

Expert One-on-One™ Visual Basic®2005
Database Programming

Roger Jennings

01_57678x ffirs.qxd 11/10/05 11:25 PM Page iii

Expert One-on-One™ Visual Basic®2005
Database Programming

01_57678x ffirs.qxd 11/10/05 11:25 PM Page i

01_57678x ffirs.qxd 11/10/05 11:25 PM Page ii

Expert One-on-One™ Visual Basic®2005
Database Programming

Roger Jennings

01_57678x ffirs.qxd 11/10/05 11:25 PM Page iii

Expert One-on-One™ Visual Basic®2005
Database Programming
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-7678-2
ISBN-10: 0-7645-7678-X

Printed in the United States of America

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/TQ/RR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355 or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFES-
SIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFES-
SIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE
FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO
IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT
MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN
WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. Linux is a registered trademark
of Linus Torvalds. MySQL is a registered trademark of MySQL AB A Company. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

01_57678x ffirs.qxd 11/10/05 11:25 PM Page iv

www.wiley.com

About the Author

Roger Jennings
Roger Jennings is an author and consultant specializing in Microsoft Visual Basic .NET n-tier and
client/server database applications, and data-intensive ASP.NET Web services. He’s been a member of
the beta test team for all versions of Visual Basic starting with the Professional Extensions for Visual
Basic 2.0 (code-named Rawhide) and Visual Studio, all releases of Microsoft SQL Server starting with
version 4.2 for OS/2, every version of Microsoft Access, and all Windows client and server operating
systems beginning with the Windows 3.0 Multimedia Extensions.

Roger’s 25 computer-oriented books have more than 1.25 million English copies in print and have been
translated into more than 20 languages. He’s the author of three editions of Database Developer’s Guide
to Visual Basic (SAMS Publishing), two editions of Access Developer’s Guide (SAMS), nine editions of
Special Edition Using Microsoft Access (QUE Publishing), and two editions of Special Edition Using
Windows NT 4.0 Server (QUE). He has also written developer-oriented books about Windows 3.1 multi-
media, Windows 95, Windows 2000 Server, Active Directory Group Policy, Visual Basic .NET Web
services, and Microsoft Office InfoPath 2003 SP-1. Roger is a contributing editor of Fawcette Technical
Publications’ Visual Studio Magazine and a columnist for Fawcette’s .NETInsight and XML & Web
Services Insight newsletters.

Roger has more than 25 years of computer-related experience, beginning with real-time medical data
acquisition and chemical process control systems driven by Wang 700 calculators/computers. He is
a principal of OakLeaf Systems, a Northern California software consulting firm, the developer of
the OakLeaf XML Web Services site (www.oakleaf.ws/), and author of the OakLeaf Systems weblog
(oakleafblog.blogspot.com). His OakLeaf Code of Federal Regulations (CFR) ASP.NET Web service
and client (www.oakleaf.ws/cfr/) projects won the charter Microsoft .NET Best Award for Horizontal
Solutions (www.microsoft.com/presspass/features/2002/aug02/08-07netwinners.mspx).
You can reach Roger at Roger_Jennings@compuserve.com.

01_57678x ffirs.qxd 11/10/05 11:25 PM Page v

01_57678x ffirs.qxd 11/10/05 11:25 PM Page vi

Credits
Executive Editor
Robert Elliott

Development Editor
Adaobi Obi Tulton

Technical Editor
Thomas Rizzo

Production Editor
Pamela Hanley

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Quality Control Technicians
Leeann Harney
Jessica Kramer
Joe Niesen

Project Coordinator
Michael Kruzil

Graphics and Production Specialists
Carrie Foster
Denny Hager
Barbara Moore
Alicia B. South

Proofreading and Indexing
TECHBOOKS Production Services

01_57678x ffirs.qxd 11/10/05 11:25 PM Page vii

01_57678x ffirs.qxd 11/10/05 11:25 PM Page viii

This book is dedicated to my wife, Alexandra.

01_57678x ffirs.qxd 11/10/05 11:25 PM Page ix

01_57678x ffirs.qxd 11/10/05 11:25 PM Page x

Contents

Acknowledgments xxi
Introduction xxiii

Part I: ADO.NET 2.0 Basics 1

Chapter 1: Migrating from ADO to ADO.NET 3

A New Approach to Data Access 4
The System.Data Namespace 4
ADO.NET Data Providers 6

Basic ADO.NET Data Objects 7
Creating Basic ADO.NET Data Objects with SqlClient 8
Applying Transactions to Multi-Table Updates 15
Using OleDb, SqlXml, and Odbc Member Classes 18
Working with Typed DataReader and SqlResultSet Data 21

ADO.NET Typed DataSet Objects 23
Add a Typed DataSet from an SQL Server Data Source 24
Add a DataGridView and BindingNavigator Controls 30
Persist and Reopen the DataSet 32
Change from a DataViewGrid to a Details Form 33
Add a Related DataBound Control 34

Summary 37

Chapter 2: Introducing New ADO.NET 2.0 Features 39

Working with New ADO.NET 2.0 Runtime Windows Form Objects 39
Use the DbProviderFactories to Create Database-Agnostic Projects 40
Retrieve Base Table Schemas 43
Check Available SQL Server Instances and ADO.NET 2.0 Data Providers 46
Batch Inserts to SQL Server Tables with the SqlBulkCopy Object 47
Get SQL Server Connection Statistics 51
Execute SqlCommands Asynchronously 52
Create Standalone DataTables 62
Use Nullable Types to Support DBNull Values 66

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xi

xii

Contents

Using New ADO.NET 2.0 Persistent Windows Form Objects 69
Compare ADO.NET 1.x and 2.0 Data Designers 70
Add Missing ADO.NET Controls to the Toolbox 72
Upgrade 1.x Projects to ADO.NET 2.0 Components 72
Add Multi-Level Subforms 73
Parameterize the MasterDetailsForm 75
Batch Multiple Updates 77

Design and Display Reports with the ReportViewer Control 79
Summary 82

Chapter 3: Adopting Best Practices for Data-Centric Projects 83

Establish Architectural Best Practices 84
Reference Architectures 85

Find Patterns for Projects 86
Enterprise Solution Patterns Using Microsoft .NET 87
Data Patterns 87
Distributed Systems Patterns 88
Integration Patterns 88

Try Application Block Libraries 89
The Data Access Application Block 90
The DataAccessQuickStart Client 94

Adhere to Design Guides 96
The .NET Data Access Architecture Guide 96
Improving .NET Application Performance and Scalability 96
Designing Data Tier Components and Passing Data Through Tiers 97

Apply Class Library Design Guidelines 102
Naming Guidelines 102
Class Member Usage Guidelines 103

Prepare for Service-Oriented Architecture 103
The Road to Service-Oriented Architecture 104
Implement SOA with Web Services 105
Ensure Fully Interoperable Web Services 106

Use FxCop to Validate Project Code 110
Automate Test-Driven Development 112

Add a Unit Test Project to a VS 2005 Solution 112
Edit and Run the Wizard-Generated Tests 114

Run the SQL Server 2000 Best Practices Analyzer 116
Apply Specific Best Practices to ADO.NET 2.0 Projects 118

Use Identical Connection Strings to Pool Database Connections 118
Run SQL Server Profiler to Inspect SQL and RPC Queries 120
Avoid Adding Runtime CommandBuilder Instances 121

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xii

xiii

Contents

Substitute Stored Procedures for SQL Batch Queries 122
Add Default Values for Parameters That Aren’t Required 122
Use sp_executesql and Named Parameters to Reuse Cached Query Plans 122
Add timestamp Columns for Optimistic Concurrency Control 123
Check All Related Records in Concurrency Tests 126
Batch Updates to Minimize Server Roundtrips 126
Avoid SqlExceptions with Client-Side Validation 126

Summary 127

Part II: Data Binding in Windows Forms and Controls 129

Chapter 4: Programming TableAdapters, BindingSources,
and DataGridViews 131

Design a Basic Customer-Orders-Order Details Form 132
Reduce DataSet Size with Parameterized Queries 132
Create the Data Source and Add the Controls 133
Add FillBy Methods for Each Data Table 135
Alter the Autogenerated Code to Fill the Controls 137
Fill the ComboBox with CustomerID Values 137
Clean Up the UI and Code 138

Format and Add DataGridView Columns 139
Format the OrdersDataGridView Columns 140
Format and Add a Computed Column to the Order_DetailsDataGridView 141

Provide Default Values for New Records 143
Add Default Orders Record Values 144
Add Default Order Details Record Values 145

Handle the DataErrors Event 146
Streamline Heads-Down Data Entry 146
Migrate the UI to a Tabbed Form 149

Test Drive the OrdersByCustomersV3 Project 149
Fix Missing Default Values When Adding Rows with Code 150
Edit a Selected DataGridView Record on the Second Tab Page 152

Create and Bind Lookup Lists for Primary Key Values 153
Create an Untyped Lookup DataSet and Its DataTables 154
Populate the cboCustomerID Combo Box 156
Replace DataGridView Text Boxes with Combo Boxes 156
Associate Combo Boxes with Text Boxes 159

Add a Combo Box That Sets Additional Values 162
Create and Bind a DataView Sorted by ProductName 162
Test for Duplicates and Update the UnitPrice Column 163

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xiii

xiv

Contents

Add Lookup Table Rows for New Customer Entries 166
Add and Bind a CustomerID BindingSource 166
Test for Duplicates with a DataRowView 167

Apply Business Rules to Edits 168
Save Changes to the Base Tables 169

Maintain Referential Integrity 170
Create and Test the UpdateBaseTables Function 171

Summary 180

Chapter 5: Adding Data Validation and Concurrency Management 181

Validate Data Entries 183
Validate Text Boxes 183
Validate DataGridViews 184
Catch Primary Key Constraint Violations on Entry 186
Validate Default Values 187

Manage Concurrency Violations 189
ADO.NET 2.0 Concurrency Control and Transaction Changes 189
Concurrency Control Strategies 191
The “Missing Links” of Concurrency Management 192
Anticipate Value-Based Primary-Key Constraint Violations 198

Handle Concurrency Errors Gracefully 201
Obtain Current Data from the Server 202
Retrieve and Compare Server and Client Cell Values 203

Accommodate Disconnected Users 208
Create and Manage Offline DataSets 209
Enable Handling Multiple Parent Records 211

Summary 212

Chapter 6: Applying Advanced DataSet Techniques 213

Apply Transactions to DataSet Updates 214
Simplify Enlistment with System.Transactions 217

Add Joins to DataTable Select Commands 222
Add a Join to the SelectCommand 222
Add the Joined Columns to the DataGridView 224
Provide Default Values and Update Read-Only Columns 225

Improve Performance by Reducing DataSet Size 227
Limit Rows Returned with TOP n Queries 228
Add Partial Classes for TableAdapters 228

Work with Images in DataGridViews 229
Add Image Columns to DataGridViews 230
Manipulate DataGridView Images 231

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xiv

xv

Contents

Edit XML Documents with DataSets and DataGridViews 235
Adapt an Existing XML Schema to Generate a DataSet 235
Infer an XML Schema to Generate a DataSet 248
Create Editing Forms from XML Data Sources 250

Generate Serializable Classes from Schemas 255
Create Data Sources from Serializable Classes 257
Enhance Editing with Generic BindingList Collections 259

Summary 261

Part III: Data Binding in ASP.NET 2.0 263

Chapter 7: Working with ASP.NET 2.0 DataSources and Bound Controls 265

Explore New ASP.NET 2.0 Features 266
The ASP.NET 2.0 Compilation Model 269
Special ASP.NET 2.0 Folders 271
New ASP.NET 2.0 Data Controls 272

DataSource Controls 273
The DataList Control 274

SqlDataSources for Bound Controls 275
Control Properties 280
Databound Templates and Data Formatting 281
DataSource WHERE Constraints from Bound Control Values 283
Edit Items in DataLists 286

The FormView Control 288
Page the DataSource 288
Replace Null Values with Column-Specific Text 289
Edit, Add, and Delete Records 291
Add Command Buttons 292

The GridView Control 293
Convert BoundFields to EditItemTemplate Fields 295
Replace TextBoxes with DropDownLists for Editing 297
Design a GridView with an ImageField 299
Scale Image Rendering 302

The DetailsView Control 303
Synchronize a Child Table GridView and DetailsView 304
Make a Composite Primary Key Value Editable 304
Assign Default Values and Handle Update and Insert Errors 304
Link a DetailsView Page to a GridView Page with a QueryString 306

Summary 307

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xv

xvi

Contents

Chapter 8: Applying Advanced ASP.NET 2.0 Data Techniques 309

Validate Entries in Databound Controls 310
ASP.NET 2.0 Validation Controls 310
The New ValidationGroup Property 311
Other Shared Validation Properties 311

Validate GridView Edits 313
Add Required Field Validation to a GridView Control 313
Validate CustomerID Entries with a RegularExpressionValidator 315
Test EmployeeID Values with a RangeValidator 316
Apply a RangeValidator and RegularExpressionValidator to Date Entries 317
Prevent Unreasonable Entries with a CompareValidator 318
Add a CustomValidator Control 319
Provide a Validation Summary Message 321

Validate DetailsView Controls 322
Validate ProductID Edits at the Web Server 322
Test for Duplicate ProductID Values at the Client 323

Replace SqlDataSources with ObjectDataSources 325
ObjectDataSources from DataTables 325
ObjectDataSources from Typed DataSet DALCs 335
ObjectDataSources from Custom Business Objects 336

Read XML Files with the XmlDataSource 343
Create XmlDataSources from XML Documents 344
Populate a GridView with Orders.xml 346
Design a Repeater Control with an XmlDataSource 347
Fill a TreeView with Tabular Data 348

Trace Web Pages to Compare DataSource Performance 351
Deploy Completed Web Sites to IIS 353

Create a Virtual Directory for Your Site 353
Copy a Web Site to a Virtual Directory Folder 354
Publish Precompiled Web Sites 355

Summary 356

Chapter 9: Publishing Data-Driven Web Services 359

Web Service Development Strategies 360
Transactions 360
DataSets 361
Custom Business Objects 361
Multiple WebMethods and Versioning 362
Web Service Security 363

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xvi

xvii

Contents

ASP.NET 2.0 Web Service Programming 363
The Web Service Help Page and WSDL Document 364
Web Service Deployment 369
Web Service Clients and Proxies 369

Create and Deploy a Simple Data Web Service 375
Web Service Connection Strings 376
Add a General-Purpose Procedure to Return a Typed DataSet 377
Add a WebMethod to Define and Return the DataSet 379

Add DataGridViews to the Web Service Client 380
Update the Web Service DataSet 382
Substitute Custom Business Objects for DataSets 384

Explore a Business Object Web Service 385
Bind Object Arrays to DataGridViews 391
Create an ASP.NET Business Objects Web Services Client 397

Summary 399

Part IV: SQL Server 2005 and ADO.NET 2.0 401

Chapter 10: Upgrading from SQL Server 2000 to 2005 403

SQL Server 2005 Editions 404
Express Edition 404
Developer Edition 405
Workgroup Edition 405
Standard Edition 406
Enterprise Edition 406
Mobile Edition 406

New SQL Server 2005 Features in Brief 407
New or Updated Management Tools 407
Reporting Services 412
CLR Integration 413
The xml Data Type and XQuery Implementation 413
Chapter 12 also introduces you to SQL Server 2005’s XQuery syntax.SQL Native Client 414
Multiple Active Result Sets (MARS) 415
Data Availability and Reliability Enhancements 416
T-SQL and Database Engine Enhancements 416
Service Broker 425
Notification Services 429
Query Notifications 429
Database Mail 430
SQL Server Native SOAP Web Services 430

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xvii

xviii

Contents

Customize FOR XML Queries 432
Add Root Elements and Embed XML Schemas with FOR XML RAW Queries 433
Fine-Tune Document Structure with FOR XML PATH 435

Explore the PIVOT and UNPIVOT Operators 440
Create the Source Table 440
Apply the PIVOT Operator 441
Replace the Source Table with a Common Table Expression 442
UNPIVOT the Crosstab Report 443

Process Query Notifications 444
Add SqlDependency Notifications 446
Create SqlNotificationRequest Objects and Subscriptions 448
Automate Reorder Processing with Database Mail 452

Consume SQL Server Native Web Services 453
Summary 456

Chapter 11: Creating SQL Server Projects 457

An Introduction to SQL Server Projects 458
Commands to Enable CLR Integration 458
Attribute Decorations for SQL Server Projects 458
Visual Studio 2005 SQL Server Project Templates 459

The SqlServerProjectCLR Sample Project 460
Code for SQL Server Objects 461
Test Scripts 465
The CREATE ASSEMBLY Instruction 466
Create ObjectType Instructions 468
Drop SQL/CLR Objects 470
Debug SQL Server Projects 471

Design SQL/CLR Stored Procedures 472
Return Content-Dependent SqlDataRecords 473
Generate XML Documents with an XmlWriter 475
Project Product Sales with Linear Regression Analysis 484

Create User-Defined Types 491
Native-Format UDT Code for Structures and Classes 492
UserDefined-Format UDT Class Code 494
A Simple Value-Type UDT 496

Add a UDT Column to a Table 499
Display Table Rows with UDT Columns 500
Use an SqlDataReader to Return UDT Values 501

Work with a Complex UserDefined-Format UDT 502
The AddressBasic UDT 503
Verify the Address UDT Methods 506

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xviii

xix

Contents

Test the Address UDT with WHERE Constraints and ORDER BY Clauses 507
Access Data from Other Fields or Tables with UDT Queries 509
Generate Well-Formed XML with an XmlTextWriter 509

Summary 512

Chapter 12: Exploring the XML Data Type 513

Select the Appropriate XML Data Model 515
Untyped XML Columns 515
Typed XML Columns 519
Indexed XML Columns 522

Explore the AdventureWorks XML Columns 525
Execute XQuery Expressions 528

XQuery Methods for XML Columns 529
FLWOR XQuery Expressions 535
Execute XQuery Expressions with Code 540

Evaluate Performance Effects of Data Model Choices 541
Create and Fill the SalesOrders and SalesOrderItems Tables 543
Populate the SalesOrders Table’s OrdersXML1 and OrdersXML2 Columns 545
Evaluate the Effect of XML Indexes on UPDATEs 546
Analyze Improvement of XQuery Performance 548

Summary 557

Index 559

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xix

02_57678x ftoc.qxd 11/10/05 11:27 PM Page xx

Acknowledgments

Many thanks to Tom Rizzo, this book’s technical editor, for corrections and suggestions as the chapters
progressed through alpha, beta, and Community Technical Preview releases of VS 2005 and SQL Server
2005. Tom is Microsoft’s Director for SQL Server Product Management, and he’s a regular speaker on
SQL Server topics at Microsoft Tech*Ed and Professional Developer Conferences, as well as Fawcette’s
VSLive! and SQLLive! conferences. Any technical gaffes, errors, or omissions that remain rest squarely
on my shoulders.

Joe Wikert, Wiley Technical Publishing’s Vice President and Publisher, and Executive Editor Bob Elliott
convinced me to take on this challenging project. Adaobi Obi Tulton, Senior Development Editor, made
sure that chapters didn’t slip too far behind schedules that changed as estimated release-to-manufacturing
(RTM) dates for VS 2005 and SQL Server 2005 came and went. Pamela Hanley, Production Editor, fixed
many grammatical lapses. I appreciate their contributions, as well as those of all others in the production
process, to the book’s completion.

03_57678x flast.qxd 11/10/05 11:17 PM Page xxi

03_57678x flast.qxd 11/10/05 11:17 PM Page xxii

Introduction

It’s a reasonably safe bet that more than 80% of Visual Basic 6.0 projects written since Microsoft released
the product on June 15, 1998 involve connections to one or more relational databases. Access 1.0
introduced the Joint Engine Technology (Jet) indexed sequential access method (ISAM) database and
Embedded Basic, the forerunner of Visual Basic for Applications (VBA), in 1992. Access 1.0 and 1.1
enabled rapid application development (RAD) for Jet, as well as SQL Server 4.2 and other client/server
database front ends that had Open Database Connectivity (ODBC) drivers. Visual Basic 3.0 introduced
databinding and the first databound grid control in 1993, which resulted in a flood of books and
magazine articles devoted to VB database programming with SQL and ODBC. Visual Basic 4.0
introduced 32-bit projects but wasn’t a robust development platform. 1995’s Visual Basic 5.0 added
ActiveX Data Objects (ADO) 1.0 and OLE DB. VB and VBA became the world’s most popular
programming languages with an estimated three million users. By 1998 most professional VB6 developers
were writing production-grade Windows front ends for client/server databases and began to adopt
Microsoft Transaction Server 1.0 for three-tier, distributed data access architectures. Developers wrote
billions of lines of data-intensive VB code during the following four years.

The arrival of Visual Studio .NET in 2002 sounded the death knell for upgrades to COM-based VB and
VBA. Visual Basic 6.0 has migrated to the maintenance-mode purgatory reserved for legacy develop-
ment platforms. Microsoft announced that mainstream support for VB6 would end on March 31, 2005
and extended (paid) support will terminate in 2008. In early March 2005, a group of Microsoft
Most-Valued Professionals (MVPs) organized a petition drive “. . . to include an updated version of VB6
inside the Visual Studio IDE.” By mid-March, more than 200 past and present MVPs had endorsed the
petition. Computer press coverage of the petition evoked innumerable blog entries that supported or
opposed VB or VBA’s reincarnation as unmanaged “VB.COM.” The probability that Microsoft will ulti-
mately adopt the petitioners’ recommendations is miniscule, at best, and probably zero. “Managed
code” is the Microsoft mantra for the foreseeable future. VB programmers who don’t upgrade their skill
set will be marginalized to the application lifecycle maintenance phase—or worse. If you haven’t yet
adopted the .NET Framework and managed VB code for new data-intensive projects, this book and its
sample code and project examples are what you need to become a proficient VB 2005 database
programmer.

Another issue facing VB developers is the perception of “second-class citizen” status compared to that of
(Visual) C# developers. Rumors of VB’s decreasing usage as a result of developer defections to C# or Java
have been greatly exaggerated. VB 2005 is a remarkably complete and compatible implementation of the
traditional, easily readable VB syntax. VS 2002/2003’s VB dialects lacked many of C#’s language
features, and the majority of managed code examples emanating from Redmond have been written in C#.
Microsoft developers’ preference for C# is understandable because most have years of C++ and JScript
programming experience. VB 2005 gains increasing parity with C# by adding partial classes, operator
overloading, generics, mathematical operations and type converters for unsigned Integer and Long
data types, the Using keyword for intrinsic object disposal, and XML comments. There are few C#
programming constructs that aren’t available to VB 2005 programmers, and C# lacks the convenience of
VB 2005’s new My namespace and historical With...End With structures. This book contains detailed
examples of new VB 2005 language constructs and features that pertain to data-intensive applications.

03_57678x flast.qxd 11/10/05 11:17 PM Page xxiii

xxiv

Chapter #Introduction

Visual Studio and Visual Basic Express Edition 2005 (VBX) enhance drag-and-drop generation of typed
DataSet objects as partial classes with the Data Sources window, the TableAdapter wrapper
for DataAdapter objects, and the TableAdapter Configuration Wizard. Dragging a table icon from the
Data Sources window to a Windows form automatically adds your choice of bound text boxes or a
DataGridView control, which replaces the much-maligned GridView. The BindingSource object
connects the DataSource to bound controls, and the BindingNavigator—a pre-built ToolStrip
control—handles row navigation. Web forms enable dragging table icons from Server explorer to
generate new GridView and other databound controls. A new DataSet designer replaces VS 2002/2003’s
XML schema editor. Chapters 1, 2, and 7 show you how to build usable master-child Windows
and Web forms from a sample database in less than five minutes without writing a line of code. The
remaining chapters show you how to customize and extend the capabilities of bound and unbound
controls with event-handling code.

Online help for Visual Studio 2005 suffers from a shortfall of non-trivial Windows and Web forms code
examples for data-intensive projects. Most sample code in the help files generates console projects, which
are ill suited to data-intensive applications. You won’t find a single console project in the more than
100MB—20MB zipped—of downloadable data-centric sample projects for this book. The project examples
emulate simple to moderately complex, real-world database front-end applications with Windows and
Web forms.

Who This Book Is For
This book is intended for experienced VB programmers who are upgrading from VB6 or VS 2002/2003 to
VB 2005. Basic familiarity with the VS 2005 integrated development environment (IDE) is assumed.
However, no prior VB6, VBA, or VBScript database programming experience is necessary, except for
Chapter 1, “Migrating from ADO to ADO.NET.” Some experience with writing Microsoft Transact-SQL
(T-SQL) statements and authoring simple stored procedures is expected. Familiarity with XML 1.0 and
XML schemas will aid your understanding of DataSets and SQL Server 2005’s new xml datatype. Some
experience with writing XPath 1.0 expressions will be helpful to get the most benefit from Chapter 12,
“Exploring the xml Datatype.”

What This Book Covers
One-on-One Expert Visual Basic 2005 Database Programming concentrates on programming the .NET
Framework 2.0’s System.Data namespace, which implements ADO.NET 2.0 and related namespaces,
such as System.Transactions and System.Xml. The book isn’t a new user’s guide to the .NET
Framework, VS 2005, VBX, or VB 2005; it’s devoted entirely to data-related topics.

Many code and project examples in the early chapters retrieve and update table data directly with cus-
tomized SqlConnection, SqlCommand, and SqlDataReader objects. Later chapters’ examples use
strongly typed DataSets that are filled by TableAdapters and display data in bound text boxes,
DataGridViews, and dropdown lists.

SQL Server 2000, MSDE 2000, SQL Server 2005, or SQL Server 2005 Express (SQLX) can serve as the data
source for the code and sample projects of the book’s Parts I through III. Most examples in these parts

03_57678x flast.qxd 11/10/05 11:17 PM Page xxiv

xxv

Chapter Title

can be modified to run with Access 2000 or later .mdb files with the native OleDbproviders. Part IV
covers important new features of SQL Server 2005 and SQLX. Thus, the T-SQL and VB 2005 code of Part
IV’s chapters requires SQL Server 2005 or SQLX. SQLX is missing some new SQL Server 2005 functions,
so you’ll need SQL Server 2005 Developer Edition or higher to get the most out of Part IV.

How This Book Is Structured
This book is divided into four parts of three chapters each. Most chapters build on the knowledge
you’ve gained from preceding chapters. Thus, it’s recommended that you work your way through the
chapters sequentially. Following is a brief description of the parts and their chapters’ contents.

Part I: ADO.NET 2.0 Basics
The chapters in Part I serve as an introduction to ADO.NET 2.0 for VB6 developers moving to VS 2005 or
VBX and VS 2003/2004 developers adopting new VS 2005 data-related features.

❑ Chapter 1, Migrating from ADO to ADO.NET, introduces you to the members of the .NET
Framework 2.0’s System.Data namespace. The chapter then explains the similarities and differ-
ences between COM-based ADO programming with VB6 and VB 2005 code for ADO.NET 2.0
data objects. The chapter ends with an example of drag-and-drop generation of a
master-details form whose data source is a typed DataSet object.

❑ Chapter 2, Introducing New ADO.NET 2.0 Features, shows you how to program new
ADO.NET 2.0 runtime objects, such as DbProviderFactories and asynchronous SqlCommand
objects. The chapter also shows you how to create more complex forms based on typed DataSets
that update data in related tables.

❑ Chapter 3, Adopting Best Practices for Data-Centric Projects, starts with an overview of
Microsoft’s recommendations for architectural best practices, patterns & practices whitepapers,
Design Guides, and Application Block Libraries for data-intensive and service-oriented .NET
projects. The chapter concludes with specific recommendations for ADO.NET 2.0 projects with
implementation examples.

Part II: Data Binding in Windows Forms and Controls
VS 2005’s new ClickOnce deployment features let you deploy self-updating Windows form applications
that users can install, update, and run from a Web site. ClickOnce deployment enables developers to
replace Web-based applications with smart Windows form clients. Smart clients provide users with more
versatile and responsive UIs, deliver offline operation, and increase data security. Part II’s chapters show
you how to design and program smart clients with typed DataSets as their data sources.

❑ Chapter 4, Programming TableAdapters, BindingSources, and DataGridViews, shows you how
to parameterize master-details-subdetails forms with the FillBy method, format and add com-
puted columns to DataGridViews, supply default values, add lookup combo boxes to
DataGridView columns, and update data in three related tables.

Introduction

03_57678x flast.qxd 11/10/05 11:17 PM Page xxv

xxvi

Chapter #

❑ Chapter 5, Adding Data Validation and Concurrency Management, explains how to write data
validation code for bound text boxes and DataGridViews, manage concurrency violations
gracefully, and accommodate disconnected users with locally persisted typed DataSets.

❑ Chapter 6, Applying Advanced DataSet Techniques, shows you how to take advantage of
DataSet partial classes, write partial-class code for transaction management, display and manip-
ulate images in DataGridViews, generate DataSets from XML documents and their schema, use
serialized objects as data sources, and bind DataGridViews to generic BindingList collections.

Part III: Data Binding in ASP.NET 2.0
ASP.NET 2.0 is a radical departure from its ASP.NET 1.x predecessors. Grid-based, fixed-position lay-
out is gone; there’s a new Visual Web Developer, and a lightweight Web server speeds development.
Databound GridView controls replace DataGrids, and new FormView and DetailsView controls simplify
creation of data-intensive Web applications.

❑ Chapter 7, Working with ASP.NET 2.0 DataSources and Bound Controls, introduces you to the
new ASP.NET 2.0 designer, and the XHTML code for flow-based layouts. The chapter shows
you how to generate SqlDataSources for bound controls, create templates for databound con-
trols, and add DataList, DropDownList, FormView, GridView, and DetailsView controls.

❑ Chapter 8, Applying Advanced ASP.NET 2.0 Data Techniques, covers data validation, object
and xml data sources, page-level and application-level performance tracing, and deployment
to IIS Web sites with copied files or precompiled DLLS.

❑ Chapter 9, Publishing Data-Driven Web Services, leads you through initial generation of the
default “Hello World” Web service and its client proxy, and then adds client credentials for Web
service authentication. A data-intensive Web service shows you how to return a typed DataSet
as a SOAP response message to a Windows form Web service client and update the service’s
tables. The chapter’s final example is a Web service that returns a custom business object to
a Web form client. The Web form client’s bound data controls update the Web service’s object
data source.

Part IV: SQL Server 2005 and ADO.NET 2.0
SQL Server 2005 is a major upgrade to SQL Server 2000, as evidenced by its five-year gestation period.
Part IV’s chapters highlight new and improved SQL Server 2005 and SQLX features, T-SQL enhance-
ments, VB 2005 SQL Server (SQLCLR) projects, and the new xml data type.

❑ Chapter 10, Upgrading from SQL Server 2000 to 2005, describes the differences between SQL
Server 2005 editions, and shows you how to use the new management tools and Reporting
Services. The chapter includes detailed examples of new database engine features, such as
Service Broker, DatabaseMail, query notifications, and native SOAP Web services. The chapter
covers new T-SQL keywords, such as PIVOT/UNPIVOT and FOR XML RAW, PATH, and TYPE
modifiers.

❑ Chapter 11, Creating SQL Server Projects, leads you through the process of creating and
deploying VB 2005 SQLCLR projects for managed stored procedures and triggers, and user-
defined data types, functions, aggregates, and triggers.

Introduction

03_57678x flast.qxd 11/10/05 11:17 PM Page xxvi

xxvii

Chapter TitleIntroduction

SQL Server 2005 Developer Edition or higher provides the SQL Server Project template that’s required
to automate deployment of SQLCLR projects. Visual Basic Express Edition doesn’t include an SQL
Server Project template.

❑ Chapter 12, Exploring the xml Datatype, introduces the native xml data type and shows you
how to create strongly typed xml columns with XML schemas, add XML indexes, write XQuery
expressions to return scalar values or node-sets, and update elements or attributes of document
instances in xml columns.

What You Need to Use This Book
You must have a computer that meets at least the minimum system requirements for your VS 2005
edition or VBX, and SQL Server 2005 or SQLX. Microsoft’s minimum hardware requirements for SQL
Server 2005 are an Intel or compatible Pentium 3 processor, minimum 550 MHz or higher, and 256MB
RAM. 1 GHz or higher and 1GB RAM are recommended.

Don’t expect a rewarding development experience if you run VS 2005 or VBX with less than an 833
MHz processor and 512MB RAM.

A full installation of SQL Server 2005 Developer Edition or higher requires about 1.6GB of free disk
space, including 200MB for .NET Framework 2.0. A typical VS 2005 Developer Edition installation (with-
out Visual J#, Visual C++, and Crystal Reports) requires about 1GB disk space, including documentation.
Adding Visual J#, Visual C++, Crystal Reports, and SQL Express increases disk space to 2.5GB, without
added documentation. Installing the complete documentation consumes another 1GB of disk space. You
should have a minimum of 10GB of free disk space before you install SQL Server 2005 and VS 2005
Developer Edition or higher on a single partition.

VB Express 2005’s minimum processor speed is 600MHz (1 GHz recommended); minimum RAM is
128MB (256MB recommended.) VBX, SQLX, MSDN Online Help, and XM require about 900MB of free
disk space. The Northwind and AdventureWorks sample databases, which you must download from the
Microsoft Web site, consume another 125MB. The free disk space of the partition on which you install
VBX and SQLX should be at least 2GB.

Conventions
This book uses VB typographical conventions that are similar to those that appear in most offline help
files. Three-letter Hungarian-notation prefixes identify most variables’ data type, as in strString,
intInteger, datDateTime, and objObject; some two-letter prefixes identity some classes, such as
cnSqlConnection, cmSqlCommand, sbStringBuilder, xrXmlReader, and xwXmlWriter. Two-
letter and three-letter prefixes identify Windows and Web form control types, as in gbGroupBox,
btnButton, cboComboBox, and dgvDataGridView. Exceptions to the preceding conventions are
autogenerated variable, object, and control names, such as DatabaseConnectionString,
TableTableAdapter, and DatabaseDataSet. Italics indicate replaceable elements.

T-SQL statements use uppercase keywords, and mixed-case object and variable names. Most XML
element and attribute names are mixed-case, rather than camel-case, to correspond with SQL Server
table and column name conventions.

03_57678x flast.qxd 11/10/05 11:17 PM Page xxvii

xxviii

Chapter #Introduction

Source Code and Sample Databases
As you work through the examples in this book, you may choose to implement simpler projects by creat-
ing the required Windows form or Web page and its data source, and adding brief VB 2005 code exam-
ples manually. More complex sample projects often depend on a “starter” project from the code files
that accompany the book. All source code used in this book is available in a single 20MB archive file
(VB2005DB.zip) for download at http://www.wrox.com. Once at the site, simply locate One-on-One
Visual Basic 2005 Database Programming (either by using the Search box or by using one of the title lists)
and click the Download Code link on the book’s detail page to obtain all the source code for the book.

Because many books have similar titles, you might find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7678-X. Alternately, you can go to the main Wrox code download page at http://
www.wrox.com/dynamic/books/download.aspx to see the code available for this book and all
other Wrox books.

Install the Source Code for the Sample Projects
The VB2005DB.zip file’s archive structure consists of 12 archive files—one for each chapter—named
Chapter01.zip to Chapter12.zip, which contain subfolders named for the project. There’s also a
ReadMe.txt file that describes how to extract the files and contains late-breaking information on the
sample projects. Some projects have location-dependent files, so each Chapter##.zip file specifies full
path names for its projects. These files extract to %SystemDrive%\VB2005DB\Chapter##\ProjectName
folders. If you’re using WinZip or a similar archiving application to extract the files, be sure the Use
Folder Names check box is marked before extracting them.

Install the Sample Databases
Most sample projects in this book use the SQL Server 2000 Northwind sample database; a few projects
require the SQL Server 2005 version of the AdventureWorks sample database. SQL Server 2005 doesn’t
install the AdventureWorks OLTP database by default, and SQLX doesn’t include sample databases.
Following are the instructions for downloading and installing both sample databases on SQL Server
2005 Developer Edition or higher and SQLX.

Download the Sample Databases
The following download links for the Northwind, pubs, and AdventureWorks OLTP sample databases
were valid when this book was written:

The sample projects’ connection strings for the Northwind and AdventureWorks
sample databases specify localhost as the Data Source or Server parameter. The
parameter assumes SQL Server 2000/2005 Developer Edition or higher, or MSDE
2000 is installed as the default instance on your system. Unless you perform a cus-
tom installation of SQL Server 2005 Express as the default instance, you must change
localhost to .\SQLEXPRESS or ServerName\SQLEXPRESS to connect to SQLX

03_57678x flast.qxd 11/10/05 11:17 PM Page xxviii

xxix

Chapter TitleIntroduction

❑ Download SQL2000SampleDb.msi from the Northwind and pubs Sample Databases page at
http://go.microsoft.com/fwlink/?LinkId=30196. Run the installer to create the inst-
nwind.sql and instpubs.sql T-SQL scripts in the \Program Files\Microsoft SQL Server 2000
Sample Database Scripts folder. Installation adds a Microsoft SQL Server 2000 Sample Database
item to the Programs menu.

❑ Download AdventureWorksDb.msi from the Microsoft Web site by searching for “SQL Server
2005 Express Documentation” (include the quotes). Run the installer to create the \Program
Files\Microsoft SQL Server 2005 AdventureWorks Sample Database Scripts folder and add the
OLTP (awdb), Analysis Services (awasdb), and data warehouse (awdwdb) folders, which
contain T-SQL scripts to install each AdventureWorks version. Installation adds a Microsoft SQL
Server 2005 AdventureWorks Sample Databases item to the Programs menu.

If you install the AdventureWorks sample databases from the SQL Server 2005 Developer Edition or
higher setup program, you don’t need to download them.

Install the Sample Databases to SQL Server 2005
Developer Edition or Higher

The following instructions require prior installation of SQL Server Management Studio (SSMS). If you
have the post-RTM version of SMSS for SQL Server 2005 Express, you can use it to install the sample
databases under SQLX. If you don’t have a graphical management program for SQLX, skip to the
“Install Sample Databases to SQL Server 2005 Express” section.

You can install Developer Edition under Windows XP SP2 or later. SQL Server 2005 Standard Edition
and higher require Windows 2000 Server or Windows Server 2003. You also can use the full SMSS
version to install the sample databases to SQLX.

Northwind and pubs
To install the Northwind database and, optionally, pubs, do this:

1. Open SSMS, and connect to your SQL Server 2005 instance.

2. Choose File ➪ Open ➪ File,navigate to the \Program Files\Microsoft SQL Server 2000 Sample
Database Scripts folder, and double-click instnwind.sql.

3. Connect to your SQL Server 2005 instance to load the script into a new query window.

4. Click Execute to run the script.

5. Optionally, repeat Steps 2 through 4, but select instpubs.sql in Step 2.

This book doesn’t include examples that require the pubs database.

AdventureWorks
Installation of the AdventureWorks OLTP database is system drive–dependent. To install the database,
do the following:

1. Open SSMS, and connect to your SQL Server 2005 instance.

2. Choose File ➪ Open ➪ File, navigate to the \Program Files\Microsoft SQL Server 2005
AdventureWorks Sample Database Scripts\awdb folder, and double-click instawdb.sql.

03_57678x flast.qxd 11/10/05 11:17 PM Page xxix

xxx

Chapter #

3. Connect to your SQL Server 2005 instance to load the script into a new query window.

4. If your system drive isn’t C:\, search for @data_path = ‘C:\ and replace C with the system
drive letter.

5. Click Execute to run the script.

6. Expand Object Explorer’s Databases\AdventureWorks node, right-click one of the Tables nodes,
and choose Open table to verify that the table is populated.

Install Sample Databases to SQL Server 2005 Express
Paul Flessner, then Microsoft’s Senior VP of Server Applications, announced on September 15, 2005
that SQL Server 2005 Express Manager—a simplified management application for SQLX—would not
be available for the SQLS RTM version or included with VS 2005 RTM editions. Paul promised “a
scaled-down version of our SQL Server 2005 Management Studio for SQL Server 2005 Express
Edition” to “be delivered in the first half of 2006.” In the interim, SQLX users must use the SqlCmd
utility to run the T-SQL scripts that install the Northwind and AdventureWorks databases on your
SQLX instance. Attaching the database files permanently, rather than on-demand as a user database,
simplifies modifications to the sample projects’ SqlCommand.ConnectionStrings when changing
between SQL Server 2005 (the default) and SQLX.

Northwind and pubs
To install the Northwind database and, optionally, pubs, do this:

1. Open a command prompt and navigate to the folder containing the instnwnd.sql script, usually
C:\SQL Server Sample Databases.

2. Type sqlcmd –S localhost\SQLEXPRESS –i instnwnd.sql, and press Enter to execute the
query, which creates the Northwind database and adds the sample data.

3. Type sqlcmd –S localhost\SQLEXPRESS, and press Enter to enter SqlCmd interactive mode.

4. Type select * from northwind.dbo.customers, press Enter, type go, and press Enter to verify in
the window that sample data is present.

5. Optionally, repeat Steps 2 through 4, but substitute instpubs.sql for instnwnd.sql in Step 2.
Then type exit and press Enter to return to the command prompt.

AdventureWorks
Installation of the AdventureWorks OLTP database is drive–dependent. If you didn’t install the
Microsoft SQL Server 2005 AdventureWorks Sample Database Scripts folder to C:\, copy the folder to
C:\ before proceeding.

To install the database and its sample data, do the following:

If your system drive isn’t C:\ and you don’t edit the script in Step 4, the database
installs but doesn’t populate the tables.

Introduction

03_57678x flast.qxd 11/10/05 11:17 PM Page xxx

xxxi

Chapter Title

1. Open a command prompt and navigate to the folder containing instawdb.sql, C:\Microsoft SQL
Server 2005 AdventureWorks Sample Database Scripts\awdb.

2. Type sqlcmd –S localhost\SQLEXPRESS –i instawdb.sql, and press Enter to execute the query,
which creates the AdventureWorks database and adds the sample data.

3. Type sqlcmd –S localhost\SQLEXPRESS, and press Enter to enter SqlCmd interactive mode.

4. Type select * from adventureworks.person.contacttype, press Enter, type go, and press Enter to
verify in the window that sample data is present.

5. Type exit, and press enter to return to the command prompt.

AdventureWorks tables use SQL Server 2005’s new user-schema separation feature, which lets you sub-
stitute an arbitrary prefix for the traditional database owner’s name (dbo by default). AdventureWorks
has five schemas: HumanResources, Person, Production, Purchasing, and Sales. You must include the
schema prefix in the FROM clause’s table name(s). If you omit the schema, you receive an “Invalid
object name” error message.

Hardware Used to Create and Run the
Sample Projects

Many of this book’s sample projects include text boxes that report execution times. Sample project
execution time depends on your test machine’s processor, amount of available RAM, fixed-disk
performance, and, to a lesser degree, operating system configuration.

The computer used to write this book is a Dell PowerEdge 400SC server with a single 2.261 GHz
Pentium 4 processor (512KB cache), 1GB RAM, and a single 80GB ATA100 disk drive. The computer
dual-boots the following operating systems and SQL Server instances:

❑ Windows Server 2003 Standard Edition with SQL Server 2005 Developer Edition, SQLX, and
MSDE 2000 Release A instances

❑ Windows XP SP2 with SQLX and MSDE 2000 Release A

Examples that access networked SQL Server instances and components connect to an 866 MHz Pentium
III box with 1GB RAM over a switched 100 Mbps network with relatively light traffic. The remote server
runs Windows Server 2003 Standard Edition.

Errata
Every effort is made to ensure that there are no errors in the text or in the downloadable projects. However,
no one is perfect, and mistakes do occur. If you find an error in this book, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

Introduction

03_57678x flast.qxd 11/10/05 11:17 PM Page xxxi

xxxii

Chapter #

This book’s code examples and sample projects are based on VS 2005 Beta 2 and post-Beta 2 Community
Technical Preview versions of SQL Server 2005/SQLX. Minor changes to these products might have
occurred in the release-to-manufacturing (RTM) versions and those used in the book. The sample projects
have been updated to the RTM versions. You might encounter unexpected results if you run the sample
projects with pre-RTM versions of VS 2005 and SQL Server 2005.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete book
list including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist
.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages related to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow these
steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

Introduction

03_57678x flast.qxd 11/10/05 11:17 PM Page xxxii

Part I

ADO.Net 2.0 Basics

04_57678x pt01.qxd 11/10/05 11:29 PM Page 1

04_57678x pt01.qxd 11/10/05 11:29 PM Page 2

Migrating from ADO
to ADO.NET

This chapter is an introduction to ADO.NET 2.0 for Visual Basic 6 developers who’ve decided to
bite the bullet and move to Microsoft .NET Framework 2.0, Visual Studio 2005 (VS 2005) or Visual
Basic Express (VBX), and Visual Basic 2005 (VB 2005) as their programming language. The
ADO.NET 2.0 code examples and sample projects described in the chapter have the following
prerequisites:

❑ Experience with VB6 database programming, using the Data Environment Designer, and
writing code to create and manipulate ADODB Connection, Command, and Recordset
objects, including disconnected Recordsets and databound controls.

❑ A basic understanding of the organization and use of .NET Framework namespaces and
classes.

❑ Sufficient familiarity with using the VS 2005 IDE and writing VB 2005 code to create
simple Windows Form projects.

❑ Microsoft SQL Server 2000 or 2005 Developer edition or higher, MSDE 2000, or SQL
Server Express (SQLX) installed on your development computer or accessible from a
network location. Access 2000 or later for Jet 4.0 examples is optional.

❑ The Northwind sample database installed on an accessible SQL Server instance.

❑ A working knowledge of XML document standards, including some familiarity with XML
schemas.

If you have experience with ADO.NET 1.x, consider scanning this chapter for new
ADO.NET 2.0 features and then continue with Chapter 2, “Introducing New
ADO.NET 2.0 Features,” for more detailed coverage.

05_57678x ch01.qxd 11/10/05 11:32 PM Page 3

One of Microsoft’s objectives for VS 2005 is to minimize the trauma that developers experience when
moving from VB6 and VBA to the .NET Framework 2.0 and VB 2005. Whether VS .NET 2005’s VB-specific
My namespace and its accouterments will increase the rate of VB6 developer migration to VB 2005 remains
to be seen. What’s needed to bring professional VB6 database developers to the third iteration of the .NET
Framework and Visual Studio’s .NET implementation is increased programming productivity, application
or component scalability and performance, and code reusability.

This chapter begins by demonstrating the similarities of VB6 and VBA code to create ADODB objects and
VB 2005 code to generate basic ADO.NET 2.0 objects — database connections, commands, and read-only
resultsets for Windows form projects. Native ADO.NET data provider classes — especially SqlClient
for SQL Server — provide substantially better data access performance than ADODB and its OLE DB
data providers. The remaining sections show you multiple approaches for creating ADO.NET DataSets
by using new VS 2005 features and wizards to generate the underlying read-write data objects for you
automatically. DataSets demonstrate VS 2005’s improved data access programming productivity and
ADO.NET 2.0’s contribution to application scalability.

A New Approach to Data Access
Microsoft designed ADO.NET to maximize the scalability of data-intensive Windows and Web form
applications and .NET components. Scalability isn’t a critical factor when your project involves a few
Windows form clients retrieving and updating tables in a single database. High-traffic Web sites,
however, require the ability to scale up by adding more processors and RAM to a single server or to scale
out by adding more application servers to handle the data processing load. Managed ADO.NET code
that minimizes the duration and number of concurrent database server connections and uses optimistic
concurrency tests for updating tables is the key to achieving a scalable data-intensive .NET project.

The sections that follow explain the role of ADO.NET 2.0 namespaces and managed data providers,
which form the foundation of .NET 2.0 data access operations.

The System.Data Namespace
The .NET Framework 2.0 System.Data namespace contains all ADO.NET 2.0 namespaces, classes,
interfaces, enumerations, and delegates. Figure 1-1 shows Object Browser displaying the System.Data
namespaces.

Figure 1-1

4

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 4

VS 2005 doesn’t add a reference to the System.Data.dll assembly automatically when you start a new
Windows form project. Creating a new data source with the Data Source Configuration Wizard adds
references to the System.Data and System.Xml namespaces. The section “Add a Typed DataSet
from an SQL Server Data Source,” later in this chapter, describes how to use the Data Source
Configuration Wizard.

ADO.NET SqlConnection and SqlCommand objects correspond to ADODB.Connection and
ADODB.Command objects, but are restricted to use with SQL Server databases. Following are the
ADO.NET namespace hierarchies for SqlConnection- and SqlCommand-managed data provider
objects; namespaces new in ADO.NET 2.0 are emphasized:

System.Object
System.MarshalByRefObject

System.ComponentModel.Component
System.Data.Common.DbConnection

System.Data.SqlClient.SqlConnection

System.Object
System.MarshalByRefObject

System.ComponentModel.Component
System.Data.Common.DbCommand
System.Data.SqlClient.SqlCommand

The following table provides brief descriptions of the System.Data namespaces shown in Figure 1-1
with the namespaces in the preceding hierarchy listed in order.

Namespace Description

System.Object The root of the .NET Framework 2.0 type hierarchy
(member of System).

System.MarshalByRefObject Enables remoting of data objects across application
domain boundaries (member of System).

System.ComponentModel Supports object sharing between components and
enables runtime and design-time implementations
of components.

System.Data Provides the base classes, interfaces, enumerations,
and event handlers for all supported data
sources — primarily relational data and XML files
or streams.

System.Data.Common Provides classes that all managed data providers
share, such as DbConnection and DbCommand in
the preceding hierarchy list.

System.Data.Common.DbConnection Provides inheritable classes for technology-specific
and vendor-specific data providers (new in
ADO.NET 2.0).

Table continued on following page

5

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 5

Namespace Description

System.Data.Odbc, System.Data Namespaces for the five managed data providers
.OleDb, System.Data.OracleClient, included in ADO.NET 2.0; the next section
System.Data.SqlClient, describes these namespaces.
and System.Data.SqlCeClient

System.Data.SqlTypes Provides a class for each SQL Server data type,
including SQL Server 2005’s new xml data type;
these classes substitute for the generic DbType
enumeration that supports all data providers.

System.XML Adds the System.Xml.XmlDataDocument class,
which supports processing of structured XML
documents by DataSet objects.

After you add a project reference to System.Data.dll, you can eliminate typing System.Data namespace
qualifiers and ensure strict type checking by adding the following lines to the top of your class code:

Option Explicit On
Option Strict On
Imports System.Data
Imports System.Data.SqlClient

Specifying Option Explicit On and Option Strict On in the Options dialog’s Projects and Solutions,
VB Defaults page doesn’t ensure that other developers who work with your code have these defaults set.
Substitute Imports System.Data.OleDb for Imports System.Data.SqlClient if you’re
using the OleDb data provider.

ADO.NET Data Providers
ADO.NET-managed data providers and their underlying data objects form the backbone of .NET data
access. The data providers are an abstraction layer for data services and are similar in concept to ActiveX
Data Objects’ ADODB class, which supports only OLE DB data providers. ADO.NET supports multiple
data provider types by the following data provider namespaces:

❑ SqlClient members provide high performance connectivity to SQL Server 7.0, 2000, and 2005.
The performance gain comes from bypassing the OLE DB layer and communicating with SQL
Server’s native Tabular Data Stream (TDS) protocol. Most of this book’s examples use classes in
the SqlClient namespace.

❑ SqlClientCe provides features similar to SqlClient for SQL Server CE 3.0 and SQL Server
2005 Mobile Edition. This book doesn’t cover SQL Server CE or Mobile versions.

❑ OracleClient members deliver functionality similar to SqlClient for Oracle 8i and 9i
databases. Oracle offers Oracle Data Provider for .NET (ODP .NET) as a substitute for
OracleClient; ODP .NET also supports Oracle 10g and later. You can learn more about ODP
.NET at http://otn.oracle.com/tech/windows/odpnet/.

6

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 6

❑ OleDb members provide a direct connection to COM-based OLE DB data providers for
databases and data sources other than SQL Server, SQL Server CE, and Oracle. You can select
from 19 built-in OLE DB data providers when creating a new OleDbConnection object. A few
of this book’s examples use the Microsoft Jet 4.0 OLE DB Data Provider with the Access 2000 or
later Northwind.mdb file. ADO.NET 2.0 doesn’t provide access to the Microsoft OLE DB
Provider for ODBC Drivers.

❑ Odbc members provide connectivity to legacy data sources that don’t have OLE DB data
providers. The Odbc namespace is present in .NET Framework 2.0 for backward compatibility
with .NET Framework 1.x applications.

Each data provider namespace has its own set of data object classes. The provider you choose determines
the prefix of data object names — such as SqlConnection, SqlCeConnection, OracleConnection, or
OleDbConnection.

Basic ADO.NET Data Objects
This chapter defines basic data objects as runtime data-access types that have ADODB counterparts.
ADO.NET 2.0 provides the following basic data objects for data retrieval, updates, or both:

❑ Connection objects define the data provider, database manager instance, database, security
credentials, and other connection-related properties. The VB 2005 code to create a .NET
Connection is quite similar to the VB6 code to create an ADODB.Connection object. You also
can create a new, persistent (design-time) Connection object by right-clicking Server Explorer’s
Data Connections node and choosing Add Connection to open the Connection Properties
dialog. Alternatively, choose Tools ➪ Connect to Database to open the dialog.

❑ Command objects execute SQL batch statements or stored procedures over an open Connection.
Command objects can return one or more resultsets, subsets of a resultset, a single row, a single
scalar value, an XmlDataReader object, or the RowsAffected value for table updates. Unlike
opening ADODB.Recordset objects from an ADODB.Connection, the ADO.NET Command object
isn’t optional. Command objects support an optional collection of Parameter objects to execute
parameterized queries or stored procedures. The relationship of ADODB and ADO.NET
parameters to commands is identical.

❑ DataReader objects retrieve one or more forward-only, read-only resultsets by executing SQL
batch statements or stored procedures. VB .NET code for creating and executing a DataReader
from a Command object on a Connection object is similar to that for creating the default,
cursorless ADODB Recordset object from an ADODB.Command object. Unlike the default
forward-only ADODB.Recordset, you can’t save a DataReader’s resultset to a local file and
reopen it with a client-side cursor by Save and Open methods.

❑ XmlReader objects consume streams that contain well-formed XML documents, such as those
produced by SQL Server FOR XML AUTO queries or stored procedures, or native xml columns of
SQL Server 2005. XmlReaders are the equivalent of a read-only, forward-only cursor over the
XML document. An XmlReader object corresponds to the ADODB.Stream object returned by the
SQLXML 3.0 and later SQLXMLOLEDB provider.

7

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 7

SqlClient doesn’t support bidirectional (navigable) cursors. Microsoft added an SqlResultset object,
which emulated an updatable server-side cursor, to an early VS 2005 beta version. The VS 2005 team
quickly removed the SqlResultset object after concluding that it encouraged “bad programming habits,”
such as holding a connection open during data editing operations. An ExecutePageReader method,
which relied on the SqlResultset object, was removed at the same time and for the same reason.

Figure 1-2 illustrates the relationships between ADO.NET Connection, Command, Parameter,
DataReader, and XmlReader objects. Parameters are optional for ADODB and basic ADO.NET
commands. The SqlClient types can be replaced by OleDb or Odbc types. Using the OleDb provider to
return an XmlDataReader object from SQL Server 2000 requires installing SQLXML 3.0 SP-2 or later; the
Odbc provider doesn’t support XMLReaders. SQL Server 2005’s setup program installs SQLXML 4.0.

Figure 1-2

Creating Basic ADO.NET Data Objects with SqlClient
The following sections illustrate typical VB 2005 code for defining and opening an SqlConnection object,
specifying an SqlCommand object, and invoking the command’s ExecuteReader and ExecuteXmlReader
methods. The procedures include code to display SqlDataReader column and XmlReader element
values. All examples use a local SQL Server 2000 or 2005 Northwind sample database as their data source.

OLE CB
Provider SQL Server

7.0+

SqlClient
Provider

SqlConnection

SqlCommand
Parameters
Collection

XmlReaderSqlDataReader

ADODB
Connection

ADODB
Command

ADODB
Recordset

Parameters
Collection

ADODBADODB ADO.NET 1.x and 2.0ADO.NET 1.x and 2.0

8

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 8

If you’re using the default named instance of SQLX on your test machine, change localhost to
.\SQLEXPRESS in the strConn connection string. If you’re using Access’s MSDE 2000 instance as
the local server, change Northwind to NorthwindCS. If you’re using a remote SQL Server instance,
replace localhost with the remote server’s network name.

SqlDataReaders with Multiple Resultsets
One of the most common uses of SqlDataReader objects is filling dropdown lists or list boxes with lookup
data. You can use multiple resultsets from a single SQL batch query or stored procedure to fill multiple
lists in the FormName_Load event handler. The following OpenDataReader procedure opens a connec-
tion to the Northwind sample database, specifies an SqlCommand object that returns two resultsets, and
invokes its ExecuteReader method to generate the SqlDataReader instance. The CommandBehavior
.CloseConnection argument closes the connection when you close the DataReader. All basic ADO.NET
data objects follow this pattern; only the ExecuteObject method and DataReader iteration methods differ.
The SqlDataReader.Read method, which replaces the often-forgotten RecordSet.MoveNext instruction,
returns True while rows remain to be read. Similarly, the SqlDataReader.NextResult method is True if
unprocessed resultsets remain after the initial iteration.

Only one resultset is open as you iterate multiple resultsets, which differs from SQL Server 2005’s
Multiple Active Resultsets (MARS) feature. Chapter 10, “Upgrading from SQL Server 2000 to 2005,”
describes how to enable the MARS feature.

Private Sub OpenDataReader()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _

“Integrated Security=SSPI”
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
cnnNwind.Open()

‘Define the SqlCommand to return two resultsets
Dim strSQL As String = “SELECT * FROM Shippers”
strSQL += “;SELECT EmployeeID, FirstName, LastName FROM Employees”
Dim cmdReader As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the SqlDataReader
‘Close the connection when closing the SqlDataReader
Dim sdrReader As SqlDataReader = _

cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
sdrReader = cmdReader.ExecuteReader
With sdrReader

If .HasRows Then
While .Read

‘Fill a Shippers list box

The \VB2005DB\Chapter01\BasicDataObjects folder, which you create by expanding
the Chapter01.zip file from the Wrox Web site for the book, contains complete source
code for the following procedures. However, you must install the Northwind sample
database before running the sample projects. See the Introduction’s “Source Code and
Sample Databases” section for details.

9

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 9

lstShippers.Items.Add(.Item(0).ToString + “ - “ + .Item(1).ToString)
End While
While .NextResult

‘Process additional resultset(s)
While .Read

‘Fill an Employees list box
lstEmployees.Items.Add(.Item(0).ToString + “ - “ + _

.Item(1).ToString + “ “ + .Item(2).ToString)
End While

End While
End If
‘Close the SqlDataReader and SqlConnection
.Close()

End With
End Sub

Use of the HasRows property is optional because initial invocation of the Read method returns False
if the query returns no rows. The SqlDataReader.Item(ColumnIndex) property returns an
Object variable that you must convert to a string for concatenation. Structured error handling code is
removed for improved readability.

XmlReaders with FOR XML AUTO Queries
Adding a FOR XML AUTO clause to an SQL Server SELECT query or stored procedure returns the resultset
as an XML stream. The default XML document format is attribute-centric; add the Elements modifier to
return an element-syntax document. Here’s the XML document returned by a SELECT * FROM Shippers
FOR XML AUTO, Elements query:

<?xml version=”1.0” encoding=”utf-8” ?>
<root>

<Shippers>
<ShipperID>1</ShipperID>
<CompanyName>Speedy Express</CompanyName>
<Phone>(503) 555-9831</Phone>

</Shippers>
<Shippers>

<ShipperID>2</ShipperID>
<CompanyName>United Package</CompanyName>
<Phone>(503) 555-3199</Phone>

</Shippers>
<Shippers>

<ShipperID>3</ShipperID>
<CompanyName>Federal Shipping</CompanyName>
<Phone>(503) 555-9931</Phone>

</Shippers>
</root>

ADO.NET 2.0’s new SqlCommand.ExecuteXmlReader method loads a System.Xml.XmlReader object
with the stream, as shown in the following OpenXmlReader procedure listing. XmlReader is an abstract
class with concrete XmlTextReader, XmlNodeReader, and XmlValidatingReader implementations.
ADO.NET 2.0’s ExecuteXmlReader method returns a concrete implementation.

10

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 10

Private Sub OpenXmlReader()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _

“Integrated Security=SSPI”
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim xrShippers As System.Xml.XmlReader
Try

cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT * FROM Shippers FOR XML AUTO, Elements”
Dim cmdXml As SqlCommand = New SqlCommand(strSQL, cnnNwind)
xrShippers = cmdXml.ExecuteXmlReader
With xrShippers

.Read()
Do While .ReadState <> Xml.ReadState.EndOfFile

txtXML.Text += .ReadOuterXml
Loop
‘Format the result
txtXML.Text = Replace(txtXML.Text, “><”, “>” + vbCrLf + “<”)

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally

xrShippers.Close
cnnNwind.Close()

End Try
End Sub

Substituting xrShippers.MoveToContent followed by xrShippers.ReadOuterXML (without
the loop) returns only the first <Shippers> element group.

You must execute the XmlReader.Read method to move to the first element group, followed by a
ReadOuterXml invocation for each element group, which represents a row of the resultset. The
ExecuteXmlReader method doesn’t support the CommandBehavior enumeration, so you must close the
SqlConnection object explicitly. OleDbCommand doesn’t support the ExecuteXmlReader method;
Microsoft wants you to use SqlClient classes for all SQL Server data access applications, including
SQLCLR code running in the SQL Server 2005 process.

Figure 1-3 shows the BasicDataObjects project’s form after executing from the frmMain_Load event han-
dler, which executes the preceding OpenDataReader and OpenXmlReader procedures, and the follow-
ing LoadDataGridView procedure.

11

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 11

Figure 1-3

Fill a DataGridView with a DataReader
If your application needs to display only tabular data , a read-only grid control that’s populated by code
consumes the fewest resources. The DataGridView control replaces VS 2002 and VS 2003’s DataGrid
control, and is easy to fill programmatically. A read-only DataGridView populated by a DataReader
behaves similarly to VB6’s standard (unbound) Grid control, except that DataGridViews have sortable
columns by default.

The following code defines the dgvCusts DataGridView control’s columns and then populates each row
with an instance of an objCells() Object array that contains cell values:

Private Sub LoadDataGridView()
‘Populate a read-only DataGridView control with an SqlDataReader
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Try

Dim strSql As String = “SELECT * FROM Customers”
Dim cmdGrid As New SqlCommand(strSql, cnnNwind)
cmdGrid.CommandType = CommandType.Text
cnnNwind.Open()
Dim sdrGrid As SqlDataReader = cmdGrid.ExecuteReader
Dim intCol As Integer

FOR XML AUTO queries or stored procedures in production applications cause a
substantial performance hit compared with traditional data-access methods. The
server must generate the XML stream, many more data bytes travel over the network,
and the client or component must transform the XML stream to a usable format.

12

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 12

With sdrGrid
If .HasRows Then

dgvCusts.Rows.Clear()
‘Add column definition: FieldName, and ColumnName
For intCol = 0 To .FieldCount - 1

dgvCusts.Columns.Add(.GetName(intCol), .GetName(intCol))
Next
‘Base column width on header text width
dgvCusts.AutoSizeColumnsMode = _

DataGridViewAutoSizeColumnsMode.ColumnHeader
While .Read

‘Get row data as an Object array
Dim objCells(intCol) As Object
.GetValues(objCells)
‘Add an entire row at a time
dgvCusts.Rows.Add(objCells)

End While
.Close()

End If
End With

Catch exc As Exception
MsgBox(exc.Message)

Finally
cnnNwind.Close()

End Try
End Sub

To sort the DataGridView control on column values, click the column header. Alternate clicks perform
ascending and descending sorts.

Return a Single Data Row
Adding a CommandBehavior.SingleRow flag to the SqlDataReader object returns the first row of a
resultset specified by an SQL query or stored procedure. The following code returns the first row of
Northwind’s Customers table, if you don’t specify a WHERE clause. Otherwise the code returns the first
row specified by WHERE criteria. Adding a CommandBehavior.CloseConnection flag closes the connec-
tion automatically when you close the SqlDataReader object.

Private Sub OpenExecuteRow()
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Try

cnnNwind.Open()
‘Define the SqlCommand
Dim strSQL As String = “SELECT * FROM Customers”
‘Following is optional for the first record
‘strSQL += “ WHERE CustomerID = ‘ALFKI’”
Dim cmdRow As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdRow.CommandType = CommandType.Text
Dim sdrRow As SqlDataReader = _

cmdRow.ExecuteReader(CommandBehavior.SingleRow Or _
CommandBehavior.CloseConnection)

With sdrRow
If .HasRows Then

.Read()

13

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 13

Dim intFields As Integer = .FieldCount
Dim strCustID As String = .GetString(0)
Dim strCompany As String = .GetString(1)

End If
‘Closes the DataReader and Connection
.Close()

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally
‘Close the SqlConnection, if still open
cnnNwind.Close()

End Try
End Sub

Return a Scalar Value
The SqlCommand.ExecuteScalar method returns the value of the first column of the first row of a
resultset. The most common use of ExecuteScalar is to return a single SQL aggregate value, such as
COUNT, MIN, or MAX. The following OpenExecuteScalar procedure listing returns the number of
Customers table records:

Private Sub OpenExecuteScalar()
‘Return a single SQL aggregate value
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT COUNT(*) FROM Customers”
Dim cmdScalar As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdScalar.CommandType = CommandType.Text
Dim intCount As Integer = CInt(cmdScalar.ExecuteScalar)
‘Close the SqlConnection
cnnNwind.Close()

End Sub

Execute Queries That Don’t Return Data
You use the SqlCommand.ExecuteNonQuery method to execute SQL queries or stored proce-
dures that update base table data —INSERT, UPDATE, and DELETE operations. As the following
OpenExecuteNonQuery code demonstrates, ExecuteNonQuery rivals the simplicity of ExecuteScalar:

Private Sub RunExecuteNonQuery()
‘Add and delete a bogus Customers record
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim intRecordsAffected As Integer
Try

cnnNwind.Open()

‘Define and execute the INSERT SqlCommand

14

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 14

Dim strSQL As String = “INSERT Customers (CustomerID, CompanyName) “ + _
“VALUES (‘BOGUS’, ‘Bogus Company’)”

Dim cmdUpdates As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdUpdates.CommandType = CommandType.Text
intRecordsAffected = cmdUpdates.ExecuteNonQuery

‘Update and execute the UPDATE SqlCommand
strSQL = “UPDATE Customers SET CompanyName = ‘Wrong Company’ “ + _
“WHERE CustomerID = ‘BOGUS’”

cmdUpdates.CommandText = strSQL
intRecordsAffected += cmdUpdates.ExecuteNonQuery

‘Define and execute the DELETE SqlCommand
strSQL = “DELETE FROM Customers WHERE CustomerID = ‘BOGUS’”
cmdUpdates.CommandText = strSQL
intRecordsAffected += cmdUpdates.ExecuteNonQuery

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace)

Finally
‘Close the SqlConnection
cnnNwind.Close()
If intRecordsAffected <> 3 Then

MsgBox(“INSERT, UPDATE, DELETE, or all failed. “ + _
“Check your Customers table.”)

End If
End Try

End Sub

Executing SQL update queries against production databases isn’t a recommended practice and most
DBAs won’t permit direct updates to server base tables. The purpose of the preceding example is to
provide a simple illustration of how the ExecuteNonQuery method works. In the real world, parame-
terized stored procedures usually perform table updates.

Applying Transactions to Multi-Table Updates
All updates within a single procedure to more than one table should run under the control of a
transaction. The SqlTransaction object provides clients with the ability to commit or, in the event of
an exception, roll back updates to SQL Server base tables. Managing transactions in ADO.NET is similar
to that for ADODB.Connection objects, which have BeginTrans, CommitTrans, and RollbackTrans
methods. SqlTransaction objects have corresponding BeginTransaction, CommitTransaction, and
RollbackTransaction methods. Unlike ADODB connections, ADO.NET lets you selectively enlist
commands in an active transaction.

Following are the steps to execute ADO.NET transacted updates:

❑ Define a local transaction as an SqlTransaction, OleDbTransaction, or OdbcTransaction
object.

❑ Invoke the transaction’s BeginTransaction method with an optional IsolationLevel
enumeration argument. The default IsolationLevel property value is ReadCommitted.

❑ Enlist commands in the transaction by their Transaction property.

15

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 15

❑ Invoke the ExecuteNonQuery method for each command.

❑ Invoke the transaction’s Commit method.

❑ If an exception occurs, invoke the transaction’s Rollback method.

ADO.NET’s IsolationLevel and ADODB’s IsolationLevelEnum enumerations share many
common members, as shown in the following table.

ADO.NET Member ADODB Member ADO.NET IsolationLevel Description

Chaos adXactChaos Prevents pending changes from more highly
isolated transactions from being overwritten

ReadCommitted AdXactReadCommitted Avoids dirty reads but permits non-repeatable
adXactCursorStability reads and phantom data (default)

ReadUncommitted AdXactReadUncommitted Allows dirty reads, non-repeatable rows,
adXactBrowse and phantom rows

RepeatableRead adXactRepeatableRead Prevents non-repeatable reads but allows
phantom rows

Serializable AdXactSerializable Prevents dirty reads, non-repeatable reads,
adXactIsolated and phantom rows by placing a range lock

on the data being updated

Snapshot None Stores a version of SQL Server 2005 data
that clients can read while another client
modifies the same data

Unspecified adXactUnspecified Indicates that the provider is using a
different and unknown isolation level

Snapshot is a new ADO.NET 2.0 isolation level for SQL Server 2005 only. Snapshot isolation eliminates
read locks by providing other clients a copy (snapshot) of the unmodified data until the transaction
commits. You must enable Snapshot isolation in SQL Server Management Studio (SSMS) or by issuing
a T-SQL ALTER DATABASE DatabaseName SET ALLOW_SNAPSHOT_ISOLATION ON command to take
advantage of the transaction scalability improvement that this new isolation level offers.

The following RunInsertTransaction listing illustrates reuse of a single SqlTransaction and
SqlCommand object for sets of update transactions on the Northwind Customers and Orders tables.
Running this transaction makes non-reversible changes to the OrderID column of the Orders table, so
it’s a good idea to back up the Northwind database before running this type of code. Notice that you
must re-enlist the SqlCommand object in the SqlTransaction after a previous transaction commits.

Public Sub RunInsertTransaction()
‘Add and delete new Customers and Orders records
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)

‘Specify a local transaction object
Dim trnCustOrder As SqlTransaction

16

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 16

Dim intRecordsAffected As Integer
Dim strTitle As String
Try

cnnNwind.Open()
Try

trnCustOrder = cnnNwind.BeginTransaction(IsolationLevel.RepeatableRead)
‘Define and execute the INSERT SqlCommand for a new customer
strTitle = “INSERT “
Dim strSQL As String = “INSERT Customers (CustomerID, CompanyName) “ + _
“VALUES (‘BOGUS’, ‘Bogus Company’)”

Dim cmdTrans As SqlCommand = New SqlCommand(strSQL, cnnNwind)
cmdTrans.CommandType = CommandType.Text

‘Enlist the command in the transaction
cmdTrans.Transaction = trnCustOrder
intRecordsAffected = cmdTrans.ExecuteNonQuery

‘INSERT an Order record for the new customer
strSQL = “INSERT Orders (CustomerID, EmployeeID, OrderDate, ShipVia) “ + _
“VALUES (‘BOGUS’, 1, ‘“ + Today.ToShortDateString + “‘, 1)”

cmdTrans.CommandText = strSQL
intRecordsAffected += cmdTrans.ExecuteNonQuery
‘Commit the INSERT transaction
trnCustOrder.Commit()

‘Delete the Orders and Customers records
strTitle = “DELETE “
trnCustOrder = cnnNwind.BeginTransaction(IsolationLevel.RepeatableRead)
strSQL = “DELETE FROM Orders WHERE CustomerID = ‘BOGUS’”
cmdTrans.CommandText = strSQL

‘The previous transaction has terminated, so re-enlist
cmdTrans.Transaction = trnCustOrder
intRecordsAffected += cmdTrans.ExecuteNonQuery

strSQL = “DELETE FROM Customers WHERE CustomerID = ‘BOGUS’”
cmdTrans.CommandText = strSQL
intRecordsAffected += cmdTrans.ExecuteNonQuery

‘Commit the DELETE transaction
trnCustOrder.Commit()

Catch excTrans As SqlException
MsgBox(excTrans.Message + excTrans.StackTrace, , _
strTitle + “Transaction Failed”)

Try
trnCustOrder.Rollback()

Catch excRollback As SqlException
MsgBox(excTrans.Message + excTrans.StackTrace, , _
strTitle + “Rollback Failed”)

End Try
End Try

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace)

Finally
‘Close the SqlConnection

17

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 17

cnnNwind.Close()
Dim strMsg As String
If intRecordsAffected = 4 Then

strMsg = “INSERT and DELETE transactions succeeded.”
Else

strMsg = “INSERT, DELETE, or both transactions failed. “ + _
“Check your Customers and Orders tables.”

End If
MsgBox(strMsg, , “RunInsertTransaction”)

End Try
End Sub

This is another example of client operations that most DBAs won’t permit. In production applications,
stored procedures with T-SQL BEGIN TRAN[SACTION], COMMIT TRAN[SACTION], and ROLLBACK
TRAN[SACTION] statements handle multi-table updates.

Using OleDb, SqlXml, and Odbc Member Classes
Most data-centric VB 2005 demonstration projects connect to an SQL Server instance with SqlClient
objects while developers gain familiarity with .NET’s panoply of System.Data classes. Thus, the
preceding examples use the SqlClient data provider. You should, however, give the other managed
providers —System.Data.OleDb, System.Data.Odbc, and Microsoft.Data.SqlXml— a test drive
with the OleDbDataProjects.sln project in your \VB2005DB\Chapter01\ OleDbDataProjects folder.
Figure 1-4 shows OleDbDataProject’s form with list boxes and a text box that display data generated by
each of the three providers. Marking the Use OdbcDataReader checkbox substitutes the Odbc for the
OleDb data provider to fill the Rowset 1 (Shippers) list box.

Figure 1-4

18

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 18

You can take advantage of ADO.NET 2.0’s new DbProviderFactories.GetFactory
(“System.Data.Provider”) method and the DbProviderFactory.CreateConnection and
CreateCommand methods to generate a connection to and commands for any available managed data
provider. Chapter 2’s “Use the DbProviderFactories to Create Database-Agnostic Projects” section shows
you how to write applications that accommodate multiple relational database management systems.

Each sample procedure has its own connection string. You must modify each connection string to point
to your Microsoft Access, SQL Server, or SQL Express instance.

The SQLXML Managed Classes (Microsoft.Data.SqlXml) native data provider for SQL Server 2000
isn’t a member of the .NET Framework 2.0. It’s a component of Microsoft SQLXML 4.0, which VS
2005 and VB Express install as Microsoft.Data.SqlXml.dll.

Substitute OleDb for SqlClient Objects
The OleDb data provider is your best bet for connecting to Access (Jet 4.0) database files or database
servers for which you don’t have a native .NET data provider. The OleDb provider also lets you create
applications that might work with the user’s choice of database servers. In most cases, you can replace
Imports System.Data.SqlServer with Imports System.Data.OleDb, substitute the appropriate
OLE DB connection string, and replace the prefix of data objects from Sql to OleDb. In some cases, you
might need to alter the SQL statement for a specific database back end’s SQL dialect. For example, the Jet
query engine recognizes the semicolon as an SQL statement terminator but won’t return additional
resultsets from another SQL statement that follows the semicolon. Thus, the code for Northwind.mdb in
the following OpenOleDbDataReader listing reuses the OleDbCommand with a second SQL statement:

Private Sub OpenOleDbDataReader()
‘Define and open the OleDbConnection object
Dim strConn As String = “Provider=Microsoft.Jet.OLEDB.4.0;” + _
“Data Source=C:\Program Files\Microsoft Office\OFFICE11” + _
“\SAMPLES\Northwind.mdb;Persist Security Info=False”

‘Substitute the following if you don’t have Northwind.mdb available
‘Dim strConn As String = “Provider=SQLOLEDB;” + _
‘ “Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI”

Dim cnnNwind As OleDbConnection = New OleDbConnection(strConn)
cnnNwind.Open()

‘Define the OleDbCommand
Dim strSQL As String = “SELECT * FROM Shippers”
‘strSQL += “;SELECT EmployeeID, FirstName, LastName FROM Employees”
Dim cmdReader As OleDbCommand = New OleDbCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the OleDbDataReader
‘Don’t close the connection when closing the OleDbDataReader
Dim odbReader As OleDbDataReader = _

cmdReader.ExecuteReader(CommandBehavior.Default)
lstShippers.Items.Clear()
With odbReader

If .HasRows Then
While .Read

‘Process the rows
lstShippers.Items.Add(.Item(0).ToString + _

“ - “ + .Item(1).ToString)

19

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 19

End While
.Close()

End If
End With
lstEmployees.Items.Clear()
cmdReader.CommandText = “SELECT EmployeeID, FirstName, LastName FROM Employees”
odbReader = cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
‘Process additional resultsets
With odbReader

If .HasRows Then
While .Read

‘Process additional rows
lstEmployees.Items.Add(.Item(0).ToString + “ - “ + _

.Item(1).ToString + “ “ + .Item(2).ToString)
End While

End If
‘Close the OleDbDataReader and the OleDbConnection
.Close()

End With
End Sub

You must close the first DataReader before you change the CommandText property to reuse the
OleDbCommand object.

Replace SqlConnection and SqlCommand with SqlXmlCommand
Returning XmlReader objects with the OleDb data provider requires adding a project reference to
Microsoft.Data.SqlXml. Adding an Imports Microsoft.Data.SqlXml statement to your form’s
class file simplifies references to its classes. An interesting feature of the SqlXmlCommand object is
that it doesn’t require an SqlConnection object, as illustrated by the following listing for the
OpenSqlXmlReader procedure:

Private Sub OpenSqlXmlReader()
‘This procedure requires installing SQLXML 3.0 SP-2 or later
‘and a project reference to Microsoft.Data.SqlXml

‘Define OleDb connection string
Dim strConn As String = “Provider=SQLOLEDB;Data Source=localhost;” + _

“Initial Catalog=Northwind;Integrated Security=SSPI”

‘Define the SqlXmlCommand
Dim strSQL As String = “SELECT * FROM Shippers FOR XML AUTO, Elements”
Dim cmdXml As SqlXmlCommand = New SqlXmlCommand(strConn)
cmdXml.CommandText = strSQL
Dim xrShippers As System.Xml.XmlReader = cmdXml.ExecuteXmlReader
With xrShippers

.Read()
Do While .ReadState <> Xml.ReadState.EndOfFile

txtXML.Text += .ReadOuterXml
Loop
‘Format the result
txtXML.Text = Replace(txtXML.Text, “><”, “>” + vbCrLf + “<”)
.Close()

End With
End Sub

20

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 20

Test the Odbc Data Provider
You’re not likely to use an Odbc data provider unless you’re working with a legacy database server for
which an OLE DB data provider isn’t available. The following OpenOdbcDataReader procedure listing
is present for completeness only:

Private Sub OpenOdbcDataReader()
‘Define and open the OdbcConnection object
Dim strConn As String = “DRIVER={SQL Server};SERVER=localhost;” + _

“Trusted_connection=yes;DATABASE=Northwind;”

Dim cnnNwind As OdbcConnection = New OdbcConnection(strConn)
cnnNwind.Open()

‘Define the OdbcCommand
Dim strSQL As String = “SELECT * FROM Shippers”
Dim cmdReader As OdbcCommand = New OdbcCommand(strSQL, cnnNwind)
cmdReader.CommandType = CommandType.Text

‘Define, create, and traverse the OdbcDataReader
‘Close the connection when closing the OdbcDataReader
Dim sdrReader As OdbcDataReader = _
cmdReader.ExecuteReader(CommandBehavior.CloseConnection)

If chkUseOdbc.Checked Then
lstShippers.Items.Clear()

End If
With sdrReader

If .HasRows Then
While .Read

‘Process the rows
Dim intShipperID As Integer = .GetInt32(0)
Dim strCompany As String = .GetString(1)
Dim strPhone As String = .GetString(2)
If chkUseOdbc.Checked Then

lstShippers.Items.Add(.Item(0).ToString + _
“ - “ + .Item(1).ToString)

End If
End While

End If
‘Close the OdbcDataReader and the OdbcConnection
.Close()

End With
End Sub

Working with Typed DataReader and SqlResultSet Data
The preceding code examples use Reader.Item(ColumnIndex).ToString, Reader.GetString
(ColumnIndex), and Reader.GetInt32(ColumnIndex) methods to extract column values to native
.NET data types, which the System namespace defines. ADO.NET 2.0 provides the following data-specific
enumerations:

21

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 21

❑ System.Data.DbType is a generic enumeration for setting the data types of OleDb and Odbc
parameters, fields, and properties.

❑ System.Data.SqlDbType is an enumeration for use with SqlParameter objects only. VS 2005
automatically adds SqlParameters when you create typed DataSets from SQL Server tables in
the following sections.

❑ System.Data.SqlTypes is a namespace that contains structures for all SQL Server 2000 and
2005 data types, except timestamp, and related classes and enumerations. Using SqlTypes
structures improves data-access performance by eliminating conversion to native .NET types,
and assures that column values aren’t truncated.

VS 2005’s online help provides adequate documentation for DbType and SqlDbType enumerations, and
SqlTypes structures, so this chapter doesn’t provide a table to relate these enumerations and types.

The following OpenDataReaderSqlTypes listing shows examples of the use of typical
GetSqlDataType(ColumnIndex) methods:

Private Sub OpenDataReaderSqlTypes()
‘Define and open the SqlConnection object
Dim strConn As String = “Server=localhost;Database=Northwind;” + _
“Integrated Security=SSPI”

Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Dim sdrReader As SqlDataReader
Try

cnnNwind.Open()

‘Define the SqlCommand
Dim strSQL As String = “SELECT Orders.*, “ + _
“ProductID, UnitPrice, Quantity, Discount “ + _
“FROM Orders INNER JOIN [Order Details] ON “ + _
“Orders.OrderID = [Order Details].OrderID WHERE CustomerID = ‘ALFKI’”

Dim cmdReader As SqlCommand = New SqlCommand(strSQL, cnnNwind)

‘Create, and traverse the SqlDataReader, assigning SqlTypes to variables
sdrReader = cmdReader.ExecuteReader(CommandBehavior.CloseConnection)
With sdrReader

If .HasRows Then
While .Read

‘Get typical SqlTypes
Dim s_intOrderID As SqlInt32 = .GetSqlInt32(0)
Dim s_strCustomerID As SqlString = .GetSqlString(1)
Dim s_datOrderDate As SqlDateTime = .GetSqlDateTime(3)
Dim s_curUnitPrice As SqlMoney = .GetSqlMoney(15)
Dim s_sngDiscount As SqlSingle = .GetSqlSingle(17)

End While
End If

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally

‘Close the SqlDataReader and the SqlConnection
sdrReader.Close()

End Try
End Sub

22

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 22

You can update SqlResultSet object column values with strongly typed variables by invoking the
SqlResultSet.SetSqlDataType(ColumnIndex) method. You’ll see more examples of strongly typed
SQL Server data retrieval and update operations that use these methods in later chapters.

ADO.NET Typed DataSet Objects
The DataSet object is unique to ADO.NET and typed DataSets are the preferred method for retrieving
and updating relational tables, although DataSets aren’t limited to processing relational data. You create
typed DataSets, which are defined by an XML schema and implemented by a very large amount of
auto-generated VB 2005 code, with VS 2005 designers. Untyped DataSets are runtime objects that you
create with code. DataSets have no corresponding ADODB object, but both classes of DataSets behave
similarly to disconnected Recordsets in the following ways:

❑ They open a connection, retrieve and cache the data to edit, and then close the connection.

❑ They bind to simple and complex Windows form controls for editing.

❑ They permit editing locally cached data while the connection is closed.

❑ They can be saved to local files and reopened for editing.

❑ They let you reopen the connection and apply updates to base tables in batches.

❑ They implement optimistic concurrency for base table updates. You must write code to handle
concurrency violations gracefully.

Following are the most important differences between DataSets and disconnected Recordsets:

❑ A DataSet consists of cached copies of one or more sets of records — called DataTable objects —
selected from one or more individual base tables. A Recordset is a single set of records that can
represent a view of one or two or more related tables.

❑ Persisting a DataSet serializes the DataTables’ records to a hierarchical, element-centric XML
Infoset document and saves it to the local file system. Disconnected Recordsets store data locally
as a flat, attribute-centric XML file.

❑ DataTables usually are — but need not be — related by primary-key/foreign-key relationships.

❑ Primary-key and foreign-key constraints, and table relationships, must be manually defined,
unless you create the DataSet automatically with VS 2005’s Data Source Configuration Wizard.

❑ You can create DataTables from base tables of any accessible database server instance.

❑ You can create DataTables from structured (tabular) XML Infoset documents.

❑ TableAdapters fill and update DataTables through a managed connection. TableAdapters are
wrappers over DataAdapter objects.

❑ The Data Source Configuration Wizard lets you choose an existing data connection that’s
defined in the Server Explorer, or create a new connection object. The wizard then generates
parameterized SQL queries or stored procedures for performing UPDATE, INSERT, and DELETE
operations. These queries are based on the SELECT query or stored procedure that you specify
for filling each DataTable.

23

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 23

❑ DataSets cache copies of original and modified table data in XML format. Thus, DataSets that
have a large number of rows consume much more client RAM resources than Recordsets that
have the same number of rows.

❑ You can write code to create runtime data connections, DataAdapters, and basic DataSets, but
it’s much easier to take advantage of VS 2005 automated processes for generating the code to
create typed DataSets, which are defined by an XML schema.

❑ DataSet updates occur row-by-row if you don’t specify a value greater than 1 for the new
DataAdapter.BatchSize property, which sets the maximum number of updated rows per
batch.

Figure 1-5 compares the objects required by updatable ADODB Recordsets and ADO.NET 1.x and 2.0
typed DataSets. Components that are new in ADO.NET 2.0 are shaded. Parameters are optional for
ADODB commands, but not for updatable TableAdapters, which have four standard commands —
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand. Use of the new ADO.NET
2.0 BindingNavigator components is optional. The section “Add a DataGridView and DataNavigator
Controls,” later in this chapter, describes how the BindingSource fits into ADO.NET 2.0’s data access
architecture.

The following sections show you alternative methods for generating Figure 1-5’s ADO.NET objects with
VS 2005 and SQL Server 2000 or 2005.

VS 2005 materializes TableAdapters, DataSets, BindingSources, and BindingNavigators as named
objects in the form design tray. TableAdapters and DataSets also appear in the Toolbox’s ProjectName
Components section; the Data section has DataSet, BindingSource, and BindingNavigator controls.
During the early part of VS 2005’s long gestation period, these design-time objects collectively were
called Data Components, BindingSource was called a DataConnector, and BindingNavigator was
DataNavigator. This book uses the term data component to refer to named design-time data objects that
reside in the form design tray.

Add a Typed DataSet from an SQL Server Data Source
ADO.NET uses the term data source as a synonym for a typed DataSet with a predefined, persistent
database connection. The process of creating an ADO.NET data source is similar to using VB6’s Data
Environment Designer to specify an OLE DB data provider from one or more tables. Unlike the
Data Environment Designer, multi-table DataSets don’t have the hierarchical structure that the OLE DB
Shape provider creates for display in VB6’s Hierarchical FlexGrid control.

Web services and object instances also can act as ADO.NET data sources, as you’ll see in later chapters.

24

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 24

Figure 1-5

OLE CB
Provider SQL Server

7.0+

SqlClient
Provider

SqlConnection

TableAdapters
(DataAdapters)

Typed DataSet
with Schema

DataBound
Controls

BindingSourceBindingNavigator

Standard Set of
SqlCommands

(SELECT, INSERT,
UPDATE, DELETE)

Constraints and
Relationships

DataTables

ADODB
Connection

ADODB
Commands

ADODB
Recordsets

DataBound
Controls

Parameters
Collections

Parameters
Collections

Navigation
Controls

ADODBADODB ADO.NET 1.x and 2.0ADO.NET 1.x and 2.0

2.0

1.x

2.0

2.0

25

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 25

Here’s how to add a new SQL Server Northwind data source for a new Windows form project and
automatically generate a typed DataSet and its components from the Customers table:

1. Choose Data ➪ Show Data Sources to open the Data Sources window, if necessary, and click
Add New Data Source to start the Data Source Configuration Wizard.

2. On the Choose a Data Source Type page, accept the default Database type, and click Next to
open the Choose Your Database Connection page, which displays existing data connections, if
any, in a dropdown list.

3. Click the New Connection button to open a simplified Add Connection dialog, which usually
defaults to Microsoft SQL Server Database File. This option requires attaching a copy of
northwnd.mdb to your SQL Server or SQLX instance, so click the Change button to open the
Change Data Source dialog, select Microsoft SQL Server in the Data Source list, and click
Continue to open the full version of the Add Connection dialog.

4. Type localhost or .\SQLEXPRESS in the Select or Enter a Server Name combo box.
Alternatively, select a local or networked SQL Server or MSDE instance that has a Northwind or
NorthwindCS database.

5. Accept the default Use Windows NT Integrated Security option, and open the Select or Enter a
Database Name list and select Northwind. Click Test Connection to verify the SqlConnection
object, as shown in Figure 1-6.

Figure 1-6

26

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 26

6. Click OK to close the dialog and return to the Choose Your Data Connection page, which dis-
plays ServerName.Northwind.dbo as the new connection name, System.Data.SqlClient as the
Provider, and Data Source=localhost;Integrated Security=True;Database=Northwind
as the Connection String.

7. Click Next to display the Save the Connection String to the Application Configuration File page.
Mark the Yes, Save the Connection As checkbox and accept the default
NorthwindConnectionString as the connection string name.

8. Click Next to open the Choose Your Database Objects page, which displays treeview Tables,
Views, Stored Procedures, and table-returning Functions. Expand the Tables node and mark the
Customers table. Accept NorthwindDataSet as the DataSet Name, as shown in Figure 1-7.

Figure 1-7

Selecting a table automatically generates the SelectCommand that retrieves all table rows, and an
UpdateCommand, InsertCommand, and DeleteCommand for base table updates.

9. Click Finish to generate the NorthwindDataSet typed DataSet and display it in the Data Sources
window. Expand the Customers node to display the Customers table’s columns, as shown in
Figure 1-8.

27

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 27

Figure 1-8

The new SqlConnection object you created in preceding Steps 3 through 5 appears under Server
Explorer’s DataConnections node as ServerName.Northwind.dbo. You can rename the node in Server
Explorer to a simpler name, such as localhost.Northwind; doing this doesn’t affect dependent objects
in your project.

Adding a typed DataSet generates an XSD schema, NorthwindDataSet.xsd for this example, and adds 1,197
lines of VB 2005 code to the NorthwindDataSet.Designer.vb partial class file, which weighs in at 73KB.
Partial classes are a new VB 2005 and C# feature that enable extending a class, such as NorthwindDataSet,
with additional class files. VB 2005 uses the Public Partial Class className statement to identify a
partial class file. You must choose Project ➪ Show All Files to see NorthwindDataSet.Designer.vb and two
empty NorthwindDataSet.xsc and NorthwindDataSet.xss files.

Double-click the NorthwindDataSet.xsd node in Project Explorer to display the Customers DataTable
and its associated Customers TableAdapter, as shown in Figure 1-9, in the Schema Designer window.
The VB 2005 code in DataSetName.Designer.vb provides IntelliSense for DataSet objects and lets you
early-bind DataTable and DataSet objects. The code also provides direct access to named classes, methods,
and events for the DataSet and its TableAdapter(s) — Customers TableAdapter for this example — in the
NorthwindDataSet.Designer.vb code window’s Classes and Methods lists.

Figure 1-10 shows Internet Explorer displaying the first few lines of the 352-line schema .

If you’ve worked with typed DataSets in VS 2003, you’ll notice that the schema for ADO 2.0 DataSets is
much more verbose than the ADO 1.x version, which has only 30 lines that define the Customers DataSet.
ADO.NET 2.0 prefixes the design-time schema with 258 lines of <xs:annotation> information,
which provide a full definition of the DataSet and its connection string, commands and their parameters,
and column mapping data. The part of the schema that defines the elements for the table fields grows
from 30 to 94 lines because element definitions now contain maxLength attribute values and use
restrictionBase attributes to specify XSD data types.

28

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 28

Figure 1-9

Figure 1-10

29

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 29

Using the DataSet.WriteXml and DataSet.WriteXmlSchema methods to persist DataSets to
local files shows that the Customers DataSet schema, which differs greatly from the design-time version,
is 9.31KB and the XML data document is 37.3KB. The section “Create a Complete Data Entry Form
in One Step,” later in this chapter, includes code to save the schema for the Northwind Customers
DataSet. You can’t open the saved schema in the project’s Schema Designer.

Add a DataGridView and BindingNavigator Controls
Opening Form1 and the Data Sources window changes the appearance of the DataSource nodes. By
default, the Customers DataTable icon now represents a DataGridView control. Dragging the Customers
table node from the Data Sources window to your project’s default Form1 autogenerates four compo-
nents in the tray below the form designer and adds DataGridView and DataNavigator controls to a dra-
matically expanded form, as shown in Figure 1-11.

Figure 1-11

“Surfacing” is a common term for adding data and other components to the tray.

30

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 30

Here are descriptions of the four tray components shown in Figure 1-11:

❑ NorthwindDataSet is the form’s reference to the data source for the form,
NorthwindDataSource.xsd.

❑ CustomersTableAdapter is the form’s wrapper for an SqlDataAdapter object, which fills the
NorthwindDataSet’s Customers DataTable by invoking the CustomersTableAdapter.Fill
method. Update, Insert, and Delete methods send DataSet changes to the database server.
The CustomersTableAdapter.Adapter property lets you access the underlying
SqlDataAdapter.

❑ CustomersBindingSource is a form-based BindingSource object that unifies control data
binding and row data navigation for the Customers DataTable by providing direct access to
the BindingManager object. To make it easier for VB6 developers to adapt to ADO.NET 2.0,
BindingSources have properties and methods that emulate ADODB.Recordset objects. Examples
are AllowEdit, AllowAddNew, and AllowRemove (delete) properties, and corresponding
AddNew, CancelNew, EndNew, Edit, CancelEdit, and EndEdit methods. Familiar MoveFirst,
MoveLast, MoveNext, and MovePrevious methods handle row navigation. Enabling navigation
requires binding a DataGridView or adding other controls to manipulate the BindingSource.

❑ CustomersBindingNavigator is a custom ToolStrip control that emulates the VCR and
other buttons of an ADODB.DataControl. Binding the CustomersBindingNavigator
to the CustomersBindingSource enables the buttons to invoke the Move..., AddNew, and
Cancel... methods. By default, BindingNavigators dock to the top of the form. When you run
the form, you can drag a BindingNavigator to a more natural position at the bottom of the form;
alternatively, you can set a DataNavigator’s Dock property value to Bottom in the designer.

