, we've merely been setting the correct conditions for a parse. To actually begin the parse process, we need a
function called xml_parse(). xml_parse() requires a valid parser resource and a string containing the XML to be parsed.
You can call xml_parse() repeatedly, and it will treat additional data as part of the same document. If you want to inform
the parser that it should treat any subsequent call to xml_parse() as the start of a new document, you should pass it a
positive integer as an optional third argument:

$xml_data="<?xml version=\"1.0\"?><banana-news><test /></banana-news>";
xml_parse( $parser, $xml_data, 1 );

xml_parse() returns a boolean—true if the parse was successful and false if an error was encountered.

Reporting Errors

When parsing an XML document, you should make allowances for the possibility of errors in the document. If an error is
encountered, the parser stops working with your document, but it does not output a message to the browser. It is up to
you to generate an informative error message, including the nature of the error and line number at which it occurred.

The parser only reports errors in well-formedness—that is, errors in XML syntax. It is not capable of validating an XML
document against a DTD.

We can detect whether an error has occurred by testing the return value of xml_parse(). If a failure has occurred, the
parser stores an error number, which you can access with the xml_get_error_code() function. xml_get_error_code() requires
a valid parser resource:

$code = xml_get_error_code( $parser );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$code = xml_get_error_code( $parser );

The code is an integer that should match an error constant provided for you by PHP, such as
XML_ERROR_TAG_MISMATCH. Rather than work our way through all the relevant constants to produce an error message,
we can simply pass the code to another function, xml_error_string(). xml_error_string() requires only an XML error code and
produces a clear error report:

$str = xml_error_string( $code );

Now all we need is to find the line number at which the error occurred. We can do this with
xml_get_current_line_number(), which requires a parser resource and returns the current line number. Because the parser
stops at any error it finds, the current line number is the line number at which the error is to be found:

$line = xml_get_current_line_number( $parser );

We can now create a function to report on errors:

function format_error( $p ) {
    $code = xml_get_error_code( $p );
    $str = xml_error_string( $code );
    $line = xml_get_current_line_number ( $p );
    return "XML ERROR ($code): $str at line $line";
}

All the previous fragments are brought together in Listing 22.2.

Listing 22.2 Parsing an XML Document

 1: <?php
 2: $parser = xml_parser_create();
 3:
 4: xml_parser_set_option( $parser, XML_OPTION_CASE_FOLDING, 0 );
 5: xml_set_element_handler( $parser, "start_handler", "end_handler" );
 6: xml_set_character_data_handler( $parser, "char_data" );
 7:
 8: $xml_str = file_get_contents( "listing22.1.xml", 0 );
 9:
10: xml_parse( $parser, $xml_str )
11: or die( format_error( $parser ) );
12:
13: function start_handler( $parser, $el_name, $attribs ) {
14:   print "START: $el_name: <br />\n";
15:   foreach( $attribs as $at_name=>$at_val ) {
16:     print "\t$at_name=>\"$at_val\"<br />\n";
17:   }
18:   print "\t<blockquote><div>\n";
19: }
20:
21: function end_handler( $parser, $el_name ) {
22:   print "\t</div></blockquote>\n";
23:   print "END: $el_name<br />\n";
24: }
25:
26: function char_data( $parser, $data ) {
27:   print "\tchar data:<i>".trim($data)."</i><br />\n";
28: }
29:
30: function format_error( $p ) {
31:   $code = xml_get_error_code( $p );
32:   $str = xml_error_string( $code );
33:   $line = xml_get_current_line_number ( $p );
34:   return "XML ERROR ($code): $str at line $line";
35: }
36: ?>

We create a parser on line 2 and establish our handlers (lines 5 and 6). We also declare the handler functions
themselves, start_handler() on line 13, end_handler() on line 21, and char_data() on line 26. Listing 22.2 simply dumps all
the data it encounters to the browser. This illustrates the parser code in action, but it is not very useful. In the next
section, we will discuss a small script that outputs something more sensible.

An Example

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


We are running a banana-related news site. Our partner provides us with a news feed, consisting of an XML document.
We would like to extract only the headlines and article authors for display on our site.

We already have all the tools we need to achieve this. The only new feature we will be introducing is a technique. You
can see the code in Listing 22.3.

Listing 22.3 An Example: Parsing an XML Document

 1: <?php
 2: $open_stack = array();
 3: $parser = xml_parser_create();
 4: xml_set_element_handler( $parser, "start_handler", "end_handler" );
 5: xml_set_character_data_handler( $parser, "character_handler");
 6: xml_parser_set_option( $parser, XML_OPTION_CASE_FOLDING, 0 );
 7: xml_parser( $parser, file_get_contents( "listing22.1.xml" ))
 8:   or die( format_error( $parser ) );
 9: xml_parser_free( $parser );
10:
11: function start_handler( $p, $name, $atts ) {
12:   global $open_stack;
13:   $open_stack[] = array($name, "");
14: }
15:
16: function character_handler( $p, $txt ) {
17:   global $open_stack;
18:   $cur_index = count($open_stack)-1;
19:   $open_stack[$cur_index][1] =
20:     $open_stack[$cur_index][1].$txt;
21: }
22:
23: function end_handler( $p, $name ) {
24:     global $open_stack;
25:     $el = array_pop( $open_stack );
26:   if ( $name == "headline") {
27:     print "<p><b>$el[1]</b><br />\n";
28:   }
29:   if ( $name == "byline") {
30:     print "<i>$el[1]</i></p>\n\n";
31:   }
32: }
33:
34: function format_error( $p ) {
35:   $code = xml_get_error_code( $p );
36:   $str = xml_error_string( $code );
37:   $line = xml_get_current_line_number ( $p );
38:   return "XML ERROR ($code): $str at line $line";
39: }
40:
41: ?>

We begin by establishing a global array variable, $open_stack, on line 2. We will be treating this as a way of determining
the current enclosing element at any time. The parser is initialized and the handlers are set, as you have already seen
(lines 3–6). When an element is encountered, start_handler() (declared on line 11) is called. We create a two-element
array consisting of the element name and an empty string and add it to the end of the $open_stack() array on line 13. As
character data is encountered, the character_handler() function is called. We can access the most recently opened XML
element by looking at the last array element in $open_stack. We add the character data to the second element of the
array representing the currently open XML element (line 19). When the end of an element is encountered, the
end_handler() function (declared on line 23) is called. We first remove the last element of the $open_stack array on line
25. The array returned to us should contain two elements—first, the name of the XML element that has just been closed
and, second, any character data that was contained by that element. If the element in question is one we want to print,
we can do so, adding any formatting we want.

You can see the output from Listing 22.3 (using a more substantial XML document) in Figure 22.2.

Figure 22.2. XML input parsed and formatted for output.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 22.2. XML input parsed and formatted for output.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

An Introduction to the DOM XML Functions
The XML Parser functions are event based—that is, the document is read from top to bottom and handlers are triggered
as and when the relevant features are encountered. The document object model (DOM) approach is tree-based. The
entire XML document is read and rendered as a tree of objects. This means you can traverse the tree at your leisure,
manipulating its nodes if you want. You can also construct your own document trees that can then be output to XML
text.

PHP support for DOM was still undergoing some development at the time of writing, and the PHP manual
(http://www.php.net/manual/en/ref.domxml.php) was temporarily out of date. However, the syntax is being brought
into line with the official W3C specification for DOM at http://www.w3.org/TR/2003/WD-DOM-Level-3-Core-20030226/,
so if in doubt, you can always go directly to the rule book! If you have worked with the DOM functions and objects in
previous versions of PHP, the main change you will notice is that most method or property names have been altered
now to use camel case—that is, firstChild rather than first_child, for example.

The DOM functions rely on the libxml2 library, which is bundled with the PHP 5 distribution. You shouldn't have to
specify any configuration settings to gain access to DOM.

The first thing you need if you are going to work with the DOM functions is a DomDocument object. The DomDocument
object is a container for all elements, which are themselves represented by objects.

Acquiring a DomDocument Object

You can create a DomDocument object directly using the new keyword. The constructor accepts a string containing the
XML version number with which you will be working. This is always 1.0, so you can omit the argument altogether and
the parser will provide the default for you:

$doc = new DomDocument();

Before we construct our own tree of XML elements, let's look briefly at the mechanism for loading XML from a file:

$doc = new DomDocument();
$doc->loadXML( file_get_contents("listing22.1.xml"));
print $doc->saveXML();

In the previous fragment, we create a DomDocument() method and call a method named loadXML(), which accepts an XML
string and builds a model of it in memory. We then output raw XML again by calling saveXML(), which builds an output
string from the XML tree.

In the following examples, we will not load XML from a document. We will instead use the DOM methods to construct
our own tree of XML element.

The Root Element

Just as the DOM model provides an analog for an XML document, it also provides an object to represent an element.
The DomElement and DomDocument objects derive from a common parent class (DomNode) and are therefore similar in
structure.

To create a root element in our document, we must first acquire a DomElement object and then add it. The DomDocument
object acts as a factory, generating DomElement objects on request:

$rootel = $doc->createElement("banana-news");

We use the createElement() method, which accepts a string and generates an element named accordingly. Acquiring an
element is not enough on its own. We must add any element we acquire with DomDocument::createElement() to a parent
node in the same tree. In this case, we want to add $rootel to the document node itself:

$doc->appendChild( $rootel );

The DomNode::appendChild() method accepts an element and adds it to the end of the node's children. So, we have
created a root element and added it as a child of the document object. Remember that the DomDocument class extends
DomNode, which is why we can call appendChild() on our $doc object. Let's bring that all together:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$doc = new DomDocument();
$rootel = $doc->createElement("banana-news");
$doc->appendChild( $rootel );
print $doc->saveXML();

We do nothing new in the previous fragment. We create a DomDocument object and then use it to generate a DomElement
object, which we add as the root element of the document using the appendChild() method. Finally, we write the minimal
XML document to the browser. The output should look like this:

<?xml version="1.0"?>
<banana-news/>

Adding New DomElement Objects to the Tree

Now that we have a root element, we can repeat the mechanism we covered previously to add new elements to the
XML document:

$headline = $doc->createElement("headline");
$rootel->appendChild( $headline );

We create a new <headline> element using DomDocument::createElement(). We then add the element to the root (<banana-
news>) element. So far, we have worked with only two kinds of nodes: elements and documents. We need to add some
text to the <headline> element. To do this we must create a text node:

$text = $doc->createTextNode("Banana related disasters");
$headline->appendChild( $text );

The DomDocument::createTextNode() method automates this process. We are given a DomText object, which extends
DomNode, so we can add it to an element in the normal way.

We now have enough information to use the DOM functions to create the XML document in Listing 22.1. We use data
from an associative array (declared on line 2), but it could just as easily have been pulled from a database. You can see
the code in Listing 22.4.

Listing 22.4 Constructing an XML Document with the DOM Functions

 1: <?php
 2:
 3: $news = array(
 4:   array( "headline" => "arf arf, mcGraph",
 5:     "image" => "/res/high.gif",
 6:     "byline" => "William Curvey",
 7:     "article" => "Research published today by...",
 8:     "type" => "world"
 9:     ),
10:
11:   array( "headline" => "Banana sales",
12:     "image" => "/res/high.gif",
13:     "byline" => "William Curvey",
14:     "article" => "Research published today by...",
15:     "type" => "world"
16:     ),
17:   array( "headline" => "Domestic banana use beggars belief",
18:     "image" => "/res/use.gif",
19:     "byline" => "Charles Split",
20:     "article" => "Bananas are for more than eating...",
21:     "type" => "world"
22:     )
23: );
24:
25:
26: $doc = new DomDocument("1.0");
27: $root = $doc->appendChild( $doc->createElement("banana-news") );
28: foreach( $news as $newselement ) {
29:   $item = $root->appendChild( $doc->createElement( "newsitem") );
30:   $item->setAttribute( "type", $newselement['type'] );
31:   foreach( array("headline", "image", "byline") as $tagname ) {
32:
33:     // PHP 5 let's us do this in one unreadable line:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


33:     // PHP 5 let's us do this in one unreadable line:
34:     // $item->appendChild( $doc->createElement( $tagname ) )
35:     // ->appendChild(
36:     //   $doc->createTextNode( $newselement[$tagname] ) );
37:     // But we will use temporary variables:
38:
39:     $el = $doc->createElement( $tagname );
40:     $item->appendChild( $el );
41:     $text = $doc->createTextNode( $newselement[$tagname] );
42:     $el->appendChild( $text );
43:
44:   }
45: }
46:
47: print $doc->saveXML( );

There is very little that is new in Listing 22.4. On line 3 we set up an associative array to hold our news data. On line 26
we instantiate a DomDocument() before adding a <banana-news> root element on line 27. We then loop through our news
array, using the createElement(), createTextNode(), and appendChild() elements to build up our tree.

We do introduce a new method on line 30—the setAttribute() function is defined in the DomElement class. It requires name
and value arguments and adds an attribute node to the element. An attribute modifies an element in some way,
consisting of a name/value pair included in the element tag. In this case we are adding the type="world" attribute to
<headline> elements.

Getting Information from DomElement Objects

Usually, the first thing you will want to know about a DomElement is its name. This is stored in the $tagName property:

print "I am a ".$el->tagName." element";

After you know the name of an element, you will want to know whether it has any attributes, which are stored in
DomAttr objects. You can acquire an array of DomAttr objects associated with an element by accessing the
DomNode::attributes property. This property is an associative array, the keys of which are attribute names, and the
values of which are DomAttr objects:

$type_attr = $el->attributes['type'];

To access the name and value of each DomAttr object, you can use the conveniently named $name and $value properties:

$atts = $el->attributes;

if ( ! empty( $atts ) ) {
  foreach( $atts as $name=>$att_ob ) {
    print $att_ob->name.": ".$att_ob->value."<br />\n";
  }
}

To navigate an XML tree, you must take advantage of the methods that DOM objects provide about their place in the
structure.

Given a DomElement object, you can discover whether it has child elements with the hasChildNodes() method. This method
returns a boolean:

if ( $el->hasChildNodes() ) {
  print "I am blessed with progeny";
}

If the element has children, you can access the first child with the $firstChild property. If the element does not have
children, $firstChild contains null, as shown here:

if ( $el->hasChildNodes() ) {
    $child = $el->firstChild;
}

You can traverse the tree vertically, but what about horizontally? Elements know about their siblings as well. You can
access an element's next sibling with the $nextSibling property and its previous sibling with the $previousSibling property.
Both of these properties contains null if there is no sibling to be found:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$sib = $el->firstChild;
do {
  print $sib->tagName."<br />";
} while( $sib = $sib->nextSibling );

A parent, of course, can access all its children. The $childNodes property contains an array of DomNode objects, but if the
element is childless, it contains null:

$kids = $el->childNodes;
foreach( $kids as $child ) {
  print $child->tagName."<br />";
}

Children also know about their parents. The $parentNode property contains an element's parent element.

Examining Text Nodes

Armed with the methods we have covered, we can now swing about an XML tree pretty well. But we haven't gotten
down to the most important features of the tree. An element is not the only kind of node we want to deal with. Among
its children are text nodes, comment nodes, and others beyond the scope of this book.

Our main concern is text nodes, which we use to acquire document content. The first thing we need to be able to do is
to distinguish between DomElement objects and DomText objects. The DomElement and DomText classes share a common
parent class: DomNode. All DomNode objects have a $nodeType property that contains an identifying integer. These
integers can be tested using built-in constants. For DomElement and DomText objects, we use XML_ELEMENT_NODE and
XML_TEXT_NODE, respectively:

if ( $child->nodeType == XML_ELEMENT_NODE ) {
  // work with the element
} elsif ( $child->nodeType == XML_TEXT_NODE ) {
  // work with the text node
}

After we have located a text node, we still need to access its contents. We can do this with the $nodeValue method:

if ( $child->nodeType == XML_TEXT_NODE ) {
  print $child->nodeValue;
}

Traversing a Tree: Two Approaches

We now have enough information to work our way through a tree, but how do we go about it? In this section, we
examine two approaches to this task.

The first approach is designed to do the work of acquiring each node in turn and return it to the calling code. Listing
22.5 demonstrates.

Listing 22.5 Traversing a Tree of XML Nodes Using On-Demand Functions

 1: <?php
 2:
 3: $doc = new DomDocument("1.0");
 4: $doc->loadXML( file_get_contents("listing22.1.xml") );
 5: $root = $doc->firstChild;
 6: $pointer = $root;
 7:
 8: do {
 9:   print $pointer->tagName."<br />\n";
10: } while ( $pointer = next_element( $pointer ) );
11:
12: function next_element( DomNode $pointer ) {
13:   while ( $pointer = next_node( $pointer ) ) {
14:     if ( $pointer->nodeType == XML_ELEMENT_NODE ) {
15:       return $pointer;
16:     }
17:   }

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


17:   }
18:   return false;
19: }
20:
21: function next_node( DomNode $pointer ) {
22:   if ( $pointer->hasChildNodes() ) {
23:     return $pointer->firstChild ;
24:   }
25:   if ( $next = $pointer->nextSibling ) {
26:     return $next;
27:   }
28:   while( $pointer = $pointer->parentNode ) {
29:     if ( $next=$pointer->nextSibling ) {
30:       return $next;
31:     }
32:   }
33: }
34: ?>

As you can see, the real work is done by the next_node() function on line 21. This accepts a node object and tests it to
see whether it has any children. If so, it returns the first one on line 23. If the node has no children, we then look for a
sibling, returning it on line 26 if it is found. If the node has no children or siblings, we then climb back up the tree in a
while loop starting on line 28, looking for siblings as we go. As soon as we find a sibling object on our climb, we return it
on line 26. By repeatedly calling next_node(), we will eventually traverse the entire tree.

The next approach traverses the tree in the same way. It differs from the previous example in that the calling code
does not repeatedly request the next node. Instead, the traversing function calls itself recursively until the tree has
been completely explored. You can see this in action in Listing 22.6.

Listing 22.6 Traversing a Tree of XML Nodes Using Recursion

 1: <?php
 2:
 3: $doc = new DomDocument("1.0");
 4: $doc->loadXML( file_get_contents("listing22.1.xml") );
 5: $root = $doc->firstChild;
 6: traverse( $root );
 7:
 8: function traverse( DomNode $node, $level=0 ){
 9:   handle_node( $node, $level );
10:  if ( $node->hasChildNodes() ) {
11:    $children = $node->childNodes;
12:    foreach( $children as $kid ) {
13:      if ( $kid->nodeType == XML_ELEMENT_NODE ) {
14:        traverse( $kid, $level+1 );
15:      }
16:    }
17:  }
18: }
19:
20: function handle_node( DomNode $node, $level ) {
21:   for ( $x=0; $x<$level; $x++ ) {
22:     print " ";
23:   }
24:   if ( $node->nodeType == XML_ELEMENT_NODE ) {
25:     print $node->tagName."<br />\n";
26:   }
27: }
28: ?>

The traverse() function on line 6 does all the work. Passed a node object, it looks for children. If children are present, it
then works through them using a foreach loop on line 12, calling itself recursively with each child node in turn. Every
time traverse() is called, it calls handle_node() (declared on line 20) where application-specific code can work with the
node.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

XSL: A Brief Discussion
Extensible Stylesheet Language (XSL) is a templating system for XML documents, and with it you can process an XML
document for output. With the same XML source, you might apply different XSL documents to format for the Web,
PDAs, interactive television, and mobile phones.

Unfortunately, the details of XSL are beyond the scope of this book, but we can briefly examine PHP's support for it.

PHP and XSL

PHP's support for XSL is also currently in flux. The underlying library that PHP 5 now uses is libxslt
(http://xmlsoft.org/XSLT/). This is a radical departure from previous versions of PHP, which worked with the Sablotron
XSLT processor.

Because work is not yet complete, everything covered in this section is subject to change. Before using XSL in projects,
you should visit the PHP manual (http://www.php.net/manual/en/ref.xslt.php) to check the current stability of support
for the technology.

Although at the time of writing, XSL support is flagged as experimental and documentation is nonexistent, an easy-to-
use and nicely integrated XSLT parser class is already available. Because libxslt is built on the libxml2 library that the
DOM and Parser functions already use, PHP's XSL support now works directly with DomDocument objects.

At the time of writing, the libxslt library was not bundled with PHP 5; however, you can download it from
http://xmlsoft.org/XSLT. You also might need to compile PHP with XSL support. You should include the argument

--with-xsl

when you run the configure script.

An XSL Document

In Listing 22.7, we apply a simple XSL document to the XML we created in Listing 22.1. It outputs a table for each
article, adding formatting and changing the order of two of the siblings.

Listing 22.7 An XSL Document

 1: <?xml version="1.0"?>
 2: <xsl:stylesheet
 3:   version="1.0"
 4:   xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 5:
 6: <xsl:output method="html" />
 7: <xsl:template match="banana-news">
 8:   <table border="1">
 9:     <xsl:apply-templates select="newsitem" />
10:   </table>
11: </xsl:template>
12:
13: <xsl:template match="newsitem">
14:   <tr><td>
15:     <i><xsl:value-of select="byline" /></i>
16:     <br />
17:     <xsl:text> writes</xsl:text>
18:     <b><xsl:value-of select="headline" /></b>
19:   </td></tr>
20: </xsl:template>
21: </xsl:stylesheet>

Without getting in too deep with XSL, the purpose of this document should be relatively clear with a close look. Take a
look at the first line. An XSL document is also an XML document! The root element

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


should always take this form. It establishes the XSL namespace and version number.

The <xsl:template> element on line 7 attempts to match the root element. After the match occurs, we establish some
basic formatting and with <xsl:apply-templates> on line 9 we attempt to match <newsitem> elements and generate
formatted XHTML for each one.

The HTML you see in Listing 22.7 is subject to the same rules as any XML document, which means that failure to close a
<tr> or <td> element would cause a parser to generate an error message. The <xsl:value-of> tags (lines 15 and 18) are
substituted by the value of the elements stipulated in their select attribute (<byline> and <headline>). Notice that we
have switched the positions of byline and headline elements we are matching. XSL gives you control over the structure
of data in output as well as its format.

Applying XSL to XML with PHP

Now that we have an XSL document, we can use it to transform our XML. In fact, to do this we only need to use a few
functions. Listing 22.8 introduces them.

Listing 22.8 Using XSL to Transform an XML Document

 1: <?php
 2: $xslt = new xsltprocessor();
 3:
 4: $xml_doc = new DomDocument();
 5: $xml_doc->loadXML( file_get_contents("./listing22.1.xml") );
 6:
 7: $xsl_doc = new DomDocument();
 8: $xsl_doc->loadXML( file_get_contents("./listing22.7.xsl") );
 9:
10: $xslt->importStylesheet( $xsl_doc );
11: print $xslt->transformToXml( $xml_doc );
12: ?>

In Listing 22.8 we use the new XsltProcessor class to work with an XSL document and an XML document to produce
formatted text. We initialize DomDocument objects to store our XSL and XML on lines 4 and 7. We then use the loadXML()
method to acquire XML data on lines 5 and 8.

We now have an XsltProcessor object and two primed DomDocument objects. On line 10 we call
XsltProcessor::importStylesheet(), passing it the DomDocument object containing our XSL. Finally, on line 11 we call
transform_to_xml(), passing the method the DomDocument containing the XML to be transformed. The transformToXml()
method returns the results of the transformation as a string we print.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Introducing SimpleXML
Do the examples in this chapter seem like a lot of hard work to you? XML is powerful, and DOM in particular contains
complexities that must be followed to build compliant parsers. Sometimes, however, you might want to trade off power
for ease of use. SimpleXML is just that, an easy and quick way of accessing and amending XML data.

At the time of writing, just two functions are available for SimpleXML: simplexml_load_file() and simplexml_load_string().
The first expects a file path, and the second an XML string. Both functions parse XML and return a simplexml_element
object that contains properties named according to the elements found. So, in our banana example, it would contain a
property called $newsitem. If more than one element with that name exists at the same level, $newsitem contains an
array; otherwise, it holds a value. If the element in question contains other elements, the property contains an
additional simplexml_element object (or array of objects). Finally, if the element in question contains text, the property
contains a string (or array of strings).

This sounds much more complicated than it is in practice. Let's revisit the banana news example (see Listing 22.9).

Listing 22.9 Parsing an XML Document with SimpleXML

1: <?php
2: $simple_element = simplexml_load_file("listing22.1.xml");
3:
4: foreach ( $simple_element->newsitem as $item ) {
5:   print "<b>{$item->headline}</b><br />\n";
6:   print "<i>{$item->byline}</i><br />\n\n";
7: }
8: ?>

Listing 22.9 is certainly simple! We acquire a simplexml_element object by calling the simplexml_load_file() function, passing
it the path to an XML file. We then loop through the $newsitem property that we know had been made available, printing
text elements to the browser. In a real-world example, we would have tested the $simple_element object before working
with it.

SimpleXML is very much under development. As this book goes to press, it is not yet stable and clearly does not contain
all the functions it will. Some examples refer to a simplexml_save_document_file() function that should let you save
amended data back to an XML file. This has been removed from early distributions of PHP 5, although it is likely that it,
or something like it, will reappear. You should look out for SimpleXML documentation on the PHP manual at
http://www.php.net/manual/en.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
XML is a large topic, worthy of a book in its own right, as the bookstore shelves testify. It would be impossible to cover
all its intricacies in a single chapter. However, you should already be able to see some of the possibilities that XML
offers programmers.