DataComponents, DataConnectors, and DataNavigators are new ADO.NET 2.0 components and
controls that replace ADO.NET 1.x’s form-based DataConnections and DataAdapters. VS 2005 data
sources automatically create DataSet Relationships between tables, which previously required manual
intervention. DataConnectors simplify code for navigating data tables. The DataSet.vb file contains the
classes, interfaces, and event handlers for the data components.

The final step in the VS 2005 data form autogeneration process is adding the CustomersComponent
.Fill method to the Form1_Load event handler, and code to save DataSet changes isn’t added to the
bindingNavigatorSaveItem_Click handler automatically, because of code complexity when the
DataSet contains multiple DataTables. Saving multiple changes to parent and child tables requires
sequencing inserts, updates, and deletions to maintain referential integrity.

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load
‘TODO: This line of code loads data into the ‘NorthwindDataSet.Customers’ table.
‘You can move, or remove it, as needed.
Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)

End Sub

Private Sub dataNavigatorSaveItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles dataNavigatorSaveItem.Click
Me.CustomersBindingSource.EndEdit()
Me.CustomersTableAdapter.Update(Me.NorthwindDataSet.Customers)

End Sub

31

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 31

Figure 1-12 shows the final form after reducing the form’s size, expanding the DataGridView control to
fill the available space, and pressing F5 to build, debug, and run the project.

Figure 1-12

The CustomersDataGridView is bound to the Northwind Customers table, and editing is enabled
by default. Changes you make to the DataGridView don’t propagate to the table until you click the
Save Data button. To make editing easier, you can automate increasing the column widths to match the
content by setting the DataGridView’s AutoSizeColumnsMode property value to AllCells or
DisplayedCells, which adds a horizontal scrollbar to the control.

Persist and Reopen the DataSet
The project’s frmDataGridView_Load event handler includes the following code to save the
NorthwindDataSet’s XML data document — with and without an embedded schema — and the schema
only. You can add similar code after the last DataComponent.Fill or DataAdapter.Fill invocation of
any data project to persist its DataSet.

Private Sub frmDataGridView_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)
Dim strPath As String = Application.StartupPath
With Me.NorthwindDataSet

.WriteXml(strPath + “CustsNoSchema.xml”, XmlWriteMode.IgnoreSchema)

.WriteXml(strPath + “CustsWithSchema.xml”, XmlWriteMode.WriteSchema)

.WriteXmlSchema(strPath + “CustsSchema.xsd”)
End With

End Sub

Persisting the DataSet as an XML document without the embedded schema lets you support discon-
nected users by reloading the DataSet from the file. You can substitute the following statement for Me
.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers) when the user is disconnected:

32

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 32

Me.NorthwindDataSet.ReadXml(strPath + “CustsNoSchema.xml”, XmlReadMode.Auto)

The real-world scenario for persisting and reloading DataSets is more complex than that shown here.
Later chapters describe how to save and reload pending DataSet changes that haven’t been committed to
the base tables. The XmlReadMode.Auto argument is the default, so including it is optional.

The sample project at this point is GeneratedDataGridView.sln in your \VB2005DB\Chapter01\
GeneratedDataGridView folder.

Change from a DataViewGrid to a Details Form
The default combination of DataViewGrid and DataNavigator controls speeds the creation of a usable
form. However, a DataNavigator is much more useful for a details form that displays column values
in text boxes or other bound controls, such as date pickers for DateTime and checkboxes for Boolean
values. The Data Sources window makes it easy to change a DataGridView to a details form. Delete the
DataGridView control, display the Data Sources window, open the dropdown list for the DataTable, and
select Details, as shown in Figure 1-13.

Figure 1-13

Drag the DataTable icon to the form to automatically add a column of labels with associated data-bound
controls — text boxes for this example — to the form. Figure 1-14, which is a modified version of the
GeneratedDataGridView project, shows the labels and text boxes rearranged to reduce form height.

33

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 33

Figure 1-14

The completed GeneratedDetailView.sln project is in the \VB2005DB\Chapter01\
GeneratedDetailView folder.

Add a Related DataBound Control
You can add a related table to the Data Sources window and then add a control, such as a DataGridView,
that you bind to the related BindingAdapter. To add a related OrdersDataGridView control to a copy of
the GeneratedDetailView.sln project, do the following:

1. Copy and paste the GeneratedDetailView folder, and rename the new folder OrdersDetailView.
Don’t rename the solution or project.

2. Press F5 to build and compile the project. Correct any object name errors that the debugger
reports.

3. Open the Data Source window, and click the Configure DataSet with Wizard button to open the
Choose Your Database Objects page.

4. Expand the Tables node, mark the Orders table checkbox, and click Finish, which adds in the
Data Sources window a related Orders node to the Customers table and a standalone Orders
node (see Figure 1-15).

34

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 34

Figure 1-15

5. With DataGridView selected in the dropdown list, drag the related Orders node below the
bound text boxes of the form to autogenerate an OrdersDataGridView control.

6. Adjust the size and location of the controls, and set the OrdersDataGridView
.AutoSizeRowsMode property value to DisplayedCells. Optionally, alter the form’s Text
property to reflect the design change.

7. Press F5 to build and run the project. The form appears as shown in Figure 1-16.

35

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 35

Figure 1-16

Dragging the related Orders table node to the form adds an OrdersTableAdapter and
OrdersBindingSource to the tray and the OrdersDataGridView control to the form. The
OrdersDataGridView control’s DataSource property value is the OrdersBindingSource.
The OrdersBindingSource’s DataSource property value is CustomersBindingSource and the
DataMember property value is FK_Orders_Customers, which is the foreign-key relationship on the
CustomerID field between the Customers and Orders tables. To verify the properties of FK_Orders
_Customers, open NorthwindDataSet.xsd in the DataSet Designer, right-click the relation line between
the Orders and Customers tables, and choose Edit Relation to open the Relation dialog (see Figure 1-17).

36

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 36

Figure 1-17

Relations you define by adding related tables to the Data Sources window don’t enforce referential
integrity by default. You must change the default Relation Only property value to one of the other
options to maintain referential integrity. You also can specify cascade or other options for Update,
Delete, and Accept/Reject Rules.

Summary
Microsoft designed the basic ADO.NET feature set to resemble that of ADO. The code to create a
database connection with ADO.NET’s SqlClient, OleDb, or Odbc managed providers is quite similar to
that for ADODB.Connection objects. The same is true for ADO.NET’s connection-specific commands
and parameters. The primary differences between ADO and ADO.NET involve processing resultsets.
DataReaders correspond to ADO’s default forward-only, read-only Recordsets. The SqlClient data
provider provides a substantial performance boost by eliminating the COM-based OLE DB layer and
communicating with SQL Server 7.0 and later using SQL Server’s native TDS protocol.

ADO.NET data binding to typed DataSet objects and data-related event handling differ radically
from ADO. Many experienced VB6 database developers discovered that migrating from ADODB
Recordsets to ADO.NET 1.x DataAdapters, typed DataSets, and databound controls wasn’t a walk in the
park. Creating an ordinary data entry form with ADO.NET 1.x’s DataGrid or other controls bound to a
DataSet’s DataTable and adding record navigation buttons involved writing much more code than that

37

Migrating from ADO to ADO.NET

05_57678x ch01.qxd 11/10/05 11:32 PM Page 37

required for a corresponding VB6 project. To ease the pain of the transition from VS 6 to VS 2005,
ADO.NET 2.0 provides drag-and-drop methods for autogenerating the components and controls to create
a basic, single-table form with the new DataGridView and DataNavigator controls, plus DataComponent
and DataContainer components. Changing the DataGridView to a details view with individual
databound controls takes only a minute or two.

The new drag-and-drop methods and component configuration wizards are useful for product demos by
Microsoft’s .NET evangelists, which elicit “oohs” and “aahs” from conference and user-group attendees.
Autogenerated data entry forms can help programmers gain a basic understanding of ADO.NET data
binding and flatten the ADO.NET learning curve. But you’ll probably find that autogenerated forms
aren’t useful in real-world production applications. A major shortcoming is the default to parameterized
SQL statements for data retrieval and update operations; most DBAs require stored procedures for all
operations on base tables. Fortunately, you can intervene in the autogeneration process to specify and
create the required stored procedures. Another issue is the BindingNavigator’s lack of shortcut keys,
which are a necessity for heads-down data entry. You’ll discover other limitations of autogenerated forms
and their workarounds as you progress through the book.

The preceding comments on databound control autogeneration doesn’t apply to generating typed
DataSets. Writing VB 2005 code for typed DataSets isn’t a practical alternative. You can, however,
create lightweight, untyped DataSets with only a few lines of code. Later chapters provide code examples
to create untyped DataSets at runtime.

The following chapters of Parts I and II show you how to create production-quality Windows data entry
forms by combining some of the techniques you learned in this chapter with DataSets, TableAdapters,
and VB 2005 code to manage data retrieval, DataTable navigation, and multiple base table updates.

38

Chapter 1

05_57678x ch01.qxd 11/10/05 11:32 PM Page 38

Introducing New
ADO.NET 2.0 Features

This chapter describes new ADO.NET 2.0 objects and their commonly used methods, properties, and
events. Like Chapter 1, “Migrating from ADO to ADO.NET,” the chapter begins with descriptions of
new runtime objects, such as DbProviderFactory and SqlBulkCopy, and VB.NET code examples
for creating and manipulating the new objects in Windows forms. The chapter continues with more
advanced examples of ADO.NET 2.0’s components and controls for Windows forms that you add
with designers — DataTables, BindingSources, BindingNavigators, and DataGridViews.

You’ll learn more from this chapter’s examples if you have experience developing non-trivial
Windows or Web forms with ADO.NET 1.x or have downloaded the sample files and worked
through Chapter 1’s sample projects. You’ll need to download sample files and expand the
Chapter02 sample code from the book’s Web page to get the most from this chapter. See the
Introduction’s “Install the Source Code for the Sample Projects” section for details.

All SQL Server code examples in this chapter run with SQL Server 2000, SQL Server 2005, or
SQL Server 2005 Express Edition (SQLX) and require system administrator (sa) privileges. If
you’re running SQLX, you must change each project’s connection string from localhost to
.\SQLEXPRESS. Several project examples make changes to the Northwind sample database, so
you should make a backup of the original Northwind database if you haven’t done so previously.

Working with New ADO.NET 2.0 Runtime
Windows Form Objects

This book defines a runtime object as a non-visual, data-related type that you can’t — or don’t
want to — persist (surface) on a Windows form in design mode. You create ADO.NET 2.0 run-
time objects by writing VB.NET 2005 code without the aid of VS 2005’s design-time wizards or
autogenerated code. Microsoft has devoted a substantial share of the VS 2005 and ADO.NET 2.0

06_57678x ch02.qxd 11/10/05 11:19 PM Page 39

development effort to simplifying drag-and-drop generation of basic databound Windows and Web
forms. Additional developer investment went into supporting new SQL Server 2005 features with
System.Data and System.Xml objects. Thus, ADO.NET 2.0 includes only a few new and upgraded
runtime objects and features that are compatible with SQL Server 2000 data sources. The chapters of
Part IV, “SQL Server 2005 and ADO.NET 2.0,” cover ADO.NET 2.0 and VB.NET 2005 features that are
specific to SQL Server 2005.

Following are the most important new and upgraded runtime objects, methods, and language features
for Windows form projects:

❑ DbProviderFactory objects let you write common code for alternative data providers and
database servers.

❑ SqlBulkCopy objects provide high-performance SQL Server batched inserts from relational and
XML data sources.

❑ The SqlConnection.RetrieveStatistics method delivers detailed information about the
open SQL Server connection.

❑ Asynchronous SqlCommand execution enables interleaving multiple long-running queries or
updates.

❑ Upgraded DataTable objects now support common DataSet features, such as the ReadXml and
WriteXml methods, return values from Web services, remoting, and streaming interfaces.

❑ DataTables can be assigned namespaces and namespace prefixes.

❑ Nullable types let you define strongly typed objects with members whose values can be set to
DbNull.

The following sections explain how to use the preceding ADO.NET 2.0 features with code examples
derived from sample Windows form projects.

Use the DbProviderFactories to Create Database-Agnostic
Projects

The new System.Data.Common.DbProviderFactories class provides database developers the
opportunity to attempt creation of data source–agnostic applications. Creating non-trivial data entry
applications that can seamlessly interoperate with all relational database managers for which managed
data providers are available isn’t a piece of cake. Minor differences in SQL syntax, data types, stored
procedure dialects, error handling, and other database-dependent features undoubtedly will require
custom workarounds. If you’re currently using the .NET Framework’s OleDb managed data provider or
ADODB with OLE DB providers to deliver database interoperability, you’ll probably find that Microsoft
and third-party ADO.NET managed providers offer improved performance and, as a result, greater
scalability. On the other hand, the implementation latitude that .NET grants to managed data providers
makes it difficult to write code that’s totally provider-transparent.

Third-party suites of managed .NET data providers can reduce interoperability issues at the expense of
added licensing cost. For example, DataDirect Technologies offers managed data providers for IBM DB2
and DB2 UDB; Oracle 8i, 9i, and 10g; SQL Server 7 and 2000; Sybase Adaptive Server 11.5 and
11.9; and Sybase Adaptive Server Enterprise 12.0 and 12.5. All DataDirect providers use escapes to
minimize SQL syntax differences and communicate with servers by the database vendors’ wire

40

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 40

protocols. For more information on current .NET data provider interoperability issues, visit
http://www.datadirect.com/products/dotnet/docs/dotnet-interop/.

Creating a DataReader object from the DbProviderFactories class is a seven-step process:

1. Create a DbProviderFactory object by passing the full class name of the data provider, such as
System.Data.SqlClient, as the argument of a Dim FactoryName As DbProviderFactory =
DbProviderFactories.GetFactory(strProvider) statement.

2. Create an IDbConnection object by invoking the Dim ConnectionName As IDbConnection =
FactoryName.CreateConnection() method.

3. Set the ConnectionName.Connection.String property value.

4. Create an IDbCommand object by invoking the Dim CommandName As IDbCommand =
ConnectionName.CreateCommand() method.

5. Set the CommandName.CommandType (optional) and CommandName.CommandText property
values that are appropriate for the provider.

6. Invoke the ConnectionName.Open() method.

7. Create an IDataReader object by invoking the Dim ReaderName As IDataReader =
CommandName.ExecuteReader method.

The IDataReader object has the same members as the ADO.NET 1.x and 2.0 provider-specific
DataReaders, plus a new GetSchemaTable method that the next section describes.

The sample DbFactoryTest.sln project displays data from one of three Northwind tables by creating and
traversing SqlClient, OleDb, or Odbc IDataReader objects that you specify by selecting the appropriate
option button. The form also includes a DataGridView control to display the table’s schema DataTable,
the subject of the next section, as shown in Figure 2-1.

Figure 2-1

41

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 41

The following listing contains the code for the variable declarations and the option button event-handler
for the OleDb DbProviderFactory:

‘OleDb provider settings - Products table
Private strOleDbProvider As String = “System.Data.OleDb”
Private strOleDbConn As String = “Provider=SQLOLEDB;Data Source=localhost;” + _

“Initial Catalog=Northwind;Integrated Security=SSPI”
Private strOleDbTable As String = “Products”

Private Sub optOleDb_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles optOleDb.CheckedChanged

If optOleDb.Checked = True Then
PopulateList(strOleDbProvider, strOleDbConn, strOleDbTable)
Me.Text = “DbFactory Test Form - OleDb”

End If
End Sub

The optOleDB_CheckedChanged event handler passes the required OleDb parameter values to the
PopulateList procedure, which is implemented by the following code:

Private Sub PopulateList(ByVal strProvider As String, _
ByVal strConn As String, ByVal strTable As String)
‘Create a DbProviderFactory, IDbConnection, IDbCommand, and IDataReader
‘for the specified data provider
Dim cnFactory As IDbConnection
Dim drCusts As IDataReader
Try

‘Specify the DataProvider
Dim dpFactory As DbProviderFactory = _
DbProviderFactories.GetFactory(strProvider)

‘Create a connection
cnFactory = dpFactory.CreateConnection()
cnFactory.ConnectionString = strConn
‘Create a command and open the connection
Dim cmFactory As IDbCommand = cnFactory.CreateCommand
cmFactory.CommandType = CommandType.Text
cmFactory.CommandText = “SELECT * FROM “ + strTable
cnFactory.Open()
‘Create and traverse a DataReader
drData = cmFactory.ExecuteReader(CommandBehavior.KeyInfo)
lstData.Items.Clear()
Dim dtSchema As DataTable
With drData

While drData.Read
‘Must use Object because datatypes change
lstData.Items.Add(.GetValue(0).ToString + _
“ - “ + .GetValue(1).ToString)

End While
‘...

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace)
Finally

42

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 42

drData.Close()
cnFactory.Close()

End Try
End Sub

You must specify CommandBehavior.KeyInfo as the ExecuteReader argument to return correct
primary key and related field properties.

If your projects must implement data-provider independence and you’re willing to write workarounds for
subtle or not-so-subtle differences between data provider implementations, give the DbProviderFactories a
try. Bear in mind that vendor-independent code must use .NET native data types, rather than the provider-
specific data types for SQL Server, Oracle, and other database servers supported by third-party add-ins.

DbProviderFactories implement database late binding, which defeats many features of the ADO.NET
programming model. Vendor-specific SQL and stored procedure execution syntax make writing
vendor-transparent code with ADO.NET 2.0 data providers difficult — if not impossible.

Retrieve Base Table Schemas
ADO.NET 1.x and 2.0 DataReaders and ADO.NET 2.0 DataTableReaders have a GetSchemaTable
method that returns the corresponding object’s metadata (schema) in a DataTable object. You use schema
DataTable property values to provide data type information for projects that substitute code for bound
controls to display and update base tables. Schema DataTables supply ColumnLength values to set the
MaxLength property of text boxes and IsReadOnly values that you can apply to the ReadOnly property
of common data-entry controls. These DataTables also return primary key information, such as column
index(es) and autoincrement details.

The System.Data.ObjectSpaces.ObjectDataReader, which was included with early alpha and
Community Technical Preview versions of VS 2005, provided members similar to those of other
DataReaders, including the GetSchemaTable method. In May 2004, Microsoft announced that
ObjectSpaces will be released as a component of the WinFS file system enhancements.

You create a DataReader’s schema DataTable and populate a DataGridView to display column properties
with code similar to the following:

Dim dtSchema as DataTable
dtSchema = drData.GetSchemaTable()
With dgvSchema

.RowHeadersVisible = False

.DataSource = dtSchema

.AutoGenerateColumns = True

.Columns(0).Frozen = True
‘Adjust column widths
.Columns(“BaseSchemaName”).Width = 110
If .Columns.Count = 24 Then

‘SqlClient only
.Columns(23).Width = 200

End If
End With

43

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 43

The sample DbFactoryTest.sln sample project’s PopulateList procedure contains the full version of
the preceding code.

The schema DataTable contains a row for each base table column, and 27 fields of SqlDataReader
column properties. OleDbDataReaders and OdbcDataReaders return 18 properties; DataTableReaders
have 25 property fields. The DataTableReader object is new in ADO.NET 2.0, so the following table
compares the schema DataTable’s field index and property names for the three classes of DataReaders.

Index SqlDataReader OleDb and Odbc DataTableReader
DateReaders

0 ColumnName ColumnName ColumnName

1 ColumnOrdinal ColumnOrdinal ColumnOrdinal

2 ColumnSize ColumnSize ColumnSize

3 NumericPrecision NumericPrecision NumericPrecision

4 NumericScale NumericScale NumericScale

5 IsUnique DataType DataType

6 IsKey ProviderType ProviderType

7 BaseServerName IsLong IsLong

8 BaseCatalogName AllowDBNull AllowDBNull

9 BaseColumnName IsReadOnly IsReadOnly

10 BaseSchemaName IsRowVersion IsRowVersion

11 BaseTableName IsUnique IsUnique

12 DataType IsKey IsKey

13 AllowDBNull IsAutoIncrement IsAutoIncrement

14 ProviderType BaseSchemaName BaseCatalogName

15 IsAliased BaseCatalogName BaseSchemaName

16 IsExpression BaseTableName BaseTableName

17 IsIdentity BaseColumnName BaseColumnName

18 IsAutoIncrement AutoIncrementSeed

19 IsRowVersion AutoIncrementStep

20 IsHidden DefaultValue

21 IsLong Expression

22 IsReadOnly ColumnMapping

23 ProviderSpecific BaseTableNamespace
DataType

24 DataTypeName BaseColumnNamespace

44

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 44

Index SqlDataReader OleDb and Odbc DataTableReader
DateReaders

25 XmlSchema
CollectionDatabase

26 XmlSchema
CollectionOwningSchema

27 XmlSchema
CollectionName

Field properties shown in bold are members of ADO.NET 2.0’s new System.Data.Common
.SchemaTableColumn class and are required. The remainder are optional members of the
SystemData.Common.SchemaOptionalTableColumn class. XmlSchemaCollection...
fields appear for SQL Server 2005 tables only, and specify the schema, if present, for fields of the xml
datatype.

Database developers can translate most property names listed in the preceding table, so the following
table lists only those properties whose meanings aren’t evident or that return unexpected values.

Property Name Description

ColumnSize Returns -1 if data isn’t available; otherwise, the column
size in bytes

DataType The native .NET data type that corresponds to the col-
umn datatype, such as System.Int32 or
System.String

ProviderType The integer value of a data type enumeration that’s spe-
cific to the data provider

IsLong True indicates an SQL text, ntext, or image data type
and a Jet Memo or OLE Object field.

ProviderSpecificDataType One of the SqlTypes, such as SqlString or SqlInt32
(SqlClient only)

Expression The expression for a calculated DataTable column
(DataTable only)

ColumnMapping A String value that specifies the column of a destination
table or 1 if the column isn’t mapped (DataTable only)

BaseTableNamespace The XML namespace assigned to the table; inherited from
the DataSet namespace if empty, such as http://tem-
puri.org/DataSetName (DataTable only)

BaseColumnNamespace The XML namespace assigned to the table; inherited from
the DataSet namespace if empty (DataTable only)

Table continued on following page

45

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 45

Property Name Description

XmlSchema The name of the SQL Server 2005 database containing the
CollectionDatabase schema collection for a column of the xml datatype (null

if the xml column doesn’t have a schema)

XmlSchema The SQL Server 2005 relational schema where the
CollectionOwningSchema XmlSchema collection is located (null if the xml column

doesn’t have a schema)

XmlSchema The name of the schema collection for a column of the
CollectionName xml datatype (null if the xml column doesn’t have a

schema)

The section “Create Standalone DataTables,” later in this chapter, describes how to load and persist
DataTables from databases and XML files, and display schema information for DataTable objects.

Check Available SQL Server Instances and ADO.NET 2.0
Data Providers

The System.Data.Common.SqlDataSourceEnumerator.Instance.GetDataSources method
returns a DataTable that has a row for each accessible SQL Server 2000 and 2005 instance. Columns
display ServerName, InstanceName, IsClustered, and Version properties.

Invoking the DbProviderFactories.GetFactoryClasses() method returns a similar DataTable
containing one row for each Microsoft .NET managed data provider installed, with columns for the
provider’s Name, Description, InvariantName, and AssemblyQualifiedName properties and the
number of SupportedClasses. Third-party data providers, such as Oracle ODP .NET for Oracle 10g
(Oracle.DataAccess.dll), don’t appear in the table.

The machine.config file contains an element for each of the four ADO.NET 2.0 data provider namespaces,
and a system.data section that adds these providers to DbProviderFactories. The GetFactoryClasses
method reads the machine.config file to deliver the list of installed providers.

The following code from the DataEnums.sln sample project populates two DataGridView controls with
an SQL Server instance and an installed Microsoft .NET provider data:

Private Sub frmDataEnums_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘Get and load list of SQL Server instances
Dim dtServers As DataTable = SqlDataSourceEnumerator.Instance.GetDataSources
With dgvServers

.DataSource = dtServers

.AutoGenerateColumns = True

.RowHeadersVisible = False

.BorderStyle = BorderStyle.None
End With
‘Get and load list of .NET data providers installed
Dim dtProviders As DataTable = DbProviderFactories.GetFactoryClasses()
With dgvProviders

46

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 46

.DataSource = dtProviders

.AutoGenerateColumns = True

.RowHeadersVisible = False
‘Increase the row height
.RowTemplate.Height = 22
.BorderStyle = BorderStyle.None

End With
End Sub

Running the DataEnums project enumerates your SQL Server instances and data providers. Figure 2-2
shows an SQL Server 2000 default instance (OAKLEAF-W2K3), an MSDE named instance (OAKLEAF-
W2K3\SHAREPOINT), an SQL Server 2005 instance (OAKLEAF-MS18), an SQL Express (SQLX) named
instance (OAKLEAF-MS18\SQLEXPRESS), and data providers that are accessible to or installed on the
development computer used to write this book.

Figure 2-2

Batch Inserts to SQL Server Tables with the SqlBulkCopy
Object

SQL Server’s bcp utility and BULK INSERT statement are the traditional methods for high-speed
addition of rows to SQL Server tables. ADO.NET 2.0 gives you another option — programming the new
SqlBulkCopy object. A DataReader for a relational table is the most common row source. Alternatively,
you can insert rows from tabular XML documents by creating a runtime DataSet with one or more
DataTables to copy.

Bulk copying XML documents to SQL Server tables — a process called shredding — is much simpler
with SqlBulkCopy than SQLXML 3.0’s bulk loading feature. Bulk loading requires an annotated XML
schema to map elements or attributes to base table columns. SqlBulkCopy has a ColumnMappings
collection that lets you define the relationship between source DataTable and destination base-table
columns.

47

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 47

Here are the steps to insert rows from a DataReader into an existing destination base table:

1. Create a Connection and Command for the source data. You can use any .NET data provider to
connect to the data source and create the DataReader.

2. Apply the Command.ExecuteReader method to create the DataReader.

3. Create a New SqlBulkCopy object with the connection string and appropriate
SqlBulkCopyOptions enumeration members as its two arguments.

4. Set the SqlBulkCopy.DestinationTableName property value.

5. Add ColumnMapping members to the ColumnMappings collection if the schema of the destination
table differs from the source table or query.

6. Set other optional SqlBulkCopy property values, such as BatchSize and BulkCopyTimeout.

7. If your copy operation involves a very large number of records or runs over a slow network
connection, add a handler for the SqlBulkCopy.SqlRowsCopied event to display the number
or percentage of records copied.

8. Invoke the SqlBulkCopy.WriteToServer method to perform the copy operation.

9. Apply the SqlBulkCopy.Close() method and, if you’re done, close the Connection. Otherwise
reuse the SqlBulkCopy object to perform another operation.

The following table describes members of the SqlBulkCopyOptions enumeration.

Member Name Description

CheckConstraints Applies constraint checking during the copy process

Default Uses no options (defaults) for the bulk copy operation

FireTriggers Allows INSERT triggers to fire during the copy process

KeepIdentity Uses identity values from the source table instead of
generating new identity values based on the destination
table’s seed and increment values

KeepNulls Retains source null values in spite of destination table
default values

TableLock Applies a table lock for the duration of the copy process,
instead of default row locks

UseInternalTransaction Causes each bulk-copy batch to execute within a transaction

KeepIdentity is the most important member of the SqlBulkCopyOptions enumeration for tables
that use an identity column as the primary key. If you don’t specify this option, the destination table keys
might differ from the source table values. It’s also a good practice to add the UseInternalTransaction
option to prevent partial copies if the process throws an exception.

48

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 48

The simplest example of an SqlBulkCopy operation creates copies of tables in the same database. The
following code from the BulkCopySameSchema.sln project copies the Northwind Products tables as
ProductsCopy:

Private Sub btnCopyProds_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnCopyProds.Click

‘Copy Products table to ProductsCopy
Dim sdrProds As SqlDataReader
Dim sbcProds As SqlBulkCopy
Try

cnnNwind.Open()
‘Delete records, if present
cmdProds.CommandText = “DELETE FROM ProductsCopy”
Dim intRecs As Integer = cmdProds.ExecuteNonQuery

‘Create and execute the source reader
cmdProds.CommandText = “SELECT * FROM Products”
sdrProds = cmdProds.ExecuteReader()

‘Create a bulk copy object with an associated connection
‘Specify KeepIdentity to retain ProductId values
sbcProds = New SqlBulkCopy(strConn, _
SqlBulkCopyOptions.UseInternalTransaction Or _
SqlBulkCopyOptions.KeepIdentity)

‘Add a handler
AddHandler sbcProds.SqlRowsCopied, _

New SqlRowsCopiedEventHandler(AddressOf ProdRowAdded)
With sbcProds

.DestinationTableName = “ProductsCopy”
‘Use a single batch, if possible
.BatchSize = 0
.BulkCopyTimeout = 30
.NotifyAfter = 1
.WriteToServer(sdrProds)
.Close()

End With
sdrProds.Close()

Catch excCopy As Exception
MsgBox(excCopy.Message + excCopy.StackTrace, , _

“Products Bulk Copy Exception”)
Finally

sbcProds.Close()
sdrProds.Close()
cnnNwind.Close()
btnCopyProds.Enabled = True

End Try
End Sub

The SqlBulkCopy.NotifyAfter property determines the number of rows added before the
SqlRowsCopied event fires. Here’s the code for an SqlRowsCopied event handler that displays the
Products table copy progress in a text box:

49

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 49

Sub ProdRowAdded(ByVal oSource As Object, ByVal oArgs As SqlRowsCopiedEventArgs)
‘Display number of rows added
txtProdRows.Text = oArgs.RowsCopied.ToString
Application.DoEvents()

End Sub

Figure 2-3 shows the BulkCopySameSchema.sln project’s form after copying both tables. Transact-SQL
scripts recreate the table in the frmBulkCopy_Load event handler. The list boxes display source table
primary key and second-column values when the form loads and destination table values after copying.
The Batch Size spin (numeric up-down) button determines the number of rows per batch; 0 (the default)
attempts to send all rows to the server in a single batch. Setting the batch size to 1 and recopying the
tables lets you compare performance of bulk versus row-by-row operations.

Figure 2-3

Data and code caching results in a substantial execution time difference between initial and subsequent
bulk copy operations. Thus, you should compare execution times for varying batch sizes after one or two
tests with the batch size set to 0.

Clearing the Keep Source Identity Values checkbox removes the KeepIdentity option from the
Products table’s SqlBulkCopy constructor. In this case, the primary key values increment by 77 for each
copy operation. The next section describes the event handler for the Show Connection Statistics button.

Displaying copy progress causes a substantial reduction in bulk copy performance.
In production applications that must provide user feedback, set the NotifyAfter
property value to no less than 10 percent of the total number of records added.

50

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 50

Get SQL Server Connection Statistics
The new SqlConnection.RetrieveStatistics method queries the target SQL Server instance for
current connection data and returns an IDictionary object that contains the 18 name/value pairs
shown in Figure 2-4.

Figure 2-4

You must explicitly enable this feature by executing an SqlConnection.EnableStatistics = True
instruction prior to invoking the RetrieveStatistics method. The simplest method for handling the
name/value pairs is to cast the IDictionary object to a HashTable type, and then iterate the HashTable
in a For Each ... Next loop. The following code from the BulkCopySameSchema.sln project displays the
statistics in the text box of a simple frmConnStats form:

Private Sub btnShowStats_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnShowStats.Click

‘Display connection statistics
Try

htStats = CType(cnnNwind.RetrieveStatistics(), Hashtable)
Dim txtStats As Control = frmConnStats.Controls.Item(“txtStats”)
txtStats.Text = “”
Dim oStat As Object
Dim strStat As String
For Each oStat In htStats.Keys

51

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 51

strStat = oStat.ToString
If InStr(strStat, “Time”) > 0 Then

txtStats.Text += strStat + “ = “ + _
Microsoft.VisualBasic.Format(CLng(htStats(strStat)) / 1000, _
“#,##0.000”) + “ secs” + vbCrLf

Else
txtStats.Text += strStat + “ = “ + htStats(strStat).ToString + vbCrLf

End If
Next
frmConnStats.Show()
frmConnStats.Controls.Item(“btnClose”).Focus()

Catch excStats As Exception
MsgBox(excStats.Message + excStats.StackTrace, , _
“Exception Displaying Connection Statistics”)

End Try
End Sub

You can add the preceding code and the frmConnStats form to any project that uses an
SqlConnection. Invoke the SqlConnection.ResetStatistics method to initialize the data, except
ConnectionTime.

Retrieving connection statistics requires a server round-trip, so reserve use of the feature to diagnosing
connection problems.

Execute SqlCommands Asynchronously
ADO.NET 2.0 adds BeginExecuteReader, BeginExecuteXmlReader, and BeginExecuteNonQuery
methods — together with the corresponding End... methods — to the SqlCommand classes. These meth-
ods let you execute code while waiting for a command to complete execution. To execute an asynchronous
SqlCommand, you must add ;Async=True to the command string that you pass to the SqlConnection’s
constructor. The following sections provide descriptions and code examples for the three asynchronous
SqlCommand execution models that the IAsyncResult interface’s overloads support. Figure 2-5
illustrates the databases, connections, and commands used with the three models. You’ll get more interest-
ing results from the AsyncDataOperations.sln sample project if you have two or three instances of SQL
Server 2000 or 2005 with the Northwind sample database available from each instance.

52

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 52

Figure 2-5

The default shared memory provider for SQL Server 2000 doesn’t support asynchronous commands.
Thus, you must use localhost, not (local), as the Server or Data Source value of the connection
string for a local instance of SQL Server 2000.

The asynchronous SqlCommand examples assume that you’re familiar with use of the IAsyncResult
interface, which monitors the progress of an asynchronous method invocation. For more information on
asynchronous method operation, see VS 2005’s “Asynchronous Programming Overview” help topic.

SQL Server
Instance 1

(LAN)

SQL Server
Instance 2

(WAN)

SQL Server
Instance 3

(LAN)

Asynchronous
SqlConnection1

Northwind A

Asynchronous
SqlConnection2

Northwind B

Asynchronous
SqlConnection3

Northwind C

SqlCommand1
Customers

Loop While Not

SqlCommand1
BeginExecuteReader

SqlCommand2
Orders

SqlCommand3
Order Details

53

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 53

The Polling Model
The polling model is the simplest of the three models. Figure 2-6 illustrates program flow for three
asynchronous connections.

Figure 2-6

SqlCommand1
EndExecuteReader

SqlCommand2
EndExecuteReader

SqlCommand3
EndExecuteReader

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Execute Code in
While Loop

Execute Code in
While Loop

Execute Code in
While Loop

False False False

True True True

SqlCommand1
BeginExecuteReader

SqlCommand2
BeginExecuteReader

SqlCommand3
BeginExecuteReader

Start

Done

IsCompleted? IsCompleted? IsCompleted?

54

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 54

The following code opens an asynchronous command to the Northwind database on a local SQL Server
instance and uses a While loop that polls for completion of the BeginExecuteReader method:

Private Sub PollingAsyncCommand()
‘Execute an SqlCommand asynchronously with polling for completion
Try

Dim strConn As String = “Data Source=localhost;” + _
“Initial Catalog=Northwind;Integrated Security=SSPI;Async=True”

Dim cnnCusts As SqlConnection = New SqlConnection(strConn)
Dim cmdCusts As SqlCommand = cnnCusts.CreateCommand
With cmdCusts

.CommandType = CommandType.Text

.CommandTimeout = 60

.CommandText = “SELECT * FROM Customers”
End With

Dim asrCustsReader As IAsyncResult = _
cmdCusts.BeginExecuteReader(CommandBehavior.CloseConnection)

While Not asrCusts.IsCompleted
‘Do something while waiting

End While
Dim sdrCusts As SqlDataReader = cmdCusts.EndExecuteReader(asrCustsReader)
‘Do something with the data
sdrCusts.Close()
sdrCusts.Dispose()

Catch excAsync As Exception
MsgBox(excAsync.Message + excAsync.StackTrace, , “Async Operation Exception”)

End Try
End Sub

Asynchronous execution with polling is practical for simple operations within the While loop, such as
displaying a progress bar whose value is set by counting timer ticks. You also can include code that lets the
user cancel a command prior to expiration of its CommandTimeout property value. When you exit the loop,
code execution blocks until each command completes or times out. All code executes on the form’s thread,
so multiple commands execute sequentially on separate connections. If multiple DataReader.Read
operations are complex, you can run them on a dedicated thread with the new BackgroundWorker object.
Doing this permits invoking the next BeginExecuteReader method immediately after the IAsyncResult
.IsComplete property changes to True.

The Callback Model
The asynchronous callback model is more flexible than the polling model because it uses a callback
handler that runs on its own thread that’s drawn from the thread pool. The callback model permits inter-
leaving commands to multiple databases that run on the same or different servers. In this case, you spec-
ify the callback handler and pass the Command as an Object to the second parameter of the overloaded
BeginExecuteReader method. Passing the Command provides access to the EndExecuteReader
method with the IAsyncResult.AsyncState property in the callback handler. Figure 2-7 shows pro-
gram flow for the callback mode. Dashed lines indicate direct execution of Read methods without the
need to wait for all rowsets to become available.

55

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 55

Figure 2-7

Retrieve Customers
Rowset

Retrieve Orders
Rowset

Retrieve Order
Details Rowset

Invoke Callback
Handler on Pool

Thread 1

Invoke Callback
Handler on Pool
Thread 1 or 2

Invoke Callback
Handler on Pool
Thread 1, 2, or 3

SqlCommand1
EndExecuteReader

In Handler

SqlCommand2
EndExecuteReader

In Handler

SqlCommand3
EndExecuteReader

In Handler

Timed
Callback
Loops

SqlCommand1
BeginExecuteReader

SqlCommand2
BeginExecuteReader

SqlCommand3
BeginExecuteReader

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Start

DoneDoneDone

No

Yes

Yes

Relate Rows?

All Callbacks?

56

06_57678x ch02.qxd 11/10/05 11:19 PM Page 56

Following is an example of code for a simple asynchronous SqlCommand that uses the callback
approach:

Private Sub CallbackAsyncCommand()
‘Execute commands asynchronously with a callback
Try

Dim strConn As String = “Data Source=localhost;” + _
“Initial Catalog=Northwind;Integrated Security=SSPI;Async=True”

Dim cnnCusts As SqlConnection = New SqlConnection(strConn)
cnnCusts = New SqlConnection(strCusts)
Dim cmdCusts As SqlCommand = cnnCusts.CreateCommand
With cmdCusts

.CommandType = CommandType.Text

.CommandTimeout = 60

.CommandText = “SELECT * FROM Customers”
End With
cnnCusts.Open()
‘Provide the SqlCommand as the stateObject
Dim objCmdCusts As Object = CType(cmdCusts, Object)
Dim asrCustsReader As IAsyncResult = _
cmdCusts.BeginExecuteReader(New AsyncCallback(AddressOf CustsHandler), _

objCmdCusts, CommandBehavior.CloseConnection)
Catch excAsync As Exception

MsgBox(excAsync.Message + excAsync.StackTrace, , “Async Operation Exception”)
End Try

End Sub

Here’s the callback handler code for the preceding procedure:

Private Sub CustsHandler(ByVal iarResult As IAsyncResult)
Try

Dim sdrData As SqlDataReader = _
CType(iarResult.AsyncState, SqlCommand).EndExecuteReader(iarResult)

With sdrData
Dim intCtr As Integer
Dim objValue As Object
While .Read

For intCtr = 0 To .FieldCount - 1
objValue = .GetValue(intCtr)

Next intCtr
End While
.Close()
.Dispose()

End With
Catch excHandler As Exception

MsgBox(excHandler.Message + excHandler.StackTrace, , _
“Customers Handler Exception”)

End Try
End Sub

Most of this book’s client examples connect to back ends on the same machine as the client, so synchronous
execution of DataReaders completes quickly or throws an immediate exception. Asynchronous execution
is best suited for projects with multiple DataReaders that connect to remote databases on individual
connections, especially if one or more connections run on a WAN.

57

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 57

The AsyncDataOperations.sln sample project emulates a production application that connects to
multiple networked databases by establishing individual SqlConnections to Northwind Customers,
Orders, and Order Details tables. If you have access to three SQL Server instances, you can alter the
connection strings by changing the second and third server names (OAKLEAF-W2K3 and OAKLEAF-
MS2K3) to RemoteServerName, and mark the Use Multiple Instances text box to display the sequence of
Connection.Open, BeginExecuteReader, and EndExecuteReader method invocations. Figure 2-8
shows two instances of AsyncDataOperations’ form.

Figure 2-8

A VB.NET timer class, written by Alastair Dallas, provides the resolution required to obtain meaning-
ful timing data. The numbers in parentheses of list box items are the System.Threading.Thread
.CurrentThread.ManagedThreadId values of the form instance and the three callback handlers.
The P suffix indicates that the handler threads are from the thread pool. Timing data is for a second
(cached) execution.

The sample code executes Customers objects from localhost, and Orders and Order Details objects from
networked servers. (The Orders Details table has about 500,000 rows, so reading the entire table takes
about 2 seconds.) Execution speed on a LAN with low traffic usually is sufficiently fast to return the
data in the BeginExecuteReader calling sequence, as shown in Figure 2-8 (left). All data retrieval oper-
ations run on a single pooled thread (13P.) To simulate a WAN connection to the Orders table, code in
OrdersHandler induces a few-second delay by making multiple operations on each DataReader row in a
nested loop. In this case, the Orders DataReader completes execution before the Customers DataReader,
which finishes execution before the Order Details DataReader, as shown in Figure 2-8 (right). In this
case, Order Details retrieval runs on one pooled thread (3P), and Customers and Orders run on a second
pooled thread (13P).

Use of the callback model in Windows forms applications is a controversial topic. Members of
Microsoft’s VS 2005 data team recommend that you avoid applying the callback model to Windows
forms projects. ADO.NET objects aren’t thread-safe and threading problems are difficult to debug.

58

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 58

The WaitAll Model
An alternative to the callback model is to use a WaitHandle array and assign it an element for each
BeginExecuteReader method call. A WaitHandle.WaitAll(whArray) suspends code execution until
all DataReaders are ready for their EndExecuteReader calls. This behavior makes the WaitAll model
especially suited for clients that process related rowsets because you don’t need the timing loop shown
in Figure 2-7. Figure 2-9 shows the program flow for the WaitAll model.

Figure 2-9

Add Element to
WaitHandle Array

Add Element to
WaitHandle Array

Resume After All
Rowsets Return

Add Element to
WaitHandle Array

Invoke
WaitHandle.WaitAll

(whArray)

SqlCommand2
EndExecuteReader

In Handler

SqlCommand1
EndExecuteReader

In Handler

SqlCommand3
EndExecuteReader

In Handler

SqlCommand1
BeginExecuteReader

SqlCommand2
BeginExecuteReader

SqlCommand3
BeginExecuteReader

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Process Customers
DataReader.Read

Start

DoneDoneDone

59

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 59

The simplest method for displaying the WaitAll model’s performance data in a Windows form environ-
ment is to create a multi-threaded apartment (MTA) version of a custom Sub Main procedure. By default,
VB.NET procedures use the single-threaded apartment (STA) model that’s required for Win32-based forms.
Calling WaitAll with multiple WaitHandles throws an exception within STA procedures, so you must
add an <MTAThreadAttribute()> prefix to the Shared Sub Main statement. The following listing is an
adaptation of the callback model’s code to implement a multi-element WaitHandle array:

<MTAThreadAttribute()> _
Shared Sub Main()
‘Set true for multi-server operation
Dim blnIsMultiServer As Boolean
Try

cnnCusts = New SqlConnection(strCusts)
Dim cmdCusts As SqlCommand = cnnCusts.CreateCommand
With cmdCusts

.CommandType = CommandType.Text

.CommandTimeout = 10

.CommandText = “SELECT * FROM Customers”
End With

If blnIsMultiServer Then
cnnOrders = New SqlConnection(strOrders)

Else
cnnOrders = New SqlConnection(strCusts)

End If
Dim cmdOrders As SqlCommand = cnnOrders.CreateCommand
With cmdOrders

.CommandType = CommandType.Text

.CommandTimeout = 10

.CommandText = “SELECT * FROM Orders”
End With

If blnIsMultiServer Then
cnnDetails = New SqlConnection(strDetails)

Else
cnnDetails = New SqlConnection(strCusts)

End If
Dim cmdDetails As SqlCommand = cnnDetails.CreateCommand
With cmdDetails

.CommandType = CommandType.Text

.CommandTimeout = 10

.CommandText = “SELECT * FROM [Order Details]”
End With

‘Create the WaitHandle array with an element for each DataReader
Dim awhHandle(2) As WaitHandle

‘Open the Customers connection
cnnCusts.Open()

Dim asrCustomersReader As IAsyncResult
asrCustomersReader = _

cmdCusts.BeginExecuteReader(CommandBehavior.CloseConnection)

60

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 60

awhHandle(0) = asrCustomersReader.AsyncWaitHandle

‘Open the Orders connection
cnnOrders.Open()

Dim asrOrdersReader As IAsyncResult
asrOrdersReader = _

cmdOrders.BeginExecuteReader(CommandBehavior.CloseConnection)
awhHandle(1) = asrOrdersReader.AsyncWaitHandle

‘Open the Details connection
cnnDetails.Open()

Dim asrDetailsReader As IAsyncResult
asrDetailsReader = _

cmdDetails.BeginExecuteReader(CommandBehavior.CloseConnection)
awhHandle(2) = asrDetailsReader.AsyncWaitHandle

‘Wait for all DataReaders to execute
WaitHandle.WaitAll(awhHandle)

Dim sdrCustomers As SqlDataReader = _
cmdCusts.EndExecuteReader(asrCustomersReader)

‘Do something with the data
sdrCustomers.Close()
sdrCustomers.Dispose()

Dim sdrOrders As SqlDataReader = _
cmdOrders.EndExecuteReader(asrOrdersReader)

‘Do something with the data
sdrOrders.Close()
sdrOrders.Dispose()

Dim sdrDetails As SqlDataReader = _
cmdDetails.EndExecuteReader(asrDetailsReader)

‘Do something with the data
sdrDetails.Close()
sdrDetails.Dispose()
frmAsync.ShowDialog()

Catch excAsync As Exception
MsgBox(excAsync.Message + excAsync.StackTrace, , “Async Operation Exception”)

End Try
End Sub

The first step is to create a WaitHandle array with the number of elements equal to the number of asyn-
chronous commands. As with the callback model, you open the connections, execute the SqlCommand
.BeginExecuteReader instructions, and add the corresponding SqlDataReader.AsyncWaitHandle
objects to the WaitHandle array in any order. Execution suspends at the WaitHandle.WaitAll
(awhHandle) instruction until all DataReaders are filled. When execution resumes, you process related
rowsets in the desired order — in this case parent, child, and grandchild.

61

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 61

You can run the AsyncDataOperations.sln sample project’s Shared Sub Main code, by opening the
project’s Properties window, selecting the Application page, marking the Startup with Custom Sub
Main checkbox, and pressing Ctrl+S to save the changes. Figure 2-10 shows the form with the
blnIsMultiServer flag set to True.

Figure 2-10

Create Standalone DataTables
ADO.NET 1.x DataTables ordinarily are members of DataSet objects. ADO.NET 2.0 lets you create
lightweight, standalone DataTables that share many DataSet methods, such as ReadXml, ReadXmlSchema,
WriteXml, and WriteXmlSchema. DataTables also support streaming DataReader interfaces with the
Load(DataReader) method and DataTableReader object. You also can assign a namespace and
namespace prefix to the DataTable. This chapter’s earlier sections “Retrieve Base Table Schemas” and
“Check Available SQL Server Instances and ADO.NET 2.0 Data Providers” introduced you to DataTables
and DataGridView controls populated by the GetSchemaTable, GetDataSources, and
GetFactoryClasses methods.

The StandaloneDataTables.sln project demonstrates the following DataTable features:

❑ Creating a DataTable with an SqlDataReader, executing a DataTableReader, and binding the
DataTable to an editable DataGridView

❑ Persisting the content of a DataTable to XML files for data and schema only, in DataSet format,
and with DataTable edits in diffgram format

❑ Setting the Namespace and optional Prefix property values

❑ Using the ReadXml method to load a DataTable from the saved DataSet.xml file

❑ Displaying the schema DataTable with the DataTable.GetSchemaTable method

62

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 62

Figure 2-11 shows the StandaloneDataTables.sln project’s form after making a minor edit to the
ContactName column of the first row. The Show... buttons open saved XML documents in Internet
Explorer. The lower grid displays the schema DataTable for the SqlDataReader or, after clicking the
Reload from XML Files button, the schema for the primary DataTable.

Figure 2-11

The following procedure loads a DataTable from the Northwind Customers file, adds an optional
namespace and prefix, designates the primary key column (if it’s missing), creates a schema DataTable,
iterates the primary DataTable with a DataTableReader, and calls the LoadDataGridViews procedure to
display the table contents and schema:

Private Sub LoadFromDatabase(ByVal blnWithNamespace As Boolean)
‘Load and display the DataTable with or without a table namespace
Dim strConn As String = _

“Server=localhost;Integrated Security=True;Database=Northwind”
Dim cnnNwind As SqlConnection = New SqlConnection(strConn)
Try

Dim cmdCusts As SqlCommand = cnnNwind.CreateCommand
With cmdCusts

.CommandType = CommandType.Text

.CommandText = “SELECT * FROM Customers”
End With
cnnNwind.Open()
Dim drCusts As SqlDataReader = _

cmdCusts.ExecuteReader(CommandBehavior.KeyInfo)
dtCusts = New DataTable
dtSchema = drCusts.GetSchemaTable

63

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 63

With dtCusts
.TableName = “Customers”
If blnWithNamespace Then

‘Uncomment the following line to view effect on data and schemas
‘.Prefix = “custs”
.Namespace = “http://www.oakleaf.ws/schemas/northwind/customers”

End If

‘Load the data and accept changes
.Load(drCusts)
.AcceptChanges()

If .PrimaryKey.Length = 0 Then
‘Set the primary key constraint
Dim acolKeys(1) As DataColumn
acolKeys(0) = .Columns(0)
.PrimaryKey = acolKeys

End If

‘Test the DataSet property
If Not .DataSet Is Nothing Then

Dim strName As String = .DataSet.DataSetName
MsgBox(strName)

End If
End With
drCusts.Close()

‘Test the DataTableReader
Dim dtrCusts As New DataTableReader(dtCusts)
intRows = 0
While dtrCusts.Read

intRows += 1
End While
dtrCusts.Close()

LoadDataGridViews()
Catch excDT As Exception

MsgBox(excDT.Message + excDT.StackTrace, , “DataTable Load Exception”)
Finally

cnnNwind.Close()
End Try

End Sub

Remove the ExecuteReader method’s CommandBehavior.KeyInfo argument to add the primary
key with code. The DataSet test instructions prove that DataTables don’t generate a DataSet under the
covers.

DataTables that you load from DataReaders are updatable, and you can persist them as XML document
files in data-only, schema-only DataSet or diffGram formats. The SaveXmlFiles procedure generates
data and schema XML documents and persists the DataTable’s content in DataSet format. The procedure
saves all edits you make in the DataGridView as a diffgram file.

64

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 64

Private Sub SaveXmlFiles(ByVal blnShowMessage As Boolean)
‘Delete and resave data, schema, and (if changes) diffgram files
DeleteXmlFiles()
With dtCusts

.WriteXml(strPath + “Data.xml”, System.Data.XmlWriteMode.IgnoreSchema)

.WriteXml(strPath + “DataSet.xml”, System.Data.XmlWriteMode.WriteSchema)

.WriteXmlSchema(strPath + “Schema.xsd”)
End With
If chkAddNS.Checked Then

btnShowImportSchema.Enabled = True
End If
‘HasChanges property is missing
Dim dtChanges As New DataTable
dtChanges = dtCusts.GetChanges
Dim strMsg As String
If dtChanges Is Nothing Then

strMsg = “Data and schema for “ + intRows.ToString + “ rows written to ‘“ _
+ strPath + “‘ folder.”

btnShowDiffGram.Enabled = False
Else

dtChanges.WriteXml(strPath + “Diffgram.xml”, _
System.Data.XmlWriteMode.DiffGram)

strMsg = “Data for “ + intRows.ToString + “ rows, schema, and changes “ _
diffgram written to ‘“ + strPath + “‘ folder and changes accepted.”

dtCusts.AcceptChanges()
btnShowDiffGram.Enabled = True

End If
If blnShowMessage Then

MsgBox(strMsg, , “XML Files Saved”)
End If
btnReadXML.Enabled = True

End Sub

The btnReadXML_Click event handler loads the DataTable from the saved DataSet.xml file, applies pre-
vious edits saved as a diffgram file, and displays the schema DataTable.

Adding a namespace to the DataTable when importing values from the database table causes a schema
validation failure when you save the XML data file.

Private Sub btnReadXML_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnReadXML.Click

‘Load or attempt to load DataTable from saved DataSet
btnShowDiffGram.Enabled = False
Try

dtCusts = New DataTable
With dtCusts

.ReadXml(strPath + “DataSet.xml”)
If File.Exists(strPath + “Diffgram.xml”) Then

‘Apply the changes
.ReadXml(strPath + “Diffgram.xml”)

End If
.AcceptChanges()

65

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 65

End With

‘Get the schema and test the DataTableReader
Dim dtrCusts As New DataTableReader(dtCusts)
dtSchema = dtrCusts.GetSchemaTable
intRows = 0
While dtrCusts.Read

intRows += 1
End While
dtrCusts.Close()

LoadDataGridView()
Catch excXML As Exception

MsgBox(excXML.Message + excXML.StackTrace, , “DataTable ReadXml Exception”)
End Try

End Sub

DataTables have ChildRelations and ParentRelations collections that let you add code to
define the relationships between multiple DataTable objects. In most cases, however, creating a typed
DataSet is the better approach for projects that have more than one related DataTable.

Use Nullable Types to Support DBNull Values
.NET Framework 2.0 adds generic types to VB.NET 2005 by adding the (Of Type) type parameter to
variable declarations. Nullable variables are an extension of generic types that enable value types —
Integer, Int16, Decimal, Date, DateTime, and the like — to support null values. Assigning Nothing to a
value type returns the default value for the type —0 for numeric types and 01/01/0001 12:00:00 AM
for dates.

You enable the null values by replacing value type data type identifiers with Nullable(Of Type).
Reference types, such as String, support null values intrinsically, so adding Nullable(Of String) isn’t
appropriate. The most useful application for nullable variables is in method signatures where nullable
value types eliminate the need for overloading. For example, inserting a new row in the Northwind
Orders table from a typed DataSet ordinarily requires the two Insert method signatures shown here and
two corresponding Overloads functions:

Function Insert(ByVal CustomerID As String,
ByVal EmployeeID As Integer, _
ByVal OrderDate As Date, _
ByVal RequiredDate As Date, _
ByVal ShippedDate As Date, _
ByVal ShipVia As Integer,
ByVal Freight As Decimal,
ByVal ShipName As String, _
ByVal ShipAddress As String,
ByVal ShipCity As String, _
ByVal ShipRegion As String,
ByVal ShipPostalCode As String, _
ByVal ShipCountry As String) As Integer

Function Insert(ByVal CustomerID As Object,

66

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 66

ByVal EmployeeID As Object, _
ByVal OrderDate As Object,
ByVal RequiredDate As Object, _
ByVal ShippedDate As Object, _
ByVal ShipVia As Object, _
ByVal Freight As Object, _
ByVal ShipName As Object, _
ByVal ShipAddress As Object, _
ByVal ShipCity As Object, _
ByVal ShipRegion As Object, _
ByVal ShipPostalCode As Object, _
ByVal ShipCountry As Object) As Integer

The first method signature is valid if all values are present. If any value type passed to the function is
null, the second, untyped signature is required. In this case, your code could supply a String in place of
an Integer or Decimal value, an error that the compiler wouldn’t catch. Adding Nullable(Of Type)
to value types, as shown here, lets a single function handle null value types:

Function Insert(ByVal CustomerID As String, _
ByVal EmployeeID As Nullable(Of Integer), _
ByVal OrderDate As Nullable(Of Date), _
ByVal RequiredDate As Nullable(Of Date), _
ByVal ShippedDate As Nullable(Of Date), _
ByVal ShipVia As Nullable(Of Integer), _
ByVal Freight As Nullable(Of Decimal), _
ByVal ShipName As String, _
ByVal ShipAddress As String, _
ByVal ShipCity As String, _
ByVal ShipRegion As String, _
ByVal ShipPostalCode As String, _
ByVal ShipCountry As String) As Integer

Setting INSERT or UPDATE parameter values associated with nullable types requires testing for the
presence of an assigned value with the HasValue property and, if HasValue is True, passing the Value
property, as shown in the following snippet for an INSERT command that has required parameters
added:

...
Me.InsertCommandParameters(0).Value = CustomerID
If EmployeeID.HasValue Then

Me.InsertCommandParameters(1).Value = EmployeeID.Value
Else

Me.InsertCommandParameters(1).Value = DBNull.Convert
End If
If OrderDate.HasValue Then

Me.InsertCommandParameters(2).Value = OrderDate.Value
Else

Me.InsertCommandParameters(2).Value = DBNull.Convert
End If
If RequiredDate.HasValue Then

Me.InsertCommandParameters(3).Value = RequiredDate.Value
Else

67

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 67

Me.InsertCommandParameters(3).Value = DBNull.Convert
End If
If ShippedDate.HasValue Then

Me.InsertCommandParameters(4).Value = ShippedDate.Value
Else

Me.InsertCommandParameters(4).Value = DBNull.Convert
End If
...

It’s not necessary to specify a nullable type for variables that can’t be null because of base table foreign
key constraints, such as EmployeeID in the preceding example. The same is true for variables that are
subject to business rules, such as requiring an OrderDate value for every order.

You also can apply Nullable(Of Type) to Public or Private class members. Following is an example
of a simple business object with Public properties that map to the Northwind Orders table’s fields.
Business rules and foreign key constraints determine which fields are nullable — RequiredDate,
ShippedDate, Freight, ShipRegion, and ShipPostalCode for this example. ShipRegion and
ShipPostalCode are reference types, which are nullable by definition.

Public Class Orders
Public OrderID As Integer
Public CustomerID As String
Public EmployeeID As Integer
Public OrderDate As Date
Public RequiredDate As Nullable(Of Date)
Public ShippedDate As Nullable(Of Date)
Public ShipVia As Integer
Public Freight As Nullable(Of Decimal)
...
Public ShipCountry As String

End Class

Here’s an abbreviated version of the preceding class that uses private members with Get and Set accessors:

Public Class Orders
Private m_OrderID As Integer
Public Property OrderID() As Integer

Get
Return m_OrderID

End Get
Set(ByVal value As Integer)

m_OrderID = value
End Set

End Property

...

Private m_RequiredDate As Nullable(Of Date)
Public Property RequiredDate() As Nullable(Of Date)

Get
Return m_RequiredDate

End Get
Set(ByVal value As Nullable(Of Date))

68

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 68

m_RequiredDate = value
End Set

End Property

Private m_ShippedDate As Nullable(Of Date)
Public Property ShippedDate() As Nullable(Of Date)

Get
Return m_ShippedDate

End Get
Set(ByVal value As Nullable(Of Date))

m_ShippedDate = value
End Set

End Property

...

Private m_Freight As Nullable(Of Decimal)
Public Property Freight() As Nullable(Of Decimal)

Get
Return m_Freight

End Get
Set(ByVal value As Nullable(Of Decimal))

m_Freight = value
End Set

End Property

...
Private m_ShipCountry As String
Public Property ShipCountry() As String

Get
Return m_ShipCountry

End Get
Set(ByVal value As String)

m_ShipCountry = value
End Set

End Property
End Class

Specifying nullable class members and using HasValue and Value properties is equivalent to using
If ReferenceType Is Nothing Then ... or If ValueType = Nothing Then ... tests for assigned
property values. The sample NullableTypes.sln project tests both approaches with objects populated
from an SqlDataReader for the Orders table.

Using New ADO.NET 2.0 Persistent
Windows Form Objects

This book defines persistent objects as elements that are visible (surfaced) on Windows forms or in the
forms designer tray and whose property values you can set in design mode. You add persistent data
objects from the toolbox’s Data category or with code-generation tools (designers) that you invoke by
dragging table or field nodes from the new Data Sources window. VS 2005’s Data Sources window
replaces Server Explorer as the starting point for adding DataSets and DataTables to projects.

69

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 69

VS 2005 replaces earlier versions’ Windows form Toolbox Data controls — except DataSet — with the
following new objects and wrappers:

❑ TableAdapters replace provider-specific Connections and DataAdapters, such as SqlConnection
and SqlDataAdapter objects. Provider-specific Connections and DataAdapters no longer appear
in the toolbox’s Data category.

❑ BindingSources are wrappers for the project’s data sources, which usually — but not
necessarily — are DataTables that are members of a typed DataSet. BindingSources provide
code-based data record or list item navigation and editing capabilities. BindingSources also
serve as the binding source for the DataGridView or other bound editing controls.

❑ BindingNavigators are special-purpose ToolStrip controls that you associate with a BindingSource
to provide toolbar-style record or list navigation and related operations, such as adding new items,
deleting items, and saving data edits.

❑ DataGridView controls replace the DataGrid control. You can bind DataGridViews to
DataConnectors, DataTables, and ArrayLists. Unlike the DataGrid, DataGridViews can’t display
hierarchical data.

Provider-specific Connections and DataAdapters no longer appear in the form designer tray. Private
members of the DataSet’s Partial Public Class TableNameTableAdapter class define runtime
SqlConnections, SqlDataAdapters, and SqlTransactions for SQL Server–based projects. Partial classes for
designer-generated code, stored in ClassName.Designer.vb files, let you add code to DataSet classes that
isn’t overwritten by the designer when you reconfigure DataSets.

The following sections introduce you to ADO.NET 2.0’s new or upgraded controls, as well as autogenerated
parameterized data display and editing forms, and the new batch update feature for data tables.

Compare ADO.NET 1.x and 2.0 Data Designers
As mentioned early in the chapter, one of the Visual Studio development team’s primary objectives for
VS 2005 is to flatten the learning curve for developers — especially VB developers — migrating from VS
6.0 to VS 2005. Adding the My namespace and its classes to VB.NET projects is an example of simplifying
access to local computer properties and resources at the expense of increased source code file structure
complexity.

Fortunately, the new VS 2005 wizards and designers for creating basic data entry forms streamline initial
generation of DataSets without adding code complexity. The following two sections compare the process
for generating a grid-based data entry and editing form with ADO.NET 1.x and ADO.NET 2.0 wizards
and designers.

ADO.NET 1.x
Here’s the conventional ADO.NET 1.x method for creating a typed DataSet with a single table specified
by an SQL statement, and displaying records in a DataGrid control:

1. Add an SqlDataAdapter from the toolbox to the form’s tray, which opens the Data Adapter
Configuration Wizard.

2. Select an existing SQL Server connection or create a new one, specify SQL statements, and
generate the SQL SELECT, INSERT, UPDATE, and DELETE statements. The designer adds
SqlConnection1 and SqlDataAdapter1 to the tray.

70

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 70

3. Choose Data ➪ Generate Dataset to create a typed DataSet with the DataTable specified in the
SELECT query. The designer adds DataSetName1 to the tray.

4. Add a DataGrid control to the form, set its DataSource property value to DataSetName1, and
set the DataMember property to the table name you specified in the SELECT query.

5. Add a Fill button and SqlDataAdapter1.Fill(DataSetName1) instruction to the
btnFill_Click event handler.

6. Add an Update button and SqlDataAdapter1.Update(DataSetName1) instruction to the
btnUpdate_Click event handler.

Dragging a table node from an existing connection in Server Explorer combines preceding Steps 1 and 2,
but you don’t have the opportunity to select new or existing stored procedures for the queries.

ADO.NET 2.0
VS 2005’s ADO.NET 2.0 designers simplify creating classic single-table forms by changing the sequence
of DataSet and related data component generation. Here’s the drill for the ADO.NET 2.0 process:

1. Open the Data Sources window, if necessary, by choosing Data ➪ Show Data Sources, and click
the Add New Data Source link to start the Data Source Configuration Wizard.

2. Select Database as the data source type, and select an existing database connection or create a
new connection with the Connection Properties dialog. Optionally, save the connection string to
the application configuration file. Completing the wizard’s steps adds a TableName node under
the Data Sources window’s top-level DataSetName node.

3. Drag the TableName node to the form. The designer adds DatabaseNameDataSet,
TableNameTableAdapter, TableNameBindingSource, and TableNameBindingNavigator items to the
tray, and TableNameDataGridView and TableNameBindingNavigator controls to the form.

Step 3 also adds a TableNameTableAdapter.Fill(DatabaseNameDataSet) instruction to the
Form1_Load event handler and a bindingNavigatorSaveItem_Click event handler to the form.

You can substitute a set of bound text boxes for the DataGridView control by selecting Details from
the Data Source window’s TableName node’s dropdown list before dragging the node to the form in
preceding Step 3.

Unlike the ADO.NET 1.x process, you don’t have the opportunity to create or select stored procedures
to fill or update DataTables that the wizard creates. However, you can reconfigure DataTableAdapters
to create new or use existing stored procedures by opening the DataSetName.xsd file in the schema
designer, right-clicking the TableNameTableAdapter header, and choosing Configure to start the Data
Component Configuration Wizard. Click Back to display the Choose a Command Type dialog, select
the Create New Stored Procedures or Use Existing Stored Procedures option, and complete the
wizard’s steps.

ADO.NET 2.0 designers make it much easier to create master data editing forms with synchronized
single-level or multiple-level DataGridView subforms, which VS 2005 calls Master Detail forms. Chap-
ter 1’s “Add a Related DataBound Control” section describes the process for creating a Northwind
Customers-Orders form. The later “Add Multi-Level Subforms” section shows you how to add a related
second-level subform with a Customers-Orders-Order Details example. It’s also much easier to create a
parameterized data entry form, as you’ll discover in the section “Parameterize the MasterDetailsForm,”
later in this chapter.

71

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 71

Add Missing ADO.NET Controls to the Toolbox
If you want to use the ADO.NET 1.x components to create provider-specific DataAdapter objects, you
must add the appropriate Connection and DataAdapter controls to the toolbox. If you have other
vendor-specific data providers, such as the Oracle ODP .NET provider for Oracle 10g or earlier, you
might add the ODP .NET OracleConnection and OracleDataAdapter to the toolbox. You also can add the
ADO.NET 1.x Windows form DataGrid control to create new projects with the look and feel of pre–VS
2005 projects.

To add non-standard data controls to the toolbox, right-click in the Data section, and select Choose Items
to open the Choose Toolbox Items dialog. Type the first few letters of the component or control in the
Filter text box to simplify selection. Figure 2-12 shows the dialog with three Oracle.DataAccess.Client
providers selected. Mark the checkboxes of the items you want to install, and click OK to add them to
the toolbox and close the dialog.

Figure 2-12

Adding non-standard data controls to the toolbox might take a minute or two, depending on your test
machine’s CPU speed and available RAM.

You can remove all non-standard toolbox items you added by right-clicking the toolbox and choosing
Reset Toolbox.

Using legacy DataAdapters and the Generate DataSet command creates the ADO.NET 1.x version of
DataSetName.xsd, which is much smaller than the ADO.NET 2.0 schema.

Upgrade 1.x Projects to ADO.NET 2.0 Components
Opening a VS 2002 or VS 2003 project in VS 2005 starts the Visual Studio Upgrade Wizard, which
converts the project to VS 2005 format and, optionally, saves a backup of the original project in the folder
you specify. With simple projects, the only changes you’ll notice are references that are updated to .NET

72

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 72

Framework 2.0 versions and the data source(s) for your form that automatically appear in the Data
Sources window. Upgrading the project doesn’t add code files to implement the My namespace or make
ADO.NET 2.0–specific additions to the DataSet code.

Adding the data source as a Data Sources windows node lets you quickly replace a DataGrid with a
DataGridView and automatically add BindingSource and BindingNavigator controls for navigation and
editing. Delete the DataGrid and drag the TableName node to the form to add the two ADO.NET 2.0
controls. You won’t see a TableNameDataAdapter component in the tray or the schema designer window
because DataSourceName.xsd isn’t upgraded to the new DataSet schema format.

The AdapterGridView2003.sln project, shown in Figure 2-13, was upgraded from the VS 2003 project in
the ...Chapter02\AdapterGridView2003\AdapterGridView2003_Backup folder. You can test the upgrade
process by opening the backup project copy in VS 2005.

Figure 2-13

Add Multi-Level Subforms
VS 2005 and VB Express automate the generation of multi-level data entry and editing forms for
related tables. When you add multiple related tables to the Data Sources window, the VS 2005
schema designer automatically determines foreign-key constraints and establishes relations between
the tables based on pre-established base table constraints. The Schema Designer names the relations
FK_ManySideTable_OneSideTable, as shown for the Northwind Customers, Orders, and Order Details
tables in Figure 2-14.

73

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 73

Figure 2-14

VS 2002 and VS 2003 required you to manually establish all relations in the Relation dialog. By default,
VS 2005 doesn’t cascade key value changes for update and delete operations, but you can alter this
behavior and set other relation properties in the Relation dialog.

First, add a DataGridView or, preferably, bound text boxes and a DataNavigator for the form’s master
data source. Next, add the first detail level by dragging the Data Sources window’s related table node —
Orders for this example — to the form to display related records in a DataGridView. Then drag more
deeply nested table nodes — Order Details in this case — to display additional levels of related records.

Be sure to drag the node for the related tables, which are the last entry in the column list of the parent
tables. If you drag nodes that are at the same hierarchical level as the parent, the related table records
won’t synchronize when you select a parent table record.

Finally, verify that the designer has added these three DataTableTableAdapter.Fill instructions to
the FormName_Load event handler:

74

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 74

Private Sub frmMasterDetails_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the ‘NorthwindDataSet.Order_Details’
‘table. You can move, or remove it, as needed.
Me.Order_DetailsTableAdapter.Fill(Me.NorthwindDataSet.Order_Details)
‘TODO: This line of code loads data into the ‘NorthwindDataSet.Orders’ table.
‘You can move, or remove it, as needed.
Me.OrdersTableAdapter.Fill(Me.NorthwindDataSet.Orders)
‘TODO: This line of code loads data into the ‘NorthwindDataSet.Customers’ table.
‘You can move, or remove it, as needed.
Me.CustomersTableAdapter.Fill(Me.NorthwindDataSet.Customers)

End Sub

Then press F5 to build and run the project, which appears as shown in Figure 2-15.

Figure 2-15

Parameterize the MasterDetailsForm
ADO.NET 2.0 TableAdapters support collections of SELECT queries or stored procedures, which can
include parameterized queries. The default SELECT query name is Fill, as illustrated by the preceding
event-handling code; parameterized queries default to FillBy. Selecting a bound text box or DataGridView
enables the Data menu’s Add Query choice, which opens a Search Criteria Builder dialog. You write — or
use the Query Builder to create — a parameterized SELECT query that specifies a subset of the master
table records for the DataTableTableAdapter.FillBy method, as shown in Figure 2-16.

75

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 75

Figure 2-16

Click OK to add the FillBy query to the collection, a new FillBy ToolStrip to the form’s
topRaftingContainer, and a FillByTooStripButton_Click event handler to the form’s class. The
added FillBy member appears in the TableNameDataConnector element of the schema designer.

As an example, the MasterDetailsParam.sln sample project adds a parameterized search of the
Customers TableAdapter’s CustomerID column, so the FillBy query statement is:

SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address,
City, Region, PostalCode, Country, Phone, Fax

FROM dbo.Customers WHERE CustomerID LIKE @CustomerID + ‘%’

The LIKE predicate returns Customers records that begin with the first characters supplied; an empty
@CustomerID value returns all Customers records. The parameter ToolStrip’s left label text defaults to
the parameter name plus a colon (CustomerID:), and button text is the query name (FillByCountry),
as shown in Figure 2-17.

76

Chapter 2

06_57678x ch02.qxd 11/10/05 11:19 PM Page 76

Figure 2-17

The Search Criteria Builder adds the following event handler to the main form’s class:

Private Sub FillByToolStripButton_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FillByToolStripButton.Click

Try
Me.CustomersTableAdapter.FillBy(Me.NorthwindDataSet.Customers, _

CustomerIDToolStripTextBox.Text)
Catch ex As System.Exception

System.Windows.Forms.MessageBox.Show(ex.Message)
End Try

End Sub

You can add multiple parameterized FillBy queries and their ToolStrip controls; the second and later
FillBy query names have a default incremental integer suffix. Later chapters show you how to cus-
tomize FillBy queries and substitute form-based controls for ToolStrip parameter controls.

Batch Multiple Updates
ADO.NET 1.x DataSets that contain many updates or inserts create a serious performance hit when
updating base tables. Each new, modified, or deleted row for every table requires a database server
round-trip to execute parameterized SQL statements or stored procedures. ADO.NET 2.0 adds a
new batched update feature that lets you specify the value of the UpdateBatchSize property of
SqlDataAdapter and OracleDataAdapter objects. The behavior of batched DataTable updates is
similar to the SqlBulkCopy operations described earlier in this chapter. Setting SqlDataAdapter
.UpdateBatchSize = 0 attempts to perform all updates to the corresponding base table in a single

77

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:19 PM Page 77

batch operation, which seldom is the optimum choice. The default value is 1, which turns off batched
updates. As is the case with SqlBulkCopy operations, you might find that setting the batch size to a
specific value can improve update performance.

The BatchedUpdates.sln project in the \VB2005DB\Chapter02\BatchedUpdates folder lets you compare
performance of individual and batched updates of the OrderDate value of Northwind Orders records.
Figure 2-18 shows the project executing an update operation with 51 OrderDate updates per batch. In
this case, a batch consists of 2,040 parameter values for optimistic concurrency tests and has a total
length of 85,527 characters (approximately 160,000 bytes). Running tests on a networked server provides
more realistic timing comparisons than using a local server. As an example, non-batched updates to all
830 Orders records require about 7.2 seconds, while tests of 51 updates per batch execute in about 3.6
seconds on the network used to write this book. Setting updates per batch to 11 results in an execution
time of about 4.3 seconds.

Figure 2-18

To run batch execution timing tests with the sample project, do the following:

1. Edit the connection strings in the btnRefresh_Click event handler to point to your local
instance of Northwind and, if available, a network instance of Northwind or NorthwindCS.

2. If you have a networked instance of Northwind, mark the Use Networked Server checkbox and
click Refresh DataSet.

3. Click the Update DataSet button to add or subtract one day from the DataSet’s OrderDate value
for all Orders records.

4. Set the BatchSize value to 1 to obtain the baseline time for unbatched updates, and click Update
Orders Table.

5. Repeat Steps 3 and 4 with different BatchSize values to determine the performance improvement
gained from batching updates.

78

Chapter 2

06_57678x ch02.qxd 11/10/05 11:20 PM Page 78

You’ll receive an error when executing a batched update operation if you don’t set SqlDataAdapter
.UpdateCommand.UpdatedRowSource = UpdateRowSource.None. You also must do the same
for the InsertCommand and Delete command.

ADO 2.0 batched updates to SQL Server tables occur “under the covers,” which means that SQL Profiler
doesn’t display the parameterized T-SQL statements for batched updates. Only Network Monitor or a
network sniffer lets you observe the T-SQL instructions required for batched updates.

Design and Display Reports with the
ReportViewer Control

VB and VS releases prior to VS .NET have relied on Crystal Reports add-ins to design, display, and pub-
lish tabular reports, graphs, or both from a specified data source. Several other independent software
vendors (ISVs) offer report writers and chart designers for VS 2002 and later versions. To eliminate
reliance on third-party report writers and charting applications, Microsoft introduced SQL Server
Reporting Services as a no-charge add-on to SQL Server 2000. All editions of SQL Server 2005, except
SQLX, integrate Reporting Services, which include Report Server and Report Builder, into the setup
program. These editions use the VS IDE’s Business Intelligence project’s Report Server Project, Report
Server Project Wizard, or Report Model Project templates to design and deploy server-based (also called
remote) reports that are independent of .NET Windows or Web forms projects.

The ReportViewer control for Windows forms is a container for a pre-configured toolbar, which is
similar to a BindingNavigator control, and a report viewing area to display conventional (table) or
crosstab (matrix) reports, or charts bound to ADO.NET 2.0 data sources. Charts are quite similar to Excel
PivotCharts or those created with the Office Web Components (OWC) 12 Chart control. The toolbar has
Page Setup, Page Layout, and Print buttons for printing, and an Export button that lets you save reports
in Excel worksheet or Adobe PDF file format. Reports that you create with the ReportViewer control
consume far fewer client resources than corresponding Crystal Reports versions.

ReportViewer enables designing reports with a client (local) designer derived from ReportBuilder. You use
the local designer within VS 2005 or VBX to create a local client report definition file_ReportName.rdlc_in
the project folder. Online help’s “Walkthrough: Using a Database Data Source with the ReportViewer
Windows Forms Control in Local Processing Mode” topic leads you through the process of creating a sim-
ple report from AdventureWorks tables. The \VB2005DB\Chapter02\ReportViewerDemo.sln sample pro-
ject has two tabular reports based on Northwind and AdventureWorks data sources, a crosstab report that
uses the Northwind Orders, Order Details, and Products tables, and a chart generated from data that’s
similar to that for the crosstab report. Figure 2-19 shows the ReportViewerDemo application displaying a
stacked-area chart of orders received by product category in each quarter of 1997.

79

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:20 PM Page 79

Figure 2-19

Following are generic steps for creating a new Windows form project with a ReportViewer control:

1. Create a new Windows form project, and add a ReportViewer control from the toolbox’s Data
section.

2. Open the ReportViewer’s smart tag, select Dock in Parent Container, and then select Design a
New Report to open a local client report definition file_Report1.rdlc_in the report designer.

3. Drag a Table, Matrix, or Chart control from the toolbox to the designer. This example uses a
Matrix control to create a crosstab report. Unless you added a Chart control, position the Table
or Matrix control, and add a text box with a report heading.

4. Open the Data Sources window, click Add New Data Source to start the Data Source
Configuration Wizard, and create a DataSet with a DataTable to provide the report’s data. This
example uses the NWOrders1997 DataTable that’s filled by the following SQL statement:

80

Chapter 2

06_57678x ch02.qxd 11/10/05 11:20 PM Page 80

SELECT Products.ProductName, Categories.CategoryName,
‘1997Q’ + CONVERT(varchar, DATEPART(quarter, Orders.OrderDate)) AS Quarter,
CONVERT(money, SUM(([Order Details].UnitPrice * [Order Details].Quantity) *
(1 - [Order Details].Discount))) AS ProductOrders

FROM Categories INNER JOIN Products INNER JOIN Orders INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID ON Products.ProductID =
[Order Details].ProductID ON Categories.CategoryID = Products.CategoryID

WHERE (Orders.OrderDate BETWEEN ‘1/1/1997’ AND ‘12/31/1997’)
GROUP BY Products.ProductName, Categories.CategoryName,

DATEPART(quarter, Orders.OrderDate)
ORDER BY Categories.CategoryName, Products.ProductName, Quarter

5. Drag column icons to the appropriate report designer cells. For this example, drag the Quarter
column to the Columns cell, the ProductName column to the Rows cell, and the ProductOrders
column to the Data cell. Figure 2-20 shows the designer with an added grouping and subtotal
by CategoryName.

Figure 2-20

6. Run the form to display the initial report, and then format the cells to suit the data.

Figure 2-21 shows the ReportViewerDemo project displaying the finished NWOrders1997.rdlc report.

81

Introducing New ADO.NET 2.0 Features

06_57678x ch02.qxd 11/10/05 11:20 PM Page 81

Figure 2-21

Summary
ADO 2.0 adds a few runtime features for Windows form applications — DbProviderFactories for vendor-
agnostic data projects, SQLBulkCopy operations that simplify bulk transfers of data between tables,
the RetrieveStatistics method for obtaining details about a current SqlConnection, asynchronous
command execution, standalone DataTables, and nullable types. With the possible exception of nullable
types and standalone DataTables, these new features aren’t likely to play a major role in new data-inten-
sive VS 2005 projects. The runtime code examples and sample projects in the first half of this chapter should
provide enough evidence to arrive at your own conclusion about the usefulness of these new features.

New ADO.NET 2.0 persistent objects are much more likely to gain popularity in new and upgraded
Windows form data projects. You can create a basic data editing form with graphical record navigation
controls in less than five minutes. A BindingNavigator docked to the top of a form might not be what
you want for record navigation in a production project, but the combination is a welcome quick-start
enhancement, especially for parameterized forms. TableAdapters and, especially, BindingSource compo-
nents reduce coding requirements dramatically. The master-details designer makes cloning Access
form-subform projects a quick and easy process. Adding multiple details grids for tables at the third or
lower level of the relation hierarchy is equally simple. The DataGridView is a considerably improved
version of the DataGrid, despite its inability to display hierarchical data. Later chapters in Part II show
you how to customize these new controls and components for production-grade data projects.

82

Chapter 2

06_57678x ch02.qxd 11/10/05 11:20 PM Page 82

Adopting Best Practices for
Data-Centric Projects

Today’s business processes require real-time access to a wide variety of public and proprietary
data. Almost all business-oriented applications connect to one or more networked data stores.
Relational database tables are the most common data stores, but messaging systems, worksheets,
word-processing files, and, increasingly, XML documents also serve as data sources. ADO.NET
requires tabular data sources, so this chapter concentrates on best practices for processing data
contained in relational databases, structured XML Infosets, and SOAP messages.

Microsoft Access 2.0 and Visual Basic 3.0 applications delivered desktop data connectivity to millions
of Windows users. Both platforms enabled quick and relatively easy access to local and networked
databases. Access enabled Office power users to create database front ends and set up multi-user Jet
databases for departmental projects. Visual Basic let amateur and professional developers with a
wide range of skill sets create client applications for corporate database servers. Much of this early
development activity was prompted by the inability — or unwillingness — of IT departments to
deliver officially sanctioned applications on a timely basis (or at all). Unsanctioned ad hoc projects
often fell under IT management’s radar and weren’t discovered until data contamination became
evident or improperly managed connections impacted database performance.

A recent survey by a large U.S. government agency found more than 150,000 Access 97 .mdf
files on employees’ workstations and agency file servers. Most files turned out to be obsolete or
backups, but more than 10,000 Jet databases were in active use.

Year 2000 compliance audits and subsequent database upgrades uncovered most unsanctioned or
defective database front ends. SQL Server back ends with sa accounts having empty or easy-to-guess
passwords were secured. IT departments of most organizations gained full control over internal
connections to centralized corporate or government databases. Centralized administration of and
establishment of best practices for database front-end development became the norm. Ubiquitous
Internet connectivity and the prevalence of external attacks resulted in an increased emphasis on
establishing best practices for data security and integrity. However, many small and medium-sized
organizations continue to operate with informal, ad hoc database application development practices.

07_57678x ch03.qxd 11/10/05 11:24 PM Page 83

The SQL Snake/Spida exploit, which occurred in May 2002, proved that many Internet-accessible SQL
Server databases had empty or easy-to-guess passwords. January 2003’s Slammer/Sapphire worm
demonstrated that thousands of unsanctioned MSDE 2000 instances, as well as unpatched SQL
Servers under IT department control, were accessible to TCP port 1433 exploits.

The U.S. General Accounting Office defines best practices as “processes, practices, and systems identified
in public and private organizations that performed exceptionally well and are widely recognized as
improving an organization’s performance and efficiency in specific areas. Successfully identifying and
applying best practices can reduce business expenses and improve organizational efficiency.” Regardless
of the size of your employer or consulting clients, adopting and enforcing a set of application architecture
and development best practices delivers very high short-term and long-term returns on investment. Even
if your development duties aren’t guided by an official set of best practices, take the time to become
familiar with Microsoft’s current architecture and implementation recommendations for .NET projects.

This chapter discusses best practices for .NET application development in top-down sequence — from
overall architecture to specific recommendations for increased scalability, interoperability, performance,
security, and code reusability in all tiers of data-centric .NET projects.

Establish Architectural Best Practices
Keeping up with Microsoft’s successive application architectures and frameworks can become a
full-time occupation. Conventional client-server projects gave way to COM-based three-tier designs and
then to n-tier architectures with components under the control of Microsoft Transaction Server. Windows
Distributed interNet Architecture (WinDNA) and Universal Data Access (UDA), which Microsoft
introduced in 1997, formalized the design of three-tier Web applications. In 1999, Windows DNA 2000
framework added XML and Web services to the data access mix. Bill Gates announced in July 2002 the
short-lived “.NET platform,” which incorporated all Microsoft server-side systems, Visual Studio .NET,
and the ill-fated .NET My Services project. At the time of this writing, the latest architecture incarnation
is the Microsoft Enterprise Application Platform that, as of 2004, combined Windows 2003 Server, Visual
Studio .NET 2003, and patterns & practices (P&P) architectural guidance.

P&P are developed by Microsoft’s Platform Architectural Guidance (PAG) team, which has established a
three-day International Patterns and Practices Summit conference and provides weekly Webcasts on
.NET architectural and application development topics.

The PAG group’s home page is http://www.microsoft.com/practices/.

Following are brief descriptions of the four P&P elements:

❑ Reference architectures identify design decisions and make overall recommendations for
implementing solutions with interconnected components. The Data Services implementation
guide of Windows Server System Reference Architecture (WSSRA) and Application Architecture for
.NET: Designing Applications and Services are the most useful reference architecture documents
for ADO.NET developers.

❑ Patterns are models of common operations performed by applications that are presented as a
problem/solution pair. A typical example, taken from the 196-page Data Patterns book is the
Master/Slave Snapshot Replication pattern for copying slowly changing information, such as
customer and product lists, from database tables to frequently disconnected users’ laptop
computers.

84

Chapter 3

07_57678x ch03.qxd 11/10/05 11:24 PM Page 84

❑ Application blocks are VB and C# components that provide a framework for specific elements
of applications or components. An example is the Data Access Application Block for .NET.
Several design guides provide documentation for application blocks.

❑ Design guides provide detailed architectural and implementation recommendations for specific
application, component, and service types. The .NET Data Access Architecture Guide (2003)
and Designing Data Tier Components and Accessing Data Through Tiers (2002) are the two most
important members of this group for ADO.NET programmers.

The original P&P aren’t affected significantly by the VS 2005 and ADO.NET 2.0 upgrades or migration
to SQL Server 2005. The design principles are consistent for all .NET versions.

The following sections provide more detailed information on members of the preceding list with emphasis
on elements that are of the most interest to database developers.

Reference Architectures
Reference architectures provide .NET architects and developers with system-level guidance for typical
business scenarios, such as distributed systems for Web-based retail and banking applications. Reference
architectures attempt to model typical IT structures and operations of medium to large enterprises. The
following sections describe the primary reference architectures for multi-tier, data-driven projects.

The home page for Microsoft reference architectures is http://msdn.microsoft.com/
architecture/. This page has links to the Microsoft Architects JOURNAL (PDF files), related sites,
and Weblogs.

Windows Server System Reference Architecture
WSSRA is the March 2005 Windows Server 2003 update of Microsoft Systems Architecture 1.5 for Windows
2000 Server. WSSRA provides recommendations for hardware and operating system configurations for
enterprise-level systems. The Data Services implementation guide is based on SQL Server 2000, but the
recommendations also apply to SQL Server 2005.

Links to all WSSRA implementation guides are at http://www.microsoft.com/technet/
itsolutions/wssra/raguide/.

Designing Applications and Services
Application Architecture for .NET: Designing Applications and Services (2002) is a 169-page book that describes
the recommended architecture for distributed systems constructed with multiple tiers. Individual chapters
cover the reference implementation and goals; component design and interaction; security and manage-
ment; and deployment. This publication provides the foundation for all other .NET reference architectures.
All developers of non-trivial .NET applications should read this book.

The reference implementation is a relatively simple Web-based retail sales application that demonstrates
the following component types:

85

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:24 PM Page 85

User interface Service agent

User process components Service interface

Business workflows Security

Business components and entities Management

Data access logic Communication

The sections “Data Patterns,” “Designing Data Tier Components and Passing Data Through Tiers,” and
“The .NET Data Access Architecture Guide,” later in this chapter, describe data access logic components
(DALCs). Service agent and service interface components connect to XML Web services.

Search http://msdn.microsoft.com with “.NET: Designing Applications” to obtain the most
recent version of this book as a PDF file.

Microsoft released in early 2003 the PAG Enterprise Template: Application Architecture for .NET 2002
and 2003. PAG is an acronym for Prescriptive Architecture Guidance. The installer adds an Application
Architecture for the .NET Wizard node to your VS 2003 templates folder. Subnode templates create
project stubs for 11 of the component types that the book describes. Most stubs have references to the
.NET namespaces that are required for the component’s project, but don’t include any code.

You can download this PAG from http://gotdotnet.com/team/architecture/patterns/
templates.aspx.

Enterprise Development Reference Architecture
The Microsoft Enterprise Development Reference Architecture (ERDA) v1.0 (originally codenamed
Shadowfax) is a framework for developing service-oriented applications with SQL Server, ASP.NET Web
services, Microsoft Message Queue (MSMQ), and other back-end systems. The reference implementation,
called GlobalBank, is the starting point for an online banking portal that lets customers access their
personal banking information. The section “Integration Patterns,” later in this chapter, describes the new
Integration Patterns book, which uses GlobalBank as its reference implementation.

You can download version 1.1 of GlobalBank at http://workspaces.gotdotnet
.com/shadowfx. Background information from members of the PAG is available at http://
channel9.msdn.com/wiki/default.aspx/Channel9.GlobalBankInformation. Search
the GotDotNet site for “Global Bank” to find the latest version of the Global Bank Implementation
(GBI) project. When this book was written, the latest GBI build was for VS 2003.

Find Patterns for Projects
A software pattern defines a common solution for specific recurring IT tasks, such as retrieving data from
and updating database tables by applications that frequently lack network database connectivity for an
extended period — the classic disconnected client scenario. The general rule is that a particular pattern must
be applicable to at least three instances of the task. The AntiPatterns Web site’s What Is a Pattern page
(http://www.antipatterns.com/whatisapattern/) describes the first instance as an event, the
second as a coincidence, and the third as a possible pattern. Additional instances lend increasing credence
to the pattern.

86

Chapter 3

07_57678x ch03.qxd 11/10/05 11:24 PM Page 86

A pattern that gains widespread use within an organization or software community is likely to be
transformed into a template. A common definition of a pattern template is structured documentation for a
pattern that can be added to pattern or template catalog. The following sections describe patterns that
apply to all .NET applications in general and data-driven applications in particular.

The Microsoft Patterns home page is http://msdn.microsoft.com/architecture/
patterns/. You can download all patterns for the following sections from links on
this page. The discussion group for patterns, and VS 2005 and earlier templates, is at
http://gotdotnet.com/team/architecture/patterns/.

Enterprise Solution Patterns Using Microsoft .NET
Enterprise Solution Patterns Using Microsoft .NET (2003, version 2.0) is the mother of all .NET patterns.
This 367-page book is a catalog of 32 patterns in five clusters — Web Presentation, Data Access,
Performance and Reliability, Services, and Deployment. The “Data Transfer Object,” “Implementing
Data Transfer Object in .NET with a Data Set,” and “Implementing Data Transfer Object in .NET with a
Typed Data Set,” topics of Chapter 5, “Distributed Systems Patterns,” are the members of the Data
Access cluster.

You can read or download a PDF version of the book at http://msdn.microsoft.com/library/
en-us/dnpatterns/html/Esp.asp.

The book defines the Data Transfer Object (DTO) as “a simple container for a set of aggregated data that
needs to be transferred across a process or network boundary” and then goes on to spend a few pages
discussing “chunky versus chatty” issues with remote data calls. The often-referenced “Implementing
Data Transfer Object in .NET with Serialized Objects,” topic is missing from the second edition. Its
source is identified in Appendix A, “Pattlets,” as Microsoft P&P, but a full search on the term returns
only the DataSet-related items. The two implementations provide C# sample code for unit testing with
the NUnit.Framework namespace. The later “Automate Test-Driven Development” section provides
more detail on unit testing patterns with NUnit.

It’s a stretch to describe DTOs as “simple containers” and then recommend implementation with
ADO.NET untyped or, especially, typed ADO.NET 2.0 DataSets. The implementation patterns recognize
the non-interoperability liability of DataSets, but the book doesn’t discuss the XML overhead added by
typed DataSets when marshaled by .NET remoting in XML or binary format, or serialized to Web service
messages. Unlike Application Architecture for .NET: Designing Applications and Services, you can safely
skip the data-related topics of this pattern collection.

Data Patterns
Data Patterns (2003) is a 196-page book that identifies a cluster of data movement patterns. A cluster is
a group of related patterns with a root pattern for the set — Moving Copy of Data is the cluster for the
first Data Patterns edition. Pattern clusters have varying levels of abstraction — architecture, design, and
implementation; only implementation is platform-dependent and database vendor-specific. Database,
application, deployment, and infrastructure viewpoints represent members of typical IT departments:
DBAs, developers, network administrators, and system architects.

You can read or download the book’s PDF version at http://msdn.microsoft.com/library/
en-us/dnpatterns/html/dp.asp.

87

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:24 PM Page 87

The Moving Copy of Data cluster branches to extract-transform-load (ETL) operations and various types
of server-based replication, such as master-master and master-slave, with transactional and snapshot
designs. Implementations, of course, use Microsoft SQL Server 2000 or later. Each pattern has a template
with Context, Problem, Forces, and Solution topics.

Data Patterns doesn’t directly address one of the most common ADO.NET approaches to moving
data — caching frequently used but slowly changing data on client workstations as persistent DataSets.

Distributed Systems Patterns
The Distributed Systems Patterns (Version 1.1.0) white paper outlines a cluster of patterns for object
collaboration across process and network boundaries. The cluster includes remote object invocation
patterns with Singleton and Broker patterns for .NET remoting, and the Data Transfer Object (DTO),
which creates a local instance copy of a remote object. This is one of the few patterns books and white
papers that doesn’t deal with service-oriented architecture and Web services.

You can read this white paper and follow links to C# implementation at http://msdn.microsoft.com/
library/en-us/dnpatterns/html/EspDistributedSystemsPatternsCluster.asp.

Integration Patterns
Integration Patterns (2004) is a catalog of enterprise application integration (EAI) patterns. The Electronic
Commerce Dictionary (http://www.tedhaynes.com/haynes1/atol.html) defines EAI as:

The linking and sharing of multiple business applications and data, including extensions to business
partners, through the use of application-to-application modules, object middleware and message broker-
ing, or multi-tier application server platforms. Motivations for EAI include the need to rapidly implement
Web-based projects, the need to link to legacy data, and the need to forge links to different systems
acquired through corporate mergers and acquisitions.

Integration Patterns traces the steps that the fictitious Global Bank’s IT development group follow in
development of a Web-based, self-service customer payments portal. The portal connects to a diverse set
of data sources and implements payment operations with these ten EAI patterns:

Entity Aggregation Function Integration

Process Integration Service-Oriented Integration

Implementing Process Implementing Service-Oriented Integration
Integration with BizTalk Server 2004 with ASP.NET

Portal Integration Implementing Service-Oriented Integration with
BizTalk Server 2004

Data Integration Presentation Integration

Search microsoft.com for “Integration Patterns,” and click the “Download details: Integration
Patterns” link to download IntPatt.pdf (2.4MB).

Integration Patterns’ “Data Integration” chapter discusses three approaches to data retrieval and updates:

88

Chapter 3

07_57678x ch03.qxd 11/10/05 11:24 PM Page 88

❑ Shared database gives multiple applications direct access to a single database; this approach
minimizes data latency.

❑ Maintain data copies provides each application with its own database, which replicates data to
and from a master database. Replication type and scheduling determine data synchronization
and latency.

❑ File transfer involves moving logical files between the data store and independent applications.
Sending serialized DataSets to persistent storage on a client as XML files is an example of the
file transfer approach.

Like most other P&P, Integration Patterns emphasizes the use of Web services and messaging in EAI
projects. The section “Prepare for Service-Oriented Architecture,” later in this chapter, discusses the pros
and cons of using Web services for data access.

Try Application Block Libraries
Application blocks are class libraries of reusable subsystem-level components for implementing common
application services, such as data access, encryption, and event logging. Each application block comes with
a quick-start example, documentation, and source code. Providing the source code lets you modify and
extend the blocks to suit your application development environment and requirements. Microsoft released
the original application blocks for VS 2002 (then called Visual Studio .NET) and .NET 1.0 in 2002 as version
1.0. The blocks were upgraded to VS 2003 and .NET 1.1 as version 2.0 in 2004. Most original application
block libraries were rewritten as members of the patterns & practices Enterprise Library, which Microsoft
released in January 2005. Enterprise Library incorporates parts of the Avenade Connected Architecture for
.NET (ACA.NET). Avenade, Inc., is a joint-venture software consulting company formed by Accenture and
Microsoft in 2000.

You can download the current set of application blocks from the Enterprise Library page at
http://msdn.microsoft.com/library/en-us/dnpag2/html/entlib.asp.

Following are the application blocks available in .NET 1.x versions at the time of this writing:

Aggregation Application Block Data Access Application Block*

Asynchronous Invocation Application Block Exception Handling Application Block*

Authorization and Profile Application Block Logging and Instrumentation Application Block*

Caching Application Block* Security Application Block*

Configuration Application Block* Smart Client Offline Application Block

Cryptography Application Block* Updater Application Block

User Interface Process Application Block - V2

Application blocks in the preceding table that are marked with an asterisk (*) are included in the
Enterprise Library application blocks download of January 2005.

89

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:24 PM Page 89

Enterprise Library application blocks require you to build the .NET 1.1 source code with batch files or
VS 2003 to create .NET 1.1 Microsoft.Practices.EnterpriseLibrary.BlockName.dlls. You then add references
to the appropriate assemblies in your VS 2005 project. QuickStart clients require building solutions from
multiple projects that have many files. Most block assemblies have dependencies on core assemblies,
such as Microsoft.Practices.EnterpriseLibrary.Common.dll and Microsoft.Practices.EnterpriseLibrary
.Configuration.dll. Earlier application block versions included VB and C# libraries; Enterprise Library
has only C# libraries. However, QuickStart clients include VB and C# source code.

The following two sections describe the Data Access Application Block (DAAB) and its QuickStart
test client, a sample Windows form project that uses the Data Application block to retrieve and update
SQL Server 2000 or 2005 data. Using the VS 2005 Upgrade Wizard isn’t practical with VS 2005 and
the January 2005 Enterprise Library source code because the automated upgrade fails. Thus, the
DataAccessQuickStart.sln VB 2005 sample project includes the manually upgraded components neces-
sary to create DAB objects and execute their methods in VS 2005.

The Data Access Application Block
The original DAAB’s primary objective was to minimize the number of lines of custom code needed to
create and manipulate runtime ADO.NET 1.x SQL Server data access components. The Enterprise
Library version enables integrating other application blocks that provide standardized configuration,
instrumentation, and security features with data retrieval and update operations. The upgraded DAAB
manipulates DataSets, DataReaders, XmlReaders, and scalar values of SQL Server, Oracle, and DB2
database tables. The Enterprise Library’s DAAB is totally incompatible with earlier versions. The only
commonality between the two versions is use of the SqlCommandBuilder class for autogenerating
SqlCommand objects.

To install the sample database, stored procedures, and triggers, and test the upgraded
DataAccessQuickStart.sln project, do the following:

1. Navigate to the \VB2005DB\Chapter03\DataAccessQuickStart folder, which contains the
upgraded QuickStart and DAB files.

2. If you’re running SQL Server 2000 or 2005, open the DataAccessQuickStart.sql script in SQL
Server Management Studio (SSMS), and execute it to create the EntLibQuickStarts SQL Server
sample database on localhost with Customers, Products, Credits, and Debits tables, eight
stored procedures, and two triggers on the Products table.

If you’re running SQL Server Express, execute the DataAccessQuickStart.sql script with
SqlCmd.exe. In this case, you must change the dataConfiguration.config file’s server parame-
ter’s value attribute from localhost to .\SQLEXPRESS or \localhost\SQLEXPRESS, as illus-
trated in the following listing.

3. Open DataAccessQuickStart.sln in VS 2005 or VBX, and press F5 to build and run the project.

4. If you receive build errors related to missing namespaces, delete the references to the three
Microsoft.Practices... assemblies, and re-create them from the assembly DLL copies in the
...\DataAccessQuickStart\Assemblies folder.

5. Test database connectivity and updated sample code by clicking each of the seven buttons,
which invokes the applicable data application block method.

90

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 90

The Data Configuration File
A dataConfiguration.config file contains the settings for the database-specific connection string.
The Configuration application block’s assembly deserializes the config file. Following is the
dataConfiguration.config file for the DataAccessQuickStart’s EntLibQuickStarts SQL Server sample
database with the databaseType and connectionString elements emphasized:

<?xml version=”1.0” encoding=”utf-8”?>
<dataConfiguration>

<xmlSerializerSection type=
“Microsoft.Practices.EnterpriseLibrary.Data.Configuration.DatabaseSettings,
Microsoft.Practices.EnterpriseLibrary.Data”>
<enterpriseLibrary.databaseSettings

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
defaultInstance=”DataAccessQuickStart”
xmlns=”http://www.microsoft.com/practices/enterpriselibrary/08-31-2004/data”>
<databaseTypes>

<databaseType name=”Sql Server”
type=”Microsoft.Practices.EnterpriseLibrary.Data.Sql.SqlDatabase,
Microsoft.Practices.EnterpriseLibrary.Data” />

</databaseTypes>
<instances>

<instance name=”DataAccessQuickStart” type=”Sql Server”
connectionString=”LocalQuickStart” />

</instances>
<connectionStrings>

<connectionString name=”LocalQuickStart”>
<parameters>

<!-- For SQL Express value=”.\SQLEXPRESS” or “localhost\SQLEXPRESS” -->
<parameter name=”server” value=”localhost” isSensitive=”false” />
<parameter name=”database” value=”EntLibQuickStarts”
isSensitive=”false” />

<parameter name=”Integrated Security” value=”True”
isSensitive=”false” />

</parameters>
</connectionString>

</connectionStrings>
</enterpriseLibrary.databaseSettings>

</xmlSerializerSection>
</dataConfiguration>

Theoretically, only a modification to the dataConfiguration.config file is required to change between one
of the three supported database types. Specifying the databaseType determines the connection, com-
mand, and operator class —Sql..., Oracle..., or DB2....

Data Retrieval Code
After you define a connection to a database with the configuration file and a Dim db As Database =
DatabaseFactory.CreateDatabase() instruction, you can retrieve or update data with
db.DBCommandWrapper method overloads and one of the following instructions:

db.ExecuteReader(dbCommandWrapper)
db.ExecuteXmlReader(dbCommandWrapper)
db.ExecuteScalar(dbCommandWrapper)

91

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 91

db.ExecuteDataSet(dbCommandWrapper)
db.UpdateDataSet(dbCommandWrapper)
db.ExecuteNonQuery(dbCommandWrapper)

As an example, the following snippet returns an untyped DataSet object that can serve as a
DataGridView.DataSource property value:

Dim dbSQL as Database = DatabaseFactory.CreateDatabase()
Dim strSQL as String = “SELECT * FROM Products WHERE CategoryID = 2”
Dim cwSQL as DBCommandWrapper = dbSQL.GetSqlStringCommandWrapper(strSQL)
Dim dsProducts As DataSet = dbSQL.ExecuteDataSet(cwSQL)

DBCommandWrapper.AddInParameteter() and DBCommandWrapper.AddOutParameteter()
overloads handle parameterized queries and stored procedures. The following skeleton code assumes
that the GetProductDetails stored procedure has a @ProductID input parameter, and @ProductName
and @UnitPrice output parameters:

Dim dbSQL as Database = DatabaseFactory.CreateDatabase()
Dim cwSP as DBCommandWrapper = _
dbSQL.GetStoredProcCommandWrapper(“GetProductDetails”)

cwSP.AddInParameter(“@ProductID”, DbType.Int32, 2)
cwSP.AddOutParameter(“@ProductName”, DbType.String, 50)
cwSP.AddOutParameter(“@UnitPrice”, DbType.Currency, 8)
dbSQL.ExecuteNonQuery(cwSP)
Dim strReturn As String = cwSP.GetParameterValue(“@ProductID”).ToString + “, “ + _
cwSP.GetParameterValue(“@ProductName”).ToString + “, “ + _
Format(cwSP.GetParameterValue(“@UnitPrice”), “$#,##0.00”)

The third argument of the AddInParameter method is the value supplied to the stored procedure
parameter. The third argument of the AddOutParameter method is the data length.

Retrieving parameter metadata for the GetStoredProceCommandWrapper(strProcName) method
ordinarily requires a roundtrip to the server for each execution of a parameterized stored procedure. The
data application block eliminates repetitive retrievals by caching parameter metadata in a hashtable.
The method retrieves the parameters for a specified stored procedure only if they’re not present in the
cache. Support for cached parameters is automatic.

Data Update Code
The Database.UpdateDataSet(dsDataSet, strTableName, cwInsert, cwUpdate, cwDelete,
intUpdateBehavior) method performs multiple update operations on a DataTable specified by the
strTableName argument. The UpdateBehavior enumeration determines how the method responds to
an update error: Standard (0, the default) stops execution, Continue (1) updates remaining rows, and
Transactional (2) rolls back all updates.

The DAAB’s sample database incorporates AddProduct, UpdateProduct, and DeleteProduct stored
procedures. The following snippet, which derives from the DataAccessQuickStart sample project, creates
a new untyped DataSet, adds and populates a Products DataTable, adds a new row to the Products base
table, updates an existing row, and claims to delete the added row:

Dim dbSQL As Database = DatabaseFactory.CreateDatabase()
‘Create an untyped DataSet; add and populate the Products table
Dim dsProducts As DataSet = New DataSet

92

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 92

Dim cwSelect As DBCommandWrapper = _
dbSQL.GetSqlStringCommandWrapper(“SELECT * FROM Products”)

dbSQL.LoadDataSet(cwSelect, dsProducts, “Products”)
Dim dtProducts As DataTable = dsProducts.Tables(“Products”)

‘Add a new row to the Products table
Dim objRow(3) As Object
objRow(0) = DBNull.Value ‘ProductID int identity
objRow(1) = “Added Row Product Name” ‘ProductName
objRow(2) = 11 ‘CategoryID
objRow(3) = 12.5 ‘UnitPrice
dtProducts.Rows.Add(objRow)
‘Create the InsertCommand for the added row
Dim cwInsert As DBCommandWrapper = dbSQL.GetStoredProcCommandWrapper(“AddProduct”)
cwInsert.AddInParameter(“@ProductName”, DbType.String, “ProductName”, _
DataRowVersion.Current)

cwInsert.AddInParameter(“@CategoryID”, DbType.Int32, “CategoryID”, _
DataRowVersion.Current)

cwInsert.AddInParameter(“@UnitPrice”, DbType.Currency, “UnitPrice”, _
DataRowVersion.Current)

‘This delete command doesn’t work because the parameter value is DbNull
Dim cwDelete As DBCommandWrapper = _
dbSQL.GetStoredProcCommandWrapper(“DeleteProduct”)

cwDelete.AddInParameter(“@ProductID”, DbType.Int32, “ProductID”, _
DataRowVersion.Current)

‘Modify the first Products table Row and create the UpdateCommand
dtProducts.Rows(0).Item(1) = “Modified Row Product Name”
Dim cwUpdate As DBCommandWrapper = _
dbSQL.GetStoredProcCommandWrapper(“UpdateProduct”)

cwUpdate.AddInParameter(“@ProductID”, DbType.Int32, “ProductID”, _
DataRowVersion.Current)

cwUpdate.AddInParameter(“@ProductName”, DbType.String, “ProductName”, _
DataRowVersion.Current)

cwUpdate.AddInParameter(“@LastUpdate”, DbType.DateTime, “LastUpdate”, _
DataRowVersion.Current)

‘Execute the three commands
Dim intRowsUpdated = dbSQL.UpdateDataSet(dsProducts, “Products”, cwInsert, _
cwUpdate, cwDelete, UpdateBehavior.Transactional)

The AddInParameter() method overload for update operations on DataTable objects is
AddInParameter(strParamName, intDbType, strDataTableColumnName,
intDataRowVersion). The strDataTableColumnName parameter is specific to DataSet updates.

Invoking the dbSQL.UpdateDataSet() method executes the cwDelete command but doesn’t delete
the Products table row that the cwInsert command adds. The DataRowVersion.Current value for
the added row is DbNull.Value, so the command deletes no row(s) from the base table. You can verify
the failure to delete the added “New product” row by running the DataAccessQuickStart.sln project,
clicking the Update a Database Using a DataSet button, and opening the EntLibQuickStarts.Products
table in VS 2005 Standard Edition or higher, SSMS, or XM.

To solve the preceding problem, you can add the following code to return the Products table to its original
condition (except the current identity seed value) after the changes made by the preceding snippet or the
DataAccessQuickStartClient:

93

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 93

‘Create a DeleteCommand for the added row
Dim dbSQL As Database = DatabaseFactory.CreateDatabase()
Dim strDeleteSQL As String = _
“DELETE FROM Products WHERE ProductName = ‘Added Row Product Name’”

Dim intCtr As Integer = dbSQL.ExecuteNonQuery(CommandType.Text, strDeleteSQL)
strDeleteSQL = “DELETE FROM Products WHERE ProductName = ‘New product’”
intCtr += dbSQL.ExecuteNonQuery(CommandType.Text, strDeleteSQL)
‘Create a UpdateCommand for the modified first ProductName
Dim strUpdateSQL As String = _
“UPDATE Products SET ProductName = ‘Chai’ WHERE ProductID = 1”

intCtr += dbSQL.ExecuteNonQuery(CommandType.Text, strUpdateSQL)

The Enterprise Library developers expended a substantial amount of effort on test-driven development
of the C# application blocks and adding NUnit test cases, but short-changed testing of the first
Enterprise Library DataAccessQuickStartClient implementation.

The preceding oversight should be corrected and a VB 2005 version of the blocks’ source code included
in the Enterprise Library version promised for VS 2005.

The DataAccessQuickStart Client
The DataAccessQuickStart client includes a salesData VB class that emulates a simple database-specific
DALC for SQL Server and the EntLibQuickStarts sample database. Seven button event handlers invoke
salesData methods, such as GetCustomerList(), GetProductsInCategory(intCategory), and
UpdateProducts(). Figure 3-1 shows the QuickStartForm after clicking the top button (Retrieve multiple
rows using a DataReader), which invokes the SalesData.GetCustomerList() method.

Figure 3-1

94

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 94

Following is commented code for the SalesData.GetCustomerList() method:

Public Function GetCustomerList() As String
‘Create a Microsoft.Practices.EnterpriseLibrary.Data.Database instance
Dim db As Database = DatabaseFactory.CreateDatabase()
‘Define the query string
Dim sqlCommand As String = “SELECT CustomerID, Name, Address, City, “ + _
“Country, PostalCode FROM Customers”

‘Wrap the query string with a dbCommandWrapper
Dim dbCommandWrapper As DBCommandWrapper = _
db.GetSqlStringCommandWrapper(sqlCommand)

Dim dataReader As IDataReader = db.ExecuteReader(dbCommandWrapper)
Dim readerData As StringBuilder = New StringBuilder
While dataReader.Read()

‘ Get the value of the ‘Name’ column in the DataReader
readerData.Append(dataReader(“Name”))
readerData.Append(Environment.NewLine)

End While
dataReader.Close()
Return readerData.ToString()

End Function

Following is conventional ADO.NET 2.0 code that accesses the SqlClient objects directly from the
QuickStartForm.vb class file with the connection string saved in the app.config file:

Private Sub compareUsingReaderButton()
‘Added alternative (conventional) code (15 lines)
strConn = My.Settings.QuickStartConnection
Dim cnQS As New SqlClient.SqlConnection(strConn)
Dim strSQL As String = “SELECT CustomerID, Name, Address, City, “ + _
“Country, PostalCode FROM Customers”

Dim cmQS As New SqlClient.SqlCommand(strSQL, cnQS)
cnQS.Open()
Dim sdrData As SqlClient.SqlDataReader = cmQS.ExecuteReader
Dim sbData As New System.Text.StringBuilder
With sdrData

While .Read
sbData.Append(sdrData(1).ToString + vbCrLf)

End While
.Close()

End With
cnQS.Close()
Me.DisplayResults(“Alternative Data Reader”, sbData.ToString)

End Sub

A comparison of the preceding two code examples, which have about the same number of active
lines, indicates that there’s no appreciable reduction in the amount of code required to implement a
DataReader scenario with the DAAB. DataSet updates with the DAAB reduce the requirement for hand-
written code but don’t implement typed DataSets or sequenced groups of updates, inserts, and deletions
for updating related base tables.

Chapter 4’s “Save Changes to the Base Tables” section explains why sequenced groups of updates are
required to maintain referential integrity of related tables.

95

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 95

The market research firm Gartner cited Avenade as one of its four “Cool Vendors in IT Services and
Outsourcing 2005” because of ACA.NET 4.0. ACA.NET 4.0 adds aspect-oriented programming (AOP)
features to the ACA.NET-based Enterprise Library application blocks. One of the principles of AOP is
“separation of concerns.” Concerns about a software application might be issues such as performance,
accuracy, auditability, optimization, security, data structures, and data flow. If the application’s
programmers can rely on the availability of reliable, standardized methods for managing data structures
and data flow, programmers need not be concerned about writing code to implement such methods. The
question is whether the additional level of data management abstraction provided by the DAAB beyond
that inherent in ADO.NET 2.0 and VS 2005’s data toolset justifies the DAAB’s learning curve, potential
limitations, or both.

Adhere to Design Guides
Design guides predate formation of the P&P group and don’t share a common structure or writing style
with reference architectures and patterns. The guides don’t cover the new ADO.NET 2.0 objects and
features described in the preceding two chapters, but most of their recommendations apply to .NET 2.0
projects.

You can read all current design guides by following the Guides link on the P&P page at http://www
.microsoft.com/resources/practices/.

The .NET Data Access Architecture Guide
“.NET Data Access Architecture Guide” (2001, updated 2003) is an 86-page primer that’s directed to
developers new to ADO.NET. The updated guide makes specific recommendations for the following
ADO.NET 1.1 topics:

Managing Database Connections Performing Database Updates with DataSets

Error Handling Using Strongly Typed DataSet Objects

Performance Working with Null Data Fields

Connecting Through Firewalls Transactions

Handling BLOBs Data Paging

The guide emphasizes use of DataSets, which isn’t surprising when you consider that DataSets are one
of ADO.NET’s primary distinguishing features and that Microsoft has made a very large investment in
automating typed DataSet creation in all VS versions. This book’s two preceding chapters and Parts II
and III, which follow, provide detailed coverage of many of the guide’s topics.

Improving .NET Application Performance and Scalability
“Improving .NET Application Performance and Scalability” (2004) is the largest of all P&P publications —
1,124 pages. This guide, which is targeted specifically at .NET 1.1 application developers, incorporates and
updates performance recommendations from earlier architectural best practice and design pattern books.
Most chapters have a related checklist that summarizes the detailed performance recommendations.

96

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 96

Database application developers will find the following four chapters to be the most useful:

❑ Chapter 12, “Improving ADO.NET Performance”

❑ Chapter 14, “Improving SQL Server Performance”

❑ Chapter 10, “Improving Web Service Performance”

❑ Chapter 11, “Improving Remoting Performance”

Chapter 12, which was released in May 2004, includes a few references to performance improvements
delivered by pre-beta versions of ADO.NET 2.0 objects.

Designing Data Tier Components and Passing Data
Through Tiers

“Designing Data Tier Components and Passing Data Through Tiers” (2002) is a 65-page white paper that
makes recommendations for adding new layers to the three conventional tiers — presentation, business
rules, and data. The paper defines business entities (BEs), data access logic components (DALCs), and
business process components (BPCs), and discusses the relationships of BEs, DALCs, and BPCs with the
presentation tier and the physical data store. This is the most widely quoted of all data-related .NET
white papers.

Here are brief descriptions of the three layers defined by the paper:

❑ BEs represent typical elements in a business’s operation — such as a customer, order, invoice,
product, or supplier — as business objects. BEs usually map to relational tables, in which case
the BE can contain data from related tables. For example, Order and Invoice BEs contain line
item members because orders and invoices aren’t valid without at least one line item. If a
Customers table has related tables that store contact, billing address, or shipping address infor-
mation, the Customer BE includes these members. Retailers and distributors might include
related supplier data with a Product BE.

❑ DALCs deliver BEs by abstracting create, retrieve, update, and delete (CRUD) operations from the
underlying data store. DALCs are stateless classes that hide data store implementation details, such
as schema metadata and stored procedure properties, from objects that invoke their methods.
DALCs also are responsible for managing data consistency and handling concurrency conflicts
when executing SQL statements rather than stored procedures for updates. A properly designed
DALC should be able to deliver a BE to Windows or Web forms, handheld devices, or Web services.

❑ BPCs implement business rules and aggregate data and handle transaction management when
operations involve more than one BE. BPCs are responsible for implementing many-to-many
relationships, such as that between Customer and Product BEs. If the BEs map to tables in mul-
tiple databases or depend on Web services, distributed transactions are required for updates.
BPCs can incorporate workflow management for long-running transactions, which might
require compensating transactions to reverse previously committed changes to the data stores.

Like many other .NET design and implementation guides, code examples are C#-only, which lends
additional credence to the assertion that VB.NET suffers “second-class citizen” status among Microsoft
developers. On the other hand, this paper grants equal time to implementing BEs with custom data
objects and DataSets. However, the custom data object implementation of the OrderEntity class speci-
fies an OrderDetails member of the DataSet type, which defeats cross-platform interoperability.

97

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 97

Following is a simple example of a typed, hierarchical BE Order object:

Public Class Order
Public OrderID As Int32
Public CustomerID As String
Public EmployeeID As Int32
Public OrderDate As Date
Public RequiredDate As Date
Public ShippedDate As Date
Public ShipVia As Int32
Public Freight As Decimal
Public ShipName As String
Public ShipAddress As String
Public ShipCity As String
Public ShipRegion As String
Public ShipPostalCode As String
Public ShipCountry As String
Public OrderDetails(24) As OrderDetail

End Class

Public Class OrderDetail
Public OrderID As Int32
Public ProductID As Int32
Public UnitPrice As Decimal
Public Quantity As Int16
Public Discount As Decimal

End Class

The Order class’s design emphasizes versatility and interoperability, so it exposes public fields and
represents line items as a simple array of OrderDetail items with a maximum initial length, rather than
an ArrayList or generic List(Of OrderDetail) object. (A Redim Preserve statement removes
empty OrderDetail elements after populating the array.) This design ensures platform and language
independence, and enables VS 2002 and 2003 Web methods to serialize Order BEs to SOAP messages.
.NET 2.0 Web services also handle objects with Get and Set accessors for private field properties.

Chapter 9, “Publishing Data-Driven XML Web Services,” provides the details of new VS 2005 Web
service features.

Following is an example of a serialized Order BE:

<?xml version=”1.0” encoding=”utf-8”?>
<Order>

<OrderID>1617968</OrderID>
<CustomerID>QUICK</CustomerID>
<EmployeeID>9</EmployeeID>
<OrderDate>1996-08-15T00:00:00.0000000-07:00</OrderDate>
<RequiredDate>1996-09-02T00:00:00.0000000-07:00</RequiredDate>
<ShippedDate>1996-09-02T00:00:00.0000000-07:00</ShippedDate>
<ShipVia>3</ShipVia>
<Freight>76.07</Freight>
<ShipName>QUICK-Stop</ShipName>
<ShipAddress>Taucherstraße 10</ShipAddress>
<ShipCity>Cunewalde</ShipCity>

98

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 98

<ShipRegion />
<ShipPostalCode>01307</ShipPostalCode>
<ShipCountry>Germany</ShipCountry>
<OrderDetails>

<OrderDetail>
<OrderID>1617968</OrderID>
<ProductID>5</ProductID>
<UnitPrice>21.35</UnitPrice>
<Quantity>13</Quantity>
<Discount>0.18</Discount>

</OrderDetail>
<OrderDetail>

<OrderID>1617968</OrderID>
<ProductID>17</ProductID>
<UnitPrice>39</UnitPrice>
<Quantity>11</Quantity>
<Discount>0.12</Discount>

</OrderDetail>
</OrderDetails>

</Order>

Here’s a simple XML schema for the serialized BE with attributes to support referential integrity con-
straints, a maximum of 25 line items per order, and optional (nillable) dateTime, decimal, and
string values:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”

xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Order”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”CustomerID” minOccurs=”1” >

<xs:simpleType>
<xs:restriction base=”xs:string”>

<xs:length value=”5” fixed = “true”/>
</xs:restriction>

</xs:simpleType>
</xs:element>
<xs:element name=”EmployeeID” type=”xs:int” />
<xs:element name=”OrderDate” type=”xs:dateTime” />
<xs:element name=”RequiredDate” type=”xs:dateTime” nillable=”true” />
<xs:element name=”ShippedDate” type=”xs:dateTime” nillable=”true” />
<xs:element name=”ShipVia” type=”xs:int” />
<xs:element name=”Freight” type=”xs:decimal” nillable=”true” />
<xs:element name=”ShipName” type=”xs:string” minOccurs=”1” />
<xs:element name=”ShipAddress” type=”xs:string” minOccurs=”1” />
<xs:element name=”ShipCity” type=”xs:string” minOccurs=”1” />
<xs:element name=”ShipRegion” type=”xs:string” nillable=”true” />
<xs:element name=”ShipPostalCode” type=”xs:string” nillable=”true” />
<xs:element name=”ShipCountry” type=”xs:string” minOccurs=”1” />
<xs:element name=”OrderDetails”>

<xs:complexType>
<xs:sequence>

99

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 99

<xs:element minOccurs = “1” maxOccurs=”25” name=”OrderDetail”>
<xs:complexType>

<xs:sequence>
<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”ProductID” type=”xs:int” />
<xs:element name=”UnitPrice” type=”xs:decimal” />
<xs:element name=”Quantity” type=”xs:short” />
<xs:element name=”Discount” type=”xs:decimal” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Adding the nillable=”true” attribute to string values ensures that the element is present in the
XML document if it doesn’t have a value.

A public ASP.NET 1.1 Web service at http://www.oakleaf.ws/nwordersws/nwordersws.asmx
emulates real-world use of the Order BE. The GetOrderSP Web method returns the order specified by
an intOrderID parameter. The UpdateOrInsertOrderSP method updates an individual order; an
intOrderID value of 0 inserts a new order. The Web service is compatible with Java, Perl, and other
Web service client toolkits. Unlike Web services that deliver and update DataSets, the XML schema for
custom BE objects contains no implementation details.

VS 2005 makes Web services that publish custom BEs the data source equivalent of typed DataSets.
When you add a Web reference to a Web service that publishes a strongly typed, serialized BE object, the
Data Sources window displays field icons that are almost identical to those of a corresponding pair of
related records. As an example, the Order BE data source representation is almost identical to that of the
data source for the Northwind Orders and Order Details tables; only the fields’ sequences differ (see
Figure 3-2). Like a pair of related DataTables, you can drag the Order node to a Windows form and
generate an OrderBindingSource, an OrderDetailsBindingSource, and a set of bound
master-details text box and DataGridView controls.

The NWOrdersWSClient.sln project in the \VB2005DB\Chapter03\NWOrderWSClient folder
demonstrates the simplicity of a Windows form editing application for a sales order BE (see Figure 3-3).
Clicking the BoundClient.vb form’s Connect to Web Service button fills the combo box with a list of the
last ten sales orders. Clicking the Get Selected Order button retrieves a single sales order and its line
items with four lines of code. You can edit the sales order header and line item data, and then update
the database by clicking the Update Order button, which executes a single line of code. Line items are a
simple array, so you can’t add or delete line items in a DataGridView without additional code.

100

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 100

Figure 3-2

Figure 3-3

101

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 101

“Designing Data Tier Components and Passing Data Through Tiers” is one of the most useful application
architecture guidelines for data-driven .NET projects because it provides detailed implementation
examples for a variety of BE usage scenarios. Disregard the examples that substitute DataSets for arrays or
collections of child objects if your BEs must interoperate with non-Windows applications.

The Web service client code to display and update an Order BE is minimal, but the Web service code
isn’t. The \VB2005DB\Chapter03\NWOrdersWS Web site folder has the code for the Web service and
the T-SQL script (NWOrdersWSStoredProcs.sql) for the stored procedures you must add to the
Northwind sample database to run the Web service on localhost.

Apply Class Library Design Guidelines
“Design Guidelines for Class Library Developers” is a reference document that provides detailed,
prescriptive guidance for programming .NET classes. To read this member of the .NET Framework
General Reference, search the MSDN site for “Design Guidelines” (with the quotes).

The section “Use FxCop to Validate Project Code,” later in this chapter, describes VS 2005’s built-in
code analysis tool for testing conformance to the class design guidelines.

The class library guidelines consist of 14 primary topics, which lead to numerous subtopics. Two of the
most important topics are “Naming Guidelines” and “Class Member Usage Guidelines.”

Naming Guidelines
Most VB6 and VBA developers apply Hungarian notation-style (camelCase) type prefixes to variables,
form, control, class, and class member names. This practice for three-letter object name prefixes
originated with Microsoft’s “Visual Basic Programmers Guide” in the VB3 era. Microsoft Consulting
Services extended the recommended practice with two-letter and three-letter prefixes for Jet database
objects. Most of this book’s examples and some Microsoft sample VB code use similar prefixes for
VB.NET variable and type instance names.

See Microsoft Knowledge Base article Q110264 for Microsoft Consulting Services naming conventions.
Search the MSDN site for “Visual Basic Coding Conventions” for VB6; use “Visual Basic .NET
Coding Conventions” to find a very brief set of naming conventions for VB.NET.

The “Naming Guidelines” topic contains subtopics for naming classes and their members, but not
instance names. PascalCase is de rigeur for .NET class and member names except parameters, which use
camelCase, as in typeName. The earlier Orders BE conforms to .NET PascalCase naming practices, but
not to the recommendation against use of Public instance fields. The guidelines also recommend not
using underscores in names, but use of _ or m_ as a prefix for Private or Protected instance fields is —
and probably will remain — commonplace. Finally, using the class type prefix (C as in CTypeName) is out,
but always use the I prefix to identify interfaces.

Some developers have a tendency to use camelCase for class and member names so that serialized
instances conform to a de-facto camelCase naming convention for XML elements and attributes. All
examples in the W3C Extensible Markup Language (XML) 1.0 (Third Edition) recommendation use
camelCase element and attribute names. The W3C XML Schema Part 0: Primer recommendation at
http://www.w3.org/TR/xmlschema-0/ uses camelCase for element tags of sample XML Infosets such

102

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 102

as po.xml, which has a structure that’s similar to the Order BE. You’ll also see examples of camelCase
type names in some NWOrdersWS Web service methods; these names were formatted to comply with
InfoPath 2003’s XML naming conventions. XHTML tag names require lowercase, but XML Infosets
don’t. Follow the “Naming Guidelines” for public classes and their members, and use your choice of
camelCase or PascalCase for XML element and attribute names.

Class Member Usage Guidelines
The “Class Member Usage Guidelines” topic has subtopics for all class members. The “Field Usage
Guidelines” subtopic recommends avoiding exposing Public or Protected instance fields to
developers because changing a public field to a property doesn’t maintain binary compatibility. Instead,
use Get and Set accessors. The guide also recommends the use of constants for fields that don’t
change value, because the compiler stores constants directly in the code that calls the object. This topic
recommends camelCase to distinguish private field names from public property names, which works in
C# but not in case-insensitive VB.

Visual Studio Team Services adds a Class Diagram template to the Add New Item dialog. If you have
any edition of Team Services installed, open the VB2005DB\Chapter03\ClassDesigner.sln project to
display examples of classes with varying levels of conformance to the guidelines. For more information
on Team Services, see the section “Automate Test-Driven Development,” later in this chapter.

The “Property Usage Guidelines” subtopic provides useful advice on determining when to use a
property or method and, if you decide on a property, how to avoid pitfalls with indexed properties, such
as properties that get and set arrays. Use a single indexed property per class, and make it the default
indexed property. These recommendations apply to the OrderDetails member of the Orders BE, if you
change the member from a public to a private field and add an OrderDetails public property.

Prepare for Service-Oriented Architecture
Service-oriented architecture (SOA) is today’s “Next Big Thing” for IT. A Google search on “service-oriented
architecture” returns close to a million hits as of this writing. Computer business analyst, marketing, and
public relations types are the major contributors of fuel for the SOA hype machine, which they began
assembling in the late stages of the dot-com bust. The rise of interest in SOA occurred as the bloom was
fading fast from an earlier hype-cycle for SOAP-based (XML) Web services.

Not surprisingly, Microsoft has climbed on the SOA bandwagon. Nearly half of Tech*Ed 2004’s architecture
track sessions (9 out of 19) included “Service” and “Oriented” in their titles. The MSDN site returns more
than 200 hits on SOA articles, white papers, Web casts, and MSDN TV episodes. The www.microsoft.com
site has about four times as many SOA references. One of Microsoft’s primary incentives for encouraging
developers to buy into SOA is to promote the sale of VS 2005 licenses and adoption of .NET Framework
2.0. VS 2002 and 2003 greatly simplified the process of writing and publishing basic ASP.NET Web services;
the jury is still out on whether VS 2005’s new approach simplifies or complicates coding and testing Web
services.

The .NET Architecture Center: Service Oriented Architecture page at http://msdn.microsoft
.com/architecture/soa/ has links to articles and presentations that relate to Microsoft’s SOA
strategies.

103

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 103

The Road to Service-Oriented Architecture
Over the past half-century, data processing application architecture evolved in these three stages:

❑ Monolithic architecture encapsulated the user interface, business logic, data access, and data
storage operations in a single component. Early monolithic applications consisted of alpha-
numeric terminals connected to mainframe databases and transaction managers. PCs let users and
developers take advantage of desktop database management software, such as dBASE, Fox Pro,
and Access, to create monolithic applications with data stored in local or networked files. Business
logic incorporated in the application can’t be used by other applications.

❑ Client-server architecture moved data management and storage to a networked application
server but retained the UI, business logic, and data access elements in a single program — typically
a Visual Basic or other executable, or an Access .adp file. Client-server architecture allowed
centralized data management and offloaded CRUD query processing operations from PC client
applications to the database server. Each client maintained a dedicated connection to the database
server, which limited application scalability. Client business logic and data access code couldn’t be
shared with other applications.

❑ N-tier architecture encapsulates business logic and data access into individual layered compo-
nents. Client UIs access the business logic component, which connects to one or more data access
components. Stateless data access layers share database connections with multiple business logic
components, which share state management responsibilities with the client. DCOM, CORBA,
and other distributed component technologies allow business logic and data access components
to reside on multiple application servers, which contributes to scalability, robustness, and
maintainability.

Client-server architecture lets clients interoperate with database back ends that provide .NET, ODBC,
JDBC, or OLE DB drivers and run under Windows, UNIX, Linux, and mainframe operating systems. It’s
much more difficult to achieve interoperability between distributed n-tier components that are written in
different programming languages, run on multiple operating systems, or both. Overcoming distributed
component interoperability problems has spawned a very large market for combinations of component
software and consulting services called enterprise application integration (EAI). The EAI market
remained relatively robust during the dot-com meltdown and regained its momentum faster that any
other IT market segment during the economy’s recovery.

Adding a dedicated EAI layer between otherwise-incompatible components increases application
brittleness. Applications become brittle when a minor change to a single component results in a
catastrophic system failure. This phenomenon is similar to a stress crack in an aircraft structure that
ultimately leads to a crash, but the crash is much quicker in n-tier computer systems. Brittleness is
responsible for many large-scale telecommunication network outages.

Another n-tier architecture problem is tightly coupled networked components that communicate by remote
procedure calls (RPCs) implemented by DCOM, CORBA, Java RMI, or J2EE Enterprise Beans. Traditional
middle-tier components use synchronous RPCs, which require an immediate response to each request;
failure to receive a timely response from any component blocks the entire process. Asynchronous RPCs
and messaging systems — such a Microsoft Message Queue Server (MSMQ) or IBM QSeries — mitigate
this problem, but don’t necessarily provide an interoperable solution.

None of the preceding RPC-based approaches can communicate through today’s network firewalls,
which usually restrict traffic to TCP ports 80 and 443. This limitation makes Internet access by business
partners to special-purpose business logic components difficult or impossible.

104

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 104

Implement SOA with Web Services
Service-oriented architecture can overcome most n-tier interoperability problems described in the
preceding section. Following are the basic requirements of SOA:

❑ Interfaces that present standards-based access points to business logic components

❑ Encapsulation of business logic components and their functions to hide implementation details
from callers

❑ Loose-coupling provided by semi-synchronous or asynchronous, stateless access methods
implemented by text-based (usually Unicode) messages

❑ Standards-based interface descriptions and message formats

❑ Standards-based protocols for communicating with interfaces and functions, including the
capability to pass messages through firewalls, if present

❑ Standards-based security and error-handling features

❑ Contract-based interoperation between the interface provider and its callers

Implementing SOA doesn’t require the use of SOAP-based Web services, but only industry-wide Web
service standards — SOAP, Web Services Description Language (WSDL), and WS-Security — combined
with other W3C, IETF, and OASIS standards can fulfill the preceding SOA requirements today.

SOAP 1.1 and WSDL 1.1 are W3C notes — not recommendations — but have become de-facto indus-
try standards for Web services. VS 2005 supports SOAP 1.1 and the W3C SOAP 1.2 recommenda-
tions. WSDL 2.0 is a W3C working draft as of this writing. WS-Security became an OASIS standard
in April 2004.

XML 1.0 documents and Infosets form the foundation of Web services. WSDL documents define Web
service interfaces (port and operations) and access points (address), and include an XML schema for
SOAP request and response message documents. The schema lets Web service client programmers use a
local copy of a WSDL document to enable design-time IDE features, such as IntelliSense. The schema
and messages don’t include service implementation details.

The most common transport protocols for SOAP-based Web services are HTTP and HTTPS, but TCP,
email (SMTP, POP3, and others), and FTP are potential alternatives. Regardless of the transport type,
Web services are stateless and autonomous. State must be maintained by the Web service client or
by one of the pending standards for implementing Web service transactions (WS-Coordination,
WS-AtomicTransaction) or business processes (WS-BusinessActivity, Business Process Execution
Language for Web Services [BPEL4WS], WS-Choreography).

Web service security issues are the primary impediment to widespread adoption of SOA. HTTPS
encrypts SOAP messages between two access points (often called end points), and HTTPS with client
certificates can authenticate individual callers. More sophisticated security implementations require
digital signatures and customized message encryption provided by the WS-Security specification.
Implementing WS-Security with ASP.NET 2.0 Web services requires installing Web Services Extensions
(WSE) 2.0 SP3 or later on Web service server and client machines.

105

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 105

The MSDN Web Services Developer Center home page at http://msdn.microsoft.com/
webservices/ has links to WSE 2.0 documentation and download points. You can access other
Microsoft-supported WS-* specifications from this page.

Ensure Fully Interoperable Web Services
Best practices for SOA architecture dictate that services be operating system–independent and
programming language–agnostic. As an example, a Java Web service client running under FreeBSD or
Linux must be able to interoperate with a VB.NET or C# ASP.NET Web service delivered by a Windows
2000 or 2003 server.

VS 2005 attempts to ensure that the ASP.NET Web services you create conform to the Web Services
Interoperability (WS-I) Organization’s Basic Profile (BP) 1.0. BP 1.0 achieved “Final Specification” status
in April 2004, more than two years after WS-I’s formation by Microsoft, IBM, and 53 other members of
the Web services community. BP 1.0 explicitly forbids use of SOAP Section 5 encoding, which precludes
rpc/encoded and document/encoded message formats because of interoperability issues. BP 1.0
supports both document/literal (doc/lit) and rpc/literal formats, but rpc/literal services are very
uncommon. ASP.NET’s standard SOAP message format is doc/lit.

As of August 24, 2004, WS-I’s Basic Profile Version 1.1 (BP 1.1) and Simple SOAP Binding Profile 1.0
supersede BP 1.0. Changes in version 1.1 are minor. ASP.NET 2.0 Web services claim conformance to
BP 1.1 in their WebServiceBinding attribute.

The first of BP 1.1’s “Guiding Principles” in section 1.3 states: “No guarantee of interoperability. It is
impossible to completely guarantee the interoperability of a particular service. However, the Profile does
address the most common problems that implementation experience has revealed to date.” If this clause
wasn’t present, unsuspecting developers might assume that ASP.NET 2.0 Web services that deliver and
update serialized DataSet objects, and claim to meet BP 1.1’s requirements, would interoperate with
clients written in Java, Perl, Python, or any other language (including VB6 or VBA) that has a BP-1.0-
compliant SOAP 1.1 or 1.2 toolkit. Web service toolkits map SOAP messages to objects by referring to the
schema included in the WSDL document for doc/lit Web services.

Microsoft deprecated the SOAP Toolkit 3.0 in favor of the .NET Framework in early 2004 and standard
support discontinued as of April 2005. (Extended support continues until April 2008.) The native
message format for the Toolkit is rpc/encoded, which doesn’t comply with BP 1.0, and writing d
ocument/literal (doc/lit) services with the Toolkit’s low-level API is an agonizing process, to be
charitable. Another reason for the Toolkit’s retirement is that Windows Server 2003 doesn’t support
the Toolkit’s server components or ISAPI Listener.

VB6 and VBA developers can use Simon Fell’s PocketSOAP and the PocketSOAP WSDL Wizard
to replace SOAP Tookit 1.0. You can download these and other PocketSOAP utilities from
http://www.pocketsoap.com.

ASP.NET 2.0 Web services that deliver or update generic DataSets will not interoperate with current
versions of any Web service toolkit except Microsoft’s. The culprits are the reference to s:schema and
the <s:any /> wildcard element in Web method nodes. This combination is a flag that tells .NET’s
WSDL processor that the schema is embedded in the SOAP response message. Here’s an excerpt from a
typical WSDL document for a typed or untyped DataSet:

106

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 106

<s:element name=”GetAllCustomersResponse”>
<s:complexType>

<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1” name=”GetAllCustomersResult”>

<s:complexType>
<s:sequence>

<s:element ref=”s:schema” />
<s:any />

</s:sequence>
</s:complexType>

</s:element>
</s:sequence>

</s:complexType>
</s:element>

Generic DataSets are presumed to be dynamic, so they expose their schema at runtime by embedding it
in the SOAP message rather than in the WSDL document. However, static typed DataSets produce
WSDL schema nodes that are identical to those for untyped DataSets. This means that non-Microsoft
toolkits must use a low-level API to process the SOAP response message as an XML NodeList, which
isn’t a trivial programming project. Writing Java code to deliver a diffgram with DataSet updates in a
SOAP request message would be a Herculean — and probably Sisyphean — task.

Aaron Skonnard’s article “Web Services and DataSets” at http://msdn.microsoft.com/
msdnmag/issues/03/04/XMLFiles/ provides a detailed analysis of DataSet-based Web service
compatibility with Java toolkits in general and Apache Axis in particular.

Embedding XML schemas in SOAP messages doesn’t violate the SOAP 1.1 or 1.2 specification, but it’s a
very unconventional (and controversial) practice. DataSet schemas incorporate numerous Microsoft
(proprietary) namespaces, such as xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata” and
xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-v1”. Messages are decorated with
xmlns:diffgr=”urn:schemas-microsoft-com:xml-diffgram-v1” also. DataSets add proprietary
attributes to schemas and messages —msdata:IsDataSet=”true”, msdata:PrimaryKey=”true”,
diffgr:id=”Customers1”, and msdata:rowOrder=”0” are examples.

Schemas for ADO.NET 2.0 typed DataSets contain much more detailed information than ADO.NET 1.x
versions, which are almost identical to untyped DataSet schemas. As an example, ADO.NET 2.0 adds
nine msprop:PropertyName attributes to each <xs:element ... > tag. These added elements expose
Web service operational details to Web service clients, which contravenes SOA’s dictum that services
hide implementation details from callers.

The following sections preview Chapter 9’s Web services and test clients to demonstrate interoperability
issues with Web services that process both types of DataSets.

Install and Publish the DataSetWS Web Service
The sample DataSetWS.sln ASP.NET 2.0 Web service project exposes four Web methods that operate on an
untyped dsNwind DataSet: GetAllCustomers, GetOrdersByCustomerID, UpdateCustomersDataSet,
and UpdateOrdersDataSet. To install, test, and publish the Web service to your local instance of IIS, do
the following:

107

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 107

1. Open VS 2005, choose File ➪ Open ➪ Web Site, navigate to the \VB2005DB\Chapter03\
DataSetWS Web site, click Open, and open the DataSetWS.vb code file from Solution Explorer.
Change the strConn connection string value to conform to your SQL Server security settings.
(This book’s sample Web services use SQL Server security with sa as the UserID and whidbey as
the Password.)

2. Press F5 to start the DataSetWS service, click the GetAllCustomers link, and click Invoke to
return a response message that contains a diffgram with all Customers records.

3. Return to the main Web service help page, click the GetOrdersByCustomerID link, type RATTC
in the Customer ID Parameter Value text box, and click Invoke to return a diffgram with Orders
records for Rattlesnake Canyon Grocery.

4. Close the DataSetWS.asmx page or press Shift+F5 to terminate the Web service instance.

5. Choose Build ➪ Publish SitePath to open the Publish Web dialog, type http://localhost/
DataSetWS in the text box, mark the Allow This Pre-Compiled Site to be Updatable checkbox,
and click OK to create the IIS virtual directory and add the precompiled files to the
\Inetpub\DataSetWS folder.

6. Test the deployment to IIS by opening IE and navigating to http://localhost/
datasetws/datasetws.asmx and invoking the GetAllCustomers and
GetOrdersByCustomerID Web methods.

If you encounter an error related to the Web service’s configuration file, launch Internet Services
Manager, right-click the Default Web Site\DataSetWS node, and choose properties to open the properties
dialog. Click the ASP.NET tab and select ASP.NET Version 2.0.BuildNumber in the dropdrown list.

The primary incentive for taking the DataSet shortcut on the server side is the minimal code required to
add Web methods. As an example, here’s the code that implements the GetAllCustomers Web method:

<WebMethod(Description:=strGetCustomers)> _
Public Function GetAllCustomers() As DataSet

Dim dsNwind As New DataSet
Dim daCusts As SqlDataAdapter = Nothing
Try

‘Create an SqlDataAdapter and fill the DataSet
daCusts = New SqlDataAdapter(“SELECT * FROM Customers”, strConn)
daCusts.Fill(dsNwind)

‘Replace “NewDataSet” with “Customers” and assign namespace
dsNwind.DataSetName = “Northwind”
‘dsNwind.Namespace = “http://oakleaf.ws/webservices/datasetws/northwind”
With dsNwind.Tables(0)

‘Assign the table name
.TableName = “Customers”
‘Specify the primary key
.PrimaryKey = New DataColumn() {.Columns(0)}
‘Require a CompanyName value (table constraint)
.Columns(1).AllowDBNull = False

End With
Return dsNwind

Catch excSys As Exception
Dim excSoap As New SoapException(excSys.Message, _

SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

108

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 108

Throw excSoap
Finally

dsNwind.Dispose()
daCusts.Dispose()

End Try
End Function

The code to update an untyped DataSet is equally simple. The ADO.NET 2.0 SqlCommandBuilder
object automatically generates the SQL statements and, if specified, Parameters collections needed to
support optimistic concurrency for updates and deletions when you specify cbCusts.ConflictOption
= ConflictOption.CompareAllSearchableValues, as emphasized in the following code:

<WebMethod(Description:=strUpdateOrdersDataSet)> _
Public Function UpdateOrdersDataSet(ByVal dsNwind As DataSet) As Boolean

Dim cnNwind As New SqlConnection(strConn)
Dim daOrders As SqlDataAdapter = Nothing
Dim cbOrders As SqlCommandBuilder = Nothing
Try

daOrders = New SqlDataAdapter(“SELECT * FROM Orders”, cnNwind)
cbOrders = New SqlCommandBuilder(daOrders)
cbCusts.ConflictOption = ConflictOption.CompareAllSearchableValues
daOrders.Update(dsNwind, “Orders”)
Return True

Catch excSys As Exception
Dim excSoap As New SoapException(excSys.Message, _

SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)
Throw excSoap
Return False

Finally
cbOrders.Dispose()
daOrders.Dispose()
dsNwind.Dispose()

End Try
End Function

Compare the preceding code with that required to update the Orders and Order Details tables
in the earlier NWOrdersWS example. Creating a CommandBuilder instance at runtime to generate
DeleteCommand, InsertCommand, and UpdateCommand objects degrades performance and, thus, isn’t
a best practice. The section “Avoid Adding Runtime CommandBuilder Instances,” later in this chapter,
discusses this issue and its solution.

Test the DataSetWS Web Service
The DataSetWSClient.sln project is a simple Web service test client that has a Web reference to the WSDL
document at http://localhost/datasetws/datasetws.asmx. Figure 3-4 shows the project’s form
after adding a new Order record to the DataSet. A value is required in the OrderID field, but the DataSet
disregards the value when you click the Update DataSet button to invoke the UpdateOrdersDataSet
Web method. Typing a character in the CustomerID column of a new Order DataTable row fills the
required columns with sample data. The primary key field is read-only except when entering a new grid
row. You must type a character in the CompanyName column for the Customers DataTable to enable
adding the CustomerID key value.

109

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 109

Figure 3-4

Loading the grid saves a DataSet diffgram, schema, and data as XML files in the project’s ...\bin folder.

If Web service client data binding and minimizing development time are your primary project criteria,
consider DataSet-based Web services as a substitute for .NET remoting behind your organization’s
firewall. If you intend to provide Internet access to your Web services, expend the effort required to
implement full interoperability with all current Web service toolkits that support WS-I BP 1.0 or later.

Use FxCop to Validate Project Code
FxCop is a Microsoft code analysis tool that tests managed code assemblies for conformance to the .NET
Framework Design Guidelines and code correctness standards. About half the approximately 200 tests
check for Design Guidelines conformance. FxCop originated in standalone Windows and command-line
versions as a member of the GotDotNet Tools collection, and the .NET Framework 2.0 includes FxCop
classes. VS 2005 Team System (VSTS) integrates optional FxCop analysis for all projects. You turn on
FxCop by opening the Project Properties window, clicking the Code Analysis tab, and marking the
Enable Code Analysis checkbox. You can disable rules in nine categories and expand the category nodes
to read rule descriptions and disable individual rules.

John Robbins’ article “Bad Code? FxCop to the Rescue” at http://msdn.microsoft.com/
msdnmag/issues/04/06/Bugslayer/ provides a detailed description of standalone FxCop 1.30.
Version 1.312 for .NET 1.1 and beta versions of .NET 2.0 are current and available from
http://www.gotdotnet.com/team/fxcop/ as of this writing.

Running a relatively simple project — DataAccessQuickStart.sln for this example — with VSTS’s Code
Analysis enabled — throws 1 error and 38 warnings (see Figure 3-5); FxCop v.1.312 displays 49 errors
and messages.

110

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 110

To display Code Analysis warnings in the sample projects, rebuild them. If the Errors window isn’t
visible, choose View ➪ Errors List to open it.

A simple typed DataSet project — Chapter 1’s GeneratedDetailView.sln — generates 90 FxCop 1.312
errors and warnings with Office 2003 installed on the machine running VS 2005. FxCop uses the
standard spell-checker dictionary and current user’s custom dictionaries, if present. All but a few of the
messages originate from autogenerated VB 2005 code. It’s apparent that the Microsoft developers who
wrote the DataSet code generator didn’t adhere to FxCop rules for autogenerated classes.

The current Code Analysis and FxCop rule sets clearly are overkill for most Windows form projects. You
can customize the rule set applied to a specific project, which FxCop or VSTS persists when you close
the project. It takes a major effort, however, to establish a custom rule set that applies to all your projects.
The Options dialog doesn’t enable specifying a default FxCop rule set for all projects.

Figure 3-5

111

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 111

Automate Test-Driven Development
Test-driven development (TDD) is a programming methodology that emphasizes testing code in small
chunks (units) and writing automated tests regimens (unit tests) before writing application code. You
base unit tests on the application’s specifications and write code to determine whether units meet or fail
specification requirements. You add special instructions to your code to define each unit test. As you
develop the application, the unit tests you define become a member of a complete test suite that runs
when you build the project. One of the primary advantages of unit testing is that the process detects the
regression bugs that often occur in large projects that involve many development teams.

VSTS is a suite of add-on tools for VS 2005 with five editions targeted at architects, project managers,
individual developers, team developers, and testers. VSTS for Developers and VSTS for Testers editions
include fully integrated, automated unit test generation and execution capabilities. Installing VSTS for
Developers or Testers adds Test Project and Empty Test Project templates to the Add New Project dialog.

For additional information on all VSTS editions, go to http://msdn.microsoft.com/vstudio
/teamsystem/. This page has links to a description page for each edition. The Developer edition page
is at http://msdn.microsoft.com/vstudio/teamsystem/developer/.

Add a Unit Test Project to a VS 2005 Solution
If you have the VSTS for Developers or VSTS for Testers edition, you can create a new test solution with
a unit test project, and then add a new project to contain new forms or pages. This approach is faithful to
the test-first, code-later principle of test-driven development. To gain insight into VSTS’s approach to
TDD, it’s simpler to add unit tests to an existing solution.

Most Microsoft unit test examples and demonstration videos test trivial methods, such as functions to
add two integers. The following example uses a small — but non-trivial — example to demonstrate the
effect of method latency on unit test results. You must publish the DataSetWS Web service to your test
machine, as described in the section “Install and Publish the DataSetWS Web Service,” earlier in
this chapter, to run the following example. The completed solution file is UnitTestProject.sln in
the ...\Chapter03\UnitTestWSClient folder.

To wrap an existing project, DataSetWSClient.sln for this example, with a unit test harness, do the
following:

1. Right-click the solution node, choose Add ➪ New Project, select the Test Projects\Test Documents
node’s Test Project template, specify a folder (\VB2005DB\Chapter03 for this example), give
the project a name (UnitTestProject or the like), and click OK. Creating a test project adds a
default Test Run Configuration template (LocalTestRun.testrunconfig) file and metadata file
(UnitTestProject.vsmdi) to the solution, and ManualTest1.mht and UnitTest1.vb stub files to the
project.

2. Right click the UnitTestProject.sln node, choose Add ➪ Existing Project, navigate to the
\VB2005DB \Chapter03\DataSetWSClient folder, and double-click DataSetWSClient.vbproj to
link the project to UnitTestProject.sln.

112

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 112

3. Choose Test ➪ New Test to open the Add New Test dialog, and double-click the Unit Test
Wizard icon to open the Generate Unit Tests dialog.

4. Expand the nodes for the form file (WSClient.vb) and mark the members you want to test — the
GetAllCustomers and GetOrdersByCustomerID functions of the DataSetWSClient project for
this example — as shown in Figure 3-6.

Figure 3-6

5. Click OK twice to add a DataSetWSTest.vb class file to the UnitTestProject, and open the file in
the IDE.

You can test your work so far by pressing F5 to build and run the test project, which activates the Test
Results pane and runs the test wrapper. The default manualtest1 and UnitTest1 tests report Pending and
Passed status, respectively. The added GetAllCustomers and GetOrdersByCustomerID tests report
Failed status, as shown in Figure 3-7. You must edit the code added by the Unit Test Wizard to obtain the
correct status.

113

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 113

Figure 3-7

Edit and Run the Wizard-Generated Tests
The WSClientTest.vb file contains a <TestClass()> with <TestInitialize()>, <TestCleanup()>
methods, and two <TestMethod()> members for the procedures you specified in the preceding section.
Each <TestMethod()> method has default Assert.AreEqual(expected, actual, message) and
Assert.Inconclusive(message) instructions.

114

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 114

The default code assigns an empty DataSet instance to the expected object and the DataSet returned by
the DataSetWS Web service’s Web method to the actual object. Thus, the more appropriate Assert
method is AreNotEqual because successful execution of the Web method returns a DataSet that has a
DataTable with one row or more. You must supply an appropriate CustomerID value to return Orders
table rows with the GetOrdersByCustomerIDTest method. If you include the default Assert
.Inconclusive(message) instructions in your tests, successful tests display Inconclusive results and
“Assert.Inconclusive failed . . .” error messages instead of Passed results.

The changes shown emphasized in the following two procedures deliver the result shown in the Test
Results pane of Figure 3-8. (The unused ManualTest1.mht and UnitTest1.vb files were removed from the
UnitTestProject before running this test.)

<TestMethod()> _
Public Sub GetAllCustomersTest()

Dim target As DataSetWS = New DataSetWS
Dim expected As DataSet = Nothing
Dim actual As DataSet

actual = target.GetAllCustomers
Assert.AreNotEqual(expected, actual,

“DataSetWSClient.DataSetWS.DataSetWS.GetAllCustomers “ + _
“did not return the expected value.”)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)
End Sub

<TestMethod()> _
Public Sub GetOrdersByCustomerIDTest()

Dim target As DataSetWS = New DataSetWS
Dim CustomerID As String = “RATTC” ‘Nothing

‘TODO: Initialize to an appropriate value
Dim expected As DataSet = Nothing
Dim actual As DataSet

actual = target.GetOrdersByCustomerID(CustomerID)
Assert.NotAreEqual(expected, actual,

“DataSetWSClient.DataSetWS.DataSetWS.GetOrdersByCustomerID “ + _
“did not return the expected value.”)

‘Assert.Inconclusive(“Verify the correctness of this test method.”)
End Sub

The preceding examples aren’t intended to represent production unit test best practices. Production
tests, which are beyond the scope of this book, require more thorough comparison of actual and
expected results than simple AreNotEqual tests.

115

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 115

Figure 3-8

Run the SQL Server 2000 Best
Practices Analyzer

The Best Practices Analyzer (BPA) Tool for Microsoft SQL Server 2000 is a .NET 1.1 application that tests
SQL Server and MSDE 2000 instances for security and administrative best practices. This application is
directed primarily to DBAs and IT administrators, but database developers can — and should — run
periodic analyses on their test and development servers. After you’ve set up BPA, you can schedule the
tests to run at night or other periods of relatively low database activity.

You can download BPA from the SQL Server Tool and Utility Downloads page at http://msdn
.microsoft.com/sql/downloads/tools/default.aspx. You can’t install the BPA database
on SQL Server 2005 or SQL Server Express.

116

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 116

Analysis categories include Backup and Recovery, Configuration Options, Database Administration,
Database Design, Deprecation, Full-Text, General Administration, SQL Server 2005 Readiness, and
T-SQL. Surprisingly, BPA doesn’t have a security test category that verifies the existence and strength
of sa passwords for instances that implement mixed-mode authentication.

Installing BPA creates an sqlbpa repository database on the designated BPA server. You then specify the
SQL Server, MSDE, or SQL Express instances to test, set up Best Practices Groups (BPGs) for each
instance, and specify the groups for execution, as shown in Figure 3-9.

Figure 3-9

Clicking the Scan SQL Server Instances link displays a list of the servers for which you’ve specified BPGs
and selected for execution. Clicking the Next link starts the server scans, whose duration depends on
server/network performance and load, and the number of objects on the server. When the analysis
completes, you can filter the results by non-compliance to highlight issues that need correction, as
illustrated by Figure 3-10.

117

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 117

Figure 3-10

Apply Specific Best Practices to
ADO.NET 2.0 Projects

If you’ve taken the time to read the Microsoft P&P publications that pertain to ADO.NET, you’ll
probably be aware of most — if not all — of the following recommendations for ADO.NET 2.0 best
practices.

Use Identical Connection Strings to Pool Database
Connections

All Microsoft and third-party ADO.NET data providers support database connection pooling. The first
client to connect to the database automatically adds a connection to the pool, if the pool hasn’t been
created. All other clients that use identical ConnectionString values share pooled connections. A
minor change to a ConnectionString value for a specific server and database — such as changing
Integrated Security=SSPI to Integrated Security=True or adding/removing a space —
generates a new connection pool.

118

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 118

Creating a new connection in Server Explorer generates a standardized connection string for Windows
or SQL Server authentication. However, you don’t have direct access to the text of the connection string
at this point. Ensuring an exact match between connection strings that you add to your code and those
generated by Server Explorer requires maintaining reference copies. Save the Server Explorer version to
a ConnectionStrings.txt file the first time you use it in a project. You can copy the connection string to the
text file from the disabled Connection String text box in the first Choose Your Data Connection page of
the Data Source Configuration Wizard.

Setting Connection Pool Size
The default minimum pool size is 0 and default maximum pool size is 100. You can maximize
performance of widely deployed clients by increasing the minimum pool size to 10 or more, and increasing
the maximum pool size to the expected number of simultaneously connected clients. For example, the
following connection string establishes a minimum pool size of 10 and a maximum of 200:

Dim strConn As String = “Server=OAKLEAF-MS16;Database=Northwind;” + _
“Integrated Security=True;Min Pool Size=10;Max Pool Size=200”

Creating the ten-connection pool causes a performance hit to the first client that opens a connection, but
improves performance of the next nine clients that connect simultaneously. Setting a Min Pool Size
value for Web services is a common practice, because the initial call to an uncached ASP.NET Web
service involves an instantiation delay that’s much longer than the time required to create the ten
connections.

Storing Connection Strings in Configuration Files
It’s a common practice to include a ConnectionString or similarly named key attribute to App.config
or Web.config files. When you mark the Yes, Save the Connection As checkbox in the Data Component
Configuration Wizard’s Save Connection String . . . dialog, the DataSet designer saves the connection
string in the App.config file, as emphasized here:

<configuration>
<connectionStrings>

<add name=”ProjectName.MySettings.ConnectionName”
value=”ClientConnectionString”/>

</connectionStrings>
</configuration>

The DataSet designer adds the entry to the MyProject.MySettings property page’s list, and code to the
DataSetName.Designer.vb file’s InitConnection procedure to retrieve the ClientConnectionString
value from App.config. This approach eliminates the need to alter source code and rebuild projects when
changing server or database names.

You can’t reverse the decision to store the connection string in the App.config file. The Save Connection
String . . . dialog no longer appears when you reconfigure a data connector.

119

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 119

Encrypting Connection Strings That Contain User Names and
Passwords

It’s reasonably safe to expose the connection string for Windows authentication; the Web.config file for
ASP.NET pages or Web services isn’t accessible to Internet or intranet users. In this case, the .config
file discloses only the server and database names. Any connection string that contains user ID and
values should be encrypted, regardless of whether it’s contained in the project’s source code,

or in the Web.config or App.config file. ASP.NET 2.0 provides two new encryption providers —
DataProtectionConfigurationProvider and RSAProtectedConfigurationProvider— that are
specifically intended to simplify protecting designated sections of Web.config files. However, after
you’ve protected the <connectionStrings> section by encryption, you must decrypt and re-encrypt
any changes you make to the application’s connection string.

For more information on encrypting connection strings, open the “Walkthrough: Encrypting
Configuration Information Using Protected Configuration” VS 2005 help topic.

Run SQL Server Profiler to Inspect SQL and RPC Queries
SQL Server Profiler is your friend. You can use Profiler to inspect SQL batch statements sent for direct
execution or exec sp_executesql RPC calls with parameterized SQL statements. Profiler also can dis-
play the time required for SQL Server to execute queries and stored procedures. Profiler generates traces
based on a set of standard templates designed for specific tasks. You can modify the standard template
or design custom templates to create traces with the information that’s most important for performance
or other analyses.

To eliminate Profiler noise from Reporting Services’ notifications, open SQL Server Configuration
Manager, select SQL Server 2005 Services, and temporarily stop the Reporting Server service.

Figure 3-11 shows Profiler displaying in the T-SQL_Duration trace template event captures that result
from DataSetWSClient executing DataSetWS Web methods.

Profiler traces also are useful in comparing performance of batched updates with conventional updates
that require a roundtrip for each change made to a DataSet, which is the subject of the section “Batch
Updates to Minimize Server Roundtrips,” later in this chapter.

You’ll find the Profiler trace that’s generated during the Data Component Configuration Wizard’s
command-building operation to be interesting. The process runs EXEC sp_MShelpcolumns
N’dbo.TableName’, null for each table and several complex select queries. You can copy the
TextData column values to SQL Server Management Studio’s query window and run the queries to
view the information that the Wizard uses to build the DataAdapter update queries.

120

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 120

Figure 3-11

Avoid Adding Runtime CommandBuilder Instances
Microsoft recommends not instantiating CommandBuilder objects at runtime, and most ADO.NET
gurus and trainers agree. As mentioned in the section “Install and Publish the DataSetWS Web Service,”
earlier in this chapter, CommandBuilder objects generate DeleteCommand, InsertCommand, and
UpdateCommand instances from the SQL statement of the SelectCommand. Regenerating these
commands at runtime causes a performance hit. Best practices dictate writing code to define a static
SqlParameter collection at design time for custom CRUD operations. An alternative is to cache the
parameters with the technique used by the DAAB.

If you instantiate an SqlCommandBuilder object and your SelectCommand calls a stored
procedure, you must execute the CommandBuilder.DeriveParameters method to retrieve the
stored procedure’s SELECT statement, which requires a server roundtrip.

VS 2005’s upgraded SqlCommandBuilder lets you overcome some of the runtime performance hit
by specifying the CompareRowVersion or OverwriteChanges member of the ConflictOption
enumeration. Later sections describe the conditions required to gain the performance benefit.

121

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 121

Substitute Stored Procedures for SQL Batch Queries
This best practice states the obvious, but you’ll find that most DataReader and DataSet code examples,
including many in this book, execute SQL statements for CRUD operations rather than stored
procedures. Dragging SQL Server tables from the Data Sources window to a Windows form generates
SQL statements for all four operations. Substituting new or existing stored procedures for SQL
statements requires reconfiguring the DataSet in the designer. You must click Back in the Generate SQL
Statements page of the TableAdapter Configuration Wizard to open the Choose a Command Type page,
which enables selecting stored procedures for SqlCommand objects.

The prevalence of SQL statement usage in the VS 2005 IDE is apt to lead developers who are new to
database programming — or those whose experience is limited to working with Access (Jet) databases —
to omit SQL Server stored procedures from consideration. Many users of the Visual Basic 2005 Express
Edition are likely to fall into one of these categories.

SQL statements executed by applications that connect to database back ends that support stored
procedures or their equivalents might be justified for application prototypes and simple code examples,
or situations in which managing a large number of stored procedures isn’t practical. Otherwise, best
practices dictate that all database front ends return views or execute stored procedures and not access
base tables directly.

You won’t find dramatic differences in performance between parameterized stored procedures and
parameterized SQL batch statements executed with exec sp_executesql RPC calls. Large-scale
performance tests with SQL Server 2000 indicate that parameterized, transacted SQL batch queries
update typical sets of related records (Northwind Orders and Order Details) about 13 percent faster
than executing multiple stored procedures within an explicit transaction. SELECT and INSERT
operations, however, are faster with stored procedures.

For more information about the test regimen used to compare SQL statement and stored procedure exe-
cution times, and the detailed tabular and graphical results, read “Optimize SQL Server Data Access”
at http://www.ftponline.com/vsm/2003_11/magazine/features/jennings/.

Add Default Values for Parameters That Aren’t Required
If you roll your own SqlParameter collections, you can minimize the size of exec statements for stored
procedures if you assign default values to parameters for fields that don’t need values in specific cases. For
example, the Order BE’s RequiredDate, ShippedDate, Freight, Region, and PostalCode are nullable. If you
assign NULL as the default parameter values for these fields, you can omit the corresponding members of
the named parameters collection when updating or inserting records. This practice offers the added benefit
of not inserting January 1, 0001 as System.Xml’s nil value (0001-01-01T00:00:00.0000000-07:00 for
Pacific Standard Time) of dates serialized in XML documents.

Use sp_executesql and Named Parameters to Reuse
Cached Query Plans

If you must use parameterized SQL statements to update base tables, take advantage of sp_executesql to
prevent regenerating a new query plan with each SQL statement execution. This advice applies if you
roll your own client update code instead of using the DataAdapter’s autogenerated DeleteCommand,
InsertCommand, and UpdateCommand instances.

122

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 122

Tests similar to those in the section “Substitute Stored Procedures for SQL Batch Queries,” earlier in this
chapter, show that taking advantage of sp_executesql with a random-valued named parameter to return
an Order object delivers a 37 percent performance increase over executing the same statement with the
OrderID value as a raw (unnamed) parameter. The performance hit occurs as a result of SQL Server
regenerating the SELECT query plan for each execution with a different OrderID value.

Add timestamp Columns for Optimistic
Concurrency Control

SqlDataAdapters use optimistic concurrency control for base table updates and deletions by default.
Optimistic concurrency control requires comparing original values of each cell at the time of a proposed
update or deletion with those when the DataSet was filled. Following is the 3,878-character (7,756-byte)
SQL batch statement that updates a single row of the Northwind Orders table with value-based
optimistic concurrency control:

exec sp_executesql N’UPDATE [dbo].[Orders] SET [CustomerID] = @CustomerID,
[EmployeeID] = @EmployeeID, [OrderDate] = @OrderDate,
[RequiredDate] = @RequiredDate, [ShippedDate] = @ShippedDate,
[ShipVia] = @ShipVia, [Freight] = @Freight, [ShipName] = @ShipName,
[ShipAddress] = @ShipAddress, [ShipCity] = @ShipCity,
[ShipRegion] = @ShipRegion, [ShipPostalCode] = @ShipPostalCode,
[ShipCountry] = @ShipCountry WHERE (([OrderID] = @Original_OrderID) AND
((@IsNull_CustomerID = 1 AND [CustomerID] IS NULL) OR
([CustomerID] = @Original_CustomerID)) AND ((@IsNull_EmployeeID = 1
AND [EmployeeID] IS NULL) OR ([EmployeeID] = @Original_EmployeeID)) AND
((@IsNull_OrderDate = 1 AND [OrderDate] IS NULL) OR
([OrderDate] = @Original_OrderDate)) AND ((@IsNull_RequiredDate = 1 AND
[RequiredDate] IS NULL) OR ([RequiredDate] = @Original_RequiredDate)) AND
((@IsNull_ShippedDate = 1 AND [ShippedDate] IS NULL) OR
([ShippedDate] = @Original_ShippedDate)) AND ((@IsNull_ShipVia = 1 AND
[ShipVia] IS NULL) OR ([ShipVia] = @Original_ShipVia)) AND
((@IsNull_Freight = 1 AND [Freight] IS NULL) OR ([Freight] = @Original_Freight))
AND ((@IsNull_ShipName = 1 AND [ShipName] IS NULL) OR
([ShipName] = @Original_ShipName)) AND ((@IsNull_ShipAddress = 1 AND
[ShipAddress] IS NULL) OR ([ShipAddress] = @Original_ShipAddress)) AND
((@IsNull_ShipCity = 1 AND [ShipCity] IS NULL) OR
([ShipCity] = @Original_ShipCity)) AND ((@IsNull_ShipRegion = 1 AND
[ShipRegion] IS NULL) OR ([ShipRegion] = @Original_ShipRegion)) AND
((@IsNull_ShipPostalCode = 1 AND [ShipPostalCode] IS NULL) OR
([ShipPostalCode] = @Original_ShipPostalCode)) AND ((@IsNull_ShipCountry = 1 AND
[ShipCountry] IS NULL) OR ([ShipCountry] = @Original_ShipCountry)))’,
N’@CustomerID nchar(5),@EmployeeID int,@OrderDate datetime,
@RequiredDate datetime,@ShippedDate datetime,@ShipVia int,@Freight money,
@ShipName nvarchar(26),@ShipAddress nvarchar(15),@ShipCity nvarchar(11),
@ShipRegion nvarchar(2),@ShipPostalCode nvarchar(5),@ShipCountry nvarchar(3),
@Original_OrderID int,@IsNull_CustomerID int,
@Original_CustomerID nchar(5),@IsNull_EmployeeID int,
@Original_EmployeeID int,@IsNull_OrderDate int,
@Original_OrderDate datetime,@IsNull_RequiredDate int,
@Original_RequiredDate datetime,@IsNull_ShippedDate int,
@Original_ShippedDate datetime,@IsNull_ShipVia int,
@Original_ShipVia int,@IsNull_Freight int,@Original_Freight money,
@IsNull_ShipName int,@Original_ShipName nvarchar(26),

123

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 123

@IsNull_ShipAddress int,@Original_ShipAddress nvarchar(15),
@IsNull_ShipCity int,@Original_ShipCity nvarchar(11),
@IsNull_ShipRegion int,@Original_ShipRegion nvarchar(2),
@IsNull_ShipPostalCode int,@Original_ShipPostalCode nvarchar(5),
@IsNull_ShipCountry int,@Original_ShipCountry nvarchar(3)’,
@CustomerID = N’RATTC’, @EmployeeID = 1, @OrderDate = ‘May 6 1998 12:00:00:000AM’,
@RequiredDate = ‘Jun 3 1998 12:00:00:000AM’, @ShippedDate = NULL, @ShipVia = 2,
@Freight = $8.5300, @ShipName = N’Rattlesnake Canyon Grocery’,
@ShipAddress = N’2817 Milton Dr.’, @ShipCity = N’Albuquerque’, @ShipRegion = N’NM’,
@ShipPostalCode = N’87110’, @ShipCountry = N’USA’, @Original_OrderID = 11077,
@IsNull_CustomerID = 0, @Original_CustomerID = N’RATTC’, @IsNull_EmployeeID = 0,
@Original_EmployeeID = 1, @IsNull_OrderDate = 0,
@Original_OrderDate = ‘May 7 1998 12:00:00:000AM’, @IsNull_RequiredDate = 0,
@Original_RequiredDate = ‘Jun 3 1998 12:00:00:000AM’, @IsNull_ShippedDate = 1,
@Original_ShippedDate = NULL, @IsNull_ShipVia = 0, @Original_ShipVia = 2,
@IsNull_Freight = 0, @Original_Freight = $8.5300, @IsNull_ShipName = 0,
@Original_ShipName = N’Rattlesnake Canyon Grocery’, @IsNull_ShipAddress = 0,
@Original_ShipAddress = N’2817 Milton Dr.’, @IsNull_ShipCity = 0,
@Original_ShipCity = N’Albuquerque’, @IsNull_ShipRegion = 0,
@Original_ShipRegion = N’NM’, @IsNull_ShipPostalCode = 0,
@Original_ShipPostalCode = N’87110’, @IsNull_ShipCountry = 0,
@Original_ShipCountry = N’USA’

ADO.NET 2.0’s upgraded SqlCommandBuilder object has a ConflictOption property that provides
the following three enumeration members to specify how DataSet updates deal with changes to base
table data that occur after populating the DataSet:

❑ ConflictOption.CompareAllSearchableValues (the default) generates parameterized SQL
batch statements or EXECUTE commands for stored procedures that require value-based
optimistic concurrency control.

❑ ConflictOption.CompareRowVersion generates shorter parameterized SQL batch statements
or EXECUTE commands for stored procedures against tables with a column of the timestamp
(also called a rowversion) data type that’s provided specifically for optimistic concurrency
control.

❑ ConflictOption.OverwriteChanges generates even shorter parameterized SQL batch
statements or EXECUTE commands for stored procedures that don’t enforce concurrency control.
Updates or deletions occur regardless of whether another user had made changes to the row’s
column values.

Selecting ConflictOption.CompareRowVersion requires the table to include a column of SQL
Server’s timestamp data type. A timestamp value corresponds to a .NET array of type Byte with a
Length value of 8. A change to any row value updates the timestamp value, which is guaranteed to be
unique within the table. Comparing the original timestamp value with that when performing the update
is the fastest and most accurate method to prevent overwriting data that changed after populating a
DataSet or caching original data with custom code.

Displaying a DataTable that has a timestamp column in a DataGridView throws an exception
for each row. By default, the DataGridView interprets an array of type Byte as an image. Use the
DataGridView.Columns.Remove(“timestamp”) method to prevent the exceptions.

124

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 124

Following is a typical 262-character update statement for timestamp-based optimistic concurrency control:

exec sp_executesql N’UPDATE [OrdersTS] SET [OrderDate] = @p1
WHERE (([OrderID] = @p2) AND ([timestamp] = @p3))’,
N’@p1 datetime,@p2 int,@p3 timestamp’, @p1 = ‘May 6 1998 12:00:00:000AM’,
@p2 = 11077, @p3 = 0x0000000000004CB3

The Original_ColumnName and IsNull_ColumnName parameters and their values are missing, and
only the changed value (OrderDate for this example) is included. Thus, substituting timestamp-based
for value-based optimistic concurrency saves a substantial amount of network traffic and reduces
resource consumption by the database engine’s query processor.

Figure 3-12 shows the sample TimeStampTest.sln project’s form with a 5-row batch size specified after a
purposely induced concurrency error. Notice the error indicators in the first five row headers of the
DataGridView control.

Figure 3-12

Running the TimeStampTest project requires adding a timestamp column to the Northwind Orders
table with the AddTimeStamp.sql script in theVB2005DB\Chapter03\TimeStampTest folder. If you don’t
add the timestamp column, you receive a message “Dynamic SQL generation for the UpdateCommand is
not supported against a SelectCommand that does not contain a row version column” when you build and
run the project. To generate a concurrency error, click Increment Date, Update OrdersTS Table, Decrement
Date, and Update OrdersTS Table. To eliminate the concurrency error, click Resync DataSet.

An alternative to a timestamp column is to add and populate a datetime column named LastModified
or the like to all tables. LastModified values can be serialized to the readable XML dateTime datatype.
Fields of the datetime data type have an inherent uncertainty of 3.33 milliseconds. VB’s Now method,
which is based on system time, claims a resolution of 10 milliseconds. Tests show the resolution is closer
to 16 milliseconds with most system timers, so you should assume a potential uncertainty of up to 20
milliseconds. If you add a LastModified column, you must provide insert and update triggers to
maintain the value and write custom code for concurrency tests.

125

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 125

Check All Related Records in Concurrency Tests
Data currency issues with DataSets can lead to unexpected results. If user A adds a record to a related
table — for example, Order Details — and user B alters or deletes a record in the same table, conventional
optimistic concurrency tests fail for user B with either the timestamp or original values method. The
same problem occurs if user A deletes a record that user B doesn’t attempt to update. This problem,
which occurs if user B doesn’t update her DataSet immediately before updating it, can have serious
consequences in databases that store critical information, such as medicinal prescriptions for individual
patients. If a physician A adds a new prescription for a patient, the consequences of physician B
substituting or updating another drug’s dosage might be life-threatening.

Including a count of related records in the DataSet is a partial solution, but doesn’t solve the problem
that occurs if user A adds a new related record and deletes a related record that user B doesn’t test. A
true solution requires comparing the row count and each related record’s original timestamp or column
values to those of the base table. You can use ADO.NET 2.0’s new RowState.SetModified method to
mark all related DataTable rows as modified and include them in the comparison.

The “Optimize Update-Concurrency Tests” article at http://www.fawcette.com/vsm/
2003_10/magazine/columns/databasedesign/ provides a detailed analysis of the preceding
problem and performance comparisons of original column values versus timestamp approaches to con-
currency control.

Batch Updates to Minimize Server Roundtrips
Chapter 2’s “Batch Multiple Updates” section describes the improved performance you gain by setting
the SqlDataAdapter.UpdateBatchSize property value to 0 or a number that is significantly greater
than 1. The default value (1) requires a server roundtrip for each modified row. Update operations that
affect a large number of rows are more common with ADO.NET’s disconnected DataSet operating mode
than with the conventional, real-time online transaction processing (OLTP) approach.

Your application won’t gain a major performance improvement by batching multi-row updates, but
minimizing roundtrips conserves database server resources. The TimeStampTest.sln project includes a
BatchUpdated handler for the SqlDataAdapter.RowUpdated event, which fires for each row or batch
processed. The SqlRowUpdatedEventArgs type provides detailed status information on the row being
processed.

Avoid SqlExceptions with Client-Side Validation
DataSets handle primary key uniqueness and foreign key constraints of related DataTables, but many
data-entry operations require testing foreign key constraints with tables that aren’t included in the
DataSet. The most common reason for not including related source tables is excessive resource
consumption by the DataSet and the load on the database server when populating the tables. You can
minimize resource consumption and validate foreign key values by doing the following:

❑ Get MIN and MAX values of int identity primary key columns with an SqlDataReader that
returns a single rowset for each table, and store the values in Private Integer variables.
Your application will throw server-side exceptions for deleted items, but missing values should
be rare.

126

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 126

❑ Get individual values of char, nchar, varchar, or nvarchar primary key columns and store
them in an ArrayList object.

❑ Alternatively, create an untyped DataSet, add character-based columns to DataTables, and set
the primary key so you can use the Find method with an index. The Select method doesn’t use
indexes.

Use the ErrorProvider control to indicate an out-of-range numeric value or a not-found character set.
Substitute the new MaskedTextBox control for a conventional TextBox to eliminate testing entries with
invalid character sets.

Chapter 5, “Adding Data Validation and Concurrency Management,” provides additional examples of
client-side data validation methods.

For reference data that changes infrequently, such as employee rosters, customer and product lists, and
shipping firm selections, consider creating an untyped DataSet that contains basic lookup data — for
example, employee ID and name — in DataTables. You can use lookup data to populate dropdown list
boxes that make foreign key value selection easier. If you choose this approach, add a DataTable to hold
a row of minimum and maximum values for primary key values that you don’t want to store as individ-
ual rows in its own DataTable. You can populate all DataTables in one server roundtrip by executing a
single compound stored procedure or, if you must, an SQL query.

If your applications must support frequently disconnected users, consider storing lookup or full copies of
partitioned tables in DataSets and persisting them as XML files for offline use. The article “Store Large
Lookup Tables in DataSets” at http://www.ftponline.com/vsm/2004_07/magazine/
features/rjennings/ demonstrates that persisting data sets as XML files with a size of 10MB or
more is practical for applications running on high-performance laptops.

Summary
This chapter demonstrates that there’s no shortage of prescriptive architecture and application design
advice for .NET developers. The abundance of P&P publications, many of which have overlapping con-
tent, can lead to a choice crisis — read “how to do it” guides or write and test code. Best practices, how-
ever, dictate that you should be familiar with the .NET architectural guides in general and their
data-related content in particular.

Developers will find that software patterns, class design and naming guidelines, and application blocks
are most relevant to writing performant, scalable, and secure code. “Design Guidelines for Class Library
Developers” is a must-read for all .NET developers. “Improving .NET Application Performance and
Scalability” is an especially useful guide that offers concrete advice and includes code examples. The
Data Application Block is a useful, generic tool for minimizing the amount of code required to create
useful data-centric applications, but it’s probably overkill for production projects. New VS 2005 design-
time features and run-time improvements reduce DAB’s importance, but you might find that parts of its
source code — such as that for parameter caching — are worth incorporating in your applications.

127

Adopting Best Practices for Data-Centric Projects

07_57678x ch03.qxd 11/10/05 11:25 PM Page 127

The architectural model described by the “Designing Data Tier Components and Passing Data Through
Tiers” white paper and its DALC, BE, and BPC tiers is a useful model for layered applications and SOA.
BE objects aren’t a new concept and there is considerable controversy about Web service toolkits that
expose programming objects in SOAP messages. VS 2005’s capability to use Get and Set accessors for
private fields might quell some concern among Web service developers. Regardless of your stance on
this issue, Web services that process typed BEs are far more efficient than those that send and receive
DataSets.

If you’ve used NUnit for test-driven development, the new VSTS unit-testing features dramatically
reduce the time required to implement TDD. Hopefully, an enterprising .NET developer will provide an
NUnit-to-VSTS conversion utility for VB 2005 Test Projects.

Most developers don’t have production DBA responsibilities, but that doesn’t mean you should ignore
the SQL Server 2000 Best Practices Analyzer for development databases. BPA points out issues, such as
SELECT * FROM TableName and INSERT statements without field lists in stored procedures, which are
shortcuts that no longer meet best practices standards. You also receive warnings if you don’t back up
your databases on a reasonable schedule. Future BPA versions will support SQL Server 2005.

Finally, any list of specific best practices for .NET database applications is arbitrary and bound to be
incomplete. All developers have their own opinions about the relative importance of best practices top-
ics, and it’s certain that many new recommendations will arise as VS 2005 users upgrade and write new
data-centric projects. The section “Apply Specific Best Practices to ADO.NET 2.0 Projects” only scratches
the surface. You’ll find many more best-practice notes in the chapters that follow.

128

Chapter 3

07_57678x ch03.qxd 11/10/05 11:25 PM Page 128

Part II

Data Binding
in Windows Forms

and Controls

08_57678x pt02.qxd 11/10/05 11:29 PM Page 129

08_57678x pt02.qxd 11/10/05 11:29 PM Page 130

Programming TableAdapters,
BindingSources, and

DataGridViews

The preceding chapters introduced you to VS 2005’s new data components — BindingSources,
BindingNavigators, and TableAdapters — and the DataGridView control. This chapter shows you
how to take maximum advantage of these design-time components in a traditional client/server
configuration.

This chapter’s examples depart from several best practices that Chapter 3 describes. The Windows
form UI contains the data access logic component (DALC) and business process component (BCP)
layers. The business entities (BEs) are DataTables of a typed DataSet. This architecture represents
the classic two-tier client/server model — not the n-tier, Web services–based structure of
Microsoft’s “connected solutions” strategy.

According to a mid-2004 Jupiter Research report, many IT organizations are migrating from
Web-based clients to Windows “Smart Client” applications, which includes Microsoft Office
2003 and Business Solutions members, and VS 2005 Windows forms projects. You can expect
this trend to accelerate when Microsoft releases Windows Vista.

The data-entry front ends you create in this chapter start with a designer-generated order-entry
form, which you convert to the more typical tabbed window format. The first tab displays the
customer data and a grid for orders; the second tab displays text boxes for order data and a grid
for line items. The final steps add DataGridViewComboBox columns for making numeric foreign-
key selections. Completing this chapter’s examples qualifies you as an apprentice-level data
components and DataGridView programmer.

09_57678x ch04.qxd 11/10/05 11:28 PM Page 131

Design a Basic Customer-Orders-Order
Details Form

The most common — and essential — business processes are handling customer orders, issuing invoices,
and ensuring that invoices are paid. These activities require forms that display a specified customer’s
billing information, order/invoice history, and line items. This three-level structure is also typical for
professional services: Attorneys might use a client/case/activity structure and physicians can employ a
patient/visit/prescription or similar model.

The simplest presentation scenario for a customers/orders/line items or similar database schema is a
details view (bound TextBox controls) for a specified customer, and the most recent orders and their line
items in bound DataGridView controls. VS 2005’s new Data Sources window, data components, and the
DataGridView control let you create a three-level UI by dragging the top-level table and its descendants
from the Data Sources window to your form.

Reduce DataSet Size with Parameterized Queries
VS 2005’s data tools let you create a basic data entry form without writing a single line of code. When
you drag a table from the Data Sources window, the designer adds a Me.TableNameTableAdapter
.Fill(Me.DataSetName.TableName) statement to the FormName_Load event handler. The price you
pay for this convenience is generating gargantuan DataSets when the base tables contain a large number
of records. Opening the form generates an extremely heavy load on the database server and network,
and users experience a prolonged delay before the form appears.

The NorthwindCS database, which serves as the data source for Chapter 3’s public NWOrdersWS Web
service, has about 173,000 Orders and 470,000 Order Details records for the original 91 Customers
records. Loading these records creates a 250MB in-memory DataSet and a 30-second delay when
opening a test form. The autogenerated TableAdapter.Fill instructions aid novices in creating a
sample data entry form with the Northwind or Pubs databases. Never use the default Fill code in
a production application.

Parameterized queries’ FillBy methods make it easy to display a specific customer record and its
related orders and line items records. You add FillBy queries with a Search Criteria Builder dialog that
generates a ToolStrip text box to supply parameter values, a button to execute FillBy methods for each
DataTable, and event handlers for the buttons. Here’s a typical FillBy method call with the default
query name changed to FillOrders:

Me.OrdersTableAdapter.FillOrders(Me.NorthwindDataSet.Orders, _
CustomerIDToolStripTextBox.Text)

Retrieving line items for a specific order requires a sub-select query as the CommandText value for the
FillBy method, if the line items table doesn’t contain a foreign key value for the customer. Following is
a sub-select query for the Order Details table:

SELECT OrderID, ProductID, UnitPrice, Quantity, Discount FROM dbo.[Order Details]
WHERE OrderID IN (SELECT OrderID FROM Orders WHERE CustomerID = @CustomerID)

132

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 132

The following four sections show you how to design — and modify autogenerated code for — a basic
order entry and editing form for the Northwind sample database. The instructions are more detailed
than those in the preceding chapters because the process is far from intuitive and is more complex than
creating an equivalent Access or InfoPath data entry form. On the other hand, databound forms
generated by VS 2005 offer disconnected data entry and editing, increased programming flexibility, and
improved error handling.

Most of this book’s project examples use the Northwind sample database because its design (schema
definition) is simpler than that of SQL Server 2005’s AdventureWorks sample database. Creating an
equivalent AdventureWorks version of the Customer-Orders-Order Details data entry form requires
at least 12 related tables: Sales.Customer, Sales.CustomerAddress, Sales.Individual, Sales.Store,
Person.Contact, Person.Address, Person.StateProvince, Person.CountryRegion, Sales.SalesOrderHeader,
Sales.SalesOrderDetail, Sales.SpecialOffer, and Sales.SpecialOfferProduct. Most VS 2005 data-related
help file topics use Northwind or similar tables; most SQL Server 2005 Books Online’s examples use
AdventureWorks.

If you haven’t installed the Northwind sample database, see the section “Install the Sample Databases”
of the book’s Introduction. If you’re using SQL Server Express, open app.config, and change
Server=localhost to Server=.\SQLEXPRESS.

Create the Data Source and Add the Controls
The first steps in the design process add a details view for customer data, a parent (master) DataGridView
to display Orders records, and a child (details) DataGridView for Order Details records. Look ahead to
Figure 4-1 for the form’s layout.

Do the following to generate a form that loads and displays all Customers, Orders, and Order Details
records:

1. Create a new Windows Application project named OrdersByCustomer, and choose Data ➪ Add
New Data Source to start the Data Source Configuration Wizard. Select Database, and click Next
to open the Choose Your Data Connection page.

2. If you’ve created a connection to the Northwind database previously, select it from the
dropdown list. Otherwise, click New Connection to open the Add Connection dialog and type
the connection’s server name — localhost for SQL Server or .\SQLEXPRESS for SQL Express —
in the Server name text box.

3. Select Northwind from the Select or Enter a Database Name list, click Test Connection to verify
the connection string, and click OK to close the dialog. Click Next, save the connection string
with the default name — NorthwindConnectionString — and click Next to open the Choose
Your Database Objects dialog.

4. Expand the Tables node and mark the tables to include in the project — Customers, Orders, and
Order Details for this example.

5. Accept the default DataSet name (NorthwindDataSet), and complete the wizard to add the new
DataSet and its tables to the Data Sources window.

133

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 133

6. In the Data Sources window, which you display by choosing Data ➪ Show Data Sources, select
the Customers table, change DataGridView to Details by clicking the arrow on the table name,
and drag the table icon to Form1. The designer adds labels, databound text boxes, and a
BindingNavigator control to the form, and NorthwindDataSet, CustomersBindingSource,
CustomersTableAdapter, and CustomersBindingNavigator icons to the tray. Rearrange the
bound text boxes in two columns to conserve form area.

7. Expand the Customers table icon, and drag its related Orders table icon (below the Fax field
icon) to the form to add an OrdersDataGridView control to Form1, and an OrdersBindingSource
and OrdersTableAdapter to the tray.

8. Expand the Orders table icon, and drag its related Orders Details table icon (below the
ShipCountry field icon) to the form to add an Order_DetailsDataGridView control to Form1,
and an Order_DetailsBindingSource and Order_DetailsTableAdapter to the tray.

9. Press F5 to build and run the project, which appears as shown in Figure 4-1. Display a few
Customers records to verify that the two DataGridViews display related records, and then close
the form to return to design mode.

Figure 4-1

At this point, autogenerated Fill method code in the Form1_Load event handler loads all records from
the three base tables into the NorthwindDataSet.

Only special circumstances, such as frequently disconnected users, warrant loading all or a substantial
part of a large database and saving the DataSet for offline use.

134

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 134

Add FillBy Methods for Each Data Table
You must add a FillBy method to populate each table with a SELECT query that includes an
@CustomerID parameter. Renaming the default FillBy query to a more descriptive method name
improves code readability.

Follow this drill to add and test renamed FillBy queries to each DataTable:

1. Right-click the CustomersTableAdapter icon, and choose Add Query to open the Search Criteria
Builder dialog.

2. Accept the default NorthwindDataSet.Customers as the source table and change the name of
the new query to FillByCustomerID. In the Query Text box, add a WHERE CustomerID =
@CustomerID criterion after FROM dbo.Customers, as shown in Figure 4-2. Click OK to add a
ToolStrip with a text box to enter the CustomerID parameter value and a FillByCustomerID
button to execute the query.

Figure 4-2

3. Right-click the ToolStrip’s CustomerID text box at the top of the form, and choose
Convert To ➪ ComboBox. Open the combo box’s Properties window, change the Name property
to cboCustomerID, change the DropDownStyle property value to DropDownList, add a few
sample CustomerID values to the Items collection, and change the Width property value to 75.

4. Select the FillByCustomerID button and change its Text property value to Get Orders
and the ToolTipText value to Select a Customer ID. Delete the CustomerIDLabel and
CustomerIDTextBox from the form.

135

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 135

5. Select the CustomersBindingNavigator’s separator bar and the Save Data button, press
Ctrl+C, select the top ToolStrip, and press Ctrl+V to add the objects. Then select the
CustomersBindingNavigator and delete it.

6. Build and run the project, select RATTC from the combo box, and click the Get Orders button to
display the RATTC Customers record, and return to design mode.

7. Right-click the OrdersTableAdapter, and choose Add Query.

8. Select NorthwindDataSet.Orders as the source table and change the name of the new query to
FillByCustomerID. In the Query Text box, add WHERE CustomerID = @CustomerID ORDER BY
OrderID DESC after FROM dbo.Orders. Click OK to add another ToolStrip with a text box to
enter the CustomerID parameter value.