In this hour you learned how to parse XML documents using the XML Parser functions. You explored the DOM objects
and methods and learned how to use them to build an XML document. You learned two simple techniques for traversing
a DOM structure. You examined an XSL template and learned how to use it with an XSLT processor and DomDocument
objects to transform an XML document. Finally, you encountered SimpleXML, a promising but incomplete addition to the
PHP XML user's toolkit.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Discussions about XML seem to be everywhere at the moment. Is it all hype?

A1: People do love a bandwagon, but XML remains an excellent way of sharing data and making larger
projects more durable and extensible. The fact that you can define standards using DTDs also means you
can build lightweight interpreters that do not need to waste time on error checking. If you have ever tried
to download a browser from the Web, you will know how enormous they have become. One of the reasons
XHTML—the XML version of HTML—is so important is the likely rise of lightweight browsers in cell phones,
PDAs, and other devices that simply will not have the processing power available to handle HTML unless it
conforms to a standard. You can read more about XHTML at http://www.w3.org/TR/xhtml1/.

Q2: Throughout this hour, you warned that many XML features are not yet stable. Is it worth
working with XML in PHP?

A2: The answer is emphatically yes. PHP's support for XML is in transition at the moment to ensure compliance
with standards and bring the various XML extensions together using the same libraries. This means that
some functionality is still under development (as this book goes to press) and some function names might
be subject to change. The end result, however, should be a powerful and stable suite of tools for working
with XML in PHP. You should keep an eye on the manual at http://www.php.net to monitor developments.
I will try to mention any necessary amendments to this chapter on my site at http://p24.corrosive.co.uk.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: How would you acquire a parser resource?

2: Which arguments will the XML parser pass to an element start handler?

3: How would you turn off the feature that converts all element names to uppercase characters?

4: How would you get a current line number while an XML document is being parsed?

5: How would you get a DomDocument object using an existing XML file?

6: Given an DomElement object, how would you add a child element to your tree?

7: Which object would you use to apply XSL to an XML document?

Answers

A1: You can get a parser resource with the xml_parser_create() function, like so:

$parser = xml_parser_create();

A2: The user-defined element start handler function automatically is passed a parser resource, the name of
the element which is starting, and an array of attributes.

A3: You can use the xml_parser_set_option() function to disable case folding, like so:

xml_parser_set_option( $parser, XML_OPTION_CASE_FOLDING, 0 );

A4: The xml_get_current_line_number() function returns the current line number.

A5: You can instantiate a DomDocument object directly using the new keyword. You can then use the loadXML()
method to import XML from a file. Here's how:

$xml_doc = new DomDocument ("1.0" );
$xml_doc->loadXML( file_get_contents("./listing22.1.xml") );

A6: You can use the appendChild() method to add an element to a tree of objects, as shown here:

$doc = new DomDocument();
$rootel = $doc->createElement("banana-news");
$doc->appendChild( $rootel );

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A7: The XsltProcessor class returns an object that can be used to process XSLT.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Create a script that uses the daily XML news feed provided at http://slashdot.org/slashdot.xml and outputs an

HTML version. Create another script to output a neatly formatted text version.

2. Repeat exercise 1, using XSLT to handle the output.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Part IV: Extending PHP
 HOUR 23 PEAR: Reusable Components to Extend the Power of PHP

 HOUR 24 Toward a Framework for Larger Projects

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 23. PEAR: Reusable Components to Extend the
Power of PHP
What You'll Learn in This Hour:

About the PEAR project and its structure

How to install PEAR packages

How to use the Auth package to password-protect pages

How to automate documentation with the PhpDocumentor package

How to manipulate configuration files with the Config package

PEAR stands for the PHP Extension and Application Repository. It is a large collection of interdependent packages, which
add even more power to the PHP language. When you start work on a project, PEAR should be one of your first stops.
You might find that much of your job is already done for you, and done well.

In this hour we will take an introductory look at PEAR. Through some of PEAR's packages, you will get a sense of the
repository's power and usefulness. We will also consider some of the guiding design principles that underlie PEAR
packages and could well be applied to your own work.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

What Is PEAR?
At its core, PEAR is a collection of useful, quality-controlled, open source packages that you can include in your projects.
The aim of the quality control is not only to ensure that you can rely on the code, but also that packages are
interoperable—that is, that they work well with one another. So, when you download one package to help with a
project, it might work with any number of other PEAR packages. In the best traditions of object-oriented design, all
PEAR packages are designed to be as flexible and extensible as possible.

PEAR is also home for C extensions to PHP. This aspect of the PEAR project
is called the PHP Extension Code Library (PECL). This is beyond the scope
of this book, but in common with everything else we discuss in this
chapter, you can get the details from http://pear.php.net.

PEAR is as much about design principles and quality control as it is about the packages themselves.

There are two other important aspects to the PEAR project. First are the repository and the accompanying Web site at
http://pear.php.net (and various mirror sites). The site provides documentation for all packages, installation
instructions, and much more. The server is the central location for packages. Rather than make the download of PHP
bigger than it already is, all but a small core of the repository is placed online rather than in the distribution.

This brings us to another important aspect of PEAR. Rather than force you to download packages, unpack them, and
install them in the right place, the pear command line tool is bundled with PHP as part of the base PEAR installation. It
makes the installation process for individual packages a matter of a single command. What's more, the PEAR package
manager handles dependencies for you. If a package you are installing requires another, pear tells you about it.

Installing PEAR

In short, you shouldn't have to do anything to get the PEAR base installation because it is bundled with PHP. As of
version 4.3.0, this base installation has included the PEAR package manager, which we will be using in this chapter to
install individual packages.

PEAR and Packages

PEAR packages are individual subprojects within the PEAR project. They are descriptively named, so the authentication
package we will be looking at later this hour is called Auth. By installing Auth, you will be placing a directory called Auth
containing a file called Auth.php in your include path. If you are using the PEAR package manager, you will not have to
worry about the mechanics of this. After you have installed it, you will simply use a require_once() call in your scripts to
use Auth classes, like so:

require_once( "Auth/Auth.php" );

Installing a Package

Having talked at some length about the PEAR package manager, perhaps we should try to use it. Let's install the Auth
package, since we will be working with it shortly. From the command line, type

pear install Auth

And that should be that! In some cases, you will get a report of a failed dependency—that is, that your required
package uses another PEAR package. So, if we were installing a package called Bibble, we might encounter the following
error:

pear install Bibble
downloading Bibble-1.0.3.tar ...
...done: 15,111 bytes
requires package 'Bib_core'
Bibble: Dependencies failed

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The package manager reports that we need a package called Bib_core. All we have to do is install Bib_core before going
back to install Bibble again:

pear install Bib_core

We should be ready now to work with some PEAR packages. Remember, you should stop by http://pear.php.net to look
at all the packages and get an idea of what is available.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Some PEAR Packages in Action
In this section, we will work with a number of PEAR packages, starting with the Auth package we have already installed.
We will also look at a package for documenting your code and a package for working with configuration files.

The Auth Package

Auth is an object-oriented package designed to help you add password protection to your projects. Adding users,
avoiding duplicate usernames, logging users in, and authenticating users after they are logged in are all tasks the Web
programmer encounters repeatedly. Auth handles the donkey work, leaving you free to concentrate on your project's
logic.

In this section we will look at the Auth class and its methods. We will also use Auth with some procedural code to build
a simple password-protected environment.

It is important to note that the packages we cover were written for PHP 4 and do not use PHP 5 features such as
exceptions and abstract classes. New features will likely be introduced over time, and you should keep an eye on the
documentation to see whether anything has changed.

Installing Auth

We have already looked at the procedure for downloading Auth:

pear install Auth

Auth uses the File_Passwd package, which in turn requires the Crypt_CHAP package. So, we should install these, too:

pear install Crypt_CHAP
pear install File_Passwd

Now we should be ready to work with the Auth package.

Working with the Auth Class

Now that we have Auth, we can jump in and instantiate an Auth object:

require_once("Auth/Auth.php");
$auth = new Auth("File", "./passfile.txt", "write_login" );

We use require_once() to make Auth available to our script and then instantiate an Auth object. The Auth class's
constructor first requires a storage driver string as its first argument, storage-specific options for its second argument,
and the name of a function to use to display a login screen if authentication fails.

Let's look more closely at the storage container issue. Rather than force you to use a specific mechanism for storing
and retrieving passwords, Auth works transparently with several storage mechanisms, including files, databases, and
even POP mail servers. If we had installed the DB package, for example, we could have used the following syntax to
instantiate an Auth object:

$auth = new Auth("DB", "mysql://dbuser:dbpass@host/db", "write_login" );

We tell the Auth class's constructor that we are using a database and pass it a data source name (DSN) in the option
argument. The Auth package uses the DB package to work with a database, and we need to think no more about it
(assuming we have configured a database server to have the correct database, table, and fields).

A detailed examination of storage drivers is beyond our scope, but you can read more about them at
http://pear.php.net/manual/en/package.authentication.auth.intro-storage.php. For our example, we will use the File
driver, which uses the File_Passwd package we have already installed.

Now that we have an Auth object, it is our responsibility to create a function called write_login() that presents a login
form. This is automatically called when authorization fails. In fact, if we had omitted the third argument to the Auth
constructor, the object would write a form for us automatically, which can be handy for testing purposes. We will create
our own function, however:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


our own function, however:

require_once("Auth/Auth.php");
$auth = new Auth("File", "./mypass.txt", "write_login" );
$auth->start();
$auth->addUser( "bob", "bobpass" );

function write_login() {
  print <<<BLOCK
  <form method="post" action="{$_SERVER['PHP_SELF']}">
  <p>User<br /><input type="text" name="username" /></p>
  <p>Pass<br /><input type="password" name="password" /></p>
  <p><input type="submit" value="login" /></p>
  </form>
BLOCK;
}

In this fragment we again instantiate an Auth object. We create a function called write_login() that prints a form if
authorization fails. Notice the technique we use for printing multiple lines: This syntax is similar to using double
quotation marks in that variables are interpreted, but with the important differences that we don't have to escape
double quotation marks inside the string and that we can work with multiple lines of text. The form is straightforward,
presenting username and password input text boxes. The names of the fields, username and password, are mandatory;
apart from that, we can present the form any way we please.

Notice some new methods in the previous fragment. Auth::start() kicks off the authentication process. You should call it
for any pages you want to password protect. Because it uses session functions behind the scenes, you should ensure
that no text has been sent to the browser before using it.

We also introduce the Auth::addUser() method, which accepts username and password string arguments and adds a user
to the system. If the user in question exists, Auth::addUser() returns a PEAR_Error object. Otherwise, it returns true to
signal that the user has been added to the system.

PEAR_Error objects contain useful debugging information, in particular, $code and $message properties that detail the
nature of the error in question. In the previous fragment, the addUser() method generates a PEAR_Error object every time
the script is called apart from the first. This is because the user, bob, already exists after the first request.

So, if we test the previous fragment, the user is presented with a login form until he finally types in an acceptable
username and password. Thereafter, he is presented with a blank screen. How can we welcome bob to the private area
of our site? Here's how:

if ( $auth->getAuth() ) {
  print "</h1>Welcome, {$auth->getUsername()}</h1>";
}

The Auth::getAuth() method returns true if the user has been authorized, and false otherwise. So, we can use it to present
members-only content. We can use Auth::getUsername() to personalize our message.

Finally, let's be really safe and force bob to log in for every request he makes:

$auth->logout();

Clearly, we would allow bob to choose to log out, rather than logging him out for every request. But we have given the
main Auth package methods an airing here. In the next section, we use Auth to build a more useful example.

An Example

We will use procedural rather than object-oriented code to keep this example compact. We will, however, introduce a
couple of useful techniques. In particular, we are going to completely separate our presentation code, the HTML output,
from our script logic. In Listing 23.1 you can see an output page that displayed if authentication fails.

Listing 23.1 The Login View for the Authentication Example

 1: <!DOCTYPE html PUBLIC
 2:   "-//W3C//DTD XHTML 1.0 Strict//EN"
 3:   "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 4: <html>
 5: <head>
 6: <title>login</title>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 6: <title>login</title>
 7: </head>
 8: <body>
 9: <h1>Login</h1>
10:
11: <?php include( "listing23.2.php" ); ?>
12:
13: <div>
14: <form method="post" action="<?php echo $_SERVER['PHP_SELF'] ?>">
15: <p>Username<br />
16: <input type="text" name="username"
17:   value="<?php echo $_REQUEST['username'] ?>" />
18: </p><p>Pass<br />
19: <input type="password" name="password" />
20: </p><p>
21: <input type="submit" value="login" />
22: </p>
23: </form>
24: </div>
25:
26: </body>
27: </html>

Listing 23.1 is almost entirely presentation. We call a presentation helper, listing23.2.php on line 11. Apart from that, we
simply present a login form. This script is not designed to be called directly. Instead it is included by a controlling script.
Listing 23.2 shows the script we included on line 11.

Listing 23.2 The Navigation Helper for the Authentication Example

 1: <?php
 2: if ( ! empty( $GLOBALS['PAGE']['msg'] )) {
 3:   print "<h2>".$GLOBALS['PAGE']['msg']."</h2>";
 4: }
 5: ?>
 6: <p>
 7: <a href="?cmd=main">home</a>
 8:
 9: <?php
10: if ( $GLOBALS['PAGE']['AUTH'] ->getAuth() ) {
11:   print ' | <a href="?cmd=logout">logout</a>';
12: } else {
13:   print ' | <a href="?cmd=signup">signup</a>';
14: }
15: ?>
16: </p>

The script in Listing 23.2provides some functionality for navigation and feedback. It is a little more interesting than
Listing 23.1, in that it uses a global variable called $PAGE. All views in this script can expect to have access to the $PAGE
array and to find it populated with an 'AUTH' element containing an Auth object.

On line 2 we test for a $PAGE['msg'] element, and if it exists, we print it to the browser. By this means, all views can
send messages to the user.

On line 10 we use the Auth object contained in $PAGE['AUTH'] to call the Auth::getAuth() method. If the user has been
authenticated, we print navigation for logging out. Otherwise, we offer the opportunity for the user to sign up. Notice
that we don't reference any views directly, but pass a cmd request argument to the current script.

As far as the views are concerned, that is all that is of interest for now. Now let's look at the controller at the heart of
this system. The controller is responsible for authentication and deciding which views should be presented to the user.
All requests should be routed directly through this central script, and the views are displayed using the include()
function. You can see the controller script in Listing 23.3.

Listing 23.3 The Controller Script for the Authentication Example

 1: <?php
 2: require_once "Auth/Auth.php";
 3:
 4: $LEGAL_FUNCS = array( "main", "signup", "logout" );
 5: $PAGE['AUTH'] = new Auth("File", "../data/passfile.txt", "write_login" );
 6: $PAGE['msg'] = "";
 7:
 8: switchboard();
 9: function switchboard() {
10:   $comms = $GLOBALS['LEGAL_FUNCS'];
11:   $cmd = $_REQUEST['cmd'];
12:   if ( empty($cmd) || ! in_array( $cmd, $comms) ) {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


12:   if ( empty($cmd) || ! in_array( $cmd, $comms) ) {
13:     $cmd = $comms[0];
14:   }
15:   $page = $cmd();
16:   if ( ! empty( $page ) ) {
17:     @include( $page );
18:   }
19: }
20:
21: function setMessage( $msg ) {
22:   $GLOBALS['PAGE']['msg'] .= "$msg<br />";
23: }
24:
25: // auth functions ///////////////////////
26:
27: function authenticate() {
28:   $auth = $GLOBALS['PAGE']['AUTH'];
29:   $auth->start();
30:   if ( ! $auth->getAuth() ) {
31:     exit();
32:   }
33:
34:   return true;
35: }
36:
37: function write_login() {
38:   $auth = $GLOBALS['PAGE']['AUTH'];
39:   if ( $auth->getStatus() == AUTH_EXPIRED ) {
40:     setMessage("Your session has expired");
41:   } else if ( $auth->getStatus() == AUTH_WRONG_LOGIN ) {
42:     setMessage("Login failed. Try again or sign up");
43:   }
44:   // include login
45:   include_once( "listing23.1.php" );
46: }
47:
48: // page functions ///////////////////////
49:
50: function signup() {
51:   if ( empty( $_REQUEST['username'] ) ) {
52:     // return sign up page
53:     return "listing23.signup.php";
54:   }
55:   $signup = $GLOBALS['PAGE']['AUTH'] ->addUser(
56:     $_REQUEST['username'], $_REQUEST['password'] );
57:   if ( $signup instanceof pear_error ) {
58:     setMessage( $signup->message );
59:     // return sign up page
60:     return "listing23.signup.php";
61:   }
62:   setMessage( "Signup successful" );
63:   return main();
64: }
65:
66: function logout() {
67:   $auth=$GLOBALS['PAGE']['AUTH'];
68:   authenticate();
69:   $auth->logout();
70:   setMessage($auth->getUsername()." logged out");
71:   return write_login();
72: }
73:
74: function main() {
75:   authenticate();
76:   // return main page
77:   return "listing23.main.php";
78: }
79: ?>

We set up a global array called $LEGAL_FUNCS on line 4. This contains strings that we will accept in the cmd request
parameter. We need to check the user input because we will be calling functions dynamically. On line 5 we initialize our
Auth object and store it in $PAGE['AUTH']. Remember that the $PAGE array is our notice board where we place information
the views will use. We must ensure that both the data directory and the passfile.txt file are writeable by the server
process.

On line 6 we initialize another $PAGE element. $PAGE["msg"] contains any feedback we want to send to the user. It can
be populated from anywhere in the script by calling the setMessage() function on line 21.

The core of the script lies in the switchboard() function on line 9. This attempts to extract a value from $_REQUEST['cmd'],

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The core of the script lies in the switchboard() function on line 9. This attempts to extract a value from $_REQUEST['cmd'],
assigning it to the local $cmd variable. If there is no $_REQUEST["cmd"] element or its value is not found in the global
$LEGAL_FUNCS array, we assign a default value to $cmd: the first element of the $LEGAL_FUNCS array. In this way we will
always have a $cmd variable that is non-empty and legal. We can now dynamically call one of our command functions—
that is, one of main(), logout(), and signup().

Command functions optionally return page strings, and if such a string is returned, we use the include() function to
display the document on line 17. This provides us with a crude dispatch mechanism. The signup() function, for example,
can choose whether to keep the user on the sign-up screen (by returning the sign-up document's name) or forward her
elsewhere.

The authenticate() function on line 27 is the policeman of the script: It stops script execution dead if the user is not valid.
We get the Auth object on line 28 and call Auth::start() on line 29. If Auth::getAuth() fails, we call exit(), ending the script.
We know, however, that the write_login() function on line 37 has been called by the Auth object before we end the script.

write_login() has two responsibilities. First, it calls a new method for us, Auth::getStatus(), which returns an error flag if
problems have occurred. We test the value returned by the getStatus() method against the constants AUTH_EXPIRED and
AUTH_WRONG_LOGIN; then we send feedback to the user if one of them matches. Finally, we include the login page on
line 45.

The default function is main() on line 74. This is because it is the first function listed in the $LEGAL_FUNCS global array.
main() is called by the switchboard() function if the client does not provide a cmd request parameter (accessible from
$_REQUEST['cmd']) or if the cmd parameter contains the string 'main'. The main() function calls authenticate(). If the user is
new or unauthorized, authenticate() hijacks the script, causing write_login() to be called and ending execution. Otherwise,
main() returns the name of our protected page on line 77. The switchboard() function calls include() with this return value,
and the user sees the view contained in this page.

The remaining command methods are signup() and logout(). The signup() function on line 50 is called by the switchboard()
function if a cmd request parameter is present and contains the string 'signup'. We test for the username request
parameter on line 51, using it as a flag to test whether our sign-up form has been submitted. If the parameter is not
present, we decide that the user has arrived freshly at the sign-up page and return the document name of the sign-up
view on line 53. The view is almost identical to the login screen in Listing 23.1, except it includes a hidden form field:

<input type="hidden" name="cmd" value="signup" />

This ensures that script flow returns to the signup() function when the form is submitted. If the username parameter is
present, we know that the form has been submitted. We therefore call the Auth::addUser() method on line 55, passing it
our user input. We test the return value from Auth::addUser() on line 57. If we have received an instance of the
PEAR_Error class, we know that all has not gone well. So, we extract the error message from PEAR_Error::message and
pass it back to the user by calling setMessage() on line 58. We return the sign-up page's name on line 60, requiring the
user to attempt another sign-up.

Assuming that the function has not yet returned a value, we can celebrate a successful sign-up. We set a success
message on line 62 and hand control over to the main() function. Remember that main() authenticates and then allows
the user through to our protected data.

The final command function is logout() on line 66. This is invoked by the switchboard() function if the cmd parameter
contains the string 'logout'. We cannot log out a user without first authenticating him, so we call our authenticate()
function on line 68. If authentication fails, the user is sent to the login view, which is the desired result in any case.
Assuming that authentication was successful, we call setMessage() on line 70 to feed back to the user and call the
write_login() method to present the login page.

Listing 23.3 is a crude but effective model for writing small scripts. We can now easily add a new page command to the
$LEGAL_FUNCS array on line 4, creating a function with the same name. The script will automatically recognize and call
our new function. Simply by adding authenticate() to our new function it will be protected from unregistered users. In the
next hour, we will look at an altogether more sophisticated method for organizing projects.

The PhpDocumentor Package

So, your project is a success. It has grown in size and power, and you are well pleased. Next, it is time to bring in
another developer to work with you. She takes a look at your code and sees directory after directory, file after file of
undocumented code. You both quickly realize that it will take weeks of unraveling your code before she can contribute
fully. Perhaps it is time to consider PhpDocumentor.

It is a cliché that developers dislike documentation, but in common with many clichés there is a grain of truth to it.
Documentation is often seen as a luxury, eating into production time. In a competitive market, the time taken to
document a project can eat into one's margins. On the other hand, the cost in errors and misconfigurations, and in the
steep learning curve for developers taking on a project, can considerably outweigh the costs of documentation.

You can also lessen the effort involved in documenting by doing it as you code, rather than waiting until the end of your
project and despairing!

PhpDocumentor is an enormously powerful tool for documenting PHP projects. It has two great uses. First, it produces
developer-level documentation generated from within source files. Second, it uses the DocBook XML format to produce
user-level tutorial files that can be transformed to resemble documentation like PHP's own manual at
http://www.php.net/manual. Even with a whole hour at our disposal, we could barely scratch the PhpDocumentor
package's full functionality, so we will look here at inline documentation aimed at developers.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


package's full functionality, so we will look here at inline documentation aimed at developers.

The idea of automated documentation using PhpDocumentor is derived from a Java tool called JavaDoc. JavaDoc reads
java source files and generates a series of Web pages based on the contents, using hyperlinks to enable the reader to
navigate the elements of the source. PhpDocumentor works in the same way: It reads the source files in a directory
and builds a tree of pages. It recognizes and documents language elements such as classes, methods, and properties
and handles relationships such as inheritance. This is useful, but it only lays bare the basic structure of a project.
PhpDocumentor looks for special comment blocks and reads text and tags from within them. It incorporates the
information it gleans from these DocBlocks into the Web pages it generates. The result is a set of detailed and easily
navigable documents for your project.

As with all PEAR packages, installation is easy:

pear install phpdocumentor

This creates a PhpDocumentor library package directory in PHP's library directory and a command-line script called phpdoc
that you can run to generate documentation from your source code.

At the time of writing, PhpDocumentor did not yet handle the advanced
object-oriented features introduced with PHP 5.

DocBlocks

PhpDocumentor parses your source files looking for DocBlocks. These are special blocks of code that look like this:

/**
* A DocBlock
*/

The DocBlock looks very much like a standard multiline comment. The required additions are the second asterisk in the
comment opening and the asterisks that begin each line within the comment.

DocBlocks break down into three parts: a summary, a description, and tags. Tags are instructions to PhpDocumentor
and provide information about the element being described. Tags take the form of an at character (@) followed by a
keyword. Each tag then requires further arguments.

Let's look at an example. In the fragment shown here, we add a class-level DocBlock to a project:

/**
* A class to list directories.
*
* This class works with DirectoryFilter class to list the
* the contents of a directory.
*
* @see   DirectoryFilter
* @author  Matt Zandstra
* @package FileUtil
*/
class DirectoryList {
  //...
}

We introduce our class with a summary line and then go into more detail with our description. We use a number of
tags. @see is followed by the name of another class in the project. The class referenced automatically becomes a
hyperlink in the documentation output. @see can also be followed by a filename, a class and method in the form
MyClass::Method(), a property in the form MyClass::$property, and a standalone function in the form function(). The value
that you use for @package defines an organizing principle for a set of classes. I usually organize my classes into
directories and use the directory name as my package name. When the documentation is output, the class in the
example will be grouped under a FileUtil link with others that share that @package value. The @author tag should be self-
explanatory.

You can see a sample PhpDocumentor output for our fragment in Figure 23.1.

Figure 23.1. PhpDocumentor output for a class-level DocBlock.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 23.1. PhpDocumentor output for a class-level DocBlock.