9. Right-click the Order_DetailsTableAdapter, and choose Add Query.

10. Select NorthwindDataSet.Order Details as the source table and change the name of the new query
to FillByCustomerID. In the Query Text box, add a WHERE OrderID IN (SELECT OrderID FROM
Orders WHERE CustomerID = @CustomerID) criterion after FROM [dbo.Order Details]. Click
OK to add a third ToolStrip with a text box to enter the CustomerID parameter value.

11. Build and run the project, type RATTC in the two empty ToolStrip text boxes, and click the three
buttons to populate the controls.

12. Select a different order row in the Orders grid to verify that the relationship with the Order
Details grid works correctly. Your form should appear as shown in Figure 4-3.

Figure 4-3

136

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 136

Alter the Autogenerated Code to Fill the Controls
The preceding steps added autogenerated code to the Form1_Load event handler, and Click event han-
dlers for the three ToolStrip buttons. Code to load the DataTables is present, but you must move instruc-
tions to fill the Orders and Order_Details DataTables into the GetCustomerOrdersStripButton_Click
event handler.

Here’s the procedure for eliminating the default Fill methods and moving the two new
FillByCustomerID instructions to their correct location:

1. Open Form1.vb and delete the Form1_Load event handler, which contains the autogenerated
instructions for filling the DataSet with the entire contents of the base tables.

2. Copy the Me.OrdersTableAdapter.FillByCustomerID... instruction from the
FillByCustomerIDToolStripButton1_Click event handler below the
FillByCustomerIDToolStripButton_Click event handler’s Me.CustomersTableAdapter
.FillByCustomerID instruction.

3. Repeat step 2 to for the Me.Order_DetailsTableAdapter.FillByCustomerID... instruction.

4. Change CustomerIDToolStripTextBox and CustomerIDToolStripTextBox1 to
cboCustomerID so the combo box supplies the @CustomerID parameter value to the three
instructions in the FillByCustomerIDToolStripButton_Click event handler.

Following is the final FillByCustomerIDToolStripButton_Click event handler code:

Private Sub FillByCustomerIDToolStripButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles FillByCustomerIDToolStripButton.Click

Try
Me.CustomersTableAdapter.FillByCustomerID(_
Me.NorthwindDataSet.Customers, cboCustomerID.Text)

Me.OrdersTableAdapter.FillByCustomerID(_
Me.NorthwindDataSet.Orders, cboCustomerID.Text)

Me.Order_DetailsTableAdapter.FillByCustomerID(_
Me.NorthwindDataSet.Order_Details, cboCustomerID.Text)

Catch ex As System.Exception
System.Windows.Forms.MessageBox.Show(ex.Message)

End Try
End Sub

Fill the ComboBox with CustomerID Values
At this point, the cboCustomerID combo box’s Items collection contains only a few sample values for
testing. The fastest and lowest-overhead method to fill semi-static lists is to use an SqlDataReader object,
so add Imports System.Data and Imports System.Data.SqlClient to Form1.vb. Double-click
the form to regenerate the Form1_Load event handler, and add the following code to populate the
cboCustomerID combo box’s list:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

Dim cnNwind As New SqlConnection(My.Settings.NorthwindConnectionString)
Dim strSQL As String = “SELECT CustomerID FROM dbo.Customers”
Dim cmNwind As New SqlCommand(strSQL, cnNwind)

137

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 137

Try
cnNwind.Open()
Dim sdrCustID As SqlDataReader = cmNwind.ExecuteReader
With sdrCustID

If .HasRows Then
cboCustomerID.Items.Clear()
While .Read

cboCustomerID.Items.Add(sdrCustID(0).ToString)
End While
cboCustomerID.Text = cboCustomerID.Items(0).ToString

End If
.Close()

End With
Catch exc As Exception

MsgBox(“Error loading CustomerID combo box.”)
Finally

cnNwind.Close()
End Try

End Sub

Clean Up the UI and Code
These final steps verify the preceding changes and remove the unneeded ToolStrips:

1. Build and run the project, which opens with all controls except the combo box empty, and click
the Get Orders button to verify that the code you added and modified populates the controls.

2. Close the form and delete the FillByCustomerIDToolStripButton1_Click and
FillByCustomerIDToolStripButton1_Click event handlers.

3. Select and delete the two added FillByCustomerID ToolStrips.

4. Build and run the project again, and click the Get Orders button to verify operability. Figure 4-4
shows the form with the preceding modifications.

The completed version of the data-entry project, OrdersByCustomerV1, is in the \VB2005\Chapter04 sam-
ple files folder. This project stores the connection string in the app.config file’s <connectionStrings>
element. Using app.config to store the connection string lets you change the database connection to another
SQL Server 2000 or 2005, MSDE, or SQL Express instance without modifying the NorthwindDataSet
.Designer.vb code.

This relatively simple data-entry form generates large, complex DataSet schema and designer-generated
code files. The NorthwindDataSet.xsd file weighs in at 129KB and NorthwindDataSet.Designer.vb
contains about 3,300 instructions. You can locate the schema annotations for the FillBy queries by
opening the schema in IE and searching for @CustomerID.

138

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 138

Figure 4-4

Format and Add DataGridView Columns
To make editing and adding new Orders and, especially, Order Details records in DataGridView controls
easier for data entry operators requires turning off word-wrap, adjusting column widths, and formatting
currency and percentage values. Preceding chapters’ examples use code to make these formatting changes.
The DataGridView’s Edit Columns dialog simplifies column-management tasks. The Edit Columns dialog
lets you specify column width, re-order columns, and add unbound computed columns. You use the
CellStyle Builder dialog to set columns’ Format and WrapMode property values.

The following sections’ examples require the project that you completed in the preceding sections or
\VB2005DB\Chapter04\OrdersByCustomerV1.sln.

139

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 139

Format the OrdersDataGridView Columns
Right-clicking a DataGridView and choosing Edit Columns opens the Edit Columns dialog, which
displays a list of bound columns in the Selected Columns list and a Bound Column Properties sheet.
The fastest and most effective method for setting column widths is to specify the AutoSizeCriteria
property value. Auto-sizing columns is faster with ColumnHeader because no examination of row
values for maximum width is required. Thus, you should specify AllCells or DisplayedCells only
where the row value’s width exceeds or is likely to exceed the column header width.

Alternatively, you can open the Edit Columns dialog from the DataGridView’s Actions menu or the
Columns item in the Properties menu.

For the OrdersDataGridView, HeadersOnly is the appropriate value of the AutoSizeCriteria
property for all but the OrderDate and Freight through ShipCountry columns, which require AllCells.
Figure 4-5 shows the property settings for the OrderID column with Frozen specified as True to display
the column when scrolling horizontally.

Figure 4-5

The Freight column requires currency formatting. To format column values, select the column and the
DefaultCellStyle property, and open the CellStyle Builder dialog. Select the Format property, open
the Format String Dialog, and select Currency with two decimal places and an empty cell for the DbNull
value, as shown in Figure 4-6.

The CellStyle Builder and Format String Dialog have many other property settings that aren’t dis-
cussed here. The effect of most property settings is obvious from their names.

Consider setting the SortMode property value of all columns — except, perhaps, OrderID — to
NotSortable or Programmatic. Users might accidentally sort columns and not know how to
return to the original order. The same advice applies to the Resizable property value; set it to False
unless you have a good reason to do otherwise. Setting the SortMode property to NotSortable
removes the right padding of column headers that’s needed to accommodate the sort direction arrows.
You might need to set the Width property in pixels, which requires setting the AutoSizeCriteria
property value to None.

140

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 140

Figure 4-6

Format and Add a Computed Column
to the Order_DetailsDataGridView

Order Details records have numeric values, so HeadersOnly is appropriate for the AutoSizeCriteria
property value of all columns, unless you disable sorting by column. It’s a common practice for Quantity
to precede product information in sales order and invoice forms, so move the Quantity column after
OrderID with the Edit Columns dialog’s up-arrow button. Format the UnitPrice column with the C2
format string. Format the Discount column as a percentage with one decimal place (P1).

Add an Computed Extended Amount Column
An unbound Extended amount column to display the product of Quantity and UnitPrice less Discount
values is a useful addition to the Order Details grid. To add an unbound column, select the Discount
column in the Edit Columns dialog, and click the Add Column button to open the Add Column dialog.
Select the Unbound Column option, and type Extended as the value in the Name and Header Text text
boxes, and mark the Read-Only checkbox, as shown in Figure 4-7. Click Add and Close to create the new
column, and then set the SortMode and AutoSizeCriteria or Width property values. Finally, format
the column with the C2 currency format string.

141

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 141

Figure 4-7

Compute and Display the Extended Value
You add the computed value to the Extended column by setting the Order_DetailsDataGridView’s
VirtualMode property value to True in the Properties window and handling the DataGridView_
CellValueNeeded event. Virtual mode is required when a bound DataGridView includes unbound
columns. You also use virtual mode and the CellValueNeeded event to page additional rows into a
row-limited DataGridView bound to a very large DataTable.

The CellValueNeeded event’s DataGridViewCellValueEventArgs argument returns ColumnIndex
and RowIndex property values that specify the current cell whose value is needed, and a Value
property to set it. The formula for the Value property is Quantity * UnitPrice * (1 – Discount); you obtain
these values from cells 1, 3, and 4 in the current row. If any of theses cell types is DBNull, assignment to
a numeric variable throws an exception. Thus you must test for the DBNull type before assigning values.

Here’s the code for the Order_DetailsDataGridView_CellValueNeeded event handler:

Private Sub Order_DetailsDataGridView_CellValueNeeded(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellValueEventArgs) _
Handles Order_DetailsDataGridView.CellValueNeeded
‘Calculate and display the unbound Extended column values
With Order_DetailsDataGridView

‘Test for correct column and DBNull values, which throw exceptions
If e.ColumnIndex = 5 And _
Not (TypeOf (.Rows(e.RowIndex).Cells(1).Value) Is DBNull _
OrElse TypeOf (.Rows(e.RowIndex).Cells(3).Value) Is DBNull _
OrElse TypeOf (.Rows(e.RowIndex).Cells(4).Value) Is DBNull) Then

‘Variables are declared for readability
Dim intQuan As Integer
Dim decPrice As Decimal
Dim decDisc As Decimal

intQuan = CInt(.Rows(e.RowIndex).Cells(1).Value)
decPrice = CDec(.Rows(e.RowIndex).Cells(3).Value)

142

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 142

decDisc = CDec(.Rows(e.RowIndex).Cells(4).Value)
e.Value = intQuan * decPrice * (1 - decDisc)

End If
End With

End Sub

You can substitute the column name for the numeric Cells(ColumnIndex) value, but doing this
causes a small performance hit.

Figure 4-8 shows the order-entry form with formatted DataGridViews and the Extended column
populated.

Figure 4-8

This example is specific to the Order_DetailsDataTable, but the process is basically the same for any
computed column. You’re not limited to cell values for computing unbound column values.

Provide Default Values for New Records
Previous chapters have code examples for setting default values when adding a new record to
a DataGridView. The DataGridView has a DefaultValuesNeeded event that’s similar to the
CellValuesNeeded event, but DefaultValuesNeeded fires when the user adds a new row in virtual

143

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 143

or non-virtual mode. Writing a DefaultValuesNeeded event handler can simplify data entry for a new
order and minimize potential errors caused by missing values when adding new Order Details records.
The DataGridViewRowEventArgs argument has a Row property that returns the new DataGridViewRow
instance.

Add Default Orders Record Values
Default values for all Orders columns except OrderID and ShippedDate are appropriate, but users must
enter at least one value. Thus, EmployeeID retains the default DBNull value. The Freight value isn’t
known until on or near the shipping date, but a DBNull value for Freight isn’t allowed. Following is the
code to populate a new Orders row:

Private Sub OrdersDataGridView_DefaultValuesNeeded(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewRowEventArgs) _
Handles OrdersDataGridView.DefaultValuesNeeded
‘Add default values to a new Orders row
With e.Row

.Cells(1).Value = Me.CustomerIDTextBox.Text
‘Andrew Fuller gets default credit because he’s the sales VP
.Cells(2).Value = 2
.Cells(3).Value = Today.ToShortDateString
‘Two weeks is the default shipment arrival time
.Cells(4).Value = Today.AddDays(14).ToShortDateString
‘United Package is the preferred shipper
.Cells(6).Value = 2
‘Freight requires a 0 value, null throws an exception
.Cells(7).Value = 0
‘Default shipping address is the billing address
.Cells(8).Value = Me.CompanyNameTextBox.Text
.Cells(9).Value = Me.AddressTextBox.Text
.Cells(10).Value = Me.CityTextBox.Text
.Cells(11).Value = Me.RegionTextBox.Text
.Cells(12).Value = Me.PostalCodeTextBox.Text
.Cells(13).Value = Me.CountryTextBox.Text
‘Deselect any selected cells
Dim intCtr As Integer
For intCtr = 0 To 13

.Cells(intCtr).Selected = False
Next
‘Select EmployeeID
.Cells(2).Selected = True

End With
End Sub

The user must change at least one value — ordinarily EmployeeID — to fire the UserAddedRows event and
add an empty new row to the OrdersDataGridView. Thus the code sets EmployeeID as the selected cell.

The preceding code sets the CustomerID value, which is constant for all Orders rows. It’s a good prac-
tice to set such columns’ ReadOnly property value to True.

144

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 144

Add Default Order Details Record Values
Providing defaults for Order Details columns is problematic because ProductID is a member of the
table’s composite primary key. Thus ProductID default values set by, for example, the Rows.Count
value might conflict with previous selections. At this point, the ProductID value is set without testing
prior values. Following is the code for the Order_DetailsDataGridView_DefaultValuesNeeded
event handler:

Private Sub Order_DetailsDataGridView_DefaultValuesNeeded(ByVal sender _
As Object, ByVal e As System.Windows.Forms.DataGridViewRowEventArgs) _
Handles Order_DetailsDataGridView.DefaultValuesNeeded
‘Add temporary default values
With e.Row

.Cells(1).Value = 1

.Cells(2).Value = 17

.Cells(3).Value = 0

.Cells(4).Value = 0
End With

End Sub

ProductID 17 is Alice Mutton, the first product in alphabetic order. An alternative to hard-coding a
selection is a UNION query that adds 0 as the ProductID and UnitPrice values, (Product Not
Selected) as the Product name, and None as the QuantityPerUnit value. A parenthesis causes the
added record to appear first in an alphabetically sorted combo box.

Figure 4-9 shows the order entry form with added Orders and Order Details rows with the default values.

Figure 4-9

145

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 145

Handle the DataErrors Event
When a DataGridView throws an exception, the default error message contains more information than
most users want to know about the problem. Adding a delegated DataGridView.DataErrors event
handler lets you substitute a more meaningful message for the default “The following exception
occurred in the DataGridView” message, followed by the StackTrace string. The message returned by
e.Exception.Message is “Exception has been thrown by the target of an invocation.” Thus, you
must provide your own message; adding the column and row numbers can assist users in finding their
transgression(s).

Here’s an example of a simple DataErrors event handler:

Private Sub OrdersDataGridView_DataError(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewDataErrorEventArgs) _
Handles OrdersDataGridView.DataError
‘Handle data entry errors (delegate)
Dim strMsg As String = “Invalid data in column “ + e.ColumnIndex.ToString + _
“ of row “ + e.RowIndex.ToString + “ of the Orders grid. “ + _
“Press Esc to cancel the edit or enter an appropriate value.”

MsgBox(strMsg, MsgBoxStyle.Exclamation, “Data Entry Error”)
End Sub

Later chapters provide examples of more sophisticated error handlers that convey more specific error
information to the user.

Streamline Heads-Down Data Entry
Heads-down data entry implies that an application’s users spend most or all of their working hours
retrieving and updating data. Typical heads-down applications are telephone order entry, customer service,
insurance claims processing, help-desk requests, and software technical assistance. The primary requisites
of these projects are high-speed data retrieval and efficient data entry. Thus, Windows forms — rather than
Web forms — are the most common UI for heads-down data entry.

Following are a few best practices for the design of heads-down data-entry forms:

❑ Provide accelerator keys (Alt+Key) for all buttons and those labels that are adjacent to commonly
used text and combo boxes. Moving a hand from the keyboard to the mouse and back to the
keyboard reduces data-entry productivity and leads to operator fatigue. Select accelerator keys
that minimize contorted fingering, such as Alt+NumberKey. If you run out of related letter
keys, you can specify other combinations, such as Ctrl+Shift+Key with a KeyDown event handler.

❑ Avoid flashy graphics, company logos, and other elements that aren’t relevant to data entry tasks.

❑ Design for 800 × 600 resolution to maximize form readability. Data-entry operators usually are
the last to receive PC hardware and operating system upgrades.

❑ Don’t enable editing as the default data-entry mode. Bound text box and DataGridView controls
should open in read-only mode and require an operator action to edit data. This practice prevents
inadvertent data edits.

146

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 146

❑ Hide or disable controls that aren’t appropriate to the current task or user role. The My.User
namespace provides the IsInRole method to determine the current user’s authorization to, for
example, edit data based on domain security group membership.

❑ Substitute dropdown combo lists for text boxes to set primary key values. Populate the combo
lists from lookup tables, which can be standalone DataTables or members of an untyped
DataSet. Minimize the size of the DataTables and server load by specifying only the columns
you need to populate the list. For this chapter’s examples, CustomerID, EmployeeID,
ShipperID, and ProductID values should be set by combo lists.

❑ Add tooltips to provide instructions for buttons and important text boxes and other controls.
New operators are willing to use the mouse to review the purpose of mysterious controls.
Tooltips suffice until you complete the online or printed help files for your project.

❑ Don’t add menus unless you need them for printing or saving local files. Most heads-down
data-entry applications are single-purpose.

❑ Consider substituting controls on the main form body for ToolStrip controls. ToolStrips have a
limited control repertoire and must reside in one of the four rafting containers. It’s a better
practice to locate text boxes, combo lists, and buttons adjacent to other associated controls.

❑ Use the MaskedTextBox control for text boxes that require a specific data format, such as
telephone and social security numbers, and alphabetic or alphanumeric primary keys.
DataGridView and ToolStrip controls don’t support MaskedTextBox controls.

❑ Choose the DataGridView.EditMode property value to suit operator preference. Consider replac-
ing the default EditOnKeystrokeOrF2 mode with EditOnEnter. If you select EditOnEnter, it’s
easier to replace the default column selection you set in the DefaultValuesNeeded event handler.

❑ Don’t force users to view or edit complex, multi-column data in a DataGridView row. Some data-
entry operators are accustomed to scrolling horizontally while editing, but you should provide
the option to edit the row with text boxes. Form area limitations might require a tabbed form to
provide room for text boxes.

❑ Use a single tabbed form — instead of multiple forms — to provide alternate editing methods.
Tabbed forms with tabs that follow the workflow sequence are preferable to MDI forms for most
data-entry applications. Another advantage of tabbed forms is that navigating between tabbed
pages is similar to moving between Web pages.

Figure 4-10 shows version 2 of the order entry form, which implements many of the preceding best practices
and includes the code described in the earlier “Format and Add DataGridView Columns,” “Provide Default
Values for New Records,” and “Handle the DataErrors Event” sections.

Bound controls, including DataGridViews, might lose their DataBinding properties
when moved from the form’s surface to the tab page. Rebinding DataGridView
controls resets all column properties to default values. You must rebind the controls,
as described in the following section.

147

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 147

Figure 4-10

The OrdersByCustomerV2 project is in the ...\Chapter04\OrdersByCustomerV2 folder. The following
sections describe modifications to this project.

Here are a few of OrderByCustomerV2’s added features:

❑ All ToolStrip buttons and the two DataGridViews have accelerator keys.

❑ The form opens with empty, read-only text box controls and disabled, read-only DataGridViews.

❑ Clicking the Get Orders button enables the DataGridViews for scrolling.

❑ You must click Edit Customer Data to enable editing text boxes — except CustomerID — and
display the OrdersToolStrip at the bottom of the form.

❑ Clicking Edit Orders enables the two DataGrid views.

❑ Clicking New Customer clears the text boxes, enables them for editing, and sets the focus to the
CompanyName text box.

❑ Typing a CompanyName and pressing tab generates a five-character CustomerID value and
enables the OrdersDataGridView.

❑ Adding a new record to the OrdersDataGridView enables the Order_DetailsDataGridView.

The Cancel ToolStrip buttons don’t have event handlers at this point.

148

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 148

Migrate the UI to a Tabbed Form
Tabbed forms support workflow applications, such as adding and editing customer data, orders, line
items, backorders, and invoices. One of the primary advantages of tabbed forms is your ability to specify
tab page visibility by user role.

Most problems with databound controls on tab pages that ADO.NET 1.x users encountered appear to
be corrected in ADO.NET 2.0.

You can convert a conventional data-entry form to a tabbed version that provides multiple pages for
data-entry chores, but it’s more efficient to start with a tabbed form. Moving controls from the form to a
tab page requires the following steps:

1. Resize the form to accommodate the tabs.

2. Cut the form body controls to the Clipboard.

3. Add a Tab control with two or more pages.

4. Select the first tab page, and paste the controls to it.

5. If your form has DataNavigator or ToolStrip controls, delete them and replace their controls
with buttons and, where necessary, text boxes on the appropriate tab page — usually the first
page. This step requires changes to the associated button event-handling code.

6. Change the BackColor property of all labels to Transparent to match the fixed BackColor
property of tab pages.

To save you the effort of converting the OrdersByCustomerV2 project, the initial version of
OrdersByCustomersV3 is in the \VB2005DB\Chapter04\OrdersByCustomerV3 – Initial folder.
This project includes the modifications described in the following sections, which require about 800
instructions.

Test Drive the OrdersByCustomersV3 Project
The initial version of the OrdersByCustomersV3 project includes the following modifications to the
OrdersByCustomersV2 project:

❑ Conventional Button and TextBox controls replace ToolStrip controls.

❑ Individual Save and Cancel buttons enable customer and order additions and edits, and
order/line-item deletions. Updating base tables isn’t implemented in the initial version.

❑ Sample items populate the cboCustomerID dropdown list and text boxes when adding a new
customer.

❑ An empty help text box is visible when the form opens and when adding a new customer. The
text box can be populated from a constant string or a text file that you include as a project
resource.

❑ Business logic prevents editing or deleting orders that have shipped by setting the ReadOnly
property of rows with ShippedDate values to True.

❑ Clicking the Add New Order button positions OrdersDataGridView to the new record row
and adds a new record to the OrdersBindingSource and Order_DetailsBindingSource.

149

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 149

❑ An Edit on Tab Page checkbox enables editing Orders and Order Details data on a second tab
page, which reduces the height of the form and provides text boxes for editing the selected
order.

❑ Business logic prevents adding more than one order for a customer without saving the new
order and its line items.

❑ Clicking the Edit Orders button selects the last order in the grid. The down arrow selects earlier
orders. If Edit on Tab Page is checked, pressing F2 with an unshipped order selected opens the
second tab page for editing, which preserves mouseless data entry.

Figure 4-11 shows the form in single-page format.

Figure 4-11

Fix Missing Default Values When Adding Rows with Code
Adding rows to a BindingSource and its bound DataGridView in code doesn’t fire the
DefaultValuesNeeded event. These events are UI-driven. Thus, you must modify the
OrdersDataGridView_DefaultValuesNeeded event handler by moving its code to another procedure,
SetDefaultValues for this example, and call the procedure as shown here:

150

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 150

Private Sub OrdersDataGridView_DefaultValuesNeeded(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewRowEventArgs) _
Handles OrdersDataGridView.DefaultValuesNeeded
‘Add default values to a new Orders row
SetDefaultOrderValues(e.Row)

End Sub

You must modify the Order_DetailsDataGridView_DefaultValuesNeeded event handler similarly.
Once you’ve made these modifications, you can add rows with default values programmatically, as
shown here:

Private Sub btnNewOrder_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNewOrder.Click

‘Add new Orders and Order Details rows programmatically
EnableOrdersGrid(True, False)
With OrdersBindingSource

.AddNew()

.MoveLast()
End With
With OrdersDataGridView

.Focus()
‘Rows.Count includes the default new row
Dim rowAdded As DataGridViewRow = .Rows(.Rows.Count - 2)
‘Add the default values
SetDefaultOrderValues(rowAdded)

End With
blnIsNewOrderRow = True
btnCancelOrderEdits.Enabled = True
btnSaveOrders.Enabled = False
‘Add a new OrderDetails row
EnableOrder_DetailsGrid(True, False)
With FK_Order_Details_OrdersBindingSource

.AddNew()

.MoveLast()
End With
With Order_DetailsDataGridView

Dim rowAdded As DataGridViewRow = .Rows(.Rows.Count - 2)
‘Add the default values
SetDefaultDetailsValues(rowAdded)

End With
btnNewOrder.Enabled = False
If blnUseTabs Then

If tabOrders.TabPages.Count = 1 Then
tabOrders.TabPages.Add(pagEditOrder)

End If
tabOrders.SelectedTab = pagEditOrder
blnIsNewOrderRow = False
EmployeeIDTextBox.Focus()

End If
pagEditOrder.Text = “Edit New Order”

End Sub

151

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 151

Edit a Selected DataGridView Record
on the Second Tab Page

Tab controls have two default tab pages. VS 2005’s Data Sources window and the BindingSources make it
easy to add databound text boxes and a cloned Order_DetailsDataGridView to the second tab page.
The BindingSource synchronizes the two bound DataGridViews automatically. Add the text boxes by setting
the Data Sources window’s node for the data source — Orders for this example — to Details, dragging the
controls to the page, and rearranging the layout. Date and DateTime fields appear as DateTimePicker
controls. Set the ReadOnly property value for primary-key and foreign-key text boxes to True.

Microsoft still hasn’t solved the DateTimePicker’s null-valued date problem. If your data source permits
fields with null date values, you must replace DateTimePickers with TextBox controls, which you bind
to the appropriate data source field.

Clone the first page’s DataGridView by dragging its node to the page. You must add unbound fields and
format numeric fields, as is required when cutting and pasting DataGridViews from a form to a tab
page. A single CellValueNeeded event handler serves all cloned DataGridView instances.

The following code prevents the user from editing orders that have non-null ShippedDate values when
the user presses F2:

Private Sub tabOrders_KeyDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyEventArgs) Handles tabOrders.KeyDown

‘Only allow editing of order with null ShippedDate fields
If blnUseTabs And e.KeyCode = Keys.F2 And OrdersDataGridView.Enabled Then

Try
With OrdersDataGridView

If .SelectedCells(0).ColumnIndex = 0 Then
If .Rows(.SelectedCells(0).RowIndex).Cells(“ShippedDate”).Value _

Is DBNull.Value Then
If tabOrders.TabPages.Count = 1 Then

tabOrders.TabPages.Add(pagEditOrder)
End If
tabOrders.SelectedTab = pagEditOrder

End If
End If

End With
Catch excSys As Exception

‘Ignore the exception
End Try

End If
End Sub

Figure 4-12 shows the Edit Selected Order page with the last order for CustomerID RATTC open for
editing.

152

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 152

Figure 4-12

Create and Bind Lookup Lists
for Primary Key Values

Data-entry operators can’t be expected to remember name fields associated with primary-key or foreign-key
values. Thus, DataGridView columns and text boxes bound to primary-key or foreign-key values need
combo boxes that are populated by lookup lists and bound to the key field.

You create the data source for a combo box’s lookup list with one of the following methods:

❑ If the project’s typed DataSet contains the DataTable to populate a lookup list in a DataGridView, in
the Edit Columns dialog, set the DataSource property value to the DataTable, set ValueMember to
the primary-key value, and set DisplayMember to the field to populate the Items collection.

❑ If the project’s typed DataSet contains the DataTable to populate a lookup list in a combo box
on the form, in the Properties window, expand the (DataBindings) node, set the (Advanced)
property value to the DataTable, set SelectedValue to the primary-key value, and set
SelectedItem to the field to populate the Items collections.

❑ Otherwise, create an untyped DataSet, add DataAdapters for the lookup tables, and set the
DataSource, ValueMember, and DisplayMember property values with code. If the combo box
is on a form — not in a DataGridView column — you must invoke the DataBindings.Add
method with a New Binding object to bind the combo box to the appropriate field of the typed
DataSet’s DataTable.

153

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 153

The advantage of adding lookup DataTables to the typed DataSet is your ability to set the required
property values at design time and maintain referential integrity automatically. The downside of this
approach is the inability to customize the combo box’s DisplayMember (Items) values. In either case,
you can save the lookup tables for reuse as a DataSet XML file. Loading the lookup tables from a local file
eliminates one or more roundtrips to the server when users open a new project session. If you create and
load an untyped lookup DataSet, you can fill all lookup tables in one roundtrip.

The following sections show you how to create an untyped DataSet that includes lookup DataTables
created from the Northwind Customers, Employees, Shippers, and Products tables, and then populate
unbound and bound combo boxes with lookup items.

All sections that follow add code to the OrdersByCustomersV3 project in the \VB2005DB\Chapter04\
OrdersByCustomersV3 – Initial folder. Most of the code you add in the following sections is in the
\VB2005DB \Chapter04\OrdersByCustomerV3 – Final\OrdersByCustomerV3.sln project’s
OrderFormV3.vb file. This file contains Partial Public Class OrdersForm as a demonstration of
the use of custom partial classes. Comments that begin with ‘V3Final identify final code changes to
OrdersForm.vb.

Create an Untyped Lookup DataSet and Its DataTables
Runtime (untyped) DataSets and their DataTables are much lighter objects than DataTables added to
typed DataSets. As mentioned in the preceding section, you can fill all untyped DataTables with a single
server roundtrip. To minimize server load, you should save the lookup DataSet locally as an XML file; in
subsequent sessions, you can load the tables from the file.

Add the following procedure to create the four DataTables that populate multiple combo boxes on the
initial version of the form’s two tab pages and saves the DataSet as LookupsDataSet.xml:

Private Sub LoadLookupLists()
‘Use runtime DataSet and DataAdapters to load combo boxes
Me.Cursor = Cursors.WaitCursor
‘Customers
Dim strSQL As String = “SELECT CustomerID, CustomerID + ‘ - ‘ + “ + _

CompanyName AS IDName FROM dbo.Customers;”
‘Employees
strSQL += “SELECT EmployeeID, LastName + ‘, ‘ + FirstName AS EmployeeName “ + _

“FROM dbo.Employees;”
‘Shippers
strSQL += “SELECT ShipperID, CompanyName FROM dbo.Shippers;”
‘Products
strSQL += “SELECT ProductID, ProductName, UnitPrice, QuantityPerUnit “ + _

“FROM dbo.Products”
‘An example of use of My.Settings to retrieve connection strings
Dim strConn As String = My.Settings.NorthwindConnection.ToString
Dim daLookups As New SqlDataAdapter(strSQL, strConn)
Try

daLookups.Fill(dsLookups)
With dsLookups

.Tables(0).TableName = “CustsLookup”

.Tables(1).TableName = “EmplsLookup”

.Tables(2).TableName = “ShipsLookup”

154

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 154

.Tables(3).TableName = “ProdsLookup”
End With
‘Save dsLookups as a file with the embedded schema
Dim strFile As String = Application.StartupPath + “\LookupsDataSet.xml”
dsLookups.WriteXml(strFile, XmlWriteMode.WriteSchema)

Catch excFill As Exception
MsgBox(excFill.Message + excFill.StackTrace, , “Error Filling Lookup Tables”)

Finally
If daLookups.SelectCommand.Connection.State = ConnectionState.Open Then

‘Shouldn’t happen
daLookups.SelectCommand.Connection.Close()

End If
End Try

End Sub

Delete the following code, which adds sample data to the list, from the end of the OrderForm_Load
event handler:

If blnUseSampleData Then
With cboCustomerID

‘Emulate final version
.Items.Add(“QUEDE - Que Delícia”)
.Items.Add(“QUEEN - Queen Cozinha”)
...
.Items.Add(“SPECD - Spécialités du monde”)
.SelectedIndex = 4

End With
End If

Replace the deleted code with the following to call the LoadLookupLists procedures when needed and
provide a default CustomerID value for testing convenience:

Dim strFile As String = Application.StartupPath + “\LookupsDataSet.xml”
If File.Exists(strFile) Then

‘Load dsLookups from the file
dsLookups.ReadXml(strFile)

Else
LoadLookupLists()

End If
‘Bind all combo box lists to their DataSources
LoadAndBindComboBoxes()

‘Following is optional
‘Set the combo box to RATTC which has an unshipped order
With dsLookups.Tables(0)

Dim intRow As Integer
For intRow = 0 To .Rows.Count - 1

If Mid(.Rows(intRow).Item(0).ToString, 1, 5) = “RATTC” Then
cboCustomerID.SelectedIndex = intRow
Exit For

End If
Next intRow

End With

155

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 155

Populate the cboCustomerID Combo Box
Add the following code to populate the combo box with CustomerID values and CustomerID/
CustomerName items from the CustsLookup DataTable:

Private Sub LoadAndBindComboBoxes()
With cboCustomerID

.DataSource = dsLookups.Tables(“CustsLookup”)

.DisplayMember = “CustIDName”

.ValueMember = “CustomerID”
End With
...

End Sub

The cboCustomerID combo box isn’t bound to a BindingSource, so you don’t need to add a member to
the DataBindings collection.

Replace DataGridView Text Boxes with Combo Boxes
The OrdersDataGridView’s EmployeeID and ShipVia text boxes are logical candidates to replace
with combo boxes. To replace a text box column with a combo box column, open the DataGridView’s
Edit Column dialog, select the appropriate column, set the ColumnType property value to
DataGridViewComboBoxColumn, change the HeaderName property value, if necessary, and set the
Width value to accommodate the items list.

Set the AutoSizeCriteria property value to None to enable changing the Width property.

For this example, change the EmployeeID column header to Employee, and set the width to 120 pixels.
Change the ShipVia column’s Width to 110 pixels. Figure 4-13 shows two changes for the EmployeeID
column; Width is scrolled out of sight.

Figure 4-13

156

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 156

Add Code to Populate the Employees and ShipVia Combo Boxes
Before you run the program, you must add code to populate the two new combo boxes; if you don’t, you’ll
throw many DataErrors when navigating the DataGridView. To find the new combo box names —
DataGridViewComboBoxColumn followed by an arbitrary integer — search OrdersForm.Designer.vb for
‘DataGridViewComboBox (include the single quote) to find these two combo box definition groups, which
are emphasized in the following snippets:

‘DataGridViewComboBoxColumn2
‘
Me.DataGridViewComboBoxColumn2.DataPropertyName = “EmployeeID”
Me.DataGridViewComboBoxColumn2.DefaultCellStyle = DataGridViewCellStyle1
Me.DataGridViewComboBoxColumn2.HeaderText = “Employee”
Me.DataGridViewComboBoxColumn2.MaxDropDownItems = 8
Me.DataGridViewComboBoxColumn2.Name = “EmployeeID”
Me.DataGridViewComboBoxColumn2.Resizable = _

System.Windows.Forms.DataGridViewTriState.[True]
Me.DataGridViewComboBoxColumn2.SortMode = _

System.Windows.Forms.DataGridViewColumnSortMode.Automatic
Me.DataGridViewComboBoxColumn2.ValueType = GetType(Integer)
Me.DataGridViewComboBoxColumn2.Width = 120

‘DataGridViewComboBoxColumn3
‘
Me.DataGridViewComboBoxColumn3.DataPropertyName = “ShipVia”
Me.DataGridViewComboBoxColumn3.DefaultCellStyle = DataGridViewCellStyle1
Me.DataGridViewComboBoxColumn3.HeaderText = “ShipVia”
Me.DataGridViewComboBoxColumn3.MaxDropDownItems = 8
Me.DataGridViewComboBoxColumn3.Name = “ShipVia”
Me.DataGridViewComboBoxColumn3.Resizable = _

System.Windows.Forms.DataGridViewTriState.[True]
Me.DataGridViewComboBoxColumn3.SortMode = _

System.Windows.Forms.DataGridViewColumnSortMode.Automatic
Me.DataGridViewComboBoxColumn3.ValueType = GetType(Integer)
Me.DataGridViewComboBoxColumn3.Width = 110

Using the names you discovered, whose numeric suffixes are likely to differ from those in the preceding
code, add the following code to the LoadAndBindComboBoxes procedure:

157

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 157

Private Sub LoadAndBindComboBoxes()
...
With DataGridViewComboBoxColumn2

.DataSource = dsLookups.Tables(“EmplsLookup”)

.DisplayMember = “EmployeeName”

.ValueMember = “EmployeeID”
End With
...
With DataGridViewComboBoxColumn3

.DataSource = dsLookups.Tables(“ShipsLookup”)

.DisplayMember = “CompanyName”

.ValueMember = “ShipperID”
End With

End Sub

Replace Null Default Values in New Rows
The Combo boxes can’t handle null values without throwing an error so you must assign a valid default
EmployeeID value in the initial version’s SetDefaultOrderValues event handler. The logical value
would be 0 for EmployeeID with Unassigned as the LastName value but would require modifying the
Employees table. An alternative is to specify a UNION query to populate the combo box with the added
item. If you choose this approach, change the SELECT statement for the EmplsLookup table to:

SELECT 0, ‘Unassigned’ UNION SELECT EmployeeID, LastName + ‘, ‘ +
FirstName AS EmployeeName FROM dbo.Employees;.

If your code synchronizes combo box selection values with other objects, such as a BindingSource’s
Position property value, you must account for the added combo box item.

The simplest alternative is to default all orders to the Sales Vice-President, Andrew Fuller (2), as shown
here in bold text:

Private Sub SetDefaultOrderValues(ByVal rowAdded As DataGridViewRow)
With rowAdded

‘Default values
.Cells(1).Value = Me.CustomerIDTextBox.Text
.Cells(2).Value = 2
.Cells(3).Value = Today.ToShortDateString
‘Two weeks is the default shipment arrival time
.Cells(4).Value = Today.AddDays(14).ToShortDateString
...

End With
End Sub

When you build and run the form, the orders DataGridView with a new order added appears as shown
in Figure 4-14.

158

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 158

Figure 4-14

Associate Combo Boxes with Text Boxes
The Edit Selected Orders tab page needs similar lookup combo boxes, but retaining the original EmployeeID
and ShipVia text boxes verifies that the bound column values change when selecting different values from
the combo boxes.

For this example, add combo boxes named cboEmployeeID and cboShipVia to the Edit Selected
Orders page, and change their DropDownStyle property value to DropDownList. Add the following
code to populate and bind the combo boxes to the OrdersDataTable’s EmployeeID and ShipVia fields:

Private Sub LoadAndBindComboBoxes()
...
With cboEmployeeID

.DataSource = dsLookups.Tables(“EmplsLookup”)

.DisplayMember = “EmployeeName”

.ValueMember = “EmployeeID”

.DataBindings.Clear()
‘Any of these bindings work; BindingSource is the preferred data source
‘.DataBindings.Add(“SelectedValue”, NorthwindDataSet.Orders, “EmployeeID”)
‘.DataBindings.Add(New Binding(“SelectedValue”, NorthwindDataSet, _

159

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 159

‘“Orders.EmployeeID”))
.DataBindings.Add(New Binding(“SelectedValue”, OrdersBindingSource, _

“EmployeeID”, True))
End With
...
With cboShipVia

.DataSource = dsLookups.Tables(“ShipsLookup”)

.DisplayMember = “CompanyName”

.ValueMember = “ShipperID”

.DataBindings.Clear()

.DataBindings.Add(New Binding(“SelectedValue”, OrdersBindingSource, _
“ShipVia”, True))

End With
...

End Sub

A quirk in the synchronization of text and combo boxes bound to the same field prevents bidirectional
text box updates. To update the text boxes with combo box changes, add the following event handlers:

Private Sub cboEmployeeID_SelectionChangeCommitted(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cboEmployeeID.SelectionChangeCommitted

‘Update the associated text box
EmployeeIDTextBox.Text = cboEmployeeID.SelectedValue.ToString

End Sub

Private Sub cboShipVia_SelectionChangeCommitted(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles cboShipVia.SelectionChangeCommitted

‘Update the associated text box
ShipViaTextBox.Text = cboShipVia.SelectedValue.ToString

End Sub

You must handle the SelectionChangeCommitted event — not the Click event, which occurs
before the selection change is valid.

To update the combo box selection with text box changes, add the code modification shown in bold to
the initial version, and an event handler for the ShipViaTextBox’s TextChanged event:

Private Sub EmployeeIDTextBox_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EmployeeIDTextBox.TextChanged
With EmployeeIDTextBox

‘Test for value within range
If Val(.Text) > 0 And CInt(Val(.Text)) <= cboEmployeeID.Items.Count Then

btnCancelPage1Changes.Enabled = True
btnSavePage1Changes.Enabled = True
‘Sync combo box with changes
cboEmployeeID.SelectedIndex = CInt(Val(.Text)) - 1

End If
End With

End Sub

Private Sub ShipViaTextBox_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ShipViaTextBox.TextChanged

160

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 160

‘Synchronize combo box with text box
With ShipViaTextBox

‘Test for value within range
If Val(.Text) > 0 And CInt(Val(.Text)) <= cboShipVia.Items.Count Then

cboShipVia.SelectedIndex = CInt(Val(.Text)) - 1
btnCancelPage1Changes.Enabled = True
btnSavePage1Changes.Enabled = True

End If
End With

End Sub

You should add TextChanged event handlers with code to enable the btnCancelPage1Changes
and btnSavePage1Changes buttons for all text boxes.

Figure 4-15 shows the Edit Selected Order page with the two combo boxes added.

Figure 4-15

After adding combo boxes to a page, it’s a good practice to review and, if necessary, change the tab order.

Beware of using the Tab Order view because you can confuse the Remove Tab action
with removing a control from the tab order. The Remove Tab action is fatal unless
you perform an immediate undo operation.

161

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 161

Add a Combo Box That Sets
Additional Values

Changing the value of a bound text or combo box often has side effects that you must handle with code.
As an example, the Order_DetailsDataGridView’s UnitPrice column value must be updated when
making changes to the ProductID column. The OrdersByCustomerV3 initial version requires the
data-entry operator to refer to a list to correlate ProductID, ProductName, and UnitPrice values. Thus,
the ProductID column needs a combo box to display ProductName values, and selecting an item must
supply the correct UnitPrice value. The ProdsLookup DataTable includes the UnitPrice data, as well as a
QuantityPerUnit column. Displaying QuantityPerUnit in an unbound column is optional.

Create and Bind a DataView Sorted by ProductName
Replacing the ProductID column’s text box with a combo box in the two DataGridViews follows the
same process as that for the EmployeeID and ShipVia columns of the Orders grid. EmployeeID and
ShipVia list items appear in the order of the DataTable’s bound column. This isn’t a problem for
combo boxes with a few list items, but the ProductID combo box should be sorted alphabetically by
ProductName. Sorting items requires creating a sorted DataView over the DataTable.

Setting ComboBoxName.Sort = True throws a runtime error when the DataSource property is
assigned.

Adding ORDER BY ProductName to the ProdsLookup DataTable’s SELECT query is a simpler
approach. The objective of this section is to demonstrate use of sorted DataViews.

First, add the following form-level variables to the OrdersForm.vb class:

Private dvProdsLookup As DataView
Private blnHasLoaded As Boolean

Add the following code to the LoadAndBindComboBoxes procedure to create a dvProdsLookup
DataView sorted by ProductName, and populate the combo lists from dvProdsLookup:

Private Sub LoadAndBindComboBoxes()
...
‘ProductID combo boxes
‘Create a
dvProdsLookup = New DataView(.Tables(3))
dvProdsLookup.Sort = “ProductName”

With DataGridViewComboBoxColumn4
.DataSource = dvProdsLookup
.DisplayMember = “ProductName”
.ValueMember = “ProductID”

End With

With DataGridViewComboBoxColumn5
.DataSource = dvProdsLookup
.DisplayMember = “ProductName”
.ValueMember = “ProductID”

162

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 162

End With

‘Set the loaded flag
blnHasLoaded = True

End Sub

You can specify filter criteria and sort order in the third overload of the DataView constructor, but
applying the Sort method is simpler.

The combo box control names don’t indicate association with a specific DataGridView. The code for both
Order Details grids is the same, so this ambiguity isn’t an important issue.

The next section’s code uses the blnHasLoaded flag.

Test for Duplicates and Update the UnitPrice Column
The Order Details table has a composite primary key — OrderID and ProductID — to prevent duplicating
an existing line item. To prevent server roundtrips that return key violation error messages, you should
test new or altered ProductID values for duplication and inform the operator of the error.

Duplicate ProductID entries will throw a DataError exception when the operator completes the edit and
moves to the next row. However, it’s a better practice to capture the error immediately after it occurs.

If the new ProductID value is acceptable, you must scan the ProdsLookup table for the matching row
and update the unit price with the following procedure, which applies to both Order Details grids. You
pass dgvDetails by reference to obtain a pointer to the active DataGridView instance.

Private Sub GetUnitPrice(ByVal intRow As Integer, ByVal intCol As Integer, _
ByRef dgvDetails As DataGridView)
‘Test the ProductID value for duplication
‘Update the unit price, if not a duplicate
Try

If intCol = 2 Then
‘ProductID combo box change
Dim intProdID As Integer = CInt(dgvDetails.Rows(intRow).Cells(2).Value)
Dim decPrice As Decimal
Dim intRowCtr As Integer
Dim rowProd As DataRow
Dim strName As String = Nothing

‘Test for duplicate ProductID (primary key violation)
Dim intDups As Integer
With dgvDetails

For intRowCtr = 0 To .Rows.Count - 1
If CInt(.Rows(intRow).Cells(2).Value) = intProdID Then

intDups += 1
If intDups > 1 Then

Exit For
End If

End If
Next intRowCtr

End With
If intDups > 1 Then

163

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 163

Dim strMsg As String = “ProductID “ + intProdID.ToString + _
“ has been added previously to this order. “ + vbCrLf + vbCrLf + _
“Please select a different product or press Esc to cancel the edit.”

MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)
Return

End If

‘Search the DataTable for the ProductID and update UnitPrice
With dsLookups.Tables(3)

For intRowCtr = 0 To .Rows.Count - 1
rowProd = .Rows(intRowCtr)
If CInt(rowProd.Item(0)) = intProdID Then

decPrice = CDec(rowProd.Item(2))
‘Change UnitPrice value
With Order_DetailsDataGridView1

.Rows(intRow).Cells(3).Value = decPrice
Exit For

End With
End If

Next intRowCtr
End With

End If
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace, , exc.Source)
End Try

End Sub

An alternative to scanning is creating a DataView with its Filter property value set to ProductID
= intProdID. Filter expressions use SQL WHERE clause syntax (without WHERE), so literal string
arguments must be enclosed by single quotes.

You must pass the appropriate intRow and intCol values and a DataGridView pointer to the procedure
in these added CellValueChanged event handlers.

Private Sub Order_DetailsDataGridView_CellValueChanged(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles Order_DetailsDataGridView.CellValueChanged
‘Get the UnitPrice value
If blnHasLoaded Then

GetUnitPrice(e.RowIndex, e.ColumnIndex, Order_DetailsDataGridView)
End If

End Sub

Private Sub Order_DetailsDataGridView1_CellValueChanged(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles Order_DetailsDataGridView1.CellValueChanged
‘Get the UnitPrice value
If blnHasLoaded Then

‘Run only after loading the combo boxes
GetUnitPrice(e.RowIndex, e.ColumnIndex, Order_DetailsDataGridView1)

‘The following applies only to the Edit Selected Orders page
If Not (e.ColumnIndex = 0 Or e.ColumnIndex = 5) Then

‘Update the items subtotal for Quantity, ProductID,

164

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 164

‘UnitPrice, and Discount changes
GetOrderSubtotal()
btnCancelPage1Changes.Enabled = True
btnSavePage1Changes.Enabled = True

End If
End If

End Sub

Following is the code for the GetOrderSubtotal procedure, which updates the txtSubtotal text box:

Private Sub GetOrderSubtotal()
‘Calculate and display order subtotal on F2 and CellValueChanged
With Order_DetailsDataGridView1

Dim decSubtotal As Decimal
Dim intCtr As Integer
For intCtr = 0 To .Rows.Count - 1

decSubtotal += CDec(.Rows(intCtr).Cells(5).Value)
Next
txtSubtotal.Text = Format(decSubtotal, “$#,##0.00”)

End With
End Sub

Figure 4-16 shows the Edit Selected Order tab page with the ProductID DataGridView column converted
from a text box to a combo box, multiple line items added to a new order, and the Items Subtotal value
updated.

Figure 4-16

The UnitPrice and Extended column values don’t change until you move the focus to the column. The
Items Subtotal value doesn’t update until you update the Extended column value.

165

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 165

Add Lookup Table Rows for
New Customer Entries

The OrdersByCustomersV3 – Initial project adds the computed CustomerID item to the cboCustomerID
combo box when completing the CompanyName entry for a new customer. You can’t add items to
combo boxes whose DataSource is a DataTable, so you must add a new row to the CustsLookup
DataTable. The easiest way to manage runtime DataTables is to add a BindingSource to the form and use
its methods to add a row for the new CustomerID value. You use the BindingSource’s AddNew, EndEdit,
CancelNew, and CancelEdit methods to handle editing chores.

Add and Bind a CustomerID BindingSource
Add a BindingConnector1 component from the toolbox and rename it bsCustsLookup. Then add the
following binding code after the LoadAndBindComboBoxes procedure’s blnHasLoaded = True statement:

bsCustsLookup.DataSource = dsLookups
bsCustsLookup.DataMember = “CustsLookup”
‘Test the BindingSource (optional)
Dim intRows As Integer = bsCustsLookup.Count

In the ContactNameTextBox_GotFocus event handler, remove this code that adds a combo box list
item, which throws a runtime exception, and searches for the new item:

.Items.Add(strCustID + “ - “ + CompanyNameTextBox.Text)
‘List is sorted, so need to find the new entry
‘(Lists can’t be sorted when they use a DataSource)
For intCtr = 0 To .Items.Count - 1

If Mid(.Items(intCtr).ToString, 1, 5) = strCustID Then
.SelectedIndex = intCtr
Exit For

End If
Next

Replace the deleted code with the following to add a new record at the end of the DataTable and set its
values:

‘Add new table row
Dim objNewRow As Object = bsCustsLookup.AddNew()
Dim drvNewRow As DataRowView = CType(objNewRow, DataRowView)
With drvNewRow

.Item(0) = strCustID

.Item(1) = strCustID + “ - “ + CompanyNameTextBox.Text

.EndEdit()
End With
.SelectedIndex = .Items.Count - 1

You can determine the object type (DataRowView) by typing ? objNewRow in the Immediate window.

If you don’t invoke the EndEdit method, the record doesn’t appear as the last item in the combo box list.

166

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 166

Applying drvNewRow.EndEdit requires deleting the added row — instead of invoking CancelEdit—
in the btnCancelCustEdit_Click event handler. Add the following line shown in bold text:

Private Sub btnCancelCustEdit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnCancelCustEdit.Click
‘Undo the customer edits
‘For testing
Dim intCtr As Integer = CustomersBindingSource.Count
If blnIsNewCustomer Then

‘Remove the added (last) record
dcCustsLookup.RemoveAt(dcCustsLookup.Count - 1)
ClearCustomerTextBoxes()
CustomersBindingSource.CancelEdit()
blnIsNewCustomer = False

Else
CustomersBindingSource.CancelEdit()

End If
...

End Sub

Test for Duplicates with a DataRowView
Changing the combo box’s data source to a DataTable also requires modifications to the duplicate
CustomerID test. The .Items(intCtr).ToString expression in the following code block returns
System.Windows.Forms.ComboBox, Items.Count = 94, not the expected CustomerID –
CustomerName string:

For intCtr = 0 To .Items.Count - 1
If Mid(.Items(intCtr).ToString, 1, 5) = strCustID Then

CompanyNameTextBox.Focus()
Dim strMsg As String = “CustomerID ‘“ + strCustID + _

“‘ duplicates existing entry ‘“ + .Items(intCtr).ToString + “.” + strHelp
MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)
blnIsDup = True
Exit For

End If
Next intCtr

You must cast the combo box item to a DataRowView object and test the DataRowView.Row.Item(0)
value, so make the following emphasized changes to the preceding block:

For intCtr = 0 To .Items.Count - 1
Dim drvCustID As DataRowView = CType(.Items(intCtr), DataRowView)
With drvCustID.Row

If .Item(0).ToString = strCustID Then
CompanyNameTextBox.Focus()
Dim strMsg As String = “CustomerID ‘“ + strCustID + _

“‘ duplicates existing entry ‘“ + .Item(1).ToString + “.” + strHelp
MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)
blnIsDup = True
Exit For

End If
End With

Next intCtr

167

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 167

The objective of the preceding two sections is to demonstrate how to program combo boxes populated
by a DataTable. A less-involved alternative is to change the method of populating an unbound
cboCustomerID combo box’s list by adding items with an SqlDataReader object and setting
cboCustomerID.Sort = True. Adopting this approach provides the added benefit of placing new
customer items in alphabetic order.

Apply Business Rules to Edits
As mentioned at the beginning of the chapter, business rules are enforced by the client application in this
chapter’s examples. Enforcing business rules in the presentation tier violates best practices because a
change to the rules requires that a new version of the application be deployed to all users’ PCs. If you
enforce business rules with SQL Server triggers or stored procedures, each data-entry error requires a
server roundtrip. There are two business rules, however, that aren’t likely to change — prohibiting
orders without line items and $0.00 as the UnitPrice value.

Add the following code to the beginning of the btnSaveOrders_Click event handler to enforce the
two rules:

‘Test for at least one line item
Dim strMsg As String
If Order_DetailsBindingSource.Count < 1 Then

strMsg = “An new order must have at least one line item. “ + _
“Please add a line item or click Cancel All Changes.”

MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)
Return

End If
‘Test for $0.00 as UnitPrice
Dim intRow As Integer
strMsg = “A UnitPrice of $0.00 isn’t permitted. Please edit line “
With Order_DetailsDataGridView1

For intRow = 0 To .Rows.Count - 2
If CDec(.Rows(intRow).Cells(3).Value) = 0D Then

strMsg += (intRow + 1).ToString + “.”
MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)
Return

End If
Next

End With

Most data-entry operators aren’t permitted to give customers arbitrary discounts; nor can operators be
expected to memorize quantity discount tables. For this example, it’s assumed that a single quantity
discount schedule applies to all products and customers and that changing a discount for existing items
that have a Discount value other than 0.0% is prohibited.

Discount schedules and sales or value-added tax tables are examples of business rules that should be
implemented by a mid-tier BPC. Discounts that vary by purchase quantity, customer type, location,
and other parameters or taxes require a database lookup.

168

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 168

To establish a fixed quantity discount schedule, add the following code to the beginning of the
GetUnitPrice procedure:

If intCol = 1 Then
‘Calculate fixed discounts for default 0.0%
With dgvDetails

If CInt(.Rows(intRow).Cells(4).Value) = 0D Then
Dim intQuan As Integer = CInt(.Rows(intRow).Cells(intCol).Value)
Dim decDisc As Decimal
Select Case intQuan

Case Is >= 100
decDisc = 0.25D

Case Is >= 50
decDisc = 0.15D

Case Is >= 25
decDisc = 0.1D

Case Is >= 10
decDisc = 0.075D

Case Is >= 5
decDisc = 0.05D

End Select
Update the Discount value
.Rows(intRow).Cells(4).Value = decDisc

End If
End With

End If

Quantity and ProductID are now the only Order Details field values that aren’t autogenerated for the
user, so you should set the ReadOnly property value of the UnitPrice and Discount columns to True.

Save Changes to the Base Tables
Up to this point, the Save... buttons on the two tab pages update only the typed DataSet. Before you
make changes to the Northwind base tables, you should decide on an update strategy. You can
accumulate changes in the DataSet and add a button to send all changes to the server as a batch or send
incremental changes as the user makes edits. Either alternative results in the same number of server
roundtrips unless you enable DataAdapter batch updates. Enabling batch updates requires adding
Me.m_adapter.UpdateBatchSize = n statements to the DataSetName.designer.vb file and doesn’t
provide a substantial performance improvement in a LAN environment.

The better policy for well-connected (LAN) clients is to save changes to the base tables when the operator
clicks any Save... button. This approach minimizes the likelihood of concurrency conflicts and reduces the
amount of data lost as the result of a client application crash, hardware failure, or power loss.

169

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 169

Maintain Referential Integrity
Maintaining referential integrity requires executing DELETE, UPDATE, and INSERT SQL statements or stored
procedures for related tables in a specific order. Deletions require a bottom-up sequence in the relation-
ship hierarchy, and updates and additions must occur in top-down order, unless cascading updates and
deletions are specified for tables below the topmost table. The Northwind FK_Order_Details_Orders and
FK_Orders_Customers relationships don’t have cascading updates or deletions specified.

Cascading updates and — especially — deletions are an anathema to most DBAs. It’s possible to acci-
dentally delete a customer record, but you can reconstruct it from multiple types of backup data sources.
(However, recreating a customer record with an int identity primary key is an involved process.) If
cascading deletions are in effect, the deletion also deletes all associated order, invoice, and line item
records. In this case, you must rely on the most recent database backup and transaction logs to repair
the damage.

You change the update and deletion rules in the DataSet designer window by right-clicking the
relationship line between parent and child tables, and choosing Edit Relation to open the Relation dialog.
The DataSet designer creates a relationship between its DataTables by default. You can specify Relation
Only, Foreign Key Constraint Only, or Both Relation and Foreign Key Constraint. If you specify a
foreign-key constraint, you have the following choices for the ForeignKeyConstraint.UpdateRule,
DeleteRule, and AcceptChangesRule property values:

❑ Cascade (the default) deletes child records when the parent-table record is deleted and updates
the foreign-key value of child records to that of the parent table’s new primary-key value.

❑ None makes no changes to child records when deleting the parent table or changing the
primary key value, which throws exceptions automatically. The result is orphaned child records,
unless you manage changes to child records with code in the Catch block.

❑ SetNull sets the child table’s foreign-key value to DBNull and orphans the records.

❑ Set Default sets the child table’s foreign-key value to the column’s default value, which
depends on the column data type.

This chapter’s examples don’t permit deleting Customers records or altering the CustomerID value, so
specifying Both Relation and Foreign Key Constraint and accepting the FK_Orders_Customers foreign-
key constraint default of None is valid for all three Rule values. Figure 4-17 shows the Relation dialog
with the change applied.

With the preceding change made, DataSet cascading updates and deletions affect only the current
order’s OrderDetails values. You can’t change the primary key value of an existing order. Thus, only
cascading deletions occur; these are required to delete an order that doesn’t have a ShippedDate value if
your code doesn’t delete line items before deleting the order.

170

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 170

Create and Test the UpdateBaseTables Function
Regardless of whether cascading updates, deletions, or both are specified for DataSets or base tables, the
general rule is to apply updates to base tables in the following sequence:

1. Deletions of child-table records

2. Insertions, modifications, and deletions of parent-table records

3. Insertions and modifications of child-table records

Figure 4-17

Playing by these rules requires that your base-table update code create a new ChangeTypeDataTable
for each update type of each base table, and execute the TableNameTableAdapter.Update
(ChangeTypeDataTable) for all DataTables that have changes. You generate each table by copying
updated DataRows that are identified by their DataRowState enumeration value: Added, Modified,
or Deleted.

171

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 171

Understand Change Table Generation and Base Table Update Instructions
ADO.NET 1.x DataAdapters require the following expression to generate a ChangeTypeDataTable and
update the corresponding base table:

Dim ChangeTypeDataTable As DataSet.DataTable = _
DataSet.DataTable.GetChanges(DataRowState.Type)

If Not ChangeTypeDataTable Is Nothing Then
OrdersDataAdapter.Update(ChangeTypeDataTable)

End If

TableAdapters require casting the ChangeTypeDataTable to the DataSet.DataTable type. You populate an
ADO.NET 2.0 ChangeTypeDataTable and update the base table with the following generic instruction:

Dim ChangeTypeDataTable As DataSet.DataTable = _
CType(DataSet.DataTable.GetChanges(DataRowState.Type), DataSet.DataTable)

If Not ChangeTypeDataTable Is Nothing Then
OrdersTableAdapter.Update(ChangeTypeDataTable)

End If

The type cast is a very small price to pay for the added versatility of TableAdapters.

Here’s the code to obtain modified rows of the OrdersDataTable and update the Orders base table:

Dim ModOrders As NorthwindDataSet.OrdersDataTable = _
CType(NorthwindDataSet.Orders.GetChanges(DataRowState.Modified), _
NorthwindDataSet.OrdersDataTable)

If Not ModOrders Is Nothing Then
OrdersTableAdapter.Update(ModOrders)

End If

Updating the three Northwind tables requires eight variations of the preceding theme, as illustrated by
Figure 4-18. If you include the very dangerous capability to delete a Customer record, you need nine
versions. Use copy, paste, edit, and replace operations to minimize typing.

172

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 172

Figure 4-18

Child Table
Deletions

(DelOrders)

Parent Table
Modification

(ModCustomers)

Parent Table
Additions

(AddCustomers)

Child Table
Insertions

(AddOrders)

Grandchild Table
Deletions

(DelDetails)

Child Table
Modifications
(ModOrders)

Start

Grandchild Table
Insertions

(AddDetails)

Grandchild Table
Modifications
(ModDetails)

Done

Retrieve Primary
Key and Update

Foreign Key

173

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 173

Add the UpdateBaseTables Function
It’s a good practice to test your update code before making changes to the base tables. One way to validate
your update procedure is to save the proposed changes as an XML file in diffgram format and then review
the file for typical update operations. It’s another good practice to let users know if they have changes
pending — preferably how many changes — before closing the application. The following code for the
UpdateBaseTables function accomplishes these goals:

Private Function UpdateBaseTables(ByVal blnTest As Boolean) As Boolean
‘Returns True if updates succeed or customer cancels form close
‘Returns False if updates fail or DataSet has no updates

If NorthwindDataSet.HasChanges Then
‘Customers is the parent table and Deletions aren’t allowed
‘Thus it’s not necessary to insert or update by DataRowState
‘However, test mode needs to detect the number of changes made
Dim NewCustomers As NorthwindDataSet.CustomersDataTable = _

CType(NorthwindDataSet.Customers.GetChanges(DataRowState.Added), _
NorthwindDataSet.CustomersDataTable)

Dim ModCustomers As NorthwindDataSet.CustomersDataTable = _
CType(NorthwindDataSet.Customers.GetChanges(DataRowState.Modified), _
NorthwindDataSet.CustomersDataTable)

‘Orders (inserts, updates, and Deletions)
Dim DelOrders As NorthwindDataSet.OrdersDataTable = _

CType(NorthwindDataSet.Orders.GetChanges(DataRowState.Deleted), _
NorthwindDataSet.OrdersDataTable)

Dim NewOrders As NorthwindDataSet.OrdersDataTable = _
CType(NorthwindDataSet.Orders.GetChanges(DataRowState.Added), _
NorthwindDataSet.OrdersDataTable)

Dim ModOrders As NorthwindDataSet.OrdersDataTable = _
CType(NorthwindDataSet.Orders.GetChanges(DataRowState.Modified), _
NorthwindDataSet.OrdersDataTable)

‘Order Details (inserts, updates, and Deletions)
Dim DelDetails As NorthwindDataSet.Order_DetailsDataTable = _

CType(NorthwindDataSet.Order_Details.GetChanges(DataRowState.Deleted), _
NorthwindDataSet.Order_DetailsDataTable)

Dim NewDetails As NorthwindDataSet.Order_DetailsDataTable = _
CType(NorthwindDataSet.Order_Details.GetChanges(DataRowState.Added), _
NorthwindDataSet.Order_DetailsDataTable)

Dim ModDetails As NorthwindDataSet.Order_DetailsDataTable = _
CType(NorthwindDataSet.Order_Details.GetChanges(DataRowState.Modified), _
NorthwindDataSet.Order_DetailsDataTable)

Dim dsChanges As DataSet = Nothing
Dim intChanges As Integer
If blnTest Then

‘Create a dataset of the changes
dsChanges = New DataSet

174

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 174

dsChanges.DataSetName = “dsChanges”
End If
Try

‘1. Delete Order Details records
If Not DelDetails Is Nothing Then

If blnTest Then
DelDetails.TableName = “DelDetails”
dsChanges.Tables.Add(DelDetails)

Else
Order_DetailsTableAdapter.Update(DelDetails)

End If
intChanges += DelDetails.Count

End If

‘2. Delete Orders records
If Not DelOrders Is Nothing Then

DelOrders.TableName = “DelOrders”
If blnTest Then

dsChanges.Tables.Add(DelOrders)
intChanges += DelOrders.Count

Else
OrdersTableAdapter.Update(DelOrders)

End If
intChanges += 1

End If

‘3. Insert New Customers records
If Not NewCustomers Is Nothing Then

If blnTest Then
NewCustomers.TableName = “NewCustomers”
dsChanges.Tables.Add(NewCustomers)

Else
CustomersTableAdapter.Update(NewCustomers)

End If
intChanges += NewCustomers.Count

End If

‘4. Update Modified Customers records
If Not ModCustomers Is Nothing Then

If blnTest Then
ModCustomers.TableName = “ModCustomers”
dsChanges.Tables.Add(ModCustomers)

Else
CustomersTableAdapter.Update(ModCustomers)

End If
intChanges += ModCustomers.Count

End If

‘5. Insert New Orders records
If Not NewOrders Is Nothing Then

If blnTest Then
dsChanges.Tables.Add(NewOrders)
NewOrders.TableName = “NewOrders”

Else
OrdersTableAdapter.Update(NewOrders)
End If

175

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 175

intChanges += NewOrders.Count
End If

‘6. Update Modified Orders records
If Not ModOrders Is Nothing Then

If blnTest Then
dsChanges.Tables.Add(ModOrders)
ModOrders.TableName = “ModOrders”

Else
OrdersTableAdapter.Update(ModOrders)

End If
intChanges += ModOrders.Count

End If

‘7. Insert New Order Details records
If Not NewDetails Is Nothing Then

If blnTest Then
dsChanges.Tables.Add(NewDetails)
NewDetails.TableName = “NewDetails”

Else
Order_DetailsTableAdapter.Update(NewDetails)

End If
intChanges += NewDetails.Count

End If

‘8. Update Modified Order Details records
If Not ModDetails Is Nothing Then

If blnTest Then
dsChanges.Tables.Add(ModDetails)
ModDetails.TableName = “ModDetails”

Else
Order_DetailsTableAdapter.Update(ModDetails)

End If
intChanges += ModDetails.Count

End If
If blnTest Then

‘Warn the user if changes are pending
Dim strFile As String = Application.StartupPath + _

“\DataSetUpdategram.xml”
If intChanges > 0 Then

‘Save the updates as a DiffGram
dsChanges.WriteXml(strFile, XmlWriteMode.DiffGram)
Dim strMsg As String = “You have update(s) pending to “ + _
intChanges.ToString + “ records(s).” + vbCrLf + vbCrLf + _
“Are you sure you want to quit without “ + _
“ saving these updates to the Northwind database?”

If MsgBox(strMsg, MsgBoxStyle.Question Or MsgBoxStyle.YesNo, _
“Pending Updates Not Saved”) = MsgBoxResult.Yes Then

Return False
Else

Return True
End If

Else
If File.Exists(strFile) Then

File.Delete(strFile)

176

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 176

End If
End If

End If
Return True

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace, MsgBoxStyle.Exclamation, _
“Database Updates Failed”)

Return False
Finally

‘Dispose the new objects now
If Not dsChanges Is Nothing Then

dsChanges.Dispose()
End If
If Not NewCustomers Is Nothing Then

NewCustomers.Dispose()
End If
If Not ModCustomers Is Nothing Then

ModCustomers.Dispose()
End If
If Not DelOrders Is Nothing Then

DelOrders.Dispose()
End If
If Not NewOrders Is Nothing Then

NewOrders.Dispose()
End If
If Not ModOrders Is Nothing Then

ModOrders.Dispose()
End If
If Not DelDetails Is Nothing Then

DelDetails.Dispose()
End If
If Not NewDetails Is Nothing Then

NewDetails.Dispose()
End If
If Not ModDetails Is Nothing Then

ModDetails.Dispose()
End If

End Try
Else

If Not blnTest Then
MsgBox(“There are no data updates to save.”, MsgBoxStyle.Information, _

“Save Requested Without Updates”)
End If
Return False

End If
End Function

The “Database Updates Failed” error message doesn’t provide users with the information they need to
solve the problem. The section “Handle Concurrency Errors Gracefully” in Chapter 5 shows you how to
determine the cause of the error and tell the user how to overcome the problem, if possible.

Preview Update Operations
The easiest way to generate initial DataSetUpdategram.xml test files is to add a temporary Test Updates
button to the Customer Orders tab page, and add the following Click event handler:

177

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 177

Private Sub btnTestUpdates_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnTestUpdates.Click
‘Temporary button for testing
Dim blnQuit As Boolean = UpdateBaseTables(True)

End Sub

Make a few changes to Customers, Orders, and Order Details records, click Test Updates, and inspect
the DataSetUpdategram.xml file in Internet Explorer. Verify that the changes you made are reflected in
the <dsChanges> group.

Invoke the Update Base Tables Function
After you’ve completed testing the UpdateBaseTables function with the NorthwindDataSet,
remove the temporary test button and invoke the function by adding the lines in bold text after the
btnSaveCustData_Click event handler’s EndEdit method call, as shown here:

CustomersBindingSource.EndEdit()
If UpdateBaseTables(False) Then

NorthwindDataSet.Customers.AcceptChanges()
Else

Return
End If

Invoke the function in the btnSaveOrders_Click event handler to update the Orders and Order
Details tables with this added code:

Order_DetailsBindingSource.EndEdit()
OrdersBindingSource.EndEdit()
If UpdateBaseTables(False) Then

NorthwindDataSet.Orders.AcceptChanges()
NorthwindDataSet.Order_Details.AcceptChanges()

Else
Return

End If

Now add an Imports System.IO statement to OrdersForm.vb and then add this code near the end
of the ContactNameTextBox_GotFocus event handler to repopulate the cboCustomerID with new
CustomerID values when restarting the project:

.SelectedIndex = .Items.Count - 1
Dim strFile As String = Application.StartupPath + _
“\LookupsDataSet.xml”

If File.Exists(strFile) Then
File.Delete(strFile)

End If

Check the Server for Duplicate CustomerID Values
Adding a new customer and an initial order fails if another user has added a customer with the same
CustomerID value after the last refresh of the dsLookups DataSet. Unless you save the failed updategram
and add code to retry it with a different CustomerID value, the entire entry is lost. To prevent data loss,
you should test the new CustomerID for a duplicate in the server’s Customers table.

178

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 178

Add the following CheckServerForCustID function, which uses the SqlCommand.ExecuteScalar
method to perform a fast test for server duplicates:

Private Function CheckServerForCustID(ByVal strCustID As String) As Boolean
‘Run a fast duplicate check on the server
‘Called by ContactNameTextBox_GotFocus in OrdersForm.vb
Dim cnNwind As SqlConnection = Nothing
Try

Dim strConn As String = My.Settings.NorthwindConnection.ToString
cnNwind = New SqlConnection(strConn)
Dim strSQL As String = “SELECT COUNT(CustomerID) FROM Customers “ + _

“WHERE CustomerID = ‘“ + strCustID + “‘“
Dim cmCustID As New SqlCommand(strSQL, cnNwind)
cnNwind.Open()
Dim intCount As Integer = CInt(cmCustID.ExecuteScalar)
cnNwind.Close()
If intCount > 0 Then

‘Duplicate found
Return True

Else
Return False

End If
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace, MsgBoxStyle.Exclamation, _
“Test Duplicates Error”)

Return False
Finally

If Not cnNwind Is Nothing Then
If Not cnNwind.State = ConnectionState.Closed Then

cnNwind.Close()
End If
cnNwind.Dispose()

End If
End Try

End Function

To execute the CheckServerForCustID function, add the lines shown in bold text to the
ContactNameTextBox_GotFocus procedure prior to the Exit Sub test:

If Not blnIsDup Then
‘Function is in OrderFormV3.vb
blnIsDup = CheckServerForCustID(strCustID)
If blnIsDup Then

CompanyNameTextBox.Focus()
Dim strMsg As String = “CustomerID ‘“ + strCustID + _

“‘ duplicates existing entry in Customers table.” + strHelp
MsgBox(strMsg, MsgBoxStyle.Exclamation, strTitle)

End If
End If
If blnIsDup Then

Exit Sub
End If

The final version of the project in the. \VB2005DB\Chapter04\OrdersByCustomer – Final folder has
a few housekeeping procedures that aren’t included in the preceding sections’ descriptions.

179

Programming TableAdapters, BindingSources, and DataGridViews

09_57678x ch04.qxd 11/10/05 11:28 PM Page 179

At this point, you have a reasonably complete data-entry front end, but it’s not ready for deployment
without wrapping the order-entry process in a transaction and generating error messages that enable
users to recover from errors, when possible. You add transaction management and other features to this
and related data-management projects in the examples of the following two chapters, which advance
you to journeyman status as a data components and DataGridView programmer.

Summary
VS 2005’s new data components let you drag table and relationship icons from the Data Sources window
to quickly create basic data-entry forms. The autogenerated form requires substantial modification to
qualify for production data-entry operations.

The default code that the designer adds to the FormName_Load event handler populates the typed
DataSet’s DataTables with every row of the server’s base tables. Opening the form and filling tables from
a large database generate a massive load on the server and a large spike in network traffic. You must add
parameterized SELECT queries to limit the load on the database server and generate a local DataSet of
reasonable size.

BindingNavigator controls docked at the top and bottom of a data-entry form are suitable for testing,
but require users to move between the mouse and keyboard for data-entry operations. Adding accelera-
tor key definitions to ToolStripButtons and ToolStripLabels helps minimize these transitions, which
reduce data-entry efficiency greatly. A better approach is to replace BindingNavigators with accelerator
key–enabled buttons that are located adjacent to the controls that they affect. It’s much easier to navigate
a DataGridView with the arrow keys than with a mouse.

DataGridViews require column formatting to optimize data-entry operations and display currency and
percentage values correctly. You can set column formatting properties with code, but using the Edit
Columns dialog and its CellStyleBuilder to set properties in design mode is more efficient. Use these two
dialogs to add and format unbound columns, which you populate with code in the CellValueNeeded
event handler. Add default values for new DataGridView rows with code in the DefaultValuesNeeded
event handler.

A form with a Tab control minimizes the screen space required for complex, multi-level data-entry
projects and can establish a workflow sequence for editing and adding new items. Adding a tab page and
substituting text boxes for wide DataGridView columns increases data-entry efficiency and minimizes
typographical errors. BindingSources let you bind multiple controls to a single data source. Binding
combo boxes with lookup lists to controls that set foreign-key values is crucial for production-grade
forms.

Optimizing the form design for heads-down data entry requires a substantial amount of code to enable
and disable controls, automate tab page movement, enforce business rules, and maintain referential
integrity when updating the base tables. The final version of this chapter’s example form has about 1,500
lines of code. The effort you invest in optimizing data-entry operations pays long-term dividends and
gains you the respect of the application’s users.

180

Chapter 4

09_57678x ch04.qxd 11/10/05 11:28 PM Page 180

Adding Data Validation and
Concurrency Management

Validating data entries in text boxes, other simply bound Windows form controls, and DataGridViews
is a relatively simple task. Simply bound Windows form controls require defining an ErrorProvider
object to specify the location and other attributes of the error icon, which is a white exclamation mark
within a red circle by default. DataGridViews have a built-in error provider, which makes validating
cell values even easier. Data validation usually is sufficient for simple single-user database front
ends, although you might need to query the server within the validation event handler to prevent
data updates from failing — for example, when adding a new row to a table with a value-based
primary key, such as the Northwind Customers table. If your proposed primary-key value is present,
you incur an SqlException and must resubmit your updates. The first few sections of this chapter
cover data entry validation techniques for bound text boxes and DataGridViews.

Multi-user front ends, which are much more common than the single-user variety, require
concurrency management. Performing server-side base-table UPDATE or DELETE operations with
DataTableAdapters executes value-based concurrency tests by default. If any base-table value on
the server doesn’t match a DataRow’s original values, the DataTableAdapter.Update method
fails and you receive a DBConcurrencyException. Overcoming concurrency errors with a
process that’s reasonably easy for users is not simple, as you’ll discover shortly. Most of this
chapter is devoted to concurrency management.

This chapter demonstrates VB 2005 code for data validation and concurrency management with a sam-
ple Windows form project — OrdersByCustomerTx.sln. Figure 5-1 shows the OrdersByCustomerTx
.sln project’s main form, which is based on Chapter 4’s OrdersByCustomerV2 form and the
OrdersByCustomerV3.sln (Final) project’s UpdateBaseTables function and related event handlers
for update operations. Although you can emulate concurrency errors by running two instances of
OrdersByCustomerTx.sln, it’s more convenient to develop and test concurrency management
strategies by emulating conflicts in a single project instance. Thus, the main form has three buttons
that induce concurrency errors by writing updates directly to the server.

10_57678x ch05.qxd 11/10/05 11:18 PM Page 181

Figure 5-1

This chapter demonstrates two concurrency management techniques that you won’t find in Visual
Studio 2005’s online help or ADO.NET best practices white papers — comparing the number of child
records on the server with those in the client’s DataTable and restoring an order that’s been deleted on
the server by another user.

All sample projects in the preceding chapters assume that you or the client’s user has an always-on local
or network connection to the database server. This chapter shows you how to design applications that
support disconnected users who make offline updates to the client’s DataSet and then update the server
tables when they reconnect to the network. Marking the sample project’s Emulate Disconnected User
checkbox simulates offline status. If you make offline updates and clear the checkbox, update processing
begins automatically. Concurrency management techniques are similar for connected users and recon-
necting mobile users, but you must add a substantial amount of code to create and manage the discon-
nected user’s local DataSet.

The OrdersByCustomerTx.sln sample project’s source code is in the \VB2005DB\Chapter05\
OrdersByCustomerTx folder. App.config’s default connection string requires the Northwind sample
database to be installed on a local instance (localhost) of SQL Server 2000, MSDE 2000, or SQL
Server 2005. If you’re using SQL Express, change localhost to .\SQLEXPRESS.

182

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 182

You’ll find illustrated online help files for entering data and testing the project at http://www
.oakleaf.ws/concurrency/. Abridged HTML copies of the online help files — Connected.htm and
Disconnected.htm — are in the \VB2005DB\Chapter05\OrdersByCustomerTx\bin\Debug\Help
folder. Right-click the form to display Connected.htm. If you mark the Emulate Disconnected User
checkbox, right-clicking the form displays Disconnected.htm.

The sample project adds more than 2,500 lines of Visual Basic code to its predecessor. Most of the added
code implements concurrency management. Developing and testing production-grade ADO.NET 2.0
concurrency management techniques require a database with at least a three-level hierarchy, a variety
of field data types, and representative sample data, including DBNull values. Simple master-details
tables with a few columns and rows won’t disclose the many concurrency management design and
implementation issues that this chapter describes.

To make finding this chapter’s code examples in the OrdersForm.vb editor easier, each example includes
a reference to a numbered ‘HACK ##: Description Task List comment, such as ‘HACK 1: Text Box
Data Validation. Choose View ➪ Other Windows ➪ Task List to open the Task List window, and
select Comments from the dropdown list.

Some code listings are abridged to remove code that isn’t applicable to the topic of the section where the
listing appears.

Validate Data Entries
Most Windows form controls fire a Validating event when the user edits a control’s value and a
Validated event after the edited value commits. Validation events for keyboard operations — such as
Tab or Shift+Tab — occur within the following event sequence: Enter, GotFocus, Leave, Validating,
Validated, and LostFocus. Mouse operations and the Focus method generate a slightly different
sequence: Enter, GotFocus, LostFocus, Leave, Validating, and Validated. To validate the edited
value of an unbound or simply bound control, you add a ControlName_Validating event handler
with expressions to test the edited value and generate an error icon and tooltip with an ErrorProvider
object.

Error icons and tooltips are much less intrusive than message boxes, which users must acknowledge by
clicking OK or pressing Enter.

Validate Text Boxes
Following is a simple example of a TextBox_Validating event handler (Task List comment 01) to
ensure that the CompanyName text box contains at least five characters:

Private Sub CompanyNameTextBox_Validating(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles CompanyNameTextBox.Validating
‘Require CompanyName to have at least five characters
If CompanyNameTextBox.Text.Length < 5 Then

Dim strError As String = “CompanyName requires at least five characters”
e.Cancel = True

183

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 183

epCompanyName.SetError(CompanyNameTextBox, strError)
Else

epCompanyName.SetError(CompanyNameTextBox, String.Empty)
End With

End Sub

This chapter’s sample OrdersByCustomerTx.sln project includes the text box and DataGridView
validation examples. Build and run the project, click New Customer, and press Tab to generate a
CustomerID. Then clear the CompanyName text box to display the error icon. Type at least five
characters in the text box, and click Cancel Edit to abandon the Customers record addition.

Setting e.Cancel = True prevents the user from leaving the control without correcting the error. The
epCompanyName.SetError(CompanyNameTextBox, strError) expression requires defining an
ErrorProvider object in the FormName_Load event handler or the form’s constructor with code such as
the following (Task List comment 02):

Private epCompanyName As ErrorProvider()
...

epCompanyName = New ErrorProvider()
With epCompanyName

.SetIconAlignment(CompanyNameTextBox, ErrorIconAlignment.MiddleRight)

.SetIconPadding(CompanyNameTextBox, 2)

.BlinkRate = 500 ‘half-second

.BlinkStyle = System.Windows.Forms.ErrorBlinkStyle.AlwaysBlink
End With

If you provide a Cancel button or the like to abandon the entry without correcting the validation error, you
must add a ControlName.SetError(CompanyNameTextBox, String.Empty) instruction to
remove the icon and permit the user to regain focus control. A control with an active ErrorProvider
object also prevents the user from closing the form, unless you add a FormName_Closing event handler
and set e.Cancel = False.

Validate DataGridViews
DataGridViews have a built-in error provider, so you don’t need to add an ErrorProvider object for
this control. In addition to the common Validating and Validated events, which apply to the entire
contents of the control, DataGridViews fire CellValidating, CellValidated, RowValidating, and
RowValidated events. Cell... events fire when the user attempts to leave or leaves the current cell, and
Row... events occur when the user tries to leave or leaves the current row. The CellValidating event is
the most useful of the six validation events. The e.ColumnIndex and e.RowIndex properties return the
coordinates of the cell with the error. Adding an error message to the DataGridView.Row.ErrorText
property displays an icon in the corresponding RowHeader and adds a tooltip to the row. You clear the
icon and tooltip by setting the DataGridView.Row.ErrorText property to an empty string in the
DataGridView_CellValidating or DataGridView_CellEndEdit event.

The default values added for the EmployeeID column of new Orders rows and ProductID for new Order
Details rows cause a foreign-key constraint SqlException if the user attempts to save changes without
changing 0 to a valid value. Setting foreign-key values with a dropdown list solves this problem; for

184

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 184

simplicity, this chapter’s sample project requires the user to enter numeric values. The following
event-handling code for DataGridView_CellValidating and DataGridView_CellValidating or
DataGridView_CellEndEdit is typical of simple validation expressions (Task List comments 03 and 04).

Private Sub OrdersDataGridView_CellValidating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellValidatingEventArgs) _
Handles OrdersDataGridView.CellValidating

‘Validate the EmployeeID column value
Try

With OrdersDataGridView
If e.ColumnIndex = 2 Then

If CInt(e.FormattedValue) < 1 Or CInt(e.FormattedValue) > 9 Then
Dim strError As String = “EmployeeID value must be a number “ + _
“between 1 and 9”
.Rows(e.RowIndex).ErrorText = strError
e.Cancel = True

End If
End If

End With
Catch exc As Exception

MsgBox(exc.Message, MsgBoxStyle.Information, “Invalid EmployeeID Entry”)
End Try

End Sub

Private Sub OrdersDataGridView_CellEndEdit(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles OrdersDataGridView.CellEndEdit

‘Clear row error tooltip
With OrdersDataGridView

If e.ColumnIndex = 2 Then
.Rows(e.RowIndex).ErrorText = “”

End If
End With

End Sub

Private Sub Order_DetailsDataGridView_CellValidating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellValidatingEventArgs) _
Handles Order_DetailsDataGridView.CellValidating

‘Validate ProductID column value
Try

With Order_DetailsDataGridView
If e.ColumnIndex = 2 Then

If CInt(e.FormattedValue) < 1 Or CInt(e.FormattedValue) > 77 Then
Dim strError As String = “ProductID value must be a number “ _

“between 1 and 77”
.Rows(e.RowIndex).ErrorText = strError
e.Cancel = True

End If
End If

End With
Catch exc As Exception

MsgBox(exc.Message, MsgBoxStyle.Information, “Invalid ProductID Entry”)
End Try

185

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 185

End Sub

Private Sub Order_DetailsDataGridView_CellEndEdit(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles Order_DetailsDataGridView.CellEndEdit

‘Clear row error tooltip
With Order_DetailsDataGridView

If e.ColumnIndex = 2 Then
.Rows(e.RowIndex).ErrorText = “”

End If
End With

End Sub

Run the sample project, and click the Add New Order ToolStrip button to display the error icons and
tooltips. Type valid EmployeeID and ProductID values to clear the error icons. Click Cancel Orders
Edit to abandon the new order entry.

Catch Primary Key Constraint Violations on Entry
The Order Details table has a composite primary key — OrderID and ProductID — so duplicate
ProductID values cause a primary-key constraint exception in the local Order_Details table. Thus, the
preceding validation code for the ProductID column should test for duplicates also. A simple and
lightweight method for detecting duplicate values is to create a HashTable instance and populate its
key/value pairs with the DataGridView’s formatted ProductID value and row number. If you add a
duplicate ProductID key, the HashTable throws an exception that you process with the following listing’s
emphasized code (Task List comment 04):

Private Sub Order_DetailsDataGridView_CellValidating(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellValidatingEventArgs) _

Handles Order_DetailsDataGridView.CellValidating
‘Validate ProductID column value and test for duplication
Try

With Order_DetailsDataGridView
Dim strError As String = Nothing
If e.ColumnIndex = 2 Then

If CInt(e.FormattedValue) < 1 Or CInt(e.FormattedValue) > 77 Then
strError = “ProductID value must be a number between 1 and 77”
.Rows(e.RowIndex).ErrorText = strError
e.Cancel = True
SaveOrdersToolStripButton.Enabled = False

Else
‘Create a hashtable of ProductID values
‘Adding a duplicate key value throws an exception
Dim htDupes As Hashtable = New Hashtable
Dim intRow As Integer
Try

‘Remove previous error text
.Rows(intRow).ErrorText = “”
For intRow = 0 To .Rows.Count - 2

‘Use the EditedFormattedValue property for proposed value
Dim objID As Object = _

.Rows(intRow).Cells(2).EditedFormattedValue
htDupes.Add(.Rows(intRow).Cells(2).EditedFormattedValue, intRow)

186

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 186

Next intRow
Catch exc As Exception

If intRow = e.RowIndex Then
strError = “ProductID duplicates entry in another row”

Else
strError = “ProductID duplicates entry in row “ + _

intRow.ToString
End If
SaveOrdersToolStripButton.Enabled = False
.Rows(e.RowIndex).ErrorText = strError
e.Cancel = True

End Try
End If

End If
End With

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Information, “Invalid ProductID Entry”)

End Try
End Sub

Build and run the sample project, and click the New Order button. Type a valid EmployeeID to clear the
OrderDataGridView error icon. Change the default row’s ProductID to 1 or some other valid value and
then add a new Order Detail record with the same value to display the primary-key error icon and
tooltip. Correct the violation, and click Cancel Orders Edit.

Validate Default Values
When adding default values that contain deliberately erroneous values, such as a dropdown list with a
default No Value Selected item or the like, it’s a good practice to flag the new row with an error icon to
indicate an editing requirement. The NewOrderToolStripButton_Click event handler simplifies
adding a new order by inserting and selecting a new row in both grids. The following code highlights
instructions to add the error icons and tooltips (Task List comment 05):

Private Sub NewOrderToolStripButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles NewOrderToolStripButton.Click
‘Add a new order programmatically
OrdersDataGridView.EndEdit(DataGridViewDataErrorContext.Commit)
Order_DetailsDataGridView.EndEdit(DataGridViewDataErrorContext.Commit)

EditOrdersToolStripButton.PerformClick()
OrdersBindingSource.AddNew()
OrdersBindingSource.MoveLast()
Dim dgvRow As DataGridViewRow = Nothing
With OrdersDataGridView

dgvRow = .Rows(.Rows.Count - 2)
.CurrentCell = .Rows(.Rows.Count - 2).Cells(2)
Dim strError As String = “EmployeeID value must be a number “ + _
“between 1 and 9”
dgvRow.ErrorText = strError

End With
AddDefaultOrderValues(dgvRow)
FK_Order_Details_OrdersBindingSource.AddNew()
FK_Order_Details_OrdersBindingSource.MoveLast()

187

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 187

With Order_DetailsDataGridView
dgvRow = .Rows(0)
.CurrentCell = .Rows(0).Cells(2)
Dim strError As String = “ProductID value must be a number “ + _
“between 1 and 77”
dgvRow.ErrorText = strError

End With
AddDefaultDetailsValues(dgvRow)
OrdersDataGridView.Focus()
blnIsNewOrder = True

SaveOrdersToolStripButton.Visible = True
CancelOrdersEditToolStripButton.Visible = True

End Sub

Adding a new row with code doesn’t fire the DataGridView_DefaultValuesNeeded event, so you should
add the highlighted instructions to those event handlers for testing new rows that the user adds manually.
Alternatively, add the instructions to the AddDefaultOrderValues and AddDefaultDetailsValues
procedures, which supply the default values.

Figure 5-2 illustrates the OrdersByCustomerTx form with error icons for the CompanyName text box
and the two DataGridViews. (The Customers section of the form is an overlay; you can’t add a new
customer while editing Orders or Order Details rows.)

Figure 5-2

188

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 188

Manage Concurrency Violations
Concurrency control prevents a user from overwriting other users’ modifications to the same base table
record. As the number of concurrent users of an ADO.NET 2.0 data-editing application increases, the
type of concurrency control that the data-editing application employs plays an increasingly important
role in determining data availability. Data availability is the primary determinant of data-intensive
application scalability.

Following are the two common approaches to concurrency control:

❑ Pessimistic concurrency control places locks on all rows undergoing modification by a user.
The locks prevent other users from reading or modifying the rows until the first user commits
the modifications to the database. It’s a common pessimistic-concurrency practice to place locks
on all child records when a user updates a parent record. In this case, a user that suspends the
update operation can prevent access to a potentially large number of records by all other users.

❑ Optimistic concurrency control places locks on rows only while updating the rows, which
ordinarily requires about 5 to 50 milliseconds. The application tests rows for updates by other
users prior to committing data changes. If another user updates a row after the current user
reads it, a concurrency violation occurs. Unless the front-end application contains business logic
to control which update has precedence, the later update doesn’t commit.

The “last user wins” approach, which overwrites previous row changes with the current user’s values,
isn’t a concurrency control method. In this case, the front end doesn’t implement concurrency control.
Concurrency control is essential for almost all multi-user database front ends or middle tiers.

The data components’ disconnected architecture requires optimistic concurrency control in multi-user
environments. Users receive a snapshot of data to display and edit. DataTables store snapshot data as
Original values; Current values store edited and unaltered data. As the amount of editing activity
(volatility) in the database and age (latency) of the snapshot increase, the probability of concurrency
violations increases. You can minimize potential concurrency violations by refreshing the snapshot
immediately before updating records with, for example, an Edit Records button that also removes
read-only restrictions. However, this approach increases the load on the database server and network,
which reduces scalability, and won’t work for frequently or usually disconnected mobile users. Unless
you implement a timeout test, the user can refresh the snapshot, go to lunch or on break, and then
commence editing with a stale snapshot.

ADO.NET 2.0 Concurrency Control
and Transaction Changes

ADO.NET 2.0 TableAdapters and typed DataSets require a new approach to writing optimistic concurrency
control code. ADODB disconnected Recordsets provide an elaborate mechanism for handling concurrency
violations when applying the Recordset.UpdateBatch method. Concurrency violations add members to
the Errors collection, and applying the Recordset.Filter = adFilterConflictingRecords returns the
set of records having concurrency errors. Disconnected Recordsets let you invoke the Recordset.Resync
method to undo the set of offending updates. ADO.NET 1.x and 2.0 don’t have a built-in equivalent to the
Resync method, so you must add code to retrieve current base-table data if you want to let users choose
whether to overwrite server data or undo their pending updates.

189

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 189

ADO.NET 1.x DataAdapters and ADO.NET 2.0 TableAdapters detect concurrency errors for UPDATE and
DELETE operations by including the original values from DataTable.Fill operations in the WHERE clause.
Updating the ProductID value of an Order Details record from 2 to 3 generates the following SQL
UPDATE statement:

exec sp_executesql N’UPDATE [dbo].[Order Details]
SET [OrderID] = @OrderID,[ProductID] = @ProductID, [UnitPrice] = @UnitPrice,

[Quantity] = @Quantity, [Discount] = @Discount
WHERE (([OrderID] = @Original_OrderID) AND ([ProductID] = @Original_ProductID) AND

([UnitPrice] = @Original_UnitPrice) AND ([Quantity] = @Original_Quantity) AND
([Discount] = @Original_Discount))’,

N’@OrderID int,@ProductID int,@UnitPrice money,@Quantity smallint,@Discount real,
@Original_OrderID int,@Original_ProductID int,@Original_UnitPrice money,

@Original_Quantity smallint,@Original_Discount real’,

@OrderID = 11094, @ProductID = 3, @UnitPrice = $12.0000, @Quantity = 10,
@Discount = 7.500000298023224e-002,

@Original_OrderID = 11094, @Original_ProductID = 2, @Original_UnitPrice = $12.0000,
@Original_Quantity = 10, @Original_Discount = 7.500000298023224e-002

The preceding SQL statement was captured by SQL Server 2005 Profiler. The trailing decimal values
in the mantissa for Discount values are the result of using the real (single-precision floating point)
value, instead of decimal(4,2) or double as the datatype. This rounding-error issue originated in the
Microsoft Access 1.0 Northwind.mdb sample database, which the SQL Server team adopted without
changing the datatype.

Moving from ADO.NET 1.x Connections, DataAdapters, and CurrencyManagers to ADO.NET 2.0’s new
TableAdapters and BindingSources complicates concurrency violation management. The typed DataSet
absorbs database connection management and doesn’t expose important DataAdapter properties.

Hidden Connection and Transaction Properties
Most DBAs don’t permit front-end applications to access tables directly or update related tables without
wrapping multiple update operations within a transaction. Substituting stored procedures for SQL
statements with the Data Component Configuration Wizard satisfies the first requirement but not the
second. It’s easy to implement client-side transactions with SqlConnection and SqlDataAdapter
objects but not with ADO.NET 2.0 data components.

VS 2005 Beta 1 typed DataSets exposed TableAdapter.Transaction and TransactionConnection
properties as Friend Property Transaction() As System.Data.SqlClient.SqlTransaction
and Friend ReadOnly Property Connection() As System.Data.SqlClient.SqlConnection.
Subsequently, these properties became private, so you can’t implement transactions directly with
ADO.NET 2.0 typed DataSets. TableAdapters open and close the connection for each command, which
precludes creating a usable SqlTransaction object. (Transactions are dedicated to a single connection
that must remain open until you invoke the Commit or Rollback method.) Writing Partial Class
DataSetName code to enable a single SqlConnection and create its SqlTransaction object isn’t easy,
as demonstrated by the examples of Chapter 6.

Some DBAs might not accept ADO.NET client-side transactions as a substitute for T-SQL transactions
that wrap stored procedures. Before you expend time implementing a partial class, verify that the DBA(s)
in charge of the affected database(s) are amenable to client-side transactions.

190

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 190

The ContinueUpdateOnError Property
ADO.NET 1.x DataAdapters and ADO.NET 2.0 TableAdapters provide a ContinueUpdateOnError
property, which you can set to True to prevent throwing DBConcurrencyExceptions when concurrency
violations occur upon executing DataAdapter.Update commands. Eliminating these exceptions permits
multiple updates — some of which have concurrency violations — to proceed without user intervention.
When a violation occurs, the DataAdapter sets the DataRow.RowError property value of its source
DataTable to “Concurrency violation: the UpdateCommand affected 0 of 1 records” or the like. Rows with
errors in DataGridViews display a red exclamation mark icon. You must write a substantial amount of
business logic code to resolve the errors ex post facto.

The ContinueUpdateOnError property is useful primarily with simple update scenarios for a single
DataTable. Updating related tables requires creating three temporary DataTables for each DataSet
.DataTable, as described in Chapter 4’s “Maintain Referential Integrity” section and later in this chapter.
Setting the ContinueUpdateOnError property to True for more than one related table isn’t a good
database programming practice because it’s very difficult to resolve concurrency violations for related
tables.

Concurrency Control Strategies
Before you begin writing concurrency-control code, you and your consulting client or the application’s
owner must agree on the concurrency-control specification. The following questions cover the most
important specification elements for handling concurrency violations:

❑ Should updates be permitted to more than one data entity, such as a customer record or sales
order, without saving the data for individual entities to the server? In an always-connected LAN
environment, it’s a good practice to save changes to one data entity before creating or editing
another. Frequently disconnected mobile users, however, need to make updates to multiple
entities before reconnecting to the network and saving their changes. Multiple entity updates
require row-by-row update processing to accommodate concurrency control, as described in the
section “Accommodate Disconnected Users,” later in this chapter. Processing temporary update
files as a batch complicates concurrency tests for child records. Adding multiple new entities
doesn’t require concurrency control.

❑ Will all users be permitted to decide whether to overwrite other users’ changes? If overwriting
specific users’ changes is restricted to particular user roles, all tables must include a column to
identify the user who added or last modified the row.

❑ What information must be presented to the user to make an informed overwrite decision? In
most cases, the user needs to see the changes others made to the row; obtaining this data
requires a roundtrip to the server. Displaying original values, in addition to the user’s current
modifications, is useful but not usually essential.

❑ Are message boxes with the preceding information sufficient for resolving conflicts or is a more
complex UI, such as a DataGridView or another form, required? Message boxes usually suffice,
but you might need a pop-up dialog or a tab page to handle violations that occur with complex
data structures.

❑ Should a single concurrency violation prevent or roll back all changes associated with an update?
Rolling back all changes requires a client-side transaction, which isn’t easy to implement with
data components, as you see in Chapter 6’s “Apply Transactions to DataSet Updates” section. It’s
even more challenging to assign a specific transaction to a particular data entity when you permit
updating multiple data entities in a single update operation.

191

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 191

❑ Do users need the choice of regenerating a new order if another user has deleted the entire order
from the server? The process of re-creating the order is reasonably easy, but you must test for a
deleted order prior to attempting an order update operation or modification to child records.
Code to compare the number of child records will detect the deleted order, but that code doesn’t
provide the ability to regenerate the order.

The specifications that you agree upon will have a profound effect on the number of hours that you’ll
spend writing and debugging concurrency-management code, as you’ll see in the sections that follow
and by exploring the OrdersByCustomerTx project.

The “Missing Links” of Concurrency Management
In related-table scenarios, multiple users can insert or delete child rows of parent tables. Newly inserted
child rows aren’t visible to users with stale snapshots. Deleted child rows aren’t detected unless the
updating user modifies them and later applies the ChildTableAdapter.Update method. Prior to
detecting the child-table deletion, the updating user might have modified the parent row, or added or
deleted child rows during the update operation.

Altering base table records before detecting child-record additions or deletions can be dangerous. For
example, a physician with a laptop or Pocket PC that’s disconnected from the network might alter a
patient’s prescriptions or dosages without knowing that another health worker has added or deleted a
prescription. When the physician reconnects to the network and updates the base tables, undetected
additions or deletions might ultimately threaten the patient’s health or, potentially, her life.

Very few concurrency-control articles and code examples, including those in VS 2005’s online help,
include tests for child-record count mismatches. This omission is surprising when you consider the
potential impact of another user’s undetected modifications.

Detect Child-Record Count Mismatches
Detecting child-record additions or deletions by other users requires comparing the number of child
records on the server with that in the updating user’s local DataTable prior to executing any updates to
the master or child rows. Autogenerated TableAdapter UPDATE commands don’t include this test, so you
must add code to detect the difference between the number of child rows.

The following sample function obtains the current Order Details count from the server, adjusts the local
count for rows to be added or deleted in later update operations, when applicable, and returns True if
the count values match (Task List comment 06):

Private Function TestNumberOfDetails(ByVal intOrderID As Integer, _
ByVal intAdded As Integer) As Boolean
‘Returns True if number of Order Details records are the same as on the server
‘or it’s a new order and has no details records yet
‘Returns False if other users have changed the number on the server.
‘Takes into account pending new records during the test

Dim strConn As String = My.Settings.NorthwindConnection
Dim cnNwind As New SqlConnection(strConn)
Dim cmCurrent As New SqlCommand(“”, cnNwind)
Dim intCurrent As Integer

192

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 192

Try
‘Get the first OrderID from the first row
cnNwind.Open()

Dim strSQL As String = “SELECT COUNT(*) FROM [Order Details] WHERE “ + _
“OrderID = “ + intOrderID.ToString

With cmCurrent
.CommandType = CommandType.Text
.CommandText = strSQL
intCurrent = CInt(.ExecuteScalar)

End With
cnNwind.Close()

If intCurrent = 0 Then
‘New order; don’t perform further tests
Return True

End If

‘Get the filtered value from the Order_Details table
‘Dim dvDetails As New DataView(NorthwindDataSet.Order_Details, _
‘ “OrderID = “ + intOrderID.ToString, “OrderID”, _
‘ DataViewRowState.CurrentRows)
‘Dim intCount As Integer = dvDetails.Count

‘Following is claimed to be a faster method than the preceding
Dim dvDetails As New DataView
Dim intCount As Integer
With dvDetails

.Table = NorthwindDataSet.Order_Details

.Sort = “OrderID”
Dim drvDetails As DataRowView()
drvDetails = .FindRows(intOrderID)
intCount = drvDetails.Length
.Dispose()

End With

If intCurrent = intCount - intAdded Then
‘No change in number of Order Details
Return True

Else
Return False

End If
Catch exc As Exception

MsgBox(exc.Message, MsgBoxStyle.Exclamation, _
“Can’t Retrieve Current Server Data”)
Return False

Finally
If Not cnNwind.State = ConnectionState.Closed Then

cnNwind.Close()
End If
cmCurrent.Dispose()
cnNwind.Dispose()

End Try
End Function

193

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 193

The “Sorting and Filtering Data Using a DataView” online help topic suggests that creating a DataView
of the table and applying the DataView.FindRows method to return an array of DataRowView
objects is faster than returning a set of DataRows from a filtered DataView object. You must set the
DataView.Sort property value to the appropriate column name to apply the DataView.FindRows
method. The performance differences between the two methods isn’t likely to be significant with a small
number of rows.

You apply the preceding test prior to invoking the TableAdapter.Update methods for the parent
and child tables — Orders and Order Details for this example. The sample project uses an SQL query,
but you can substitute a stored procedure easily.

Uncover Other Potential Concurrency Conflicts
It’s another good practice to test all child rows for concurrency errors, not just rows modified by the user
in a DataGridView. Doing this requires applying the SetModified method to all rows when the user
changes a value in the DataGridView. As an example, the following DataGridView_CellValueChanged
event handler sets all Order_Details rows for the current Orders row to Modified when the user changes a
single cell value (Task List comment 07):

Private Sub Order_DetailsDataGridView_CellValueChanged(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles Order_DetailsDataGridView.CellValueChanged

If Order_DetailsDataGridView.Enabled Then
SaveOrdersToolStripButton.Visible = True
CancelOrdersEditToolStripButton.Visible = True
Dim blnMarkAllRows As Boolean = True ‘For testing
Dim intRow As Integer
If blnMarkAllRows Then

Try
Dim objCurrent As Object = _
FK_Order_Details_OrdersBindingSource.Current

If Not objCurrent Is Nothing Then
‘Get the OrderID
Dim drvCurrent As DataRowView = CType(objCurrent, DataRowView)
Dim strOrderID As String = drvCurrent.Item(0).ToString
With NorthwindDataSet.Order_Details

Dim drDetails As DataRow() = .Select(“OrderID = “ + strOrderID)
‘If the table has a DateTime modified field, sort ascending
‘(oldest first) to throw concurrency violation errors before
‘reaching the user-updated value
If drDetails.Length > 0 Then

For intRow = 0 To drDetails.Length - 1
If drDetails(intRow).RowState = DataRowState.Unchanged Then

Try
‘Required to ignore non-fatal exception
drDetails(intRow).SetModified()

Catch exc as Exception
End Try

End If
Next

End If
End With

End If
Catch exc As Exception

194

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 194

MsgBox(exc.Message + exc.StackTrace)
End Try

End If
End If

End Sub

The DataTable.Select method returns an array of DataRow objects, which you iterate to apply the
new DataRow.SetModified method. You must test each row with the DataRow.DataRowState
method because you can apply the SetModified method to unchanged rows only.

Enable Users to Recreate Deleted Orders
Data-entry personnel might delete an active order unknowingly or maliciously. If an updating user’s
DataSet includes a copy of the deleted order, you can add code to provide the choice of accepting the
deletion or generating a new order with current updates. The following IsOrderModifiedOrDeleted
function returns a member of the OrderServerStatus enumeration (Task List comment 08).

This version doesn’t test for modified Order Details records on the server because concurrency errors detect
these modifications. In a production version, this function could include the concurrency management
code that’s described in the section “Handle Concurrency Errors Gracefully,” later in this chapter.

The initial set of tests prevents testing Orders and Order Details records that the user has added to the
local DataSet before saving the updates to the server. In this case, the DataRowState is Added. Notice
that you must use the temporary new OrderID value assigned by the DataTable (intOrigID), not the
OrderID value of the new Orders record (intOrderID) to test Order Details records because the update
sequence inserts Orders records before Order Details records.

Private Function IsOrderModifiedOrDeleted(ByVal intOrderID As Integer, _
ByVal intProductID As Integer, ByVal intOrigID As Integer) As OrderServerStatus
‘Called by most UpdateBaseTables operations
‘Returns one of the OrderServerStatus enums
Dim eStatus As OrderServerStatus

‘Don’t test server status for added Orders
‘Added or modified Order Details records for existing orders must be tested
Dim drAdded As DataRow
If intProductID = 0 Then

‘It’s an Orders record
drAdded = NorthwindDataSet.Orders.FindByOrderID(intOrderID)
If Not drAdded Is Nothing Then

If drAdded.RowState = DataRowState.Added Then
‘It’s an added Orders record
Return OrderServerStatus.NewRow

End If
End If

Else
If intOrigID <> intOrderID Then

‘It’s a added Order Details record for a new Orders record
‘Must use the original, not the new OrderID
drAdded = _

NorthwindDataSet.Order_Details.FindByOrderIDProductID(intOrigID, _
intProductID)

If drAdded Is Nothing Then

195

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 195

Return OrderServerStatus.Unmodified
Else

If drAdded.RowState = DataRowState.Added Then
‘It’s an added Orders record
Return OrderServerStatus.NewRow

End If
End If

End If
End If

‘Test for order on server
Dim dtModified As DataTable = NorthwindDataSet.Orders.Clone
Dim strSQL As String = “SELECT * FROM Orders “ + _
“WHERE OrderID = “ + intOrderID.ToString

Dim strMsg As String = Nothing
Dim strConn As String = My.Settings.NorthwindConnection
Dim cnNwind As New SqlConnection(strConn)
Dim cmCurrent As New SqlCommand(strSQL, cnNwind)
Try

cnNwind.Open()
Dim sdrCurrent As SqlDataReader = cmCurrent.ExecuteReader
With sdrCurrent

If .HasRows Then
‘For modified on server test, if implemented
dtModified.Load(sdrCurrent, LoadOption.OverwriteRow)

Else
‘Order is deleted on server
eStatus = OrderServerStatus.DeletedOnServer

End If
.Close()
.Dispose()

End With
cnNwind.Close()

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Exclamation, _
“Can’t Retrieve Current Server Data”)
eStatus = OrderServerStatus.ServerInaccessible

Finally
If Not cnNwind.State = ConnectionState.Closed Then

cnNwind.Close()
End If
cnNwind.Dispose()
cmCurrent.Dispose()

End Try

‘Test the local DataSet
Try

Dim drCurrent As DataRow = NorthwindDataSet.Orders.FindByOrderID(intOrderID)
If drCurrent Is Nothing Then

‘Row is deleted locally
eStatus = OrderServerStatus.DeletedLocally

ElseIf eStatus <> OrderServerStatus.DeletedOnServer Then
If intProductID > 0 Then

‘Order Details record
drAdded = _

196

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 196

NorthwindDataSet.Order_Details.FindByOrderIDProductID(intOrderID, _
intProductID)

If drAdded Is Nothing Then
eStatus = OrderServerStatus.DeletedLocally

Else
If drAdded.RowState = DataRowState.Added Then

‘It’s an added Orders record
eStatus = OrderServerStatus.NewRow

Else
eStatus = OrderServerStatus.Unmodified

End If
End If

End If
End If
If eStatus = OrderServerStatus.DeletedOnServer Then

strMsg = “Another user has deleted order “ + intOrderID.ToString + _
“ from the server.” + vbCrLf + vbCrLf + “Click Yes if you agree “ _
“that the order should be deleted.” + vbCrLf + vbCrLf + _
“Click No to create a new order with your current order data “ + _
“and notify the customer of the OrderID change.”

If MsgBox(strMsg, MsgBoxStyle.Exclamation Or MsgBoxStyle.YesNo, _
“Order “ + intOrderID.ToString + “ Deleted from Database”) = _
MsgBoxResult.Yes Then

‘Remove the order and details records
Dim drRows As DataRow()
Dim drRow As DataRow

‘Delete all Order Details rows
drRows = NorthwindDataSet.Order_Details.Select(“OrderID = “ + _
intOrderID.ToString)

If drRows.Length > 0 Then
For Each drRow In drRows

If drRow.RowState = DataRowState.Added Then
drRow.AcceptChanges()

End If
drRow.Delete()
drRow.AcceptChanges()

Next
End If

‘Delete the Order row
drRows = NorthwindDataSet.Orders.Select(“OrderID = “ + _
intOrderID.ToString)

If drRows.Length > 0 Then
drRows(0).Delete()
drRows(0).AcceptChanges()

End If
eStatus = OrderServerStatus.DeletedLocally

Else
‘Add as a new Orders row by changing RowState to Added
Dim drRows As DataRow()
drRows = NorthwindDataSet.Orders.Select(“OrderID = “ + _

intOrderID.ToString)
If drRows.Length > 0 Then

drRows(0).AcceptChanges()

197

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 197

drRows(0).SetAdded()
End If

‘Add Order Details rows if not deleted
Dim drRow As DataRow
drRows = NorthwindDataSet.Order_Details.Select(“OrderID = “ + _
intOrderID.ToString)

If drRows.Length > 0 Then
For Each drRow In drRows

drRow.AcceptChanges()
If drRow.RowState = DataRowState.Deleted Then

Stop
Else

drRow.SetAdded()
End If

Next
End If
eStatus = OrderServerStatus.AddedLocally

End If
End If

Catch exc As Exception
MsgBox(exc.Message + exc.StackTrace)

End Try
Return eStatus

End Function

Private Enum OrderServerStatus As Integer
Unmodified = 0
NewRow = 1
DeletedLocally = 2
DeletedOnServer = 3
ModifiedOnServer = 4
ServerInaccessible = 5
AddedLocally = 6
DeletedFromAddedOrder = 7

End Enum

Clicking Yes in the message box deletes local rows for the order and its child records by setting the
DataRowState to Deleted and applying the AcceptChanges method. Clicking No generates a new
order by setting DataRowState to Added and applying the AcceptChanges method.

If you don’t apply AcceptChanges to all rows you delete, the temporary DelOrders and DelDetails
update tables will contain the rows and the corresponding Update operations will throw exceptions.

Anticipate Value-Based Primary-Key Constraint Violations
Using an int identity or uniqueidentifier (GUID) column as the base table’s primary key eliminates
potential primary-key violations. If the base table’s primary key is a character field, such as the Customers
table’s five-character CustomerID column, adding a new customer with an existing CustomerID value
throws an SqlException for a primary-key violation. In this case, the user must make a choice between
canceling the addition or editing the primary-key value and retrying the update. Making this choice
requires code to provide the user with the conflicting data from the server, such as that shown emphasized
in the following listing.

198

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 198

If you specify Cascade as the Update Rule for the FK_Orders_Customers relation and the user edits the
CustomerID primary key, the change cascades to the child table’s related foreign-key column.

Code in the UpdateBaseTables function’s SqlException event handler calls the following
ResolveDuplicateCustomerID function if the exception’s message contains PK_Customers (Task List
comment 09):

Private Function ResolveDuplicateCustomerID(ByVal strCustomerID As String) _
As Boolean
‘Process duplicate new CustomerID

‘Retrieve the existing customer data
Dim strSQL As String = “SELECT * FROM Customers “ + _
“WHERE CustomerID = ‘“ + strCustomerID + “‘“
Dim strConn As String = My.Settings.NorthwindConnection
Dim cnNwind As New SqlConnection(strConn)
Dim cmCurrent As New SqlCommand(strSQL, cnNwind)
Dim objCurrent(10) As Object
Try

cnNwind.Open()
Dim sdrCurrent As SqlDataReader = cmCurrent.ExecuteReader
With sdrCurrent

.Read()

.GetValues(objCurrent)

.Close()

.Dispose()
End With
cnNwind.Close()

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Exclamation, _
“Can’t Retrieve Current Server Data”)

Finally
If Not cnNwind.State = ConnectionState.Closed Then

cnNwind.Close()
End If
cnNwind.Dispose()
cmCurrent.Dispose()

End Try
Dim intOrders As Integer
With NorthwindDataSet.Orders

Dim drRows As DataRow()
drRows = .Select(“CustomerID = ‘“ + strCustomerID + “‘“)
intOrders = drRows.Length

End With
‘Create the details string
Dim strDetails As String = Nothing
Dim intCol As Integer
Dim strColName As String = Nothing
With NorthwindDataSet.Customers

For intCol = 0 To objCurrent.Length - 1
If intCol = 0 Then

frmCustomer.Text = “Current Customers Record for CustomerID ‘“ + _
objCurrent(0).ToString + “‘“

End If
‘Pad right for readability

199

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 199

strColName = .Columns(intCol).ColumnName
Dim strPad As New String(“ “c, 13 - Len(strColName))
strDetails += strColName + “:” + strPad + _
objCurrent(intCol).ToString + vbCrLf

Next intCol
End With
frmCustomer.txtDetails.Text = strDetails
Dim strMsg As String = “CustomerID ‘“ + strCustomerID + _
“‘ exists on the server. Review the customer information “ + _
“below to determine if it duplicates your new customer entry. “ + _
“If so, click Cancel New Customer. Otherwise click Edit New “ + _
“Customer, modify the CustomerID value, and click Save again.”

If intOrders > 0 Then
‘New orders with bad CustomerIDs only occur from offline entries
strMsg += vbCrLf + vbCrLf + “You have “ + intOrders.ToString + _
“ order(s) pending for ‘“ + strCustomerID + “‘. New orders will “ + _
“be preserved in either case.”
blnSaveNewOrders = True

Else
strMsg += vbCrLf + vbCrLf + “There are no “ + _
“orders pending for ‘“ + strCustomerID + “‘.”

End If
frmCustomer.lblMessage.Text = strMsg
If frmCustomer.ShowDialog = Windows.Forms.DialogResult.Cancel Then

frmCustomer.Dispose()
‘Remove the new order
CustomerIDToolStripComboBox.Items.Remove(strCustomerID)
With OrdersBindingSource

‘Accept changes so removal doesn’t attempt to remove the record
‘being duplicated from the database when rerunning save changes
With NorthwindDataSet.Customers

Dim rowDup As DataRow
rowDup = .FindByCustomerID(strCustomerID)
If Not rowDup Is Nothing Then

‘Will not appear in temporary update tables
rowDup.AcceptChanges()

End If
End With
With CustomerIDToolStripComboBox

.Text = .Items(0).ToString
End With
GetCustomerOrdersToolStripButton.PerformClick()
SaveCurrentDiffGram()
Return False

End With
Else

‘Fix the new order
frmCustomer.Dispose()
NewCustomerControlState(True)
‘Enable entering a new order
EnableOrdersGrid(True, False)
EnableOrder_DetailsGrid(True, False)
blnSyncCustomerID = True
blnAutoContinue = False
‘Enable editing when returning from offline

200

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 200

LockTextBoxes(False, False)
Return False

End If
End Function

The SqlDataReader.GetValues method returns an Object array of field values. Figure 5-3 shows the
dialog after populating the text box with existing server data by the highlighted code in the
ResolveDuplicateCustomerID function.

Figure 5-3

Handle Concurrency Errors Gracefully
The easiest method for handling DBConcurrencyExceptions and mismatched numbers of child records is
to display a simple warning message. The user or code must update the DataSet with the base-table values
of the offending row and its child rows to eliminate the concurrency violation. The update overwrites the
user’s changes, which you can’t retrieve from the DataTables’ original values. At this point, the DataTable’s
original and current values are identical because the TableAdapter.AcceptChangesDuringFill
property is True. It’s possible to store original values prior to the update and let the user retrieve them for
comparison, but the code required for this approach is cumbersome. Stale original values also can produce
subsequent concurrency violations.

The better approach is to query the server for current data as conflicts occur during the online update
process. This means that you must process user updates row by row, rather than as a batch. For
reference, this code from Chapter 4’s “Add the UpdateBaseTables Function” section processes each
temporary update table as a batch, without handling DBConcurrencyExceptions:

‘1. Delete Order Details records
If Not DelDetails Is Nothing Then

Order_DetailsTableAdapter.Update(DelDetails)
Order_DetailsTableAdapter.FillOrder_Details(NorthwindDataSet.Order_Details, _

201

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 201

strCustomerID)
intChanges += DelDetails.Count

End If

‘2. Delete Orders records
If Not DelOrders Is Nothing Then

DelOrders.TableName = “DelOrders”
OrdersTableAdapter.Update(DelOrders)
OrdersTableAdapter.FillOrders(NorthwindDataSet.Orders, _

strCustomerID)
intChanges += 1

End If

‘3. Insert New Customers records
If Not NewCustomers Is Nothing Then

CustomersTableAdapter.Update(NewCustomers)
CustomersTableAdapter.GetCustomerOrders(NorthwindDataSet.Customers, _

strCustomerID)
intChanges += NewCustomers.Count

End If

If a DBConcurrencyException occurs during an update, you can examine the errant DataRow for its
original and current values, but the DataRow contains the original value that caused the error, not the
server’s value. The DataRow for exceptions thrown during deletions isn’t readable; attempting to read
the DataRow throws a DeletedRowInaccessibleException.

Obtain Current Data from the Server
Both updates and deletions need the current data from the server to find the conflicting field values,
which requires the OrderID value of the Orders row or OrderID and ProductID values of the Order
Details row being processed. As an example, the following excerpt from the UpdateBaseTables func-
tion retrieves the OrderID and ProductID values from a DataView of the current row of the DelDetails
temporary table that’s created with a DataViewRowState.Deleted parameter (Task List comment 10).
You must create a DataView object to obtain values from rows marked Deleted.

‘7. Delete Order Details records
If Not DelDetails Is Nothing Then

strTableErr = “Order Details”
Dim intPreviousID As Integer
intChanges += DelDetails.Count
While DelDetails.Count > 0

‘Deletion ultimately removes all rows from DelDetails,
‘so use the first row when deleting
‘Get the OrderID (a DataView is the only way possible with a deleted row)
Dim dvDeleted As New DataView(DelDetails, Nothing, Nothing, _

DataViewRowState.Deleted)
intOrderID = CInt(dvDeleted.Item(0).Item(0))
Dim intProductID As Integer = CInt(dvDeleted.Item(0).Item(1))
dvDeleted.Dispose()
Dim eStatus As OrderServerStatus = _
IsOrderModifiedOrDeleted(intOrderID, intProductID, intOrigID)

Dim drUpdate As DataRow = DelDetails.Rows(0)
If eStatus = OrderServerStatus.DeletedOnServer Then

202

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 202

‘Don’t attempt to delete orders added by others
Else

If intOrderID = intPreviousID Or eStatus = _
OrderServerStatus.DeletedLocally Then
‘Don’t test number of Order details
Order_DetailsTableAdapter.Update(drUpdate)

Else
‘Only test the first deletion for an OrderID, subsequent tests mismatch
If TestNumberOfDetails(intOrderID, 0, False) Then

Order_DetailsTableAdapter.Update(drUpdate)
Else

Return False
End If

End If
intPreviousID = intOrderID

End If
End While
blnSkipCount = False

End If

A False return value causes a loop to the beginning of the UpdateBaseTables function when the
user clicks Yes to continue updates in the message box that opens after processing an exception.

Finding the server values doesn’t solve the concurrency error. You must add code to reset the DataSet’s
DataTable row’s original values to the server values, which isn’t an easy task. You can update the
DataRow with the server values and apply the AcceptChanges method for updates, which overwrites
the user’s update, but you can’t change values of a deleted DataRow because it isn’t accessible.

The DataRow property of a DataViewRow is read-only, so this approach doesn’t let you alter the
values or DataRowState of a deleted row.

Figure 5-4 is a flow diagram for updating base tables with tests for orders deleted on the server, child-table
count mismatches, and concurrency errors. Moving deletions from the first to the last step of the
UpdateBaseTables function (Task List comments 10 and 11) permits testing rows prior to their potential
deletion on the server. Successfully resolving concurrency exceptions is the subject of the next section.

Shaded boxes in Figure 5-4 represent UpdateBaseTables operations; boxes with rounded corners
represent the IsOrderModifiedOrDeleted function. The remaining boxes include the function
name in parentheses.

Retrieve and Compare Server and Client Cell Values
The DBConcurrencyException handler calls the ResolveConcurrencyErrors function (Task List
comment 12), which compares the server and DataTable row values. ResolveConcurrencyErrors and
its related functions and procedures have more than 500 lines of code, so it’s not practical to provide a
complete listing here. Figure 5-5 is a simplified flow diagram of the ResolveConcurrencyErrors
function.

203

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 203

Figure 5-4

Grandchild Table
Deletions

(DelDetails)

Grandchild Table
Modifications
(ModDetails)

Child Table
Deletions

(DelOrders)

Parent Table
Modification

(ModCustomers)

Parent Table
Additions

(AddCustomers)

Child Table
Insertions

(AddOrders)

Grandchild Table
Deletions

(DelDetails)

Child Table
Modifications
(ModOrders)

Grandchild Table
Insertions

(AddDetails)

Grandchild Table
Modifications
(ModDetails)

Get OrderID,
ProductID
(DataView)

Test and Resolve Value-Based
Primary Key Violations

(ResolveDuplicateCustomerID)

Get OrderID
(DataView)

Retrieve Primary
Key and Update

Foreign Key

Te
st

 a
nd

 R
es

ol
ve

 G
ra

nd
ch

ild
 T

ab
le

 C
ou

nt
 M

is
m

at
ch

es
(T

es
tN

um
be

rO
fD

et
ai

ls
)

U
se

r
R

es
ol

ut
io

n
of

 C
on

cu
rr

en
cy

 V
io

la
tio

ns
 (

U
I)

(R
es

ol
ve

C
on

cu
rr

en
cy

Er
ro

rs
)

Test Child
Table Server

Status

Test Child
Table Server

Status

Test Child
Table Server

Status

Test Child
Table Server

Status

Test Child
Table Server

Status

Restore
Deleted
Order

204

10_57678x ch05.qxd 11/10/05 11:18 PM Page 204

Figure 5-5

rowError from
Exception.DataRow

rowError.GetValues
(objUpdate)

Create SQL
Statement to

Retrieve Server Data

Add Column Names
and Current Values
to SQL Statement

Generate Text and
Display Message

Box

Execute SQL
UPDATE Statement

Display Popup Form
with Local

objUpdateValues

Retrieve Server Data
(Execute

DataTable.FillBy)

Reset Error Icon and
Display Server Data

Add Error Icon to
Orders or Order

Detail Row

SQLDataReader
GetValues

(objCurrent)

Create SQL UPDATE
Statement Prefix
(Without Values)

Return
False

Return
True

No

No

Yes

Yes

Yes

Compare objUpdate
and objCurrent
Element Values

Nothing?

Values Differ?

Replace Server
Values?

205

10_57678x ch05.qxd 11/10/05 11:18 PM Page 205

The most important element of the ResolveConcurrencyErrors function is the code that compares the
server and client values to generate the SQL UPDATE statement’s column name and values list, shown in
the following listing (Task List comment 13). The comparison requires handling potential DBNull values
and insignificant differences of System.Decimal and System.DateTime data type values.

‘Create the error message and complete the UPDATE statement
Dim intErrors As Integer
Dim strMsg As String = Nothing
Dim blnHasError As Boolean
For intCtr = 0 To objCurrent.Length - 1

If objCurrent(intCtr) Is Nothing Then
‘No more columns
Exit For

End If
‘Compare non-string data types and handle nulls
If strColTypes(intCtr) = “System.Decimal” Then

‘Decimal values mismatch on money types, which are 0.0000 on the server
‘and nulls might occur
If objCurrent(intCtr) Is DBNull.Value Then

objCurrent(intCtr) = 0
End If
If objUpdate(intCtr) Is DBNull.Value Then

objUpdate(intCtr) = 0
End If
If CType(objCurrent(intCtr).ToString, Decimal) <> _

CType(objUpdate(intCtr).ToString, Decimal) Then
blnHasError = True

Else
blnHasError = False

End If
ElseIf strColTypes(intCtr) = “System.DateTime” Then

‘Orders have null ShippedDates
If objCurrent(intCtr) Is DBNull.Value Then

objCurrent(intCtr) = “1/1/0001”
End If
If objUpdate(intCtr) Is DBNull.Value Then

objUpdate(intCtr) = “1/1/0001”
End If
If CType(objCurrent(intCtr).ToString, Date) <> _

CType(objUpdate(intCtr).ToString, Date) Then
blnHasError = True

Else
blnHasError = False

End If
ElseIf objCurrent(intCtr).ToString <> objUpdate(intCtr).ToString Then

‘Also works for integer values
blnHasError = True

Else
blnHasError = False

End If
If blnHasError Then

‘Fill in the SQL UPDATE statement
strSQL += strColNames(intCtr) + “ = “
If strColTypes(intCtr) = “System.String” Or strColTypes(intCtr) = _

206

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 206

“System.DateTime” Then
strSQL += “‘“ + objUpdate(intCtr).ToString + “‘, “

Else
strSQL += objUpdate(intCtr).ToString + “, “

End If
‘Create the message string
strMsg += strColNames(intCtr) + “ in database is ‘“ + _
objCurrent(intCtr).ToString + “‘ and your current entry is ‘“ + _
objUpdate(intCtr).ToString + “‘.” + vbCrLf

intErrors += 1
End If

Next

‘Handle null date values and remove 12:00:00 AM
strMsg = Replace(strMsg, “1/1/0001”, “(null)”)
strMsg = Replace(strMsg, “ 12:00:00 AM”, “”)

‘Fix null values in SQL UPDATE statement
strSQL = Replace(strSQL, “‘1/1/0001’”, “NULL”)

Following is the SQL UPDATE statement for a client update with four locally modified fields, including
setting the RequiredDate value to DBNull.Value by typing (null) in the cell:

UPDATE Orders SET EmployeeID = 1, OrderDate = ‘9/3/2004 12:00:00 AM’,
RequiredDate = NULL, Freight = 15.50 WHERE OrderID = 11207

Figure 5-6 shows the two message boxes that open for concurrency errors that don’t involve differences
in child-record counts. If the child-record count differs, all pending user updates are overwritten.

Figure 5-6

207

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 207

To emulate an Orders table concurrency error, select an order that has a (null) shipped date, click the
Orders Concurrency Error button to change the EmployeeID value, and click No in the message box
that asks if you want to delete the order. Make a few edits to the same order, click Save Orders, and click
Yes when asked if you want to try to resolve the changes. Right-click the form to open Connected.htm
from the ...\Debug\Help folder and scroll to the “Emulate Other Users Base-Table Modifications” for
more detailed instructions.

Clicking Yes executes the UPDATE statement and shows a success message box. Clicking No displays a
pop-up OrderDetailsForm that contains the user’s data for reference while redoing the update (see
Figure 5-7). The same form opens if a child-record count mismatch occurs.

Figure 5-7

The GetCurrentOrderData subprocedure populates the text box shown in Figure 5-7.

Accommodate Disconnected Users
In an always-connected user scenario, you can apply business logic code that requires the user to persist
current data entity changes to the database server before adding, editing, or deleting another entity. One
of the primary objectives of ADO.NET DataSets is to enable frequently disconnected users to accumulate
entity additions, modifications, and deletions to a DataSet that the project persists in diffgram format as a

208

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 208

local XML file. The mobile user downloads the appropriate set of current data from the server, and then
disconnects from the network. The user later connects to the network, saves the accumulated changes to
the server, and refreshes the local DataSet by downloading and merging data that was modified since the
last snapshot.

The XML files of locally persisted DataSets can become very large, but performance with laptop computers
that have up-to-date processors and 500MB RAM or more is adequate to handle diffgram files of 20MB or
more. Multi-megabyte diffgram XML files load in a few seconds or less. The “Store Large Lookup Tables in
DataSets” article at www.ftponline.com/vsm/2004_07/magazine/features/rjennings/
describes a downloadable VS.NET 2003 project that loads and searches large lookup DataTables. (This pro-
ject upgrades to VS.NET 2005 with no errors.) A 202KB products table loads in 0.3 seconds and an 11MB
customers table loads in 1.8 seconds on a 2.6 GHz Pentium 4 machine with 1GB RAM.

Data latency is a much more serious problem for disconnected users who might have a hundred or
more updates pending when offline for a day or two. In this case, reconnecting and processing updates
inevitably incurs concurrency conflicts with moderately volatile database tables. Best practices dictate
implementing concurrency management for all projects that support offline DataSet updates. You might
choose to skip child-record count mismatches and deleted data regeneration, but implementing features
similar to those of the ResolveConcurrencyErrors function is an absolute requirement for production
applications.

Create and Manage Offline DataSets
Disconnected users must be provided with and maintain up-to-date offline datasets. Following are the
basic actions required to maintain currency of offline DataSets:

❑ New disconnected users must obtain an initial DataSet from the server and save it to a local
diffgram XML file. The following section describes how to establish the set of base-table records
required for initial and subsequent DataSet load operations.

❑ During offline data entry, saving parent record changes or descendant record updates must
resave the local diffgram file. Saving every change set ensures that updates don’t disappear as a
result of application crashes or power failures.

❑ Closing the application’s main form must save the local diffgram file.

❑ When reconnecting, updating the base tables with offline changes should be automatic.

❑ After update operations complete, the offline user must retrieve a snapshot of the base-table
contents to repopulate the local DataSet and save the diffgram file. Otherwise, only those
records that the user has updated reflect current values.

Figure 5-8 is a simplified flow diagram that compares data-entry and update processing for connected-
only and disconnected users while online. Procedure and function names are enclosed by parentheses.

209

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 209

Figure 5-8

Start Application
(Form_Load)

Create Current
DataSet

(LoadDisconnected-
DataSet)

Resolve Conflicts
(ResolveDuplicateCustomerID,

ResolveConcurrencyErrors,
IsOrderModifiedOrDeleted)

Process Updates
(UpdateBaseTables)

Fill DataSet from
Local DiffGram

(DataSet.ReadXML)

Update Local
DiffGram on

Form_FormClosing
(DataSet.WriteXML)

Fill DataSet from
Local DiffGram

(DataSet.ReadXML)

Select and Enter Customer
and Order Data

Create Current DataSet
(LoadDisconnectedDataSet)

Validate Entries
(CompaniesNameTextBox_Validating,
OrdersDataGridView_CellValidating,

Order_DeatailsDataGridView_CellValidating)

Save Customer or Order Data
(SaveChangesToolStripButton,

SaveOrdersToolStripButton)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

YesYes

No

No

No

No

No

No

No

Update Local
DiffGram

(DataSet.WriteXML)

DiffGram
Present?

More Updates?

Connected
Only User?

Connected?

Connected?

Connected
Only User?

More Updates?

Has Changes?

210

10_57678x ch05.qxd 11/10/05 11:18 PM Page 210

Right-click the form and click the Disconnected link to open Disconnected.htm in the ...\Help folder for
detailed instructions on running the sample project in disconnected mode.

Enable Handling Multiple Parent Records
Connected users usually open a single parent record and retrieve its related descendant records from
the server. Most disconnected users need to update more than a single parent and descendant record; a
salesperson or caseworker might need offline records for a hundred or more clients. Following are the
most important design considerations when altering an always-connected client front end to support
disconnected users:

❑ Disconnected users’ parent record choices are limited to those available in their offline DataSet.
The sample project relies on a comma-separated list of CustomerID values — stored in User
.config — to load the CustomerID dropdown list. (Connected users have a combo box that
permits them to type any valid CustomerID in the list’s text box.)

❑ If parent records are self-assigned, a simple form with a checked list box of parent records lets
the user specify the records to include. (The sample project doesn’t include this form.)

❑ If a supervisor assigns the parent-table list, the database must include an assignment table that
the client application reads to create the initial DataSet and after completing the offline update
process to handle assignment changes.

❑ Unless the application requires a complete history of a client’s transactions, descendant records
can be limited to a specific number of records, a time span, or a special field. Chapter 6 covers
the use of SELECT TOP n FillBy queries or stored procedures to limit the number of descendant
records.

Following is a summary of the most important sample application code changes required to accommodate
updates by disconnected users:

❑ The CustomersTableAdapter.Count value can determine if a disconnected user has reconnected
to the network. Disconnected users can operate in connected mode after applying their offline
updates, so this isn’t a reliable test for updating the local DataSet after offline updates complete. In
the production version, you can test for online-only users by the absence of a local diffgram file.

❑ The Get Orders ToolStrip button isn’t visible in disconnected mode. Changing the CustomerID
list’s SelectedIndex property calls the GetCustomerOrdersToolStripButton_Click event
handler, which filters the CustomersBindingSource to include the appropriate row only (Task
List comment 14).

❑ Changing the DataSource property value of the OrdersDataGridView from
OrdersDataConnector to FK_Customers_OrdersDataConnector doesn’t work. This issue
requires applying the same filter to the OrdersBindingSource to include only the rows for the
selected customer in the OrdersDataGridView.

❑ Adding a new customer requires setting the CustomersBindingSource.Filter value to
Nothing or applying the RemoveFilter method, and supplying an invalid filter string to the
OrdersBindingSource (Task List comment 15). These filters return no Orders or Order Details
rows in the DataGridViews until the user saves the changes. Canceling the new customer entry
displays the default Customers record and its related records.

211

Adding Data Validation and Concurrency Management

10_57678x ch05.qxd 11/10/05 11:18 PM Page 211

❑ Processing offline updates requires synchronizing the form’s contents with the current customer
record by calling the SynchronizeOfflineOrders procedure (Task List comment 16).

Most changes to online-only code required to support disconnected users have a ‘Flag:
chkDisconnected modification comment. The group of four procedures that are required to emu-
late disconnected users (and aren’t applicable to connected-only users) is located at the end of the
OrdersForm.vb file (Task List comment 17).

Summary
Data validation is a basic requirement for all production database front ends. Validating data locally
before sending updates to the back-end server saves roundtrips and minimizes the amount of code
required to handle SqlExceptions for invalid entries. The OrdersByCustomerTx.sln sample project val-
idates a single critical text box and a column value in the two DataGridViews. A production application
would perform basic validation operations for most or all data entries before attempting an update. Best
practices dictate that validation of data for conformance to business rules, such as quantity discounts,
occurs in a middle tier.

Multi-user front ends require concurrency conflict detection and management. DBConcurrencyExceptions
detect concurrency conflicts, but enabling users to decide whether to update their local DataSet to the server
values or overwrite the server data requires a substantial amount of code. DBConcurrencyExceptions
don’t detect other users’ additions or deletions of child records on the server, which is an important
element of concurrency management. Attempts to add, modify, or delete child records that aren’t present
on the server throw SqlExceptions. Production-quality concurrency management requires handling
child-record count mismatches. The capability to regenerate deleted orders is a useful adjunct to your data
concurrency management strategy.

Users who have LAN access to the database server ordinarily update a single parent record or set of child
and grandchild records during a session. Frequently or usually disconnected users often require multiple
parent records and sets of related descendant records. Accommodating disconnected users, who work
with DataSets that are persisted in a local diffgram file, requires additional code to manage the diffgram
file and the server update process when the user reconnects to the network. Refreshing the reconnected
user’s diffgram file after processing offline updates is necessary to maintain DataSet currency.

212

Chapter 5

10_57678x ch05.qxd 11/10/05 11:18 PM Page 212

Applying Advanced
DataSet Techniques

DataSets and bound DataGridViews are the centerpieces of ADO.NET 2.0 data access and Visual
Studio 2005 data tools. The preceding two chapters covered DataSet and bound Windows form
control basics. This chapter extends the coverage of DataSet and DataGridView programming
techniques with the following topics:

❑ Enabling lightweight, promotable transactions for updating base tables

❑ Adding columns to DataTables and DataGridViews from SELECT queries with an
INNER JOIN

❑ Displaying and manipulating images in DataGridViews

❑ Generating DataSets from existing or inferred XML schemas

❑ Editing XML data documents with DataGridViews

❑ Creating and working with serializable object classes

❑ Binding DataGridViews to generic DataList collections

All but one of this chapter’s project examples rely on the Northwind sample database to provide a
sufficient number of records and variety of data types to demonstrate relative performance of the
data access and editing techniques described. Examples that use simple base tables with a few
rows and columns, and trivial XML source documents or schemas won’t uncover the performance
problems and other code design issues that this chapter demonstrates.

The SystemTransactions.sln and DataGridViewImages.sln examples require SQL Server 2005 or
SQL Server Express with the Northwind and AdventureWorks sample databases installed. All
other sample projects work with SQL Server 2000, MSDE, SQL Server 2005, or SQL Express
and the Northwind database.

11_57678x ch06.qxd 11/10/05 11:31 PM Page 213

Apply Transactions to DataSet Updates
Almost all DBAs require update, insert, and delete operations on “their” production tables to be
conducted with stored procedures that are wrapped in a transaction. The transaction ensures that all
updates to each table in a batch operation succeed (commit) or fail (roll back) as a group. ADO.NET 1.0
introduced the IDbCommand.Transaction property and IDbTransaction interface to enable transacted
updates to multiple tables, as described in Chapter 1’s “Applying Transactions to Multi-Table Updates”
section. SqlTransaction and OracleTransaction are native CLR objects; OleDbTransaction and
OdbcTransaction are managed wrappers for OLE DB and ODBC COM–based transaction components.

Chapter 1’s SqlTransaction example is relatively simple because a pair of SqlCommand.ExecuteNonQuery
methods update the tables within a local transaction. However, ADO.NET 1.x DataSets require
substantially more code to assign a single SqlTransaction object to the UpdateCommand.Transaction,
InsertCommand.Transaction, and DeleteCommand.Transaction properties of multiple
SqlDataAdapters. A typical ADO.NET 1.x procedure that performs base table updates from emulated
user modifications to disconnected DataTables requires code to perform the following actions:

1. Create an untyped DataSet with an SqlDataAdapter for each table in the transaction.

2. Create a CommandBuilder to set each DataAdapter’s ...Command property from the
SelectCommand statement or stored procedure.

3. Open an SqlConnection, populate the DataTables with the DataAdapter.Fill method, and
close the database connection.

4. Modify a few rows of each DataTable for test purposes.

5. Declare and initiate an SqlTransaction object.

6. Open the database connection and assign the SqlTransaction to the three data management
language (DML) ...Command.Transaction properties of each DataAdapter.

7. Invoke the Update method on each DataAdapter, which executes the appropriate ...Command
for the modified row’s DataRowState property value —Added, Modified, or Deleted.

8. Commit the transaction if no exceptions are encountered; otherwise roll back the transaction,
and close the database connection.

The following listing, which implements the preceding operations, emphasizes instructions that relate
directly to SqlTransaction processing:

‘Typical code to implement ADO.NET 1.x SqlTransactions for SqlDataAdapters
Dim trnUpdate As SqlTransaction = Nothing
Dim cnNwind As New SqlConnection(My.Settings.NorthwindConnectionString)
Dim dsNwind As New DataSet(“dsNwind”)
Try

‘Create DataAdapter, CommandBuilder, and generate/assign Commands
Dim daOrders As New SqlDataAdapter(“SELECT * FROM Orders “ + _

“WHERE OrderID > 11077;”, cnNwind)
Dim cbOrders As SqlCommandBuilder = New SqlCommandBuilder(daOrders)
daOrders.UpdateCommand = cbOrders.GetUpdateCommand
daOrders.InsertCommand = cbOrders.GetInsertCommand
daOrders.DeleteCommand = cbOrders.GetDeleteCommand

Dim daDetails As New SqlDataAdapter(“SELECT * FROM [Order Details] “ + _

214

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 214

“WHERE OrderID > 11077;”, cnNwind)
Dim cbDetails As New SqlCommandBuilder(daDetails)
daDetails.UpdateCommand = cbDetails.GetUpdateCommand
daDetails.InsertCommand = cbDetails.GetInsertCommand
daDetails.DeleteCommand = cbDetails.GetDeleteCommand

‘Fill the DataTables with DataAdapters
cnNwind.Open()
daOrders.Fill(dsNwind, “Orders”)
daDetails.Fill(dsNwind, “OrderDetails”)
cnNwind.Close()

‘Update the DataSet’s Orders and OrderDetails DataTables (offline)
Dim dtOrders As DataTable = dsNwind.Tables(“Orders”)
Dim intRow As Integer
For intRow = 0 To dtOrders.Rows.Count - 1

If blnReset Then
dtOrders.Rows(intRow).Item(“ShippedDate”) = DBNull.Value

Else
dtOrders.Rows(intRow).Item(“ShippedDate”) = Today.ToShortDateString

End If
Next intRow

Dim dtDetails As DataTable = dsNwind.Tables(“OrderDetails”)
For intRow = 0 To dtDetails.Rows.Count - 1

If blnReset Then
dtDetails.Rows(intRow).Item(“Quantity”) = _

dtDetails.Rows(intRow).Item(“Quantity”) - 1
Else

dtDetails.Rows(intRow).Item(“Quantity”) = _
dtDetails.Rows(intRow).Item(“Quantity”) + 1

End If
Next intRow

If chkViolateConstraint.Checked Then
‘Create a foreign-key constraint to force a rollback
dtDetails.Rows(intRow - 1).Item(“OrderID”) = 100

End If

cnNwind.Open()
‘Start a new Transaction and assign it to each Command
trnUpdate = cnNwind.BeginTransaction
daOrders.UpdateCommand.Transaction = trnUpdate
daOrders.InsertCommand.Transaction = trnUpdate
daOrders.DeleteCommand.Transaction = trnUpdate
daOrders.Update(dsNwind, “Orders”)

daDetails.UpdateCommand.Transaction = trnUpdate
daDetails.InsertCommand.Transaction = trnUpdate
daDetails.DeleteCommand.Transaction = trnUpdate
daDetails.Update(dsNwind, “OrderDetails”)

trnUpdate.Commit()
Catch exc As Exception

If trnUpdate IsNot Nothing Then

215

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 215

trnUpdate.Rollback()
End If

Finally
cnNwind.Close()

End Try

If you don’t explicitly set the DataAdapter.TypeCommand property value with the
CommandBuilder.GetTypeCommand method, enlisting the command in the transaction with the
SQLDataAdapter.TypeCommand.Transaction property value fails.

The SystemTransactions.sln project in the \VB2005DB\Chapter06\SystemTransactions folder contains the
sample code for this and the following two sections. The Transactions.vb’s DataAdapterTransactions
procedure contains the preceding example. To execute the procedure, open, build, and run the project,
and then click the Update button with the Show Updates in Grid checkbox marked. Code updates the
Orders table’s ShippedDate values to the current system date and adds one to the Order Details table’s
Quantity value for records that have an OrderID value greater than 11077 (see Figure 6-1). Click Reset to
set updated ShippedDate values to Null and deduct one from Quantity values.

Figure 6-1

If you haven’t added Orders and Order Details records to the Northwind sample database in earlier
chapters, you must do this now to enable updates with SqlDataAdapters.

216

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 216

IDbTransaction implementations by ADO 1.x native data providers limit you to local transactions in
a single database. Distributed transactions that the Distributed Transaction Coordinator (MSDTC)
manages rely on the System.EnterpriseServices namespace and inheritance from
ServicedComponent.

Simplify Enlistment with System.Transactions
The .NET Framework 2.0 adds the System.Transactions namespace, which defines several key
classes that enhance ADO.NET 2.0 transaction capabilities and simplify programming. The most
commonly used classes are TransactionScope, Transaction, and CommittableTransaction. The
primary benefit that System.Transactions classes bring to transaction management is automatic
enlistment of a local resource manager (RM), such as SQL Server 2005, in a transaction managed by a
default Lightweight Transaction Manager (LTM). Subsequent enlistment of a remote RM automatically
promotes the local transaction to a distributed transaction with an OleTx Transaction Manager (OTM).
Enlistment of a local RM that doesn’t support promotable transactions, such as SQL Server 2000,
also promotes a lightweight transaction. The LTM offers high performance with minimal resource
consumption; promotion to OTM and DTC exacts performance and resource penalties similar to those of
ServicedComponents.

Autoenlist SqlDataAdapters in an Implicit Transaction
Taking advantage of .NET 2.0’s new transaction model requires adding a project reference to the
System.Transactions namespace and an Imports System.Transactions statement to your class
file. You provide an enlistable ambient transaction by creating a TransactionScope object and
assigning it to a Using ... End Using block that encloses a Try ... End Try block. (Implicit transaction
is a synonym for ambient transaction.) Transactable methods — such as SqlDataAdapter.Update or
SqlTableAdapter.Update— that you execute within the Using block automatically enlist in the
transaction. If the methods succeed, executing the TransactionScope.Complete method and
disposing the TransactionScope object by exiting the Using block commits the transaction. If a
method throws an exception, exiting the Using block without executing the
TransactionScope.Complete method rolls back the transaction.

The following procedure replaces the ten lines of code in the preceding listing (starting at
cnNwind.Open()) that create the SqlTransaction object and enlists the DataAdapter.TypeCommand
objects in the transaction:

‘cnNwind.Open() ‘Opening the connection here disables enlistment (no transaction)
Dim tsExplicit As New TransactionScope
Using tsExplicit

Try
‘cnNwind.Open() ‘Opening here uses one connection for the transaction
daOrders.Update(dsNwind, “Orders”)
daDetails.Update(dsNwind, “OrderDetails”)
tsExplicit.Complete()

Catch exc As Exception
MsgBox(exc.Message)

Finally
cnNwind.Close()

End Try
End Using

217

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 217

If you rely on the DataAdapters to open (and close) their connections automatically, the preceding
Using block opens two SQL Server 2005 connections (usually SPID 51 and SPID 53) and promotes the
transaction, which exacts a minor performance toll. Opening a single connection (cnNwind) explicitly
before creating the ambient transaction with the TransactionScope constructor disables transactions
for the Update methods. Opening the connection explicitly after creating the ambient transaction
executes both Update operations on the same connection (usually SPID 51), which maximizes execution
speed.

To execute the preceding example with the sample SystemTransactions.sln project, set blnSysTran =
True in the DataAdapterTransactions procedure and click the Update or Reset buttons. You can
verify that the Update operations are transacted by marking the Violate Constraint (Rollback) checkbox,
clicking Update, and verifying that a single Order Details table foreign-key constraint violation rolls
back all changes to the Orders and Order Details table.

Autoenlist SqlTableAdapters in an Implicit Transaction
This snippet performs a transacted update of two ADO.NET 2.0 SqlTableAdapters by autoenlisting their
Update methods within an LTM:

Dim tsImplicit As New TransactionScope
Using tsImplicit

Try
‘Adapter opens connections automatically
Me.Order_DetailsTableAdapter.Update(Me.NorthwindDataSet.Order_Details)
Me.OrdersTableAdapter.Update(Me.NorthwindDataSet.Orders)
tsImplicit.Complete()

Catch exc As Exception
‘Error handling

Finally
‘Adapter closes connections automatically

End Try
End Using

As is the case for ADO.NET 1.x SqlDataAdapters, ADO.NET 2.0 SqlTableAdapters automatically open
two connections, which promotes the ambient transaction. The following snippet opens a single
connection and assigns it to both SqlTableAdapters to prevent promoting the transaction:

Dim tsImplicit As New TransactionScope
Using tsImplicit

Try
‘Open a single connection and assign it to both SqlTableAdapters
Dim cnNwind As New SqlConnection(My.Settings.NorthwindConnectionString)
cnNwind.Open()
Me.Order_DetailsTableAdapter.Connection = cnNwind
Me.OrdersTableAdapter.Connection = cnNwind
Me.Order_DetailsTableAdapter.Update(Me.NorthwindDataSet.Order_Details)
Me.OrdersTableAdapter.Update(Me.NorthwindDataSet.Orders)
tsImplicit.Complete()

Catch exc As Exception
‘Error handling

Finally
cnNwind.Close()

End Try
End Using

218

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 218

To open a single connection for implicit transactions, set blnOpenConnection = True in the
bindingNavigatorSaveData event handler, modify an Orders record and at least one of its Order
Details records, and click the Save button or the Save Data toolbar button.

Use SQL Profiler to Trace Transactions
SQL Server 2005’s Profiler tool has been updated for new features, such as promotable transactions. To
trace BEGIN TRAN, PROMOTE TRAN, COMMIT TRAN, and ROLLBACK TRAN events, you must add these events
from the Transactions category to the default T-SQL or a similar customized trace template. Figure 6-2
shows an SQL Profiler trace of a transacted SqlTableAdapter update with autogenerated connections
that result in promoting the transaction. Figure 6-3 illustrates the same transaction with a single, explicit
transaction assigned as the Connection property value of the two SqlTableAdapters.

Figure 6-2

Figure 6-3

219

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 219

SQL Server Express Edition doesn’t include or support the use of SQL Profiler. You can, however, use the
Component Services Manager to count instances of the distributed transactions that result from promoting
implicit transactions or executing explicit transactions, which are the subject of the next section. Figure 6-4
shows the Component Services Manager displaying statistics for 94 promoted transactions generated
by the sample project. Notice that the average response time for the distributed transactions is about 4
seconds. Transaction items appear in the Transaction List window only while they are active.

Figure 6-4

You can open the Component Services Manager from the Programs\Administrative Tools menu or from
Control Panel’s Administrative Tools list.

Manually Enlist SqlTableAdapters in an Explicit Transaction
If you prefer the “traditional” transaction model with explicit enlistment of transacted
objects and granular control of Commit or Rollback method invocations, you can employ the
CommittableTransaction object, as shown in the following snippet:

‘Open and enlist connection(s) in an explicit transaction
Dim tsExplicit As New CommittableTransaction
Try

Me.Order_DetailsTableAdapter.Connection.Open()
Me.OrdersTableAdapter.Connection.Open()
Me.Order_DetailsTableAdapter.Connection.EnlistTransaction(tsExplicit)
Me.OrdersTableAdapter.Connection.EnlistTransaction(tsExplicit)
Me.Order_DetailsTableAdapter.Update(Me.NorthwindDataSet.Order_Details)

220

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 220

Me.OrdersTableAdapter.Update(Me.NorthwindDataSet.Orders)
tsExplicit.Commit()

Catch exc As Exception
tsExplicit.Rollback()

Finally
Me.OrdersTableAdapter.Connection.Close()
Me.Order_DetailsTableAdapter.Connection.Close()

End Try

Explicit (committable) transaction wrappers for SqlTableAdapter updates default to distributed
transactions. Promotion occurs when your code enlists a second SqlTableAdapter.Connection object
in the transaction.

Set TransactionScope and Transaction Options
The TransactionScope constructor has seven overloads, but the following two overloads are the most
useful for database transactions:

Public Sub New(ByVal scopeOption As System.Transactions.TransactionScopeOption,
ByVal scopeTimeout As System.TimeSpan)

Public Sub New(ByVal scopeOption As System.Transactions.TransactionScopeOption,
ByVal transactionOptions As System.Transactions.TransactionOptions)

The TransactionScopeOption enum has the following three members:

TransactionScopeOption.Requires
TransactionScopeOption.RequiresNew
TransactionScopeOption.Suppress

The default is Requires (a transaction). Specify Suppress if you don’t want the TransactionScope to
use the ambient transaction.

Following are the two TransactionScopeOption members:

TransactionOption.IsolationLevel
TransactionOption.Timeout

IsolationLevel defaults to Serializable, but can be any of the seven members listed in the table of
Chapter 1’s “Applying Transactions to Multi-Table Updates” section. Only SQL Server 2005 supports
Snapshot isolation. The default Timeout value is 1 minute.

Marking the sample application’s Custom Options checkbox changes the TransactionScopeOption to
RequiresNew, IsolationLevel to RepeatableRead, and Timeout to a TimeSpan of 15 seconds.

221

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 221

Add Joins to DataTable Select Commands
DataSets make updates to individual tables, but that doesn’t mean you can’t add joins to the
SelectCommand for a table. Joins let you improve users’ editing experiences by adding read-only
columns from a many-to-one join with a related table. As an example, adding ProductName,
QuantityPerUnit, and UnitPrice columns of the Northwind Products table to a DataGridView of
Order Details items improves readability and minimizes data entry errors. You can use the UnitPrice
column of the Products table to provide default values for new records and update the UnitPrice
column of the Order Details table for ProductID changes.

Adding columns from many-to-one joins isn’t a full-fledged substitute for combo box columns
populated by lookup lists. The technique described in Chapter 4’s “Add a Combo Box That Sets
Additional Values” section usually is a better approach for data entry forms if the number of items in
the combo box’s list is less than 100.

This section’s sample project — SelectCommandJoins.sln — demonstrates how to add joins to
SelectCommands and take advantage of the many-to-one relationship to simplify updating the Order
Details base table. The project starts with a data source from the Northwind database that includes the
Orders, Order Details, and Products tables. Data components include autogenerated Orders and
Order_Details DataGridViews, TableAdapters, and BindingSources. The Products table provides the
ProductName and UnitPrice data that’s required for new and edited Order Details records.

The SelectCommandJoins.sln example is in the VB2005DB \Chapter06\SelectCommandJoins folder
and assumes that the Northwind database is accessible from the localhost server.

Add the ProductsTableAdapter and ProductsBindingSource to the tray by dragging the Products table
icon from the Data Sources window to the Join.vb form, and then delete the ProductsDataGridView
that’s added to the form.

Add a Join to the SelectCommand
Following are the steps to add an INNER JOIN between the Order Details and Products tables for the
Fill operation:

1. In the DataSet Editor window, right-click the Order Details TableAdapter header and choose
Properties.

2. In the Properties tool window, expand the SelectCommand node, click the CommandText node,
and click the builder button to open the QueryBuilder dialog.

3. Right-click the tables pane, choose Add Table, and add the Products table.

4. Select the Product table’s ProductName, QuantityPerUnit, and UnitPrice columns.

5. Change dbo.Products.UnitPrice AS Expr1 to dbo.Products.UnitPrice AS ListPrice
(see Figure 6-5).

222

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 222

Figure 6-5

6. Click Execute Query to display the resultset in the grid.

7. Click OK to close the QueryBuilder dialog, and click No when asked if you want to regenerate
the update commands based on the new select command.

8. Right-click the [Order Details] header and choose AutoSize to display the ProductName,
ListPrice, and QuantityPerUnit columns (see Figure 6-6).

9. Open the Properties tool window and verify that the CommandText SQL statement for the
DeleteCommand, InsertCommand, and UpdateCommand nodes includes columns of the Order
Details table only.

223

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 223

Figure 6-6

Following is the SelectCommand’s CommandText property value:

SELECT dbo.[Order Details].OrderID, dbo.[Order Details].ProductID,
dbo.[Order Details].UnitPrice, dbo.[Order Details].Quantity,
dbo.[Order Details].Discount, dbo.Products.ProductName,
dbo.Products.UnitPrice AS ListPrice, dbo.Products.QuantityPerUnit

FROM dbo.[Order Details] INNER JOIN
dbo.Products ON dbo.[Order Details].ProductID = dbo.Products.ProductID

Add the Joined Columns to the DataGridView
You must add the Products table’s columns manually by right-clicking the Order_DetailsDataGridView
and choosing Edit Columns to open the same-named dialog. Click Add Columns and add the
ProductName column after ProductID. Add the QuantityPerUnit and List Price columns, and format
the columns using the techniques described in Chapter 4’s “Format the OrdersDataGridView Columns”
section. Set the ReadOnly property for these three columns to True and change the column order to
OrderID, Quantity, ProductID, ProductName, QuantityPerUnit, ListPrice, UnitPrice, and Discount.

Don’t run the Data Component Configuration Wizard for the Order Details table
after changing the SelectCommand. Doing this might remove the DeleteCommand,
InsertCommand, and UpdateCommand of the Order_DetailsTableAdapter.

224

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 224

Provide Default Values and Update Read-Only Columns
Navigating the Products DataTable to supply ProductName, QuantityPerUnit, and UnitPrice values, and —
optionally — to test the Discontinued field value requires the ProductsBindingSource you added in the
section “Add Joins to DataTable Select Commands,” earlier in this chapter. Set the ProductsBindingSource’s
AllowNew property value to False, and verify that the DataSource is NorthwindDataSet, and
DataMember is Products.

The following event handler supplies intentionally invalid default values and displays an error icon
when you add a new Order Details item:

Private Sub Order_DetailsDataGridView_DefaultValuesNeeded(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewRowEventArgs) _
Handles Order_DetailsDataGridView.DefaultValuesNeeded
‘Set invalid default values
With e.Row

‘Illegal Quantity
.Cells(1).Value = 0
‘Illegal ProductID
.Cells(2).Value = 0
‘ProductName
.Cells(3).Value = “ProductID not selected”
‘Quantity per Unit
.Cells(4).Value = “Not applicable”
‘ListPrice
.Cells(5).Value = 0D
‘UnitPrice
.Cells(6).Value = 0D
‘Discount
.Cells(7).Value = 0D
.ErrorText = “Default values: You must enter ProductID and Quantity.”

End With
End Sub

If the Products table doesn’t have a uniform correspondence between the ProductID value
and row number, you can apply a ProductID = intProductID.ToString filter to the
ProductsBindingSource and obtain drvItems from the single row.

This handler for the CellValueChanged event displays error icons for invalid ProductID, Quantity, or
both values, and discontinued products:

Private Sub Order_DetailsDataGridView_CellValueChanged(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
Handles Order_DetailsDataGridView.CellValueChanged
If blnIsLoaded AndAlso e.ColumnIndex = 2 Then

‘User edited ProductID value
With Order_DetailsDataGridView

‘Clear error icon
.Rows(e.RowIndex).ErrorText = “”
‘Get the new ProductID value
Dim intProductID As Integer = _

225

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 225

CType(.Rows(e.RowIndex).Cells(2).Value, Integer)
Dim srtQuantity As Short = CType(.Rows(e.RowIndex).Cells(1).Value, Short)
If intProductID = 0 OrElse intProductID > ProductsBindingSource.Count Then

‘Bad ProductID value
.Rows(e.RowIndex).ErrorText = “ProductID value must be between “ + _
“1 and “ + ProductsBindingSource.Count.ToString
Return

End If
‘Get the required data from the ProductsBindingSource
Dim drvItem As DataRowView
drvItem = CType(ProductsBindingSource(intProductID - 1), DataRowView)
If CBool(drvItem.Item(9)) Then

‘Discontinued products (5, 9, 17, 24, 28, 29, 42, 53)
.Rows(e.RowIndex).ErrorText = “ProductID “ + intProductID.ToString + _
“ (“ + drvItem.Item(1).ToString + “) is discontinued.”

Else
‘ProductName
.Rows(e.RowIndex).Cells(3).Value = drvItem.Item(1)
‘Quantity per Unit
.Rows(e.RowIndex).Cells(4).Value = drvItem.Item(4)
‘ListPrice
.Rows(e.RowIndex).Cells(5).Value = drvItem.Item(5)
‘UnitPrice
.Rows(e.RowIndex).Cells(6).Value = drvItem.Item(5)
‘Discount
.Rows(e.RowIndex).Cells(7).Value = 0D
If srtQuantity = 0 Then

.Rows(e.RowIndex).ErrorText = “Quantity of 0 is not permitted.”
End If

End If
End With

End If
End Sub

Figure 6-7 shows the SelectCommandJoins.sln sample project’s Joins.vb form in the process of adding a
new Order Details line item. The next sections describe the purpose of the controls above the Orders
DataGridView.

226

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 226

Figure 6-7

Improve Performance by Reducing
DataSet Size

Loading DataSets and populating DataGridViews with unneeded records can cause a substantial perfor-
mance hit on servers and clients, especially when recreating large persisted DataSets for disconnected
users. The following sections describe how to reduce server load and local resource consumption, and
improve data-editing performance by limiting the number of rows returned by DataTableAdapter
.Fill operations. Conventional TOP n queries based on descending sorts of int identity and
datetime column values are suitable for most connected and disconnected clients. Paging techniques
further minimize resource consumption and provide access to older data for connected users.

227

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 227

Limit Rows Returned with TOP n Queries
The most obvious approach to limiting the number of records returned by Fill operations is to add a TOP
n or TOP n PERCENT modifier and appropriate ORDER BY clause to the TableAdapter’s SQL query for the
SelectCommand. For example, the following SQL query loads the last 100 rows of the Orders table to
populate the SelectCommandJoins.sln sample project’s Orders DataGridView:

SELECT TOP 100 OrderID, CustomerID, EmployeeID, OrderDate, RequiredDate,
ShippedDate, ShipVia, Freight, ShipName, ShipAddress, ShipCity, ShipRegion,
ShipPostalCode, ShipCountry

FROM dbo.Orders ORDER BY OrderID DESC

When you apply TOP n queries to a parent table, you should do the same to TableAdapter.Fill
operations for child tables. The Order Details SelectCommand query of the earlier “Add a Join to the
SelectCommand” section loads all extended Order Details rows into the Order_DetailsDataTable, which
consumes much more resources than necessary. You add an IN predicate with a subselect — also called
a subquery — to return only those child rows that depend on the Orders rows, as emphasized in the
following query:

SELECT dbo.[Order Details].OrderID, dbo.[Order Details].ProductID,
dbo.[Order Details].UnitPrice, dbo.[Order Details].Quantity,
dbo.[Order Details].Discount, dbo.Products.ProductName,
dbo.Products.QuantityPerUnit, dbo.Products.UnitPrice AS ListPrice

FROM dbo.[Order Details] INNER JOIN
dbo.Products ON dbo.[Order Details].ProductID = dbo.Products.ProductID

WHERE dbo.[Order Details].OrderID IN (SELECT TOP 100 dbo.Orders.OrderID
FROM dbo.Orders ORDER BY dbo.Orders.OrderID DESC)

SQL Server 2005 and SQL Express let you substitute bigint or float variables for literal TOP n
[PERCENT] queries. This chapter’s examples use literal values to ensure compatibility with SQL
Server or MSDE 2000.

Add Partial Classes for TableAdapters
TableAdapter classes aren’t nested in ADO.NET 2.0 DataSets. Instead, TableAdapters have their own
namespace to prevent collision of duplicate autogenerated class names. Autogenerated namespace names
are DataSetNameTableAdapters— such as NorthwindDataSetTableAdapters, which contains
Partial Public Class OrdersTableAdapter, Public Class Order_DetailsTableAdapter, and
Public Class ProductsTableAdapter. Substituting dynamic SQL SELECT statements for the
SelectCommand that you add in the query designer requires overloading the Fill method and passing
the variable CommandText property value as a second argument. If you add the overload signature to
the DataSet’s partial classes you lose the additions when regenerating the DataSet. Thus, you must add a
partial class file to the project — TableAdapters.vb for this example — that contains code similar to the
following:

Namespace NorthwindDataSetTableAdapters
Partial Class OrdersTableAdapter

Public Overloads Function Fill(ByVal DataTable As
NorthwindDataSet.OrdersDataTable, _
ByVal strSelect As String) As Integer

Me.Adapter.SelectCommand = Me.CommandCollection(0)
‘Replace the CommandText

228

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 228

Me.Adapter.SelectCommand.CommandText = strSelect
If (Me.m_clearBeforeFill = True) Then

DataTable.Clear()
End If
Dim returnValue As Integer = Me.Adapter.Fill(DataTable)
Return returnValue

End Function
End Class

Partial Class Order_DetailsTableAdapter
Public Overloads Function Fill(ByVal DataTable As

_ NorthwindDataSet.Order_DetailsDataTable, _
ByVal strSelect As String) As Integer

Me.Adapter.SelectCommand = Me.CommandCollection(0)
‘Replace the CommandText
Me.Adapter.SelectCommand.CommandText = strSelect
If (Me.m_clearBeforeFill = True) Then

DataTable.Clear()
End If
Dim returnValue As Integer = Me.Adapter.Fill(DataTable)
Return returnValue

End Function
End Class

End Namespace

Marking the sample project’s Limit Order Details Rows checkbox and clicking Reload Data adds the
subselect predicate to the Order_DetailsDataTable.SelectCommand. You probably won’t notice a
substantial load time difference between the two query types because the IN predicate increases query
execution time. However, the IN predicate decreases the persisted DataSet’s size from about 824KB for
all to 182KB for 100 Orders rows.

Clicking the DataNavigator’s Save Data button saves the DataSet to AllDetails.xml with the checkbox
cleared, and Subselect.xml with the checkbox marked.

Work with Images in DataGridViews
DataGridViews require a DataGridViewImageColumn to display images returned from tables that
contain graphics stored as binary data, such as in SQL Server image or varbinary columns.
DataGridViewImageColumns contain a DataGridViewImageCell for each row. By default, cells
without images (null values) display Internet Explorer’s graphic for an HTML link to a missing image
file. DataGridViewImageColumns share most properties and methods of other data types, but add two
properties, Image and ImageLayout, which are specific to graphics. The Image property lets you specify
a default image from MyResources.resx or another resource file. The ImageLayout property lets you
select a member of the DataGridViewImageCellLayout enumeration —NotSet, Normal, Stretch, or
Zoom. The members correspond approximately to the PictureBox’s SizeMode enumeration. As you
would expect, Normal is the default that centers the image with its native resolution.

Like PictureBoxes, DataGridViewImageColumns support BMP, GIF, JPEG, PNG, and WMF image
formats.

229

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 229

Add Image Columns to DataGridViews
When you create a data source from a table with an image or varbinary column, the data sources
window displays the column’s node as disabled. When you drag the table node onto the form to
autogenerate a DataGridView, DataSet, and other data components, the DataGridView doesn’t display a
DataGridViewImageColumn for the bitmap.

To add the missing image column to the DataGridView, right-click the DataGridView and choose Edit
Columns to open the dialog of the same name. Click Add Column to open the dialog, and, with the
Databound Column option button selected, select the column and click Add (see Figure 6-8). Then
specify a Width property value that’s appropriate to your DataGridView design. Alternatively, select
Rows as the AutoSizeCriteria property value. Set the DataGridView’s AutoSizeRowsMode property
value to AllCellsExceptHeaders initially. After an initial test, you can set the RowTemplate.Height
property to a value that maintains the image aspect ratio with the column’s Width value.

Figure 6-8

The SQL Server 2005 AdventureWorks sample database’s ProductPhoto table provides the data
source for this section’s project example — DataGridViewImagesAW.sln. The ProductPhoto table has
ThumbNailPhoto and LargePhoto varbinary columns that contain 101 GIF bitmaps; the size of the
LargePhoto bitmaps for the DataGridView is 240 pixels by 149 pixels. Figure 6-9 shows three columns of
the first two rows of the table in Normal ImageLayout.

The connection string of the DataGridViewImagesAW.sln in the VB2005DB\Chapter06\
DataGridViewImagesAW folder points to a specific instance of SQL Server 2005. If you have the
AdventureWorks sample database installed, change the connection string on the Settings page of the
DataGridViewImagesAW Properties dialog. If not, open ProductPhoto.vb in the editor, and change the
value of blnLoadFromFile to True to load the AdventureWorksDataSet from ProductPhoto.xml.

230

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 230

Figure 6-9

Manipulate DataGridView Images
Code added to the ProductPhoto class lets you test the effect of ImageLayout changes to the appearance of
the images, save a selected DataGridViewImageCell’s contents to its corresponding LargePhotoFileName
(.gif) file, display an image in a PictureBox, and replace the selected image with a copy from the saved file.

Change ImageLayout
By default, the LargePhoto column’s width and the rows’ height match the dimensions of the images.
To test the three image modes, drag the right edge of the column headers to the right border of the
DataGridView, and then select the Stretch radio button to distort the image by changing its aspect ratio.
Selecting Zoom sets the AutoSizeRowsMode property value to DataGridViewAutoSizeRowsMode.None,
which lets you manipulate the row height and column width to demonstrate image resizing while
retaining the bitmaps’ common aspect ratio. The following handlers respond to the radio buttons’
CheckChanged event:

Private Sub rbNormal_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles rbNormal.CheckedChanged
‘Normal layout
If blnLoaded And rbNormal.Checked Then

With ProductPhotoDataGridView
Dim colImage As DataGridViewImageColumn = _

CType(.Columns(2), DataGridViewImageColumn)
colImage.ImageLayout = DataGridViewImageCellLayout.Normal
.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.ColumnsAllRows

End With

231

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 231

End If
End Sub

Private Sub rbStretch_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles rbStretch.CheckedChanged
‘Stretch layout
If blnLoaded And rbStretch.Checked Then

With ProductPhotoDataGridView
Dim colImage As DataGridViewImageColumn = _

CType(.Columns(2), DataGridViewImageColumn)
colImage.ImageLayout = DataGridViewImageCellLayout.Stretch
.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.ColumnsAllRows

End With
End If

End Sub

Private Sub rbZoom_CheckedChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles rbZoom.CheckedChanged
‘Zoom layout
If blnLoaded And rbZoom.Checked Then

With ProductPhotoDataGridView
Dim colImage As DataGridViewImageColumn = _

CType(.Columns(2), DataGridViewImageColumn)
colImage.ImageLayout = DataGridViewImageCellLayout.Zoom
.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.None

End With
End If

End Sub

Save a Selected Image to a File, Display It in a PictureBox, and
Replace It from a File

Manipulating image data in DataGridViews isn’t an intuitive process. The Value property of a
DataGridViewImageCell has an underlying data type of Byte(), not the expected Image data type.
You must cast Value to Byte() and then create a FileStream instance to save the Byte array to a
corresponding LargePhotoFileName.gif file. Creating a MemoryStream instance to supply the Image property
of the frmPictureBox form’s PictureBox is more efficient than loading the PictureBox from the saved file.
Replacing the original image with a copy from the saved file takes advantage of the File.ReadAllBytes
method to simplify reading a file of unknown length. These operations are emphasized in the following
SaveGifFile procedure that’s called by the bindingNavigatorSaveItem_Click event handler:

Private Sub SaveGifFile()
‘Save the selected file
Dim strFile As String = Nothing
Try

With ProductPhotoDataGridView
If .CurrentCell.ColumnIndex = 2 Then

If Not frmPictureBox Is Nothing Then
frmPictureBox.Close()

End If
‘Create a Byte array from the value
Dim bytImage() As Byte = CType(.CurrentCell.Value, Byte())
‘Specify the image file name
Dim intRow As Integer = .CurrentCell.RowIndex

232

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 232

strFile = .Rows(intRow).Cells(1).Value.ToString
‘Save the image as a GIF file
Dim fsImage As New FileStream(“..\” + strFile, FileMode.Create)
fsImage.Write(bytImage, 0, bytImage.Length)
fsImage.Close()

‘Create a MemoryStream and assign it as the image of a PictureBox
Dim msImage As New MemoryStream(bytImage)
frmPictureBox.pbBitmap.Image = Image.FromStream(msImage)

If frmPictureBox.ShowDialog = Windows.Forms.DialogResult.Yes Then
‘Replace the CurrentCell’s image from the saved version, if possible
If File.Exists(“..\” + strFile) Then

‘The easy was to obtain a Byte array
Dim bytReplace() As Byte = File.ReadAllBytes(“..\” + strFile)
.CurrentCell.Value = bytReplace
If AdventureWorksDataSet.HasChanges Then

AdventureWorksDataSet.AcceptChanges()
Dim strMsg As String = “File ‘“ + strFile + _

“ has replaced the image in row “ + intRow.ToString + _
“ cell 2 (“ + Format(bytReplace.Length, “#,##0”) + _
“ bytes). “ + vbCrLf + vbCrLf + _
“AcceptChanges has been applied to the DataSet.”

MsgBox(strMsg, MsgBoxStyle.Information, _
“Image Replaced from File”)

Else
Dim strMsg As String = “Unable to replace image “ + _
“with file ‘“ + strFile + “‘. DataSet does not have changes.”

MsgBox(strMsg, MsgBoxStyle.Exclamation, “Image Not Replaced”)
End If

End If
End If

Else
MsgBox(“Please select the image to save.”, MsgBoxStyle.Exclamation, _

“No Image Selected”)
End If

End With
Catch exc As Exception

With ProductPhotoDataGridView
If strFile = Nothing Then

Dim intRow As Integer = .CurrentCell.RowIndex
strFile = .Rows(intRow).Cells(1).Value.ToString

End If
End With
Dim strExc As String = “File ‘“ + strFile + “‘ threw the following “ + _
“exception: “ + exc.Message
MsgBox(strExc, MsgBoxStyle.Exclamation, “Exception with Image”)

End Try
End Sub

Some images, such as ProductPhotoID 77, appear in the PictureBox but won’t replace the original
image.

233

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 233

Figure 6-10 shows the ProductPhotoColumn displaying three images zoomed to approximately 25
percent, 50 percent, and 125 percent, and frmPictureBox open with the topmost image selected. In this
case, the row height determines the size of the zoomed image.

Figure 6-10

The transparency RGB value doesn’t correspond to the white background, so the selected image shows
shaded areas as transparent.

Avoid Creating Images from Access OLE Object Fields
The SQL Server 2000 Northwind sample database contains Categories and Employees tables that were
imported from an earlier Access version. The Categories table’s Picture column and Employees table’s
Photo column have the image data type, but the BMP-format bitmaps have an OLE Object wrapper. The
images appear in the DataGridView, but the wrapper makes it impossible to display the images in a
PictureBox or save the file in BMP format.

The DataGridViewImagesNW.sln project in the VB2005DB\Chapter06\DataGridViewImagesNW
folder connects to SQL Server 2000’s Northwind sample database with localhost as the server name.
You receive an “Invalid parameter used” exception message when attempting to save the image to a
CategoryName.bmp file.

234

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 234

Edit XML Documents with DataSets and
DataGridViews

The emergence of XML documents as the newly predominate data interchange format has created a
requirement for client applications that enable users to review, edit, and create XML Infosets. Business
documents that use XML Infosets to represent tabular data with a hierarchy of one or more one-to-many
relationships are common in customer relationship management (CRM), supply chain management
(SCM), and other business applications or platforms, such as BizTalk Server 2004. These applications
seek to minimize human intervention in their automated workflow processes, but manual document
processing is inevitable in most business activities.

Microsoft Word, Excel, and InfoPath 2003 provide XML document editing capability, but hierarchical
documents with multiple one-to-many relationships are difficult to edit in Word or Excel. Access
2003 lets you import an XML schema to create tables with designated data types, establish keys and
relationships, append and edit data, and then export the tables or a query to an XML file. However,
an exported hierarchical XML document’s structure bears no relationship whatsoever to the source
document’s structure. Writing an XML transform to regenerate the original document structure is likely
to involve more trouble than it’s worth. InfoPath 2003 handles hierarchical document editing and
preserves document structure, but its HTML-based forms have a limited control repertoire and, like
other Office 2003 members, InfoPath 2003 requires a client license for each user.

Users accustomed to editing database tables with Windows forms created with any version of Visual
Studio undoubtedly will prefer a similar — or identical — UI for editing tabular XML Infosets with
DataGridView controls and, where applicable, bound text boxes or other Windows form controls. You
can’t bind DataGridView controls to XML documents directly, so you should try to generate a DataSet
from the document’s schema. If you don’t have the schema or the schema won’t generate a DataSet, you
can use VS 2005’s XML Editor to attempt to infer a schema from the document’s contents.

Adapt an Existing XML Schema to Generate a DataSet
Microsoft designed DataSets to store relational data in DataTables; the XML representation of DataSets and
their DataTables is intended primarily as a persistence or remoting mechanism. Thus, XML documents that
serve as the source data for DataSets must have a schema that DataSets can accommodate. Following are
the most important considerations for using existing schemas to generate typed DataSets:

❑ The DataSet designer assigns the top-level (root or document) element name as the DataSet
name. If the schema contains a global namespace declaration, it becomes the DataSet’s
namespace.

❑ Subsequent elements that have child elements or child elements with attributes generate
DataTables. This feature accommodates attribute-centric documents, such as the XML
representation of ADO Recordsets, but can result in generating a DataTable for an attribute
instead of a column.

❑ Child elements that represent DataTable columns must have simple XSD datatypes that
correspond to .NET System data types.

❑ DataSets are element-centric; if your schema specifies attributes at the DataTable level, the
DataSet designer adds the attributes as DataTable columns.

235

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 235

❑ Schemas with nested child-element groups establish one-to-many relationships between
DataTables automatically and add a TableName_Id primary-key and foreign-key column for each
relationship to the DataTable. The primary-key TableName_Id is an Int32 AutoIncrement column;
reading an XML document into the DataSet generates the TableName_Id values.

❑ If the child-element groups aren’t nested, you must specify the relationships between
DataTables in the DataSet Editor.

❑ If you need to load the DataTables from individual, related XML source documents, your
schema must not specify a nested DataTable relationship.

❑ The DataSet designer has problems importing secondary schemas to support multiple
namespaces and namespace-qualified elements. The DataSet designer uses the XML Schema
Definition Tool (Xsd.exe) to generate typed DataSets. Xsd.exe doesn’t use the <xs:import>
schemaLocation attribute to load secondary schemas automatically.

The preceding restrictions make it difficult or impossible to generate typed DataSets from complex XML
schemas for standardized business documents, such as Universal Business Language (UBL) 1.0 or
Human Resources XML (HR-XML). UBL 1.0 schemas make extensive use of <xs:import> directives
and specify complex types for elements that represent DataTable columns.

You can learn more about UBL 1.0 at http://www.oasis-open.org/committees/tc_home
.php?wg_abbrev=ubl. Click the Documents link to download the current draft of the UBL 1.0
specification, schemas, and sample source document instances.

The HR-XML Consortium at http://www.hr-xml.org/ offers all current HR-XML schemas and
sample source document instances in a single download (registration required).

Most XML editing applications must produce an output document with the same structure as the source
document, which implies that the edits affect only the elements’ contents. The tabular structure of
DataSets enables exporting the entire content or selected rows of individual tables to XML streams or
files. You also can generate DataSets from individual related source documents with structures that are
defined by a single schema.

If your application must restructure the output document, you can apply an XSLT transform to
the final edited version of the document. Alternatively, you can synchronize the DataSet with an
XmlDataDocument instance and apply the transform to the instance.

Schemas for Nested Hierarchical XML Data Documents
The ideal structure for a DataSet’s source document is an XML Infoset that has a nested hierarchy of
related elements. The DataSet designer automatically generates DataSets from compatible schemas for
nested documents. The following abbreviated XML document is typical of XML files generated by
serializing a set of business-related objects into a three-level hierarchy:

<rootElement>
<parentGroup>

<parentField1>String</parentField1>
...
<parentFieldN>1000</parentFieldN>

236

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 236

<childGroup>
<childField1>String</childField1>
...
<childFieldN>15.50</childFieldN>
<grandchildGroup>

<grandchildField1>String</grandchildField1>
...
<grandchildFieldN>15</grandchildFieldN>

</grandchildGroup>
</childGroup>

</parentGroup>
</rootElement>

Many — but by no means all — XML-enabled programming languages are capable of serializing busi-
ness objects to nested XML documents.

Following is the generic schema for the preceding document, which has a root <xs:complexType> ele-
ment with <xs:complexType> elements that contain an <xs:sequence> grouping of field elements
and nested <xs:complexType> descendant elements:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”rootElement”>
<xs:complexType>

<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”parentGroup”>

<xs:complexType>
<xs:sequence>

<xs:element name=”parentField1” type=”xs:string” />
...
<xs:element name=”parentFieldN” type=”xs:int” />
<xs:element maxOccurs=”unbounded” name=”childGroup”>

<xs:complexType>
<xs:sequence>

<xs:element name=”childField1” type=”xs:string” />
...
<xs:element name=”childFieldN” type=”xs:decimal” />
<xs:element maxOccurs=”unbounded” name=”grandChildGroup”>

<xs:complexType>
<xs:sequence>

<xs:element name=”grandChildField1” type=”xs:string” />
...
<xs:element name=”grandChildFieldN” type=”xs:short” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

237

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 237

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

The DataSet designer interprets non-root <xs:complexType> groups that have field elements, nested
<xsd:complexType> elements, or both as DataTables. Thus, field elements must have simple datatypes —
such as xs:string, xs:int, or xs:decimal— or <xs:complexType> groups that represent related
tables.

A source XML document that specifies a default namespace attribute with <rootElement xmlns=
”documentNamespace”> requires schema to include a targetNamespace=”documentNamespace”
attribute for the top-level <xs:schema> element. If your schema has the preceding example’s basic struc-
ture and has only a targetNamespace or no document namespace, you’re in luck. Make the changes high-
lighted in the code that follows to the first two schema elements to indicate that the schema represents a
typed DataSet:

<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”rootElement” msdata:IsDataSet=”true”>

Copy the Schema.xsd file to your project folder, right-click the file icon in Project Explorer, and choose
Add to Project, which generates Schema.Designer.vb, Schema.xsc, and Schema.xss files. Double-click the
Schema.xsd icon to open it in the DataSet Editor and display the Data Sources window. You can add the
DataSet to the form designer’s tray by dragging the DataSetName tool from the ProjectName Components
section to the form, or choose the DataSet tool from the Data section and select ProjectName.DataSet name
from the Typed DataSet list.

VS 2005 adds the msdata namespace and attribute automatically when you double-click the schema
file to display it in the DataSet Editor.

At this point, you can drag the parentGroup DataTable from the Data Sources window to add a
BindingNavigator and text boxes or a DataGridView for editing the parentGroup, and then add
DataGridViews for the childGroup and grandchildGroup DataTables.

A nested schema example
Figure 6-11 shows a typed DataSet generated from a schema (NorthwindDS.xsd) for a nested XML docu-
ment (NorthwindDS.xml), which contains a small subset of data from the Northwind Customers,
Orders, and Order_Details tables.

238

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 238

Figure 6-11

The DataSetsFromNestedSchema.sln project in the VB2005DB\Chapter06\DataSetsFromNestedSchema
folder includes the NorthwindDS.xml and NorthwindDS.xsd files in the ...\bin\debug folder.

Generating the DataSet adds the Customers_Id primary key column to the Customers table, and a
corresponding Customers_Id foreign key column to the Orders table to create the Customers_Orders
relationship. The Orders table gains an Orders_Id primary key for the Orders_Order_Details
relationship with the Orders_Id foreign key of the Order_Details table.

Following is the NorthwindDS.xsd schema for the nested data document:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”Northwind” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”Northwind” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Customers”>

<xs:complexType>
<xs:sequence>

<xs:element name=”CustomerID” type=”xs:string” />
<xs:element name=”CompanyName” type=”xs:string” />

239

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 239

<xs:element name=”ContactName” type=”xs:string” minOccurs=”0” />
<xs:element name=”ContactTitle” type=”xs:string” minOccurs=”0” />
<xs:element name=”Address” type=”xs:string” />
<xs:element name=”City” type=”xs:string” />
<xs:element name=”Region” type=”xs:string” minOccurs=”0” />
<xs:element name=”PostalCode” type=”xs:string” minOccurs=”0” />
<xs:element name=”Country” type=”xs:string” />
<xs:element name=”Phone” type=”xs:string” />
<xs:element name=”Fax” type=”xs:string” minOccurs=”0” />
<xs:element name=”Orders” minOccurs=”0” maxOccurs=”unbounded”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”CustomerID” type=”xs:string” />
<xs:element name=”EmployeeID” type=”xs:int” />
<xs:element name=”OrderDate” type=”xs:dateTime” />
<xs:element name=”RequiredDate” type=”xs:dateTime”

minOccurs=”0” />
<xs:element name=”ShippedDate” type=”xs:dateTime”

minOccurs=”0” />
<xs:element name=”ShipVia” type=”xs:int” />
<xs:element name=”Freight” type=”xs:decimal” minOccurs=”0” />
<xs:element name=”ShipName” type=”xs:string” />
<xs:element name=”ShipAddress” type=”xs:string”/>
<xs:element name=”ShipCity” type=”xs:string” />
<xs:element name=”ShipRegion” type=”xs:string” minOccurs=”0” />
<xs:element name=”ShipPostalCode” type=”xs:string”

minOccurs=”0” />
<xs:element name=”ShipCountry” type=”xs:string” />
<xs:element name=”Order_Details” minOccurs=”0”

maxOccurs=”unbounded”>
<xs:complexType>

<xs:sequence>
<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”ProductID” type=”xs:int” />
<xs:element name=”UnitPrice” type=”xs:decimal” />
<xs:element name=”Quantity” type=”xs:short” />
<xs:element name=”Discount” type=”xs:decimal” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:choice>

</xs:complexType>
</xs:element>

</xs:schema>

The minOccurs=”0” attributes of the ContactName, ContactTitle, Region, PostalCode, Fax,
RequiredDate, ShipDate, ShipRegion, and ShipPostalCode elements enable displaying and entering
(null) values when editing the data.

240

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 240

Notice that the NorthwindDS.xsd schema doesn’t contain references to the added primary-key and
foreign-key columns. Generating a DataSet from a schema for a nested source document doesn’t
modify the schema. The NorthwindDS.Designer.vb file’s Northwind.InitClass method adds
these DataColumns to the DataTables when specifying ForeignKeyConstraints, and then adds the
DataRelations with their Nested property value set to True.

The Column Properties window
To examine the properties of the added columns, select the column and right-click it to display the
Properties tool window. Figure 6-12 shows the Properties window for the Orders table’s Orders_Id
primary-key column (left) and the Order_Details table’s Orders_Id foreign-key column (right).

Figure 6-12

You can edit the data type, column name, and other properties of any table column in the Properties
window. Right-click the window and choose Add to add a new column to the DataTable. You can
specify a calculated column by typing an expression in the Expression text box. As an example, you can
add an Extended column to the Order_Details table that you compute by the expression Quantity *
UnitPrice * (1 – Discount).

Save a copy of your source schema before creating the DataSet. Editing any member
of the DataSet modifies the schema file.

241

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 241

Altering a single property value in the Properties window causes a dramatic change to the schema file.
The schema gains an <xs:annotation> group to specify the data source, most elements acquire a
panoply of msprop attributes, and the schema file size grows by almost an order of magnitude —
NorthwindDS.xsd increases from 4KB to 35KB. If you need to edit the schema and retain its original
structure, right-click the schema file in Solution Explorer, choose Open With, and select XML Editor —
not the default DataSet Editor or XML Schema Editor — in the Open With dialog.

A nested schema with attributes
Adding attributes to elements that generate DataTables adds a column named for the attribute to
the table. For example, an attribute of the Order_Details field defined by <xs:attribute name=
”totalAmount” type=”xs:decimal” use=”required” /> adds a totalAmount column to the
Order_Details table. Figure 6-13 shows the NWAttributes.xsd schema open in the DataSet Editor. Each
table’s first column is generated from an attribute that’s defined by the schema and included in the
NWAttributes.xsd source document. An attribute added to a table adds a consecutively numbered
msdata:Ordinal=”n” attribute to each child node that represents a table column.

Figure 6-13

242

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 242

If you add a custom attribute to a table child element, such as ProductID, the designer creates a
ProductID table, which is probably not what you want.

The DataSetsFromNestedSchema.sln project includes the NWAttributes.xml and NWAttributes.xsd files.

A wrapped nested schema example
It’s a common XML document design practice to enclose sets of elements within outer groups. An
example is wrapping Customer and its child elements with a Customers group, Order with an Orders
Group, and Order_Detail with an Order_Details group to create the following abbreviated structure:

<Customers>
<Customer>

<CustomerID>GREAL</CustomerID>
...
<Fax></Fax>
<Orders>

<Order>
<OrderID>11061</OrderID>
...
<ShipCountry>USA</ShipCountry>
<Order_Details>

<Order_Detail>
<OrderID>11061</OrderID>
...
<Discount>0.075</Discount>

</Order_Detail>
</Order_Details>

</Order>
</Orders>

</Customer>
<Customers>

Following is the abbreviated schema for the preceding source document with the wrapping elements
highlighted:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”Customers” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”Customers” msdata:IsDataSet=”true”>
<xs:complexType>

<xs:choice minOccurs=”0” maxOccurs=”unbounded”>
<xs:element name=”Customer”>

<xs:complexType>
<xs:sequence>

<xs:element name=”CustomerID” type=”xs:string” minOccurs=”0” />
...
<xs:element name=”Fax” type=”xs:string” minOccurs=”0” />
<xs:element name=”Orders” minOccurs=”0” />

<xs:complexType>
<xs:sequence>

<xs:element name=”Order” minOccurs=”0” maxOccurs=”unbounded”>

243

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 243

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderID” type=”xs:string”
minOccurs=”0” />

...
<xs:element name=”ShipCountry” type=”xs:string”

minOccurs=”0” />
<xs:element name=”Order_Details” minOccurs=”0” />

<xs:complexType>
<xs:sequence>

<xs:element name=”Order_Detail”
minOccurs=”0” maxOccurs=”unbounded”>
<xs:complexType>

<xs:sequence>
<xs:element name=”OrderID” type=”xs:string”
minOccurs=”0” />

...
<xs:element name=”Discount” type=”xs:string”

minOccurs=”0” />
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:choice>
</xs:complexType>

</xs:element>
</xs:schema>

The DataSetsFromNestedSchema.sln project in the VB2005DB\Chapter06\DataSetsFromNestedSchema
folder includes the CustomersDS.xml and CustomersDS.xsd files.