Table 23.1 details some standard tags that are available for all DocBlock.

Table 23.1. Standard PhpDocumentor Tags
Tag Argument/Description

@access public/private/public

@author Author name

@copyright Company/author name

@deprecated Version at which the feature was deprecated

@example URL path to a sample file; it imports the syntax-highlighted source

@ignore No argument; it suppresses output for the element

@internal No argument; it hides the element from public output

@link URL path to the document; it creates a hypertext link

@see Class/Class::method()/Class::$property/function/filename.ext

@since The version number or date that the element was introduced

@version Version information

Now that we have introduced a class, we can provide documentation for our class's properties:

class DirectoryList {

/**
* The directory to examine
* @access  public
* @var   String
*/
  var $directory;

Notice that we are using PHP 4 syntax in this fragment. PhpDocumentor is incapable of handling PHP 5 elements at the
time of writing, although this might well have changed by the time you read this. You can discover the current status of
PhpDocumentor and find the complete documentation for it at http://phpdocu.sourceforge.net.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PhpDocumentor and find the complete documentation for it at http://phpdocu.sourceforge.net.

We use the @access tag to signal to PhpDocumentor that we regard the property as public. We also state the data type
of the property using the @var tag. This is important because PHP is loosely typed, so there is no constraint as to what
can be stored in a property. Your documentation should therefore be as explicit as possible as to which property should
store which data type.

If we had declared the $directory property as private in the @access tag, it would not be displayed in documentation by
default. This is also true of any DocBlocks containing the @internal tag. I often override this rule, however, to produce
developer documentation. So, in Figure 23.2, you can see the output for our public $directory property and for a private
$filter property. Notice that the $filter property has been declared to be of type DirectoryFilter. Because the DirectoryFilter
class exists within the documentation, the type is displayed as a hyperlink.

Figure 23.2. PhpDocumentor output for a property-level DocBlock.

Finally, let's look at a DocBlock for a method.

/**
* Accept a string and return true if the filename should be included
*
* This base class always returns 'true'
*
* @param  String   The string to check
* @return  Boolean   true if the file is acceptable for inclusion
*/
  function check( $txt ) {
    return true;
  }

We include both a summary line and additional information. The @param tag provides information about arguments to
the method. You should include one @param tag on its own line for each argument in order. The first parameter to the
@param tag is the data type of the method argument, and the second parameter is a description of the argument and its
purpose. The @return tag is used to describe the return value from a method. Again, the first parameter should be the
expected data type, and the second should be a description.

You can see the output for the method DocBlock in Figure 23.3.

Figure 23.3. Documentation for a method.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Figure 23.3. Documentation for a method.

Generating Documentation

So far, we have discussed the DocBlock comments, and you have seen PhpDocumentor's output, but we have not
talked about the mechanism for generating the output. There are a number of ways of doing this, but we will
concentrate on using the command-line tool. The command phpdoc is automatically installed when you install
PhpDocumentor. It is likely that you will find it in your path. In other words, you should be able to run it by simply
typing

phpdoc

To generate your documentation, phpdoc needs a minimum amount of information from you. You pass this to the script
using flags. The -d flag is used to pass the name of the directory to document, whereas the -t flag is used to pass the
target, or destination, directory. Finally, I like to see my private properties and methods, so I pass the script a special
flag, -pp, with the argument 'on'. pp stands for parse privates, and the flag causes private elements to be shown in
documentation. Putting all this together, a typical call to phpdoc might look like this:

phpdoc -d myproject -pp on -t /home/me/htdocs/mydocs/

There are many more flags to phpdoc. You can find a summary of them at
http://phpdoc.org/docs/HTMLSmartyConverter/default/phpDocumentor/ tutorial_phpDocumentor.howto.pkg.html. That
is a painful address to type into your browser, but if you are keen to work further with PhpDocumentor, it might well be
worth the trouble. You will find a full description of available tags, more examples, and command-line instructions for
Windows users.

PhpDocumentor cannot make documentation painless, but it makes incorporating it into you programming routine
easier. As your libraries grow in size and scope, you will have cause to be grateful that you developed the
documentation habit.

Editing Configuration Files with the Config Package

Writing code to use a configuration file is one of those programming tasks that you find yourself doing time and time
again as a programmer. The simplest solution is to use a PHP file to contain configuration directives for your scripts.
This can work well, but it can break down if your script needs to share configuration with other systems or you require
nonprogrammers to edit it.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


nonprogrammers to edit it.

The Config package is an extremely flexible way of building configuration files in a wide range of formats.

First of all, we must install Config:

pear install xml_util
pear install config

Config depends on the XML_Util package, so we install that first.

Now, let's map out a configuration example. Let's imagine that we have created a forum application and want an
administrator to be able to control its behavior from a configuration file. The Config package can generate a file for us,
but first we need to construct the data tree.

The Config package consists of a tree of element types that can be one of 'directive', 'section', 'comment', and 'blank'. Of
these, 'section' can contain items of the other types. This is a lot easier than it sounds: You can create a section, add
another section to it, and then add a comment and some directives (name/value pairs) to that.

To get an element that we can work with, we need to instantiate a Config_Container object and pass it a type and name:

require_once("Config.php");
$root_container = new Config_Container("section", "forum-configuration");

This gives us an object of type "section" called "forum-configuration". The Config_Container class provides us with tools for
creating other Config_Container objects of different types. We might want to add a name directive to our forum-
configuration section, like so:

$root_container->createDirective( "forum-name", "Matt's Forum" );

Config_Container::createDirective() requires the name of the directive and its value. The method both returns a new
Config_Container object of the directive type and adds it to the current object. We now have a section that contains a
directive. Let's add some more to our configuration file:

$perm_sec = $root_container->createSection("permissions");
$perm_sec->createDirective("allow-html-tags", "no");
$perm_sec->createDirective("uploads", "55");
$perm_sec->createDirective("allow-pictures", "yes");

$content_sec = $root_container->createSection("content");
$content_sec->createDirective("filter-obscenity", "no");
$content_sec->createDirective("inlude-newsfeeds", "yes");

We call a new method, Config_Container::createSection(), which requires a name argument and—like createDirective()—
returns another Config_Container object, adding it to the tree. So, our $root_container object now contains a directive and
a section. We have a reference to the latest section in the $perm_sec variable, and we use it to create three directives.
We then add another section to our $root_container, which we also populate. In addition to
Config_Container::createDirective(), we also have access to these methods: createComment(), which requires a string
containing the comment text, and createBlank(), which requires no argument and represents a blank line within a
configuration file.

Additional arguments to these methods can be used to determine where the elements are added, but this is beyond our
scope here.

Now that we have some sample data, we can write our configuration file. To do this, we can create a Config object:

$conf = new Config();
$conf->setRoot( $root_container );
$conf->writeConfig("./out.txt", "inifile" );

The Config class is principally used for directing the reading and writing of configuration data. We load it up with our
$root_container Config_Container object and then call writeConfig() to write the data to a file. Config::writeConfig() requires a
path to the file to write to and a config type string. This can be one of the following: 'apache', 'genericconf', 'inifile',
'inicommented', 'phparray', and 'xml'. In our example, we have chosen to output using the 'inifile' type.

Let's take a look at the file we have written:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[forum-configuration]
forum-name=Matt's Forum
[permissions]
allow-html-tags=no
uploads=55
allow-pictures=yes
[content]
filter-obscenity=no
include-newsfeeds=yes

If we change the config type from 'inifile' to 'xml' and run our script again, our output changes radically:

<?xml version="1.0" encoding="ISO-8859-1"?>
<forum-configuration>
 <forum-name>Matt&apos;s Forum</forum-name>
 <permissions>
  <allow-html-tags>no</allow-html-tags>
  <uploads>55</uploads>
   <allow-pictures>yes</allow-pictures>
  </permissions>
  <content>
   <filter-obscenity>no</filter-obscenity>
   <include-newsfeeds>yes</include-newsfeeds>
  </content>
</forum-configuration>

So far, we have concentrated on writing configuration files. Although this is useful, it is only half the story. Let's write
some code to read our configuration file back into memory:

require_once("Config.php");
$conf = new Config();
$root = $conf->parseConfig("./out.txt", "inifile" );
print $root->toString('phparray', array( "name" => "my_conf" ) );

We instantiate a Config object and call a new method, parseConfig(), which is the mirror image of writeConfig(). We are
working with a file of type 'inifile', which is a standard Windows configuration format and the type that PHP uses. The
method returns a Config_Container object if all goes according to plan. If we were to add error checking to our fragment,
we would need to test for a PEAR_Error object. This is the return value we would expect if an error were encountered.

We assume that all is well, however, and call another new method. Config_Container::toString() outputs a string
representation of a Config_Container object's contained data according to the config type it is passed. The second
argument is an optional array of options. We have passed in an array with the name element set to 'my_conf'. You can
see the effect of this here:

$my_conf['forum-configuration']['forum-name'] = 'Matt's Forum';
$my_conf['permissions']['allow-html-tags'] = '';
$my_conf['permissions']['uploads'] = '55';
$my_conf['permissions']['allow-pictures'] = '1';
$my_conf['content']['filter-obscenity'] = '';
$my_conf['content']['include-newsfeeds'] = '1';

If we had not provided the option array, the default name of conf would have been used for the output. Remember that
the output in the previous fragment is a string representation of an array that can be written to a file and read back
later.

We work with the data we have acquired using Config::parseConfig, though, by using the Config_Container::toArray()
method. By calling $root->toArray(), we acquire an array that we can work with before writing again to a configuration
file.

Now we can read from a configuration file, write to a configuration file, and output configuration data to a string. But
how can we work with our data after we have acquired it? There are two approaches: We can use Config package
methods to traverse and manipulate the tree of Config_Container objects, or we can convert our configuration into an
array, manipulate the array, and then convert the array back to a Config data structure. This is the approach we are
going to take now.

Let's read in the configuration file we created earlier, and work with its contents:

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


require_once("Config.php");
$conf = new Config();
$root = $conf->parseConfig("./out.txt", "inicommented" );
$conf_array = $root->toArray();

$conf_array['root']['content']['filter-obscenity']=1;
$conf_array['root']['content']['max-article-length']=500;

$conf = new Config();
$root = $conf->parseConfig($conf_array['root'], "phparray" );
print $root->toString( "inicommented" );

We use ParseConfig() as before to acquire the configuration data. We then use a new method, Config_Container::toArray(),
to get an array representation of the information. This is quick and easy to work with. An interesting thing to note about
the inifile and inicommented formats is that they flatten out your data structure. You need to be aware of this when you
convert between configuration formats. We started off with a structure that had a root container called forum-
configuration. In reading back the same data, we find that this has become the first child container and the Config
package has had to create a new default root container, called root. The other thing to note is that if you want to
preserve data as it was input, it is generally safer to use inicommented as your config type. This causes the invocation of
a slower but more faithful parser. If speed is an issue, however, you should use the inifile config type in your
parseConfig() call.

We manipulate the array passed back to us by toArray(). We change the filter-obscenity directive and create a new
directive called max-article-length.

We pass our array to the parseConfig() method of a new Config object. We need to pass the phparray config type to tell the
Config object to parse our array rather than a file. Finally, we output our new information to check that we have made
the changes we wanted:

[forum-configuration]
forum-name=Matt's Forum
[permissions]
allow-html-tags=no
uploads=55
allow-pictures=yes
[content]
filter-obscenity=1
include-newsfeeds=yes
max-article-length=500

We have only scratched the surface of the Config package, but you might already see the hours of programming it
could save you in your own projects. Even if you are never going to write or read a configuration file in your coding
career, these examples should illustrate the usefulness of the PEAR project. PEAR is a database of quality-controlled,
continually updated tools. It is designed to take the sweat and duplication out of working on PHP projects. It is very big,
and it is growing all the time.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

PEAR and Your Own Code
If you are starting out on your path as a PHP programmer, it might be a little too soon to start talking about authoring
your own PEAR package. Remember, though, that every package has its own maintainer and contributors, so there is
plenty of opportunity to get involved. If you are interested, you should read the relevant PEAR documentation at
http://pear.php.net/manual/en/developers.contributing.php.

Coding Standards

Whether you intend to contribute code to PEAR, you might be interested in the style guide to which contributors must
adhere. The strictures might not all be to your taste, but there are some very good practices. The PEAR standards
encourage programmers to use parentheses even where not strictly required, for example. So, leaving out the
parentheses in an if statement that has only one execution line is perfectly legal, as shown here:

if ( $length=5 )
  endLine();

However, it is safer and more readable to use the parentheses:

if ( $length = 5 ) {
  endLine();
}

As you glance through your code, picking out control structures is much easier if they are formatted consistently.

The style guide also advocates the use of meaningful return values, even from functions that do not need to return a
value to perform their task. A Boolean is a good choice here, returning true upon successful completion and false upon
error.

One principle that is not in the guide is as follows: Where possible, you should always return the same data type from a
function or method. This was impossible with PHP 4. PHP 4 PEAR classes often return a PEAR_Error object when a
problem occurs. Over time, PEAR libraries will likely throw exceptions in these circumstances, allowing functions to
return cleanly.

The guide recommends that you always use <?php ?> opening and closing tags. These are the only combinations that
you can be absolutely certain will be available with every PHP installation you encounter. You should code defensively.

By convention, you will find that C and Java comments (// and /* */) are favored over Perl/Shell-style comments (#).

You can read the full PEAR style guide at http://pear.php.net/manual/en/standards.php.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
The popularity of programming cookbooks is a testament to the amount of repetitive donkey work we all have to do to
support our projects. PEAR provides a fantastic resource upon which we can build. Don't forget to check
http://pear.php.net before you begin your next project. If you don't find what you need, perhaps you could consider
writing it yourself and submitting it to PEAR.

In this hour you learned about PEAR, the PHP Extension and Application Repository. You learned how to install PEAR
packages on your system using the Pear package manager. You learned how to use the Auth package to control access
to your site. You also learned about the PhpDocumentor package and how to add comments to your code to automate
documentation. You learned about the Config package, which is used to write, manipulate, and read Configuration files.
Finally, you looked at some of the coding standards to which PEAR programmers adhere.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: Are the PEAR packages stable?

A1: PEAR packages are being developed at different rates by many different developers, and PHP is a
constantly changing environment. Therefore, some packages are more mature than others. All code in
PEAR packages is of a high standard, but you should check the changelog of a package when you use it to
get a sense of the extent to which it is under development. Every package has its own page on the PEAR
site, which includes a link to the changelog.

Q2: How will the advent of PHP 5 impact PEAR?

A2: Many, if not all, of the PEAR packages are object-oriented, so the advent of PHP 5 is very exciting. In
particular, PEAR programmers are likely to begin using abstract classes, interfaces, and private and
protected methods. This does mean that there might be a period of transition for some packages as they
are modified. The end result should be more stable and powerful code. In particular, the PHPUnit package
for automated testing has already been completely rewritten for PHP 5.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: From the Unix command line, how would you install an imaginary PEAR package called MyPack?

2: Which method of the Auth class would you use to commence authentication?

3: What is the name of the PEAR object that some methods we have encountered return to indicate a problem
with execution?

4: Which tag would you use in a PhpDocumentor comment to describe an argument to a method?

5: Which flag would you pass to the phpdoc command-line script to ensure that private methods and properties
are documented?

6: A tree of configuration objects in the Config packages will all be of the same type. What is the name of the
class from which they will all be instantiated?

7: The PEAR style guide recommends that you should drop parentheses from control structures where it is
legal to do so. True or false?

Answers

A1: To install a package called MyPack using the command line, you would use pear install as follows:

pear install MyPack

A2: The Auth::start() method is used to commence authentication with the Auth package.

A3: The PEAR_Error object is often returned by a PEAR method when an error occurs.

A4: The @param tag is used to document method arguments.

A5: You would pass the flag -pp to phpdoc to ensure that private elements are documented, like so:

phpdoc -s from -pp on -t target

A6: The Config package builds trees of Config_Container objects.

A7: The PEAR style guide recommends that you include parentheses in control structures, even when you
don't strictly have to.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Look at the packages at http://pear.php.net. How many of them solve problems that you have had to address

yourself? How many will solve problems in your upcoming projects?

2. Choose a package that might be useful in your projects. Write a test script to try it. If the documentation on the
PEAR site could be more up-to-date, run PhpDocumentor on the source and look at the freshest documentation
there is.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Hour 24. Toward a Framework for Larger Projects
What You'll Learn in This Hour:

How to manage client requests with a controller class

How to find and run command classes based on a client request

How to select and serve views based on the return value of a Command class

How to implement views that work with the wider framework

With the introduction of PHP 5, there has been an explosion of interest in object-oriented design for PHP. There has
been much debate about the relevance to PHP of design patterns developed in the context of strongly typed object-
oriented languages such as C++ and Java. In this chapter we sidestep the theoretical discussion and look under the
hood of a simple open-source PHP implementation of the Front Controller pattern. In plain English, that means we are
going to look at some techniques for creating an object-oriented framework that could be used as the basis for larger
PHP projects.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Principles and Problems
If you have worked for any length of time with PHP, you are bound to have encountered the problem of structuring
larger projects. Because embedding PHP in HTML code is easy, the temptation is often to mix the logic of your
application with its presentation.

This soon causes a number of problems, however. You tend to find that you are copying and pasting code between files,
as the views in your project increase. When you add to your code, you suddenly find that you must repeat your
amendments across many pages. Some parts of your project might rapidly fall out of synchronization with others,
especially if you are working as part of a team.

Another problem of binding your logic and presentation is the difficulty for designers. You might be a master of all
trades, but on larger projects team members typically specialize. Designers want to concentrate on designing without
negotiating too many forests of control structures and thickets of quotation marks.

Most PHP programmers define a central set of code libraries and application functions and minimize the amount of code
that lives within the PHP pages themselves. The question remains, though, as to how a request flows. Should it flow
from the PHP presentation, up to a bank of functions? Many environments work in this way. The trouble with this
approach lies in duplication. Even if every PHP page delegates responsibility for handling the client's request to a library
function, you must still reproduce this delegation (the function call) and embed it in every page.

Many developers are now deploying an alternative structure, which is commonly used in object-oriented languages such
as Java. The so-called MVC (model-view-controller) pattern splits an application into tiers. The controller tier is
responsible for managing the messaging of an application. In a Web context, it handles an incoming request, delegates
objects to act on the request, and then delegates a view to present the response to the user. So, a request always is
routed to the same place—a controller object—and views vary according the nature of the request and of the success of
the script in responding to it.

To keep the structure flexible, you don't want the controller to be all-knowing about your application. If you had to
program in every action the system might need to take and every page the system will present, the controller object
would quickly become hard to manage. So, the MVC pattern presents some challenges. How do we interpret a request
and select an action? How do we use this flexibly, so that our code can be reused in different projects, and so we can
add new actions to our project with the minimum of difficulty?

Another challenge lies in dispatch. After the system has responded to a request, our controller needs to delegate to the
view tier. Somehow we need to map the actions the system takes, and the success (or otherwise) of those actions, to
views.

In this chapter, we concentrate on the challenges of the controller and view parts of the MVC pattern and address these
problems of command and dispatch. We will write some library code to demonstrate potential solutions, as well as some
toy code to illustrate our framework in action.

Along the way, we will take in a lot of PHP's new, advanced object-oriented features.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The Controller Object
In this hour we focus on a particular implementation of the MVC pattern. The so-called front controller pattern places a
single controller class at the heart of the system, where it fields requests, invokes commands, and dispatches views.

Although a controller object lies at the heart of our MVC system, it is also simple. Let's take a look at one. Listing 24.1
shows a stripped-down controller object, called Controller.php. We are going to maintain a crude package system based
on the directories that enclose our scripts. Controller.php belongs in the controller package.

Listing 24.1 The Controller Class

 1: <?
 2: // controller/Controller.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4: require_once 'controller/ApplicationResources.php';
 5: require_once 'controller/RequestHelper.php';
 6: require_once 'command/CommandFactory.php';
 7:
 8: class Controller {
 9:   private $applicationResources;
10:
11:   function __construct( ApplicationResources $res ) {
12:     $this->applicationResources = $res;
13:     $res->init();
14:   }
15:
16:   function handleRequest() {
17:     $command;
18:     $requestHelper = new RequestHelper( );
19:     $com_factory = $this->applicationResources->getCommandFactory();
20:     try {
21:       $command = $com_factory->getCommand( $requestHelper );
22:       $command->execute( $requestHelper );
23:       $this->applicationResources->getDispatcher()
24:           ->dispatch( $requestHelper );
25:     } catch ( Exception $e ) {
26:       throw $e;
27:     }
28:   }
29: }
30: ?>

Similar to the main() function in a C program, the Controller class sits above the action, commanding in broad sweeps and
letting lesser objects busy themselves in pursuit of detail. It is invoked by a simple index.php file that instantiates a
Controller object and calls handleRequest():

try {
   $controller = new Controller( new ApplicationResourcesImpl () );
   $controller->handleRequest();
} catch ( Exception $e ) {
  print "\n\nException reported: <br />\n<pre>\n";
  print_r( $e );
  print "\n</pre>\n\n";
}

Because the code in this hour is derived from a project that programmers
at Corrosive (my employer) have been working on, the code is itself open
source.

Every page shown contains a link to a license notice at
http://resources.corrosive.co.uk/pkg/qframe/license.txt.

You can also download the full code listing at
http://resources.corrosive.co.uk/pkg/qframe/qframe.tar.gz even though
the code is not designed for full deployment.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


I said that Listing 24.1 had been stripped down. So, what's missing? The comments have been removed. Library code
usually has comments for every class function and property. In many libraries, comments take as much as 30% of the
total source code.

Notice also that the catch clause on line 25 does nothing but rethrow the exception it catches. Letting all exceptions that
are generated by our system bubble right to the surface during development is useful. We don't want bugs hidden
behind a graceful failure, which is why we use print_r() in our index.php script to display any exception generated. We
could have omitted the try/catch clauses completely to achieve the same effect because uncaught exceptions are
automatically rethrown if they are not caught. However, we leave the catch clause in place as a reminder that we want
to implement more error handling.

So, what is going on in our Controller class? On line 11 our constructor requires an ApplicationResources object. We use a
subclass of ApplicationResources to initialize the system. It handles details such as setting up the username and password
for database access, as well as configuring a class that handles view dispatch. The ApplicationResources class itself is
declared abstract. The only thing the Controller class knows about is that it is guaranteed to have an init() method, which
kicks off configuration, and two methods for acquiring useful objects. These are the getDispatcher() method, which
returns a Dispatcher object, and the getCommandFactory() method, which returns a CommandFactory object. Devoid of
comments, the ApplicationResources class looks like this:

abstract class ApplicationResources {
  public abstract function init();
  public abstract function getDispatcher();
  public abstract function getCommandFactory();
}

We will look at our application-specific implementation later in the hour.

The Controller::handleRequest() method deals with the real business of the script. First, we instantiate a RequestHelper
object on line 18. RequestHelper acts as a context for the work that is done in the controller tier and caches the contents
of the $_REQUEST array, so request parameters can be overridden in tests or in a non-Web context. Commands use
RequestHelper to register their statuses and save information for use by views. The dispatcher logic uses the record held
by the RequestHelper object to determine which view to serve. We will look at the RequestHelper in more detail shortly.

We get an instance of a CommandFactory object from the ApplicationResources object on line 21. A CommandFactory is
responsible for examining a client's request and finding a Command to execute in response. If the CommandFactory fails to
generate a Command object, it throws an exception and flow moves to our catch block before we attempt to work with
the return value of the getCommand() method on line 22. Assuming that we are furnished with a Command object, we call
execute(). Command::execute() requires a RequestHelper object. Command objects leave a record of their names and return
values with the RequestHelper; this information is used by a Dispatcher object on line 24 to decide which page to serve.

If that summary leaves you confused, don't worry! We are going to discuss all these classes in this chapter. If you get
lost at any point, remember that the key to it all lies with the Controller object. You should be able to remind yourself
where a class fits at any time by returning to this example.

Let's get started with the RequestHelper class.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The RequestHelper and DataStore Classes
The RequestHelper class acts like a notice board for our application. Different objects leave messages on it that others
might find useful. This is a useful solution to the problem of sharing information between applications and tiers because
we allow information to move between objects that might otherwise have no knowledge of one another. Listing 24.2
shows our RequestHelper class.

Listing 24.2 The RequestHelper Class

 1: <?
 2: // controller/RequestHelper.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require 'command/DataStore.php';
 6:
 7: class RequestHelper {
 8:   private $params = array ();
 9:   private $commandArray = array ();
10:   private $datastore;
11:
12:   function RequestHelper( ) {
13:     $this->datastore = DataStore::getInstance();
14:     $this->params = $_REQUEST;
15:   }
16:
17:   function getCommand() {
18:     return $this->params['cmd'];
19:   }
20:
21:   function overrideParams ( $params ) {
22:     $this->params = $params;
23:   }
24:
25:   function getOrigParams() {
26:     return $_REQUEST;
27:   }
28:
29:   function getParams() {
30:     return $this->params;
31:   }
32:
33:   function saveVar( $name, $value ) {
34:     $this->datastore->setVar( $name, $value );
35:   }
36:
37:   function getVar( $name ) {
38:     return $this->datastore->getVar( $name );
39:   }
40:
41:   function getVars() {
42:     return $this->datastore->getVars();
43:   }
44:
45:   function setMessage( $message ) {
46:     $this->datastore->setMessage( $message );
47:   }
48:
49:   function registerCommand( $name, $status ) {
50:    $this->commandArray[] = array( $name, $status );
51:   }
52:
53:   function getCommandArray() {
54:     return $this->commandArray;
55:   }
56: }
57: ?>

As you can see, RequestHelper is really a housekeeper; it does not do anything at all flashy. On line 14 it sets a $params
property using the $_REQUEST array and allows user access to this array using the getParams() accessor method on line
29. Why have we put a wrapper around a perfectly good superglobal array? The reason is that we could override
$_REQUEST using the overrideParams() method on line 21 if we were testing the framework or running it from the

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


$_REQUEST using the overrideParams() method on line 21 if we were testing the framework or running it from the
command line.

RequestHelper provides convenient methods that provide access to a DataStore object. The DataStore class enables us to
store keys and values and make them available across the entire application. It is the main means by which commands
communicate data to the presentation layer. The RequestHelper acquires the application's DataStore object on line 13 and
provides the saveVar(), getVar(), and getVars() methods (lines 33–43) to register data with it and get data from it. The
setMessage() method on line 45 also works with the DataStore class. It really only calls the DataStore method of the same
name and sets a simple message that is made available to the presentation layer.

The RequestHelper class has one more role to play. Every Command object uses the registerCommand() method on line 49
to save its name and return value. The RequestHelper object saves this information to an array, which it makes available
on line 53 via the getCommandArray() method. You will later see how the Dispatcher object uses this information to select
a view to present to the client.

We have mentioned the DataStore object several times in this section. Listing 24.3 demonstrates it.

Listing 24.3 The DataStore Class

 1: <?php
 2: // command/DataStore.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: class DataStore {
 6:   private static $instance;
 7:   private $vars=array();
 8:
 9:   private function __construct() {
10:     // no access
11:   }
12:
13:   public static function getInstance() {
14:     if ( empty ( DataStore::$instance ) ) {
15:       DataStore::$instance = new DataStore();
16:     }
17:     return DataStore::$instance;
18:   }
19:
20:   function setMessage( $msg ) {
21:     $this->vars['message'] = $msg;
22:   }
23:
24:   function getMessage() {
25:     return $this->vars['message'];
26:   }
27:
28:   function setVar( $name, $value ) {
29:     $this->vars[$name] = $value;
30:   }
31:
32:   function getVar( $name ) {
33:     return $this->vars[$name];
34:   }
35:
36:   function getVars() {
37:     return $this->vars;
38:   }
39: }
40:
41: ?>

As you can see, the DataStore class does little more than provide an interface for storing and retrieving keys and values.
For good or ill, we take full advantage of PHP's loose typing and allow client coders to store data of any type in the
class.

The real reason we need this class as well as the RequestHelper class lies on line 9. Notice that we have declared our
constructor private, meaning that no one can directly instantiate a DataStore object. We provide a private static property
called $instance that stores a DataStore instance for us. We also provide a class-level mechanism by which client code can
gain access to a single instance of the DataStore class in the static getInstance() method on line 13. Because it is a static
method, getInstance() is called using the class, not via a DataStore object. If the $instance property is empty, as it is the
first time DataStore::getInstance() is called, the method instantiates a new DataStore object and stores it in the property.
Then the property is returned. A DataStore object is therefore always accessible anywhere in the framework by calling
DataStore::getInstance(). Most importantly, it also means that only one DataStore object exists and that all code works with
the same one. So, a command can save some data at one point during execution and a view can later access the same
data by acquiring the single DataStore instance that the system allows. This is known as the Singleton pattern.

We have now covered the two principle conduits for messages in our system. Refer to Listing 24.1 to remind yourself of
the RequestHelper class's first appearance on line 18; then let's move on to the CommandFactory class.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


the RequestHelper class's first appearance on line 18; then let's move on to the CommandFactory class.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The CommandFactory Class
An instance of the CommandFactory class is provided for the Controller class by the ApplicationResources object in Listing
24.1 on line 19. The Controller could instantiate its own CommandFactory, but by delegating object creation to the
ApplicationResources object, we provide it the opportunity to configure the CommandFactory for us.

You can see the CommandFactory class in Listing 24.4.

Listing 24.4 The CommandFactory Class

 1: <?
 2: // command/CommandFactory.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once 'controller/ApplicationResources.php';
 6:
 7:
 8: abstract class CommandFactory {
 9:   abstract function setDefaultCommand ( $str );
10:   abstract function getDefaultCommand ();
11:   abstract function getCommand( RequestHelper $helper );
12: }

The CommandFactory class is abstract; it defines the interface that CommandFactory implementations must follow. Most
importantly, we ensure that all CommandFactory classes implement a getCommand() method. Why did we define an
abstract class instead of simply providing an implementation? You will see the concrete class that we use in a moment,
but we also want to ensure that future applications could provide alternative or improved implementations within our
framework. By defining an abstract base class, we are building flexibility into our system.

In Listing 24.5, you can see SimpleCommandFactory, our CommandFactory implementation.

Listing 24.5 The SimpleCommandFactory Class

 1: <?
 2: // command/SimpleCommandFactory.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once 'command/CommandFactory.php';
 6: require_once 'controller/ApplicationResources.php';
 7:
 8: class SimpleCommandFactory extends CommandFactory {
 9:   private $packages = array();
10:   private $defaultCmd = "DefaultCommand";
11:
12:   function __construct() {
13:     array_push ( $this->packages, "command" );
14:   }
15:
16:   function addPackage( $package_str ) {
17:     array_push( $this->packages, $package_str );
18:   }
19:
20:   function setDefaultCommand( $str ) {
21:     $this->defaultCommand = $str;
22:   }
23:
24:   function getDefaultCommand() {
25:     return $this->defaultCommand;
26:   }
27:
28:   function getCommand( RequestHelper $helper ) {
29:     $cmd = $helper->getCommand();
30:     if ( empty( $cmd ) ) {
31:       $cmd = $this->getDefaultCommand();
32:     }
33:     return $this->getCommandByName( $cmd );
34:   }
35:
36:   private function getCommandByName( $cmd ) {

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


36:   private function getCommandByName( $cmd ) {
37:     foreach ( $this->packages as $package ) {
38:       $cmdpath = "$package/$cmd.php";
39:       if ( file_exists( $cmdpath ) ) {
40:         require_once $cmdpath;
41:         $cmd_obj = new $cmd();
42:         if ( $cmd_obj instanceof command ) {
43:           return $cmd_obj;
44:       }
45:     }
46:   }
47:   throw new CommandNotFoundException( "Command: $cmd not found" );
48:  }
49: }

The SimpleCommandFactory class maintains a private array called $packages, which contains a list of directories that can be
searched for Command classes. We populate it with a single default in the constructor on line 13, but we allow the client
coder to add new packages to search with the addPackage() method on line 16. We also manage a $defaultCommand string
property, which is settable and gettable using the setDefaultCommand() method on line 20 and the getDefaultCommand()
method on line 24.

The heart of the class is the getCommand() method on line 28. On line 29 we call a RequestHelper method—getCommand()—
which extracts a cmd request parameter. So, if the GET request to our framework included the name/value pair
cmd=AddTask, we would end up with a $cmd value containing the string AddTask here. If no command was provided, we
use the default command instead, storing it in the temporary $cmd variable.

We pass our $cmd variable to the private getCommandByName() method, which is on line 36. This loops through the
SimpleCommandFactory::$packages array, searching in each directory for a file with the same name as the $cmd string. If
such a file is located, we use require_once() on line 40 to access it and then instantiate an object of the command's
name. We check that the object is of the type Command before returning it on line 43.

So, for a command to be run, it must exist in one of the packages known by the SimpleCommandFactory object. The
filename and the Command object must share exactly the same name. If we were given an "AddTask" command, the
SimpleCommandFactory object would look in the command directory for a file called AddTask.php. It would then use
require_once() to include the file and attempt to instantiate a class called AddTask.

If no AddTask.php file were found, or if such a file were found but it did not contain an AddTask class derived from
Command, we would eventually return a CommandNotFoundException on line 47. This an empty class derived from the
built-in Exception class, and it serves as a flag for the Controller class.

At heart, the SimpleCommandFactory class is very simple—it translates strings into Command objects.

Now that you know how to find acquire Command objects, we should spend some time discussing the Command class.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The Command Class
Command objects enable your framework to grow flexibly. You can simply drop a class that derives from the Command
parent class into a command directory and it automatically becomes available to the system. Listing 24.6 demonstrates
the Command class.

Listing 24.6 The Command Class

 1: <?
 2: // command/Command.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: abstract class Command {
 6:   const CMD_SUCCESS = 200;
 7:   const CMD_UNPROCESSED = 400;
 8:   const CMD_ERROR = 500;
 9:
10:   final function execute( RequestHelper $requestHelper ) {
11:     $status = $this->doExecute( $requestHelper );
12:     $requestHelper->registerCommand( get_class( $this ), $status );
13:     return $status;
14:   }
15:
16:   abstract protected function doExecute( RequestHelper $requestHelper );
17: }

The Command class is abstract, and a system will likely define many concrete classes that implement it. On lines 6–8 we
define three constants. CMD_SUCCESS, CMD_UNPROCESSED, and CMD_ERROR are flags that can be used to signify the
execution status of a command.

The execute() method on line 10 is declared final. It contains functionality that all Command classes should have, so we do
not want child classes overriding this and providing their own implementation.

execute() requires a RequestHelper object, which we pass on in a call to the abstract doExecute() method. This practice of
calling an abstract method from a concrete one is known as the template method pattern. We force all Command child
classes to implement a doExecute() method (by declaring doExecute() abstract). We then call the method from execute()
and work with the return value, even though doExecute() exists only as a declaration. We expect doExecute() to return an
integer (usually one of the constant flags we declared at the start of the class), and we pass this return value and the
name of the class to RequestHelper::registerCommand() on line 12.

So, when the execute() method of a Command child class is called, its doExecute() method is invoked and RequestHelper is
automatically updated. The child class need only implement doExecute() and return a sensible value for all this to
happen.

We want to ensure that the only route to doExecute() is via the execute() method, so we declare doExecute() protected.
This means that only other commands can invoke doExecute().

Let's return to our Controller class in Listing 24.1 for a recap. The controller instantiates a RequestHelper object and
passes it to a CommandFactory object's getCommand() method. The CommandFactory object uses the RequestHelper object to
return a Command object, and the Controller object calls the Command object's execute() method, passing it the
RequestHelper object. The Command object then invokes its doExecute() method and registers its own name and the
doExecute() method's value with RequestHelper.

At this stage, we have processed the user's request, decided which command should take on the job, and invoked the
command. The command should have completed its work and registered a status. Incidentally, it probably has used the
DataStore object to save data the presentation layer might use later.

So, how are we going to translate all this processing into an interface for our user?

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

The Dispatcher Class
The Dispatcher class is provided to the Controller by the ApplicationResources object. We cover a particular implementation
in this section, but we have used an abstract base class again to allow for more sophisticated solutions. The abstract
Dispatcher class is shown in Listing 24.7.

Listing 24.7 The Dispatcher Class

 1: <?php
 2: // controller/Dispatcher.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once 'controller/RequestHelper.php';
 6:
 7:
 8: abstract class Dispatcher {
 9:   private $views;
10:
11:   function __construct( $view_dir ) {
12:     $this->views = $view_dir;
13:   }
14:
15:   abstract function getNext( RequestHelper $helper );
16:
17:   function dispatch( RequestHelper $requestHelper ) {
18:     $next = $this->getNext( $requestHelper );
19:     $view = "{$this->views}/$next";
20:
21:     if ( ! is_file ( $view ) ) {
22:       throw new DispatchException("cannot open $view");
23:     }
24:
25:     include( $view );
26:     exit;
27:   }
28: }

In the constructor on line 11, we demand a string argument that we store in the $views property. This represents the
directory where presentation files should be stored. The Dispatcher class defines two methods besides the constructor.
The first, getNext() (line 15), is abstract and left to client classes to implement. The second method is dispatch() (line 17),
which demands a RequestHelper object and handles the mechanics of delegating to the view tier. We call getNext() to get
access to a string reference to the view we want to present. We then test that the view exists on the file system and
that it is a file. If the view cannot be found, or if it is a directory, we throw a DispatchException on line 22.
DispatchException is simply an empty class that extends the built-in Exception class. If no problems are encountered, we
simply include the file, handing responsibility over to the presentation layer. Our work here is done!

Of course, we have yet to implement the getNext() method. What is the logic by which we choose which view to present
to the user? Well, our Dispatcher object has access to a primed RequestHelper object. We know that this maintains an
array of command names, each one paired with an execution status. This provides enough information to build a logic
for dispatch.

In formulating this logic, we have two options. First, we could provide a mechanism for mapping a single command and
status combination with a page. Second, we could provide a mechanism for mapping any or all commands and status
flags in the array to pages.

Remember that Command objects register themselves and their execution statuses whenever they are called, by calling
RequestHelper::registerCommand(). If one Command object invokes another, which in turn invokes a third Command object,
we could end up with an extensive list in the RequestHelper object's $commandArray property. We are going to map a view
of only the combination of the first Command called and its status flag in this example. We will, however, discuss a more
flexible mechanism a bit later.

Listing 24.8 shows the SimpleDispatcher class, which provides a workable solution for mapping command execution to
presentations.

Listing 24.8 The SimpleDispatcher Class

 1: <?
 2: // controller/SimpleDispatcher.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require 'controller/Dispatcher.php';
 6:
 7: class SimpleDispatcher extends Dispatcher {
 8:   private $dispatchHash = array();
 9:
10:   function addCondition( $cmd, $target, $status=-1 ) {
11:     $cmd = strtolower ( $cmd );
12:     if ( $status > 0 ) {
13:       $this->dispatchHash[ "$cmd.$status" ] = $target;
14:     } else {
15:       $this->dispatchHash [ "$cmd" ] = $target;
16:     }
17:  }
18:
19:  function getNext( RequestHelper $helper ) {
20:    list( $cmd, $status ) = array_pop( $helper->getCommandStack() );
21:    $key = "$cmd.$status";
22:    $view = $this->dispatchHash[$key];
23:    if ( empty ( $view) ) {
24:      $view = $this->dispatchHash[$cmd];
25:    }
26:    return $view;
27:   }
28: }
29: ?>

The SimpleDispatcher class handles two things: It implements getNext() and a method called addCondition(), which enables
client code to establish the mapping between commands, command status flags, and pages on the system.

addCondition() requires the name of a command (that is, the name of a class that extends Command class), the path to
the view to which the command should be mapped, and optionally an execution flag. Let's work through a quick
example. Imagine a Command class called AddTask. A single command can have a number of views according to the way
it executes. First, the AddTask command can be called with no data at all. The command might decide that it should do
nothing in this case and return Command::CMD_UNPROCESSED. Given a SimpleDispatcher object stored in the variable
$simpleDispatcher, we might set up the scenario like this:

$simpleDispatcher->addCondition( "AddTask",
                 "addtaskform.php",
                 Command:CMD_UNPROCESSED);

We are saying that we would like the addtaskform.php view presented when AddTask returns CMD_UNPROCESSED. This
would typically be when the user arrives at the AddTask context for the first time.

When AddTask successfully completes a mission, it might return Command::CMD_SUCCESS. We would no longer want to
present a form in this context, so we would set up a new mapping for this:

$simpleDispatcher->addCondition( "AddTask",
                 "thankyou.php",
                 Command:CMD_SUCCESS );

If we don't want to define specific pages for all combinations, we can also set a backstop condition. We do this by
omitting the status flag argument:

$simpleDispatcher->addCondition( "AddTask", "error.php");

This means that the error.php page is included for all combinations for which no provision has been made. This
mechanism is crude but surprisingly flexible.

Let's look again at our addCondition() method. How do we store the conditions provided? In fact, we populate a private
associative array property called $dispatchHash. If we are provided with a status flag, we use it and the command name
separated by a period as an element key with the target path as the value. So

$simpleDispatcher->addCondition( "AddTask",
                 "thankyou.php",
                 Command:CMD_SUCCESS );

is equivalent to the following:

$dispatchHash["addtask.200"]="thankyou.php";

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


If we are not provided with a status flag, we change our $dispatchHash element accordingly. So

$simpleDispatcher->addCondition( "AddTask", "error.php");

is equivalent to this:

$dispatchHash["addtask"]="error.php";

In this way, client code can use addCondition() to build up a complete map linking command execution and page
presentation.

The getNext() method is declared on line 19 and uses the $dispatchHash array to return the correct page for the current
circumstance. On line 20 we call RequestHelper::getCommandArray() to get the record of all commands executed. We
acquire the details of the first command called, the primary command, using the array_pop function. First, we attempt to
reproduce a specific condition on line 21 by combining the recorded command name with the status flag. If the
$dispatchHash property is empty for this combination, we attempt to find a backstop target on line 24 by using the
command name alone.

With these few classes we have laid the groundwork for a framework we could use and reuse in building applications. In
the next section, we add some classes so you can see the framework in action.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Working with the Framework
The work we have done so far deals with central control, command selection, and view dispatch. Although we have
examined the source code in detail, getting a sense of the code's functionality is difficult without trying it first.

We are going to build a very basic example. We'll create code for extracting task data from, and adding task data to, a
database, concentrating on two views and two commands.

We will use a MySQL database and a task table that can be created with the following statement:

CREATE TABLE tasks (
 id int(11) NOT NULL auto_increment,
 summary varchar(255) default NULL,
 description text,
 person varchar(255) default NULL,
 PRIMARY KEY (id)
);

You might want to refer to Listing 24.1 to remind yourself of the way the program flow works. Notice that initialization
is handled by an ApplicationResources object.

Implementing ApplicationResources

In Listing 24.9 we create an application-specific ApplicationResources class called ApplicationResourcesImpl.

Listing 24.9 The ApplicationResourcesImpl Class

 1: <?php
 2: // controller/ApplicationResourcesImpl.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once 'controller/ApplicationResources.php';
 6: require_once 'controller/SimpleDispatcher.php';
 7: require_once 'command/DataStore.php';
 8: require_once 'command/Command.php';
 9: require_once 'command/SimpleCommandFactory.php';
10:
11: class ApplicationResourcesImpl extends ApplicationResources {
12:   private $dispatcher;
13:   private $commandfactory;
14:
15:   function __construct() {
16:     $this->dispatcher = new SimpleDispatcher( "views" );
17:     $this->commandfactory = new SimpleCommandFactory();
18:   }
19:
20:   function init() {
21:     $this->commandfactory->addPackage("my_commands");
22:     $this->commandfactory->setDefaultCommand( "MyDefault" );
23:     $this->setupDispatcher();
24:     $this_>primeDatabase();
25:   }
26:
27:   function primeDatabase() {
28:     $user = "p24_user";
29:     $pass = "cwaffie";
30:     $host = "localhost";
31:     $database = "p24";
32:
33:     $dsn = "mysql://$user:$pass@$host/$database";
34:     $store = DataStore::getInstance();
35:     $store->setVar( "dsn", $dsn );
36:   }
37:
38:   function setupDispatcher() {
39:     $success = Command::CMD_SUCCESS;
40:     $unproc = Command::CMD_UNPROCESSED;

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


40:     $unproc = Command::CMD_UNPROCESSED;
41:     $error = Command::CMD_ERROR;
42:
43:     $this->dispatcher->addCondition( "MyDefault", "main.php" );
44:     $this->dispatcher->addCondition( "MyDefault", "error.php", $error );
45:     $this->dispatcher->addCondition( "AddTask", "add.php" );
46:     $this->dispatcher->addCondition( "AddTask", "main.php", $success );
47:     return true;
48:   }
49:
50:   function getDispatcher() {
51:     return $this->dispatcher;
52:   }
53:   function getCommandFactory() {
54:     return $this->commandfactory;
55:   }
56: }
57: ?>

The ApplicationResourcesImpl class sets up our application for us. We know that the Controller needs objects of type
CommandFactory and Dispatcher, and it is here that we can choose which implementations to provide. In our constructor
on line 15, we instantiate a SimpleDispatcher object and a SimpleCommandFactory object—both of which we store as
properties.

The real work of the class takes place in the init() method on line 20. This is called by the Controller at the start of
application flow. We call the CommandFactory::addPackage() method to register our own commands directory,
my_commands, with the system on line 21. We also set a default command string by calling the setDefaultCommand()
method, completing the configuration of our CommandFactory object. From here, it will be smart enough to find any
command objects we drop into the my_commands directory.

To configure our SimpleDispatcher object, we call a utility function called setupDispatcher(), which is declared on line 38. We
set up a number of conditions between lines 43 and 47. As you can see, we are working with two commands: MyDefault,
which provides the default action of listing all tasks in the database, and AddTask, which handles the adding of task data
to the database. In both cases, we set up default views. The MyDefault command is associated with a file called main.php
by default. Only if an error occurs (that is, if MyDefault::doExecute() returns Command::CMD_ERROR) is another document
—error.ph—served. The AddTask command is associated with a document called add.php by default. If the command
reports a success, however, this command uses the main.php template, too.

After calling setUpDispatcher() on line 23, we call another convenience method: primeDatabase().primeDatabase() is declared
on line 27 and creates a DSN as used by the PEAR::DB package. This is then registered with the system's DataStore
object on line 35. This will be used later to connect to our database.

Finally, we implement the getDispatcher() and getCommandFactory() methods on lines 50 and 53.

When our Controller object runs, it at least has some real objects to work with. We have yet to define our commands and
views. Before we get into that, though, let's think briefly about our application's model.

The TaskFacade Object

In this example we are not implementing an entire MVC pattern. We are concentrating on the view and controller tiers
(especially the controller tier). In a full MVC pattern example, we would create business objects to represent the data
and relationships within our system. We would need to implement a strategy for making these objects persist, and
probably a facade object or a series of facade objects to simplify communication with them from the control/command
tier. The various structures and techniques for this are beyond the scope of this chapter. We can, however, build a
simple TaskFacade class whose job it is to work with the database to get and set task data. The TaskFacade class is
demonstrated in Listing 24.10.

Listing 24.10 The TaskFacade Class

 1: <?php
 2: // facade/TaskFacade.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once 'DB.php';
 6:
 7: class TaskFacade {
 8:   private $db_common;
 9:
10:   function __construct() {
11:     // throws Exception from getConnection()
12:     $this->db_common = $this->getConnection();
13:   }
14:
15:   private function getConnection() {
16:     $data = DataStore::getInstance();

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


16:     $data = DataStore::getInstance();
17:     $dsn = $data->getVar("dsn");
18:     if ( empty( $dsn) ) {
19:       throw new TaskFacadeException ( "There should be a 'dsn'" );
20:     }
21:     $connection = DB::connect ( $dsn );
22:     if (DB::isError( $connection) ) {
23:       throw new TaskFacadeException( $connection->getMessage() );
24:     }
25:     return $connection;
26:   }
27:
28:   private function selectQuery( $query) {
29:     $result = $this->db_common->query( $query );
30:     if ( $result instanceof db_error ) {
31:         throw new TaskFacadeException( $result->getMessage() );
32:     }
33:
34:     $ret = array();
35:     while ( $row = $result->fetchRow( DB_FETCHMODE_ASSOC ) ) {
36:       foreach( $row as $key=>$val ) {
37:         $row[$key] = stripslashes( $val );
38:       }
39:       $ret[] = $row;
40:     }
41:     return $ret;
42:   }
43:
44:   function getTask( $id ) {
45:     $query = "SELECT * FROM tasks WHERE id=$id";
46:     // throws excption from selectQuery
47:     return $this->selectQuery( $query );
48:   }
49:
50:    function getTasks() {
51:      $query = "SELECT * FROM tasks";
52:      // throws excption from selectQuery
53:      $result = $this->selectQuery( $query );
54:      return $result;
55:   }
56:
57:    function setTask( $data_array ) {
58:      if ( ! is_array ( $data_array )) {
59:        throw new TaskFacadeException( "setTask() requires an array" );
60:      }
61:
62:      if (  empty( $data_array['summary'] ) ||
63:          empty ( $data_array['person'] ) ) {
64:        throw new TaskFacadeException( "setTask(): missing data" );
65:      }
66:      $fields = array( "person", "summary", "description" );
67:      foreach ( $fields as $key ) {
68:       $add_array[$key] = $data_array[$key];
69:      }
70:
71:      $data_array['id'] = $this->db_common->nextId("tasks");
72:      $result = $this->db_common->autoExecute( "tasks", $add_array,
73:          DB_AUTOQUERY_INSERT );
74:      if ( $result instanceof db_error ) {
75:          throw new TaskFacadeException( $result->getMessage() );
76:      }
77:      return true;
78:   }
79: }
80:
81: class TaskFacadeException extends Exception { }
82:
83: ?>

The TaskFacade class should be easy to read by now. In essence, we do no more than use the PEAR::DB package to work
with the tasks database. The constructor is declared on line 10 and calls the private getConnection() method to acquire a
PEAR::DB_Common object. getConnection() calls DB::connect() in the usual way. Notice how we acquire our DSN from the
system's DataStore object, using the getVar() method. If the DSN is not found, we throw a TaskFacadeException object.
Because the constructor does not catch any Exception objects, the TaskFacadeException thrown by getConnection() is
rethrown to the calling code. All operations in this class that might fail protect themselves with Exception objects in this
way.