The CustomersDS.xsd schema generates two additional tables to establish the relationships between
Orders and Order elements, and Order_Details and Order_Detail elements. To make the DataSet
suitable for editing with DataGridViews, you must add relationships between the CustomersID fields of
the Customers and Orders tables, and the OrderID fields of the Orders and Order_Details table, as
described in the section “The EditCustomersDS Sample Project,” later in this chapter.

Figure 6-14 shows the Customers DataSet in the designer without the relationships between the
Customers and Orders, and Orders and Order_Details tables added.

244

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 244

Figure 6-14

A Flat Schema Example
Nested schemas can export tables as XML documents by invoking the DataTable.WriteXML
(ExportFileName, XmlWriteMode.IgnoreSchema) method. Flat schemas add the capability to
import individual XML documents that conform to the DataSet schema for related tables. However, the
DataSet designer doesn’t add TableName_Id columns, ForeignKeyConstraints, or DataRelations.

Individual tables that you import must have a root element with the same name as the DataSet root
element and, if specified, the same global namespace.

Following is the abbreviated Northwind.xsd schema for Northwind.xml, which is the flat version of
NorthwindDS.xml, with primary and foreign keys emphasized:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema id=”Northwind” attributeFormDefault=”unqualified”

elementFormDefault=”qualified” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”>

<xs:element name=”Northwind” msdata:IsDataSet=”true”>
<xs:complexType>

245

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 245

<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”Customers”>

<xs:complexType>
<xs:sequence>

<xs:element name=”CustomerID” type=”xs:string” />
...
<xs:element minOccurs=”0” name=”Fax” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element minOccurs=”0” maxOccurs=”unbounded” name=”Orders”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”CustomerID” type=”xs:string” />
...
<xs:element name=”ShipCountry” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element minOccurs=”0” maxOccurs=”unbounded” name=”Order_Details”>

<xs:complexType>
<xs:sequence>

<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”ProductID” type=”xs:int” />
...
<xs:element name=”Discount” type=”xs:decimal” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

The minOccurs=”0” attribute for the Orders and Order_Details tables supports building the DataSet
by reading individual Customers, Orders, and Order_Details documents in sequence.

The Northwind.xml, Northwind.xsd, TableCustomers.xml, TableOrders.xml, and TableDetails.xml files
are in the VB2005DB\Chapter06\DataSetsFromFlatSchema\DataSetsFromFlatSchema.sln project.
This project’s form lets you populate the Northwind DataSet from a single data document or from
individual tables.

Creating an editable version of Northwind.xsd requires the following actions in the DataSet Editor window:

1. Add primary keys to each DataTable. Select and then right-click the primary-key column and
choose Set Primary Key for the three tables. Optionally, choose Edit Key to open the Unique
Constraint dialog and change the name to PK_TableName or the like.

2. The Order_Details table has a composite primary key, so right-click the OrderID column, choose
Edit Key, and mark the ProductID checkbox.

3. Right-click the DataSet Editor’s surface and choose Add ➪ Relation to open the Relation
dialog with the default values for a relationship between Customers and Orders named
FK_Customers_Orders. Change the Foreign Key Columns list’s OrderID entry to CustomerID.

246

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 246

4. Choose Add ➪ Relation again, change the name of the relation from FK_Customers_Orders1 to
FK_Orders_Order_Details, and select Orders from the Parent Table list and Order_Details
from the Child Table list. The Key Columns and Foreign Key Columns lists display OrderID.

5. If you want users to be able to add new Orders and Order_Details records, select the OrderID
primary-key column, choose Properties, and change the AutoIncrement property value from
False to True.

Figure 6-15 shows the DataSet Editor with the preceding steps completed.

Figure 6-15

Adding new records to DataTables in a document-editing application isn’t a common practice, but it’s
practical if the destination application can detect and handle added records properly. As an example, the
editing application might receive XML order documents from customers or distributors, review and
edit the documents as necessary, apply the DataRow.SetModified or DataRow.SetAdded method,
as applicable, send updates to a database, retrieve the updated data, and return individual XML
documents as e-mail enclosures. Nested documents are better suited to this scenario than flat documents,
as you’ll see in the section “Create Editing Forms from XML Data Sources,” later in this chapter.

Adding the primary keys and relationships to the tables adds to the end of the schema the following
<xs:unique> and <xs:keyref> elements of the Northwind element:

247

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 247

<xs:schema id=”Northwind” xmlns=”” xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:msdata=”urn:schemas-microsoft-com:xml-msdata”
xmlns:msprop=”urn:schemas-microsoft-com:xml-msprop”>

<xs:element name=”Northwind” msdata:IsDataSet=”true”
msprop:User_DataSetName=”Northwind”
msprop:DSGenerator_DataSetName=”Northwind”>

...
<xs:unique name=”PK_Customers” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//Customers” />
<xs:field xpath=”CustomerID” />

</xs:unique>
<xs:unique name=”PK_Orders” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//Orders” />
<xs:field xpath=”OrderID” />

</xs:unique>
<xs:unique name=”PK_Order_Details” msdata:PrimaryKey=”true”>

<xs:selector xpath=”.//Order_Details” />
<xs:field xpath=”OrderID” />
<xs:field xpath=”ProductID” />

</xs:unique>
<xs:keyref name=”FK_Orders_Order_Details” refer=”PK_Orders”

msprop:rel_Generator_RelationVarName=”relationFK_Orders_Order_Details”
msprop:rel_User_ParentTable=”Orders”
msprop:rel_User_ChildTable=”Order_Details”
msprop:rel_User_RelationName=”FK_Orders_Order_Details”
msprop:rel_Generator_ParentPropName=”OrdersRow”
msprop:rel_Generator_ChildPropName=”GetOrder_DetailsRows”>

<xs:selector xpath=”.//Order_Details” />
<xs:field xpath=”OrderID” />

</xs:keyref>
<xs:keyref name=”FK_Customers_Orders” refer=”PK_Customers”

msprop:rel_Generator_RelationVarName=”relationFK_Customers_Orders”
msprop:rel_User_ParentTable=”Customers” msprop:rel_User_ChildTable=”Orders”
msprop:rel_User_RelationName=”FK_Customers_Orders”
msprop:rel_Generator_ParentPropName=”CustomersRow”
msprop:rel_Generator_ChildPropName=”GetOrdersRows”>

<xs:selector xpath=”.//Orders” />
<xs:field xpath=”CustomerID” />

</xs:keyref>
</xs:element>

</xs:schema>

The <xs:unique> elements define primary keys, and <xs:keyref> elements specify foreign-key
constraints. The msprop attributes are references to DataRelations added by the Northwind.Designer.vb
file’s partial Northwind class.

Infer an XML Schema to Generate a DataSet
If you don’t have a schema for your XML source document, you have the following five choices for gen-
erating the schema with VS 2005:

❑ Open a representative XML source document in the XML Editor, choose XML ➪ Create Schema
to infer a schema, and save it in your project folder as SchemaName.xsd. The XML Editor’s
schema generator attempts to infer XSD datatypes by examining the text values of the source

248

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 248

document’s fields. Unfortunately, the inference process rarely succeeds with unsigned numeric
values that don’t have decimal fractions; it assigns them the smallest possible XSD numeric
datatype. For example, values 0 through 255 become xs:unsignedByte, 256 through
65,535 become xs:unsignedShort, and larger numbers become xs:unsignedInt or
xs:unsignedLong. Unless you have a reason for doing otherwise, assign xs:int to all
numeric values without decimal fractions.

❑ Create an empty runtime DataSet, invoke the DataSet.ReadXml(DocumentFileName)
method, and save the schema file by invoking DataSet.WriteXmlSchema(SchemaFileName).
This method generates an untyped schema — all elements are assigned the xs:string datatype
and a minOccurs=”0” attribute. Open SchemaFileName.xsd in the XML Editor, change the
datatypes of numeric and date or date/time values to the appropriate xs:datatype, and
remove inappropriate minOccurs=”0” attributes.

❑ Generate a typed schema by the preceding process, but invoke the DataSet.ReadXml
(DocumentFileName, XmlReadMode.InferTypedSchema) method to generate a schema
that’s identical to the schema generated by the XML Editor.

❑ Open a VS 2005 Command Prompt, navigate to your project folder, and type xsd.exe
DocumentFileName.xml to generate DocumentFileName.xsd. The schema is identical to that
generated by the preceding method.

❑ If you don’t have a single XML document that’s representative of all possible XML document
instances — or don’t want to manually create one — you can use the Microsoft XSD Inference 1.0
Tool at http://apps.gotdotnet.com/xmltools/xsdinference/ to generate and refine a
typed schema. You specify an initial source document to infer the initial schema, and then
process additional source documents to refine the schema.

The “Xsd.exe Workarounds for Complex Documents” article at http://www.fawcette.com/
xmlmag/2002_07/online/webservices_rjennings_07_29_02/ explains how to overcome
problems you might encounter when using Xsd.exe to generate schemas. You can learn more about the
Microsoft XSD Inference 1.0 Tool in the “Generate XSD Schemas by Inference” article at http://
www.fawcette.com/xmlmag/2002_11/online/xml_rjennings_11_11_02/.

If you must infer and refine schemas routinely, you can use the System.Xml.Schema.InferSchema
method to emulate the Microsoft XSD Inference 1.0 Tool. The following code infers a schema for an
initial document instance (Initial.xml), refines the schema with three additional document instances, and
writes the refined schema as Initial.xsd:

Private Sub InferAndRefineSchema
‘Use System.Xml.Schema.InferSchema to infer and refine a schema
Dim alFiles As New ArrayList
alFiles.Add(“Initial.xml”)
alFiles.Add(“Refine2.xml”)
alFiles.Add(“Refine3.xml”)
alFiles.Add(“Refine4.xml”)

Dim intCtr As Integer
Dim xss As XmlSchemaSet = Nothing
Dim xsi As Inference = Nothing
For intCtr = 0 To alFiles.Count - 1

Dim xr As XmlReader = XmlReader.Create(alFiles(intCtr).ToString)
If intCtr = 0 Then

249

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 249

‘Infer schema
xss = New XmlSchemaSet()
xsi = New Inference()

End If
xss = xsi.InferSchema(xr)
xr.Close()

Next
Dim strXsdFile As String = Replace(alFiles(0).ToString, “.xml”, “.xsd”)
Dim xsd As XmlSchema
For Each xsd In xss.Schemas()

Dim sw As StreamWriter = Nothing
sw = My.Computer.FileSystem.OpenTextFileWriter(strXsdFile, False)
xsd.Write(sw)
sw.Close()
‘Only one schema is generated
Exit For

Next
End Sub

Create Editing Forms from XML Data Sources
The process of creating editing forms for XML data documents is similar to that for editing database
tables. After you’ve generated a typed DataSet from your existing schema, drag the top-level table
from the Data Sources window to the form to add a DataNavigator and DataGridView or details text
boxes. Repeat the process with DataGridViews for the related tables and specify the appropriate
DataRelation to generate a DataRelationBindingSource for the DataSource property value. Unlike
binding DataGridViews to FK_ParentTable_ChildTableBindingSources generated from database tables,
you create the BindingSource when you specify a related list in the DataSource property pop-up list.

The following two project examples illustrate the changes required to create DataRelationBindingSource,
enable adding new document elements, and accommodate wrapped nested DataSets.

The EditNorthwindDS Sample Project
The EditNorthwindDS.sln project in the VB2005DB\Chapter06\EditNorthwindDS folder is based on
the NorthwindDS.xml source document and NorthwindDS.xsd schema. The form has DataGridViews
populated from the Customers, Orders, and Order_Details DataTables, as shown in Figure 6-16.

The following processes are completed in the sample project. If you want to give the following operations
a test drive, create a new project, add the NorthwindDS.xml and NorthwindDS.xsd files to it, and drag
the Customers, Orders, and Order_Details tables as DataGridViews to Form1. Add a Me.Northwind
.ReadXml(“\Path\NorthwindDS.xml”) instruction to the Form1_Load event handler to popu-
late the DataTables.

Open the Data Sources window and drag the Customers parent group icon, its Orders subgroup icon,
and the Orders group’s Order Details subgroup icon to the form to add the three DataGridViews. Add
code to the Form_Load event handler to populate the DataSet with the NorthwindDS.xml document.

250

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 250

Figure 6-16

You might need to change the Order_DetailsDataGridView’s DataSource property value
to Customers_OrdersBindingSource and the DataMember property value to the
Orders_Order_Details relation to track Orders DataGridView selection changes.

You can safely delete the OrdersBindingSource and Order_DetailsBindingSource at this point because
they no longer bind to any controls.

Figure 6-17 shows the DataSource list after completing the preceding operations and loading
the NorthwindDS.xml document. An OrdersDataGridView..Sort(.Columns(0), System
.ComponentModel.ListSortDirection.Descending) instruction in the Form_Load event handler
applies the descending sort order by OrderID.

If you want to enable users to add new Orders and Order_Details records with appropriate OrderID col-
umn values, you must edit the schema and set the OrderID and Order_Id columns’ AutoIncrement
property to True in the ColumnName Properties dialog. Otherwise, set the DataGridViews’
AllowUserToAddRows property value to False.

251

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 251

Figure 6-17

You can add the autogenerated Customers_Id, Orders_Id, and Order_Details_Id attributes as
columns of the DataGridViews. While you’re customizing the DataGridViews’ Columns collections in
the Edit Columns dialog, move the autogenerated columns to the end of the Selected Columns list, and
set their ReadOnly property value to True. If you don’t allow users to add new rows, you can delete
these columns from the DataGridView.

Add a button to save DataSet changes and invoke the NorthwindDS..WriteXml(strFile, Data
.XmlWriteMode.IgnoreSchema) method to save the edited data document. The sample project saves
a diffgram (NorthwindDS.xsd) before saving changes and has buttons to display the saved XML document
and the schema in Internet Explorer.

Adding new rows requires an OrdersDefaultValues procedure that the OrdersDataGridView
_DefaultValuesNeeded event handler calls. The procedure’s code is similar to that for Chapter 5’s
DefaultValuesNeeded event handler, but you must add the Customers_Id value to maintain the
relationship, as shown highlighted in the following listing:

Private Sub OrdersDefaultValues(ByVal rowNew As DataGridViewRow)
Try

With CustomersDataGridView
Dim intRow As Integer = .CurrentCell.RowIndex
rowNew.Cells(1).Value = .Rows(intRow).Cells(0).Value

252

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 252

rowNew.Cells(2).Value = 0
rowNew.Cells(3).Value = Today
rowNew.Cells(4).Value = Today.AddDays(14)
‘Leave ShippedDate empty
rowNew.Cells(6).Value = 3
‘Freight defaults to 0
‘CompanyName
rowNew.Cells(8).Value = .Rows(intRow).Cells(1).Value
‘Address to Country fields
Dim intCol As Integer
For intCol = 9 To 13

rowNew.Cells(intCol).Value = .Rows(intRow).Cells(intCol - 5).Value
Next
‘Add the current Customers_Id value
rowNew.Cells(15).Value = .Rows(intRow).Cells(11).Value
OrdersDataGridView.EndEdit(DataGridViewDataErrorContexts.Commit)
‘Store the autoincremented Orders_Id for Order_Details default values
intNewOrder_ID = CInt(rowNew.Cells(14).Value)
‘Store the autoincremented OrderID value
intOrderID = CInt(rowNew.Cells(0).Value)

End With
Catch exc As Exception

MsgBox(exc.Message + exc.StackTrace, ,)
End Try

End Sub

The DetailsDefaultValues procedure requires a similar modification for the OrdersID and Orders_Id
values:

Private Sub DetailsDefaultValues(ByVal rowNew As DataGridViewRow)
‘Default values for Order_Details
Try

With OrdersDataGridView
Dim intRow As Integer = .CurrentCell.RowIndex
‘Add OrderID
rowNew.Cells(0).Value = .Rows(intRow).Cells(0).Value
‘Add Orders_Id
rowNew.Cells(5).Value = .Rows(intRow).Cells(14).Value

End With
With Order_DetailsDataGridView

rowNew.Cells(1).Value = 0
rowNew.Cells(2).Value = .Rows.Count * 10
rowNew.Cells(3).Value = .Rows.Count * 5
rowNew.Cells(4).Value = .Rows.Count * 0.01

End With
Catch exc As Exception

rowNew.Cells(5).Value = intNewOrder_ID
Finally

Order_DetailsDataGridView.EndEdit(DataGridViewDataErrorContexts.Commit)
End Try

End Sub

253

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 253

The EditCustomersDS Sample Project
The EditCustomersDS.sln project in the VB2005DB\Chapter06\EditCustomersDS folder is based on the
CustomersDS.xml source document and CustomersDS.xsd schema. The project’s form appears identical
to that of the EditNorthwindDS.sln project, but you can’t use the default indirect relationships between
the Customer and Order or Order and Order_Detail tables to bind the Order and Order_Detail
DataGridViews.

Wrapped nested documents require adding direct relationships between the tables manually. Thus, you
must add DataRelations and, optionally, foreign-key constraints between Customer.CustomerID and
Order.CustomerID, and Order.OrderID and Order_Details.OrderID. Figure 6-18 shows the DataSet
Editor with the added relationships — FK_Customer_Order and FK_Order_Order_Detail. You don’t
need to change the OrdersDefaultValue or DetailsDefaultValue code because updates to the
Orders and Order_Details connecting tables are automatic.

Figure 6-18

254

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 254

Generate Serializable Classes from
Schemas

Xsd.exe’s /c and /l:vb command-line switches let you generate serializable VB classes from schemas
that don’t have the msdata namespace declaration and msdata:IsDataSet=”True” attribute. NET
Framework 1.x’s Xsd.exe generates classes with public fields; the 2.0 version generates public properties
and private fields, which is considered a best practice. XML serialization — the process of persisting an
object as an XML document stream — enables you to save DataSets as XML files, publish and consume
ASP.NET Web services, and remote objects across application domains in XML format.

If the msdata namespace declaration and attribute are present, Xsd.exe generates a typed DataSet from
the schema, which is the equivalent of setting the /d and /l:vb switches for non-DataSet schemas.

Remoting XML streams doesn’t maintain type fidelity; remoting with binary serialization lets you pass
the object By Value to other application domains. .NET Framework 2.0 adds a binary serialization
option for DataSets, which is much more efficient than XML encoding.

Designating a class as serializable with XML encoding requires adding attributes from the System
.Xml.Serialization namespace to the root object and its elements. Following is the code for the
top-level Northwind class generated by typing Xsd.exe /c /l:vb Northwind.xsd at the Visual Studio
2005 Command Prompt:

<System.SerializableAttribute(), _
System.Xml.Serialization.XmlRootAttribute([Namespace]:=””, IsNullable:=False)> _

Public Class Northwind

Private customersField() As NorthwindCustomers
Private ordersField() As NorthwindOrders
Private order_DetailsField() As NorthwindOrder_Details

<System.Xml.Serialization.XmlElementAttribute(“Customers”)> _
Public Property Customers() As NorthwindCustomers()

Get
Return Me.customersField

End Get
Set(ByVal value As NorthwindCustomers())

Me.customersField = value
End Set

End Property

<System.Xml.Serialization.XmlElementAttribute(“Orders”)> _
Public Property Orders() As NorthwindOrders()

Get
Return Me.ordersField

End Get
Set(ByVal value As NorthwindOrders())

Me.ordersField = value
End Set

End Property

<System.Xml.Serialization.XmlElementAttribute(“Order_Details”)> _
Public Property Order_Details() As NorthwindOrder_Details()

255

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 255

Get
Return Me.order_DetailsField

End Get
Set(ByVal value As NorthwindOrder_Details())

Me.order_DetailsField = value
End Set

End Property
End Class

The Customers(), Orders(), and Order_Details() fields are arrays. The complete code for the
Northwind class is in the clsNorthwind.vb file of the ClassesFromSchemas.sln sample project in the
VB2005DB\Chapter06\ClassesFromSchemas folder.

You can instantiate a serializable class with its default constructor and set property values — a process
called deserializing, hydrating, or re-hydrating an object — by loading an XML source document stream
with an XMLSerializer instance. Serializing or dehydrating an object gets its property values and
generates the corresponding XML stream.

The following code snippet is from the ClassesFromSchemas.sln project’s Classes.vb file. The highlighted
code deserializes the Northwind object from the Northwind.xml file, updates the contents of the
CompanyName, ShipName, and Discount fields, serializes the object, and saves the resulting XML docu-
ment as Output.xml.

Private Sub btnNorthwind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnNorthwind.Click

‘Prove no cheating is going on
File.Delete(“..\Output.xml”)

‘Hydrate the Northwind object instance by deserializing it
Dim objNwind As New Northwind
Dim xsInput As New XmlSerializer(objNwind.GetType)
Dim srInput As New StreamReader(“..\Northwind.xml”)
objNwind = CType(xsInput.Deserialize(srInput), Northwind)
srInput.Close()

‘Change field values to prove the procedure works
Dim intCtr As Integer
For intCtr = 0 To objNwind.Customers.Length - 1

objNwind.Customers(intCtr).CompanyName += “ (Edited)”
Next
‘Same change to Orders
For intCtr = 0 To objNwind.Orders.Length - 1

objNwind.Orders(intCtr).ShipName += “ (Edited)”
Next
‘Give everyone a 25% discount
For intCtr = 0 To objNwind.Order_Details.Length - 1

objNwind.Order_Details(intCtr).Discount = 0.25D
Next

‘Dehydrate the Northwind object by serializing it to Output.xml
Dim xsOutput As New XmlSerializer(objNwind.GetType)
Dim srOutput As New StreamWriter(“..\Output.xml”)
xsOutput.Serialize(srOutput, objNwind)
srOutput.Close()

End Sub

256

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 256

The preceding code uses StreamReader and StreamWriter instances to generate and consume the
XML streams. XmlSerializer can accommodate other stream-based objects, such as FileStream,
as demonstrated by the project’s btnNorthwindDS_Click and btnCustomersDS_Click event
handlers.

Create Data Sources from Serializable Classes
Adding a serialized class file to a project lets you add its classes to the Data Sources window. Click the
window’s Add New Data Source button or choose Data ➪ Add New Data Source to start the Data
Sources Configuration Wizard, select Object on the Choose a Data Source Type page, and click Next. In
the Select an Object You Wish To Bind To page, expand the project node, and select the serializable class
to add. Figure 6-19 illustrates how the NorthwindCustomers class was added to the
ClassesFromSchemas.sln project.

Figure 6-19

Creating a data source from the top-level element of the class doesn’t enable generating editing controls
for child elements. The top-level element’s subnodes are inactive, as shown for the Northwind class in
Figure 6-16. This limitation also applies to classes created from schemas for nested source documents,
such as NorthwindDS.xml and CustomersDS.xml.

257

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 257

Dragging active class nodes to a form generates a DataNavigator and DataGridView or text boxes for the
first node, DataGridViews for the remaining nodes, and a BindingSource for each node. Users can’t add
or delete rows bound to arrays of classes. Adding and deleting element groups requires substituting
BindingLists for class arrays, which is the subject of the next section. BindingSources don’t support
Filter and Sort properties for object arrays, so you can’t apply a filter to display rows based on a
selection made with the DataNavigator or in DataGridViews. Filtering and sorting require the data
source to implement the System.ComponentModel.IBindingListView interface. Another limitation
of object arrays as data sources is handling null (missing) date values. The DataGridView doesn’t respect
the NullValue property value — usually (null) — that you set in the CellStyle Builder dialog for date
columns; instead the column displays 1/1/0001 for null date values.

The following abbreviated version of the btnLoadData_Click event handler in the sample project’s
EditForm.vb file tests the loading of three DataGridViews with data from the three Northwind...
classes:

Private Sub btnLoadData_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoadData.Click

blnIsLoaded = False
Me.Cursor = Cursors.WaitCursor
‘Hydrate the NorthwindDS object by deserializing it
objNwind = New Northwind
Dim xsInput As New XmlSerializer(objNwind.GetType)
Dim fsInput As New FileStream(“..\Northwind.xml”, FileMode.Open)
objNwind = CType(xsInput.Deserialize(fsInput), Northwind)
fsInput.Close()

With NorthwindCustomersBindingSource
.Clear()
DoEvents()
.DataSource = objNwind
.DataMember = “Customers”

End With

DoEvents()
With NorthwindOrdersBindingSource

.Clear()
DoEvents()
.DataSource = objNwind
.DataMember = “Orders”

End With

DoEvents()
With NorthwindOrder_DetailsBindingSource

.Clear()
DoEvents()
.DataSource = objNwind
.DataMember = “Order_Details”

End With
Me.Cursor = Cursors.Default
blnIsLoaded = True

End Sub

258

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 258

Code to bypass the BindingSources and load the DataGridViews directly is identical to the preceding
example; just change ...BindingSource to ...DataGridView and .Clear() to
.Rows.Clear().

Loading DataGridViews with data contained in class arrays isn’t a speedy process. Populating three
DataGridViews with 106 records requires about 10 seconds initially; successive trials take about 5 sec-
onds on a machine with a 2.3 GHz Pentium 4 processor. Reading and deserializing the Northwind.xml
source document file consumes only about 0.25 second.

Enhance Editing with Generic BindingList Collections
The .NET Framework 2.0’s new System.Collections.Generics namespace provides generic imple-
mentations for type-safe List (Of T), LinkedList(Of T), Stack(Of T), Queue(Of T), Dictionary(Of
T), and other more specialized collections. T is a placeholder for a type, such as String or Integer, that
the instantiating code provides to the collection’s constructor. Generics substitute compile-time for runtime
type-checking, and avoid the boxing and unboxing operations required for type casts between references
and values. Thus, generic collections can deliver substantial performance benefits.

The System.ComponentModel namespace provides the BindingList(Of T) collection, which reduces
DataGridView loading time by a factor of about 10. BindingList(Of T) collections support AddNew
and Remove methods — but not Filter and Sort properties — on classes generated from schemas. The
following code substitutes BindingList(Of Northwind...) for the preceding example’s arrays:

Imports System.Xml.Serialization
Imports System.ComponentModel.Collections.Generic

<System.SerializableAttribute(), _
System.Xml.Serialization.XmlTypeAttribute(AnonymousType:=True),
System.Xml.Serialization.XmlRootAttribute([Namespace]:=””, IsNullable:=False)> _

Public Class Northwind
Private customersField As BindingList(Of NorthwindCustomers)
Private ordersField As BindingList(Of NorthwindOrders)
Private order_DetailsField As BindingList(Of NorthwindOrder_Details)

<System.Xml.Serialization.XmlElementAttribute(“Customers”)> _
Public Property Customers() As BindingList(Of NorthwindCustomers)

Get
Return Me.customersField

End Get
Set(ByVal value As BindingList(Of NorthwindCustomers))

Me.customersField = value
End Set

End Property

<System.Xml.Serialization.XmlElementAttribute(“Orders”)> _
Public Property Orders() As BindingList(Of NorthwindOrders)

Get
Return Me.ordersField

End Get
Set(ByVal value As BindingList(Of NorthwindOrders))

Me.ordersField = value
End Set

259

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 259

End Property

<System.Xml.Serialization.XmlElementAttribute(“Order_Details”)> _
Public Property Order_Details() As BindingList(Of NorthwindOrder_Details)

Get
Return Me.order_DetailsField

End Get
Set(ByVal value As BindingList(Of NorthwindOrder_Details))

Me.order_DetailsField = value
End Set

End Property
End Class

The GenericClassesFromSchemas.sln project in the VB2005DB\Chapter06\GenericClassesFromSchema
folder provides an editing form that’s identical to that of the ClassesFromSchemas.sln project, but lets you
add and delete rows from the DataGridView.

Figure 6-20 shows the sample project’s EditForm.vb with an added customer, order, and line item. No
changes are required to the previous example’s code that sets and gets the three BindingList field
values, because both examples’ field types —NorthwindCustomers, NorthwindOrders, and
NorthwindOrder_Details— are defined by the schema for Northwind.xml. However, a substantial
amount of validation code and several schema modifications are needed to deliver a production-quality
document editing or generation form.

Figure 6-20

260

Chapter 6

11_57678x ch06.qxd 11/10/05 11:31 PM Page 260

You must devote much of the added code to work around the lack of direct support for filtering
BindingList(Of T) collections or BindingSource objects whose DataSource property specifies
a BindingList(Of T) collection. A built-in filterable, sortable BindingListView(Of T)
collection would simplify development greatly, but developers must create their own or adopt third-
party classes. Andrew Davey posted a C# implementation of a BindingListView<T> collection in
September 2005; search Google for BindingListView<T> or BindingListView(Of T) for third-party
C# 2.0 or VB 8.0 implementations.

Microsoft’s Language Integrated Query (LINQ) project for the next .NET, C#, and VB versions_scheduled
for the Visual Studio “Orcas” release_promises to simplify business-object filtering, sorting, databinding,
and editing. LINQ also eases relational-to-object and XML-to-object mapping with DLinq and XLinq APIs.
You can learn more about LINQ at http://msdn.microsoft.com/netframework/future/linq/ and
the VB 9.0 implementations of LINQ, DLinq, and XLinq at http://msdn.microsoft.com/vbasic/
future/. The VB 9.0 page has links to download the latest version of the Visual Basic 9.0 Technology
Preview, which runs under VS 2005 or VBX and enables developers to gain pre-release experience with
LINQ, DLinq, and XLinq.

Summary
The .NET Framework 2.0’s new partial classes enable dividing class files, such as FormName.vb, into a
set of individual files that contain elements of the class definition. Partial classes let you make additions
to or override methods of designer-generated files — such as FormName.Designer.vb and DataSetName
.Designer.vb — without losing your added code when editing objects in the form design window or
DataSet Editor.

Displaying images in DataGridView cells is a straightforward process that’s similar to the techniques for
adding graphics to ADO.NET 1.x DataGrid controls. A DataGridView that contains 101 GIF images of
moderate — 240 pixels by 149 pixels — size loads in less than 2 seconds from the ProductPhotos table
of SQL Server 2005’s AdventureWorks sample database. You can add a new image to a DataGridView
cell from a bitmap file, save a selected image to a file, or display an image in a PictureBox control
with a few lines of code. You can display images from a Microsoft Access OLE Object field, such as those
in the Northwind sample database’s Categories table and early versions of the Employees table, in a
DataGridView column. However, you can’t save these images to usable bitmap files or display them
in PictureBoxes because the images include an OLE header block that specifies the images’ editing
application.

Substituting XML Infoset source documents and their schema for database tables lets you edit
documents with bound text boxes, DataGridViews, and other databound Windows form controls. You
can use VS 2005’s XML Editor to infer untyped schemas from source documents or use the .NET
Framework’s schema inference engine or the Xsd.exe command-line tool to infer typed schemas that
guess the datatypes of the source documents’ string representation of numeric values. Simple one-to-
many hierarchical source documents with nested or wrapped-nested structures are the easiest to bind to
DataGridViews.

Xsd.exe generates serializable classes from XML schemas. .NET Framework 2.0’s Xsd.exe version creates
classes with private fields and public properties, which you can use as object data sources to create
typed DataSets and generate editing forms. Serialized classes generate instances from XML source docu-
ments and permit editing with DataGridViews and saving edited documents. Replacing the default
object arrays with generic BindindList(Of T) collections speeds document loading, and lets you add
and delete DataGridView rows and their corresponding elements, groups, or both.

261

Applying Advanced DataSet Techniques

11_57678x ch06.qxd 11/10/05 11:31 PM Page 261

11_57678x ch06.qxd 11/10/05 11:31 PM Page 262

Part III

Data Binding
in ASP.Net 2.0

12_57678x pt03.qxd 11/10/05 11:19 PM Page 263

12_57678x pt03.qxd 11/10/05 11:19 PM Page 264

Working with ASP.NET 2.0
DataSources and

Bound Controls

.NET Framework 2.0’s Windows form data sources, data components, and bound controls evolved
from their .NET Framework 1.0 counterparts. Visual Studio 2005’s data tools and wizard simplify
common tasks, such as generating typed DataSets and designing master/details forms, but the tools
and wizards strongly resemble their forebears. Making the transition from earlier Visual Studio data
tools and components requires a modest learning curve for seasoned .NET developers. Substituting
DataGridViews for the obsolescent DataGrid takes a bit more effort, but the DataGridView’s added
features and improved performance justify its more complex object model.

ASP.NET 2.0 — on the other hand — represents a radical departure from ASP.NET 1.x. Microsoft’s
free Web Matrix ASP.NET development tool was an instant success; a major contributor to its pop-
ularity was the lack of VS 2002 or 2003 and Internet Information Services (IIS) prerequisites. Web
Matrix combines a graphical Web page designer and code editor (codenamed Venus) for ASP.NET
1.1 with a built-in, lightweight Web server (Cassini). Venus and Cassini provide the foundation
for VS 2005’s Visual Web Developer UI and the Visual Web Developer Web Server. Visual Web
Developer (VWD) 2005 Express Edition is the equivalent of Web Matrix upgraded to the VS 2005
UI and ASP.NET 2.0. Unlike the language-specific Express editions, VWD 2005 Express supports
VB, C#, and J#.

This chapter assumes that you have some experience creating and deploying data-driven Web sites
with Active Server Pages (ASP), ASP.NET 1.x, or Web Matrix. This book is devoted to data-related
topics. Thus the chapters in Part III, “Data Binding in ASP.NET 2.0,” don’t cover ASP.NET 2.0 Web
site architecture and page design, such as site navigation, master pages, themes, and skins.

The sample projects’ connection strings assume that you’re running an SQL Server 2000, MSDE
2000, or SQL Server 2005 as the default localhost instance with the Northwind sample database.

13_57678x ch07.qxd 11/10/05 11:16 PM Page 265

If you’re using Visual Web Developer 2005 Express Edition or a named SQL Server 2005 instance, you
must modify the following Web.config section to point to the named instance:

<connectionStrings>
<add name=”NorthwindConnection” connectionString=”Server=localhost;Integrated
Security=True;Database=Northwind” providerName=”System.Data.SqlClient” />

</connectionStrings>

Change localhost to .\SQLExpress to use the Shared Memory provider with SQL Server 2005 Express.

Explore New ASP.NET 2.0 Features
The process of creating Web form applications with VS 2005 differs markedly from that of VS 2002 and
2003, which depend on a previously defined IIS virtual directory. VS 2005’s New Project dialog no longer
includes ASP.NET Web Project, ASP.NET Web Service, and other Web-related icons. The File ➪ New
menu offers a Web site choice that opens the New Web Site dialog with file system–based ASP.NET Web
Site, ASP.NET Web Service, and other template icons. \WebSites is the default root folder for adding
new Web site or Service subfolders. You can click the Browse button to open the Choose Location dialog,
accept the default File System option, and navigate to or add a more appropriately named path to the
Location text box (see Figure 7-1).

Figure 7-1

266

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 266

Click OK to generate a site folder with FolderName solution and project items, add an empty App_Data
folder, a Default.aspx page file, and a Default.aspx.vb code-behind file. If Default.aspx.vb isn’t present,
right-click Default.aspx in Solution Explorer and choose View Code to generate the file. Default.aspx.vb
contains empty Partial Class Default_aspx and Inherits System.Web.UI.Page declarations for
code behind the Default.aspx page.

The Add New Item dialog has a Place Code in Separate File checkbox that’s marked by default. Unless
you clear the checkbox, all new ASP.NET Web forms, master pages, Web services, and user controls you
add have an associated code-behind partial class file.

Default.aspx opens in the inline XHTML 1.1 Source (markup) editor with the default page directive,
DOCTYPE declaration, and <html>, <head>, <body>, <form>, and <div> elements, as shown reformat-
ted in Figure 7-2.

Figure 7-2

Replace Untitled Page with a more descriptive name, and click the View Designer button to display
an empty page in the designer, which supports conventional HTML flow layout mode only. ASP.NET 2.0
doesn’t support ASP.NET 1.x’s default grid-based fixed element positioning mode by default.

267

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 267

The explanation for the missing fixed-position design mode is that flow layout supports a wider range of
browsers and devices. Place controls in table cells to control relative positioning; add cascading style
sheets (CSS) for fixed positioning. To specify alternative positioning methods for Web controls, choose
Tools ➪ Options ➪ HTML Designer ➪ CSS Positioning, mark the Change Positioning . . . checkbox,
and select the position method from the dropdown list.

Choose Layout ➪ Insert Table to open the Insert Table dialog, select the Template option, accept the
default Header style, and click OK to add a full-page table with a header and no borders. Type and format
a title for the table, select the entire table by clicking in the upper-left corner, open the Properties window,
and assign a table Id value (such as tblmain) and a Web color name (such as Gainsboro) to the BgColor
property; the named color changes to its RGB value (see Figure 7-3).

Finally, press F5 to build and run your work so far. Click OK in the Debugging Not Enabled dialog to add
a Web.config file to the project. The Visual Web Developer Web Server starts and displays Default.aspx in
IE. Right-click the Web Server icon on the taskbar and select show details to open the server’s properties
dialog, which displays the randomly selected TCP port for the page (see Figure 7-4).

Figure 7-3

268

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 268

Figure 7-4

Web sites don’t create solution files by default until you add another project to the solution. To add a
SiteName.sln file to all Web site projects, open the Options dialog’s Projects and Solutions\General page
and verify that the Always Show Solution checkbox is marked. To ensure that the solution file is present
in the correct folder, select the Solution item in Solution Explorer, choose File ➪ Save SolutionName.sln
As, and navigate to the desired folder in the Save File As dialog.

The ASP.NET 2.0 Compilation Model
An ASP.NET 1.1 page directive specifies the name of the code-behind file and the form’s base class
name, as shown here:

<%@ Page Language=”vb” AutoEventWireup=”false” Codebehind=”Default.aspx.vb”
Inherits=”DataWebSite.Form1”%>

ASP.NET 1.x PageName.aspx.vb files contain an initialization region and initialization code for each con-
trol on the page. The first time you open http://www.company.com/datawebsite/default.aspx,
the ASP.NET 1.x runtime compiles the code behind the page and generates a set of temporary
files, including a file for the Public Class Default_aspx definition that’s derived from the
WebSiteName.Form1 base class.

Following is the ASP.NET 2.0 page directive for the Default.aspx page you added in the preceding section:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” %>

Partial classes for HTML markup and code behind the page eliminate the need for a derived class. The
CodeFile instruction specifies that markup and code in Default.aspx, and code in Default.aspx.vb, is to
be compiled into a single _Default class.

269

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 269

The DataWebSite project folder doesn’t include the traditional \bin subfolder. Building and running
an ASP.NET 2.0 solution with the built-in Web server generates a collection of temporary files in a
\WINDOWS\Microsoft.NET\Framework\v2.0. BuildNumber\Temporary ASP.NET Files\websitename\
random1\random2 folder; websitename is the lowercased folder name, datawebsite for this example, and
random1\random2 are two random eight-character folder names, such as e7ae7f95\aa3fd637 (see Figure 7-5).
ASP.NET 1.1 generates temporary files in a similar folder hierarchy.

Figure 7-5

The last ‘.NET’: Loaded ... entry in the Output window displays the full path to the current set of
temporary files.

Pressing F5 to build and run the project with the built-in Web server night not generate all temporary
files. Copy the URL from the IE instance to the Clipboard, open another instance of IE, and paste the
URL to generate the full set of temporary files. You can read most temporary files in Notepad.

The following table describes the temporary files shown in Figure 7-5. File names in boldface identify
similar temporary files generated by ASP.NET 1.1.

Temporary File Name Description

App_Web_bmzetgsw.dll Compiled assembly of 0.vb, 1.vb, and 2.vb files

App_Web_bmzetgsw.pdb Symbols (debugging) file for bmzetgsw.dll

270

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 270

Temporary File Name Description

bmzetgsw.0.vb Partial Class Default_aspx for the HTML, server controls, and
inline code on the page (autogenerated from Default.aspx)

bmzetgsw.1.vb Partial Class Default_aspx for code behind the page (copy of
Default.aspx.vb)

bmzetgsw.2.vb Public Class FastObjectFactory with an unused (dummy)
Shared Function Create_Default_aspx() As Object function

bmzetgsw.cmdline Vbc.exe compiler parameters for compiling the assembly

bmzetgsw.err Compilation errors (empty if compilation is successful)

bmzetgsw.out Full Vbc.exe compiler command (includes bmzetgsw.cmdline)

bmzetgsw.res Compiled resource file, which contains the main table inline code

default.aspx.cdcab7d2 File dependencies and hash values list for the page (XML)
.compiled

default.aspx.cdcab7d2_ CodeCompileUnit (container for a CodeDOM program graph for
CBMResult.ccu the page)

default.aspx.cdcab7d2_ File dependencies list and hash values for the CodeCompileUnit
CBMResult.compiled (XML)

default.aspx.vb File dependencies and hash values list for code behind the page (XML)
.cdcab7d2.compiled

hash.web 16-byte hexadecimal hash value

ASP.NET 1.x doesn’t add the Asp_Web_ prefix. ASP.NET 1.x temporary files include another set of
random.0.vb ... random.pdb files for the Global_asax class. ASP.NET 2.0 projects don’t include a
default Global.asax file.

Compiling the HTML markup and code for each page improves productivity while you’re developing
individual pages or a complete site with the built-in Web server. Only modified pages recompile when
you run the project. Chapter 8’s “Publish Precompiled Web Sites” section describes how to deploy a
completed Web form project to an IIS 5.0 or 6.0 virtual directory. Publishing a precompiled Web form
project generates a single DLL in the \bin folder, removes the source code, and eliminates the compila-
tion delay when the first user opens the project’s Default.aspx or another designated startup page.

Special ASP.NET 2.0 Folders
ASP.NET 2.0 designates a set of “special directories” that the runtime recognizes when compiling the
Web site. An Application_ prefix instructs the runtime to include the files in these folders during the
compilation process. Prepending Application_ to folder names minimizes reserved folder name conflicts
when upgrading ADO.NET 1.x Web projects to ADO.NET 2.0.

271

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 271

The following list briefly describes new ADO.NET 2.0 reserved folders:

❑ App_Assemblies replaces the \bin folder.

❑ App_Data stores a default SQL Express database file to support Web site login and personaliza-
tion features, XML source documents and schemas, or other application-level data sources.
App_Data is the only default reserved folder.

❑ App_Code is the location for class files and other code required for the project, except partial
code-behind class files. The runtime generates references to classes defined in these files auto-
matically; classes are accessible to code in any page in the project.

❑ App_WebReferences contains client proxy class files for projects that consume Web services.

❑ App_Browsers stores definition files for supported browsers.

❑ App_GlobalResources and App_LocalResources contain XML Resource.resx files that the run-
time compiles into .res or .resource files.

❑ App_Themes stores page themes for the site or individual pages, default or named control
skins, style sheets, and graphics for control icons.

You must add the special folders that you need as first-level subfolders of the project folder. The
ASP.NET 2.0 runtime won’t recognize special folder names in other locations.

New ASP.NET 2.0 Data Controls
ASP.NET 2.0 adds about 40 new Web controls to ASP.NET 1.1’s repertoire. Many new server controls
support declarative data connectivity and databinding with little or no inline code or code behind the
page required. Databinding also automates optional update, insert, and delete operations for database
tables and custom data access objects and components.

Following are brief descriptions of the new ASP.NET 2.0 server controls that support databinding and
updates:

❑ DataSource controls connect to databases, data access objects, and tabular and hierarchical
XML documents, including serialized typed DataSets. DataSource controls provide the binding
source for two-way databound controls and other server controls, such as DropLists and
ListBoxes, that support read-only databinding. DataSource controls replace the ADO.NET 1.1
data-related controls, such as ...Connections and ...DataAdapters.

❑ DataList controls display and edit tabular DataSource rows sequentially in one or more columns.

❑ FormView controls display and edit a single DataSource row in a conventional HTML form.

❑ GridView controls display and edit multiple DataSource rows in a grid that’s similar to the
Windows form DataGridView. GridView replaces ASP.NET 1.x’s DataGrid.

❑ DetailsView controls display and edit a single DataSource row in a two-column table.
DetailsView controls support master/child data editing pages.

The remainder of this chapter covers the preceding new data-related controls. Chapter 8 describes how
to program the ASP.NET 2.0 version of the Repeater and TreeView controls.

272

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 272

DataSource Controls
The Data section of the VS 2005 toolbox replaces VS 2002 and 2003’s ADO.NET 1.x DataSet, DataView,
Connection, Command, and Adapter tools with a set of predefined DataSource tools. An ASP.NET 2.0
DataSource combines the required elements for the type of data source you specify into a named compo-
nent that appears in page Design mode as a DataSourceType – DataSourceName placeholder. In Source
mode, an <asp:DataSourceType> element stores the data source’s definition.

You add a DataSource control to a page in Design view by dragging the control from the Toolbox’s Data
section to the page. VS 2005 provides the following built-in DataSource controls:

❑ SqlDataSource for client/server databases. The <asp:SqlDataSource> element includes
ConnectionString and SelectCommand attributes that you add with the Configure Data
Source dialogs. Updatable data sources let you add DeleteCommand, InsertCommand, and
UpdateCommand attributes. Unlike Windows forms, which restrict SqlConnection,
SqlCommand, and related objects to SQL Server databases, SqlDataSource lets you use any
connection that you’ve defined in Server Explorer or define a new connection.

❑ AccessDataSource for Access .mdb files. The <asp:AccessDataSource> element substitutes a
datafile=”~/App_Data/FileName.mdb” relative path attribute for the SqlDataSource’s
Connection string attribute. You must use the Add Existing Item command to add the
FileName.mdb file to the ...\ProjectName\App_Data folder to make the file accessible to the
Configure Data Source Wizard’s Choose a Database dialog. AccessDataSources use the OLE DB
Jet data provider, so you can specify a username and password for secure databases by modify-
ing the Server Explorer connection.

❑ ObjectDataSource for custom business objects, Web services, data components, or DataSets that
return and, optionally, update data. The object must support the IEnumerable interface and
provide at least a public method to perform a select operation; delete, insert, and update meth-
ods are optional. You must add the object’s class definition file to the App_Code folder or copy
the object’s assembly to the App_Assemblies folder. Alternatively, add a reference to the object’s
compiled class library with the Add Reference dialog or a Web Reference for the Web service
with the Add Web Reference dialog.

❑ XmlDataSource for tabular or hierarchical XML source data. In this case, you store the XML
source document file and its optional XML schema in the App_Data folder. XmlDataSource
doesn’t use the schema, but some bound controls can take advantage of the datatypes assigned
to source document elements. You can update the XML source data by invoking the
GetXmlDocument method to create an in-memory XmlDataDocument object, which exposes
editable XmlNode objects. Alternatively, you can use XPath expressions to update the data.

❑ SiteMapDataSource connects to the project’s site map tree, which you create with the
XmlSiteMapProvider object.

This chapter’s sample Web form projects use AsscessDataSource and SqlDataSource controls exclu-
sively. Chapter 8, “Applying Advanced ASP.NET Data Techniques,” covers the ObjectDataSource and
XmlDataSource. The SiteMapDataSource is outside the scope of this book because its purpose is related
to Web site design and navigation.

273

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 273

Built-in DataSource server controls extend the DataSourceControl base class, which provides the base
IDataSource interface. DataSource controls contain named DataSourceView objects; databound Web
controls connect to the default DataSourceView. You can create custom DataSource server controls by
adding code to extend the DataSourceControl class.

The online help topic “About the DataSourceControlClass” includes the source code for a
CsvDataSource server control that retrieves data from a comma-separated value file.

When you drag a server control that derives from the DataBoundControl abstract base class — such
as a DataList, DetailsView, GridView, FormView, or TreeView — or a Repeater control to the page, the
Common ControlType Tasks smart tag opens with the Choose Data Source dropdown list active. You can
select (None), an existing DataSource for the page, or <New Data Source> to start the Data Source
Configuration Wizard. Alternatively, drag one of the DataSource controls from the Toolbox and use this
as your data source. You also can start the Data Source Configuration Wizard from the Data menu by
choosing Add Data Source or by clicking the Data Sources window’s Add Data Source button.

Multiple controls on a page can share the same DataSourceControl, but Microsoft recommends (strongly)
that each control should have its own DataSourceControl. All SqlDataSources in a Web form project can
share a common connection string, if you store the connection string in the Web.config file.

Other server controls that derive from the ListControl base class — such as the DropDownList,
ListBox, RadioButtonList, and BulletedList — support simple (read-only) databinding. These controls’
smart tags offer a Choose Data Source option, which opens a dialog of the same name. The Choose Data
Source dialog has the same options as the DataBoundControl-based server control’s smart tag, but the
dialog also includes dropdown lists to select the data and value fields of the list.

The DataList Control
The DataList server control is the simplest of the built-in DataBoundControl derivatives. By default, the
DataList displays column names and values for all rows returned by the SelectCommand’s SQL statement
in a single column of labels. You can specify multiple columns and the order in which the columns display
the rows, along with myriad other formatting options. Figure 7-6 shows the DataWebSite’s DataList.aspx
page, which displays orders for the country you select in a DropDownList in left-to-right, top-to-bottom
descending sequence of OrderID values. The first list sets the ShipCountry WHERE clause criterion. The sec-
ond list lets you select any order record in the current country list; selecting an order row displays the
CustomerID value in an unbound text box.

The sample DataWebSite project in the VB2005DB\Chapter07\DataWebSite folder includes a com-
pleted version of the DataList.aspx page as FinalDataList.aspx. Right-click FinalDataList.aspx in the
Solution Explorer, choose Set As Start Page, and press F5 to build the project and open the page in
Internet Explorer (IE).

274

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 274

Figure 7-6

SqlDataSources for Bound Controls
You create an SqlDataSource for bound controls by dragging a DataList, FormView, GridView, DetailsView,
or Repeater control from the Toolbox’s Data section to a Web page. For this example, you start with the
Default.aspx page that you added in the “Explore New ASP.NET 2.0 Features” section at the beginning of
the chapter or the empty Default.aspx page in the VB2005DB\Chapter07\DataWebSite folder.

This and the remaining example projects assume the existence of a connection in the Data Connections
to a local instance of SQL Server 2000 or 2005 with the Northwind database installed.

1. Copy and paste Default.aspx; rename the copy of Default.aspx to DataList.aspx.
Open DataList.aspx in Source mode, and change CodeFile=”Default.aspx.vb”
Inherits=”_Default “ in the page directive to CodeFile=”DataList.aspx.vb”
Inherits=”DataList “. Open DataList.aspx.vb and change Partial Class _Default to
Partial Class DataList, and close the editor window.

275

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 275

2. Right-click DataList.aspx in Solution Explorer and choose Set as Start Page. Press F5 to verify
your page addition and start page setting.

3. Close IE, change to DataList.aspx Design mode, and drag a DataList control from the Toolbox to
DataList.aspx’s empty table cell. A DataList – DataList1 placeholder is added to the form and
the DataLists Tasks smart tag opens.

4. Select <New Data Source> in the Select Data Source list to start the Data Source Configuration
Wizard. Select Database in the Select a Data Source list, and replace SqlDataSource1 with
dsOrders (see Figure 7-7).

Figure 7-7

5. Click OK to open the Choose a Connection dialog, select an existing connection to the Northwind
sample database, or create a new connection. If you want to be able to deploy the site to an IIS
Web server that supports anonymous connections, select or add a connection that uses SQL
Server security. Click Next.

6. Leave the Yes, Save This Connection As checkbox marked, and edit the connection string name
as desired. Click Next to open the Configure Data Source dialog.

7. Select the Orders table in the Name list, and mark the first nine checkboxes — OrderID through
ShipName (see Figure 7-8).

8. Click the ORDER BY button to open the Add ORDER BY Clause dialog, select OrderID in the
Sort By list, and select the Descending option (see Figure 7-9). Click OK.

276

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 276

Figure 7-8

Figure 7-9

277

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 277

9. Click the Advanced Options button to open the Advanced SQL Generation Options dialog; mark
the Generate Insert, Update, and Delete Statements checkbox. For this example, don’t mark the
Use Optimistic Concurrency checkbox. Click OK and Next to open the Test Query dialog.

10. Click Test Query to display the query resultset in a DataGridView (see Figure 7-10).

Figure 7-10

11. Click Finish to display the default design format for a DataList, which consists of five simulated
instances of the data for the columns you selected in Step 7.

12. Press F5 to build and display the page, which appears as shown in Figure 7-11.

The dsOrders data source with the Generate Insert, Update, and Delete Statements checkbox marked
adds the following source code to the page:

<asp:SqlDataSource ID=”dsOrders” Runat=”server”
DeleteCommand=”DELETE FROM [Orders] WHERE [OrderID] = @original_OrderID”
InsertCommand=”INSERT INTO [Orders] ([CustomerID], [EmployeeID], [OrderDate],

[RequiredDate], [ShippedDate], [ShipVia], [Freight], [ShipName])
VALUES (@CustomerID, @EmployeeID, @OrderDate, @RequiredDate, @ShippedDate,
@ShipVia, @Freight, @ShipName)”

SelectCommand=”SELECT [OrderID], [CustomerID], [EmployeeID], [OrderDate],
[RequiredDate], [ShippedDate], [ShipVia], [Freight], [ShipName]
FROM [Orders] ORDER BY [OrderID] DESC”

UpdateCommand=”UPDATE [Orders] SET [CustomerID] = @CustomerID,
[EmployeeID] = @EmployeeID, [OrderDate] = @OrderDate,
[RequiredDate] = @RequiredDate, [ShippedDate] = @ShippedDate,
[ShipVia] = @ShipVia, [Freight] = @Freight, [ShipName] = @ShipName
WHERE [OrderID] = @original_OrderID”

278

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 278

ConnectionString=”<%$ ConnectionStrings:NorthwindConnection %>”>
<DeleteParameters>

<asp:Parameter Type=”Int32” Name=”OrderID”></asp:Parameter>
</DeleteParameters>
<UpdateParameters>

<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”EmployeeID”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”OrderDate”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”RequiredDate”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”ShippedDate”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”ShipVia”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”Freight”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ShipName”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”OrderID”></asp:Parameter>

</UpdateParameters>
<InsertParameters>

<asp:Parameter Type=”String” Name=”CustomerID”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”EmployeeID”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”OrderDate”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”RequiredDate”></asp:Parameter>
<asp:Parameter Type=”DateTime” Name=”ShippedDate”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”ShipVia”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”Freight”></asp:Parameter>
<asp:Parameter Type=”String” Name=”ShipName”></asp:Parameter>

</InsertParameters>
</asp:SqlDataSource>

Figure 7-11

279

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 279

Control Properties
The Properties window for bound controls lets you specify the font and other properties that apply to
the control. In addition to properties that apply to all server controls, the DataList has properties that
specify the number of list columns and the flow of data in the columns. To emulate the design of
FinalDataList.aspx, right-click the control and choose Properties to open the Properties window with
DataList1 selected, and set the property values shown in the following table.

Property Value

Id dlOrders

Font\Name Verdana

Font\Size 10pt

RepeatColumns 2

RepeatDirection Horizontal

Then drag the right edge of the dlOrders DataList to the right border of the table. The preceding prop-
erty values generate a page with data for orders in the left-to-right, top-to-bottom descending sequence
shown in Figure 7-12.

Alternatively, open the DataList Tasks smart tag, and select Property Builder to open the DataList
Properties sheet to set the preceding property values, except Id.

Figure 7-12

280

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 280

Databound Templates and Data Formatting
DataLists introduce the template concept for fields of DataBoundControls. Right-click the DataList con-
trol in Design mode, choose Show Smart Tag to open the smart tag panel for the control, and click the
smart tag’s Edit Templates verb to open an editing form for the default Item template. Item templates
contain HTML text for the column names and ColumnNameLabel controls to display the column values.

Reformat the Item Template
To conserve vertical space, you can modify the template to show multiple column names and values on
a single line. Widen the template to about 500 pixels, position the cursor after the OrderIDLabel item,
press delete to remove the
 element, and replace it with two spaces (). Do the same for the
EmployeeIDLabel, RequiredDateLabel, and ShipViaLabel. Your template now appears as shown in
Figure 7-13.

Figure 7-13

Format DateTime and Currency Data
When you run the redesigned form, datetime values include the default 12:00:00 AM time, and the
Freight (money) value is formatted as a numeric value with four decimal places. To remove the time val-
ues from the dates, click the smart tag arrow of the OrderDateLabel to open the Label Tasks smart tag,
and click the Edit DataBindings verb to open the OrderDateLable DataBindings dialog. With the default
Text property selected in the Bindable Properties list, select Short Date {0:d} in the Format list, and click
OK (see Figure 7-14).

281

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 281

Figure 7-14

If the Field Binding radio button is disabled, click the Refresh Schema link to enable it and its associated
controls.

Repeat the preceding process for the RequiredDateLabel and ShippedDateLabel. Then select the
FreightLabel, but select Currency {0:C} as the format. Press F5 and scroll to orders that have a
ShippedDate value to verify your formatting, which should conform to that of Figure 7-6. Finally, open
the common DataList Tasks smart tag for the entire Datalist and click the End Template Editing verb.

Review the Generated XHTML Source Code
Each Item Template definition adds HTML ColumnName text followed by a Label server control instruction
with the Label’s Text property value specified by an Eval(“ColumnName”) or Eval(“ColumnName”,
“FormatString”) instruction that’s enclosed by databinding tags (<%# ... %>). Selecting the template’s
End Editing verb or building the project adds the source code to the page.

Following is the source code — reformatted for readability — generated by the Item Template shown in
Figure 7-13:

<ItemTemplate>
OrderID: <asp:Label ID=”OrderIDLabel” Runat=”server”

Text=’<%# Eval(“OrderID”) %>’></asp:Label>
CustomerID: <asp:Label ID=”CustomerIDLabel” Runat=”server”

Text=’<%# Eval(“CustomerID”) %>’></asp:Label>

EmployeeID: <asp:Label ID=”EmployeeIDLabel” Runat=”server”

Text=’<%# Eval(“EmployeeID”) %>’></asp:Label>
OrderDate: <asp:Label ID=”OrderDateLabel” Runat=”server”

Text=’<%# Eval(“OrderDate”, “{0:d}”) %>’></asp:Label>

RequiredDate: <asp:Label ID=”RequiredDateLabel” Runat=”server”

Text=’<%# Eval(“RequiredDate”, “{0:d}”) %>’></asp:Label>
ShippedDate: <asp:Label ID=”ShippedDateLabel” Runat=”server”

282

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 282

Text=’<%# Eval(“ShippedDate”, “{0:d}”) %>’></asp:Label>

ShipVia: <asp:Label ID=”ShipViaLabel” Runat=”server”

Text=’<%# Eval(“ShipVia”) %>’></asp:Label>
Freight: <asp:Label ID=”FreightLabel” Runat=”server”

Text=’<%# Eval(“Freight”, “{0:C}”) %>’></asp:Label>

ShipName: <asp:Label ID=”ShipNameLabel” Runat=”server”

Text=’<%# Eval(“ShipName”) %>’></asp:Label>

</ItemTemplate>

The {0:d} expression is a standard format string for short date; {0:C} specifies currency format. 0: repre-
sents the value; letters correspond to the numeric or DateTime formatting strings you apply as arguments
to the ToString method, as in NumericValue.ToString(“C”) or DateTimeValue.ToString(“d”).

The online help topic “Standard Numeric Format Strings” contains a table that describes the set of for-
mat strings for numbers. The “Standard DateTime Format Strings” topic covers formatting DateTime
data types.

DataSource WHERE Constraints from Bound Control Values
The dsOrders’ SqlDataSource returns all Orders records, which isn’t likely to be convenient for users,
and opening the page consumes a substantial amount of database server and network resources. One
approach to limiting the number of records returned by the server is to add a DropDownList that adds a
WHERE clause constraint to the DataList’s DataSource. For this example, the constraint is based on the
Orders table’s ShipCountry column; alternatives might be EmployeeID or ranges of OrderDate values,
such as year and month.

Add a DropDownList Populated by a New DataSource
To add a DropDownList populated by unique values of the ShipCountry column, do the following:

1. Drag a DropDownList server control to the right of the title in the top table cell and add a few
spaces between it and the title.

2. Click the smart tag arrow to open the DropDownList Tasks smart tag, mark the Enable
AutoPostBack checkbox, and click the Choose Data Source link to open the same-named dialog.

3. Choose <New Data Source> in the Select a Data Source list to open the Data Source Configuration
Wizard. Select Database, name the DataSource dsCountries, and click OK. In the Choose a
Connection dialog, select the NorthwindConnectionString string you saved when creating the
primary DataSource, and click Next.

4. In the Configure Select Statement dialog, select the Orders table, mark the ShipCountry column
and Return Only Unique Rows checkboxes, click the ORDER BY button, apply an ascending
sort on ShipCountry, and click OK.

5. Click Next, test your query, and click Finish to return to the Choose Data Source dialog, which
displays ShipCountry as the display and value fields (see Figure 7-15). Click OK to close the
dialog.

283

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 283

Figure 7-15

6. Open the Properties window for DropDownList1 and change its Id property value to
ddlCountry or the like.

7. Press F5 and verify that the DropDownList displays the countries in alphabetic order. Selecting
a country other than Argentina causes the server to refresh the page with the postback operation
you specified in Step 2.

Add a WHERE Clause Constraint Based on the List’s Selected Index
To hook the DropDownList selection to a WHERE clause constraint that you add to the dsOrders
SqlDataSource, do the following:

1. Click the dsOrders placeholder’s smart tag arrow to open the SqlDataSource Tasks smart
tag, click the Configure Data Source verb to start the Data Source Configuration Wizard, and
click Next.

2. Select the NorthwindConnectionString, click Next, and repeat the Orders table field selection
and ORDER BY clause for the SelectCommand.

3. Click the WHERE button to open the Add WHERE Clause dialog, select ShipCountry in the
Column list, accept the default = Operator, and select Control in the Source list, which displays
the Parameter Properties group box.

4. Select ddlCountry in the Control ID list and, optionally, add a country as the Default Value (see
Figure 7-16).

5. Click Add to add the [ShipCountry] = @ShipCountry criterion and
ddlCountry.SelectedValue as the @ShipCountry value.

284

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 284

Figure 7-16

6. Click OK to close the dialog; then click Next, and then Test Query to open the Parameter Value
Editors dialog. Click OK to accept the default value, if you added it in Step 4. Otherwise type USA
as the parameter value. Click OK to close the dialog, review the query result set, and click Finish.

7. Press F5 and verify that selecting a country other than Argentina in ddlCountry refreshes the
DataList with the appropriate records.

If you’d prefer to require users to select a country, rather than display records for the first country in the
list, you can take advantage of a new ASP.NET 2.0 list property —AppendDataBoundItems. Open
ddlCountry’s Properties window, and set the AppendDataBoundItems property value to True. Click
ddlCountries smart tag arrow. Select Edit Items to open the Items collection’s ListItem Collection
Editor dialog, click Add, and type [Select a Country] as the Text value, which also appears in the Value
text box (see Figure 7-17). Click OK and reopen the page with an initially empty table cell.

If you substitute angle brackets (< >) for square brackets ([]), your page will throw a security exception
when you select [Select a Country].

Following is the page source code for the ddlCountry and dsCountries:

<asp:DropDownList ID=”ddlCountry” Runat=”server” DataSourceID=”dsCountries”
Width=”115px” Height=”22px” AutoPostBack=”True” DataTextField=”ShipCountry”
DataValueField=”ShipCountry” AppendDataBoundItems=”True”>
<asp:ListItem>[Select a Country]</asp:ListItem>

</asp:DropDownList>
<asp:SqlDataSource ID=”dsCountries” Runat=”server” SelectCommand=”SELECT

DISTINCT [ShipCountry] FROM [Orders] ORDER BY [ShipCountry]”
ConnectionString=”<%$ ConnectionStrings:NorthwindConnection %>”>

</asp:SqlDataSource>

285

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 285

Figure 7-17

Adding the WHERE clause constraint inserts the following ControlParameter definition into the
dsOrders <asp:SQLDataSource ...> source code:

<SelectParameters>
<asp:ControlParameter Name=”ShipCountry” DefaultValue=”USA” Type=”String”
ControlID=”ddlCountry” PropertyName=”SelectedValue”></asp:ControlParameter>

</SelectParameters>

Edit Items in DataLists
It’s cumbersome for users to edit items in a DataList, especially if it has a large number of items. Using
a GridView or DetailsView control to edit data is a much faster and simpler approach because the
designer creates the required edit, insert, and delete templates for you. Later sections describe the fea-
tures of the new GridView and DetailsView controls. You also must write code to obtain original and
updated values in the DataList_UpdateCommand event handler and assign them as values of
DataSource.Command.Parameters collection members in the DataSource_Updating event handler.
The following code behind the DataWebSite sample project’s EditableDataList.aspx.vb file obtains and
assigns the parameter values to update a selected item:

Public Sub dlOrders_UpdateCommand(ByVal source As Object,
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs)
Handles dlOrders.UpdateCommand

‘Read-only OrderID value
Dim strOrderID As String = dlOrders.DataKeys(e.Item.ItemIndex).ToString
Dim strCustomerID As String = Nothing
Dim txtBox As TextBox
Dim strTextBox As String = Nothing
Dim intParam As Integer
alParamValues = New ArrayList
For intParam = 0 To dsOrders.UpdateParameters.Count - 1

strTextBox = “TextBox” + (intParam + 2).ToString
txtBox = CType(e.Item.FindControl(strTextBox), TextBox)
If intParam = dsOrders.UpdateParameters.Count - 1 Then

286

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 286

‘@original_OrderID
alParamValues.Add(strOrderID)

Else
If txtBox Is Nothing Then

alParamValues.Add(Nothing)
Else

‘Other parameter values
If txtBox.Text.Contains(“$”) Then

‘Remove currency symbol for freight
alParamValues.Add(Mid(Trim(txtBox.Text), 2))

Else
alParamValues.Add(Trim(txtBox.Text))

End If
End If

End If
Next
‘Execute the Update method
dsOrders.Update()

‘Return to Item mode
dlOrders.EditItemIndex = -1
dlOrders.DataBind()

End Sub

Protected Sub dsOrders_Updating(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.SqlDataSourceCommandEventArgs)
Handles dsOrders.Updating

Try
Dim strUpdateCmd As String = e.Command.CommandText
Dim intCtr As Integer
For intCtr = 0 To e.Command.Parameters.Count - 1

Dim strName As String = e.Command.Parameters(intCtr).ParameterName
If alParamValues(intCtr).ToString = “”
Or alParamValues(intCtr) Is Nothing Then

e.Command.Parameters(intCtr).Value = DBNull.Value
Else

e.Command.Parameters(intCtr).Value = alParamValues(intCtr)
End If

Next
Catch exc As Exception

‘Ignore
End Try

End Sub

The parameter value assignment instructions substitute NULL for empty strings or missing value types,
which otherwise throw an “Invalid data format” exception.

If you decide to add editing capability to a DataList, you can add an EditItem template to the DataList
by copying the Item template to the EditItems template and replacing the labels with text boxes. You
must add buttons to activate the EditItem template, update the DataSource, or cancel the update opera-
tion. Unlike the buttons you add to FormView controls in the next section, you must add handlers for
the EditCommand, UpdateCommand, and CancelCommand events to the page or in the code-behind file.
Figure 7-18 shows the sample project’s EditableDataList.aspx page with an item in edit mode. For this
and most other examples in this chapter, the code-behind file contains all event handlers.

287

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 287

Figure 7-18

The FormView Control
The FormView control enables free-form design of the Item template. For example, you can add a
multi-column table to the Item template, and then cut and paste the default ColumnName text and
ColumnNameLabel controls into the table cells. You can specify table cell border style, width, and color,
as well as background colors for labels. FormView is a more flexible alternative to GridView or
DetailsView controls for updating and adding base-table records.

The process of adding a FormView and its SqlDataSource to a page is almost identical to that for a
GridView. When you use a FormView to edit base table data, it’s a good practice to add all table columns
to the data source.

Page the DataSource
The FormView control supports paging, which enables you to select a specific record to display or edit.
To enable paging, open the Properties window for the FormView and set the AllowPaging property

288

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 288

value to True. PagerSettings default to a set of ten sequential item number values and ellipsis
buttons to select the next or previous decade, but you can set the Pager’s Mode property value to
NumericFirstLast and then type First and Last as the values of the FirstPageText and
LastPageText property values. Finally, expand the PagerStyle node and set the Font node’s property
values to emphasize the Pager at the bottom of the form (see Figure 7-19).

Figure 7-19

Paging is a very resource-intensive operation, especially for tables with a large number of records. Clicking
any pager button executes the SelectCommand and retrieves all rows from the database server that meet
the WHERE clause criterion, if present. Filtering records with a WHERE clause generated from the one or more
dropdown lists usually is the most effective method to reduce the size of the SelectCommand’s query
resultset. For sequentially ordered records, you can minimize resource consumption by adding a TOP n
modifier and ORDER BY clause to the SelectCommand’s SQL statement.

Replace Null Values with Column-Specific Text
The following code behind the FormView.aspx page adds the Pending and <Empty> text elements that
replace null values for missing ShippedDate, ShipRegion, and ShipPostalCode values in the Item template:

Partial Class FormView_aspx
Protected Sub fvOrders_DataBound(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles fvOrders.DataBound

‘Add default values for null ShippedDate, ShipRegion, and ShipPostalCode
‘Disable deletion of shipped orders
Try

If IsDBNull(fvOrders.DataItem(“ShippedDate”)) Then
Dim lblDate As Label = _

289

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 289

CType(fvOrders.FindControl(“ShippedDateLabel”), Label)
If Not lblDate Is Nothing Then

lblDate.Text = “Pending”
End If
‘Enable deletion of orders not shipped
Dim btnDelete As Button = _
CType(fvOrders.FindControl(“btnDelete”), Button)

If Not btnDelete Is Nothing Then
btnDelete.Enabled = True

End If
Else

‘Disable deletion of shipped orders
Dim btnDelete As Button = _
CType(fvOrders.FindControl(“btnDelete”), Button)

If Not btnDelete Is Nothing Then
btnDelete.Enabled = False

End If
End If
If IsDBNull(fvOrders.DataItem(“ShipRegion”)) Then

Dim lblRegion As Label = _
CType(fvOrders.FindControl(“ShipRegionLabel”), Label)

If Not lblRegion Is Nothing Then
lblRegion.Text = “<Empty>”

End If
End If
If IsDBNull(fvOrders.DataItem(“ShipPostalCode”)) Then

‘Applies to Ireland only
Dim lblCode As Label = _
CType(fvOrders.FindControl(“ShipPostalCodeLabel”), Label)

If Not lblCode Is Nothing Then
lblCode.Text = “<Empty>”

End If
End If

Catch exc As Exception
‘Ignore exceptions

End Try
End Sub

End Class

The DataBound event fires after all DataSource rows populate. The FormView.DataItem(“ColumnName”)
method returns the late-bound value of the currently selected data row. Dim varName As ControlType =
CType(FormView.FindControl(“ControlId”), ControlType) statements return a reference to the con-
trol that enables you to set its property values — such as Text or Enabled. The event handler also disables
the Delete button for orders that have been shipped.

You can add text to replace all empty column values as the FormView’s EmptyDataText property
value, but specifying different text for specific elements requires adding code.

290

Chapter 7

13_57678x ch07.qxd 11/10/05 11:16 PM Page 290

Edit, Add, and Delete Records
The FormView control is a better choice than the DataList for editing records because it displays a single
item. You can create an EditItem or InsertItem template quickly in the editor’s Source mode by copying
and pasting the <ItemTemplate> node and its child nodes. (Deleting a row doesn’t require a template.)
The designer automatically renames labels that have duplicate Id values to LabelN, where N is a
sequential number.

Rename the copied <ItemTemplate> to <EditItemTemplate>, and replace all instances of Label in
<EditItemTemplate> child nodes with TextBox to complete the new template. If your Items template
table has borders, tweak the EditItem template’s table cell border property to remove them. Alternatively,
change the BorderColor property to the table’s BgColor or the FormView’s BackColor property value.
Figure 7-20 shows the FormView of Figure 7-19 with the EditItem template active.

Figure 7-20

You can’t insert arbitrary Text values for null date column values or apply special formatting to
numeric values, such as currency symbols, in Edit mode. Your page will throw exceptions for values
that don’t correspond to UpdateParameter or InsertParameter data types. The 1/1/2099 value
represents a NULL ShipDate value; the 1/1/0001 value that represents a null XML datetime value isn’t
a valid SQL Server date time value. Code in the dsFormView_Updating event handler translates the
1/1/2099 parameter value to NULL.

291

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:16 PM Page 291

After you finalize the EditItem template’s design, copy and paste in Source mode the <EditItem
Template> and its child nodes, and rename the copy to <InsertItemTemplate> to enable adding
new items.

DataWebSite.sln contains the completed version of the FormView.aspx page. Right-click FormView.aspx
in the Solution Explorer and choose Set As Start Page to build and open the page. Clicking the Delete
button throws an exception for orders with Order Details records. Eliminating the exception requires
specifying cascading deletions for the FK_Order_Details_Orders relationship.

Add Command Buttons
FormView controls define a set of mode and action verbs for activating the EditItem or InsertItem template,
canceling an edit or insert operation, and executing the DataSource’s UpdateCommand, InsertCommand, or
DeleteCommand. You add a Button, LinkButton, or ImageButton control to a template and assign a verb to
the button by typing the verb name in the CommandName property’s text box. Unlike similar buttons in
DataList templates, you don’t need event-handling code to activate templates or update, insert, or delete
items.

Here’s how you use the three mode verbs to activate templates:

❑ Edit activates the EditItem template. Add an Edit or Update button to the default Item template
with its CommandName property value set to edit or Edit.

❑ New activates the InsertItem template. Add a New button to the default Item template with its
CommandName property value set to new or New.

❑ Cancel reactivates the default Item template. Add Cancel buttons to the EditItem and InsertItem
templates with their CommandName property value set to cancel or Cancel.

The following action verbs execute commands:

❑ Update executes the DataSource’s UpdateCommand and activates the Item template. Add a Save
or Update button to the EditItem template with its CommandName property value set to update
or Update.

❑ Insert executes the DataSource’s InsertCommand and activates the Item template. Add a Save,
Add, or Insert button to the InsertItem template with its CommandName property value set to
insert or Insert.

❑ Delete executes the DataSource’s DeleteCommand. Add a Delete or Remove button to the
default Item template with its CommandName property value set to delete or Delete.

Clicking any mode or action button executes the SelectCommand to refresh the page’s data. For example,
clicking the Edit button, followed by the Update button, executes the SelectCommand (to ensure current
data), the UpdateCommand, and the SelectCommand a second time (to display the updated record).

Figure 7-21 shows the FormView.aspx page with the InsertItem template activated and data entry partly
completed. Paging controls are hidden in Insert mode.

292

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 292

Figure 7-21

The GridView Control
The GridView control, which replaces ASP.NET 1.x’s DataGrid, emulates the DataGridView Windows
form control to a reasonable extent, when you consider the browser-based limitations of HTML server
controls. The process of adding a GridView to a form is similar to that for a DataList or FormView. Drag
a GridView control to a page, and select an existing or specify a new DataSource. Figure 7-22 shows a
paged, read-only GridView control that’s populated by the dsOrders SqlDataSource and has an auto-
generated Select Command field.

The GridAndDetailsViews project in the ...\Chapter07\GridAndDetailsViews folder contains Default.aspx
(shown in Figure 7-22), LinkedGridView.aspx, LinkedDetailsView.aspx, EditableGridView.aspx, and
EditableDetailsView.aspx pages.

You add a Select Command field for read-only GridViews by marking the Enable Selection checkbox of
the GridView Tasks smart tag. Marking the Enable Paging checkbox adds a default numeric paging sec-
tion to the form. Marking the Enable Sorting checkbox adds underlines to and changes the color of the
column headers to indicate sorting capability. You can disable sorting on selected fields by clearing their
SortExpression property value in the Fields dialog. GridViews with updatable DataSources add
Enable Editing and Enable Deleting checkboxes, as shown in Figure 7-23. A serious limitation of
GridViews is the inability to add new items. To add items, use either a DetailsView or a FormView,
which can be on the same or a different page. The “The DetailsView Control” section, later in this chap-
ter, describes how to add items with a DetailsView control on another page.

293

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 293

Figure 7-22

Figure 7-23

294

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 294

GridView controls support the following seven field types:

❑ CommandFields correspond to the FormView’s mode verbs. Available CommandFields are
Select, Edit, Cancel, Update, and Delete, which fire ItemCommand, SelectedIndexChanging,
SelectedIndexChanged, RowEditing, RowCancelingEdit, RowUpdating, RowUpdated,
RowDeleting, and RowDeleted events. The default control for CommandFields is a text Link
button. You can substitute a conventional button or image by setting the field’s ButtonType
property value to Button or Image.

❑ BoundFields display values in Label controls by default. When you click a row’s Edit button,
the Label controls of editable columns change to TextBoxes. The width of the text boxes is fixed;
you must change the BoundField to a TemplateField to change the TextBox widths.

❑ CheckBoxFields display and edit binary values, such as 0 and 1 or False and True.

❑ ButtonFields display a conventional Button control.

❑ HyperlinkFields display text and provide an additional hidden field for page navigation. You
can replace Select command fields with hyperlink fields to load editing pages.

❑ ImageFields display graphics from SQL Server image or varbinary columns, or base64-
encoded image data in XML files.

❑ TemplateFields let you customize the formatting of TextBoxes or substitute other controls —
such as DropDownLists — for editing. You convert a BoundField to a TemplateField by clicking
the Field dialog’s Convert This Field Into a Template Field link.

Convert BoundFields to EditItemTemplate Fields
TextBoxes with autogenerated widths are satisfactory for initial tests but usually require adjustment to
provide a GridView that’s tailored for data editing. Figure 7-24 shows the EditableGridView.aspx page
with a row in Edit mode. All columns of this page — other than Order ID, which is read-only — are
TemplateFields. The Empl. ID and Ship Via templates specify bound DropDownLists to set the
numeric column values. The Customer ID text box is read-only because it’s an uncommon practice to
reassign an order to a different customer.

To convert a BoundField to a TemplateField, open the GridView Tasks smart tag, and click the Edit
Columns link to open the Fields dialog. Select the bound field to convert in the Selected Fields list, click
the Convert This Field Into a Template Field link, and click OK. Click the smart tag’s Edit Templates
link to display the Template Editing Mode smart tag, which defaults to the ItemTemplate of the leftmost
column you’ve converted. The conversion process adds an ItemTemplate with a Label control, an
EditItemTemplate with a text box control, and empty AlternatingItemTemplate, HeaderTemplate, and
FooterTemplate items under a Column[#] – ColumnName header for each converted column.

Open the Display list and select EditItemTemplate for the TemplateField to display the default editing
TextBox control. Alternatively, right-click the GridView, select Edit Template, and the column to edit,
which displays active and empty templates. Adjust the width of the TextBox or set the value of its Width
property. If the Height property contains a value, delete it to use the default TextBox height. Optionally,
assign a more informative Id property value for the control (see Figure 7-25).

295

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 295

Figure 7-24

Following is the reformatted source code for the read-only Order ID Label and Customer ID TextBox
columns:

<Columns>
<asp:BoundField ReadOnly=”True” HeaderText=”Order ID” InsertVisible=”False”

DataField=”OrderID” SortExpression=”OrderID”>
<ItemStyle HorizontalAlign=”Right”></ItemStyle>

</asp:BoundField>
<asp:TemplateField SortExpression=”CustomerID” HeaderText=”Cust. ID”>

<EditItemTemplate>
<asp:TextBox ID=”txtCustomerID” Runat=”server” Width=”52px”

Text=’<%# Bind(“CustomerID”) %>’ ReadOnly=”True”></asp:TextBox>
</EditItemTemplate>
<ItemStyle HorizontalAlign=”Left”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“CustomerID”) %>’
ID=”Label3”></asp:Label>

</ItemTemplate>
</asp:TemplateField>
...

</Columns>

296

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 296

Figure 7-25

Replace TextBoxes with DropDownLists for Editing
It’s a good design practice to provide databound DropDownLists to set foreign-key values that have a
limited number of choices. To replace a TextBox with a DropDownList, create a DataSource for the list,
and delete the TextBox. Drag a DropDownList from the Toolbox, set its DataSource, define its display
and value fields, and then bind the SelectedValue property to the foreign-key column by typing
Bind(“DataColumnName”) in the ListName DataBindings dialog’s Code expression text box (see Figure
7-26). The GridView’s Bind method replaces the Eval method of DataLists and FormViews.

297

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 297

Figure 7-26

Following is the reformatted source code for the Empl. ID column template:

<Columns>
...

<asp:TemplateField HeaderText=”Empl. ID”>
<EditItemTemplate>

<asp:DropDownList ID=”ddlEmployee” Runat=”server” Height=”22px”
Width=”94px” DataSourceID=”dsEmployees” DataValueField=”EmployeeID”
DataTextField=”LastName” SelectedValue=’<%# Bind(“EmployeeID”) %>’>

</asp:DropDownList>
</EditItemTemplate>

<ItemStyle HorizontalAlign=”Center”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“EmployeeID”) %>’
ID=”Label2”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

...
</Columns>

298

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 298

Design a GridView with an ImageField
Following are the detailed steps to add a GridView that contains an ImageField column to a new page in
the DataWebSite project. Unlike DataGridView controls, ImageField columns in GridViews and other
ASP.NET 2.0 databound server controls require images to be stored as files in a supported graphics
format. ImageField columns store the relative URL of the image file to display in the current row.

Microsoft removed the DynamicImage control as of VS 2005 Beta 2, so ASP.NET 2.0 doesn’t support
declarative rendering of images from database tables. Thus the following examples use image files (eight
CATIDn.gif and nine EMPIDn.gif files) that are stored in the
\VB2005\Chapter07\DataWebSite\Images folder.

ImageFields have a DataImageUrlField property that you typically set to the name of a text field that
stores image URLs or a numeric primary-key field value. If you must add text to generate the image file
name and, if necessary, its relative path, the DataImageUrlFormatString property value enables you to
add the selected row’s DataImageUrlField property value. For example, specifying CategoryID as the
DataImageUrlField property value and Images/CATID{0}.gif as the DataImageUrlFormatString
property value displays one of the ...\Images\CATIDn.gif images in a Picture ImageField that you add to
the GridView in the following sections.

Configure a Categories GridView
To add an ImageField to a GridView based on the Northwind Categories table and CATIDn.gif image
files, do the following:

1. Copy and paste Default.aspx; rename the copy of Default.aspx to GridViewCat.aspx, and set
GridViewCat.aspx as the start page. Rename the class name to CatGridView.

2. Drag a GridView control from the Toolbox to GridView.aspx’s empty table cell. Select New Data
Source in the Select Data Source list to start the Data Source Configuration Wizard. Select Database
in the Select a Data Source list, and replace SqlDataSource1 with dsCategories. Click OK.

3. In the Choose a Connection dialog, select an existing connection to the Northwind sample
database or create a new connection. If you want to be able to deploy the site to an IIS Web server
for anonymous access, select or add a connection that uses SQL Server security. Click Next.

4. Accept or replace the default connection string name, and click Next to open the Configure Data
Source dialog.

5. Select the Categories table in the Name list, mark the four column checkboxes, and click Next.

6. Click Test Query to display the query result set in a DataGridView, which displays the eight
bitmap images in the Pictures column.

7. Click Finish to add column names to the GridView, which displays numbers 0 through 4 in the
CategoryID column and abc in the CategoryName and Description.

The missing Picture column is an indication that the page isn’t likely to render as expected when you
build and run the project.

8. Open GridView1’s Properties window, and change its Id property value to gvCategories or
the like. To match the style of the completed examples, expand the Font node, select Verdana
for the Name property value, and type 10pt in the Size text box.

9. Press F5 to build and display the page with the built-in Web server.

299

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 299

Add and Configure an ImageField
Unlike the DataGridView control, the GridView doesn’t add columns of data types that .NET data
providers translate to arrays of System.Byte. Thus, you must add and bind the Categories table’s
Picture column manually. Here’s the drill for displaying in GridView controls images from specially
named image files:

1. Open the GridView Tasks smart tag and click the Add New Column link to open the Add Field
dialog. Select the Picture field in the Selected Fields list and delete it.

2. In the Available Field list, select the Picture field under the Image Fields node, and click Add to
add the field to the Selected Fields list. Set the ReadOnly property value to True (see Figure 7-27).

Figure 7-27

3. Click OK to close the dialog. The added Picture column displays Databound as the four default
cell values.

4. Press F5 to build and display the page, which now appears as expected (see Figure 7-28).

300

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 300

Figure 7-28

5. Choose View ➪ Source to open the XHTML page code in Notepad. Scroll to the Beverages cell
and note the source of the image data, which appears similar to the highlighted elements in the
following snippet:

<tr>
<td>

Select</td>
<td>1</td>
<td>Beverages</td>
<td>Soft drinks, coffees, teas, beers, and ales</td>
<td><img src=”Images/CATID1.gif”

alt=”Picture of Beverages” style=”border-width:0px;” /></td>
</tr>

Enabling selection adds the JavaScript postback function call. CategoryName as the
DataAlternateTextField and Picture of {0} DataAlternateTextFormatString property values
provide the alt attribute value, which appears if the image file is missing or the user has disabled the
browser’s image rendering feature.

The DataWebSite project contains a FinalGridViewCat.aspx page that’s the result of the procedures
described in this and the preceding section.

301

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 301

Scale Image Rendering
The ImageField control renders images in their original size only; the control doesn’t support scaling or
cropping operations. The Image Web server control scales (zooms) rendered images to the Height and
Width property values you specify. Creating thumbnail graphics is the most common use for Web-page
image scaling.

Enabling image scaling requires converting the ImageField to a template field that contains an Image
Web server control. To perform the conversion, activate the GridView’s smart tag, click the Edit Columns
link, select the ImageField column, and click the Convert This Field into a TemplateField link. This oper-
ation adds an Image control to the ItemTemplate for the column sets the ImageUrl property value to
that specified for the former ImageField. Figure 7-29 shows the sample FinalGridViewEmp.aspx page
rendering a 43px × 50px thumbnail and a 188px × 217px original image from the \VB2005DB\
Chapter07\DataWebSite\Images\EMPID1.gif file.

Figure 7-29

Following is XHTML source code for the sample project’s TemplateField:

<asp:TemplateField HeaderText=”Thumbnail”>
<ItemTemplate>

<asp:Image ID=”imgPhoto” runat=”server” BorderStyle=”None” Height=”50px”
ImageUrl=’<%# Eval(“EmployeeID”, “Images/EMPID{0}.gif”) %>’ Width=”43px” />

</ItemTemplate>
<EditItemTemplate>

<asp:TextBox ID=”TextBox1” runat=”server”
Text=’<%# Eval(“EmployeeID”) %>’></asp:TextBox>

</EditItemTemplate>
</asp:TemplateField>

302

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 302

The FinalGridViewEmp.aspx page’s AccessDataSource (dsNwindJet) is four fields of the Employees
table from a modified version of the Access 2003 Northwind.mdb sample database that’s stored in the
...\App_Data folder and included in the sample project. The modification removes all database objects
other than tables.

The DetailsView Control
The DetailsView control is a fixed-format variation on the FormView theme. DetailsViews display header
text and data in two columns of a table that has a row for each column that’s returned by the DataSource’s
SelectCommand. DetailsViews support the GridView’s Command verbs and add New and Insert verbs,
and fire ItemInserting and ItemInserted events. Figure 7-30 shows the GridAndDetailsViews pro-
ject’s EditableDetailsView.aspx page in Edit mode. The Order Details GridView and DetailsView controls
are filtered by the pager selection you make in the Orders DetailsView.

The process of adding a DetailsView control to a page is identical to that for adding a GridView. The con-
trols on the EditableDetailsView.aspx page use BoundFields; adding and adjusting EditItem and NewItem
templates follows the process described in the section “Convert BoundFields to EditItemTemplate Fields,”
earlier in this chapter.

Figure 7-30

303

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 303

Synchronize a Child Table GridView and DetailsView
If you parameterize the SelectCommand for a child table’s foreign key value, such as OrderID for the
Order Details table, you can synchronize the contents of GridView, DetailsView, or both controls on a
page with the selected value of the parent table’s primary key in a paged DetailsView.

To synchronize the Order Details GridView and DetailsView with the SelectedValue property of the
Orders DetailsView, create or re-create the DataSource for the child controls and, in the Configure Data
Source Wizard’s Add WHERE Clause dialog, specify OrderID as the Column, = as the Operator, and
Control as the Source. Select the parent DetailsView — dvOrders for this example — as the ControlID
and type an optional Default Value. Complete the remaining wizard steps to link the child controls to
the parent control’s SelectedValue property.

Make a Composite Primary Key Value Editable
The Order Details table’s composite primary key causes the ProductID column to be read-only by
default, which prevents changing a ProductID value in Edit mode. To make the ProductID column
editable, change the UpdateCommand’s SQL statement in the Source editor from:

UpdateCommand=”UPDATE [Order Details] SET [UnitPrice] = @UnitPrice,
[Quantity] = @Quantity, [Discount] = @Discount
WHERE [OrderID] = @original_OrderID AND [ProductID] = @original_ProductID”>

to:

UPDATE [Order Details] SET [ProductID] = @ProductID, [UnitPrice] = @UnitPrice,
[Quantity] = @Quantity, [Discount] = @Discount
WHERE [OrderID] = @original_OrderID AND [ProductID] = @original_ProductID”>

Assign Default Values and Handle Update and
Insert Errors

You can take advantage of the ItemInserting event to supply default values for items you add to a
base table. As an example, the following code in UpdatableDetailsView.aspx inserts the selected OrderID
value of the dvOrders DetailsView into the same column of the dvOrderDetails control:

Protected Sub dvOrderDetails_ItemInserting(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.DetailsViewInsertEventArgs)
Handles dvOrderDetails.ItemInserting

e.Values(0) = dvOrders.SelectedValue
End Sub

Updates and insertions in DetailsViews and GridViews fail silently if the database server returns an
error message. The page contains a txtError text box that’s not visible if no errors occur. Figure 7-31
shows the first part of the exception message returned by attempting to add a row with a duplicated
ProductID.

304

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 304

Figure 7-31

Here’s the exception handler for the ItemUpdated event:

Protected Sub dvOrderDetails_ItemUpdated(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.DetailsViewUpdatedEventArgs)
Handles dvOrderDetails.ItemUpdated

If e.Exception Is Nothing Then
‘Refresh the OrderDetails GridView
txtError.Visible = False
gvOrderDetails.DataBind()

Else
‘Display first sentence of Exception.Message
txtError.Visible = True
txtError.Text = “Error: “ + _
Mid(e.Exception.Message, 1, e.Exception.Message.IndexOf(“.”))

e.ExceptionHandled = True
End If

End Sub

EditableDetailsView.aspx contains identical inline code to handle ItemInserted exceptions.

305

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 305

Link a DetailsView Page to a GridView Page
with a QueryString

As mentioned in the section “The GridView Control,” earlier in this chapter, you can replace the Select
CommandField with a HyperlinkField to open a DetailsView page for editing a record selected in the
GridView page. A query string added to the GridView page’s URL provides the name/value pair to sup-
ply the parameter value for the DetailsView page’s DataSource. The format of the URL and query string
with the built-in Web server is:

http://localhost:TcpPort/ProjectName/PageName.aspx?ParamName=ParamValue

Set the HyperlinkField’s DataNavigateUrl property value to the DataSource column name and
the DataNavigateUrlFormatString property value to PageName.aspx?ParamName={0}. The
LinkedGridView.aspx page has a HyperlinkField bound to the OrderID column value with Select
as the Text property value and LinkedDetailsView.aspx?orderid={0} as the DataNavigate
UrlFormatString property value (see Figure 7-32).

Figure 7-32

Create a parameterized DataSource for the DetailsView page. In the Add WHERE Clause dialog, select
OrderID as the Column, = as the Operator, and QueryString as the Source. Type the ParamName value —
orderid for this example — in the QueryString Field text box and add an optional Default Value.

Open the LinkedDataGrid.aspx page, and click the Select HyperlinkField for an order. The LinkedDetails
View.aspx page opens with the Orders and Order Details DetailsView controls for the selected OrderID
value (see Figure 7-33).

306

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 306

Figure 7-33

To return to the LinkedDataGrid.aspx page after clicking the Orders DetailsView’s Cancel button, add
the following event handler to LinkedDetailsView.aspx.vb:

Protected Sub dvOrdersLinked_ItemCommand(ByVal sender As Object,
ByVal e As System.Web.UI.WebControls.DetailsViewCommandEventArgs)
Handles dvOrdersLinked.ItemCommand

‘Redirect to the LinkedGridView page on cancel
Response.Buffer = True
If e.CommandName = “Cancel” Then

Response.Redirect(“LinkedGridView.aspx”)
End If

End Sub

Summary
Visual Studio 2005 and ASP.NET 2.0 simplify Web site development and page design with a new editor
for XHTML 1.1 source code and inline event-handling code. Partial PageName.aspx.vb classes let you
separate event-handling code from page-layout code. The new compilation model and built-in,

307

Working with ASP.NET 2.0 DataSources and Bound Controls

13_57678x ch07.qxd 11/10/05 11:17 PM Page 307

lightweight Web server streamline the site development process. However, VS 2005’s Web page Design
mode is restricted to flow layout and doesn’t support VS 2002 and 2003’s grid-based fixed control posi-
tioning feature.

ASP.NET 2.0’s new SqlDataSource, ObjectDataSource, and XmlDataSource server controls simplify
databinding of DataList, FormView, GridView, and DetailsView controls to tabular data sources. The
GridView control replaces ASP.NET 1.x’s DataGrid control. The Data Source Configuration Wizard
enables adding and configuring databound controls in a few steps, and generates usable data display
and editing pages without adding any inline or code-behind event handlers. Only editable DataLists
require event handlers for editing, deleting, or adding items.

The new databound server controls make extensive use of templates to customize page layouts for read-
only and updatable DataSources. FormView controls offer the greatest design flexibility for data entry and
editing pages; DetailsViews sacrifice custom layouts for simplicity. GridViews linked to DetailsViews by
query strings emulate master/details Windows forms but don’t offer the rich object model and fine-
grained events of Windows form controls.

Improved paging features let users choose a single item to display in a FormView or DetailsView or a
sequential group of items in a GridView control. Restricting the SelectCommand’s resultset to a selected
group of paged records isn’t practical, so paging operations return the entire resultset each time users
select a new set of pages. Thus, limiting with WHERE clauses the number of records returned from large
tables is critical for designing scalable Web sites. The SqlDataSource implements the client/server
model, which is suitable for projects that don’t require complex business logic. If site scalability requires
you to place custom business logic or data components in a middle tier, one approach is to substitute an
ObjectDataSource for the SqlDataSource. The next chapter covers use of ObjectDataSources with custom
business objects and data components; Chapter 9 shows you how to use the ObjectDataSource with
ASP.NET 2.0 Web services.