The public methods used by Command objects are getTask() (line 44), getTasks() (line 50), and setTask() (line 57). These

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


The public methods used by Command objects are getTask() (line 44), getTasks() (line 50), and setTask() (line 57). These
do exactly what you would expect. The getter methods construct SQL statements for extracting data, and the setter
method uses the DB_Common::autoExecute() method to automate the data insert.

Now that we have some code to talk to our database, we can implement some Command objects.

The Command Classes

All the hard work has already been done, so we will find the Command classes quite simple. Listing 24.11 shows the
MyDefault class.

Listing 24.11 The MyDefault Class

 1: <?php
 2: // my_commands/MyDefault.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once "command/Command.php";
 6: require_once "facade/TaskFacade.php";
 7:
 8: class MyDefault extends Command {
 9:
10: function doExecute( RequestHelper $requestHelper ) {
11:   $requestHelper->setMessage( "welcome" );
12:   $taskfacade = new TaskFacade();
13:   $tasks = $taskfacade->getTasks();
14:   $requestHelper->saveVar( "tasks", $tasks );
15:
16:   return CMD_SUCCESS;
17:  }
18: }
19: ?>

The MyDefault class only implements the doExecute() class. We call RequestHelper::setMessage() on line 11 to welcome the
user. We then instantiate a TaskFacade object on line 12 and call getTasks() on line 13 to get an array containing all the
task information in the database. We pass this on to the system's DataStore object via the RequestHelper object's
convenience method, saveVar(). Finally, we return CMD_SUCCESS.

The AddTask class is only slightly more involved than MyDefault (see Listing 24.12).

Listing 24.12 The AddTask Class

 1: <?php
 2: // my_commands/AddTask.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5: require_once "command/Command.php";
 6: require_once "my_commands/MyDefault.php";
 7: require_once "facade/TaskFacade.php";
 8:
 9: class AddTask extends Command {
10:
11:   function doExecute( RequestHelper $requestHelper ) {
12:
13:     $params = $requestHelper->getParams();
14:
15:     if ( empty ( $params['addtask_submit'] ) ) {
16:       $params = $requestHelper->setMessage("enter task details");
17:       return CMD_UNPROCESSED;
18:     }
19:
20:     if (  empty( $params['summary'] ) ||
21:         empty( $params['person'] ) ) {
22:       $requestHelper->setMessage("All fields mandatory");
23:       return CMD_ERROR;
24:     }
25:     $taskfacade = new TaskFacade();
26:     $taskfacade->setTask( $params );
27:     $cmd = new MyDefault();
28:     return $cmd->execute( $requestHelper );
29:   }
30: }
31: ?>

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


31: ?>

The AddTask::doExecute() method behaves differently according to the client's submission. Remember that we can get an
array of request elements from RequestHelper::getParams(). We test for a flag argument called "addtask_submit". If this is
not present, we assume that we are not being called to act and return CMD_UNPROCESSED on line 17.

If the "addtask_submit" flag is present, we must assume that we are being asked to handle data. We test the incoming
data for the essential "summary" and "person" fields on line 20. If one of them is not present, we use
Request::setMessage() to report the error to the user and return CMD_ERROR.

If all our checks have worked, we instantiate a TaskFacade() object on line 25 and call setTask(), passing it the user input
array.

Finally, we instantiate a MyDefault object and call its execute() method. This ensures that the user can see an updated list
of tasks.

Now all we need to do is create the views for the application.

The Views

All the underlying work is now done. In this section we give the application a face. If all has gone well, the views in our
system should be programmatically simple. They will have a few loops and variables to be sure, but all the logic should
be tucked away neatly. In our system, our views have an implicit contract with the system. They won't interfere with
the intricacies of program logic, and in return they have a right to expect that the DataStore object will be primed with
the data they need to do their job of presenting information.

Listing 24.13 contains main.php, the default view for our system.

Listing 24.13 The Main View

 1: <?php
 2: // views/main.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5:   $data = DataStore::getInstance();
 6:   $tasks = $data->getVar( "tasks" );
 7: ?>
 8: <!DOCTYPE html PUBLIC
 9:    "-//W3C//DTD XHTML 1.0 Strict//EN"
10:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
11: <html>
12: <head>
13: <title>The Task List</title>
14: </head>
15: <body>
16: <div>
17:
18: <h3> <?php print $data->getMessage(); ?> </h3>
19:
20: <p>
21: <b>The tasks</b><br />
22: <a href="?cmd=AddTask">add a task</a>
23: </p>
24: <table border="1">
25: <tr><td><b>owner</b></td><td><b>summary</b></td></tr>
26: <?php
27: foreach ( $tasks as $task ) {
28: print <<<TASK
29:   <tr>
30:   <td>{$task['person']}</td><td>{$task['summary']}</td>
31:   </tr>
32: TASK;
33: }
34: ?>
35: </table>
36: </div>
37: </body>
38: </html>

The DataStore object is the main means by which views gain access to data generated by the system, and we acquire
the object on line 5 using the static getInstance() method. DataStore is an example of a Singleton object, and only one of
them exists in a process at the same time. We acquire an array of task data on line 6 using the getVar() method.

We print any message that has been left with DataStore on line 18. In a real-world application, we would probably use a
helper function to test that a message exists before including any formatting. We would also use an include statement to
output the message data because it is likely to be something that will be needed on most view pages.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


output the message data because it is likely to be something that will be needed on most view pages.

Notice our navigation on line 22. By passing a cmd parameter of 'AddTask' to the Controller, a click on the hyperlink
causes the AddTask command to be run and the Dispatcher to switch the view.

On line 27 we loop through the $task array, outputting each row to the browser.

You can see the view presented by main.php in Figure 24.1.

Figure 24.1. The main view.

Finally, let's take a quick look at the add.php view. This simply presents a form so the user can add task information
(see Listing 24.14).

Listing 24.14 The Add View

 1: <?php
 2: // views/add.php
 3: // qframe license: http://resources.corrosive.co.uk/pkg/qframe/license.txt
 4:
 5:   $data = DataStore::getInstance();
 6: ?>
 7: <!DOCTYPE html PUBLIC
 8:    "-//W3C//DTD XHTML 1.0 Strict//EN"
 9:    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
10: <html>
11: <head>
12: <title>Add a task</title>
13: </head>
14: <body>
15: <div>
16:
17: <h3> <?php print $data->getMessage(); ?> </h3>
18:
19: <form method="post" action="index.php" />
20: <input type="hidden" name="cmd" value="AddTask" />
21: <input type="hidden" name="addtask_submit" value="true" />
22: <p>Your name<br />
23: <input type="text" name="person" value="<?php print $_REQUEST['name'] ?>" />
24: </p><p>Task summary<br />
25: <input type="text" name="summary"

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


25: <input type="text" name="summary"
value="<?php print $_REQUEST['summary'] ?>" />
26: </p>
27: <p> <input type="submit" value="add task" /> </p>
28: </form>
29: <p>
30: </div>
31: </body>
32: </html>

There is little new to see in view.php. Notice again that we acquire a DataStore object and output any user message to
the browser. The only other features of interest are our hidden form inputs on lines 20 and 21. By sending a cmd
parameter with an "AddTask" value on line 20, we ensure that our form submission is sent back to the AddTask
command. It is the 'cmd' argument that the CommandFactory uses to select a command for execution. Also of note is the
"addtask_submit" field, which is used by the AddTask command to confirm that we want our data to be processed.

You can see the add.php view in action in Figure 24.2.

Figure 24.2. The Add Task view.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Where Now, and Was It Worth It?
The code presented in this chapter is not intended as a framework that can be downloaded and used as is. Much more
complete and flexible projects are available that you might consider if you are looking for a framework to use from a
client coder's perspective.

If you are interested in using a downloaded framework for your PHP code, several projects are available that might be
worth evaluating, including Phrame (http://sourceforge.net/projects/phrame) and php.MVC (http://www.phpmvc.net/).

The main objective of this chapter has been to demonstrate some of the issues involved in building larger applications
and to point to a few possible solutions, taking in some object-oriented techniques along the way. In particular, we
have examined a mechanism for adding new commands to an application flexibly. You have learned some techniques
for displaying views as a result of command execution, without embedding the responsibility for presentation in the
commands themselves.

The ideas presented in this hour are by no means new. If you are interested in pursuing these topics further, there are
some places you can visit to get more ideas.

Unsurprisingly, Java programmers are very much concerned with object-oriented design. Now that PHP has moved
toward greater support for object-orientation, PHP coders can benefit greatly from the experiences of their colleagues in
the world of Java. The J2EE patterns site at http://java.sun.com/blueprints/corej2eepatterns/index.html has more
information on all the techniques described in this chapter.

After the framework is written, applications can be developed relatively smoothly using a framework of this sort, but it
has to be admitted that our code expends a lot of resources before we even implement an application. This chapter has
implemented a design pattern known as a Front Controller—that is, we have routed all requests through a central
switchboard object. A strong body of opinion argues that the Front Controller pattern is wrong for PHP applications. It is
argued that this approach is resource hungry and relatively inflexible. This position is eloquently summed up by Harry
Fuecks at http://www.phppatterns.com/index.php/article/articleview/81/1/1/.

Whatever conclusion you draw, I hope that you have found the techniques examined in this chapter useful and
interesting.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Summary
In this chapter, we moved away from language features and delved into the world of object-oriented design. You
learned how to create a Controller class to process requests from a client. You also learned how to select Command
objects using a CommandFactory class and how to implement Command classes. Finally, you learned how to create a
Dispatcher class to manage the deployment of views.

I very much hope that you have enjoyed reading this book as much as I have enjoyed writing it.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Q&A

Q1: You mentioned that there were more sophisticated models for managing dispatch. Did you
have anything in mind?

A1: One of the problems with the dispatch logic presented in this hour is that it works only with the first
command called by the Controller. This is not as flexible as it might be. A better solution would be to take
into account every command called together with its return value. This would enable you to map
templates to complex combinations of commands. One way of managing something like this would be to
represent the commands and return values in XML as a DOM object and to implement code in XSLT to
match different command/status combinations.

Q2: Well, that's it. What next?

A2: Now it's up to you. This book contains enough information for you to build your own sophisticated scripts
and environments. Armed with this and the wealth of information available online, there should be no
stopping you! If this book has been a good starting point for you, you might want to consider some books
that take up where we must leave off. In particular, you might like to take a look at The PHP Developer's
Cookbook by Sterling Hughes and PHP and MySQL Web Development by Luke Welling and Laura Thomson.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Workshop

Quiz

1: We did not want our Command::execute() method to be overridden by code in child classes. How did we
enforce this?

2: Briefly, how did we ensure that there was only one DataStore object in our system at any one time?

3: We said that the practice of a method calling and using abstract methods defined in the same class was an
example of a design pattern. What was its name?

4: Which keyword did we use to check that an object we had instantiated belonged to the Command family?

5: How did we ensure that our Command class status flags were unchangeable and available via the class rather
than particular object instances?

Answers

A1: You can prevent a child class from overriding a method by declaring it final.

A2: We made the DataStore object a Singleton. That is, we made its constructor private so a DataStore object
could be instantiated only by a static method in the DataStore class itself. The static method can ensure
that it returns only the same single instance of a DataStore object when it is called.

A3: A method calling and using abstract methods defined in the same class is an example of the template
method pattern.

A4: We can use instanceof to test the type of an object.

A5: You can declare constant properties with the const keyword. A constant property is unchangeable at
runtime and is available via the class rather than object instances.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]  

Exercises
1. Review the code presented in this hour. Are there any techniques or issues that might have relevance for your

own projects?

2. Get a version of the code in this chapter running on your server. Add Command classes to allow the user to edit
tasks. Don't forget to update the ApplicationResourcesImp class and add new views.

3. Flip back through the book and through your notes if you have been making them. If you have followed the
book as a course, remember that you should revisit your notes a few times to get the full benefit from the work
you have done.

[ Team LiB ]  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

Glossary
.htaccess file

A document read by the Apache server that can contain certain server directives. The server administrator can
control which available directives (if any) are allowed to be set in a .htaccess file on a directory-by-directory
basis. If allowed, directives can affect the current directory and those below it. .htaccess files can contain PHP
directives prefixed by php_flag or php_value. The .htaccess file can also be used to set an AddType directive that
can change the extension associated by the server with PHP documents.

abstract class

A class that is partially implemented and explicitly declared as such. Unimplemented methods are declared
abstract and consist of method signatures only. Classes that extend abstract classes must implement all
abstract methods or be declared abstract themselves.

anonymous function

A function that is created on-the-fly during script execution and stored in a variable or passed to other
functions.

argument

A value passed to a function or method. Arguments are included within the parentheses of a function call. User-
defined functions include comma-separated argument names within the parentheses of the function definition.
These arguments then become available to the function as local variables.

array

A list variable. That is, a variable that contains multiple elements indexed by numbers or strings. It enables you
to store, order, and access many values under one name. An array is a data type.

associative array

An array indexed by strings.

atom

With reference to regular expressions an atom is a pattern enclosed in parentheses (often referred to as a
subpattern). After you have defined an atom, you can treat it as if it were itself a character or character class.

Boolean

A data type. Booleans can contain one of the special values true or false.

bounds

The number of times a character or range of characters should be matched in a regular expression.

break statement

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


break statement

Consists of the keyword break. It forces the immediate end of a for or while loop iteration, and no further
iterations of the loop take place.

cast

The process by which one data type is converted to another.

class

A collection of special functions called methods and special variables called properties. You can declare a class
with the class keyword. Classes are the templates from which objects are created.

color resource

A special value of the data type resource. It is returned by the imagecolorallocate() function and passed to other
image manipulation functions, which can then work with the specified color.

comment

Text in a script that is ignored by the interpreter. Comments can be used to make code more readable or to
annotate a script.

comparison operator

In the form ==, this operator compares two operands and tests for equivalence. It resolves to the Boolean true
value if the two operands are equivalent and false otherwise. In the form ===, the operator tests two object
variables, returning true only if both variables are references to the same object.

constant

Outside of a class, a constant is a value that is set with the define() function and does not change throughout the
execution of a script. A constant is global in scope and can be only a number or string. In the context of a class,
a constant is a special property declared with the const keyword. A constant property cannot be changed at
runtime and is available via the class rather than a class instance.

constructor

A special method that is automatically called when an object is instantiated.

continue statement

Consists of the keyword continue. It forces the immediate end of the current for or while loop iteration. Execution
begins again from the test expression (in for loops the modification expression is executed first) and the next
loop iteration is begun if the expression resolves to true.

conversion specification

Contained within a format control string, a conversion specification begins with a percent (%) symbol and
defines how to treat the corresponding argument to printf() or sprintf(). You can include as many conversion
specifications as you want within the format control string, as long as you send an equivalent number of
arguments to printf().

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


cookie

A small amount of data stored by the user's browser in compliance with a request from a server or script.

data type

Different types of data take up different amounts of memory and behave in different ways when operated on. A
data type is the named means by which these different kinds of data are distinguished. PHP has eight data
types: integer, double, string, Boolean, object, array, resource, and NULL.

DBA

Database abstraction layer. These functions are designed to provide a common interface to a range of file-
based database systems.

DBA resource

A special value of the data type resource. It is returned by the dba_open() function and passed to other DBA
functions, which can then work with the open database.

DBM

Database manager. DBM and DBM-like systems enable you to store and manipulate name/value pairs on your
system.

destructor

A special method automatically invoked just before an object is removed from memory.

document object model (DOM)

A means of accessing an XML document that involves the generation of a tree of nodes organized as parents,
children, and siblings.

document type definition (DTD)

A set of rules that determines which XML elements can be used in which order for an XML document. A
validating XML parser reads a DTD and enforces the rules it describes.

double

A data type. Also known as a float, a floating-point number, or a real number, a double is defined by The Free
On-line Dictionary of Computing as "a number representation consisting of a mantissa [the part after the
decimal point], ... an exponent, ... and an (assumed) radix (or "base")." For the purposes of this book, you can
think of a double as a number that can contain a fraction of a whole number—that is, a number with a decimal
point.

else statement

It can be used only in the context of an if statement. The else statement consists of the keyword else and a
statement (or series of statements). These statements are executed only if the test expression of the
associated if statement evaluates to false.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


entity body

The substance of a document returned by a server to a client. An entity body can also be sent by a client to a
server as part of a POST request.

escape

The practice of removing special significance from characters within strings or regular expressions by preceding
them with a backslash character (\).

exception

A special object that can be thrown by a method with the throw keyword. An exception object must be of type
Exception and includes a message and other error information. Throwing an exception causes a method's
execution to end. The calling code is then responsible for handling the exception using the catch keyword.

expression

Any combination of functions, values, and operators that resolves to a value. As a rule of thumb, if you can use
it as if it were a value, it is an expression.

field width specifier

Contained within a conversion specification, a field width specifier determines the space within which output
should be formatted.

file resource

A special value of the data type resource. It is returned by the fopen() function and passed to other file functions,
which can then work with the open file.

float

A data type. It is a synonym for double.

for statement

A loop that can initialize a counter variable (initialization expression), test a counter variable (test expression),
and modify a counter variable (modification expression) on a single line. As long as the test expression
evaluates to true, the loop statement continues to be executed.

foreach statement

A loop used to iterate through every element in an array. The loop automatically populates temporary variables
with the next array key and values for each iteration.

format control string

The first argument to printf() or sprintf(). It contains conversion specifications that determine the way in which
additional arguments to these functions are formatted.

Freetype

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Freetype

An open-source library providing functionality for working with TrueType fonts. The two versions are FreeType 1
and FreeType 2. Both libraries can be used by PHP's image functions to render text in images.

function

A block of code that is not immediately executed but can be called by your scripts when needed. Functions can
be built-in or user-defined. They can require information to be passed to them and usually return a value.

GET request

A request made to a server by a client in which additional information can be sent appended to the URL.

global

Consists of the keyword global followed by a variable(s). It causes the associated variables to be accessed in
global rather than local scope.

header section

Part of an HTTP request or response (it follows the request line or response line). It consists of name/value
pairs on separate lines. Names are separated from values by colons.

hint

The name of an object type used to qualify an argument in a method declaration. When the method is invoked,
it must be passed an object of the defined type for that argument; otherwise, the script fails.

Hypertext Transfer Protocol (HTTP)

A set of rules that defines the process by which a client sends a request and a server returns a response.

if statement

Consists of a test expression and a statement or series of statements. The statement is executed only if the test
expression evaluates to true.

image resource

A special value of the data type resource. It is returned by the imagecreate() function and passed to other image
manipulation functions, which can then work with the dynamic image.

inheritance

A term used in the context of object-oriented programming. It is used to describe the process by which one
class is set up to include the member variables and methods of another. This is achieved using the extends
keyword when the child class is declared.

integer

A data type. Integers include all whole negative and positive numbers and zero.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


A data type. Integers include all whole negative and positive numbers and zero.

iteration

A single execution of a statement (or series of statements) associated with a loop. A loop that executes five
times has five iterations.

interface

A special class that contains only method signatures. An interface must contain no implementation at all.
Classes that implement an interface must implement every method it defines. A class can implement any
number of interfaces and takes on the type of any interface it implements.

link resource

A special value of the data type resource. It is returned by the mysql_connect() function and passed to other
MySQL functions, which can then work with the open database.

method

A special function, available only in the context of a class or object.

multidimensional array

An array that contains another array as one of its elements.

NULL

A special data type. It consists of the value NULL and represents an uninitialized variable—that is, a variable
that holds no value.

object

Existing in memory rather than as code, an object is an instance of a class, meaning it's the working
embodiment of the functionality laid down in a class. An object is instantiated with the new statement in
conjunction with the name of the class of which it is to be a member. When an object is instantiated, you can
access all its properties and all its methods. An object is a data type.

operand

A value used in conjunction with an operator. There are usually two operands to one operator.

operator

A symbol or series of symbols that, when used in conjunction with values, performs an action and usually
produces a new value.

padding specifier

Contained within a conversion specification, a padding specifier determines the number of characters that
output should occupy and the characters to add otherwise.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


pattern modifier

A letter placed after the final delimiter in Perlcompatible regular expressions to refine their behavior.

PEAR

The PHP Extension and Application Repository. A qualitycontrolled library of PHP packages designed to extend
the usefulness of PHP.

PEAR::Auth

A PEAR package that provides methods for authenticating visitors using usernames and passwords.

PEAR::Config

A PEAR package for writing to and reading from configuration files.

PEAR::DB

A PEAR package that provides a common interface for talking to many databases.

php.ini

The configuration file that determines the way in which PHP runs. The file contains directives that specify a wide
range of rules and behaviors.

phpDocumentor

A package for producing documentation using comments embedded in source code. It's part of PEAR.

POST request

A request made to a server by a client in which additional information can be sent within the request entity
body.

precision specifier

Contained within a conversion specification, a precision specifier determines the number of decimal places to
which a double should be rounded.

private

This keyword limits the availability of a method or property to the enclosing class only.

property

A special variable, available only in the context of an object or a class.

protected

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


protected

This keyword limits the availability of a method or property to the enclosing class and to any child classes.

public

This keyword makes a property or method available to any client code.

query string

A set of name/value pairs appended to a URL as part of a GET request. Names are separated from values by
equal signs, and pairs are separated from each other by ampersand (&) characters. The query string is
separated from the rest of the URL by a question mark (?). Both names and values are encoded so characters
with significance to the server are not present.

reference

The means by which multiple variables can point to the same value. By default, nonobject arguments are
passed and assignments are made by value in PHP. This means that copies of values are passed around. As of
PHP 5, objects are assigned and passed by reference. Therefore, when you pass an object variable to a method,
you pass a handle to a single object, as opposed to a copy of the object.

regular expression

A powerful way of examining and modifying text.

request headers

Key value pairs sent to the server by a client providing information about the client itself and the nature of the
request.

request line

The first line of a client request to a server. It consists of a request method, typically GET, HEAD, or POST; the
address of the document required; and the HTTP version to be used (HTTP/1.0 or HTTP/1.1).

resource

A special data type. Resources represent handles used to work with external entities (databases and files are
good examples of this).

response headers

Key value pairs sent to the client in response to a request. They provide information about the server
environment and the data that is being served.

scope

The range of code for which a variable holds a particular value. For example, the value of a variable declared
inside a function is unavailable outside that function. The variable is said to be local to the scope of the function.

server variables

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


server variables

Predefined elements that PHP makes available for you in conjunction with your server. You can access these
elements via the superglobal $_SERVER array. Which elements are made available is server dependent, but they
are likely to include common variables such as $_SERVER['HTTP_USER_AGENT'] and $_SERVER['REMOTE_ADDR'].

statement

Represents an instruction to the interpreter. Broadly, it is to PHP what a sentence is to written or spoken
English. A sentence should end with a period; a statement should usually end with a semicolon. Exceptions to
this include statements that enclose other statements and statements that end a block of code. In most cases,
however, failure to end a statement with a semicolon confuses the interpreter and results in an error.

static

Used within the context of a function, the static keyword ensures that an associated variable maintains the same
value across function calls. In the context of a class, a static property is available via a class rather than through
individual class instances (objects).

status line

The first server response to a client request. The status line consists of the HTTP version the server is using
(HTTP/1.0 or HTTP/1.1), a response code, and a text message that clarifies the meaning of the response code.

stream

A flow of data that can be read from and written to. Streams are a new mechanism in PHP that provide a
common interface for working with data across a range of contexts.

string

A data type. It is a series of characters.

Structured Query Language (SQL)

A standardized syntax by which different types of database can be queried.

subclass

A class that inherits member variables and methods from another (parent) class.

superclass

A parent class.

superglobal

A variable available in any scope. Superglobals are always built-in and include $_REQUEST, $_GET, $_POST, and
$_SERVER, among others.

switch

A statement that compares the result of an operation against any number of different values in turn, executing
a particular block of code if a match is found for the test value.

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


a particular block of code if a match is found for the test value.

ternary operator

Returns a value derived from one of two expressions separated by a colon. Which expression is used to
generate the value returned depends on the result of an initial test expression that precedes the return
expressions and is separated from them by a question mark (?).

timestamp

The number of seconds that have elapsed since midnight GMT on January 1, 1970. This number is used in date
arithmetic.

type specifier

Contained within a conversion specification, a type specifier determines the data type that should be output.

variable

A holder for a type of data. It can hold numbers, strings of characters, objects, arrays, or booleans. The
contents of a variable can be changed at any time.

while statement

A loop that consists of a test expression and a statement (or series of statements). The statements are
repeatedly executed as long as the test expression evaluates to true.

XML (Extensible Markup Language)

A set of rules for defining and parsing markup languages. Such languages are often constructed to structure
data for sharing, format data for display, or send instructions to an interpreter.

XSLT (Extensible Stylesheet Language Transformations)

A template system for XML documents that makes converting from XML to other formats, such as HTML or
WML, easy.

Zend

The scripting engine that lies at the heart of the PHP interpreter. Zend was released with the advent of PHP 4,
and Zend 2 was released with the advent of PHP 5.

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

! flag  
$
    (dollar character)
        back references  
$_COOKIE array  
$_ENV array  
$_FILES array  2nd  3rd  
$_GET array  
$_GLOBALS array  
$_POST array  
$_REQUEST array  
$_SERVER array  2nd  
    elements  2nd  
    looping through  2nd  
$counter variable)  
% (percent symbol)
    conversion specfication  
    conversion specification  
( flag  
(#) hash sign  
(') single quotation mark
    strings  2nd  
(") double quotation marks
    strings  2nd  
        escape characters  
(.) single period  
(//) forward slashes  
(;)
    semicolon  
(\) backslash character  2nd  
(greater than) (greater than sign)
    XML tags  
(less than) (less than sign)
    XML tags  
(pipe character)
    back references  
(pipe) (pipe character)
    branches  
* (asterisk)
    string pattern matching quantifier  
+ (plus sign)
    string pattern matching quantifier  
+ flag  
- (minus symbol)
    field width specifiers  
- flag  
-(greater than) operator
    object properties  
=n flag  
? (question mark)
    string pattern matching quantifier  
? operator  2nd  
@ (at character)
    DocBlocks  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[] (square brackets)
    array identifiers  2nd  
    character classes  
\ (backslash)
    regular expressions  
^ (caret)
    character negation  
^ flag  
_autoload() function  2nd  
_call() function  
    function calls, intercepting  2nd  
_construct() method  
_destruct() function
    objects, cleaning up  2nd  
_get() function
    property access, intercepting  2nd  
_set() function
    property access, intercepting  2nd  
_sleep() function  
_wakeup() function  
` (backticks)
    external commands, running  
{,n}
    string pattern matching quantifier  
{n,}
    string pattern matching quantifier  
{n}
    string pattern matching quantifier  
{n1,n2}
    string pattern matching quantifier  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

A \ modifier  
A \escape character  
abs() function  
abstract classes  2nd  3rd  4th  
    defining  
    simulating  
abstract keyword  
accept client header  
accept-charset client header  
accept-encoding client header  
accept-language client header  
access
    object methods
        lmiting  2nd  
    object properties
        limiting  2nd  3rd  
    properties
        intercepting  2nd  
access (@before) tag  
accessing
    array elements  2nd  3rd  
    global variables  
    object properties  
    properties
        with methods  
        within methods  
    resultsets  2nd  3rd  
    session variables  2nd  3rd  4th  
    variables  2nd  3rd  4th  
add views (MVC)  2nd  
addBar() function  
addCondition() function
    SimpleDispatcher class  2nd  
addFive() function  
adding
    comments to PHP code  2nd  
    data
        SQLite tables  2nd  
        tables  2nd  3rd  4th  
    data structures to databases  2nd  
    data to databases
        dba_insert() function  2nd  
    HTML to PHP scripts  2nd  
    rows
        tables  
    variables
        arrays  2nd  
adding to
    arrays  2nd  
    associative arrays  
addItem() method  
addresses
    IP
        converting to hostnames  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


addStatus() function  
AddTask class  2nd  
addUser() function
    Auth class  
amending
    database elements
        dba_replace() function  2nd  
anatomy
    cookies  2nd  
anchor escape characters  
anonymous functions
    creating  2nd  
Apache
    configuring  2nd  
    DSO support, testing  
    PHP configuration  
        --with-freetype option  
        --with-gd option  
        --with-gdbm option  
        --with-mysql option  2nd  
        --with-xslt option  
    PHP installation  2nd  3rd  
Apache 2
    PHP installation  
APIs
    Reflection  
appending
    files
        fopen() function  2nd  
        fputs() function  2nd  
ApplicationResources class  2nd  3rd  4th  
ApplicationResources object  
ApplicationResourcesImpl class  2nd  
applications
    external, running  2nd  
    httpd  
arcs
    drawing  2nd  
arguments  
    default values  2nd  3rd  
    functions requiring two arguments  2nd  
    hints  
    integer
        flock() function  
    methods
        constraining  2nd  
    optional example  2nd  
    reference passing  2nd  
    switching
        strings  2nd  
    value passing  2nd  
arithmetic operators  
array() function  2nd  
    associative arrays  2nd  
array_fill() function  
array_keys() function  
array_merge() function
    joining arrays  2nd  
array_push() function

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    adding variables to arrays  2nd  
array_shift() function
    array elements, deleting  2nd  
array_slice() function
    slicing arrays  2nd  
array_unshift() function  
arrays  2nd  
    $_COOKIE  
    $_ENV  
    $_FILES  
    $_FILES array  2nd  
    $_GET  
    $_GLOBALS  
    $_POST  
    $_REQUEST  
    $_SERVER  2nd  
    $_SERVER;elements  2nd  
    $_SERVER;looping through  2nd  
    adding to  2nd  
    associative  2nd  
        adding to  
        defining  2nd  3rd  
        looping through  2nd  
        sorting by key  
        sorting by value  2nd  
    chunks, extracting  2nd  
    converting to strings
        serialize() function  
    creating  
    defining  2nd  3rd  
    elements  
        accessing  2nd  3rd  
        deleting  2nd  
    identifiers  2nd  
    indexing  
    joining  2nd  
    looping through  2nd  
    multidimensional  2nd  
        looping through  2nd  
    numerically indexed, sorting  2nd  
    populating  
    resurrecting
        unserialize() function  
    size  2nd  3rd  
    storing  
    strings
        breaking into  2nd  
    users
        elements  
    variables, adding  2nd  
arsort() function  
asort() function
    associative arrays, sorting  2nd  
ASP tags  2nd  
assigning
    object references  
assignment operators  2nd  
    combining  2nd  
associative arrays  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    adding to  
    defining  2nd  3rd  
    looping through  2nd  
    sorting by key  
    sorting by value  2nd  
asterisk (*)
    string pattern matching quantifier  
at character (@)
    DocBlocks  
atoms  
atoms.  [See subpatterns]
Auth class  2nd  
Auth package  
    Auth class  2nd  
    authentication example
        controller script  2nd  3rd  4th  
        login view  
        navigation helper  
    installing  
author (@before) tag  
autoExecute() function  
automating
    sending mail  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

b \escape character  
B \escape character  
b type specifiers  
back references (pattern matching)  
backslash (\)
    regular expressions  
backslash character (\)  2nd  
backslashed characters  2nd  
backticks (`)
    external commands, running  
bar chart example
    code listing  2nd  3rd  
    drawing  2nd  
    image resource  
    labels/values, storing  
    outputting  
    Simple Bar class  
    spacing  
    text  2nd  3rd  
beginning and ending statements  2nd  3rd  
binary data
    outputting  
bounds  
branches (regular expressions)  
break statement  2nd  
    including in case statement  
browsers
    printing scripts to  2nd  
browsing
    Web
        Telnet  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

c type specifiers  
calcTax() function  
calendar client code example  2nd  3rd  
calendar functions  
calendar grids  2nd  3rd  
call-time pass-by-reference  
callback functions  
calling
    CGI scripts  
    external processes  
    functions  2nd  
        dynamically  2nd  
    man command  
    overridden methods  2nd  
calls
    functions
        intercepting  2nd  3rd  
caret (^)
    character negation  
case
    strings
        converting  2nd  
case folding (XML)  
case statement
    break statement, including in  
casting
    variables  2nd  3rd  
CGI scripts
    calling  
character classes  
character handlers (XML)  
character matching  2nd  3rd  4th  
    anchoring  
    backslashed characters  2nd  
    character ranges  2nd  
    combining patterns  
    subpatterns  2nd  
characters
    backslash (\)  
    escape  
    files
        reading  2nd  
checkdate() function  
checkError() function  
circles
    drawing  
class_exists() function  
classes  
    abstract  2nd  3rd  4th  
        defining  
        simulating  
    AddTask  2nd  
    ApplicationResources  2nd  3rd  4th  
    ApplicationResourcesImpl  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Auth  2nd  
    character  
    Command  2nd  
    CommandFactory  2nd  3rd  
    Config  
    Config_Container  
    constants within, defining  2nd  
    Controller  2nd  3rd  4th  
    DataStore  2nd  
    date_pulldown  2nd  
        calling  2nd  
    DateIterator  2nd  
    DateViewHelper  2nd  
    DB result  
    Dispatcher  2nd  3rd  4th  
    Exception  
    existence, testing  2nd  
    Grepper  2nd  3rd  
    inheritance  2nd  
        constructors  2nd  
        overridden methods, calling  2nd  
        parent class methods, overriding  2nd  
    instances
        limiting  2nd  
    interfaces
        implementing  
    Item  
    ItemLister  2nd  
    ItemUpdater  
    methods example  2nd  
    MyDefault  2nd  
    MyException  
    objects
        finding  2nd  
    parent
        methods, overriding  2nd  
    PassObj  
    QuickCalendar  2nd  3rd  
    RequestHelper  2nd  3rd  
    Simple Bar  
    SimpleCommandFactory  2nd  
    SimpleDispatcher  2nd  
    TaskFacade  2nd  3rd  
    XsltProcessor  
clauses
    else
        if statement  2nd  
    else/if
        if statement  2nd  
cleaning up
    objects  2nd  
    strings  2nd  
client/server negotiation (HTTP)  
    requests  2nd  
        client headers  2nd  3rd  
        request lines  2nd  
        sent to server by Mozilla example  
    response example  2nd  
    responses  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        server headers  2nd  
        status lines  2nd  3rd  
clients
    headers  2nd  
        sent by Mozilla example  
    Telnet  
closing
    pipes  2nd  
code
    comments, adding  2nd  
code blocks
    HTML mode, within  2nd  
    print() statements  2nd  
    tags  2nd  
coding
    defensively  
color
    fills
        polygons  
    images  2nd  
    transparent
        images  2nd  
color fills
    images  2nd  
    rectangles  
combination operators  2nd  
combining
    assignment operators  2nd  
    operands and operators  
        expressions  2nd  
Command class  2nd  
CommandFactory class  2nd  3rd  
CommandFactory objects  
commands
    execution, mapping to presentations  
    external
        running  2nd  
    man
        calling  
    phpdoc  
    running  2nd  
    Unix grep  2nd  3rd  
    Unix who, reading  
comment blocks.  [See DocBlocks]
comments  
    adding to PHP code  2nd  
comparison operators  2nd  
concatenation operators  
conditional statements
    included documents  2nd  
        for loop  2nd  
Config class  
Config package  2nd  3rd  4th  
    configuration data  
    configuration files, creating  
    installing  
    reading configuration files  
    sections, creating  
Config_Container class  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Config_Container objects  
configuration
    scripts
        problems with  
configuration files
    Config package  2nd  3rd  4th  
configure script  
    Linux/Apache PHP installation  
    options
        --with-freetype  
        --with-gd  
        --with-gdbm  
        --with-mysql  2nd  
        --with-xslt  
configuring
    Apache  2nd  
    PHP
        Linux/Apache  2nd  3rd  4th  5th  6th  7th  
connections
    database servers  2nd  
    databases
        opening/selecting example  
    network
        creating  2nd  
    NNTP  2nd  3rd  
const keyword  
constants  
    defining  2nd  
        within classes  2nd  
    predefined  
constraining
    method arguments  2nd  
constructors
    bar chart example  
    example  
    inheritance  2nd  
    objects  2nd  
content
    databases
        HTML forms  2nd  3rd  4th  5th  6th  
content-length server headers  
content-type server headers  
contents
    directories
        reading  2nd  
    files
        reading  2nd  3rd  
contexts
    HTTP wrappers  
    resources
        passing to fopen() function  
        testing  
    streams  2nd  
continue statement  2nd  
Controller class  2nd  3rd  4th  
conversion specification  2nd  3rd  
converting
    arrays to strings
        serialize() function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    data types
        functions  2nd  
    variable types
        settype() function  2nd  
cookies  2nd  
    anatomy  2nd  
    database fields  
    deleting  2nd  
    limitations  
    security  
    session, creating  
    setting  2nd  3rd  
    tracking site usage example  2nd  3rd  4th  5th  6th  
        database fields  
        limitations  
        tracking users  2nd  3rd  
        usage statistics, outputting  2nd  
        user information, adding  2nd  3rd  
copyright (@before) tag  
count() function
    array size  
create_function() function  2nd  
createDirective() function
    Config_Container class  
createElement() function  
    DOM  
createSection() function
    Config_Container class  
createTextNode() function  
creating
    directories
        mkdir() function  2nd  
    files
        touch() function  
CURL package  
currency
    strings  2nd  3rd  4th  
customizing
    data (databases)  2nd  
    exceptions
        error handling  2nd  
    local directives  
    properties
        within methods  2nd  
    rows
        databases  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

d \escape character  
D \escape character  
d type specifiers  
data
    adding
        SQLite tables  2nd  
    adding structures to databases  2nd  
    files
        reading  2nd  
    selecting
        automating  
        SQLite  2nd  
    serialized
        retreiving from databases  2nd  
    writing to files
        file_put_contents() function  2nd  
data source name.  [See DSN]
data types
    converting
        functions  2nd  
    special  2nd  
    standard  
    variables  2nd  
database abstraction layer.  [See DBA]
Database Manager.  [See DBM]
databases
    adding data
        dba_insert() function  2nd  
    adding data structures  2nd  
    amending elements
        dba_replace() function  2nd  
    connections
        opening/selecting example  
    content
        HTML forms  2nd  3rd  4th  5th  6th  
    data
        customizing  2nd  
    data selection
        automating  
    deleting data
        dba_delete() function  
    errors
        finding  2nd  
    existing elements
        dba_exists() function  
    incremented field values  
    number of rows returned by queries  2nd  
    opening
        dba_open() function  2nd  3rd  4th  
    reading from
        dba_fetch() function  2nd  3rd  
    resultsets  2nd  3rd  
    retreiving serialized data from  2nd  
    rows, customizing  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    selecting  
    servers
        connecting to  2nd  
    SQLite
        data selections  2nd  
    tables
        data additions  2nd  3rd  4th  
        rows, adding  
    user input, adding  2nd  
DataStore class  2nd  
date information
    files
        date() function  
        fileatime() function  
        filectime() function  
date server headers  
date() function  
    format codes  2nd  
    timestamps, converting  2nd  
date/time
    calendar client code example  2nd  3rd  
    calendar grids  2nd  3rd  
    DateIterator class  2nd  
    DateViewHelper class  2nd  
    formatting  
    pull-down library  2nd  3rd  4th  5th  6th  
        date setting functions  2nd  3rd  
        date_pulldown class  2nd  
        date_pulldown class, calling  2nd  
        year setting functions  2nd  
    setting functions  2nd  3rd  
    testing  
    time() function  
    timestamps
        converting  2nd  3rd  4th  
        creating  2nd  
    Unix epoch  
date_pulldown class  2nd  
    calling  2nd  
DateIterator class  2nd  
DateViewHelper class  2nd  
day_select() function  
DB result class  
DBA  
    (database abstraction layer)  
DBA functions
    DBM supported  2nd  
dba_close() function  
dba_delete function  
dba_exists function  
dba_fetch function  2nd  3rd  
dba_firstkey() function  
dba_handlers() function  
dba_insert function  2nd  
dba_nextkey() function  
dba_open function  2nd  
    flags  2nd  
dba_replace function  2nd  
DBM

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    (Database Manager)  
    DBA supported  2nd  
    opening databases
        dba_open() function  2nd  3rd  4th  
declarations
    XML  
declaring
    fuctions
        with arguments  
    functions  
    interfaces  
    object properties  
decoding
    session variables  2nd  
decrementing
    integer variables  2nd  
defensive coding  
define() function  2nd  
defining
    abstract class  
    arrays  2nd  3rd  
    associative arrays  2nd  3rd  
    constants  2nd  
        within classes  2nd  
    functions  2nd  3rd  
    interfaces  2nd  3rd  
    multidimensional arrays  2nd  
deleting
    cookies  2nd  
    database data
        dba_delete() function  
    elements
        arrays  2nd  
    files
        unlink() function  
    session elements  
    strings white space  
deprecated (@before) tag  
determining
    database data existence
        dba_exists() function  
die() function  
die() statement  
directives
    error reporting  
    local changes  
    register_globals  
    short_open_tag  
    variable  
directories
    creating
        mkdir() function  2nd  
    opening
        opendir() function  
    reading
        readdir() function  2nd  
    removing
        rmdir() function  
    usr/local/lib

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        php.ini file location  
directory listings
    creating  
Dispatcher class  2nd  3rd  4th  
displaying
    variable types  
do,while statement  2nd  
DocBlocks (PhpDocumentor package)  2nd  3rd  
    tags  2nd  
document object model.  [See DOM]
document type declarations.  [See DTDs]
documents
    HTML
        spaces, viewing  
    retrieving from remote addresses  2nd  
    XML  2nd  
        banana-related news site example  2nd  
        creating with DOM functions  2nd  
        DOM elements, adding  2nd  
        errors, reporting  2nd  
        parsing  2nd  3rd  4th  5th  6th  
        parsing with SimpleXML  
    XSL  2nd  
        creating with XSL  2nd  
doexecute() function
    Command class  
dollar character ($
    )
        back references  
DOM
    DomDocument objects
        creating  2nd  
    DomElement object
        information, getting  2nd  
    DomElement objects
        creating  2nd  
    DomText objects  2nd  
    root elements, creating  
    W3C specification  
    XML documents
        creating  2nd  
DOM (document object model)  
DomDocument objects
    creating  2nd  
DomElement object
    information, getting  2nd  
DomElement objects
    creating  2nd  
DomText objects  2nd  
doOutput() function  
double quotation marks (")
    strings  2nd  
        escape characters  
draw() method  
drawing
    arcs  2nd  
    bar charts  2nd  
    circles  
    lines  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    polygons  2nd  
    rectangles  2nd  
DSN
    elements  
DSN (data source name)  2nd  
DTDs (document type declarations)  
dynamic functions
    calling  2nd  
dynamic images
    performance  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

e \ modifier  
E \ modifier  
e \ modifier  2nd  
elements
    $_FILES array  
    $_SERVER array  2nd  
    arrays  
        accessing  2nd  3rd  
        deleting  2nd  
    DSN  
    root
        creating  
    sessions
        deleting  
    users array  
    XML  2nd  
        case folding  
else clause
    if statement  2nd  
else/if clause
    if statement  2nd  
email
    sending, automating  2nd  
encoding
    session variables  2nd  
end tags  2nd  
ending
    sessions  
error codes
    $_FILES array  
error reporting directives  
errors
    databases
        finding  2nd  
    handling
        custom exceptions  2nd  
        exceptions  2nd  3rd  4th  
    programming  
    XML documents  2nd  
escape characters  
escape characters (PCREs)  2nd  
escapeshellcmd() function  2nd  3rd  
events
    XML handlers  2nd  
example (@before) tag  
Exception class  
exceptions
    error handling  2nd  3rd  4th  
        customizing  2nd  
exec() function
    commands, running  2nd  
    directory listings, creating  
execute() function
    Command class  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


existence
    classes/methods
        testing  2nd  
existence (functions)
    testing  2nd  3rd  
explode() function
    breaking strings into arrays  2nd  
expressions  2nd  3rd  
expressions regular.  [See regular expressions]
Extensible Hypertext Markup Language.  [See XHTML]
Extensible Markup Lanaguage.  [See XML]
Extensible Stylesheet Language.  [See XSL]
external applications
    running  2nd  
external CGI scripts
    calling  
external commands
    running  2nd  
external processes
    calling  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

f type specifiers  
families
    objects
        finding  2nd  
fclose() function  2nd  
feof() function  2nd  
fgets() function  2nd  
field widths (strings)  2nd  
fields
    incremented values
        databases  
file extensions
    html  
file upload forms  
    example  2nd  
file upload script  2nd  
    names  
file() function  
file_exists() function  
file_get_contents() function  
file_put_contents() function  2nd  
fileatime() function  
filectime() function  
FileNotFoundException  
FileOpenException  
files
    appending to
        fopen() function  2nd  
        fputs() function  2nd  
    configuration
        Config package  2nd  3rd  4th  
    creating
        touch() function  
    date information
        date() function  
        fileatime() function  
        filectime() function  
    deleting
        unlink() function  
    htaccess  
    include
        automatically loading  2nd  
    including in documents  2nd  3rd  4th  
        control structures  2nd  
        for loop  2nd  
        include_once statement  2nd  3rd  4th  
        include_path statement  2nd  
        return values  2nd  
        set_include_path function  
    locking
        flock() function  2nd  
    opening
        fopen() function  2nd  
    php.ini  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        error reporting directive  
        local directive changes  
        short_open_tag directive  
        variable directives  
    reading from  
        feof() function  2nd  
        fgetc() function  2nd  
        fgets() function  2nd  
        file() function  
        file_get_contents() function  
        fread() function  2nd  
        fseek() function  2nd  
        implode() function  
    sizes
        filesize() function  
    statuses  
        is_executable() function  
        is_readable() function  
        is_writable() function  
    testing
        file_exists() function  
        is_dir() function  
        is_file() function  
        multiple file tests  2nd  
    uploading
        forms  
    writing data to
        file_put_contents() function  2nd  
    writing to
        fopen() function  2nd  
        fwrite() function  2nd  
filesize() function  
fills
    color
        images  2nd  
        polygons  
        rectangles  
finding
    database errors  2nd  
    object classes  2nd  
    object families  2nd  
    string lengths  
    substring positions  2nd  
    substrings  2nd  
flags
    !  
    +  
    -  
    =n  
    ^  
    dba_open() function  2nd  
    format specifier  
    phpdoc command  
flags(  
flock() function  2nd  
    integer arguments  
fonts
    FreeType
        support  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Japanese International
        support  
    TrueType  
    Type 1
        support  
fopen() function  2nd  3rd  4th  
    context resources, passing  
    streams  
    Web page retrieval/printing  2nd  
for loop  2nd  
for statement  2nd  3rd  4th  
    nesting loops  2nd  
foreach statement
    looping through arrays  2nd  
foreach statements
    looping through associative arrays  
    looping through multidimensional arrays  2nd  
foreach statmements
    arrays
        elements, accessing  2nd  3rd  
format control strings
    arguments, switching  2nd  
format specifier flags  
formatting
    date/time  
    strings  
        arguments, switching  2nd  
        example  2nd  3rd  
        field width specifications  2nd  
        padding specifiers  2nd  
        precision specifications  
        printf() function  2nd  
        specifiers  2nd  
        storing  
        type specifiers  2nd  3rd  4th  
forms
    file uploads  
        example  2nd  
    HTML
        database content  2nd  3rd  4th  5th  6th  
        PHP combination  2nd  
    HTML/PHP combination  
        hidden fields  2nd  3rd  4th  5th  
        HTML form, calling itself  
        PHP number guessing script  2nd  
        raw headers  
        users, redirecting  2nd  3rd  
    raw headers  
    response headers  
    users, redirecting  2nd  3rd  
forms (HTML)
    user input
        accessing with select elements  2nd  3rd  
        importing into global variables  2nd  
        reading  2nd  3rd  
        receiving  
forward slashes (//)  
fputs() function  2nd  3rd  
fread() function  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