308

Chapter 7

13_57678x ch07.qxd 11/10/05 11:17 PM Page 308

Applying Advanced
ASP.NET 2.0 Data

Techniques

This chapter expands your VB.NET development horizon beyond simple, data-intensive Web
pages and databound Web controls. This chapter’s advanced ASP.NET 2.0 topics show you how to
take full advantage of the following new or updated Web controls and VS 2005 features:

❑ Data validation with RequiredFieldValidator, RangeValidator, RegularExpressionValidator,
CompareValidator, CustomValidator, and ValidationSummary controls

❑ ObjectDataSources based on DataTables of typed DataSets defined by DataSet.xsd files or
class library references, and custom business objects that have Nullable(Of DataType)
fields

❑ XmlDataSources designed for use with read-only GridView, DetailsView, DataList,
Repeater, and TreeView controls

❑ Web page performance analysis with page-level and application-level tracing data

❑ Web Site deployment to production Web servers by automated copying of files and
publishing of precompiled site DLLs to IIS virtual directories

You won’t gain the skills you need to design functional, scalable Web sites that have data source
samples with a few text fields and five or ten rows or element groups. Using the Northwind Orders
and Order Details tables as the data source for most of this chapter’s sample projects exposes many
potential issues you’ll face when you develop production Web pages with VS 2005.

14_57678x ch08.qxd 11/10/05 11:21 PM Page 309

Validate Entries in Databound Controls
Validating user input before submitting edited values to the database server eliminates needless
roundtrips, reduces server load, and increases application scalability. If your databound controls connect
to a middle-tier data access logic component (DALC) that enforces business rules, client-side validation
of required fields and data formats reduces network traffic and middle-tier resource consumption. All
production Windows and Web forms should provide initial client-side validation of user input,
regardless of the data access architecture you adopt.

ASP.NET enables two approaches to validating user input to bound controls — server validation controls
or code added to the ControlId_Updating or ControlId_Inserting event handlers. Server validation
controls display validation error messages when the user types or selects a value that doesn’t pass the
validation test and moves to another control. Event-handling code can display one or more validation
error messages in a text box, but the error messages don’t appear until the user completes the editing
process and clicks an Update or Insert link button. Delaying validation until the submit operation will
frustrate users, especially after a lengthy data entry session.

ASP.NET 2.0 Validation Controls
ASP.NET 2.0 provides the same server validation controls as ASP.NET 1.1. Validation controls aren’t
limited to databound fields; you can assign a validator to any server control that accepts user input.
Validating GridView columns or DetailsView fields requires an EditItem template for each item you
want to validate.

The ValidateBoundControls Web Site in the \VB2005DB\Chapter08\ValidateBoundControls folder
demonstrates use of each validator with a modified version of Chapter 7’s GridAndDetailsViews project.
Both projects require a localhost instance of the SQL Server Northwind sample database or editing
the connection string in the Web.config file.

Following are brief descriptions of the six ASP.NET validation controls:

❑ RequiredFieldValidator tests a control specified by its Id property for a value that doesn’t
match the InitialValue property value, which defaults to an empty string. If you supply a
value from a DropDownList with [Select an Item] as the first member of the Items collection
and set AppendDataBoundItems to True, specify [Select an Item] as the InitialValue. If
the value entered matches the InitialValue, the validator displays its Text or ErrorMessage
property value in red type to the right of or under the control.

❑ RangeValidator tests a specified control for a value ranging from the MinValue to the
MaxValue property values, whose type you specify as the DataType property. These two values
can be String, Integer, Double, Date, or Currency constants. The error message appears
when the entered or selected value falls outside the specified range. The RangeValidator control
doesn’t test empty controls, so you must add a RequiredFieldValidator to the specified control.

❑ RegularExpressionValidator tests the text of the specified control for conformance to a regular
expression (regex) you type as the ValidationExpression property value. For example, the
[A-Z]{5} regex validates a CustomerID entry if it contains five uppercase letters. Alternatively,

310

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 310

click the ValidationExpression’s builder button to select from a few standard regexs, such
as e-mail addresses, URLs, telephone numbers, postal codes, and Social Security or ID formats.
You must add a RequiredFieldValidator to test for empty values.

❑ CompareValidator lets you test whether the value of the specified control is less than, less than
or equal to, equal to, greater than or equal to, or greater than the value of another control whose
Id value you specify as the ControlToCompare property value. The CompareValidator tests
the same data types as the RangeValidator. You must add a RequiredFieldValidator to test for
empty values.

❑ CustomValidator lets you test the specified control with a custom JScript or VBScript
ClientValidationFunction and a similar VB.NET handler you write for the
OnServerValidate event. The ClientValidationFunction provides client-side validation
and the OnServerValidate event handler executes when the user submits the page.

❑ ValidationSummary provides a means of displaying all current validation control’s
ErrorMessage property values in a single text box or bulleted list. Alternatively or additionally,
you can display the errors in a message box for users who run IE 4.0 or later. Summary error
messages don’t appear until the user submits the form.

The Edit and New LinkButton controls’ CausesValidation property value defaults to True, which
enables all validator controls in the EditItem template and, for DetailsView, the InsertItem template.

The New ValidationGroup Property
ASP.NET 2.0 adds a new ValidationGroup property to enable selective validation by groups of
validator controls in data-entry forms that don’t use the prebuilt databound controls. As an example,
you might not want to apply all validators to a new Orders table entry. In this case, you assign a group
name — such as EditGroup1— to the ValidationGroup property of an Edit Group 1 submit button
and the validator controls of the form’s text boxes and other databound controls. Other data-entry
controls with validators in EditGroup2 update the remaining fields.

Applying validation groups to bound GridView controls is problematic. Autoinserted CommandFields
don’t provide direct access to their properties, so you can’t specify the required ValidationGroup name
without adding a custom CommandField. If you add an InsertItem template to a FormView or DetailsView
control, you add the required validator controls to both EditItem and InsertItem templates. This process
emulates validation control grouping for edits and insertions.

Other Shared Validation Properties
Following are brief descriptions of the most important control properties that most validator controls
have in common:

❑ ControlToValidate is a required control ID property value for all validator controls except
the CustomValidator.

❑ ErrorMessage appears adjacent to the associated control if you don’t specify a Text value.
Always specify a Text value and add ErrorMessage text to display in SummaryValidator text
or message boxes.

311

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 311

❑ DisplayMode specifies how the validator control displays its Text property. Static (the
default) reserves room for the message under or beside the control, depending on space
available. Dynamic occupies space on the form only when displaying a validation error and
is the preferred setting in most cases. None prevents displaying the message, except in the asso-
ciated ValidationSummary control, if present.

❑ ToolTip text aids the user by permitting a lengthy description of the validation error. For
example, you can copy the ErrorMessage value to ToolTip and add additional information to
aid users when correcting the error.

❑ EnableClientScript determines if client-side validation occurs; the default value is True. If
you set the value to False, validation occurs only when the user submits the form.

Following is an example of the reformatted source code for a RequiredFieldValidator:

<asp:TemplateField SortExpression=”OrderDate” HeaderText=”Order Date”>
<EditItemTemplate>

<asp:TextBox ID=”txtOrderDate” Runat=”server” Width=”76px”
Text=’<%# Bind(“OrderDate”, “{0:d}”) %>’></asp:TextBox>

<asp:RequiredFieldValidator ID=”rfvOrderDate” Runat=”server”
ControlToValidate=”txtOrderDate” ErrorMessage=”OrderDate is required.”
Display=”Dynamic” ToolTip=”OrderDate is a required field.”>Required!

</asp:RequiredFieldValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign=”Right” VerticalAlign=”Top”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“OrderDate”, “{0:d}”) %>’
ID=”lblOrderDate”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

The RequiredFieldValidator’s EnableClientScript property doesn’t appear in the preceding source
code because its default value (True) is accepted. Assigning names to labels isn’t necessary unless you
encounter a duplicate value error. However, assigning meaningful names to all controls is a good
programming practice and helps you find related controls in complex pages.

Figure 8-1 shows the Text property value —Required!— under a missing OrderDate entry.

If you delete an entry and move to another field, return to the errant field, and then press Esc twice to
restore the value, the error message remains. You must retype a valid entry to remove the Text message.

312

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 312

Figure 8-1

Validate GridView Edits
The following sections demonstrate how to require users to enter data in specific fields, apply regular
expressions to verify data formatting, limit entries to a range of values, base data validity on comparison
with another column or calculated value, and take advantage of the ValidationSummary control.
Although a GridView bound to an SqlDataSource provides the validation control test fixture, the tech-
niques you learn here apply to any editable control, regardless of its data source type.

The ValidatedGridView.aspx page has RequiredFieldValidators for all columns except OrderID, which
is read-only, and ShippedDate, ShipRegion, and ShipPostalCode, which can be empty. You can use the
ValidateBoundControls Web site’s EditableGridView.aspx page as the starting point for adding your
own validator controls.

Add Required Field Validation to a GridView Control
Following is the basic process for adding a validator control to a GridView’s EditItem template in
Design mode:

313

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 313

1. Use the Fields dialog to convert the bound fields you want to validate to template fields, if you
haven’t done this previously. Chapter 7’s “Convert BoundFields to EditItemTemplate Fields”
section describes the conversion process.

2. Open the GridView’s smart tag, and click Edit Templates. Right-click the ItemTemplate smart
tag, and choose Edit Templates and the column template for validation.

3. Adjust the width of the TextBox control in the EditItemTemplate pane to accommodate the
entry text, delete the default Height property value, and change the ID property value to a
descriptive name —txtCustomerID for this example.

4. Drag one of the validator controls — RequiredFieldValidator for this example — from the
Toolbox’s Validation section to the right of the text box; the control displays the default red
RequiredFieldValidator error message.

5. Open the validator’s properties window, assign a related name — such as rfvCustomerID—
to the ID property value and the associated text box name to the ControlToValidate
property. Change the Display property value from Static to Dynamic, replace the default
ErrorMessage with a brief description of the validation rule, add a short message to appear
under the text box as the Text property value, and add optional ToolTip text, as shown in
Figure 8-2.

Figure 8-2

314

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 314

When validating GridViews, set the ItemStyle.VerticalAlign property value to Top in the Fields
dialog. This setting aligns all edit text boxes horizontally when a validation error message is present.

Validate CustomerID Entries with a
RegularExpressionValidator

The Order table’s CustomerID field requires five uppercase letters, so it’s a good candidate for testing
validation by a regular expression. A simple [A-Z]{5} expression performs this test; [A-Z] specifies the
capital letters A through Z and {5} specifies the number of occurrences of a letter in the matched text.

Writing regular expressions is beyond the scope of this book. The Regular Expressions Library site at
http://www.regexlib.com/ has about 800 indexed expressions for a wide range of standard and
semi-standard text formats. The online help topic “About Regular Expressions” has sections that explain
how regular expressions work and describe the classes of the System.Text.RegularExpressions
namespace.

To add a RegularExpressionValidator to the GridView’s CustomerID EditItemTemplate, follow the
procedure described in the preceding section, but drag a RegularExpressionValidator control to the right
of the RequiredFieldValidator. Make the appropriate changes to the property values that apply to the
RequiredFieldValidator, and type [A-Z]{5} as the ValidationExpression property value. Clicking the
builder button in the ValidationExpression text box opens the Regular Expression Editor dialog, which
offers a few prebuilt expressions for U.S., European, and Asian strings (see Figure 8-3).

Figure 8-3
315

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 315

Following is the reformatted source code for the CustomerID TemplateField with the
RequiredValueValidator and RegularExpressionValidator added:

<asp:TemplateField SortExpression=”CustomerID” HeaderText=”Cust. ID”>
<EditItemTemplate>

<asp:TextBox ID=”txtCustomerID” Runat=”server” Width=”52px”
Text=’<%# Bind(“CustomerID”) %>’></asp:TextBox>

<asp:RequiredFieldValidator ID=”rfvCustomerID” Runat=”server”
ErrorMessage=”CustomerID is required.” Display=”Dynamic”
ControlToValidate=”txtCustomerID”
ToolTip=”CustomerID is a required field.”> Required!

</asp:RequiredFieldValidator>
<asp:RegularExpressionValidator ID=”revCustomerID” Runat=”server”

ErrorMessage=”CustomerID must be 5 capital letters.”
Display=”Dynamic” ControlToValidate=”txtCustomerID”
ValidationExpression=”[A-Z]{5}”
ToolTip=”CustomerID must be 5 capital letters.”>[ABCDE]

</asp:RegularExpressionValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign=”Left” VerticalAlign=”Top”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“CustomerID”) %>’
ID=”lblCustomerID”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

The preceding example is contrived to demonstrate regex validation. In a real-world application,
CustomerID values would be set by a DropDownList (similar to that for the ValidatedGridView’s
EmployeeID or ShipVia column) or tested by a Custom Validator against a DataTable of valid
CustomerID values.

Test EmployeeID Values with a RangeValidator
EmployeeID foreign-key values for the Employees table must range from 1 to 9. The original ddlEmployee
dropdown list, which lets users select from a list of last names, prevents users from selecting an invalid
EmployeeID value. For this example, the SQL query for the dsEmployees SqlDataSource has been
modified as follows to include an invalid [LastName] item:

SELECT [EmployeeID], [LastName] FROM [Employees]
UNION SELECT 0, ‘[Last Name]’ ORDER BY [LastName]

The RangeValidator requires selecting the appropriate Type property value (Integer) and specifying
MinimumValue (1) and MaximumValue (9) property values for numeric and date data types.

You don’t need a RequiredFieldValidator for this contrived example because the DropDownList limits
the field value to a member of the list. Unless the MinimumValue and MaximumValue property
values are immutable, a production application would need at least a CustomValidator control to obtain
and use the current MaximumValue.

316

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 316

Apply a RangeValidator and RegularExpressionValidator
to Date Entries

Avoiding server roundtrips that result from users entering improperly formatted or nonexistent dates
requires verification that the entry is a valid date with a RangeValidator that accepts dates within a set of
limits. The limits that you set depend on the data source for the field, but it’s likely that 1/1/1980 as the
MinimumValue through 12/31/2099 as the MaximumValue will accommodate most applications. When
you specify Date as the Type property value, the .NET DateTime parser tests for a valid date. As an
example, 2/29/2005 or 11/31/00 raises an error, but 2/29/2004 or 02/29/00 doesn’t. Thus, it’s a
good programming practice to add a RangeValidator to all datetime columns of bound text boxes. By
default, the DateTime parser accepts two-digit or four-digit years and virgules (forward slashes) or
hyphens as separators.

If you want to enforce a specific short-date format, such as M/D/YYYY, you must add a
RegularExpression validator. The following regex requires virgules and four-digit years:

^((((0?[13578])|(1[02]))[\/]?((0?[1-9]|[0-2][0-9])|(3[01])))|(((0?[469])|(11))[\/]
?((0?[1-9]|[0-2][0-9])|(30)))|(0?[2][\/]?(0?[1-9]|[0-2][0-9])))[\/]?\d{4}$

The preceding regex is a modification of an expression contributed by Cliff Schneide to the Regular
Expressions Library site. The modifications prevent matching hyphen separators and require
four-digit years.

Here’s the reformatted source code for the OrderDate TemplateField with RequiredFieldValidator,
RangeValidator, and RegularExpressionValidator controls:

<asp:TemplateField SortExpression=”OrderDate” HeaderText=”Order Date”>
<EditItemTemplate>

<asp:TextBox ID=”txtOrderDate” Runat=”server” Width=”76px”
Text=’<%# Bind(“OrderDate”, “{0:d}”) %>’></asp:TextBox>

<asp:RequiredFieldValidator ID=”rfvOrderDate” Runat=”server”
ControlToValidate=”txtOrderDate”
ErrorMessage=”OrderDate is required.” Display=”Dynamic”
ToolTip=”OrderDate is a required field.”>Required!

</asp:RequiredFieldValidator>
<asp:RangeValidator ID=”rvOrderDate” Runat=”server”

ToolTip=”Dates must be in ShortDate format (MM/DD/YYYY)”
ControlToValidate=”txtOrderDate”
ErrorMessage=”Dates must be in M/D/YYYY format.”
MinimumValue=”1/1/1980” MaximumValue=”12/31/2099” Type=”Date”
Display=”Dynamic”>[M/D/YYYY]

</asp:RangeValidator>
<asp:RegularExpressionValidator ID=”revOrderDate” Runat=”server”

ToolTip=”Date format must be M/D/YYYY and date must be valid.”
Display=”Dynamic” ErrorMessage=”Date format must be M/D/YYYY.”
ControlToValidate=”txtOrderDate”
ValidationExpression=”^((((0?[13578])|(1[02]))[\/]?((0?[1-9]|[0-2]

[0-9])|(3[01])))|(((0?[469])|(11))[\/]?((0?[1-9]|[0-2][0-9])|
(30)))|(0?[2]\/?(0?[1-9]|[0-2][0-9])))[\/]?\d{4}$”>[M/D/YYYY]

</asp:RegularExpressionValidator>
</EditItemTemplate>

317

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 317

<ItemStyle HorizontalAlign=”Right” VerticalAlign=”Top”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“OrderDate”, “{0:d}”) %>’
ID=”lblOrderDate”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

Prevent Unreasonable Entries with a CompareValidator
You can use the CompareValidator control to prevent numeric and date entries that violate simple
business rules (or common sense), such as a RequiredDate that’s equal to or less than the OrderDate. The
CompareValidator control’s ControlToCompare property requires that the ID of a control have a data type
that’s compatible with the datatype of the specified ControlToValidate. For example, to compare an
Integer with a value that has a decimal fraction, you must specify Double as the Type property value.

For this example, you substitute a CompareValidator for the RangeValidator control. Specify
txtRequiredDate as the ControlToValidate property value, txtOrderDate as the ControlToCompare,
GreaterThan as the Operator, and Date as the Type.

Following is the reformatted source code for the RequiredDate TemplateField:

<asp:TemplateField SortExpression=”RequiredDate” HeaderText=”Required Date”>
<EditItemTemplate>

<asp:TextBox ID=”txtRequiredDate” Runat=”server” Width=”76px”
Text=’<%# Bind(“RequiredDate”, “{0:d}”) %>’></asp:TextBox>

<asp:RequiredFieldValidator ID=”rfvRequiredDate” Runat=”server”
ToolTip=”RequiredDate is required and must be later than OrderDate.”
Display=”Dynamic” ErrorMessage=”RequiredDate is required.”
ControlToValidate=”txtRequiredDate”>Required!

</asp:RequiredFieldValidator>
<asp:CompareValidator ID=”cvRequiredDate” Runat=”server”

ToolTip=”RequiredDate must be later than OrderDate.” Display=”Dynamic”
ErrorMessage=”RequiredDate must be later than OrderDate.”
ControlToValidate=”txtRequiredDate” Operator=”GreaterThan”
ControlToCompare=”txtOrderDate”>Impossible!

</asp:CompareValidator>
<asp:RegularExpressionValidator ID=”revRequiredDate” Runat=”server”

ToolTip=”Date format must be M/D/YYYY and date must be valid.”
Display=”Dynamic” ErrorMessage=”Date format must be M/D/YYYY.”
ControlToValidate=”txtRequiredDate”
ValidationExpression=”^((((0?[13578])|(1[02]))[\/]?((0?[1-9]|[0-2]

[0-9])|(3[01])))|(((0?[469])|(11))[\/]?((0?[1-9]|[0-2][0-9])|
(30)))|(0?[2]\/?(0?[1-9]|[0-2][0-9])))[\/]?\d{4}$”>[M/D/YYYY]

</asp:RegularExpressionValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign=”Right” VerticalAlign=”Top”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“RequiredDate”, “{0:d}”) %>’
ID=”lblRequiredDate”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

318

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 318

Add a CustomValidator Control
CustomValidator controls require adding a server-side validation handler for the ValidatorName
_ServerValidate event and an optional JScript or VBScript function for client-side validation. This
example validates Freight column edits and requires an entry of 5 or greater if the ShippedDate column
contains a date. The validator enforces Northwind Traders’ policy of a $5.00 minimum shipping and
handling charge.

Here’s the reformatted source code for the Freight TemplateField, which specifies the cvFreight
_ServerValidate server-side event handler and the client-side VBScript ClientValidationFunction
property value:

<asp:TemplateField SortExpression=”Freight” HeaderText=”Freight”>
<EditItemTemplate>

<asp:TextBox ID=”txtFreight” Runat=”server” Width=”52px”
Text=’<%# Bind(“Freight”) %>’></asp:TextBox>

<asp:RequiredFieldValidator ID=”rfvFreight” Runat=”server”
ErrorMessage=”Freight is required; enter 0 if not known.”
Display=”Dynamic” ControlToValidate=”txtFreight”>Required!

</asp:RequiredFieldValidator>
<asp:CustomValidator ID=”cvFreight” Runat=”server”

ToolTip=”Freight for shipped order cannot be less than $5.00”
ControlToValidate=”txtFreight” Display=”Dynamic”
ErrorMessage=”Freight for shipped order is less than $5.00”
OnServerValidate=”cvFreight_ServerValidate”
ClientValidationFunction=”ValidateFreight”>
<5=Bad!

</asp:CustomValidator>
</EditItemTemplate>
<ItemStyle HorizontalAlign=”Right” VerticalAlign=”Top”></ItemStyle>
<ItemTemplate>

<asp:Label Runat=”server” Text=’<%# Bind(“Freight”, “{0:C2}”) %>’
ID=”lblFreight”></asp:Label>

</ItemTemplate>
</asp:TemplateField>

The following cvFreight_ServerValidate event handler demonstrates code to obtain the value of
another GridView column of the edited row. The code also sets the args.IsValid property value to
False if a date is present in the ShippedDate column and the Freight value is less than $5.00.

Sub cvFreight_ServerValidate(ByVal source As Object,
ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs)

‘Invalid if order has shipped and Freight < $5.00
args.IsValid = True
If Val(args.Value) < 5 Then

With gvOrdersEditable
‘Get the edited GridViewRow from its EditIndex property
Dim gvrRow As GridViewRow = .Rows(.EditIndex)
‘Obtain a TextBox control from the row’s ShippedDate text box
Dim txtShipped As TextBox = _
CType(gvrRow.FindControl(“txtShippedDate”), TextBox)

If txtShipped IsNot Nothing Then
If Len(txtShipped.Text) > 4 Then

‘Order has been shipped
args.IsValid = False

319

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 319

End If
End If

End With
End If

End Sub

Writing the script for the client-side validation function is a bit more challenging. You must
derive the name of the field to test from the Document.activeElement.id value, which returns
gvOrdersEditable_ctl14_txtFreight from the following active <input> element:

<input name=”gvOrdersEditable$ctl14$txtFreight” type=”text” value=”0”
id=”gvOrdersEditable_ctl14_txtFreight” style=”width:52px;” />

Replace txtFreight with txtShippedDate to create the id attribute value for the same row and apply
the Document.getElementById(ShipDateId).outerHTML method to return the ShippedDate
<input> element:

<input name=”gvOrdersEditable$ctl14$txtShippedDate” type=”text” value=”5/10/1998”
id=”gvOrdersEditable_ctl14_txtShippedDate” style=”width:76px;” />

Finally, extract the value attribute’s text to determine if a ShippedDate value is present.

Following is the VBScript function in the <head> section that implements the client-side validation:

<script language=”vbscript”>
Function ValidateFreight(source, args)

‘Test for Freight value < $5.00 if order has shipped
If args.Value < 5 Then

FreightID = Document.activeElement.id
‘Format: gvOrdersEditable_ctl##_txtFreight (## is a sequential number)
ShipDateID = Left(FreightID, InStrRev(FreightID, “_”)) & _

“txtShippedDate”
ShipDate = Document.getElementById(ShipDateID).outerHTML
ShipDate = Mid(ShipDate, Instr(ShipDate, “value=”) + 6)
ShipDate = Left(ShipDate, Instr(ShipDate, “ name=”) -1)
If Len(ShipDate) > 4 Then

args.IsValid = False
Else

args.IsValid = True
End If

End If
End Function

</script>

You can write similar code to perform date validation calculations, such as replacing the CompareValidator
for RequiredDate with a CustomValidator that requires a minimum of seven days between OrderDate and
RequiredDate values. CustomValidators provide much more flexibility than prebuilt validators at the
expense of writing and testing event handlers and script.

Client-side CustomValidators don’t detect violations unless the user changes the associated value. For
example, replacing an empty ShippedDate value doesn’t display a validation error for a Freight field with
an existing 0 value, nor does retyping 0. In this case, the user must type a valid value and then an invalid
value to obtain an error message. However, server-side validation will detect an unedited value less than 5.

320

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 320

Provide a Validation Summary Message
The ValidatedGridView.aspx page inherits from EditableDataGridView.aspx a text box that displays error
messages from the server. You can create a similar text box to display uncorrected validator ErrorMessage
values by adding a ValidationSummary control to the top of the page. The ValidationSummary text box
appears only when users submit a page that has uncorrected errors.

Add a validation summary text box to the page by dragging a ValidationSummary control above the
GridView, set the DisplayMode property value to SingleParagraph, add optional HeaderText, and
apply formatting as required.

<asp:ValidationSummary ID=”vsOrderData” Runat=”server” Font-Size=”10pt”
Font-Bold=”False”Font-Names=”Verdana” DisplayMode=”SingleParagraph”
ShowMessageBox=”False” Width=”802px” Height=”18px” BorderColor=”DimGray”
BorderStyle=”Solid” BackColor=”White” BorderWidth=”1px”
HeaderText=”&nbsp;Validation summary:”
ToolTip=”This is a summary of all order data validation errors.” />

If you want to display a message box instead of a text box, set ShowMessageBox to True and change
the DisplaySummary property value to False.

Figure 8-4 shows a ValidationSummary control displaying several editing errors. The PostBacks text box
shows the number of session postbacks, which lets you distinguish client-side from server-side validation
when running the built-in Web server.

Figure 8-4 321

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:21 PM Page 321

Validate DetailsView Controls
Adding validator controls to a DetailsView follows the procedure for a GridView. However, you must
duplicate each EditItemTemplate validator control as an InsertItemTemplate control, if you allow
inserting new items. In this case, you can copy and paste the EditItemTemplate validator control to the
InsertItemTemplate, replace the default ID property value, and change the ControlToValidate property
value to the associated inserting controls’s ID. Figure 8-5 shows the Edit Templates smart tag for the
CustomerID column with a RegularExpressionValidator control that was copied and pasted to the
InsertItemTemplate.

Figure 8-5

The ValidateBoundControls Web site’s ValidatedDetailsView.aspx page includes DetailsView controls for
the Orders and Order Details tables, and a GridView for the Order Details table. The Orders DetailsView
has validator controls for most fields and the Order Details GridView has validators for all columns.

Validate ProductID Edits at the Web Server
Edits or insertions that create duplicate ProductID values for a single OrderID in the Order Details table
throw a primary-key constraint exception. The Order Details GridView (gvOrderDetails) has a
CustomValidator control (cvProductID) for the ProductID column that tests for duplicate values with
the following event handler:

322

Chapter 8

14_57678x ch08.qxd 11/10/05 11:21 PM Page 322

Sub cvProductID_ServerValidate(ByVal source As Object, _
ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs)

Dim intRow As Integer
Dim lblTest As Label = Nothing
args.IsValid = True
‘Test edited value for duplicate ProductID
With gvOrderDetails

For intRow = 0 To .Rows.Count - 1
lblTest = CType(.Rows(intRow).FindControl(“lblProductID”), Label)
If lblTest IsNot Nothing Then

If args.Value = lblTest.Text Then
args.IsValid = False
Exit For

End If
End If

Next
End With

End Sub

The preceding event handler works correctly because there’s no element that contains a
lblProductID control for the row being edited.

Test for Duplicate ProductID Values at the Client
Client-side script to invalidate edits that create duplicate ProductID values is more complex than the
server-side code. The server-generated HTML assigns numeric values to the lblProductID’s ID
attribute value, as in this example for the first row of the gvOrderDetails control:

5

Design modifications might change the initial 03 sequence value and Orders records have differing
numbers of Order Details records. The safe method to test for duplicates is to start searching with 01 and
end the search when a duplicate is encountered or all details rows for an order have been tested. The
following VBScript function tests orders with fewer than 98 rows:

<script language=”vbscript”>
Function ValidateProductID(source, args)

args.IsValid = True
Prefix = “gvOrderDetails_ctl”
Suffix = “_lblProductID”
LastRow = 99
For Ctr = 1 To 99

If Ctr < 10 Then
CtlNum = “0” & Ctr

Else
CtlNum = Ctr

End If
CtlName = Prefix & CtlNum & Suffix
Set objCtl = Document.getElementById(CtlName)
If objCtl Is Nothing Then

If Ctr > LastRow Then
‘Last valid row

323

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 323

Exit For
End If

Else
ProductID = objCtl.innerText
LastRow = Ctr
If ProductID = args.Value Then

args.IsValid = False
Exit For

End If
End If

Next
End Function

</script>

Accommodating more than 97 rows doesn’t affect performance because the Exit For statement
executes when encountering a duplicated value or passing the last valid row. Figure 8-6 shows the
ValidatedDetailsView.aspx page with multiple client-side editing violations, including a duplicate
ProductID value.

Figure 8-6

324

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 324

Replace SqlDataSources with
ObjectDataSources

SqlDataSources implement a two-tier (client/server) architecture, which usually is satisfactory for a
Web site that has a few hundred simultaneous users, simple or no business logic requirements, and
stored procedures or SELECT queries with WHERE clauses to restrict the number of rows for populating
DataLists or DataViews. The simplicity of two-tier data access minimizes application development and
test time, but client/server architecture ties your Web applications to a specific relational data structure.
Stored procedures can improve performance, and accommodate table and column name changes, as
well as added columns. Stored procedures also provide increased database security by preventing direct
client or middle-tier access to the underlying tables. However, stored procedures don’t provide the level
of data abstraction that ObjecDataSources deliver.

The sample Web site projects in Chapter 7 and many of the sample Web site projects in this chapter use
SQL SELECT, UPDATE, INSERT, and DELETE queries without parameters for simplicity. Parameterized
queries are recommended (strongly) for those production projects that execute SQL batch commands.
Most DBAs of production sites that use SqlDataSources and two-tier or three-tier architecture require
stored procedures for data retrieval and editing.

ObjectDataSources enable you to add a custom data access layer component (DALC) between the Web
page that provides the UI and the stored procedures or SQL queries that access base tables. The logical
DALC that implements the middle tier can — but isn’t required to — be added as a physical tier. The
following sections describe ObjectDataSources created from a typed DataSet’s DataTables.

ObjectDataSources from DataTables
The ASP.NET 2.0 ObjectDataSource control enables binding business objects to data-enabled Web
server controls. The simplest ObjectDataSource incarnation is a typed DataSet’s DataTable object. An
ObjectDataSource that you create from a DataTable doesn’t enable abstracting the associated databound
control from the metadata of the underlying base table or stored procedure. Generating at compile-time
a typed DataSet class to support DataTables increases resource requirements and exacts a greater perfor-
mance toll than invoking an SqlDataSource. The following sections’ examples are intended to simplify
your introduction to ObjectDataSources and do not constitute a recommendation to use typed DataSets as
DALCs in production Web applications.

To add the schema for a typed DataSet to a Web site, right-click the site’s App_Code folder, choose Add
New Item, select DataSet in the Add New Item dialog’s Visual Studio Installed Templates list, rename
DataSet.xsd, and click Add. The XML Schema designer opens with a default, empty TableAdapter1
designer. Right-click the TableAdapter1 designer and choose Configure to start the DataTable
Configuration Wizard.

If your Web site doesn’t have an App_Code folder, you can add it from Solution Explorer or right-click
the ProjectName node and add the DataSet’s schema. Adding a DataSet to the Project folder opens a
message box that suggests creating the App_Code folder and adding the DataSet.xsd file to it.

The process of configuring ASP.NET DataTables is identical to that for configuring a Windows form’s
typed DataSet’s DataTables. Choosing to store the ConnectionString in an application configuration file
adds the string to the Web.config file’s <ConnectionStrings> group. Unlike the persistent DataSets

325

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 325

you add to Windows form projects, ASP.NET data components don’t add a DataSetName.designer.vb file
to the project. Instead, compiling the DataSet.xsd file generates a temporary Random.2.cs file that defines
the Public Partial Class DataSetName.

Generating the typed DataSet’s C# code at runtime causes a performance hit the first time you build
the project or when the first user opens a deployed Web Site. Another drawback of C# DataSet classes
is that you can’t add a VB.NET partial class to modify them. An alternative is to compile a Windows
form typed DataSet to a class library and add a reference to the library to your page. The section
“ObjectDataSources from Typed DataSet DALCs,” later in this chapter, describes this approach, which
also applies to Web services.

Add Multiple DataTables to an Existing Web Site
The most convenient method of exploring ObjectDataSources is to add a DataSet and DataTables to an
existing Web site that has GridView and DetailsView controls populated by SqlDataSources. Chapter 7’s
GridAndDetailsViews Web site is a good starting point for converting from two-tier SqlDataSources to
three-tier ObjectDataSources.

The VB2005DB\Chapter08 folder includes a copy of the EditableGridAndDetailsView Web site that
you can use for the following procedure.

To add a DataSet with the Northwind Orders and Order Details DataTables and the SQL statements
required for the sample Web site, do this:

1. Open the copy of the GridAndDetailsView Web site, right-click the App_Code folder or the
project name, and choose Add New Item to open the dialog of the same name. Select DataSet,
change DataSet.xsd to OrdersDataSet.xsd, and click Add. Click Yes to dismiss the message
box, if it appears.

2. Right-click the empty DataTable1 editor to start the Table Adapter Configuration Wizard.

3. Accept the default connection name (NorthwindConnectionString), click Next, accept the
default Use SQL Statements option, and click Next.

4. Click Query Builder, add the Orders table, and select each of the table’s 13 original columns. In
the OrderID row’s Sort Type column, select Descending as the sort order. Click Execute Query
to test the statement, click OK, and click Next.

5. Accept the default method names or change Fill to FillOrders and GetData to GetOrders,
click Next to generate the SQL statements, and click Finish to dismiss the wizard.

ObjectDataSources require GetData methods. Fill methods aren’t used, so you can omit them.

6. Right-click the OrdersDataSet.xsd window’s background and choose Add, and then Data
Component to start another wizard instance.

7. Repeat Steps 2 through 4, but add the [Order Details] table in Step 4, and replace Fill with
FillDetails and GetData with GetDetails in Step 5.

The GetData or GetOrdersData method populates the sample project’s three GridViews. The following
process adds parameterized queries to return a single Orders row or set of Order Details records:

326

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 326

1. Right-click the OrdersTableAdapter header and choose Add Query to start the Data Component
Query Configuration Wizard. Accept the default Use SQL Statements option, and click Next.
Then accept the default Select Which Returns Rows option, and click Next again.

2. In the What Data Should the Table Load? text box, replace ORDER BY OrderID DESC with WHERE
OrderID = @OrderID, and click Next.

3. Replace FillBy with FillOrdersByOrderID and GetDataBy with GetOrdersByOrderID. Click
Next and then click Finish to add the query.

4. Repeat Steps 1 through 3 for the [Order Details] TableAdapter, add WHERE OrderID = @OrderID
in Step 2, and substitute Details for Orders in Step 3.

5. Press F5 to build and run the project.

Your OrdersDataSet.xsd window with the added parameterized queries appears as shown in Figure 8-7.

Figure 8-7

327

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 327

Create and Assign ObjectDataSources from the DataSet
The next process is to add ObjectDataSources for the GridViews and DetailsViews to pages of the sample
project. The new ObjectDataSources duplicate the sample project’s SqlDataSources, which enables you to
use the existing templated GridViews and basic DetailsViews.

Add an ObjectDataSource to the EditableGridView Page
To add an ObjectDataSource for the EditableGridView page, do the following:

1. Open the EditableGridView.aspx page in Design mode and drag an ObjectDataSource from the
Toolbox to under the dsOrdersEdit SqlDataSource, which adds an ObjectDataSource1 place-
holder and opens the Common DataSource Task smart tag.

2. Click the Configure DataSource link to open the dialog of the same name. Mark the Show Only
Data Components checkbox, open the dropdown list, and select
OrdersDataSetTableAdapters.OrdersTableAdapter. Click Next to open the Define Data Methods
dialog (see Figure 8-8).

Figure 8-8

If you didn’t build the project in Step 5 of the preceding section, the dropdown list is empty. In this case,
click Cancel, build the Web site, and repeat this step.

328

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 328

3. Accept the SELECT tab’s default GetOrders() method, which returns an OrdersDataTable
object — not a DataSet.

4. Click the UPDATE tab to verify that the ObjectDataSource is updatable. Notice that the Method
Signature text box prefixes each UPDATE parameter that has a value datatype with Nullable
(see Figure 8-9).

Figure 8-9

5. Click the INSERT and DELETE tabs to review the remaining method signatures, and click
Finish to complete the process.

6. Open ObjectDataSource1’s Properties window and change the ID property value to
odsOrdersEdit (see Figure 8-10).

329

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 329

Figure 8-10

You can implement optimistic concurrency for edits and deletions by changing the ConflictDetection
property value from OverwriteChanges to CompareAllValues. The gvOrdersEditable
GridView supports paging, but you don’t need to set the EnablePaging property to True. For this
example, the GridView handles the paging process.

Assign odsOrdersEdit to gvOrdersEditable and Verify Operability
The final step in the process replaces dsOrdersEdit with odsOrdersEdit. Open gvOrdersEditable’s
smart tag, open the Choose Data Source list and select odsOrdersEdit, which opens a Refresh Fields and
Keys for ‘gvOrdersEditable’ message box (see Figure 8-11). Click No to leave the GridView intact.

If you click Yes, you destroy and regenerate the GridView, which deletes all
formatting and templates.

330

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 330

Figure 8-11

If you click Yes by mistake, press Ctrl+Z to undo the data source change. You might need to press
Ctrl+Z several times to revert the GridView to its original state.

Press F5 to build and run the project, click the Edit button, and update one of the orders by changing the
EmployeeID or ShipVia value. There’s no detectable operational difference of the GridView with the
ObjectDataSource substituted for the SqlDataSource.

Following is the source code for odsOrdersEdit:

<asp:ObjectDataSource ID=”odsOrdersEdit” runat=”server” DeleteMethod=”Delete”
InsertMethod=”Insert” SelectMethod=”GetOrders” UpdateMethod=”Update”>
TypeName=”OrdersDataSetTableAdapters.OrdersTableAdapter”

<DeleteParameters>
<asp:Parameter Name=”Original_OrderID” Type=”Int32” />

</DeleteParameters>
<UpdateParameters>

<asp:Parameter Name=”CustomerID” Type=”String” />
<asp:Parameter Name=”EmployeeID” Type=”Int32” />
<asp:Parameter Name=”OrderDate” Type=”DateTime” />
<asp:Parameter Name=”RequiredDate” Type=”DateTime” />
<asp:Parameter Name=”ShippedDate” Type=”DateTime” />
<asp:Parameter Name=”ShipVia” Type=”Int32” />
<asp:Parameter Name=”Freight” Type=”Decimal” />
<asp:Parameter Name=”ShipName” Type=”String” />
<asp:Parameter Name=”ShipAddress” Type=”String” />
<asp:Parameter Name=”ShipCity” Type=”String” />
<asp:Parameter Name=”ShipRegion” Type=”String” />
<asp:Parameter Name=”ShipPostalCode” Type=”String” />
<asp:Parameter Name=”ShipCountry” Type=”String” />
<asp:Parameter Name=”Original_OrderID” Type=”Int32” />

</UpdateParameters>
<InsertParameters>

<asp:Parameter Name=”CustomerID” Type=”String” />
<asp:Parameter Name=”EmployeeID” Type=”Int32” />
<asp:Parameter Name=”OrderDate” Type=”DateTime” />
<asp:Parameter Name=”RequiredDate” Type=”DateTime” />
<asp:Parameter Name=”ShippedDate” Type=”DateTime” />
<asp:Parameter Name=”ShipVia” Type=”Int32” />
<asp:Parameter Name=”Freight” Type=”Decimal” />
<asp:Parameter Name=”ShipName” Type=”String” />

331

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 331

<asp:Parameter Name=”ShipAddress” Type=”String” />
<asp:Parameter Name=”ShipCity” Type=”String” />
<asp:Parameter Name=”ShipRegion” Type=”String” />
<asp:Parameter Name=”ShipPostalCode” Type=”String” />
<asp:Parameter Name=”ShipCountry” Type=”String” />

</InsertParameters>
</asp:ObjectDataSource>

The primary differences between the source code for the odsOrdersEdit ObjectDataSource and the corre-
sponding dsOrdersEdit SqlDataSource are addition of a TypeName=”NameDataSetDataTableAdapters
.NameDataTableAdapter” attribute, and substitution of method names for SQL commands.

Add ObjectDataSources to the LinkedGridView and LinkedDetailsView Pages
The LinkedGridView.aspx page needs the same odsOrdersEdit ObjectDataSource as the EditableGridView
.aspx page. Copy the odsOrdersEdit placeholder to the Clipboard, open the LinkedGridView.aspx
page in Design mode, and paste the placeholder copy below the dsOrders placeholder. Open the
Properties window, change the ID property value to odsOrders and, optionally, set the DeleteMethod,
InsertMethod, and UpdateMethod property values to None because the gvOrders GridView is read-
only. Change gvOrders’ DataSource to odsOrders, press F5, and test the page’s operation.

The LinkedDetailsView.aspx page requires two counterparts to the SqlDataSources for gvOrdersLinked
and dvOrderDetailsLinked. To create the odsOrderLinked ObjectDataSource, do the following:

1. Drag an ObjectDataSource placeholder below the dsOrdersLinked placeholder, select Configure
Data Source in the smart tag, select OrdersDataSetTableAdapters.OrdersTableAdapter in the drop-
down list, and click Next.

2. In the Define Data Methods dialog, select the GetOrdersByOrderID parameterized query as the
SELECT method, and click Next.

3. In the Define Parameters dialog, open the Parameter Source list and choose QueryString. Type
orderid as the QueryStringField and 11077 as the DefaultValue property values (see Figure
8-12). Click Finish and press F5 to build and run the page.

332

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 332

Figure 8-12

4. Change the ID to odsOrderLinked and the data source for gvOrdersLinked to
odsOrderLinked. Don’t refresh the keys when the message box opens.

5. Press F5, open the LinkedGridView.aspx page, and click an order other than 11077 to test the
link to gvOrdersLinked. Verify that updates are operational by changing the EmployeeID,
ShipVia, or both values.

Repeat the preceding procedure for the dvOrderDetailsLinked DetailsView, but select
OrdersDataSetTableAdapters.Order_DetailsTableAdapter in Step 1 and GetDetailsByOrderID in Step 2.
In Step 3, select the Update and Delete method from list on the UPDATE and DELETE tabs. Substitute
odsOrderDetailsLinked for odsOrderLinked and dvOrderDetailsLinked for gvOrdersLinked
in Step 4.

The Update method’s signature is Update(Object OrderID, Object ProductID, Object
UnitPrice, Object Quantity, Object Discount, Object Original_OrderID, Object
Original_ProductID), returns Int32.

333

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 333

Work Around Problems with CompositePrimaryKeys
Attempting to edit an Order Details item throws an “ObjectDataSource ‘odsOrderDetailsLinked’ could
not find a method ‘Update’ that has parameters: UnitPrice, Quantity, Discount, original_OrderID,
original_ProductID” exception. Both OrderID and ProductID fields are read-only because these fields
provide the composite primary key values of the Order Details table.

Enabling updates to a DetailsView whose data source is a table with a composite primary key requires a
workaround. To conform the UPDATE parameters to the Update method’s signature — shown in the note
of the preceding section — you must supply the OrderID and ProductID parameter values in addition to
the original_OrderID and original_ProductID values. By default, primary-key values are read-only in
GridViews and DetailsViews; read-only fields don’t provide parameter values. To supply the OrderID
and ProductID parameter values, click the dvDetailsLinked’s Fields property builder button to open
the Fields dialog and change the ReadOnly property of the OrderID and ProductID fields to False.

To set the source of the UPDATE parameters, open odsOrderDetailsLinked’s Properties window,
select the UpdateParameters property’s text box, and click its builder button to open the Parameter
Collection Editor dialog. Set each parameter’s Source to Control and set the ControlID value to the
DetailsView, dvOrderDetails for this example.

You must add the required original_OrderID and original_ProductID parameters, if they’re missing
from the . Click the Add Parameter button, rename the default newparameter to original_OrderID, and
repeat the process for original_ProductID. When you’re finished editing the parameters, the Parameter
Collection Editor appears as shown in Figure 8-13.

Figure 8-13

Click OK to save your UpdateParameters values, press F5, and edit an Order Details item to verify that
your modifications behave as expected. Add a new Order Details item to test the Insert method
parameters.

The \VB2005DB\Chapter08 folder’s Web site is a complete implementation of the changes to the
GridAndDetailsViews Web site described in the preceding sections.

334

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 334

ObjectDataSources from Typed DataSet DALCs
Data access layer components that you create as typed DataSets in Windows class libraries have the
following advantages over DataSets created from data components:

❑ The VB.NET Partial Class DataSetName is accessible, so you can add a custom Partial
Class DataSetName to customize the DataSet or add business logic.

❑ The ASP.NET runtime doesn’t need to build the DataSet source code into a temporary file the
first time a user opens the page.

❑ Multiple pages, Web Sites, or both can share the class library.

❑ The class library and an optional business-logic wrapper can be installed on a middle-tier server
to enhance scalability.

If you intend to use typed DataSets with ASP.NET 2.0 Web Sites, class libraries are likely to be the most
versatile and scalable approach.

Create the Class Library
Following are the basic steps to create an ObjectDataSource from a typed DataSet class library:

1. Create a new Visual Basic class library project. For this example, name the project NwindDALC.

2. Add a new data source to the project to start the Data Source Configuration Wizard and select
Database as the data source type. For this example, select a connection to the Northwind sample
database. A production application would use SQL Server security and a user account that has
read-write permissions. In this case use your administrator account, save your password for
SQL Server security, include sensitive information in the connection string, and do not save the
configuration string in the App.config file.

3. Add the tables you need to the DataSet. For this example, add the Orders and Order Details
tables, accept or change the default NorthwindDataSet DataSet name, and click Finish.

4. Use the TableAdapter Query Configuration Wizard to change the names of the Fill and
GetData methods for the tables, and add FillBy and GetDataBy queries. For this example,
duplicate the names and SQL statements in the section “Add Multiple DataTables to an Existing
Web Site,” earlier in this chapter.

5. Rename Class1.vb and change Public Class1 to Partial Public Class DataSetName. Verify
that the DataSet methods and properties are visible in the Declarations section.

6. Build the class library to create, for this example, NwindDALC.dll.

Create the Web Site
As was the case for the earlier ObjectDataSource DataSet example, it’s easier to modify copies of existing
Web pages, when practical, than to create new ones. The following process for creating a test Web site for
a class library is similar to that described in the section “Add Multiple DataTables to an Existing Web
Site,” earlier in this chapter:

1. Create a new Web site and, for this example, add the LinkedGridView.aspx and LinkedDetailsView
.aspx pages from the \VB2005DB\Chapter08\NWOrdersTDS Web site. Delete the Default.aspx
page, and set LinkedGridView.aspx as the start page.

335

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 335

The NWOrdersTDS Web site uses the prebuilt NwindDAL.dll class library from the \VB2005DB\
Chapter08\NwindDAL folder.

2. Choose Web Site ➪ Add Reference, click the Browse tab, navigate to the location of the DALC
class library DLL you created in the preceding section (\VB2005DB\Chapter08\NwindDALC\
debug\bin), and double-click the DLL (NwindDALC.dll) to add the .dll, .pdb, and .xml files to
the new Web site’s ...\bin folder.

3. Open the Configure Data Source dialog for each ObjectDataSource from copied pages
or add new ObjectDataSources to the pages. For this example, select NwindDALC
.NorthwindDataSetTableAdapters.OrdersTableAdapter as the name of the odsOrders and
odsOrdersLinked business objects, and verify or set the Update, Insert, and Delete methods.

Don’t refresh the GridView or DetailsView when you change the data source.

4. Repeat Step 3 for the odsOrderDetailsLinked data source, but select NwindDALC
.NorthwindDataSetTableAdapters.Orders_DetailsTableAdapter as the business object name.

5. Build, run, and add a new Web.config file, and test the project for Orders and Order Details
updates and new Order Details entries.

If you update the class library, remove the related files from the ...\bin folder and repeat Step 2 to refresh
the local copies.

ObjectDataSources from Custom Business Objects
Custom business objects free you from the relational data constraints of typed DataSets and DataTables
at the expense of increased code complexity. Best practices dictate business object classes with public
properties that have accessors and mutators (getters and setters). However, ObjectDataSources disregard
public properties or fields and use reflection to invoke Select, Update, Insert, and Delete methods.
This means you must add wrapper functions to your class that return or modify objects or object
collections. Object collections to fill GridViews or DetailsViews must implement the IEnumerable
interface; ArrayList, Hashtable, List, and most generic lists implement IEnumerable. GridViews
you create from lists — rather than DataSets — don’t support sorting, caching, or filtering.

Partial classes for wrapper methods maintain your original class definition files and let you repurpose
the methods for other implementations, such as Web services or remoting. The object definition and
wrapper method classes must be designated Public Partial ClassName. If you omit Partial
from the object definition class declaration, the class name won’t appear in the object name list of the
first Configure Data Source Wizard’s first dialog. (You must clear the Show Only Data Components
checkbox to make custom business objects visible in the list.) The Select method determines the type
returned to ObjectDataSource. The Select method examples of this chapter return ArrayLists of
one or more items.

Most production business objects persist their data in relational database tables. Often, the business object
is an intermediary whose purpose is to abstract the relational metadata into an object hierarchy, which can
be serialized to an XML stream or file. The following sections show you how to create and manipulate
objects that emulate a single DataTable, which is the recommended design for ObjectDataSources. Order
and OrderDetail objects are populated by and saved to rows of the Northwind Orders and Order

336

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 336

Details tables. Select methods define ArrayLists of Order and OrderDetail objects to populate a
read-only GridView, and read-write DetailsViews. OrderDetail Update and Insert methods instantiate
objects; Delete methods operate on the tables directly.

The NWOrdersBE Web site in the \VB2005DB\Chapter08\NWOrdersBE folder is based
on the LinkedGridView.aspx and LinkedDetailsView.aspx pages described in the preceding sections.
The OrdersBE.vb file contains the definitions for the Order, OrderDetail, and OrderDetails
objects. OrdersBEMethods.vb contains the Select, Update, Insert, and Delete methods for the
ObjectDataSources.

Define the Business Objects
For simplicity, the Order and OrderDetail objects represent their source tables. Following is an
abbreviated definition of the OrdersBE class’s Order class:

Public Class Order
Private orderIDField As Integer
Private customerIDField As String
Private employeeIDField As Integer
Private orderDateField As Date
Private requiredDateField As Date
Private shippedDateField As Nullable(Of Date)
Private shipViaField As Integer
Private freightField As Decimal
Private shipNameField As String
Private shipAddressField As String
Private shipCityField As String
Private shipRegionField As String
Private shipPostalCodeField As String
Private shipCountryField As String

Public Property OrderID() As Integer
Get

Return Me.orderIDField
End Get
Set(ByVal value As Integer)

Me.orderIDField = value
End Set

End Property

...

Public Property ShippedDate() As Nullable(Of Date)
Get

Return Me.shippedDateField
End Get
Set(ByVal value As Nullable(Of Date))

‘Convert default null date value to null
If value.HasValue Then

If value.ToString = “1/1/0001 12:00:00 AM” Then
Me.shippedDateField = Nothing

Else
Me.shippedDateField = value

End If

337

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 337

Else
Me.shippedDateField = value

End If
End Set

End Property

...

Public Property ShipCountry() As String
Get

Return Me.shipCountryField
End Get
Set(ByVal value As String)

Me.shipCountryField = value
End Set

End Property
End Class

The GetOrders method, which the section “Match Method Signatures and Parameter Lists” later in this
chapter describes, casts single or multiple Order instances to an ArrayList.

The shippedDateField’s business logic is required to handle null date values expressed as
1/1/0001 12:00:00 AM.

Here’s the full definition of the OrderDetail object:

Public Class OrderDetail
Private orderIDField As Integer
Private productIDField As Integer
Private unitPriceField As Decimal
Private quantityField As Short
Private discountField As Decimal

Public Property OrderID() As Integer
Get

Return Me.orderIDField
End Get
Set(ByVal value As Integer)

Me.orderIDField = value
End Set

End Property

Public Property ProductID() As Integer
Get

Return Me.productIDField
End Get
Set(ByVal value As Integer)

Me.productIDField = value
End Set

End Property

Public Property UnitPrice() As Decimal
Get

Return Me.unitPriceField

338

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 338

End Get
Set(ByVal value As Decimal)

Me.unitPriceField = value
End Set

End Property

Public Property Quantity() As Short
Get

Return Me.quantityField
End Get
Set(ByVal value As Short)

Me.quantityField = value
End Set

End Property

Public Property Discount() As Decimal
Get

Return Me.discountField
End Get
Set(ByVal value As Decimal)

Me.discountField = value
End Set

End Property
End Class

The OrderDetails object is an array of OrderDetail objects, which the GetDetails method casts to
an ArrayList.

Repurpose Pages to Display Business Objects
Preceding ObjectDataSource examples use copies of GridView and DetailsView pages created from
SqlDataSources; page copies reduce design effort greatly. Basing new GridViews and DetailsViews
on ObjectDataSources bound to custom business objects requires autogenerating columns or fields.
Autogeneration results in a random column or field sequence because reflection doesn’t respect the
order of the object’s public properties. Reordering the columns or fields requires opening the Fields
dialog, clearing the Autogenerate Fields checkbox, adding a default BoundField for each object field,
typing the HeaderText and DataField property values, and setting optional property values, such
as DataFormatString. (Reflection doesn’t populate the DataField list.) The TestGridViewBE.aspx
page of this section’s sample project is a partially completed version of this tedious process.
TestDetailsViewBE.aspx is an example of a DetailsView with autogenerated fields.

You have the following two choices when you add an existing page with a GridView or DetailsView and
then add or reconfigure an ObjectDataSource to a custom business object:

❑ Refresh the fields and keys for the control. This choice preserves GridView and DetailsView
formatting, but autogenerates fields and deletes all templates and validator controls. You must
re-create or copy and paste the templates and validator controls you added.

❑ Preserve the original control, templates, and validators. If your added GridView or DetailsView
includes a DataKeyNames property value, which most do, the page designer displays an error
placeholder instead of the design view of the control. To display the control in Design mode, you
must clear the DataKeyNames text box.

339

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 339

Although the designer won’t display the control, read-only bound controls — such as the GridView of
the LinkedGridView.aspx page — render and operate as expected. Read-only controls don’t require
DataKeyNames to identify primary key field(s).

To test a templated DetailsView that has validator controls with a custom business object, do the following:

1. Add the ValidatedDetailsView.aspx page to the NWOrdersBE project.

2. Add an ObjectDataSource from the toolbox adjacent to the dsNWOrdersDetails SqlDataSource
control, set the object name to OrdersBE, the SELECT method to GetAllOrders(), the UPDATE
method to UpdateOrder(), and the INSERT method to InsertOrder().

3. Click No in the message box that opens when you click Finish.

4. Change the ObjectDataSource’s ID property value to odsNWOrders, and set dvOrders’
DataSource to odsNWOrders.

5. Set ValidatedDetailsView.aspx as the start page.

6. Build and run the project, and then edit and add a few new orders.

The page’s behavior is identical to that for the SqlDataSource, except that adding a new order also adds
a default OrderDetails item.

Add an ObjectDataSource adjacent to the dsNWOrderDetailsFiltered SqlDataSource, and repeat
the preceding process, except as follows: Select GetDetailsByOrderID() as the Select method,
UpdateDetail() as the Update method, and DeleteDetail() as the Delete method. Set the OrderID
parameter to dvOrders.SelectedValue, change the two DataSources to odsNWOrderDetailsFiltered,
and enable deletions. Edits work as expected, but deletions throw an error similar to that described in
the preceding note.

Finally, repeat the preceding process for dvOrderDetails, but add InsertDetails() as the Insert
method, and change the DataSource to odsNWOrderDetails. In this case, only the Insert method
works as expected. Updates and deletions fail with mismatched method signatures.

The two GridViews on the LinkedDetailsViewBE.aspx page have the fixes described in the following
sections applied.

Match Method Signatures and Parameter Lists
Read-write GridViews with Update and Delete methods, and DetailsViews with Update, Insert, and
Delete methods usually require at least one modification to prevent errors from mismatched parameters
and method signatures. The following sections describe how to fix the errors described in the preceding
section and problems you might encounter when assigning parameter values from objects with fields of
the Nullable(Of TypeName) data type.

Clearing the DataKeyNames property value prevents parameterized GridViews and
DetailsViews from returning original_FieldName parameters. If you clear the
values, retype them before performing the following procedures.

340

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 340

Solve the Order and OrderDetail Deletion Errors
Following is the code for the DeleteOrder function, which has a simple original_OrderID Integer
value as its signature:

Public Function DeleteOrder(ByVal original_OrderID As Integer) As Integer
‘Delete the records directly
Dim cnNwind As New SqlConnection(strConn)
Dim cmOrder As SqlCommand = Nothing
Try

‘Delete Order Details and Orders records
Dim strSQL As String = “DELETE FROM [Order Details] “ + _
“WHERE OrderID = “ + original_OrderID.ToString + _
“; DELETE FROM Orders WHERE OrderID = “ + original_OrderID.ToString

cmOrder = New SqlCommand(strSQL, cnNwind)
cnNwind.Open()
Return cmOrder.ExecuteNonQuery()

Catch exc As Exception
‘Client handles the exception
Throw exc

Finally
cnNwind.Close()
cmOrder.Dispose()
cnNwind.Dispose()

End Try
End Function

You could alter the signature to match the original_original_OrderID and original_OrderID
parameters, but doing this isn’t productive and probably would confuse anyone examining your code.

GridViews and DetailsViews that have DataKeyNames property values automatically generate an
original_DataKeyName parameter for each primary key field name when these controls invoke
Update and Delete methods. The extra original_original_OrderID parameter is an artifact
generated from the original_OrderID parameter of the DeleteOrders function. To solve the
mismatch, open the odsNWOrders’ properties window, click the DeleteParameters property builder
button, and delete the original_OrderID parameter. Deletions then behave as expected.

The DeleteDetail function’s signature is:

Public Function DeleteDetail(ByVal original_OrderID As Integer, _
ByVal original_ProductID As Integer) As Integer

Thus, deleting the original_OrderID and original_ProductID parameters from the
DeleteParameters collections of odsNWOrderDetailsFiltered and odsNWOrderDetailsView
solves the OrderDetail deletion problem of both controls.

341

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 341

Fix the OrderDetail Update Errors
The UpdateDetail function’s signature is:

Public Function UpdateDetail(_
ByVal OrderID As Integer, ByVal ProductID As Integer, _
ByVal UnitPrice As Decimal, ByVal Quantity As Short, _
ByVal Discount As Decimal, ByVal original_OrderID As Integer, _
ByVal original_ProductID As Integer) As Integer

Making the same change to the GridView’s UpdateParameters collection works as expected, but
doing the same for the DetailsView’s UpdateParameters collection throws an “ObjectDataSource
‘odsNWOrderDetailsView’ could not find a method ‘UpdateDetail’ that has parameters: UnitPrice,
Quantity, Discount, ProductID, original_OrderID, original_ProductID” error.

Fields included in the DetailsView’s UpdateParameters collection and the DataKeyNames property
value don’t return values if the fields’ ReadOnly property value is True— the default for primary-key
members. To work around this issue, which is specific to DetailsViews with composite primary keys,
you must set each primary key field’s ReadOnly property value to False. Doing this permits users to
change the OrderID value when performing an update, but you can add a custom exception for this
case to your Update wrapper method.

Following is the final source code for the dvDetails DetailsView’s ObjectDataSource:

<asp:ObjectDataSource ID=”odsNWOrderDetailsView” Runat=”server” TypeName=”OrdersBE”
SelectMethod=”GetDetailsByOrderID” DeleteMethod=”DeleteDetail”
InsertMethod=”InsertDetail” UpdateMethod=”UpdateDetail”>
<UpdateParameters>

<asp:Parameter Type=”Int32” Name=”OrderID”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”ProductID”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”UnitPrice”></asp:Parameter>
<asp:Parameter Type=”Int16” Name=”Quantity”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”Discount”></asp:Parameter>

</UpdateParameters>
<SelectParameters>

<asp:ControlParameter Name=”OrderID” Type=”Int32” ControlID=”dvOrders”
PropertyName=”SelectedValue”></asp:ControlParameter>

</SelectParameters>
<InsertParameters>

<asp:Parameter Type=”Int32” Name=”OrderID”></asp:Parameter>
<asp:Parameter Type=”Int32” Name=”ProductID”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”UnitPrice”></asp:Parameter>
<asp:Parameter Type=”Int16” Name=”Quantity”></asp:Parameter>
<asp:Parameter Type=”Decimal” Name=”Discount”></asp:Parameter>

</InsertParameters>
</asp:ObjectDataSource>

All pages of this chapter’s examples that include OrderDetail DetailsViews have ProductID fields with
the ReadOnly property value set to False, which permits users to change the ProductID value in an
update operation. The alternative is to require users to delete and then add a new OrderDetail item with
a different ProductID, which is a more common business practice.

342

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 342

Explore the Select, Update, Insert, and Delete Wrapper Functions
The OrdersBEMethods.vb file’s four wrapper functions for each object consist of 640 lines of code and
are far too lengthy to reprint here in their entirety. The Get... functions emulate several GetOrder(s)
and GetDetails overloads that return ArrayLists of all, TOP n, or a specific customer’s Order and
OrderDetail objects or a particular Order and its OrderDetail objects. The UpdateOrder and
InsertOrder functions implement parameterized or dynamically generated SQL statements.
UpdateDetails and InsertDetails use parameterized SQL statements. The parameterized SQL
statements simplify the conversion of the project’s production version to stored procedures.

The Order object’s ShippedDate field — shown in the section “Define the Business Objects,” earlier in
this chapter — has a Nullable(Of Date) data type to accommodate null ShippedDate values. Setting a
parameter value from a Nullable(Of DataType) property requires casting to the value data type, as
shown in the following snippet from the InsertOrder and InsertDetail functions:

prmUpdate = New SqlParameter(“@ShippedDate”, SqlDbType.DateTime)
If ordUpdate.ShippedDate.HasValue Then

prmUpdate.Value = CType(ordUpdate.ShippedDate, Date)
Else

prmUpdate.Value = Convert.DBNull
End If
.Add(prmUpdate)

If you don’t cast to the value data type —Date for this example — assigning a Nullable(Of Date)
value to the parameter throws “Failed to convert parameter value from a Nullable`1 to a DateTime” and
“Object must implement IConvertible” exceptions.

Don’t assign Nullable(Of DataType) types to Update or Insert method arguments. Doing this
causes the ObjectDataSource’s method calls to fail.

Read XML Files with the XmlDataSource
The XmlDataSource control enables one-way databinding to tabular or hierarchical XML document
files or strings. You can bind element-centric or attribute-centric tabular documents to templated
DataGrid, DataList, DetailsView, and Repeater controls by substituting XPath(“ColumnPath”) for
Bind(“ColumnName”) as the binding code. The most common control for displaying hierarchical
documents is the TreeView control. TreeViews require documents whose elements include an attribute to
display element values. XmlDataSources let you specify a custom XSLT file to transform conventional
element-centric documents to the special TreeView format.

The NWOrdersXML Web site in the \VB2005DB\Chapter08\NWOrdersXML folder has pages that
demonstrate populating DataGrid, Repeater, and TreeView controls from sample XML documents.

343

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 343

Create XmlDataSources from XML Documents
The following sections’ examples use two XML source documents in the NWOrderXML Web site’s
App_Data folder — Orders.xml and OrdersAttrib.xml.

Orders.xml is based on Chapter 5’s Output.xml examples and has the following structure for 18 Orders
groups:

<?xml version=”1.0” standalone=”yes”?>
<Northwind>

<Orders>
<OrderID>11077</OrderID>
<CustomerID>RATTC</CustomerID>
<EmployeeID>2</EmployeeID>
<OrderDate>1998-05-06</OrderDate>
<RequiredDate>1998-06-03</RequiredDate>
<ShippedDate>1998-05-15</ShippedDate>
<ShipVia>1</ShipVia>
<Freight>88.53</Freight>
<ShipName>Rattlesnake Canyon Grocery</ShipName>
<ShipAddress>2817 Milton Dr.</ShipAddress>
<ShipCity>Albuquerque</ShipCity>
<ShipRegion>NM</ShipRegion>
<ShipPostalCode>87110</ShipPostalCode>
<ShipCountry>USA</ShipCountry>

</Orders>
...

</Northwind>

To create an XmlDataSource from the Orders.xml file, drag a GridView, DetailsView, DataList, or
Repeater control to the page, select New Data Source to open the Data Source Configuration dialog,
select XML File, assign the data source an appropriate ID property value, and click OK to open
the Configure Data Source dialog. Alternatively, drag an XmlDataSource from the Toolbox, and click
Configure Data Source.

Type the path and file name for the source XML document in the Data File text box, or click Browse and
select the document. If you have a schema for the source document, you can specify it in the Schema File
text box, but the XmlDataSource control ignores it. Specify the path and file name of the XSLT file, if you
need one, in the Transform File text box. You can reduce the length of XPath binding statements or filter
the source document by typing the appropriate XPath expression in the last text box. As an example,
specifying Northwind/Orders returns all Orders elements of Orders.xml (see Figure 8-14).

344

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 344

Figure 8-14

Following is the structure of the OrdersAttrib.xml source document for populating a TreeView control
with 18 Order nodes:

<?xml version=”1.0” standalone=”yes”?>
<Orders>

<Order>
<OrderID id=”11077” />
<CustomerID id=”RATTC” />
<EmployeeID id=”2” />
<OrderDate date=”1998-05-06T00:00:00.0000000-07:00” />
<RequiredDate date=”1998-06-03T00:00:00.0000000-07:00” />
<ShippedDate date=”1998-06-03T00:00:00.0000000-07:00” />
<ShipVia id=”1” />
<Freight amount=”88.5300” />
<ShipName value=”Rattlesnake Canyon Grocery” />
<ShipAddress value=”2817 Milton Dr.” />
<ShipCity value=”Albuquerque” />
<ShipRegion value=”NM” />
<ShipPostalCode value=”87110” />
<ShipCountry value=”USA” />

</Order>
</Orders>

Configuring an XmlDataSource control with OrdersAttrib.xml as the source document is similar to the
preceding example. In this case, specify Orders/Order as the XPath Expression.

Although XmlDataSources are inherently read-only, you can gain access to the underlying XML
document by assigning it to an XmlDocument object with the GetXmlDocument method in the Load
event handler for the XmlDataSource. You must write code to alter the in-memory document’s structure
or data values, and then save the modified document to another XML file.

345

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 345

Populate a GridView with Orders.xml
Complex databound controls, such as GridViews, require an ItemTemplate for each column to permit
changing the Custom Binding option’s Code Expression. When you assign an XmlDataSource to a
templated GridView, DetailsView, or DataList control in Design mode, you receive this or a similar error
message: “The data source for GridView with id ‘GridView1’ did not have any properties or attributes
from which to generate columns.” The exception results from an attempt to autogenerate columns with
Bind expressions.

To solve this problem, open the Fields dialog, clear the Autogenerate Columns checkbox, and, for each
column you want to display, add a BoundField, type HeaderText and DataField property values, and
convert the field to an ItemTemplate field. Open each field’s ItemTemplate and its LabelID Binding
dialog, and change Bind to XPath, if you specified in the Configure Data Source dialog the XPath
expression that points to the appropriate level in your document’s element hierarchy. If not, you must
type the full XPath expression for the element (or attribute) name in the Code Expression text box.

When you complete the process, the error message disappears and your GridView appears as expected
in Design mode and in IE when you build and run the page (see Figure 8-15). GridViews and
DetailsViews support selection only; server-side paging and editing aren’t supported.

Figure 8-15

346

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 346

Design a Repeater Control with an XmlDataSource
Repeater controls don’t have a designer, so you must add the code for child controls and their databinding
in Source mode. Repeaters offer the advantage of flexible display formatting but don’t enable paging. The
following code creates a repeating two-column table that displays all Orders.xml elements:

<asp:Repeater ID=”rptOrders” Runat=”server” DataSourceID=”xdsOrders”>
<HeaderTemplate>

<table cellpadding=”1” cellspacing=”3” border=”0”>
</HeaderTemplate>
<ItemTemplate>

<tr>
<td>OrderID:</td><td><%#XPath(“OrderID”)%></td>
<td>CustomerID:</td><td><%#XPath(“CustomerID”)%></td>

</tr>
<tr>

<td>EmployeeID:</td><td><%#XPath(“EmployeeID”)%></td>
<td>OrderDate:</td><td><%#XPath(“OrderDate”)%></td>

</tr>
<tr>

<td>RequiredDate:</td><td><%#XPath(“RequiredDate”)%></td>
<td>ShippedDate:</td><td><%#XPath(“ShippedDate”)%></td>

</tr>
<tr>

<td>ShipVia:</td><td><%#XPath(“ShipVia”)%></td>
<td>Freight:</td><td><%$#XPath(“Freight”)%></td>

</tr>
<tr>

<td>ShipName:</td><td><%#XPath(“ShipName”)%></td>
<td>ShipAddress:</td><td><%#XPath(“ShipAddress”)%></td>

</tr>
<tr>

<td>ShipCity:</td><td><%#XPath(“ShipCity”)%></td>
<td>ShipRegion:</td><td><%#XPath(“ShipRegion”)%></td>

</tr>
<tr>

<td>ShipPostalCode:</td><td><%#XPath(“ShipPostalCode”)%></td>
<td>ShipCountry:</td><td><%#XPath(“ShipCountry”)%></td>

</tr>
</ItemTemplate>
<SeparatorTemplate>

<td height=”1” bgcolor=”black”><td height=”1” bgcolor=”black”>
<td height=”1” bgcolor=”black”><td height=”1” bgcolor=”black”>

</SeparatorTemplate>
<FooterTemplate>

</table>
</FooterTemplate>
</asp:Repeater>
<asp:XmlDataSource ID=”xdsOrders” Runat=”server” DataFile=”~/App_Data/Orders.xml”

SchemaFile=”~/Data/Orders.xsd” XPath=”Northwind/Orders”>
</asp:XmlDataSource>

Configuring the XmlDataSource control adds the emphasized code in the preceding listing.

347

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 347

Figure 8-16 shows the Repeater control generated by the preceding source code.

Figure 8-16

Fill a TreeView with Tabular Data
TreeViews provide a TreeView DataBindings Editor for XmlDataSources that have source documents
with the appropriate structure. When you specify the XmlDataSource for a TreeView control with
autogenerated nodes, element names, rather than values, appear in Design mode and when you run
the page. You use the TreeView DataBindings Editor to specify the attribute name that replaces the ele-
ment’s name with the value. Open the Editor by right-clicking the TreeView and choosing Edit TreeView
Databindings.

You must add each element (column) to the Selected Data Bindings list and select the associated
attribute name from the TextField dropdown list to provide the value. Optionally, add a prefix to the
value with a FormatString (see Figure 8-17).

Unfortunately, the TreeView’s FormatString property doesn’t support standard formats, such as
{0:d} for dates and {0:c2} for currency.

348

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 348

Figure 8-17

Here’s the source code for the TreeView with the databindings shown in Figure 8-17:

<asp:TreeView ID=”tvOrders” Runat=”server” Font-Names=”Verdana”
DataSourceID=”xdsOrdersTV”
Font-Size=”10pt” AutoGenerateDataBindings=”False” ExpandDepth=”0”
Width=”346px” Height=”367px” BorderStyle=”Solid” BorderWidth=”1px”>
<DataBindings>

<asp:TreeNodeBinding DataMember=”Order” Value=”Order” Text=”Order”>
</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”id” DataMember=”OrderID”>

FormatString=”Order ID: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”id” DataMember=”CustomerID”>

FormatString=”Customer ID: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”id” DataMember=”EmployeeID”>

FormatString=”Employee ID: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”date” DataMember=”OrderDate”>

FormatString=”Order Date: {0:d}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”date” DataMember=”RequiredDate”>

FormatString=”Required Date: {0:d }”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”date” DataMember=”ShippedDate”>

FormatString=”Shipped Date: {0:d }”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”id” DataMember=”ShipVia”>

FormatString=”Ship Via: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”amount” DataMember=”Freight”>

FormatString=”Freight: {0:c2}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”value” DataMember=”ShipName”>

FormatString=”Ship Name: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”value” DataMember=”ShipAddress”>

FormatString=”Ship Address: {0}”</asp:TreeNodeBinding>
<asp:TreeNodeBinding TextField=”value” DataMember=”ShipCity”>

FormatString=”Ship City: {0}”</asp:TreeNodeBinding>

349

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 349

<asp:TreeNodeBinding TextField=”value” DataMember=”ShipRegion”>
FormatString=”Ship Region: {0}”</asp:TreeNodeBinding>

<asp:TreeNodeBinding TextField=”value” DataMember=”ShipPostalCode”>
FormatString=”Ship Postal Code: {0}”</asp:TreeNodeBinding>

<asp:TreeNodeBinding TextField=”value” DataMember=”ShipCountry”>
FormatString=”Ship Country: {0}”</asp:TreeNodeBinding>

</DataBindings>
<LeafNodeStyle ForeColor=”Black”></LeafNodeStyle>
<HoverNodeStyle ForeColor=”Red”></HoverNodeStyle>

</asp:TreeView>
<asp:XmlDataSource ID=”xdsOrdersTV” Runat=”server”

DataFile=”~/App_Data/OrdersAttrib.xml” XPath=”/Orders/Order”>
</asp:XmlDataSource></td>

Figure 8-18 shows the TreeView generated by the preceding code with one node expanded.

Figure 8-18

Clicking a leaf node performs a postback with the name of the control and the value, including the
FormatString prefix, as the __doPostBack function argument. For example, clicking the OrderID
node returns __doPostBack(‘tvOrders’,’sOrder’,’Order ID: 11077’).

350

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 350

Trace Web Pages to Compare DataSource
Performance

The OrdersTreeView.aspx page described in the preceding section takes about 0.75 second to display the
entire page in IE when you run it for the first time on a fast machine with the built-in Web server. The delay
occurs in the PreRender and Render events. The OrdersGridView.aspx and OrdersRepeater.aspx pages dis-
play almost instantaneously. An <%@ OutputCache Duration=”60” VaryByParam=”none” %> directive
ensures that the built-in Web server caches the three pages.

Your results probably will differ, depending on computer performance and system configuration. This
section’s data is based on a 2.33 GHz Pentium 4 computer with 1GB RAM running Windows Server
2003. The delay is an artifact of running the project in debugging mode. You can eliminate the delay by
pressing Ctrl+F5 to run the project without debugging.

If you want to find the reason for the TreeView’s debugging performance hit, enable ASP.NET tracing of
the page by adding Trace=”True” TraceMode=”SortByTime” to the <%@ Page... directive. Page-level
tracing is enabled for the three pages of the NWOrdersXML Web site. The most important trace sections for
performance analysis are Trace Information and Control Tree. Trace Information’s End Render item reports
the total time required by the Web server to deliver the cached page, which is about 50 milliseconds. Thus
the initial section appears immediately. Control Tree reports the number of bytes required to
render the page and its controls. The total size of the page is 210,170 bytes, of which the TreeView form
contributes 209,599 bytes, including the control’s viewstate (see Figure 8-19).

Figure 8-19 351

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 351

Compare the render size of the TreeView control with that of the GridView (9,256 bytes) and the
Repeater (24,533 bytes). The comparison indicates that the extraordinary size of the TreeView control is
responsible for the performance hit when debugging.

You can reduce the size of the TreeView by about 30KB and improve performance a bit by removing the
<HoverNodeStyle ForeColor=”Red”></HoverNodeStyle>setting. Setting HoverStyleNode property
values adds onmouseover=”TreeView_HoverNode(tvOrders_Data, this, ‘’, ‘none’)”
onmouseout=”TreeView_UnhoverNode(this)”><a class=”aspnet_s1 aspnet_s2 “
href=”javascript:__doPostBack(‘tvOrders’,’sOrder’)” onclick=”TreeView_
SelectNode(tvOrders_Data, this,’tvOrderst0’);” to each of the TreeView’s 270 rows.

If you want to save multiple traces for all your application’s pages, add the following line to the
<system.web> section of your Web.config file:

<trace enabled=”true” traceMode=”SortByTime” requestLimit=”20”
mostRecent=”true” localOnly=”true” pageOutput=”true”/>

To view the saved traces with the Web server’s built-in trace viewer, replace the URL’s PageName.aspx
with Trace.axd, as shown in Figure 8-20. Click a View Details link to display a trace page similar to
Figure 8-19.

Figure 8-20

352

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 352

WebResource.axd is a new ASP.NET 2.0 handler for resources that are embedded in an assembly. The
Page.GetWebResourceUrl(Type, strResourceId) method returns the resource’s URL.

Deploy Completed Web Sites to IIS
After you complete the design and testing of a production VS 2005 Web site with the built-in Web server,
you must deploy the application to an IIS 5 or 6 virtual directory to make it accessible to users. The
Website and Build menus offer two deployment choices — Website ➪ Copy Web Site and Build ➪ Publish
WebsitePath. Copy Web Site simply copies all files from your development folder to the folder designated
for the virtual directory. Publish WebsitePath precompiles the Web site’s pages and copies files other than
page source files to the virtual directory. Precompiling the source code eliminates the compilation delay
experienced by the first user who opens a page. Publishing the site also removes the source code, which
improves application security.

If your production project includes a class library with a debug symbol file (ClassName.pdb), compile
the class library in Release configuration before deploying your application. Remove the class library
files from the \bin folder and add a reference to the Release version of the class library DLL.
Configuration Manager doesn’t offer a Release configuration option for Web sites.

Create a Virtual Directory for Your Site
To create an IIS virtual directory on your development computer, do the following:

1. Create a folder to store the virtual directory’s files. For this example, create a subfolder of
\Inetpub\wwwroot named NWOrdersXMLCopy.

2. Open the Internet Information Services (IIS) Manager, expand the COMPUTER-NAME (Local
Computer) and Web Sites node, right-click the Default Web Site node, and choose New ➪

Virtual Directory to start the Virtual Directory Creation Wizard. Click Next.

3. Specify the name of the virtual directory —NWOrdersXMLCopy for this example — in the Alias
text box, and click Next.

4. Click Browse, navigate to the folder you created in Step 1, and click Next.

5. Accept the default Read permission, mark the Run Scripts permission checkbox, and click Next
and Finish to dismiss the wizard.

6. If your Web site doesn’t have a Default.aspx page, right-click the site’s node, choose Properties,
click the SiteName Properties dialog’s Documents tab, and remove the existing entries from the
list box.

7. Click Add to open the Add Content Page dialog; type the default page file name —
OrdersGridView.aspx for this example — in the text box, and click OK twice.

If you’ve enabled page tracing and leave the existing default entries in the Documents list box, a tracing
page opens if you don’t include the initial page’s file name in the site’s URL.

Accepting the default values for the virtual directory enables Windows authentication. If anonymous
access is enabled for the Default Web site, anonymous access is enabled for all virtual directories under
the node.

353

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 353

Copy a Web Site to a Virtual Directory Folder
Copying the Web site to a virtual directory lets you open and modify the deployed project in VS 2005. To
copy a completed Web site to the virtual directory that you created in the preceding section, do this:

1. Choose Website ➪ Copy Web Site to open the Copy Web ProjectDirectoryPath window, which
displays your current Web site files in the Source Web Site list.

2. Click the Connect button to open the Open Web Site dialog. Then click the Local IIS button,
select the virtual directory you added in the preceding section, and click Open.

3. Select all files and folders in the Source Web Site list, and click the button with the right-point-
ing arrow to copy all project source files to the virtual directory (see Figure 8-21).

Figure 8-21

354

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 354

4. Open IE and type http://localhost/virtualdirectory name/ or http://computername
/virtualdirectory name/ to display the default page. For this example, type http://
localhost/NWOrdersXMLCopy/.

5. Choose File ➪ Open Web Site to open the dialog of the same name. Click the Local IIS button,
and double-click the virtual directory name to open the Web site from the virtual directory
folder. Solution Explorer’s project name node now displays the virtual server URL.

6. Open the Web.config file, and change <compilation debug=”true”/> to <compilation
debug=”false”/>, which removes the debugging symbols from the temporary files and
improves performance slightly.

7. Open each page and change Trace=”True” to Trace=”False” so page-level tracing informa-
tion doesn’t appear. If you’ve enabled application-level tracing, change pageOutput=”true” in
Web.config to pageOutput=”false”. The localOnly=”true” attribute prevents users from
opening Trace.axd.

8. Build and run the project under IIS, which replaces the built-in Web server. Select the Run with-
out Debugging option in the Debugging Not Enabled dialog, and click OK.

9. Repeat Step 4 and try to determine the difference in performance without debugging.

You can copy a Web site to any remote IIS server virtual directory for which you have write permis-
sions. Alternatively, you can use FTP to upload the Web site to a hosting provider that supports
ASP.NET 2.0 sites.

Publish Precompiled Web Sites
As mentioned earlier, precompiling a Web site substitutes compiled source code files for PageName.aspx
files. To publish the NWOrdersXML Web site to IIS 5 or 6, do the following:

1. Create an \Inetpub\wwwroot subfolder named NWOrdersXML and a virtual directory of the
same name that points to the subfolder. Set OrdersGridView.aspx as the only default page.

2. Open the \VB2005DB\Chapter08\NWOrdersXML Web site, and, if you specified page-level or
application-level tracing, make the changes to the pages and Web.config file that are described
in the preceding section’s Step 7.

3. Choose Build ➪ Publish Web Site to open the Publish Web Site dialog. Type in the text box the
URL of the virtual directory you created in Step 1, http://localhost/NWOrdersXML, and
accept the remaining defaults (see Figure 8-22).

355

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 355

Figure 8-22

4. Click OK. The Build window displays a series of Found Schema messages, followed by Publish
Web Site Beginning and Publish Web Site Complete.

5. Choose File ➪ Open Web Site, and navigate to the virtual directory folder. Disable debugging in
the Web.config file, and open one of the PageName.aspx files to display the placeholder text
message.

6. Open the \bin subfolder to view the list of precompiled files. The Random.dll is the compiled
assembly; *.compiled files are XML documents that contain references to the original
PageFile.aspx files.

7. Launch IE and open the virtual directory to confirm your default page setting.

8. If you enabled application-level tracing, add trace.xsd to the virtual directory, and verify that
tracing is operational for users on the computer hosting IIS.

Copied or precompiled Web sites play an important role in ASP.NET 2.0 Web services, which is the
subject of the next chapter.

Summary
Client-side data entry validation is critical to the performance and scalability of production Web sites.
Validating all user entries — to the extent possible — before submitting them to the Web server mini-
mizes server roundtrips and, for databound controls, database server exceptions. ASP.NET validator
controls aren’t as elegant as the validation techniques available for Windows forms, but they are likely
to suffice for simple data-intensive Web sites. If you need finer-grained or more complex client-side
validation, add CustomValidator controls with JScript or — for IE-only organizations — VBScript valida-
tion functions.

356

Chapter 8

14_57678x ch08.qxd 11/10/05 11:22 PM Page 356

SqlDataSources, like their Windows-form SqlClient or OracleClient counterparts, implement conventional
client/server application architecture. ObjectDataSources based on objects other than data components
enable n-tier architecture with middle-tier business logic for data-intensive Web pages. You can create
middle-tier DALCs that deliver typed DataTables to Web clients, but adding business logic to typed
DataSets can involve complex code. Alternatively, you can gain table metadata independence with custom
business objects that you define in project class files or compiled class libraries. Custom business objects
let you implement business rules in the object class definition; Update, Insert, and Delete wrapper
functions; or any combination of these locations.

XmlDataSources rely on XML source documents or strings and are inherently read-only. Complex
databound controls, such as templated GridViews and DetailsViews, don’t support editing operations
when bound to XmlDataSources. Thus, XmlDataSources probably won’t be as widely used as
SqlDataSources and ObjectDataSources.

ASP.NET 2.0 tracing features haven’t changed substantially from those offered by ASP.NET 1.x.
However, tracing Web server activity and analyzing control rendering is critical to page debugging and
site debottlenecking.

Adoption of a new ASP.NET 2.0 UI and built-in Web server required VS 2005 to enable updated Web site
deployment techniques. The automated Copy Web Site and Publish WebsitePath commands make
moving a site from the development or staging computer’s file system to a remote IIS 5 or 6 instance a
point-and-click process. The ability to quickly copy or publish ASP.NET 2.0 Web services to production
servers is an important feature, as you’ll discover in the next chapter.

357

Applying Advanced ASP.NET 2.0 Data Techniques

14_57678x ch08.qxd 11/10/05 11:22 PM Page 357

14_57678x ch08.qxd 11/10/05 11:22 PM Page 358

Publishing Data-Driven
Web Services

The February 13, 2002, release of Visual Studio .NET coincided with a remarkable surge in
press coverage of Web services as the latest “big thing” for the IT industry. Press releases,
such as “Microsoft Launches XML Web Services Revolution with Visual Studio .NET and .NET
Framework” and “Microsoft Extends XML Web Services Support in .NET Enterprise Servers
Through Visual Studio .NET,” led many readers to believe that VS 2002 (then VS .NET) was a new
toolkit for creating Web services only. Simple Object Access Protocol (SOAP) 1.1, which is the
foundation for the majority of today’s Web services, was — and still is — a W3C Note dated May 8,
2000. Another W3C Note, Web Services Description Language (WSDL) 1.1, arrived on March 15,
2001. Industry pundits predicted a multi-billion-dollar hardware, software, and consulting market
for Web services. Research firm IDC predicted in 2002 that this market would grow from $1.6
billion in 2004 to $21 billion in North America by 2007, with worldwide revenues over ten years
reaching $184 billion.

As the Web services “bubble” deflated in the succeeding three years, Microsoft dropped the .NET
suffix from its server products and Visual Studio, and is in the process of abandoning the XML pre-
fix for ASP.NET Web services. Analysts reduced their Web service market estimates in reports typi-
fied by IDC’s June 1, 2004, “Worldwide Web Services Software Forecast, 2004–2008: Cautious
Adoption Continues.” SOAP 1.2 became a W3C Recommendation on June 24, 2003. WSDL 2.0 was a
second-edition W3C Working Draft when this book was written. The advance of SOAP and WSDL
specifications from W3C Note to Recommendation and near-final Working Draft status removes the
“proprietary” stigma from the early Web service standards. Stable industry-wide standards promise
interoperability of Web services created with an increasing variety of development tools. There’s no
question that Web services will become the predominate enterprise application integration (EAI)
technology by 2007 — or sooner.

ASP.NET 2.0 Web services support SOAP 1.1 and 1.2 with WSDL 1.1. VS 2005’s Add Web Reference
designer, built-in Web server, and copy or publish deployment simplify basic Web service develop-
ment and debugging. These features ensure that VS 2005 will enhance Visual Studio’s reputation as
the most rapid Web service development tool in the industry. WS-Security, an OASIS standard, and

15_57678x ch09.qxd 11/10/05 11:23 PM Page 359

the proliferation of other proposed WS-* specifications address industry concerns about the suitability of
Web services for enterprise-scale projects. Microsoft’s Web Service Enhancements (WSE) 3.0 address — but
don’t overcome — the complexity of encrypting and adding digital signatures to SOAP payloads. WSE 3.0
also supports WS-Policy, WS-SecurityPolicy, WS-Trust, WS-ReliableMessaging, WS-SecureConversation,
and WS-Addressing. Adding WSE 3.0 extensions to Web services and client consumers is beyond the
scope of this book.

VS 2005 requires WSE 3.0 and doesn’t support WSE 2.0. You can install WSE 3.0 side-by-side with
WSE 2.0.

This chapter assumes you have a basic understanding of SOAP 1.1 messaging and WSDL 1.1 documents.
The sample Web services and clients perform CRUD operations on database tables, either directly or
through an intermediary typed DataSet object that serves as a data access layer component (DALC).
When this book was written, DataSets weren’t interoperable with non-Microsoft Web service consumers
(clients), so the examples include a generic business object (business entity) Web service and client.

Sample projects in the \VB2005DB\Chapter09 folder are based on the ObjectDataSources you created
in Chapter 8’s “Replace SqlDataSources with ObjectDataSources” section and have the same
Northwind database prerequisites.

Web Service Development Strategies
ASP.NET Web services are the simplest method for implementing the middle tier of a three-tiered,
distributed data access architecture. Wrapping an existing DALC as a basic Web service usually
involves only a few hours of development and initial test time. You add a <WebMethod> attribute to the
existing functions that return, update, insert, or delete base table records. Exception handlers throw a
SoapException, instead of an SqlException or other .NET exception type. Simplicity, however, has
its drawbacks; Web services don’t match the performance of DCOM or .NET remoting with binary
formatting over a TCP channel on a private intranet. On the other hand, the stateless and loosely
coupled nature of Web services enables data transport with the HTTP or HTTPS protocol over private
intranets and the public Internet.

Transactions
Statelessness and loose-coupling often preclude conventional single-database or distributed transactions.
Transactions may involve interaction with multiple Web services, some of which might be operated by
third parties, exhibit variable response times, and have less than 100 percent uptime. Such operations are
called long-running transactions. If an update requires multiple SOAP messages and one or more messages
fail, you must undo the work performed by the messages that succeeded by performing a compensating
transaction. Compensating transactions are very difficult to implement and require transaction state
management on the Web service — not the database — server. If you require updates to multiple related
tables, your Web service should execute the set of updates with a single SOAP request message and report
the transaction commit or rollback status in the SOAP response message.

360

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 360

DataSets
DataSets make it easy to create Web services that update multiple tables with a single request response
message. The Web service returns a multi-table DataSet and accepts a diffgram of client edits to update the
base tables. Bound controls let Windows form clients update many base table records with a single SOAP
request and response message. You can implement transactions with SqlConnection.Transaction or
System.Transaction objects and DataAdapters. Alternatively, implement the techniques described in
Chapter 6 in the section “Apply Transactions to Base-Table Updates.”

The downside of DataSets is that they’re a .NET-specific data type. As mentioned previously, today’s
Java Web service toolkits don’t create client proxies to support these .NET objects. ADO.NET 2.0 typed
and untyped DataSets don’t include their schema in the WSDL document, as you’ll see in the later
“Create and Deploy a Simple Web Service” section. Thus, Web service client toolkits would need to
obtain the DataSet schema from a WebMethod that returns DataSet.GetXmlSchema or at runtime from
the schema embedded in a SOAP response message. When this book was written, only InfoPath SP-1
and VS 2005 supported runtime DataSet schemas to enable Design mode data sources.

Web services that publish or consume DataSets violate the “share schema and contract, not class” tenet
of Microsoft’s “Service-Oriented Integration” patterns & practices white paper. Schemas define SOAP
message structure, and contracts (WSDL documents) define service behavior.

Embedding a typed DataSet schema for the Northwind Orders and OrderDetails tables adds up to
14,302 bytes (including whitespace) to the 1,226-byte SOAP response message for a single order. If
your Web service client doesn’t need handlers for the typed DataSet schema’s TableNameRowChange,
FieldNameChanging, and FieldNameChanged events, you can save substantial message overhead by
defining an untyped DataSet. The size of the untyped DataSet for the same SOAP response message is
about 3,317 bytes.

Gzip compression reduces the size of SOAP response messages at the expense of CPU resource con-
sumption to compress the messages on the server and client. For more information about enabling Gzip
compression, see the section “Compress SOAP Response Messages,” later in this chapter.

Custom Business Objects
Custom business objects embed their schema in the WSDL file, which enables Web service client toolkits
to autogenerate operable Web service proxies for most programming languages and operating systems.
SOAP request and response messages don’t include a schema, so message size is much smaller than that
for a corresponding DataSet. Combining Windows forms’ Web Service and Object data sources lets you
autogenerate bound DataGridViews and details views with bound text boxes. You can update multiple
tables by passing objects or arrays of objects to multiple WebMethod parameters. If multiple tables
populate a hierarchical business object, you can pass a single object or an array of objects to a single input
parameter. All commercial Web service toolkits support object arrays as WebMethod input parameters
and return values.

Custom business objects with fields of primitive types or arrays of primitive types let you implement the
“share schema and contract, not class” best practice for Web services. Business objects provide independence
from the metadata of the underlying base tables. Design classes to represent business entities that meet
your current and short-term future requirements. Standards-based business entities, such as purchase
orders and invoices based on Universal Business Language (UBL) 1.0 schemas, are far too complex for most
organizations. Simple schemas that avoid <include...> and <import...> elements simplify Web service
implementation and aid interoperability.

361

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 361

Multiple WebMethods and Versioning
VS 2005’s documentation emphasizes simple Web services that execute a single trivial WebMethod, such
as adding two integers. Production Web services that are deployed on the Internet or corporate intranets
usually involve multiple, related WebMethods. As an example, Microsoft Research’s public ASP.NET
TerraService at http://terraserver-usa.com/TerraService.asmx publishes 16 WebMethods for
retrieving worldwide satellite and aerial images or U.S. Geological Survey topographic maps of the U.S.
TerraService clients must consume several WebMethods to retrieve and combine specific 200-pixel by
200-pixel bitmaps (called tiles) to display an image of the appropriate geographic location and scale.

You can download an upgradable .NET 1.1 Windows form TerraService Web service client at
http://www.ftponline.com/vsm/2004_08/magazine/features/rjennings/default.
aspx. The project also consumes Microsoft’s MapPoint Web service, which requires at least an evalua-
tion account. Go to http://msdn.microsoft.com/mappoint/mappointweb/ for more details.

A data-intensive Web service should expose multiple WebMethods that support common data access
and update scenarios. For example, a service that delivers multiple business entities — such as sales
orders or invoices — should provide the ability to return entity collections based on attributes. This
service type should at least implement TOP n queries in reverse-date or primary-key order and single
entity response messages by primary-key values. This chapter’s Web service examples include
WebMethods that return Northwind Orders records by CustomerID or OrderID and require only a few
lines of additional code to add WebMethods with other WHERE clause criteria, such as EmployeeID or
starting and ending dates.

Don’t expose WebMethods that accept SQL statements as a String parameter. Enabling ad hoc queries
makes your Web service and its database subject to malicious SQL injection attacks.

Most Web services evolve over time, so version control is an important issue. WebMethods — like COM
interfaces — are immutable. You must not define a new version of a current WebMethod and assign it
the same public function name. You can modify the internal code for a WebMethod, if the modifications
don’t alter the WSDL document or the schema of DataSets. For example, substitution of stored
procedures for SQL batch statements don’t affect WSDL documents or schemas. You can make changes
to the data source for a business object if you don’t alter the object’s structure or data type.

You can add new WebMethods to a service, which adds elements to the dynamic WSDL document. .NET
Web service clients maintain a static file copy of the original WSDL document. Updating the source
code’s Web Reference incorporates the added elements, but doesn’t break code that invokes the original
WebMethods.