FreeType  
FreeType fonts
    support  
freeze-drying objects  
Front Controller pattern  
fseek() function  2nd  3rd  4th  
fsockopen() function  
    NNTP connections  2nd  3rd  
func_get_arg() function  2nd  
func_num_args() function  2nd  3rd  4th  
function calls
    intercepting  2nd  3rd  
function statements  
function_exists() function  
functions  2nd  
    _autoload()  2nd  
    _call()  
        function calls, intercepting  2nd  
    _destruct()
        objects, cleaning up  2nd  
    _get()
        property access, intercepting  2nd  
    _set()
        property access, intercepting  2nd  
    _sleep()  
    _wakeup()  
    abs()  
    addBar()  
    addCondition()
        SimpleDispatcher class  2nd  
    addFive()  
    addStatus()  
    addUser()
        Auth class  
    anonymous
        creating  2nd  
    arguments  
        passing by values  2nd  
        reference passing  
    array()  2nd  
        associative arrays  2nd  
    array_fill()  
    array_keys()  
    array_merge()
        joining arrays  2nd  
    array_push()
        adding variables to arrays  2nd  
    array_shift()
        array elements, deleting  2nd  
    array_slice()
        slicing arrays  2nd  
    array_unshift()  
    arsort()  
    asort()
        associative arrays, sorting  2nd  
    autoExecute()  
    calcTax()  
    calendar  
    callback  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    calling  2nd  
    checkdate()  
    checkError()  
    class_exists()  
    count()
        array size  
    create_function()  2nd  
    createDirective()
        Config_Container class  
    createElement()  
        DOM  
    createSection()
        Config_Container class  
    createTextNode()  
    data types
        converting  2nd  
    date()  
        format codes  2nd  
        timestamps, converting  2nd  
    date, setting  2nd  3rd  
    day_select()  
    DBA
        DBM supported  2nd  
    dba_close()  
    dba_delete()  
    dba_exists()  
    dba_fetch()  2nd  3rd  
    dba_firstkey()  
    dba_handlers()  
    dba_insert()  2nd  
    dba_nextkey()  
    dba_open()  2nd  
        flags  2nd  
    dba_replace()  2nd  
    declaring  
    define()  2nd  
    defining  2nd  3rd  
    die()  
    doexecute()
        Command class  
    doOutput()  
    dynamic
        calling  2nd  
    escapeshellcmd()  2nd  3rd  
    exec()
        commands, running  2nd  
        directory listings, creating  
    execute()
        Command class  
    existence, testing  2nd  3rd  
    explode()
        breaking strings into arrays  2nd  
    fclose()  2nd  
    feof()  2nd  
    fgetc()  2nd  
    fgets()  2nd  
    file()  
    file_exists()  
    file_get_content()  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    file_put_contents()  2nd  
    fileatime()  
    filectime()  
    filesize()  
    flock()  2nd  
        integer arguments  
    fopen()  2nd  3rd  4th  
        context resources, passing  
        streams  
        Web page retrieval/printing  2nd  
    fputs()  2nd  3rd  
    fread()  2nd  
    fseek()  2nd  
    fsockopen()  
        NNTP connections  2nd  3rd  
    func_get_arg()  2nd  
    func_num_args()  2nd  3rd  4th  
    function_exists()  
    fwrite()  2nd  
    gd_info()  2nd  
    get_class()
        object classes;finding  
    get_object_vars()  
    getCommand()  
        SimpleCommandFactory class  
    getCommandByName()  
    getdate()
        timestamps, converting  2nd  
    gethostbyaddr()  2nd  
    gethostbyname()  
    getInstance()  
    getMonthStartWDay()  
    getNext()
        Dispatcher class  
        SimpleDispatcher class  
    getPointer()  
    getTextSize()  
    gettype()  2nd  
        objects, creating  
    getUsername()
        Auth class  
    getYearStart()  
    handleRequest()
        Controller class  
    hasChildNodes()  
    header()
        cookies, setting  
        forms  
        raw headers  
    headingWrap()  
    http_build_query()  
    imagearc()  2nd  
    imagecolorallocate()  
    imagecreate()  
    imagecreatefromjpeg()  
    imagecreatefrompgn()  
    imagefill()  2nd  
    imageline()  
    imagepng()  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    imagepolygon()  2nd  
    imagerectangle()  2nd  
    imagestring()  2nd  
    imageTTFbox()  
    imageTTFtext()  2nd  3rd  
    implode()  
    import_request_variables()  
    incrementDay()  
    is_a()  
    is_dir()  
    is_executable()  
    is_file  
    is_file()  
    is_readable()  
    is_writable()  
    isDiscounted()  
    ksort()
        associative arrays, sorting  
    loadXML()  
    ltrim()  2nd  
    mail()
        sending mail automatically  2nd  
    meaningOfLife()  
    mkdir()  2nd  
    mktime()
        timestamps, creating  2nd  
    money_format()  2nd  3rd  4th  
    month_select()  
    mysql_affected_rows()  
    mysql_connect()  
    mysql_errno()  
    mysql_error()  
    mysql_fetch_array()  
    mysql_fetch_object()  
    mysql_fetch_row()  
    mysql_insert_id()  
    mysql_num_rows()  
    mysql_pconnect()  
    mysql_query()  
    mysql_select_db()  
    nl2br()  
    number_format()  
    on-demand (XML trees)  2nd  
    opendir()  
    optional arguments example  2nd  
    outputStats()  
    overriding
        subclasses  
    parseConfig()  
        Config class  
    passthru()  2nd  
    pclose()  
    Perl
        push()  
    phpinfo()  
    popen()  2nd  
        writing to processes  2nd  3rd  
    preg_match()  2nd  
        backslashed characters  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        character matching  2nd  
        character ranges, matching  2nd  
        combining patterns  
        matching recurring characters  2nd  
        subpatterns  2nd  
    preg_match_all()
        global matches  2nd  3rd  
    preg_replace()  
        replacing patterns  2nd  
    preg_replace_callback()  2nd  
    preg_split()  2nd  
    print()  
    print_r
        arrays, examining  2nd  3rd  
    printBR()  
    printf()
        strings  2nd  3rd  4th  5th  6th  7th  8th  9th  
    proc_close()  
    proc_open()  2nd  
    query()
        SQL queries, executing  
    readdir()  2nd  
    references, returning  2nd  
    require_once()  
    requiring two arguments  2nd  
    resort()
        arrays  
    rmdir()  
    serialize()  2nd  
    session  2nd  
    session_decode()  
    session_destroy()  
    session_encode()  
    session_start()  2nd  3rd  
    set_include_path()  
    setcookie()
        cookies, setting  2nd  3rd  
        session cookies, creating  
    setDate_array()  
    setDate_request()  
    setDate_timestamp()  
    settype()  2nd  
    setUpdater()  
    setYearStart()  
    simplexml_load_file()  
    simplexml_load_string()  
    sort()
        numerically indexed arrays  2nd  
    sprintf()  
    sqlite_close()  
    sqlite_last_insert_rowid()  
    sqlite_open()  
    sqlite_query()  
    start()
        Auth class  
    state
        saving between calls  2nd  3rd  
    statements  2nd  
    static  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    str_replace()  2nd  
    strings Web site  
    strip_tags()  2nd  
    strlen()  
    strpos()  2nd  
    strstr()  2nd  
    strtok()  2nd  3rd  
    strtolower()  
    strtoupper()  
    subscript()  
    substr()  2nd  
    substr_replace()  2nd  
    system()
        external commands, running  2nd  
    tagWrap()  
    testing data types  2nd  
    time()
        date, getting  
    toArray()
        Config_Container class  
    toString()
        Config_Container class  
    transform_to_xml()  
    trim()  2nd  
    ucwords()  
    unerialize()  
    unlink()  
    unserialize()  
    unset()  
    update()  
        object hierarchies  
    urlencode()  
    user-defined
        values, returning  2nd  
    values, returning  2nd  
    var_dump  2nd  
    variables
        accessing  2nd  3rd  4th  
        scope  2nd  
    virtual()  
    with arguments
        declaring  
    wordwrap()  2nd  
    write_login()  
    writeConfig()
        Config class  
    writeObject()  
    XML handler  
    XML parser  
        resources  
    xml_error_string()  
    xml_get_current_line_number()  
    xml_get_error_code()  
    xml_parse()  
    xml_parser_create()  
    xml_parser_free()  
    xml_parser_set_option()  
    xml_set_character_data_handler()  2nd  
    xml_set_default_handler()  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    xml_set_element_handler()  2nd  
    xml_set_external_entity_ref_handler()  
    xml_set_notation_decl_handler()  
    xml_set_processing_instruction_handler()  
    xml_set_unparsed_entity_decl_handler()  
    year, setting  2nd  
    year_select()  
    yearPulldown()  
functions.  [See also methods]
fwrite() function  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

gaps (security)
    plugging  2nd  3rd  
GD library  
    configuration, testing  2nd  
gd_info() function  2nd  
get_class() function
    object classes, finding  
get_object_vars() function  
getCommand() function  
    SimpleCommandFactory class  
getCommandByName() function  
getdate() function
    timestamps, converting  2nd  
gethostbyaddr() function  2nd  
gethostbyname() function  
getInstance() function  
getMonthStartWDay() function  
getNext() function
    Dispatcher class  
    SimpleDispatcher class  
getPointer() function  
getProductString() method  
getTextSize() function  
gettype() function  2nd  
    objects, creating  
getUsername() function
    Auth class  
getYearStart() function  
GIFs
    support  
global pattern matching (strings)  2nd  3rd  
global statement
    remembering function variable values between calls  
global statements
    remembering function variable values between calls  2nd  3rd  
    variable access  2nd  3rd  4th  
global variables
    accessing  
    user input, importing  2nd  
greater than signs ()
    XML tags  
grep command (Unix)  2nd  3rd  
Grepper class  2nd  3rd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

handleRequest() function
    Controller class  
handlers
    XML  2nd  
handling
    errors
        custom exceptions  2nd  
        exceptions  2nd  3rd  4th  
hasChildNodes() function  
hash sign (#)  
header() function
    cookies, setting  
    forms  
    raw headers  
headers
    raw
        forms  
    response
        forms  
headers (client)
    sent by Netscape example  
headers (clients)  2nd  
headers (servers)  2nd  
headingWrap() function  
help  
    mailing lists  2nd  3rd  
hidden fields
    forms  2nd  3rd  4th  5th  
hierarchies
    objects  
        abstract classes  2nd  3rd  4th  
        interfaces  2nd  3rd  
hints
    arguments, constraining  
host client header  
hostnames
    converting IP addresses to  2nd  
    converting to IP addresses  
htaccess file  
HTML
    adding to PHP scripts  2nd  
    forms
        user input, importing  2nd  
    tags
        pre  
HTML documents
    spaces, viewing  
html file extension  
HTML forms
    database content  2nd  3rd  4th  5th  6th  
    PHP combination  2nd  
    user input
        accessing with select elements  2nd  3rd  
        reading  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        receiving  
HTML mode
    within code blocks  2nd  
HTML/PHP combination forms  
    hidden fields  2nd  3rd  4th  5th  
    HTML form, calling itself  
    PHP number guessing script  2nd  
    raw headers  
    response headers" XE "forms
        HTML/PHP combination;response headers"  
    users, redirecting  2nd  3rd  
HTTP
    (Hypertext Transfer Protocol)  
    client/server negotiation  
        requests  2nd  
        requests sent to servers by Mozilla example  
        response example  2nd  
        responses  2nd  3rd  
    defined  
HTTP wrappers
    context options  
http_build_query() function  
HTTP_REFERER element ($_SERVER array)  
HTTP_REFERER server variable  2nd  
HTTP_USER_AGENT element ($_SERVER array)  
HTTP_USER_AGENT server variable  2nd  
httpd application  
Hypertext Preprocessor.  [See PHP]
Hypertext Transfer Protocol.  [See HTTP]

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

i \ modifier  
identifiers (array)  2nd  
IDs
    rows  
    session
        passing to query strings  2nd  
if statement  
    else clause  2nd  
    else/if clause  2nd  
    structure  2nd  
ignore (@before) tag  
imagearc() function  2nd  
imagecolorallocate() function  
imagecreate() function  
imagecreatefromjpeg() function  
imagecreatefrompng() function  
imagefill() function  2nd  
imageline() function  
imagepng() function  
imagepolygon() function  2nd  
imagerectangle() function  2nd  
images
    arcs
        drawing  2nd  
    bar chart example
        code listing  2nd  3rd  
        drawing  2nd  
        image resource  
        labels/values, storing  
        outputting  
        SimpleBar class  
        spacing  
        text  2nd  3rd  
    color  2nd  
        transparent  2nd  
    color fills  2nd  
    creating  
    dynamic
        performance  
    GD library
        configuration, testing  2nd  
    lines
        drawing  2nd  
    opening  
    outputting  
    polygons
        drawing  2nd  
    rectangles
        drawing  2nd  
    resources
        bar chart example  
    text
        adding with imagestring() function  2nd  
        adding with imageTTFtext() function  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        aligning  2nd  3rd  
        testing  2nd  3rd  4th  
        TrueType fonts  
imagestring() function  2nd  
imageTTFbox() function  
imageTTFtext() function  2nd  3rd  
implementing
    interfaces  
implode() function  
import_request_variables() function  
importing
    user input
        global variables  2nd  
include files
    automatically loading  2nd  
include() statement  2nd  3rd  4th  
    control structures  2nd  
        for loop  2nd  
    include_once() statement  2nd  3rd  4th  
    include_path() statement  2nd  
    return values  2nd  
    set_include_path() functions  
include_once() statement  2nd  3rd  4th  
include_path() statement  2nd  
incrementDay() function  
incremented field values (databases)  
incrementing
    integer variables  2nd  
Independent JPEG Group Web site  
indexing
    strings  2nd  
indexing arrays  
inheritance
    classes  2nd  
        constructors  2nd  
        overridden methods, calling  2nd  
        parent class methods, overriding  2nd  
installing
    Config package  
    JPEG libraries  
    PEAR  
    PEAR DB package  
    PEAR packages  2nd  
        Auth  
    PHP
        Linux/Apache  2nd  3rd  
    PhpDocumentor package  
instances
    classes
        limiting  2nd  
integer arguments
    flock() function  
integer variables
    decrementing  2nd  
    incrementing  2nd  
integers  
interface keyword  
interfaces  2nd  3rd  
    declaring  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    defining  2nd  3rd  
    implmenting  
    simulating  
interfacese
    Serializable  
internal (@before) tag  
Internet
    cookies  2nd  
        anatomy  2nd  
        database fields  
        deleting  2nd  
        limitations  
        security  
        session, creating  
        setting  2nd  3rd  
        tracking site usage example  2nd  3rd  4th  5th  6th  
        tracking users  2nd  3rd  
        usage statistics, outputting  2nd  
        user information, adding  2nd  3rd  
    query strings  2nd  
        creating  2nd  3rd  
IP addresses
    converting to hostnames  2nd  
is_a() function  
is_dir() function  
is_executable() function  
is_file function  
is_file() function  
is_readable() function  
is_writable() function  
isDiscounted() function  
Item class  
Item() method  
ItemLister class  2nd  
ItemUpdater class  
iterations  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

J2EE patterns Web site  
Japanese International fonts
    support  
Java
    object-oriented design  
joining
    arrays  2nd  
JPEG library
    installing  
JPEGs
    support  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

keywords
    abstract  
    const  
    interface  
    private
        object property declarations  
    protected
        object property declarations  
    public
        object property declarations  
    static  
    var
        object properties  
ksort() function
    associative arrays, sorting  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

labels
    storing  
lengths
    strings
        finding  
less than signs ()
    XML tags  
libraries
    date pull-down  2nd  3rd  4th  5th  6th  
        date setting functions  2nd  3rd  
        date_pulldown class  2nd  
        year setting functions  2nd  
    GD  
        configuration, testing  2nd  
    JPEG
        installing  
    PEAR DB package  2nd  3rd  
        data selections  
        DSN  2nd  
        installing  
        return values  
        row IDs  
        SQL queries, executing  
        SQLite configuration  
        tables  
    SQLite  2nd  3rd  
        data selections  2nd  
        tables, creating  2nd  
        tables, data additions  2nd  
        tables, updating  
    XML  
libxml2  
libxslt  
lilbraries
    XSL  
limiting
    script runs  
lines
    drawing  2nd  
    files
        reading  2nd  
link (@before) tag  
Linux
    PHP configuration  
        --with-freetype option  
        --with-gd option  
        --with-gdbm option  
        --with-mysql option  2nd  
        --with-xslt option  
    PHP installation  2nd  3rd  
Linux Web site  
listings
    $_SERVER array;looping through  2nd  
    abs() function  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    abstract class  2nd  
    add view (MVC)  2nd  
    adding rows to tables  
    AddTask class  
    ApplicationResourcesImpl class  2nd  
    arguments
        passing by reference  2nd  
        passing to functions by values  
    array variables, registering  2nd  
    arrays
        elements, accessing  2nd  
    associative arrays, looping through  2nd  
    Auth package authentication example
        controller script  2nd  3rd  4th  
        login view  
        navigation helper  
    bar chart example  2nd  3rd  
    binary data, outputting  
    calendar client code example  2nd  3rd  
    circles, drawing  
    class constants  2nd  
    client headers sent by Mozilla  
    Command class  
    CommandFactory class  
    constructors  
        example  
    context resources
        passing to fopen() function  
        testing  
    Controller class  2nd  3rd  4th  
    cookie site tracking example
        tracking users  2nd  3rd  
        usage statistics, outputting  2nd  
        user information, adding  2nd  3rd  
    cookies, setting  2nd  
    custom exceptions (error handling)  2nd  
    databases
        connections, opening/selecting  
        rows, customizing  2nd  
        user input, adding  2nd  
    DataStore class  2nd  
    date/time information, getting  
    date/time, formatting  
    date_pulldown class, calling  
    DateIterator class  
    DateViewHelper class  
    directory listings, creating  
    Dispatcher class  
    file upload form  2nd  
    file upload script  2nd  
    function calls, intercepting  2nd  
    functions
        anonymous  
        declaring  
        dynamic calls  
        existence, testing  
        optional arguments  2nd  
        requiring two arguments  2nd  
        values, returning  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        with arguments, declaring  
    gethostbyaddr() function  
    global pattern matching  
    Grepper class  2nd  3rd  
    HTML form  
        SELECT element  
        user input, reading  2nd  3rd  
    HTML forms
        user input, accessing  
        user input, reading  
    HTML/PHP combination form
        HTML form calling itself  
        PHP number guessing script  2nd  
    HTML/PHP combination forms
        hidden fields  2nd  3rd  
    images
        fill colors  
        outputting  
        text, adding  
        transparent color  2nd  
    inheritance  
        constructors  
        overridden methods, calling  
        parent class methods, overriding  
    interfaces, defining  2nd  3rd  
    lines, drawing  
    main view (MVC)  2nd  3rd  
    man command, calling  
    methods
        property access  
        property access within  
        property value customizations  
        property values, customizing  
        with classes  2nd  
    multidimensional arrays  2nd  
    multidimensional arrays, looping through  2nd  3rd  
    MyDefault class  
    NNTP connection  2nd  3rd  
    number of rows returned by database queries  
    object properties access, limiting  
    objects
        cleaning up  
    pipes, opening  
    polygons, drawing  
    processes
        writing to  2nd  3rd  
    property access, intercepting  2nd  
    query strings, creating  2nd  
    QuickCalendar class  2nd  3rd  4th  5th  6th  
    raw headers (forms)  
    rectangles, drawing  
    RequestHelper class  2nd  3rd  4th  5th  6th  7th  
    response headers (forms)  
    server response  2nd  
    server variables (some)  2nd  
    session variables
        accessing  2nd  3rd  
        registering  
    sessions

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        starting  2nd  
    SimpleCommandFactory class  2nd  
    SimpleDispatcher class  2nd  
    static functions/properties  2nd  
    strings
        formatting  
        formatting example  2nd  
        tokenizing  
    tables
        all rows/fields listing  2nd  
    TaskFacade class  2nd  
    text
        alignment  2nd  3rd  
    timestamps, creating  
    type specifiers  
    user input, escaping  2nd  
    variables
        access  
        defined outside functions  
        remembering values between function calls  2nd  3rd  
        scope  
        values, remembering between function calls  2nd  
    Web page retrieval/printing with fopen()  2nd  
    Web pages
        retrieving with fsockopen()  
    Web servers
        returned status lines, outputting  2nd  
    XML
        banana-related news site example  2nd  
        documents with DOM functions  2nd  
        documents;parsing with SimpleXML  
        on-demand function tree navigation  2nd  
        recursion tree navigation  2nd  
    XML document  2nd  
    XML documents, parsing  2nd  3rd  4th  
    XSL
        XML document transformations  
    XSL document  
loading
    include files automatically  2nd  
loadXML() function  
location server headers  
locking
    files
        flock() function  2nd  
logical operators  2nd  
loop statement  
    nesting  2nd  
loops
    arrays  2nd  
    associative arrays  2nd  
    break statement  2nd  
    for  2nd  
    for statement  2nd  
    multidimensional arrays  2nd  
    while  
    while statement  2nd  
loosely typed  
ltrim() function  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


ltrim() function  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

m \ modifier  2nd  3rd  
Mac OS X PHP installation Web site  
mail() function
    sending mail automatically  2nd  
mailing list archives Web site  
mailing lists (PHP)  2nd  
main views (MVC)  2nd  
makeProductString() method  
man command
    calling  
meaningOfLife() function  
methods
    _construct()  
    addItem()  
    arguments
        constraining  2nd  
        hints  
    constructors
        example  
    draw()  
    existence, testing  2nd  
    getProductString()  
    Item()  
    makeProductString()  
    objects  2nd  3rd  4th  5th  
        access, limiting  2nd  
        constructors  2nd  
        property access  2nd  
        property values, customizing  2nd  
        with classes example  2nd  
    overridden
        calling  2nd  
    parent classes
        overriding  2nd  
    setName()
        object method access  
    splurgeItems()  
methods.  [See functions]2nd  [See also functions]
minus symbol (-)
    field width specifiers  
mkdir() function  2nd  
mktime() function
    timestamps, creating  2nd  
model-view-controller.  [See MVC]
modifiers (pattern)  2nd  3rd  4th  
money_format() function  2nd  3rd  4th  
month_select() function  
multidimensional arrays  2nd  
    looping through  2nd  
MVC
    AddTask class  2nd  
    ApplicationResources class  2nd  3rd  
    Command class  2nd  
    CommandFactory class  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    Controller class  2nd  3rd  
    DataStore class  2nd  
    Dispatcher class  2nd  3rd  4th  
    framework  
    Front Controller pattern  
    MyDefault class  2nd  
    php.MVC  
    Phrame  
    RequestHelper class  2nd  3rd  
    TaskFacade class  2nd  3rd  
    views
        add  2nd  
        main  2nd  
MVC (model-view-controller)  
MyDefault class  2nd  
MyException class  
MySQL
    data, customizing  2nd  
    database connections
        opening/selecting example  
    database selection  
    errors, finding  2nd  
    incremented field values  
    number of rows returned by queries  2nd  
    overview  2nd  
    resultsets  2nd  3rd  
    servers
        connecting to  2nd  
    tables
        data additions  2nd  3rd  4th  
        rows, adding  
    user input, adding  2nd  
    Web site  
MySQL Web site  
mysql_affected_rows() function  
mysql_connect() function  
mysql_errno() function  
mysql_error() function  
mysql_fetch_array() function  
mysql_fetch_object() function  
mysql_fetch_row() function  
mysql_insert_id() function  
mysql_num_rows() function  
mysql_pconnect() function  
mysql_query() function  
mysql_select_db() function  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

names
    file upload script  
naming
    variables  2nd  
nesting
    loops  
        for statement  2nd  
NetCraft Web site  
network connections
    creating  2nd  
    NNTP  2nd  3rd  
new features (PHP 5)  2nd  
nl2br() function  
NNTP connections
    creating  2nd  3rd  
number_format() function  
numbers
    strings  2nd  
numerically indexed arrays
    sorting  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

o type specifiers  
object-oriented features
    Java  
    MVC  
        add view  2nd  
        AddTask class  2nd  
        ApplicationResources class  2nd  3rd  
        Command class  2nd  
        CommandFactory class  2nd  3rd  
        Controller class  2nd  3rd  
        DataStore class  2nd  
        Dispatcher class  2nd  3rd  4th  
        framework  
        Front Controller pattern  
        main view  2nd  
        MyDefault class  2nd  
        php.MVC  
        Phrame  
        RequestHelper class  2nd  3rd  
        TaskFacade class  2nd  3rd  
objects  2nd  
    ApplicationResources  
    classes
        finding  2nd  
    cleaning up  2nd  
    CommandFactory  
    Config_Container  
    creating  2nd  
    DomDocument
        creaing  2nd  
    DomElement
        creating  2nd  
        information, getting  2nd  
    DomText  2nd  
    families
        finding  2nd  
    freeze-drying  
    function calls, intercepting  2nd  3rd  
    hierarchies  
        abstract classes  2nd  3rd  4th  
        interfaces  2nd  3rd  
    methods  2nd  3rd  4th  5th  
        access, limiting  2nd  
        constructors  2nd  
        property access  2nd  
        property values, customizing  2nd  
        with classes example  2nd  
    passing  2nd  
    PEAR_Error  
    properties  2nd  
        access, limiting  2nd  3rd  
        accessing  
        declaring  
    property access, intercepting  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    refrences, assigning  
    retrieving  2nd  
    storing  2nd  
on-demand functions (XML trees)  2nd  
open source  2nd  
opendir() function  
opening
    databases
        dba_open() function  2nd  3rd  4th  
    directories
        opendir() function  
    files
        fopen() function  2nd  
    pipes  2nd  
operands  
    operations, combining  
        expressions  2nd  
operations
    operands, combining  
        expressions  2nd  
operators  2nd  
    -(greater than)
        object properties  
    ?  2nd  
    arithmetic  
    assignment  2nd  
        combining  2nd  
    combination  2nd  
    comparison  2nd  
    concatenation  
    logical  2nd  
    order of precedence  2nd  3rd  
    ternary  2nd  
optional arguments
    example  2nd  
options
    --with-adabas
        configure script  2nd  
    --with-cybase-ct
        configure script  
    --with-dba
        configure script  
    --with-dbms
        configure script  
    --with-filepro
        configure script  
    --with-gdbm
        configure script  
    --with-informix
        configure script  
    --with-iodbc
        configure script  
    --with-ldap
        configure script  
    --with-openlink
        configure script  
    --with-oracle
        configure script  
    --with-pgsql

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        configure script  
    --with-solid
        configure script  
    --with-sybase
        configure script  
    --with-velocis
        configure script  
    configure script  2nd  3rd  4th  5th  6th  
output
    scripts  
outputStats() function  
outputting
    bar chart example  
    binary data  
    images  
overridden methods
    calling  2nd  
overriding
    subclass functions  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

package manager
    PEAR  
packages
    CURL  
    PEAR  
packages (PEAR)
    Auth  
        Auth class  2nd  
        controller script for authentication example  2nd  3rd  4th  
        installing  
        login view for authentication example  
        navigation helper for authentication example  
    Config  2nd  3rd  4th  
        configuration data  
        configuration files, creating  
        installing  
        reading configuration files  
        sections, creating  
    installing  2nd  
    package manager  
    PhpDocumentor  2nd  
        DocBlocks  2nd  3rd  
        documentation, generating  2nd  
        installing  
    stability  
padding specifiers
    strings  2nd  
parent classes
    methods, overriding  2nd  
parseConfig() function  
    Config class  
parser functions (XML)  
    resources  
parsing
    XML documents  2nd  3rd  4th  5th  6th  
passing
    arguments
        references  2nd  
        values  2nd  
    objects  2nd  
    session IDs to query strings  2nd  
PassObj class  
passthru() function  2nd  
PATH_INFO server variable  2nd  
pattern matching (strings)
    anchoring  
    backslashed characters  2nd  
    bounds  
    character matching  2nd  
    character ranges, matching  2nd  
    combining patterns  
    global matches  2nd  3rd  
    matching recurring characters  2nd  
    modifiers  2nd  3rd  4th  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    preg_match() function  2nd  
    replacing patterns  2nd  3rd  4th  
    strings, spliltting  2nd  
    subpatterns  2nd  
pattern modifiers  2nd  3rd  4th  
pclose() function  
PCREs
    modifiers  2nd  3rd  4th  
    pattern matching  2nd  
        anchoring  
        backslashed characters  2nd  
        character matching  2nd  
        character ranges, matching  2nd  
        combining patterns  
        global matches  2nd  3rd  
        matching recurring characters  2nd  
        replacing patterns  2nd  
        subpatterns  2nd  
    patterns
        replacing  2nd  
    strings, splitting  2nd  
PCREs (Perl Compatible Regular Expressions)  
PEAR  2nd  3rd  
    (PHP Extension and Application Repository)  
    coding standards  2nd  
    installing  
    packages  
        Auth  2nd  3rd  4th  5th  6th  7th  8th  9th  10th  
        Config  2nd  3rd  4th  
        installing  2nd  
        package manager  
        PhpDocumentor  2nd  3rd  4th  5th  6th  7th  
        stability  
    phpDocumentor  
    style guide Web site  
    Web site  
PEAR (PHP Extension and Application Repository)  
PEAR (PHP Extension Application Repository)  
PEAR DB package  2nd  3rd  
    data selections  
    DSN  2nd  
    installing  
    return values  
    row IDs  
    SQL queries, executing  
    SQLite configuration  
    tables, updating  
PEAR_Error objects  
percent symbol (%)
    conversion specification  2nd  
performance  
    dynamic images  
periods
    single (.)  
Perl
    push() function  
Perl Compatible Regular Expressions.  [See PCREs]
Perl regular expressions Web site  
Perl Web site  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


PHP  
    mailing lists Web site  2nd  
    open source  2nd  
    performance  
    portability  
    purpose  2nd  
    speed of development  
    Web site  
PHP (Hypertext Preprocessor)  
PHP 5
    new features  2nd  
PHP Builder Web site  
PHP editors Web site  
PHP Extension and Application Repository.  [See PEAR]2nd  [See PEAR]
PHP Extension Application Repository.  [See PEAR]
PHP manual Web site  2nd  3rd  4th  
PHP Web site  2nd  
PHP(|)architect  
php.ini file  2nd  
    directives
        error reporting  
        local changes  
        short_open_tag  
        variable  
php.MVC  
PHP_SELF element ($_SERVER array)  
phpdoc command  
phpDocumentor  
PhpDocumentor package  2nd  
    DocBlocks  2nd  3rd  
        tags  2nd  
    documentation, generating  2nd  
    installing  
PHPDocumentor Web site  
phpinfo() function  
phpPatterns  
Phrame  
pipe character ()
    back references  
    branches  
pipe characters (||)  2nd  3rd  
pipes
    closing  2nd  
    opening  2nd  
    reading  
platforms
    PHP supported  
plus sign (+)
    string pattern matching quantifier  
PNGs
    support  
polygons
    drawing  2nd  
popen() function  2nd  
    writing to processes  2nd  3rd  
populating
    arrays  
portability  
pre tag  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


precedence
    operators  2nd  3rd  
precision specifications (strings)  
predefined
    constants  
preg_match() function  2nd  
    backslashed characters  2nd  
    character matching  2nd  
    character ranges, matching  2nd  
    combining patterns  
    matching recurring characters  2nd  
    subpatterns  2nd  
preg_match_all() function
    global matches  2nd  3rd  
preg_replace() function  
    replacing patterns  2nd  
preg_replace_callback() function  2nd  
preg_split() function  2nd  
presentations
    command execution mapping  
print() function  
print() statement
    code blocks  2nd  
print_r() function
    arrays, examining  2nd  3rd  
printBR() function  
printf() function
    strings  2nd  
        padding specifiers  2nd  
        precision specifiers  
        type specifiers  2nd  3rd  4th  
printing
    scripts to browsers  2nd  
    Web pages  2nd  
private keywords
    object property declarations  
proc_close() function  
proc_open() function  2nd  
processes
    external
        calling  
    writing to  2nd  3rd  
programming errors/omissions  
properties
    access
        intercepting  2nd  
    accessing
        within methods  
    accessing within methods  
    customizing
        within methods  
    customizing within methods  
    declaring  
    objects  2nd  
        access, limiting  2nd  3rd  
        accessing  
    static  2nd  
properties.  [See also variables]
protected keywords

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    object property declarations  
protocols
    streams  
public keywords
    object property declarations  
pull-down library (date)  2nd  3rd  4th  5th  6th  
    date setting functions  2nd  3rd  
    date_pulldown class  2nd  
    date_pulldown class, calling  2nd  
    year setting functions  2nd  
push() function (Perl)  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

quantifiers
    character matching  2nd  
queries
    SQL
        executing  
queries (databases)
    number of rows returned  2nd  
query strings  2nd  
    creating  2nd  3rd  
    passing session IDs to  2nd  
query() function
    SQL queries, executing  
QUERY_STRING element ($_SERVER array)  
QUERY_STRING REFERER server variable  
QUERY_STRING server variable  
question mark (?)
    string pattern matching quantifier  
QuickCalendar class  2nd  3rd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

raw headers
    froms  
readdir() function  2nd  
reading
    databases
        dba_fetch() function  2nd  3rd  
    directories
        readdir() function  2nd  
    files  
        feof() function  2nd  
        fgetc() function  2nd  
        fgets() function  2nd  
        file() function  
        file_get_contents() function  
        fread() function  2nd  
        fseek() function  2nd  
        implode() function  
    pipes  
records
    reading from databases  2nd  
rectangles
    drawing  2nd  
recursion (XML trees)  2nd  
reference passing (arguments)  2nd  
references
    functions, returning  2nd  
    objects
        assigning  
referrer client header  
Reflection API  
register_globals directive  
registereing
    array variables  2nd  
registering
    session variables  
regular expressions  
    anchoring  
    combining patterns  
    PCREs
        backslashed characters  2nd  
        character matching  2nd  
        character ranges, matching  2nd  
        global matches  2nd  3rd  
        matching recurring characters  2nd  
        modifiers  2nd  3rd  4th  
        pattern matching  2nd  
        replacing patterns  2nd  3rd  4th  
        splitting strings  2nd  
        subpatterns  2nd  
remote addresses
    document retrieval  2nd  
REMOTE_ADDR element ($_SERVER array)  
REMOTE_ADDR server variable  2nd  
REMOTE_HOST server variable  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


removing
    directories
        rmdir() function  
replacing
    patterns  2nd  3rd  4th  
    string portions  2nd  
    substrings  2nd  
request lines  2nd  
REQUEST_METHOD element ($_SERVER array)  
REQUEST_URI element ($_SERVER array)  
RequestHelper class  2nd  3rd  
requests
    client headers  2nd  
        sent by Mozilla example  
    HTTP client/server negotiation  2nd  
    sent to servers by Mozilla example  
require() statement  
require_once() function  
require_once() statement  
resort() function
    arrays  
resources
    XML parser  
response headers
    forms  
responses
    example  2nd  
    HTTP client/server negotiation  2nd  3rd  
    server headers  2nd  
    status lines  2nd  3rd  
resultsets
    accessing  2nd  3rd  
resurrecting
    arrays
        unserialize() function  
retreiving
    serialized data from databases  2nd  
retrieving
    documents
        from remote addresses  2nd  
    objects  2nd  
    Web pages
        fsockopen() function  
    Web pages with fopen() function  2nd  
return statement  2nd  
return statements
    function values, returning  2nd  
return values
    included documents  2nd  
return values (PEAR DB package)  
returning
    function references  2nd  
rmdir() function  
root elements
    creating  
rows
    adding
        tables  
    databases

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        customizing  2nd  
    number returned by database queries  2nd  
    tables
        listing all  2nd  
    unique IDs  
running
    commands  2nd  
    external applications  2nd  
    external commands  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

s \ modifier  2nd  
s \escape character  
S \escape character  
s type specifiers  
saving
    functions
        between calls  2nd  3rd  
    state
        hidden fields  2nd  3rd  4th  5th  
scope
    function variables  2nd  
script tags  
scripting engines
    Zend  
scripts  2nd  
    configuration problems  
    configure  
        --with-freetype option  
        --with-gd option  
        --with-gdbm option  
        --with-mysql option  2nd  
        --with-xslt option  
        Linux/Apache PHP installation  
    file uploads  2nd  
        names  
    HTML, adding  2nd  
    limiting runs  
    output  
    printing to browsers  2nd  
    source code  
    testing  2nd  
    uploading  
security
    cookies  
    gaps, plugging  2nd  3rd  
    programming errors/omissions  
    Web  
see (@before) tag  
selecting
    databases  
semicolon
    (;)  
sending
    mail
        automating  2nd  
Serializable interface  
serialize() function  2nd  
server headers (responses)  2nd  
server server headers  
server variables  2nd  
    HTTP_REFERER  2nd  
    HTTP_USER_AGENT  2nd  
    listing of  2nd  
    PATH_INFO  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    QUERY_STRING  2nd  
    REMOTE_ADDR  2nd  
    REMOTE_HOST  2nd  
servers
    databases
        connecting to  2nd  
    NNTP connections  2nd  3rd  
    PHP supported  
    Web
        returned status lines, outputting  2nd  
session cookies
    creating  
session functions  2nd  
session_decode() function  
session_destroy() function  
session_encode() function  
session_start() function  2nd  3rd  
sessions
    array variables
        registring  2nd  
    elements, deleting  
    ending  
    IDs
        passing to query strings  2nd  
    starting  2nd  3rd  
    variables
        accessing  2nd  3rd  4th  
        encoding/decoding  2nd  
        registering  
set_include_path() function  
setcookie() function
    cookies, setting  2nd  3rd  
    session cookies, creating  
setDate_array() function  
setDate_request() function  
setDate_timestamp() function  
setName() method
    object method access  
settype() function  2nd  
setUpdater() function  
setYearStart() function  
shapes
    drawing
        circles  
        lines  
        polygons  2nd  
        rectangles  2nd  
short tags  
short_open_tag directive  
SimpleBar class  
SimpleCommandFactory class  2nd  
SimpleDispatcher class  2nd  
SimpleXML  2nd  
simplexml_load_file() function  
simplexml_load_string() function  
simulating
    abstract classes  
    interfaces  
since (@before) tag  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


single period (.)  
single quotation mark (')
    strings  2nd  
Singleton pattern  
size
    arrays  2nd  3rd  
sizes
    files
        filesize() function  
slashes
    forward (//)  
slicing
    arrays  2nd  
sort() function
    numerically indexed arrays  2nd  
sorting
    arrays
        associative by key  
        associative by value  2nd  
        numerically indexed  2nd  
source code
    scripts  
spaces (HTML documents)
    viewing  
special data types  2nd  
specifiers (strings)  2nd  
speed of development (PHP)  
splurgeItems() method  
sprintf() function  
SQL
    (Structured Query Language)  
    defined  
SQL queries
    executing  
SQL.  [See also MySQL]
SQLite  2nd  
    data selections  2nd  
    tables
        creating  2nd  
        data additions  2nd  
        updating  
SQLite;  
sqlite_close() function  
sqlite_last_insert_rowid() function  
sqlite_open() function  
sqlite_query() function  
square brackets ([])
    array identifiers  2nd  
    character classes  
standard data types  
standard tags  
standards
    XHTML  
start tags  2nd  
start() function
    Auth class  
starting
    sessions  2nd  3rd  
state

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    functions
        saving between calls  2nd  3rd  
    saving
        hidden fields  2nd  3rd  4th  5th  
statements  
    beginning and ending  2nd  3rd  
    break  2nd  
        including in case statement  
    conditional
        included documents  2nd  3rd  4th  
    continue  2nd  
    defined  
    die()  
    do,while  2nd  
    for  2nd  3rd  4th  
        nesting loops  2nd  
    foreach
        array elements, accessing  2nd  3rd  
        looping through arrays  2nd  
        looping through associative arrays  
        looping through multidimensional arrays  2nd  
    function  
    functions  2nd  
    global
        remembering function variable values between calls  2nd  3rd  4th  
        variable access  2nd  3rd  4th  
    if  
        else clause  2nd  
        else/if clause  2nd  
        structure  2nd  
    include()  2nd  3rd  4th  
        control structures  2nd  
        for loop  2nd  
        include_once() statement  2nd  3rd  4th  
        include_path() statement  2nd  
        return values  2nd  
        set_include_path() functions  
    include_once()  2nd  3rd  4th  
    include_path()  2nd  
    loop  
        nesting  2nd  
    print()
        code blocks  2nd  
    require()  
    require_once()  
    return  2nd  
        function values, returning  2nd  
    static
        function state, saving  2nd  3rd  
        remembering function variable values between calls  
    switch  2nd  3rd  
    while  2nd  
static functions  2nd  
static keyword  
static properties  2nd  
static statement
    remembering function variable values between calls  
static statements
    function state, saving  2nd  3rd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


status lines (responses)  2nd  3rd  
statuses
    files  
        is_executable() function  
        is_readable() function  
        is_writable() function  
storage drivers Web site  
storing
    arrays  
    formatted strings  
    labels  
    objects  2nd  
    values  
str_replace() function  2nd  
streams  
    contexts  2nd  
    defined  
    protocols  
    wrappers  
strings  2nd  
    (') single quotation marks  2nd  
    (") double quotation marks  2nd  
        escape characters  
    breaking into arrays  2nd  
    case, converting  2nd  
    cleaning up  2nd  
    currency  2nd  3rd  4th  
    format control
        arguments, switching  2nd  
    format specifier flags  
    formatting  
        arguments, switching  2nd  
        example  2nd  3rd  
        field width specifications  2nd  
        padding specifiers  2nd  
        precision specifications  
        printf() function  2nd  
        specifiers  2nd  
        storing  
        type specifiers  2nd  3rd  4th  
    functions Web site  
    indexing  2nd  
    lengths
        finding  
    numbers  2nd  
    portions
        replacing  2nd  
    portions, extracting  2nd  
    query  2nd  
        creating  2nd  3rd  
    splitting  2nd  
    substrings
        finding  2nd  
        position, finding  2nd  
        replacing  2nd  
    text
        adding to images  2nd  3rd  
        numbers as  2nd  
        wrapping  2nd  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    tokenizing  2nd  3rd  
    white space, deleting  
strings pattern matching.  [See pattern matching]
strip_tags() function  2nd  
strlen() function  
strpos() function  2nd  
strstr() function  2nd  
strtok() function  2nd  3rd  
strtolower() function  
strtoupper() function  
structure
    if statement  2nd  
Structured Query Language.  [See SQL]
subclasses
    functions, overriding  
subpatterns  2nd  
subpatterns.  [See atoms]
subscript() function  
substr() function  2nd  
substr_replace() function  2nd  
substrings
    finding  2nd  
    position, finding  2nd  
    replacing  2nd  
superglobal variables  2nd  
    $_COOKIE  
    $_ENV  
    $_FILES  
    $_FILES array  2nd  
    $_GET  
    $_GLOBALS  
    $_POST  
    $_REQUEST  
    $_SERVER  2nd  
    $_SERVER;elements  2nd  
    $_SERVER;looping through  2nd  
switch statement  2nd  3rd  
system() function
    external commands, running  2nd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

tables
    data additions  2nd  3rd  
        data additions  
    rows
        adding  
        unique IDs  
    rows/fields, listing all  2nd  
    SQLite
        creating  2nd  
        data additions  2nd  
        updating  
    updating  
tags
    ASP  2nd  
    code blocks  2nd  
    DocBlocks  2nd  
    end  2nd  
    HTML
        pre  
    script  
    short  
    standard  
    start  2nd  
    XML  2nd  
tagWrap() function  
target character encoding (XML)  
TaskFacade class  2nd  3rd  
Telnet clients  
template method patterns  
ternary operator  2nd  
testing
    Apache DSO support  
    classes/methods existence  2nd  
    context resources  
    data types
        functions  2nd  
    date  
    files
        file_exists() function  
        is_dir() function  
        is_file() function  
        multiple file tests  2nd  
    function existence  2nd  3rd  
    scripts  2nd  
    text
        images  2nd  3rd  4th  
    variable types  
text
    bar chart example  2nd  3rd  
    images
        adding with imagestring() function  2nd  
        adding with imageTTFtext() function  2nd  3rd  
        aligning  2nd  3rd  
        testing  2nd  3rd  4th  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


        TrueType fonts  
    strings
        numbers as  2nd  
        wrapping  2nd  
text nodes (XML)  2nd  
time
    timestamps
        converting  2nd  3rd  4th  
        creating  2nd  
    Unix epoch  
time() function
    date, getting  
time.  [See date/time]
timestamps
    converting
        date() function  2nd  
        getdate() function  2nd  
    creating
        mktime() function  2nd  
toArray() function
    Config_Container class  
tokenizing
    strings  2nd  3rd  
Tom Christiansen Perl Web site  
toString() function
    Config_Container class  
tracking site usage example  2nd  3rd  4th  5th  6th  
    database fields  
    limitations  
    tracking users  2nd  3rd  
    usage statistics, outputting  2nd  
    user information, adding  2nd  3rd  
transform_to_xml() function  
transparent colors
    images  2nd  
trees
    XML
        on-deman function navigation  2nd  
        recursion navigation  2nd  
        text nodes  
trim() function  2nd  
TrueType fonts  
Type 1 fonts
    support  
type specifier  
type specifiers
    strings  2nd  3rd  4th  
types
    data
        converting  2nd  
        special  2nd  
        standard  
        testing  2nd  
        variables  2nd  
    variables
        converting  2nd  
        displaying  
        testing  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

U \ modifier  
ucwords() function  
Unix
    grep command  2nd  3rd  
Unix epoch  
Unix who command, reading  
unlink() function  
unserialize() function  2nd  
unset() function  
update() function  
    object hierarchies  
updating
    SQLite tables  
    tables  
uploading
    files
        forms  
    scripts  
urlencode() function  
user input
    adding to databases  2nd  
    escaping  2nd  
    HTML forms
        accessing with SELECT elements  2nd  3rd  
        importing into global variables  2nd  
        reading  2nd  3rd  
        receiving  
    importing into global variables  
user-agent client header  
user-defined functions
    values, returning  2nd  
users
    redirecting (forms)  2nd  3rd  
users array
    elements  
usr/local/lib directory
    php.ini file location  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

values
    functions
        returning  2nd  
    return
        included documents  2nd  
    storing  
    variables
        remembering between function calls  2nd  3rd  
var keyword
    object properties  
var_dump() function  2nd  
variable directives  
variables  2nd  
    array
        session registration  2nd  
    arrays
        adding  2nd  
    casting  2nd  3rd  
    counter  
    data types  2nd  
    functions
        accessing  2nd  3rd  4th  
        scope  2nd  
    global
        accessing  
        user input, importing  2nd  
    integer
        decrementing  2nd  
        incrementing  2nd  
    naming  2nd  
    server  2nd  
        listing of  2nd  
    session
        accessing  2nd  3rd  4th  
        encoding/decoding  2nd  
        registering  
    superglobal  2nd  
        $_COOKIE  
        $_ENV  
        $_FILES  
        $_FILES array  2nd  
        $_GET  
        $_GLOBALS  
        $_POST  
        $_REQUEST  
        $_SERVER  2nd  3rd  4th  5th  6th  
    types
        converting  2nd  
        displaying  
        testing  
    values
        remembering between calls  2nd  
        remembering between function calls  2nd  3rd  
variables.  [See also properties]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


version (@before) tag  
viewing
    spaces
        HTML documents  
virtual() function  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

w \escape character  
W \escape character  
WBMPs
    support  
Web
    browsing
        Telnet  
    security  
Web istes
    PHP  
Web pages
    retrieving
        fsockopen() function  
    retrieving/printing with fopen() function  2nd  
Web servers
    returned status lines, outputting  2nd  
Web sites
    calendar functions  
    CURL package  
    DOM W3C specification  
    FreeType  
    Front Controller pattern  
    Independent JPEG Group  
    J2EE patterns  
    libxml2  
    libxslt  
    Linux  
    Mac OS X PHP installation  
    mailing list archives  
    MySQL  2nd  
    NetCraft  
    PEAR  
    PEAR style guide  
    Perl  
    Perl regular expressions  
    PHP  2nd  
    PHP Builder  
    PHP editors  
    PHP mailing lists  2nd  
    PHP manual  2nd  3rd  4th  
    PHP(|)architect  
    php.MVC  
    phpdoc command flags  
    PHPDocumentor  
    phpPatterns  
    Phrame  
    storage drivers  
    stream wrappers  
    string functions  
    Tom Christiansen Perl  
    Web security  
    Windows PHP installation  
    XHTML  2nd  
    XML  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    XML Parser Toolkit  
    Yellow Dog Linux  
    Zend  
while loop  
while statement  2nd  
white space (strings)
    deleting  
who command (Unix), reading  
Windows PHP installation Web site  
with-adabas (--) option
    configure script  
with-dba (--) option
    configure script  
with-dbm (--) option
    configure script  
with-filepro (--) option
    configure script  
with-freetype (-- before) option (configure script)  
with-gd (-- before) option (configure script)  
with-gdbm (-- before) option (configure script)  
with-gdbm (--) option
    configure script  
with-informix (--) option
    configure script  
with-iodbc (--) option
    configure script  
with-ldap (--) option
    configure script  
with-msql (--) option
    configure script  
with-mysql (-- before) option (configure script)  2nd  
with-openlink (--) option
    configure script  
with-oracle (--) option
    configure script  
with-pgsql (--) option
    configure script  
with-solid (--) option
    configure script  
with-sybase (--) option
    configure script  
with-sybase-ct (--) option
    configure script  
with-velocis (--) option
    configure script  
with-xslt (-- before) option (configure script)  
wordwrap() function  2nd  
wrappers
    streams  
wrappers (HTTP)
    context options  
wrapping
    text
        strings  2nd  
write_login() function  
writeConfig() function
    Config class  
writeObject() function  
writing

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


    data to files
        file_put_contents() function  2nd  
    files
        fopen() function  2nd  
        fwrite() function  2nd  
    processes  2nd  3rd  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

x \ modifier  2nd  
x type specifiers  
X type specifiers  
XBMs
    support  
XHTML  2nd  
    (Extensible Hypertext Markup Language)  
    standards  
XHTML Web site  
XML
    case folding  
    declarations  
    document  2nd  
    documents
        banana-related news site example  2nd  
        creating with DOM functions  2nd  
        errors, reporting  2nd  
        parsing  2nd  3rd  4th  5th  6th  
        parsing with SimpleXML  
    DOM  
        DomDocument objects  2nd  
        DomElement object  2nd  
        DomElement objects  2nd  
        DomText objects  2nd  
        root elements, creating  
        W3C specification  
        XML documents, creating  2nd  
    DTDs  
    elements  2nd  
        case folding  
    handlers  2nd  
    library  
    libxml2  
    parser functions  
        resources  
    Parser Toolkit  
    SimpleXML  2nd  
    stability  
    support  
    tags  2nd  
    target character encoding  
    text nodes  2nd  
    trees
        on-demand function navigation  2nd  
        recursion navigation  2nd  
    Web site  
XML (Extensible Markup Language)  
XML documents
    creating with XSL  2nd  
    DOM elements, adding  2nd  
xml_error_string() function  
xml_get_current_line_number() function  
xml_get_error_code() function  
xml_parse() function  

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


xml_parser_create() function  
xml_parser_free() function  
xml_parser_set_option() function  
xml_set_character_data_handler() function  2nd  
xml_set_default_handler() function  
xml_set_element_handler() function  2nd  
xml_set_external_entity_ref_handler() function  
xml_set_notation_decl_handler() function  
xml_set_processing_instruction_handler() function  
xml_set_unparsed_entity_decl_handler() function  
XPMs
    support  
XSL
    documents  2nd  
    library  
    support  
    XML documents, creating  2nd  
XSL (Extensible Stylesheet Language)  
XsltProcessor class  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

year_select() function  
yearPulldown() function  
Yellow Dog Linux Web site  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


[ Team LiB ]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z] 

Z \escape character  
z \escape character  
Zend Engine 2  
Zend scripting engine  
Zend Web site  

[ Team LiB ]

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html


Brought to You by

Like the book? Buy it!

This document is created with a trial version of CHM2PDF Pilot 
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