Moving a Web service to a different server, domain, or both requires clients to change the URL for the
service. Adding a Web Reference inserts an <add key=”ProxyClassName” value=”URL”> element into
the app.config or Web.config file’s <appSettings> group. The Web service proxy class constructor
reads this value prior to invoking the WebMethod, so you can alter the URL with a text editor instead of
rebuilding and redeploying the client application when the URL changes.

You can add alternative URLs to a Windows form’s <applicationSettings> node on the
ProjectName Properties windows Settings page. If the client incurs an “Unable to connect to remote
server” exception when invoking the WebMethod, you can add code to try the alternative URLs.

362

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 362

Web Service Security
Integrated Windows authentication usually provides sufficient security for accessing private intranet
Web services whose messages don’t incorporate confidential information. The simplest approach to
securing Web services that are accessible from the public Internet is to require the Secure Sockets Layer
(SSL or HTTPS) protocol and X.509 client certificates to connect to the Web service’s IIS 5 or 6 virtual
directory. HTTPS encrypts the SOAP messages and you can map client certificates to Windows user
accounts for Windows authentication. If you’re not ready to implement client certificates, you can
enable basic authentication for users in the same or a trusted domain; HTTPS encrypts usernames and
passwords. In either case, you can authorize users to invoke specific WebMethods by Windows group
membership or a database table of authenticated users and the WebMethods for which each user role
has execute permissions.

HTTPS is a transport protocol, so it’s suitable for securing point-to-point messages only. If you need to
route messages securely, the WS-Security standard is your best bet. WS-Security enables encrypting the
SOAP request and response messages independently of the transport protocol. WS-Security also enables
digital signatures for request and response messages. Digital signatures implement non-repudiation by
ensuring that messages aren’t modified at any point in the routing process. Implementing WS-Security for
Web services and Web service clients is a complex process because it requires installing and configuring
WSE 3.0 on both Web servers and client machines. If your Windows Web services expose custom business
objects to clients running under other operating systems or other programming languages, these clients
will need a Web service proxy toolkit that supports WS-Security.

If your Web service messages are point-to-point and non-repudiation isn’t a requirement, HTTPS with
client certificates or basic authentication probably will satisfy your basic security requirements.

ASP.NET 2.0 Web Service Programming
The process of creating ASP.NET 2.0 Web services is similar to that for conventional ASP.NET 2.0 Web
Sites. The most obvious difference is lack of a Design mode window for adding controls; Web services
don’t support UI elements.

ASP.NET 2.0’s built-in Web server eliminates earlier versions’ requirement that you create an IIS vir-
tual directory for the service prior to creating the project. Otherwise, the process is identical for all
ASP.NET versions.

Here’s an overview of the steps to create and publish a simple Web service:

1. Create a new Web service Web site, which adds Service.asmx to the Web Site folder and Service.vb
to the Application_Code folder. Service.asmx contains a compile directive only. Service.vb has
Imports statements for the System.Web, System.Web.Services, and System.Web.Services
.Protocols namespaces. Service.vb also includes code to implement a simple Web service with a
WebMethod that returns “Hello World.”

2. Rename the Service.asmx file to complete the service’s URL for the built-in Web server:
http://localhost:TCPPort/WebSiteName/ServiceFileName.aspx.

363

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 363

3. Optionally, rename the Service.vb file and its default Service class. Conform the .asmx file’s
compiler directive to the renamed .vb file and its Web service class. If you rename the Service
class and don’t modify the compiler directive, building the service throws an error.

4. Replace Namespace:=”http://tempuri.org” with Namespace:=”AnyUniqueURLorURN”
and add an optional Description:=”DescriptionOfService” attribute to the default
<WebService()> class attribute. If you don’t change the namespace, you receive a suggestion
to do so when you run the project.

The following illustrates a typical modified compiler directive and initial Web service code:

<%@ WebService Language=”vb” CodeBehind=”~/App_Code/DCOrdersWS.vb” _
Class=”DCOrdersWS” %>

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

<WebService(Namespace:=”http://whatever.com/webservices/examples”, _
Description:=”The starting point for Chapter 9’s examples.”)> _
<WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _

Public Class DCOrdersWS
Inherits System.Web.Services.WebService

<WebMethod()> _
Public Function HelloWorld() As String

Return “Hello World”
End Function

End Class

The <WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> attribute
asserts that the Web service complies with the Web Services Interoperability Organization (WS-I.org)
Basic Provide 1.1. For more information on WS-I.org and Web service profiles, see Chapter 3’s “Ensure
Fully Interoperable Web Services” section.

The Web Service Help Page and WSDL Document
Most Java Web service toolkits generate a static ServiceName.wsdl file on the Web service application
server. ASP.NET Web services generate dynamic WSDL documents. Opening the ServiceName.aspx file
opens a standard ASP.NET Web service help page with links to execute WebMethods and display the
WSDL document.

The following steps describe how to use the Web service help page to execute a simple WebMethod and
display the WSDL document in IE:

1. Press F5 to build and run the service with the built-in Web server. Click OK with the Add a New
Web.config file with Debugging Enabled radio button selected to enable Web service debugging
and display the Web service help page, as shown in Figure 9-1.

364

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 364

Figure 9-1

2. Click the WebMethod link —HelloWorld for this example — to open the page that lets you
invoke the WebMethod (see Figure 9-2).

Figure 9-2

If running the Web service displays a directory listing instead of the Web service
help page, close IE and set ServiceName.aspx as the start page.

365

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 365

You can invoke a WebMethod that doesn’t require parameters or has parameters that are simple (primitive)
types, such as Integer or String, or arrays of primitive types. The invoke page doesn’t support
parameters with complex types, such as a DataSet or business object, or invocations of Web methods of
services on remote servers.

3. Click Invoke to display the WebMethod’s return value in IE (see Figure 9-3).

Figure 9-3

4. Close IE and click the here link to return to the initial help page, and click the Service
Description link to open the WSDL document in IE (see Figure 9-4).

Figure 9-4

366

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 366

Displaying the WSDL document requires adding a ?WSDL or ?wsdl query string to the Service.asmx
file’s URL.

Following is the complete WSDL document for the sample DCOrdersWS Web service and its
HelloWorld WebMethod:

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:tm=”http://microsoft.com/wsdl/mime/textMatching/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:mime=”http://schemas.xmlsoap.org/wsdl/mime/”
xmlns:tns=”http://whatever.com/webservices/examples”
xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:soap12=”http://schemas.xmlsoap.org/wsdl/soap12/”
xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
targetNamespace=”http://whatever.com/webservices/examples”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>
The starting point for Chapter 9’s examples.</wsdl:documentation>

<wsdl:types>
<s:schema elementFormDefault=”qualified”

targetNamespace=”http://whatever.com/webservices/examples”>
<s:element name=”HelloWorld”>
<s:complexType />

</s:element>
<s:element name=”HelloWorldResponse”>
<s:complexType>

<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1” name=”HelloWorldResult”

type=”s:string” />
</s:sequence>

</s:complexType>
</s:element>

</s:schema>
</wsdl:types>
<wsdl:message name=”HelloWorldSoapIn”>
<wsdl:part name=”parameters” element=”tns:HelloWorld” />

</wsdl:message>
<wsdl:message name=”HelloWorldSoapOut”>
<wsdl:part name=”parameters” element=”tns:HelloWorldResponse” />

</wsdl:message>
<wsdl:portType name=”DCOrdersWSSoap”>
<wsdl:operation name=”HelloWorld”>

<wsdl:input message=”tns:HelloWorldSoapIn” />
<wsdl:output message=”tns:HelloWorldSoapOut” />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”DCOrdersWSSoap” type=”tns:DCOrdersWSSoap”>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http”

style=”document” />
<wsdl:operation name=”HelloWorld”>

<soap:operation
soapAction=”http://whatever.com/webservices/examples/HelloWorld”
style=”document” />

<wsdl:input>
<soap:body use=”literal” />

367

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 367

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:binding name=”DCOrdersWSSoap12” type=”tns:DCOrdersWSSoap”>
<soap12:binding transport=”http://schemas.xmlsoap.org/soap/http”

style=”document” />
<wsdl:operation name=”HelloWorld”>

<soap12:operation
soapAction=”http://whatever.com/webservices/examples/HelloWorld”
style=”document” />

<wsdl:input>
<soap12:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap12:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”DCOrdersWS”>
<wsdl:documentation xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

The starting point for this chapter’s examples.</wsdl:documentation>
<wsdl:port name=”DCOrdersWSSoap” binding=”tns:DCOrdersWSSoap”>

<soap:address
location=”http://localhost:9120/DCOrdersWS/DCOrdersWS.asmx” />

</wsdl:port>
<wsdl:port name=”DCOrdersWSSoap12” binding=”tns:DCOrdersWSSoap12”>

<soap12:address
location=”http://localhost:9120/DCOrdersWS/DCOrdersWS.asmx” />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The random TCP port number (9120) in the service’s URL doesn’t appear when you publish the Web
service to an IIS virtual directory. The Web service doesn’t use the four highlighted namespaces near the
beginning of the document. Unlike common URL namespace declarations, which return HTTP 404
errors, most http://schemas.xmlsoap.org/... URLs open schema documents and http://
www.w3.org/... URLs open pages with links to related pages.

The preceding example is the simplest WSDL document that fully describes a document/literal (doc/lit)
Web service that supports both SOAP 1.1 and SOAP 1.2 clients. By default, ASP.NET 2.0 Web service
clients send SOAP 1.1 request messages.

Here’s the SOAP request message generated by the client’s Web service proxy class:

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<soap:Body>
<HelloWorld xmlns=”http://whatever.com/webservices/examples” />

</soap:Body>
</soap:Envelope>

368

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 368

The Web service’s SOAP response message with its HTTP headers is:

ResponseCode: 200 (OK)
Server:Microsoft VisualStudio .NET WebServer/8.0.1200.0
Date:Tue, 09 Nov 2004 18:42:38 GMT
X-AspNet-Version:2.0.50215
Cache-Control:private, max-age=0
Content-Type:text/xml; charset=utf-8
Content-Length:384
Connection:Close

<?xml version=”1.0” encoding=”utf-8”?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<soap:Body>
<HelloWorldResponse xmlns=”http://whatever.com/webservices/examples”>

<HelloWorldResult>Hello World</HelloWorldResult>
</HelloWorldResponse>

</soap:Body>
</soap:Envelope>

Web Service Deployment
You must deploy the Web service to an IIS 5 or 6 virtual directory to enable access by production
Windows or Web forms clients. The process of deploying a Web service Web site to IIS is identical to that
described for ASP.NET Web forms in the section “Deploy Completed Web Sites to IIS” in Chapter 8.

A Web service client that specifies the current TCP port in the service’s URL can access a Web service
that’s running in the built-in Web server, as you’ll see in the next section. In this case, the URL is valid
only for the current running instance of the server. Running a Web service on a TCP port other than 80
(HTTP) or 443 (HTTPS) is an uncommon practice.

If you want the capability to debug your Web service by stepping through the WebMethod invocation in
your Web service client, copy the Web Site folder to the virtual directory. Source code and the symbols
file — ...\bin\ServiceName.pdb — must be present to enable Web service debugging.

If you receive an “Unrecognized attribute ‘xmlns’” server error, open the Properties dialog for the ser-
vice’s IIS virtual directory, click the ASP.NET tab, and change the version number from
1.1.BuildNumber to 2.0.BuildNumber.

After you test your Web service thoroughly, you can improve its performance by setting <compilation
debug=”true”/> to <compilation debug=”false”/> in the Web.config file and publishing the Web
site to the virtual directory. Publishing the Web site overwrites all source code files with stub files.

Web Service Clients and Proxies
Windows and Web forms clients require a Web service proxy class to consume Web services. You must
add code to an event handler to instantiate the proxy class and execute a WebMethod.

369

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 369

Add a Web Service Proxy Class
You create the proxy class by adding a Web reference to the service. Here’s how:

1. Create a new Windows form client. In Solution Explorer, right-click the project and choose Add
Web Reference to open the Add Web Reference dialog.

2. If you created and deployed the DCOrdersWS Web service in the preceding sections, you can
create proxy for the service by typing the URL for the ServiceName.asmx file in the text box.
Alternatively, click the Web Sources on the Local Machine list, and double-click the link to the
deployed service to display its help file.

3. If you didn’t deploy the Web service to IIS, build and run the Web service, copy the URL from
IE’s Address text box to the Clipboard, paste the URL to the Add Web Reference dialog’s text
box, and click the Go button to display the help file.

4. Replace the default localhost Web Reference Name with a more descriptive name — usually
the service name — as shown in Figure 9-5.

Figure 9-5

5. Click Add Reference to add the Web reference under Solution Explorer’s Web References node,
choose Project ➪ View All Files, and expand the added nodes.

370

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 370

A Web reference consists of ReferenceName.disco (discovery), ReferenceName.wsdl, Reference.map (discovery),
and Reference.vb files. ReferenceName.wsdl is a local copy of the service’s WSDL document and Reference.vb
is the proxy class file. The two discovery-related files enable a proprietary — and obsolescent — mechanism
for populating the Web Services on Local Machine list.

BEA Systems, Canon, Intel, and Microsoft proposed in October 2004 a WS-Discovery specification
(http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-discovery.pdf)
that’s considerably more complex than the proprietary disco approach. WS-Discovery depends on
another pending specification — WS-Addressing (http://www.w3.org/Submission/2004/
SUBM-ws-addressing-20040810/). The prospect for widespread adoption of the WS-Discovery
specifications is dubious, at best.

Instantiate the Proxy Class and Invoke a WebMethod
A Web service proxy class’s namespace is the name you assign to a Web reference —DCOrdersWS for
the “Hello World” example. The proxy’s Partial Public Class WebServiceName, which contains
synchronous and asynchronous methods that mirror each WebMethod, inherits from the
SoapHttpClientProtocol class. Thus the fully qualified name of the Web service proxy class is
WebReferenceName.WebServiceName or DCOrdersWS.DCOrdersWS for this example.

The following table lists the commonly used properties and methods of the SoapHttpClientProtocol
class.

Property or Method Data Type Description Default Value

Credentials System.Net Supplies the user’s Nothing
.ICredentials credentials for

authentication

Enable- Boolean Enables Gzip False
Decompression decompression

of the SOAP response
message

Proxy System.Net Gets or sets proxy Nothing
.IWebProxy settings for a firewall

SoapVersion SoapProtocol Sets or gets the request SoapProtocolVersion
Version message’s SOAP version .Default (SOAP 1.1)

(1.1 or 1.2)

Timeout Integer Gets or sets the 100000
WebMethod timeout in
milliseconds

Url String Gets or sets the Web From <appSettings>
service URL group

UserAgent String Gets or sets the Mozilla/4.0
User-Agent HTTP (compatible; MSIE
header for the request 6.0; MS Web Services
message Client Protocol

2.0.50215.44)

371

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 371

The code to instantiate the Web service proxy class and invoke a WebMethod is simple. Here’s the
generic version:

Dim wsProxy as New WebReferenceName.ServiceName
‘Authentication code if required
Dim varResult as DataType = wsProxy.WebMethodName([ByVal Parameter(s)])

Here’s the code snippet to return “Hello World” to a text box:

Try
Dim wsOrders As New DCOrdersWS.DCOrdersWS
wsOrder.UseDefaultCredentials = True
‘Invoke the HelloWorld WebMethod
txtResult.Text = wsOrders.HelloWorld

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Exclamation, “Error Invoking WebMethod”)

End Try

The wsOrder.UseDefaultCredentials = True statement is required to authenticate the client’s
request with the user’s Windows account. User credentials aren’t required if the Web service’s virtual
directory has anonymous access enabled.

Alternatively, you can drag the ServiceName tool from the Toolbox’s ProjectName section to add a named
instance of the proxy class in a Windows form’s tray and set the SoapHttpClientProtocol object’s
property values in its Properties window. For this example, the default instance name is DcOrdersWS1.
You invoke the HelloWorld WebMethod with a DcOrdersWS1.HelloWorld instruction.

Add User Credentials for Web Service Authentication
The built-in Web server accepts Windows authentication only. When you deploy a Web service to an IIS
virtual directory that has anonymous access disabled, you must provide credentials for Windows, Basic,
or Digest authentication, depending on the Authentication and Access Control settings you establish.
Windows authentication is the best choice for intranet access.

Digest authentication requires IIS running on Windows Server 2003 and users to have Windows 2000 or
later Active Directory accounts in the Web server’s domain or a domain that’s trusted by the Web server.
Domain Security Policy’s Windows Settings/Security Settings/Account Policies/Password Policy/Store
Password Using Reversible Encryption must be enabled. IIS sends a hash of the password, which works
across proxy servers and firewalls.

Enabling reversible encryption reduces password security. You should not enable
reversible encryption unless Digest authentication is absolutely critical to the
success of your Web service. It’s improbable that any member of an organization’s
DomainAdmins group would permit enabling reversible encryption.

372

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 372

Authenticating Web service access over the public Internet requires Basic authentication, which sends
usernames and passwords in clear text. Thus, the virtual directory must use Secure Sockets Layer (SSL)
or Transport Layer Security (TLS) and TCP port 443 to prevent interception of authentication data.

If you enable HTTPS for the virtual directory, you can authenticate clients with their X.509 certificates.
Certificate-based authentication is beyond the scope of this chapter.

Windows Credentials
Supplying Windows credentials of the client’s user is the simplest of the three alternatives: Here’s the
generic code:

Dim wsProxy as New WebReferenceName.ServiceName
wsProxy.Credentials = System.Net.CredentialCache.DefaultCredentials
Dim varResult as DataType = wsProxy.WebMethodName([ByVal Parameter(s)])

As mentioned earlier, an alternative for Windows authentication is to set the proxy’s
UseDefaultCredentials property value to True.

Basic and Digest Credentials
Providing Basic or Digest credentials requires creating a new CredentialsCache instance and adding
NetworkCredentials objects to it. The following generic code enables Basic authentication for the
Windows user account specified by UserName, Domain, and Password:

Dim wsCredCache As New CredentialCache
Dim wsCred As New NetworkCredential
wsCred.UserName = txtUserName.Text
wsCred.Domain = txtDomain.Text
wsCred.Password = txtPassword.Text
wsCredCache.Add(New Uri(wsOrders.Url), “Basic”, wsCred)
wsProxy.Credentials = wsCredCache

Specifying the user’s domain is optional for Basic authentication. Substitute “Digest” for “Basic”
to enable Digest authentication.

The DCOrdersWSClient.sln Windows form project in the \VB2005DB\Chapter09\DCOrdersWSClient
folder lets you specify the Web service proxy’s Url, Timeout, UserAgent, Credentials,
UseDecompression, SoapVersion, and properties (see Figure 9-6). You must copy or publish the
DCOrdersWS Web service to an IIS virtual directory, modify the default URL, if necessary, and disable
Anonymous access to test Windows, Basic, or Digest authentication.

373

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 373

Figure 9-6

Compress SOAP Response Messages
As mentioned in the section “DataSets” earlier in this chapter, ASP.NET 2.0 adds an
EnableDecompression property to the SoapHttpClientProtocol class. Set this property value to
True with the following code:

wsProxy.EnableDecompression = True

Enabling client-side decompression adds gzip (GNU zip compression) as an accept-encoding argu-
ment value to the request message’s HTTP header. Compression reduces the size of large SOAP response
messages to 25 to 65 percent of their uncompressed size.

IIS 6.0 supports HTTP compression by default. To enable compression with IIS 5.x, run the configura-
tion scripts from Microsoft Knowledge Base article Q-322603, “HOW TO: Enable ASPX Compression
in IIS.”

Debug Web Services
The ASP.NET 1.0 Web services and Windows or Web form client applications you create run in debug
mode by default. The debugging process is similar to that for referenced class libraries. You can
debug a Web service by setting a breakpoint on the line that invokes a WebMethod and stepping into
the WebMethod’s code. After a few-second delay, a window opens with the code behind the
WebService.asmx file, as shown in Figure 9-7.

374

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 374

Figure 9-7

Attempting to step into a WebMethod of a published Web service displays a message box with an
“Unable to automatically step into server. Unable to determine a stepping location” message, because
source code and symbols are missing. Copy the service Web site to the IIS virtual directory to enable
debugging with the client’s default URL.

Changes you make to WebMethod code don’t take effect until you save the WebService.vb file and
execute the WebMethod again.

Create and Deploy a Simple Data
Web Service

The two-table data component you created in the section “ObjectDataSources from Typed DataSet
DALCs” in Chapter 8 is a good candidate for creating a basic Web service from an existing ASP.NET 2.0
project. The following example is based on the DCOrdersWS Web service that’s described in the
preceding sections.

You can use the DCOrdersWS Web site in the \VB2005DB\Chapter09\DCOrdersWS folder as the
starting point for this section’s example.

Open DCOrdersWS, right-click the App_Code node, choose Add Existing Item, navigate to the
GridAndDetailsView Web site you created in Chapter 8, or in the \VB2005DB\Chapter08\
GridAndDetailsView folder, select the OrderComponent.xsd and DataComponent.settings files in the
...\App_Code folder, and click Add. This step adds the runtime typed DataSet and its connection string
to your Web service.

375

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 375

Web Service Connection Strings
Web services that require a database connection commonly use SQL Server authentication with a login ID
and password for a user account. SQL Server authentication enables anonymous users to consume the
Web services, which is acceptable during the development process but usually isn’t for production
services. For SQL Server databases, the Web service user account must be assigned to the db_datareader
and, for updates, db_datawriter roles, and have execute permission for stored procedures. The generic
connection string is:

Server=ServerName[/InstanceName];User ID=LoginID;Password=Password;
Database=DatabaseName;Persist Security Info=True”

Your SQL Server instance must be installed in Mixed Mode, which enables integrated Windows and SQL
Server authentication to use the preceding connection string. If you installed your local instance of
SQL Server with the default Windows Authentication Mode, the preceding connection string won’t work.

Connection Strings for Data Components
ASP.NET 2.0 data components store their connection string in the Web.config file’s <ConnectionStrings>
group, which you edit in the Settings Designer window. Data components use this connection string when
executing TableAdapter Fill, FillBy, GetData, and GetDataBy methods, and update operations.

Data components don’t expose their runtime TableAdapters to Web service code. The TableAdapter
class is a member of the System.Web.UI.WebControls.Adapters namespace, and Web services don’t
have a UI. Thus, you must use a DataAdapter to fill and update the data component’s DataSet tables.
You can add code to obtain the data component’s connection string for the SqlDataAdapter
.SqlConnection.ConnectionString property value, but it’s a better practice to add the connection
string to the Web.config file’s <configuration> section with the following generic
<connectionStrings> group:

<connectionStrings>
<add name=”ConnectionName” connectionString=”Server=ServerName;

User ID=LoginID;Password=Password;Database=DatabaseName;
Persist Security Info=True” providerName=”System.Data.SqlClient” />

</connectionStrings>

The connectionString attribute value must be on a single line.

You obtain the connection string in ASP.NET 2.0 projects with the following instruction:

Dim strConn As String = _
ConfigurationManager.ConnectionStrings(“ConnectionStringName”).ConnectionString

The new .NET 2.0 ConfigurationManager class requires adding a project reference to
System.Configuration.dll.

This chapter’s Web service examples include the following default connection string in their Web
.config files:

Server=localhost;User ID=sa;Password=whidbey;Database=Northwind;
Persist Security Info=True”

376

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 376

The preceding whidbey password doesn’t comply with good security practices. The sa and all other
SQL Server user passwords should be at least eight characters in length and include uppercase and
lowercase letters, numerals, and punctuation characters. Create a special Web service login ID for
production Web services.

You must edit the example connection strings’ Password and, optionally, User ID elements to connect
to the default SQL Server instance. Add /InstanceName to the Server element if you’re using SQL
Server 2005 Express (/SQLEXPRESS) or another named instance of SQL Server 2000, 2005, or MSDE.

Web Services and Windows Authentication Mode
If you installed your SQL Server instance in Windows Authentication Mode and can’t or don’t want to
change to Mixed Mode, your Web service must use the following generic connection string for Windows
authentication:

Server=ServerName;Integrated Security=True;Database=DatabaseName

You receive a “Login failed for user ‘NT AUTHORITY\NETWORK SERVICE’” error message when a
Web service client invokes a WebMethod from the copied or published version. The easiest way to
enable an SQL Server connection for anonymous Web service users with Windows authentication is to
add the following <identity> section to the Web.config file’s <system.web> group

<system.web>
<identity impersonate=”true” userName=”WindowsUserName” password=”Password”/>
...

</system.web>

In this case, you must add an SQL Server login, and database and stored procedure permissions for the
Windows user account you specify as WindowsUserName. You can specify your Administrator account
and password as a shortcut during development, but the production Web service must use a Windows
account with much more restricted privileges. Even with restricted privileges, impersonating a user with
credentials stored as plain text in the Web.config file invites security breaches.

If you disable anonymous access and enable Windows authentication, Basic authentication, or both, you
can omit the userName and password attributes if you set the WebServiceProxy.Credentials
property value, as described in the section “Add User Credentials for Web Service Authentication,”
earlier in this chapter. An <identity impersonate=”true” /> element returns a “Login failed for
user ‘SERVERNAME\IUSR_SERVERNAME’” message if you don’t provide credentials or the
credentials aren’t valid.

Add a General-Purpose Procedure to Return a Typed
DataSet

All Web services that connect to databases commonly add Imports System.Data and an Imports
statement for the data source type — usually System.Data.SqlClient or System.Data.OleDb— to
eliminate the need to type these prefixes. All remaining examples assume Imports System.Data and
Imports System.Data.SqlClient are present.

377

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 377

The following function accepts individual SQL SELECT statements to populate the DataSet’s Orders and
Order Details tables with DataAdapters:

Private Function GetOrders(ByVal strOrdersSql As String, _
ByVal strDetailsSql As String) As DataSet

‘Create the DataSet from the DataComponent
Dim dsOrders As DataSet = New OrdersComponent
‘Replace tempuri.org
dsOrders.Namespace = _

“http://whatever.com/webservices/northwind/orders/ordersdc”
‘Set up the connection
Dim cnNwind As New SqlConnection
Dim strConn As String = ConfigurationManager.ConnectionStrings(+ _

“NorthwindConnectionString”).ConnectionString
cnNwind.ConnectionString = strConn

‘Define SqlCommands and SqlDataAdapters
Dim cmOrders As SqlCommand = Nothing
Dim cmDetails As SqlCommand = Nothing
Dim daOrders As SqlDataAdapter = Nothing
Dim daDetails As SqlDataAdapter = Nothing

If strOrdersSql.Length > 0 Then
‘Create the Orders command and data adapter
cmOrders = cnNwind.CreateCommand
cmOrders.CommandText = strOrdersSql
daOrders = New SqlDataAdapter
daOrders.SelectCommand = cmOrders

End If

If strDetailsSql.Length > 0 Then
‘Create the Order Details command and data adapter
cmDetails = cnNwind.CreateCommand
cmDetails.CommandText = strDetailsSql
daDetails = New SqlDataAdapter
daDetails.SelectCommand = cmDetails

End If

Dim strDetailsTable As String = dsOrders.Tables(1).TableName
‘Name is “[Order Details]”
Try

‘Open the connection and fill either or both tables
cnNwind.Open()
If daOrders IsNot Nothing Then

daOrders.Fill(dsOrders, “Orders”)
End If
If daDetails IsNot Nothing Then

daDetails.Fill(dsOrders, strDetailsTable)
End If
cnNwind.Close()
Return dsOrders

Catch exc As Exception
Dim excSoap As New _
SoapException(exc.Message, SoapException.ClientFaultCode, _

378

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 378

Context.Request.Url.AbsoluteUri)
Throw excSoap

Finally
cnNwind.Close()
cnNwind.Dispose()
dsOrders.Dispose()
If daOrders IsNot Nothing Then

daOrders.Dispose()
End If
If daDetails IsNot Nothing Then

daDetails.Dispose()
End If

End Try
End Function

ConfigurationManager is the preferred .NET 2.0 class for managing ASP.NET Web.config files.
As mentioned earlier, using ConfigurationManager requires adding a project reference to
System.Configuration.dll.

The preceding function is “vanilla” SqlConnection, SqlCommand, and SqlDataAdapter code, except
for the highlighted error handler that returns a SOAP exception to the Web service client. ASP.NET will
convert any Web service exception to a SOAP exception with a ServerFaultCode. If you want to
customize the exception, such as specifying a ClientFaultCode to indicate that the client made an
invalid request, you should create and throw a SoapException.

Three of this chapter’s sample Web services — WSOrdersDC, WSOrdersDS, and WSOrdersTDS —
include minor variations of this function.

Add a WebMethod to Define and Return the DataSet
The following WebMethod supplies the two SQL SELECT statements, invokes the GetOrders function,
and returns a serialized, typed DataSet to the Web service client:

<WebMethod(Description:=”Returns the TOP n Orders and Order Details records.”)> _
Public Function GetTopOrdersAndDetails(ByVal Number As Integer) As DataSet

Dim strSQL1 As String = “SELECT TOP “ + Number.ToString + _
“ * FROM Orders ORDER BY OrderID DESC”

Dim strSQL2 As String = “SELECT * FROM [Order Details] “ + _
“ WHERE OrderID IN (SELECT TOP “ + Number.ToString + _
“ OrderID FROM Orders ORDER BY OrderID DESC)”

Return GetOrders(strSQL1, strSQL2)
End Function

The preceding WebMethod is only one of many Get... and Fill... methods that the three sample
DataSet-based Web services provide.

Running the service with the built-in Web browser requires invoking the WebMethod with an appropriate
Number parameter value. Figure 9-8 shows part of the 11-KB SOAP response message for a single order.

379

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 379

Figure 9-8

Add DataGridViews to the Web Service
Client

If you created the HelloWorld Web service client in the section “Web Service Clients and Proxies,” earlier
in this chapter, you can use it as the starting point for a Web service client that displays Orders and
Order details in DataGridViews. Otherwise, use the sample DCOrdersWSClient.sln project in the
\VB2005DB\Chapter09\DCOrdersWSClient folder. You must deploy your version of DCOrdersWS
with the GetTopOrdersAndDetails WebMethod or the sample Web site in \VB2005DB\Chapter09\
DCOrdersWS by copying it to the subdirectory to which http://localhost/dcordersws points.
Right-click the client’s DCOrdersWS Web Reference node and choose Update Web Reference to refresh
Reference.vb, which adds the new WebMethod.

If you receive an error message because your Web Reference points to a version with a random TCP
port, delete the existing Web Reference and recreate it as DCOrdersWS.

380

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 380

Here’s the fastest method to add DataGridViews that bind to the DataSet returned by the DCOrdersWS
Web service:

1. Add a new form to the project and set it as the startup form in the ProjectName Properties
window.

2. Drag an instance of the DCOrdersWS proxy from the top ProjectName section of the Toolbox to
the tray. Accept the default DcOrdersWS1 instance name.

3. Add a new Database data source with the same connection as the Web service. Do not save the
connection string to app.config. Add the Orders table’s 14 original columns and the Order
Details table to the data source.

4. Drag the Orders table node from the Data Sources window to the top of the form to add an
OrdersDataGridView and OrdersBindingNavigator.

5. Expand the Orders table node, drag its Order Details table subnode below the
OrdersDataGridView, and build and run the project.

6. Optionally, delete the OrdersTableAdapter and Order_DetailsTableAdapter items from the tray.

7. Add a Load Grids button (btnLoadGrids), Number (txtTopN) text box, and optional label.

8. Add an Imports System.Data instruction to the code behind the form and Private dsOrders
As DataSet to the declarations section.

9. Delete the code in the Form_Load event handler, and add the following code to the Load Grids
button’s event handler, which changes the DataSource and DataMember property values of the
two BindingSources to the Web service’s DataSet and DataTables:

Private Sub btnLoadGrids_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoadGrids.Click

With DcOrdersWS1
.UseDefaultCredentials = True
.Timeout = 10000 ‘milliseconds
dsOrders = .GetTopOrdersAndDetails(CInt(txtTopN.Text))

End With
OrdersBindingSource.DataSource = dsOrders
‘Remaining BindingSource properties are correct

End Sub

The values assigned to the OrdersBindingSource.DataMember, Order_DetailsBindingSource
.DataSource, and Order_DetailsBindingSource.DataMember properties from the DataSources
nodes are valid for the DataSet returned by the Web service. Build and run the project, type 25 in the text
box, and click the button to display the payload of the Web service’s SOAP response message in the
DataGridViews (see Figure 9-9).

This project is an example of the rapid application development (RAD) techniques that DataSet-based
Web services enable. However, this client includes 2,136 lines of unused code in the NorthwindDataSet
.Designer.vb file and instantiates an empty NorthwindDataSet object on startup. Thus, defining
untyped DataSets and binding them to customized databound controls is a better practice for produc-
tion projects.

381

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 381

Figure 9-9

Update the Web Service DataSet
Code for a WebMethod with a DataSet parameter that updates the Web service’s DataSet and its under-
lying base tables is simple if you use a CommandBuilder object to generate the required UPDATE,
INSERT, and DELETE SQL statements or stored procedure calls. The downside of CommandBuilders is
the added server roundtrips to obtain the required table metadata.

Production Web services should use custom parameterized stored procedures for all updates and trans-
actions for multi-table updates. Like the preceding example, using CommandBuilder objects is a RAD
technique that’s suitable for development but not production projects.

Add the following WebMethod code to the DCOrdersWS Web service to enable updates to the Orders
and Order Details tables:

<WebMethod(Description:=”Updates the Orders and Order Details tables.”)> _
Public Function UpdateDataSet(ByVal dsUpdate As DataSet) As Integer

Dim strDetailsTable As String = dsUpdate.Tables(1).TableName
Dim strConn As String = ConfigurationManager.ConnectionStrings(+ _

“NorthwindConnectionString”).ConnectionString
Dim cnNwind As New SqlConnection(strConn)
Dim daOrders As New SqlDataAdapter(“SELECT * FROM Orders”, cnNwind)
Dim cbOrders As New SqlCommandBuilder(daOrders)
Dim daDetails As New SqlDataAdapter(“SELECT * FROM [Order Details]”, cnNwind)
Dim cbDetails As New SqlCommandBuilder(daDetails)
Try

cnNwind.Open()

382

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 382

‘Invoke the Update method of both DataAdapters
Dim intUpdates As Integer = daOrders.Update(dsUpdate, “Orders”)
intUpdates += daDetails.Update(dsUpdate, strDetailsTable)
cnNwind.Close()
Return intUpdates

Catch excSql As SqlException
Dim excSoap As New SoapException(“SQLException: “ + excSql.Message, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
Catch excSys As System.Exception

Dim excSoap As New SoapException(“SystemException: “ + excSys.Message, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
Finally

cnNwind.Close()
cnNwind.Dispose()
dsUpdate.Dispose()
daOrders.Dispose()
cbOrders.Dispose()
daDetails.Dispose()
cbDetails.Dispose()

End Try
End Function

You can’t test WebMethods that use complex parameter types, such as DataSet, with the Web service
help page.

Copy the updated Web service to its IIS virtual directory folder and do the following to test updates
with the “Five-Minute Client” you created in the preceding section:

1. Update the DCOrdersWS Web Reference to add the UpdateDataSet WebMethod.

2. Add an Imports System.Web.Services.Protocols statement to enable SoapExceptions.

3. Replace or create a BindingNavigatorSaveItem_Click event handler, and add the following
code to it:

Private Sub BindingNavigatorSaveItem_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles BindingNavigatorSaveItem.Click

‘Send updategram of DataSet updates, if any
OrdersBindingSource.EndEdit()
Order_DetailsBindingSource.EndEdit()
Dim strMsg As String = Nothing
If dsOrders.HasChanges Then

Try
Dim dsUpdate As DataSet = dsOrders.GetChanges
Dim intUpdates As Integer
Dim lngTicks As Long = Now.Ticks
intUpdates = DcOrdersWS1.UpdateDataSet(dsUpdate)
If intUpdates > 0 Then

lngTicks = Now.Ticks - lngTicks
strMsg = “Updated “ + intUpdates.ToString + “ record(s) in “ + _
Format(lngTicks / 10000000, “0.000”) + “ secs.” + vbCrLf + vbCrLf + _
“Click Load Grids to verify the changes and enable updates.”

Else

383

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 383

strMsg = “Updates failed.”
End If

Catch excSoap As SoapException
MsgBox(excSoap.Message, MsgBoxStyle.Exclamation, _

“SOAP Exception Updating DataSet”)
Return

Catch excOther As Exception
MsgBox(excOther.Message, MsgBoxStyle.Exclamation, _

“General Exception Updating DataSet”)
Return

End Try
Else

strMsg = “There are no DataSet updates to process.”
End If
MsgBox(strMsg, MsgBoxStyle.Information, “Updating Base Tables”)

End Sub

4. Build and run the client and verify that updates, insertions, and deletions behave as expected.

Substitute Custom Business Objects for
DataSets

The section “Custom Business Objects,” earlier in this chapter, describes the operating system and
programming language interoperability benefits of platform-independent Web services. However,
ensuring interoperability requires Web service developers to add a substantial amount of code to Web
services and their client applications. Web services for business objects whose field values are persisted
in relational database tables can’t take advantage of VS 2005’s data sources and typed DataSet designers.
CommandBuilders to generate parameters for stored procedures or SQL statements aren’t applicable to
business objects. Plan on writing most or all code to implement a Web service that manipulates custom
business objects.

You can copy starting code for SQL statements and SqlParameter objects from the
InitDeleteCommand, InitInsertCommand, and InitUpdateCommand procedures of the
DataSetName.Designer.vb file. If you need to implement optimistic concurrency, start with code from
the InitAdapter procedure. You’ll need to make extensive use of the Find and Replace tool to adapt
the copied code to update business objects.

Windows form clients for business object Web services can take advantage of the Object Data Source
designer to generate forms with BindingSources, a BindingNavigator, and DataGridViews or text boxes
to display and update their associated objects. TableAdapters and DataAdapters don’t work with
business objects, so you must add the code to populate BindingSources with object instances. You must

384

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 384

process individual updates, insertions, and deletions for parent tables; object arrays handle operations
on multiple related records of child tables. Updates, deletions, and insertion of multiple child records
require deleting all existing records and re-inserting all child records, unless you add code to emulate
the DataSet.GetChanges method.

Web form clients that include GridView or DetailsView controls can use WebMethods that accept the
same ObjectData.Source.UpdateMethod, InsertMethod, and DeleteMethod signatures and
Parameters collections as SqlDataSources.

Explore a Business Object Web Service
The WSOrdersBE Web service in the \VB2005DB\Chapter09\WSOrdersBE folder exposes 32
WebMethods for two business objects and one business entity. The Northwind Orders and Order Details
tables persist the objects’ field values. The OrdersBE.vb partial class file incorporates the Order and
OrderDetail classes imported from Chapter 8’s OrdersBE_DAL.sln project. Individual WebMethods
return arrays of Order or OrderDetail objects populated by SqlDataReader objects. Version 1.0
update operations require passing object field parameter values in the SOAP request message to param-
eterized SQL statements that update the Orders and Order Details base tables. These WebMethods are
compatible with ASP.NET 2.0’s table-oriented GridView and DetailsView controls.

The WSOrdersBE Web service demonstrates code reuse for successive updates that don’t break back-
ward compatibility. Version 1.1’s WSOrders11.vb partial class adds WebMethods that accept an Order
object and OrderDetail arrays as SOAP request method parameters, which the methods pass to ver-
sion 1.0’s private Execute... methods. Object input parameters simplify Windows form Web service
clients that have BindingSources, DataGridViews, and Details views, which you generate by adding an
Object Data Source to the form. The OrderDetail array enables users to update multiple OrderDetail
objects with a single WebMethod invocation.

Independent Order and Detail classes don’t fit the common definition of a business entity, such as a sales
order, invoice, packing list, bill of lading, or other business transaction document. Thus, WSOrdersBE
Version 1.2 adds a SalesOrder.vb partial class file that includes a definition and WebMethods for a
SalesOrder object. The hierarchical SalesOrder object has an OrderDetails field — an array of
OrderDetail objects that represent line items. WebMethods return arrays of SalesOrder objects, and
update an individual Order object and its OrderDetails field with a single Web service call. Update
WebMethods also invoke version 1.0’s Execute... methods. Figure 9-10 is a diagram of the relationships
between WSOrdersBE’s public WebMethods and private functions.

Common private Execute... methods minimize code modifications when database or table metadata
changes, and don’t require clients to update their Web References.

385

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 385

Figure 9-10

DeleteOrder WebMethod
(OrderID Parameter)

UpdateOrderObject
WebMethod

(Order Object Parameter)

UpdateOrder WebMethod
(Field Parameters)

Detail Objects
SELECT WebMethods

GetAllDetails
GetTopDetails

GetDetailsByCustomerID
GetDetailsByOrderID

Order Objects
SELECT WebMethods

GetAllOrders
GetTopOrders

GetOrdersByCustomerId
GetOrderByOrderID

InsertOrder WebMethod
(field Parameters)

InsertDetailObjects
WebMethod

(OrderDetail() Parameter)

InsertOrderObject
WebMethod

(Order Object Parameter)

UpdateDetail WebMethod
(Field Parameters)

InsertDetail WebMethod
(Field Parameters)

GetOrders
(SQL SELECT Statements)

GetDetails
(SQL SELECT Statements)

SalesOrder Objects
SELECT WebMethods

GetAllSalesOrders
GetTopSalesOrders

GetSalesOrdersByCustomerID
GetSalesOrderByOrderID

GetSalesOrderArray
(SQL SELECT Statements)

GetsSalesOrder
(SQL SELECT Statements)

WebMethod
UpdateSalesOrder
(SalesOrder Object)

ExecuteUpdateOrder
(Order Object)

InsertOrUpdateSalesOrder
(SalesOrder Object)

ExecuteInsertOrder
(Order Object)
InsertDetail

(Default OrderDetail Object)

ExecuteUpdateDetail
(OrderDetail Object)

ExecuteInsertDetail
(OrderDetail Object)

WebMethod
InsertSalesOrder

(SalesOrder Object)

386

15_57678x ch09.qxd 11/10/05 11:23 PM Page 386

Hierarchical Objects and Relational Data
Object-relational mapping (O-RM) is a hot topic among .NET developers. Microsoft’s .NET ObjectSpaces
framework, which made its debut as a technology preview at the 2001 Professional Developer’s
Conference, was included in early (alpha) versions of VS 2005. ObjectSpaces uses a three-part mapping
schema to define an object-persistence model. Microsoft announced in 2004 that .NET ObjectSpaces was
postponed to the next Windows version (then Longhorn, now Windows Vista), and subsequently
postponed the ObjectSpaces implementation to some time after Windows Vista’s release.

There’s no shortage of third-party O-RM class libraries for .NET; some have open-source (GPL or LGPL)
licenses. Typically, the libraries map objects to a new or existing database schema and most support
transacted updates. The multitude of similar O-RM offerings presents a choice crisis to developers, and
evaluating the third-party products requires more persistence and dedication than most developers
possess. An LPGL open-source O-RM example is the ATOMS Framework, which is written in VB.NET
and includes VB.NET sample projects. The ATOMS Framework supports SQL Server, Jet, MySQL, and
other databases.

You can download the source code and binary files for the ATOMS Framework 2.0 for the .NET
Framework 1.1 from http://jcframework.sourceforge.net/. You can upgrade the source code
to .NET 2.0 without errors, but you’ll see many warnings in the Errors window.

Populate Hierarchical Objects with SqlDataReaders
Classes that have a 1:1 relationship with a corresponding table’s rows, such as the Order class and Orders
table, and the OrderDetail class and Order Details table, are easy to implement without an O-RM
application. Classes with a 1:n relationship to an underlying table’s rows, such as the SalesOrder object
and the Order Details table are a bit more difficult. Using an SqlDataReader object to generate an
array of 1:n objects is cumbersome because you must retrieve each parent object and its child objects
individually, as illustrated by Figure 9-11’s GetSalesOrderArray method. GetSalesOrderArray calls
the GetSalesOrder method, which requires a database server roundtrip for each array member you add.

Here’s the code for the GetSalesOrderArray function:

Private Function GetSalesOrdersArray(ByVal strSQL As String) As SalesOrder()
‘This process is inefficient because code executes GetSalesOrder for each order
Dim strConn As String = ConfigurationManager.ConnectionStrings(+ _

“NorthwindConnectionString”).ConnectionString
Dim cnNwind As New SqlConnection(strConn)
Dim cmOrders As New SqlCommand(strSQL, cnNwind)
Dim drOrders As SqlDataReader = Nothing
Try

cnNwind.Open()
drOrders = cmOrders.ExecuteReader()
Dim SalesOrders As New ArrayList
With drOrders

If .HasRows Then
‘Get the OrderIDs to process
Dim OrderIDs As New ArrayList
While .Read

OrderIDs.Add(.GetInt32(0))
End While
.Close()
cnNwind.Close()

387

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 387

Dim intItem As Integer
For intItem = 0 To OrderIDs.Count - 1

Dim objOrder As New SalesOrder
If intItem = OrderIDs.Count - 1 Then

‘Close the connection
objOrder = GetSalesOrder(CType(OrderIDs.Item(intItem), Integer),
False, True)

Else
If intItem = 0 Then

‘Open but don’t close the connection
objOrder = GetSalesOrder(CType(OrderIDs.Item(intItem),
Integer), True, False)

Else
‘Don’t open or close the connection
objOrder = GetSalesOrder(CType(OrderIDs.Item(intItem),
Integer), False, False)

End If
End If
SalesOrders.Add(objOrder)

Next
Return CType(SalesOrders.ToArray(GetType(SalesOrder)), SalesOrder())

Else
Dim strMsg As String = “Orders for parameter supplied not found.”
Dim excSoap As New SoapException(strMsg, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
End If

End With
Catch excSql As SqlException

Dim excSoap As New SoapException(“SQLException: “ + excSql.Message, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
Catch excSys As System.Exception

Dim excSoap As New SoapException(“SystemException: “ + excSys.Message, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
Finally

drOrders.Close()
cnNwind.Close()
drOrders.Dispose()
cmOrders.Dispose()
cnNwind.Dispose()

End Try
End Function

Following is the GetSalesOrder function:

Private Function GetSalesOrder(ByVal intOrderID As Integer, _
By Val blnOpenConnection As Boolean, ByVal blnCloseConnection As Boolean) _
As SalesOrder

‘Populates an SalesOrder object with a single order
Dim strSQL As String = “SELECT * FROM Orders WHERE OrderID = @OrderID “ + _
“; SELECT * FROM [Order Details] WHERE OrderID = @OrderID”

Dim strConn As String = ConfigurationManager.ConnectionStrings(+ _
“NorthwindConnectionString”).ConnectionString

388

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 388

Static cnNwind As SqlConnection
If blnOpenConnection Then

cnNwind = New SqlConnection(strConn)
End If
Dim cmOrder As New SqlCommand(strSQL, cnNwind)

‘Parameterize SELECT query
Dim prmSelect As SqlParameter
prmSelect = New SqlParameter(“@OrderID”, SqlDbType.Int)
prmSelect.Value = intOrderID
cmOrder.Parameters.Add(prmSelect)

Dim drOrder As SqlDataReader = Nothing
Try

If blnOpenConnection Then
cnNwind.Open()

End If
drOrder = cmOrder.ExecuteReader()
With drOrder

If .HasRows Then
Dim objOrder As New SalesOrder
.Read()
objOrder.OrderID = .GetInt32(0)
objOrder.CustomerID = .GetString(1)
objOrder.EmployeeID = .GetInt32(2)
objOrder.OrderDate = .GetDateTime(3)
If Not IsDBNull(.Item(4)) Then

objOrder.RequiredDate = .GetDateTime(4)
Else

objOrder.RequiredDate = #12:00:00 AM#
End If
If Not IsDBNull(.Item(5)) Then

objOrder.ShippedDate = .GetDateTime(5)
Else

objOrder.ShippedDate = #12:00:00 AM#
End If
objOrder.ShipVia = .GetInt32(6)
If Not IsDBNull(.Item(7)) Then

objOrder.Freight = .GetDecimal(7)
Else

objOrder.Freight = 0D
End If
objOrder.ShipName = .GetString(8)
objOrder.ShipAddress = .GetString(9)
objOrder.ShipCity = .GetString(10)
If Not IsDBNull(.Item(11)) Then

objOrder.ShipRegion = .GetString(11)
End If
If Not IsDBNull(.Item(12)) Then

objOrder.ShipPostalCode = .GetString(12)
End If
objOrder.ShipCountry = .GetString(13)

‘Add the OrderDetails array of OrderDetail objects
Dim Details As New ArrayList

389

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 389

Dim objDetail As OrderDetail = Nothing
If .NextResult Then

While .Read
objDetail = New OrderDetail
objDetail.OrderID = .GetInt32(0)
objDetail.ProductID = .GetInt32(1)
objDetail.UnitPrice = .GetDecimal(2)
objDetail.Quantity = .GetInt16(3)
objDetail.Discount = CType(.Item(4), Decimal)
Details.Add(objDetail)

End While
.Close()
If blnCloseConnection Then

cnNwind.Close()
End If

Else
‘Business rule: All orders must have at least one Order detail
Dim strMsg As String = “OrderDetails for “ + _
intOrderID.ToString + “ not found.”

Dim excSoap As New SoapException(strMsg, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
End If
‘Add the array of OrderDetails
objOrder.OrderDetails = _
CType(Details.ToArray(GetType(OrderDetail)), OrderDetail())

Return objOrder
Else

Dim strMsg As String = “Order “ + intOrderID.ToString + “ not found.”
Dim excSoap As New SoapException(strMsg, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
End If

End With
Catch excSql As SqlException

Dim excSoap As New SoapException(“SQLException: “ + excSql.Message, _
SoapException.ClientFaultCode, Context.Request.Url.AbsoluteUri)

Throw excSoap
Catch excSys As System.Exception

Dim excSoap As New SoapException(“SystemException: “ + excSys.Message, _
SoapException.ClientFaultCode, _
Context.Request.Url.AbsoluteUri)

Throw excSoap
Finally

If blnCloseConnection Then
cnNwind.Close()
cnNwind.Dispose()

End If
drOrder.Close()
drOrder.Dispose()
cmOrder.Dispose()

End Try
End Function

390

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 390

Tests with the WSOrdersBE Web service show that this approach for SalesOrder objects takes about twice
as long as returning the same number of Order and OrderDetail objects independently. Alternative
approaches are to employ an O-RM application or fill a typed or untyped DataSet and populate the
SalesOrder objects from the DataSet’s Orders table and related records from its Order_Details table.

Neither alternative approach is likely to improve object-array data retrieval performance substantially.
The performance hit can be minimized by limiting the number of SalesOrder objects returned to a Web
service client.

Bind Object Arrays to DataGridViews
Windows form Web service clients let you bind DataGridViews and Details view text boxes to custom
business objects, including objects returned by Web services, by adding an Object Data Source. The
process is a bit trickier when you bind DataGridViews to array fields of hierarchical objects. The
WinOrdersBEClient.sln project in the \VB2005DB\Chapter09\WinOrdersBEClient folder has two forms,
both of which display Order and OrderDetail objects in DataGridViews. The OrdersBE.vb form
retrieves and updates Order objects and arrays of OrderDetail objects individually by calling the
InsertOrderAndOrderDetails or UpdateOrderAndOrderDetails WebMethod. SalesOrdersBE.vb
retrieves and updates SalesOrder objects.

The WinOrdersBEClient project includes a SoapSnoop.vb class file that copies SOAP request and
response messages to the Windows Clipboard for analysis and debugging. The code for this class is the
original C# version from SQL Server 2005’s Books Online’s “Adding SOAP Trace Support to Client
Applications” topic converted to VB 2005. To activate the SoapSnoop feature, open the Reference.vb
Web Reference class file and prefix the WebMethod of interest’s <System.Web.Services
.Protocols.SoapDocumentMethodAttribute() _ attribute with <SnoopAttribute> _.
As an example, see the sample project’s Reference.vb file before you invoke the Update Web Reference
command. Refreshing the Web reference removes the added <SnoopAttribute> _ decorations.

Windows form Web service clients can generate the SalesOrder object by combining a row from a
DataGridView or Details view text box values for Order objects and similar controls for an ArrayList
or BindingList(Of OrderDetail). This technique minimizes Web service client modifications when
you change the service’s object structure.

Create Object Data Sources and DataGridViews from Web Services
Adding a Web Reference to a Windows form client automatically adds data sources for each object
that’s defined by the Web service’s classes. An ObjectName.datasource file specifies the TypeInfo prop-
erty of a GenericObjectDataSource for each data source. The TypeInfo value is ProjectName
.WebReferenceName.ClassName. For example, adding a Web Reference to the WSOrdersBE Web
service adds Order.datasource, OrderDetail.datasource, and SalesOrder.datasource files to the Web
Reference’s Reference.map node.

Objects must have private fields and public properties (accessors) to enable complex databinding and
autogenerate Design-mode components. If your Web service’s objects don’t meet this requirement, you
won’t see the fields when you expand the data source’s object node.

391

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 391

Drag an object node — Order for this example — to the form, which generates an OrderBindingSource
and OrderBindingNavigator in the tray, and OrderDataGridView and BindingNavigator controls
on the form. Repeat the process for the related object node — in this case OrderDetail — to add an
OrderDetailBindingSource and an OrderDataGridView control. Reflection adds the DataGridView
columns, so they appear in random order.

Optionally, add an instance of your Web service proxy to the tray by dragging the Web service component
from the Toolbox’s ProjectName section to the tray. For this example, the default instance name is
WsOrdersBE1.

Object data sources don’t have Fill... methods, so you must add code to the Form1_Load or a button
event handler. Here’s the code to fill the two DataGridViews from the Order and OrderDetail object
arrays by invoking the appropriate WebMethods:

Private Sub btnLoadGrids_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoadGrids.Click

Dim objOrders As Order() = WsOrdersBE1.GetTopOrders(25)
Dim objDetails As OrderDetail() = WsOrdersBE1.GetTopDetails(25)
With OrderBindingSource

.Clear()

.DataSource = objOrders
End With
With OrderDetailBindingSource

.Clear()

.DataSource = objDetails
End With

End Sub

Build and run the project, and load the DataGridViews. The grids are read-only when you replace their
Design-time BindingSource.DataSource property values —WSOrdersBE.Order and WSOrdersBE
.OrderDetail— with the corresponding object arrays. If your Web service client doesn’t need to
update the objects, the preceding code is adequate (and fast).

You must add the object array elements individually to the BindingSources to enable editing, updating,
and deleting objects and their underlying base table rows with code that’s similar to the following:

Private Sub btnLoadGrids_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoadGrids.Click

Dim wsOrders As New WSOrdersBE
Dim objOrders As Order() = wsOrders.GetTopOrders(25)
Dim objDetails As OrderDetail() = wsOrders.GetTopDetails(25)
Dim intRow As Integer
With OrderBindingSource

.Clear()
For intRow = 0 To objOrders.Length - 1

392

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 392

.Add(objOrders(intRow))
Next

End With
With OrderDetailBindingSource

.Clear()
For intRow = 0 To objDetails.Length - 1

.Add(objDetails(intRow))
Next

End With
End Sub

The emphasized instruction of the preceding code creates a new instance of the WSOrdersBE Web
service proxy if you don’t add a designer instance to the tray.

Use the DataGridView.Columns collection to reorder and format the columns. You can’t sort
DataGridViews or filter BindingSources whose DataSource property value is an array or a generic
BindingList(Of ObjectType), so set the columns’ SortMode property to NotSortable. If you need
sortable and filterable data sources, you must derive a class from BindingList(Of ObjectType) and
override the appropriate base class methods and properties. This section’s Web service client design prin-
ciples apply to any Web service that returns objects or arrays of objects, not just ASP.NET Web services.

The WinOrdersBEClient.sln project in the \VB2005DB\Chapter09\WinOrdersBEClient folder is a
full-featured Web service client that displays, updates, inserts, and deletes Order, OrderDetail, and
SalesOrder objects. The OrdersBE.vb form includes an enhanced version of the preceding code.

Bind DataGrids to Hierarchical Business Objects
You can add the BindingSource, BindingNavigator, and DataGridView or Details text boxes for the par-
ent and child object(s) of a hierarchical business object to the form. The data source designer lets you
drag the SalesOrders data source’s OrderDetails field — an array of OrderDetail objects — to the
form to generate an OrderDetailsBindingSource and OrderDetailsDataGridView.

For this example, rename the OrderDetailsBindingSource to SalesOrderDetailsBindingSource,
and verify that its DataSource property value is SalesOrderBindingSource and its DataMember
property value is OrderDetails. Verify that the child DataGridView’s DataSource property value is
SalesOrderDetailsBindingSource. Your form appears as shown in Figure 9-11.

393

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 393

Figure 9-11

Populating the BindingSources and DataGridViews with parent and child object arrays requires
processing each parent object individually to add its child objects to the BindingSource. If you generate a
generic BindingList(Of ChildObject), you can set the child object BindingSource’s DataSource to
the BindingList and obtain an updatable DataGridView. Creating a generic BindingList requires adding
the following Imports statement to your class:

Imports System.ComponentModel

Here’s the code to load the two DataGridViews with the SalesOrder object array and a
BindingList(Of OrderDetail):

394

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 394

Private Sub btnLoadGrids_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnLoadGrids.Click

Dim objOrders() As SalesOrder
objOrders = WsOrdersBE1.GetTopSalesOrders(25)
With SalesOrderBindingSource

Dim lstDetails As New BindingList(Of OrderDetail)
Dim intRow As Integer
For intRow = 0 To objOrders.Length - 1

‘Add the SalesOrder object
.Add(objOrders(intRow))
‘Add the OrderDetails objects to lstDetails
Dim objDtls As OrderDetail()
objDtls = objOrders(intRow).OrderDetails
Dim intItem As Integer
For intItem = 0 To objDtls.Length - 1

lstDetails.Add(objOrders(intRow).OrderDetails(intItem))
Next

Next
With SalesOrderDetailsBindingSource

‘Set the DataSource to the OrderDetails BindingList
.DataMember = “”
.DataSource = lstDetails

End With
End With

End Sub

The WinOrdersBEClient.sln project’s SalesOrdersBE.vb form includes the production version of the
preceding code.

Update, Insert, and Delete Objects
The basic code for updating Order, OrderDetail, and SalesOrder objects is brief. The Web service deletes
and then adds all OrderDetail items when you update an Order or SalesOrder object. Unlike
DataSets, GenericObjectDataSources don’t store original and current values, so there’s no simple method
to determine OrderDetail edits, insertions, and deletions individually. Thus, you must restrict the con-
tents of the OrderDetailBindingSource or the SalesOrderDetailBindingSource to the OrderDetail items
for the selected Order. The quick and easy approach is to repopulate the OrderDetailBindingSource by
invoking the GetDetailsByOrderID WebMethod when the user selects an Order to update.

Invoking a WebMethod each time the user selects an order violates the “chunky, not chatty” Web service
best practice. Executing WebMethods is a much more resource-intensive process than executing an SQL
statement or stored procedure over an intranet. Thus, a single WebMethod invocation should return or
update one or more complete objects, not individual fields of objects. A more efficient approach is to cre-
ate a copy of the OrderDetail array as a BindingList(Of OrderDetail) object, scan the copy for
OrderDetail objects with matching OrderID values, and add matching objects to the BindingSource’s
DataSource.

395

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 395

The WinOrdersBEClient.sln’s OrdersBE.vb form takes the WebMethod approach in the
SalesOrderDataGridView_SelectionChanged event-handler code. The SalesOrdersBE.vb’s
version scans the BindingList(Of OrderDetail) object, which is faster.

Following is the basic code for inserting or updating a SalesOrder object with the
BindingNavigatorSaveItem_Click event handler:

Private Sub BindingNavigatorSaveItem_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles BindingNavigatorSaveItem.Click

With SalesOrderBindingSource
‘Update or insert a SalesOrder
Dim objSalesOrder As SalesOrder = CType(.Current, SalesOrder)
If objSalesOrder.OrderID = 0 Then

.EndNew(.Position)
WsOrdersBE1.InsertSalesOrder(objSalesOrder)

Else
‘Create an ArrayList of OrderDetails
.EndEdit()
Dim objDetails As New ArrayList
With SalesOrderDetailsBindingSource

Dim intRow As Integer
For intRow = 0 To .Count - 1

objDetails.Add(.Item(intRow))
Next

End With
‘Create a strongly typed array and set the OrderDetails field
objSalesOrder.OrderDetails = _
CType(objDetails.ToArray(GetType(OrderDetail)), OrderDetail())

WsOrdersBE1.UpdateSalesOrder(objSalesOrder)
End If

End With
End Sub

Deleting a SalesOrder and its OrderDetails items invokes WSOrdersBE version 1.0’s DeleteOrder
WebMethod, which deletes related Order Details rows and the Order row from the base tables.

Figure 9-12 shows the WinOrdersBEClient.sln’s SalesOrderBE.vb form after updating an order. The two
forms let you compare the performance of the two object models by varying the number of orders.
Obtaining the data is faster for WSOrdersBE versions 1.x than version 2.0, but the grids fill faster with
SalesOrder objects.

396

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 396

Figure 9-12

Create an ASP.NET Business Objects Web Services Client
The procedure for creating an ASP.NET client for a Web service that returns generic business objects is
similar to that for services that return DataSets. Add a Web reference to the service, specify the service’s
object class as the Object Data Source, and use the Configure Data Source Wizard to set the appropriate
WebMethods as the SelectMethod, InsertMethod, UpdateMethod, and DeleteMethod. Unlike
DataSets, business objects don’t have primary keys defined, so all field values are updatable by default
in GridViews and DetailsViews. The WebOrdersBEClient Web site in the \VB2005DB\Chapter09\
WebOrdersBEClient folder is a modification of the Web form clients described in the section “Replace
SqlDataSources with ObjectDataSources” in Chapter 8. For this example, the Business Object (TypeName
property value) is WSOrdersBE.WSOrdersBE Web service class for the LinkedGridView and
LinkedDetailsView pages. Assigning the GetAllOrders(), returns Orders[] WebMethod as the
SELECT Data Method loads the LinkedGridView.

Publish the WSOrdersBE Web Site to a WSOrdersBE virtual directory (http://localhost/
WSOrdersBE) and enable anonymous access to the Web service to eliminate the need to enable
Windows authentication of the client.

397

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 397

The GetOrderByOrderID(Int32 OrderID), returns Order[] WebMethod loads the LinkedDetailsView
page’s dvOrdersLinked DetailsView with the data for the OrderID specified on the LinkedGridView page.
GetDetailsByOrderID(Int32 OrderID, returns OrderDetail[]) loads the dvDetailsLinked
DetailsView. The UpdateOrder(String CustomerID, Int32 EmployeeID, DateTime OrderDate,
DateTime RequiredDate, DateTime ShippedDate, Int32 ShipVia, Decimal Freight, String
ShipName, String ShipAddress, String ShipCity, String ShipRegion, String ShipPostalCode,
String ShipCountry, Int32 original_OrderID), returns Int32 WebMethod updates the selected
Order object. A similar InsertOrder() Web method adds new orders, and DeleteOrder(Int32
original_OrderID), returns Int32 deletes them. Figure 9-13 shows a sample order in the editing
process.

Figure 9-13

To prevent SOAP exceptions when executing the SelectMethod after deleting an Order object, add a
Private blnDeleted as Boolean variable declaration and the following event handlers:

398

Chapter 9

15_57678x ch09.qxd 11/10/05 11:23 PM Page 398

Private Sub dvOrdersLinked_ItemDeleting(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.DetailsViewDeleteEventArgs) _
Handles dvOrdersLinked.ItemDeleting

blnDeleted = True
End Sub

Private Sub odsOrderQueryString_Selecting(ByVal sender As Object, _
ByVal e As System.Web.UI.WebControls.ObjectDataSourceSelectingEventArgs) _
Handles odsOrderQueryString.Selecting

‘An exception occurs when deleting an order if you don’t redirect
If blnDeleted Then

Response.Buffer = True
Response.Redirect(“LinkedGridView.aspx”)
blnDeleted = False

End If
End Sub

Summary
Following an initial surge of IT-industry enthusiasm, Web services are finally emerging as a practical
method for implementing a standards-based service-oriented architecture. ASP.NET 2.0 Web services
broaden the reach of .NET applications by making data easily available to clients in other domains. The
capability to pass SOAP 1.1 or 1.2 messages through firewalls enables data-intensive operations over the
public Internet.

Before you embark on a production Web service project, you need to understand the many issues that
have impeded the wide-spread adoption of Web services. The two most important Web service design
considerations are interoperability and security. If potential consumers of your Web services use operating
systems other than Windows or programming tools other than Visual Studio, substitute generic business
objects for DataSets. SSL or TLS provides adequate transport security for most Web service message
content. Implementing WS-Security for transport-independent encryption and digital signatures isn’t a
piece of cake and imposes interoperability challenges.

ASP.NET 2.0 doesn’t change the basic process of creating Web services and client Web service proxies.
VS 2005’s built-in Web server makes it easier to test Web services that have WebMethods with primitive
datatype parameters. Copy or publish deployment of completed Web services to IIS virtual directories is
quick and easy. Improvements to the Windows and Web forms’ Add Web Reference dialog enable new
Web service search methods and simplify the form design process for services that return and update
DataSets or custom business objects. ASP.NET 2.0’s ObjectDataSource controls minimizes the code
required to create, update, or delete custom business objects.

Web services that expose hierarchical object structures to represent business entities — such as purchase
orders, sales orders, or invoices — involve object-relational mapping. Unless you’re willing to adopt a
third-party mapping library, you must write Web service code to generate the required object structure.
You also must add a substantial amount of code to your Web service clients to display and edit hierarchical
objects with databound controls.

399

Publishing Data-Driven Web Services

15_57678x ch09.qxd 11/10/05 11:23 PM Page 399

15_57678x ch09.qxd 11/10/05 11:23 PM Page 400

Part IV

SQL Server 2005
and ADO.NET 2.0

16_57678x pt04.qxd 11/10/05 11:27 PM Page 401

16_57678x pt04.qxd 11/10/05 11:27 PM Page 402

Upgrading from
SQL Server 2000 to 2005

Five years is an unusually long interval between versions of a relational database management
system. SQL Server 2000 released to manufacturing on August 8, 2000. By 2004, according to
Gartner Group, SQL Server had gained 20 percent of the total relational database management
systems (RDBMS) market, with traditional market leader Oracle taking 33.7 percent and IBM
holding the top spot with 34.1 percent. Most industry analysts attribute SQL Server 2000’s
increasing market share to easy installation and management, relatively low licensing costs,
bundled online analytical processing (OLAP) capabilities, and free add-ons — such as Reporting
Services, SQLXML 3.0, and SQL Server Accelerator for Business Intelligence. Upgrades from the
freely distributable SQL Server 2000 Desktop Engine (MSDE) undoubtedly are a significant
contributor to SQL Server revenues.

Go to http://www.eweek.com/article2/0,1759,1820629,00.asp for an eWeek arti-
cle that provides more details behind the Gartner market share numbers.

SQL Server 2000’s continuing success in the RDBMS market gave Microsoft’s developers the
breathing room required to ensure that SQL Server 2005’s security, performance, and enhanced feature
set will continue to take Windows and UNIX market shares from Oracle and IBM. SQL Server 2005
Express Edition — the replacement for MSDE — will fend off the threat from open-source RDBMSs,
such as MySQL, PostgreSQL, and, more recently, a semi-open-source version of the venerable Ingres
database from Computer Associates. MSDE offered no built-in graphical management tools; SQL
Express Manager provides a simple GUI to author T-SQL queries and manage SQL 2005 Express
Edition and higher instances.

This chapter briefly describes the differences between SQL Server 2005 editions and their most
important new features, provides sample scripts that illustrate new T-SQL features, and explains
the design of and code behind sample Windows form clients for query notifications, Database
Mail (formerly SQLiMail), and SQL Server native Web services. Chapters 11, “Creating SQL Server
Projects,” and 12, “Exploring the xml Datatype,” supplement this chapter’s introductions to these
topics.

17_57678x ch10.qxd 11/10/05 11:30 PM Page 403

SQL Server 2005 Editions
SQL Server 2005 comes in six editions, each of which has a corresponding SQL Server 2000 edition. The
following sections describe the similarities and differences between the SQL Server 2005 editions and
their SQL Server 2000 counterparts.

Express Edition
Express Edition is a freely distributable version of the SQL Server 2005 database engine that’s intended
to replace MSDE 2000. All 32-bit VS 2005 editions, including the Express versions, install SQL Server
2005 Express as a named instance (SQLEXPRESS) by default. Here’s a brief comparison of the Express
Edition’s and MSDE 2000’s features and specifications:

❑ Express Edition requires installing .NET Framework 2.0 before running the setup program;
MSDE installs MDAC 2.6 during setup.

❑ Express Edition has a maximum database size of 4GB versus MSDE 2000’s 2GB limit.

❑ Express Edition doesn’t have a workload governor. MSDE supports a maximum of five
simultaneously executing queries and queues additional queries for execution.

❑ Express Edition supports one CPU, 1GB RAM, and up to 50 named instances on a single
computer. MSDE 2000 supports 2 CPUs, 2GB RAM, and up to 16 local named instances.

❑ Express Edition installs from a 37MB self-extracting executable or Windows installer file, which
doesn’t include a sample database. MSDE 2000 Release A (MSDE2000A.exe) is 43MB without
online help but it includes the Northwind sample database.

❑ Express Edition doesn’t install an MDAC stack; MSDE 2000 Release A installs MDAC 2.6.

❑ Express Edition doesn’t install SQL Server Agent; MSDE does. Scheduling services requires
Remote Management Objects (RMO) programming.

❑ Express Edition doesn’t support replication publishing; MSDE 2000 supports merge and snap-
shot replication publishing. Both products handle transactional, merge, and snapshot replication
subscriptions. Replication synchronization requires RMO programming, an on-demand add-on
to SQL Express Manager, or scheduling synchronization with Windows Sync Manager.

❑ Express Edition supports .NET CLR integration, and acts as a Service Broker client and database
mirroring witness instance; MSDE 2000 doesn’t.

❑ Express Edition performs a system configuration check during installation and hides advanced
installation options unless the user marks Show Advanced Configuration Options. Advanced
options include the ability to rename the instance, enable SQL Server authentication with mixed
mode, and choose a non-standard collation.

❑ Express Edition installs SQL Server Configuration Manager, a Microsoft Management Console
(MMC) snap-in, which replaces MSDE 2000’s SQL Server Service Manager, and the SQL Server
2005 Surface Area Configuration tool, which enables services and features.

❑ Express Edition installs with only the Shared Memory Provider enabled; network access isn’t
enabled by default. Use SCM to enable TCP/IP, NamedPipes (optional), and the SQL Browser
service for TCP/IP network connectivity.

❑ Express Edition will gain a reduced-functionality version of SQL Server Management studio
during the first half of 2006. MSDE 2000 has no graphical management tools.

404

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 404

❑ Express Edition offers minimal (SqlExpressBOL.msi, 230KB) and abridged (SqlAbridgedBOL.msi,
33MB) versions of SQL Server Books Online as separate downloads. MSDE 2000 users must
download the complete SQL Server 2000 Books Online installer (SqlBOLSetup.msi, 33 MB).

❑ Express Edition supports SQL Server 2005 Reporting Services locally. MSDE databases can
supply data to Reporting Services but MSDE instances can’t store the Report Server Database.

❑ Express Edition provides XCopy application and database deployment with the relative or
absolute path of a Database.mdf file as the value of the connection string’s AttachDBFileName
argument. By default, applications automatically attach and detach the Database.mdf and
Database.ldf files on opening and closing, but detaching is subject to an 8-minute delay for
cleaning up pooled connections. MSDE doesn’t offer this feature.

Following is a list of SQL Server 2005 Developer Edition and higher features that SQL Express doesn’t
install or support:

❑ SQL Server Analysis Services and business intelligence (BI) services, such as data mining.

❑ SQL Server Management Studio, SQL Profiler, Business Intelligence Studio.

❑ Replication publishing.

❑ Full-text search.

❑ Integration Services (formerly Data Transformation Services, DTS)

❑ HTTP services, including SQL Server native Web services.

❑ High-availability services, such as database mirroring and the administrative SQL Command
prompt.

❑ Service Broker communication with the same or other SQL Express database instances. Service
Broker messages must pass through a Developer Edition or higher version to communicate with
another SQL Express instance.

SQL Express’s Server Broker limitations and lack of HTTP services prevent users from running the T-SQL
batch commands in the section “Service Broker,” later in this chapter, and the SqlNativeWebServices.sln
sample project.

Developer Edition
SQL Server 2005 Developer Edition consists of all Standard Edition features except a license for production
use. Developer Edition, which is licensed for development purposes only, is included with VS 2005
Professional and Team Services editions, and Visual Studio Tools for Office (VSTO).

Workgroup Edition
SQL Server 2005 Workgroup Edition is a scaled-down version of SQL Server Standard Edition that’s
intended for production use by small and medium-sized businesses (SMBs). The estimated retail price
(ERP) of a Workgroup Edition license is US$3,899 per processor. Per-processor SQL Server 2005 licenses
for all editions (except Express) treat a multicore processor as a single CPU; Oracle and IBM licenses
count each core as a CPU.

405

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 405

Workgroup Edition has no limit on database size, but has the following restrictions:

❑ Supports a maximum of 3GB of RAM; RAM support in Standard and Enterprise editions is
determined by the Windows operating system.

❑ Supports one or two CPUs; Standard Edition supports a maximum of four CPUs.

❑ Doesn’t support Standard Edition’s database mirroring, two-node clustering, replication pub-
lishing, data warehousing, Analysis Services, data mining, or native XML Web services (HTTP
endpoints).

❑ SQL Server Business Intelligence Development Studio is limited to Reporting Services projects.

❑ Doesn’t include Notification Services or Integration Services.

Standard Edition
SQL Server 2005 Standard Edition incorporates all mainstream SQL Server features: Analysis,
Integration, Notification and Reporting Services, Report Builder, Service Broker, query notifications, BI,
data mining, full-text search, and upgraded management tools. The Standard Edition license ERP is
US$5,999 per processor. For a summary of new SQL Server 2005 features, follow the link to the “SQL
Server 2005 Overview” document at http://www.microsoft.com/sql/2005/.

SQL Server 2005 Developer, Standard, or Enterprise Edition is required to execute all sample VS 2005
projects for this chapter.

Enterprise Edition
SQL Server 2005 Enterprise Edition has no restrictions on the number of CPUs, and adds partitioning for
large tables, high-performance database mirroring, online indexing, online page and file restoration,
advanced transforms for Integration Services, and advanced business analytics. Enterprise Edition usually
runs under Windows Server 2003 Enterprise or DataCenter Edition. The ERP for an Enterprise Edition
license is US$24,999 per processor.

Mobile Edition
SQL Server Mobile Edition is the successor to the Windows CE Edition (SQL Server CE). Integration with
SQL Server 2005 enables developers to use Management Studio with Mobile Edition databases on desktop
computers or devices, including Tablet PCs, take advantage of Integration Services, and create and
synchronize databases with a new Subscription Wizard. Mobile Edition supports bulk copy program
(BCP) table loading, partitioned articles, and column-level tracking. Column-level tracking replicates
changes to individual column values within a row, instead of replacing the entire row.

406

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 406

New SQL Server 2005 Features in Brief
The following sections highlight the new features of SQL Server 2005 and SQL Server 2005 Express in
these categories:

❑ Management tools, including System Management Objects (SMO) and RMO

❑ SQL Server Reporting Services

❑ CLR integration

❑ The xml datatype and XQuery

❑ SQL Native Client

❑ Multiple Active Result Sets (MARS)

❑ Data availability and reliability

These topics have T-SQL script examples, sample Windows form applications, or both:

❑ T-SQL and relational engine enhancements

❑ Service Broker messaging

❑ Query notifications

❑ Database Mail

❑ Native SOAP Web services

SQL Server Books Online provides tutorials for many of the topics that this chapter covers. Online
tutorials use the AdventureWorks or AdventureWorksDW databases. The chapter’s T-SQL scripts and
sample applications use the Northwind database.

New or Updated Management Tools
SQL Server 2005 adds new Configuration Management and SQL Express Manager tools. SQL Server
Management Studio and Business Intelligence Development Studio are major upgrades to their SQL
Server 2000 predecessors. Integration Services is the new name for Data Transformation Services (DTS).
SQL Profiler and Database Tuning Advisor (formerly the Index Tuning Wizard) get a minor facelift and a
few new features.

SQL Server Configuration Manager
SQL Server 2005 and SQL Express install SQL Server Configuration Manager (SSCM). SSCM combines
SQL Server 2000’s Server Network Utility, Client Network Utility, and Services Manager into a
single MMC snap-in. The SSCM snap-in integrates with My Computer’s Management snap-in by
adding an SQL Server Configuration Manager subnode under Services and Applications. You also can
run SSCM from the Programs\Microsoft SQL Server 2005\Configuration Tools\SQL Server
Configuration Manager menu command.

407

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 407

SSCM configures SQL Server 2005’s shared memory (Sm), named pipes (Np), TCP/IP (Tcp), and Virtual
Interface Architecture (VIA) network libraries for servers and clients. VIA is a high-speed interconnect
that replaces TCP/IP for connecting multiple servers in a system area network (SAN). You can enable
or disable each network library for server and client, and set priorities for local client connections by

selecting the Client Network Configuration node (see Figure 10-1). Shared Memory’s priority is fixed
at 1, but you can alter the priorities of TCP/IP, Named Pipes, or VIA.

Figure 10-1

SQL Express users must enable TCP/IP network libraries for the server to enable remote clients to connect
to the SQL Express instance. Similarly, client-side TCP/IP must be enabled for clients to connect to remote
SQL Express instances. TCP/IP is enabled by default for other SQL Server 2005 editions.

SQL Server Surface Area Configuration Tool
The SQL Server 2005 Surface Area Configuration Tool (SACT) is intended to increase SQL Server 2005
security by disabling unused services, remote connections, and features. You open SACT from the
Programs\Microsoft SQL Server 2005\Configuration Tools\SQL Server Surface Area Configuration
menu command, and then click the Services and Connections or Features link. The Surface Area
Configuration for Services and Connections dialog duplicates most capabilities of SSCM’s SQL Server
2005 Services node.

The Surface Area Configuration for Features dialog lets you enable SQL Server 2005 features that are
disabled by default, such as CLR integration (see Figure 10-2). You also can start or stop individual
HTTP Endpoints that define Native Web services.

408

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 408

Figure 10-2

SQL Server Management Studio
SQL Server Management Studio (SSMS) combines SQL Server 2000’s individual Enterprise Manager,
Query Analyzer, Analysis Manager, Report Manager, and Notification Services tools into a unified UI
that’s based on the VS 2005 IDE. You can manage SQL Server 2005, earlier SQL Server versions, and SQL
Server Mobile Edition, Notification Services, replication, and Reporting Services in a single UI. SMSS lets
you create and save solutions containing projects that incorporate connection, query, and related
miscellaneous files.

Query Editor replaces Query Analyzer and lets you write T-SQL scripts without a database connection.
Template Explorer lets you select one of more than 100 predefined T-SQL queries. You also can write
SQL Mobile, Multidimensional Expressions (MDX), XML for Analysis (XML/A), and Data Mining
Extensions (DMX) scripts. Query Editor includes an XML editor for resultsets that return XML
documents and a graphical execution plan tool for SQL Server and SQL Server Mobile Edition. Figure
10-3 shows an SSMS project with Object Explorer, Query Editor, and Template Explorer windows open.

409

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 409

Figure 10-3

A new SQLCMD mode lets Query Editor scripts execute operating system instructions with SMO. The
sqlcmd.exe utility supplements osql.exe; sqlcmd.exe uses SMO and an OLE DB–based connection. You
can continue to use osql.exe, if you don’t want or need SMO’s additional capabilities.

The section “SQL Management Objects,” later in this chapter, provides a brief description of SMO and
RMO objects.

Business Intelligence Development Studio
Business Intelligence Development Studio (BIDS) replaces and extends the capabilities of SQL Server
2000’s Analysis Manager. BIDS lets you design and edit data source views, cubes, dimensions, mining
models, reports, and Integration Services packages in a BI solution. A BI solution is a VS 2005–style
container that can contain multiple Reporting Services, Analysis Services, and data mining projects.
Figure 10-4 shows BIDS with the sample AdventureWorksDW database’s AdventureWorks cube open.

410

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 410

Figure 10-4

Integration Services
SQL Server Integration Services (SSIS) is SQL Server 2005’s enhanced version of Data Transformation
Services. The graphical Integration Services Designer can extend packages created by the upgraded SSIS
Import and Export Wizard, which provides improved support for flat-file import. You can customize
column widths and data types, then preview the result to make sure data isn’t truncated. The wizard
also lets you specify creation of a new database, a new table, or new columns in an existing table.

SQL Management Objects
SQL Management Objects (SMO) and Replication Management Objects (RMO) replace SQL Distributed
Management Objects (SQL-DMO). SMO and RMO are .NET 2.0 assemblies that provide the Microsoft
.SqlServer.Management and Microsoft.SqlServer.Replication namespaces. Both objects
deliver improved performance, support new SQL Server 2005 features, and are compatible with SQL
Server 2000 and 7.0. SMO eases your transition to the new managed-code version by using SQL-DMO
terminology where possible.

You program SMO and DMO operations with VS 2005 by adding .NET references to Microsoft
.SqlServer.Smo and MicrosoftSqlServer.Rmo. Add the references to a sample project and explore the
classes with Object Browser to learn more about using managed code to automate SMO or RMO tasks.

411

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 411

SQL Profiler
SQL Server 2005 Profiler is a substantial upgrade to the SQL Server 2000 version. The new Profiler works
with Analysis Services, correlates with Performance Monitor, saves Showplans as XML files that you can
import into Query Editor, and you can save XML-formatted trace result files to open for replay.

Database Tuning Advisor
The Database Tuning Advisor replaces SQL Server 2000’s Index Tuning Wizard, correlates partitioning,
and adds the capability to save and import XML files.

Reporting Services
SQL Server 2005 installs SQL Server Reporting Services during the setup process and adds ReportServer
and ReportServerTempDB databases to a local or remote SQL Server instance. SQL Express requires you
to specify the addition of Reporting Services during the setup process. You create basic reports in
Business Intelligence Development Studio by opening a new project and selecting Report Project Wizard
from the templates list. Add a data source, select the report type and style, and design a query. For a
matrix (crosstab) report, specify query fields as page, row, or column headers and detail items. Figure
10-5 shows a preview of a wizard-generated matrix report based on the OrdersByProduct1997 rollup
table that you create in the section “Explore the PIVOT and UNPIVOT Operators,” later in this chapter.

Figure 10-5

412

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 412

BIDS’ Report Builder is a graphical design tool that enables end users to design ad hoc reports. In this
case, “end users” refers to business managers who want to modify reports but aren’t conversant with
SQL syntax. Report Builder is based on ActiveViews, a third-party product that Microsoft purchased in
early 2004.

CLR Integration
Microsoft cites CLR integration as one of the primary incentives for migrating or upgrading to SQL
Server 2005. CLR integration is much more likely to appeal to VS 2005 developers than to DBAs and IT
management. Whether production databases will run in-process .NET 2.0 assemblies on a routine basis
remains an open question. Acceptance depends on the justification for moving managed code from the
middle tier to the database engine to “get closer to the data.”

CLR integration isn’t enabled by default. Executing SELECT * FROM sys.sysconfigures in the master
database and scrolling to config variable 1562 shows a value of 0 after installation. EXECUTE sp_
configure returns 0 for config_value and run_value. To enable and verify CLR integration with T-SQL,
execute the following statements:

EXECUTE sp_configure ‘clr enabled’, 1
RECONFIGURE
EXECUTE sp_configure

VS 2005 lets you write stored procedures, user-defined functions (UDFs), triggers, user-defined types
(UDTs), and user-defined aggregates (UDAs) by choosing the SQL Server Project template for a new
project and selecting or creating a connection to the target SQL Server 2005 database. SQL Server projects
add references to sqlaccess, System, System.Data, and System.Xml namespaces. The Add New Item
dialog includes Stored Procedure, User-Defined Type, Aggregate, User-Defined Function, Trigger, and
Class Diagram templates. Choosing a template — other than Class Diagram — adds a Public Class or
Partial Public Class with Imports statements and stub code for the selected object type. Imports
System.Data.SqlServer replaces Imports System.Data.SqlClient for SQL Server classes.

After you’ve written the code for the classes you want to implement, press F5 to build and deploy the
objects to the target database. The objects appear under the appropriate nodes in VS 2005’s Server Explorer
and SSMS’s Object Explorer. Object Explorer’s Assemblies node gains an SqlServerProjectName item.

As mentioned earlier, Chapter 11 is devoted to creating and deploying SQL Server projects.

The xml Data Type and XQuery Implementation
SQL Server 2005 and earlier versions let you store XML documents in text columns; varchar(max)
and nvarchar(max) are SQL Server 2005’s preferred data types for long ANSI or Unicode strings.
Storing an exact copy of the XML document preserves document hierarchy, element order, and recursive
structures. However, the client application must retrieve the entire document to one of .NET 2.0’s XML
objects — such as XmlReader, XmlDocument, or XPathDocument— to extract individual elements or
element groups. If the client application edits the document, the UPDATE operation replaces the entire
original version.

413

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 413

An alternative approach is to map the XML document’s structure to columns of one or more relational
tables from which you obtain an XML view of the data. SQLXML 3.0 or later defines annotated XML
schemas (AXSD) for mapping. XPath queries against the XML view return specific XML content.
Updategrams, which are similar to the DataSet updategram format, enable INSERT, UPDATE, and
DELETE operations on the mapped tables. However, XML views don’t preserve element order and don’t
support recursive schemas, which might be issues for some applications.

SQL Server 2005’s new xml data type overcomes the limitations of XML document copies and XML
views by providing a native representation of XML documents or fragments, but not both, in a single
column. The XML content must be well-formed, but schemas are optional. Assigning a schema to the
xml column enables document validation and strong data typing. Adding a primary XML index, which
indexes all tags, values, and paths, improves query performance and enables adding secondary indexes
on paths, properties, and values. A full-text search on xml columns disregards XML markup, which
includes tags and attribute values.

Chapter 12, “Exploring the xml Data Type,” shows you how to load, index, and retrieve data from xml
columns.

You can retrieve data from xml columns with T-SQL’s implementation of XQuery, such as the following:

SELECT Order.value (‘(/OrderID)[1]’, ‘nvarchar(8)’),
Order.value (‘(/CustomerID[1]’, ‘nvarchar(5)’),
Orders.value (‘(/EmployeeID[1]’, ‘nvarchar(1)’)

FROM Orders

The preceding query returns scalar OrderID, CustomerID, and EmployeeID values from Order column
documents in all rows of the Orders table. Alternatively, you can use XQuery’s FLWOR (for, let,
where, orderby, return) syntax, which resembles SQL. SQL Server 2005’s XQuery engine doesn’t
process the let operator, which enables defining variables. The W3C’s XQuery 1.0 recommendation
doesn’t support updates, so Microsoft added proprietary XQuery extensions (XML DML) to enable
updating data in xml columns.

Chapter 12 also introduces you to SQL Server 2005’s
XQuery syntax.SQL Native Client

The SQL Native Client — commonly referred to by the acronym SNAC — replaces SQL Server’s OLE DB
(SQLOLEDB.dll) and ODBC (SQLSRV32.dll) data providers with a single DLL (Sqlncli.dll). SNAC’s
objective is to eliminate the need to update the MDAC stack to accommodate new SQL Server 2005
features. Sqlncli.dll doesn’t require clients to install MDAC 2.8 or 2.9; MDAC 2.5 SP3 or later is sufficient.
You can upgrade Windows 2000 and later clients with the redistributable Windows Installer version
(Sqlncli.msi), which is included on the SQL Server 2005 installation CD-ROM and available for
download from MSDN.

Managed data providers don’t use SNAC, which is intended for downlevel applications only.

SNAC enables ActiveX Data Objects (classic ADO) applications to handle new SQL Server 2005 objects
and data types, such as user-defined types (UDTs) and xml, varchar(max), nvarchar(max), and
varbinary(max) columns. It also lets Microsoft Office applications that rely on ODBC, such as Access
(for importing data from or linking SQL Server tables to Jet databases), substitute SQL Native Client for

414

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 414

the aging SQL Server ODBC provider. SQL Native Client appears above SQL Server in the Create New
Data Source dialog’s list of ODBC drivers. Selecting SNAC substitutes DRIVER={SQL Native Client}
for DRIVER={SQL Server} in the ODBC connection string. Figure 10-6 shows the last step in the process
of linking SQL Server 2005 AdventureWorks tables to an Access 2003 Jet database with SNAC.

Figure 10-6

Access 2003 displays values from linked tables’ xml and datatype(max) columns as Text fields with
a maximum length of 255 characters. You receive an error message when you attempt to update a linked
table that contains an xml column. You can create an Access data project from an existing SQL Server
2005 database, but you can’t use Design view to modify table structures. The next Access version might
support new SQL Server 2005 data types correctly, but managing the xml datatype will be a challenge.

Multiple Active Result Sets (MARS)
SQL Server 2005’s new MARS feature lets you execute multiple SqlDataReaders on a single connection.
MARS appears to be more of a marketing than a developer feature; Oracle databases have offered
a MARS equivalent in the last several versions. MARS also lets you open one or more SqlDataReaders
from SqlCommands and execute UPDATE, INSERT, or DELETE statements from separate SqlCommands.
In this case, your code can update tables while the SqlDataReader iterates them.

You enable MARS by adding ;MultipleActiveResultSets=True to the end of your current connection
string. Similarly, disable MARS explicitly with a ;MultipleActiveResultSets=False name-value pair.
MARS prevents “There is already an open DataReader ...” messages when you execute multiple
SqlCommands simultaneously.

Microsoft’s Angel Saenz-Badillos MARS is concerned that “this feature is going to be misused” by .NET
developers (http://blogs.msdn.com/angelsb/archive/2004/09/07/226597.aspx). MARS
improves performance compared with multiple pooled connections only in a very limited range of
scenarios. Otherwise, MARS is likely to exact a performance penalty. Saenz-Badillos also casts a jaundiced

415

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 415

eye on session pooling_the technique used to implement MARS_in a related blog post (http://blogs
.msdn.com/angelsb/archive/2005/01/13/352718.aspx). The general consensus of Microsoft and
independent developers is: Unless you must process simultaneous commands on a single connection,
don’t use MARS in production projects.

The “Multiple Active Result Set (MARS) in SQL Server 2005” white paper (http://msdn
.microsoft.com/library/en-us/dnsql90/html/MARSinSQL05.asp) provides a detailed
description of data access with MARS and the SQL Server native provider.

Data Availability and Reliability Enhancements
It’s a common practice to partition tables of very large databases. For example, many DBAs divide
transactional databases into active (current month) and historical (prior months) partitions. SQL Server
2005’s new approach to table partitioning places all partitions in a single table with specific filegroups
that correspond to the partitioning key value. This approach simplifies partition and query design,
reduces partition maintenance, and improves query performance. T-SQL’s CREATE PARTITION
FUNCTION statement establishes the number and domain of the partitions of a partitioned table or index.
CREATE PARTITION SCHEME statement maps a partitioned table’s partitions or index to the filegroups
you specify.

Database mirroring lets you create hot-standby database servers that can substitute for failover clusters
and are much easier to manage. You can mirror databases to a remote location for disaster recovery.
You also can combine failover clusters and database mirroring to achieve super-high availability. To
configure a database for mirroring, open the database’s Properties dialog and select the Mirroring page.
You can select Synchronous with Automatic Failover, Asynchronous, or Synchronous mirroring modes.
Asynchronous mirroring improves update performance at the expense of full data integrity when
substituting the mirror for the principal instance. Automatic Failover requires an SQL Server 2005
witness instance to monitor the status of the principal and mirror instances and control the failover.

Members of the sysadmins role can use a dedicated Admin connection when the target server won’t
accept new connections. To open a dedicated Admin connection from SSMS, type ADMIN:ServerName
as the Server Name value in the Connect to Server dialog.

T-SQL and Database Engine Enhancements
SQL Server 2005 implements most ANSI SQL-99 elements and a few ANSI SQL-2003 elements, such as
the bigint data type, windowed functions (RANK() OVER, DENSE_RANK() OVER, and ROW_NUMBER()
OVER), and TABLESAMPLE. SQL Server 2005 continues to use proprietary features rather than ANSI SQL-
2003 elements, such as SQL/XML. SQL/XML has nothing in common with Microsoft SQLXML 3.0 or
the new xml data type.

The following sections provide brief descriptions and generic syntax examples of SQL Server 2005’s new
T-SQL and related database engine features. Later sections include working examples of the more
important SQL Server 2005 T-SQL additions with sample SQL scripts and Windows form clients.

416

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 416

The following and later sections’ sample queries require attaching the Northwind database to your SQL
Server 2005 instance. You can download the scripts to create the Northwind and pubs sample databases
from a link on the http://www.microsoft.com/sql/downloads/ page. The \VB2005DB\
Chapter10\T-SQLEnhancements folder contains the sample T-SQL scripts. For more extensive
coverage of SQL Server 2005’s T-SQL enhancements, see “Take Advantage of New T-SQL Features”
(http://www.ftponline.com/vsm/2005_09/magazine/columns/databasedesign/).

TRY . . . CATCH Exception Handling
Structured BEGIN TRY...END TRY and BEGIN CATCH and END CATCH blocks replace traditional T-SQL IF
@@ERROR <> 0 tests. CATCH blocks can use any or all of these new system functions: ERROR_MESSAGE,
ERROR_NUMBER, ERROR_SEVERITY, and ERROR_STATE. These functions return NULL if executed outside a
CATCH block. The BEGIN CATCH statement must be on the line following the END TRY statement, as
shown here:

BEGIN TRY
-- Batch statements

END TRY
BEGIN CATCH

-- Error handling statements, typically
SELECT ERROR_NUMBER() AS ErrorNumber,

ERROR_LINE() AS ErrorLine,
PROCEDURE() As ProcedureName,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState,
ERROR_MESSAGE() as ErrorMessage;

END CATCH

You can nest TRY...CATCH blocks with the following generic T-SQL statement:

BEGIN TRY
-- Outer level statements

END TRY
BEGIN CATCH

-- Outer level error handling statements
BEGIN TRY
-- Inner level statements
END TRY
BEGIN CATCH
-- Inner level error handling statements
END CATCH

END CATCH

Following is an example of a simple DELETE query (TryCatchBlocks.sql) with a TRY...CATCH block:

USE Northwind;
GO
BEGIN TRAN;
GO

417

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 417

BEGIN TRY
-- Causes a constraint violation on the Order Details table.
DELETE FROM Products WHERE ProductID = 15;

END TRY
BEGIN CATCH

SELECT ERROR_NUMBER() AS ErrorNumber,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() as ErrorState,
ERROR_MESSAGE() as ErrorMessage;

END CATCH
GO
ROLLBACK TRAN;
GO

The preceding query returns a rowset with 547 as ErrorNumber, 16 as ErrorSeverity, 0 as ErrorState, and
DELETE statement conflicted with REFERENCE constraint ‘FK_Order_Details_Products’.
The conflict occurred in database ‘Northwind’, table ‘Order Details’, column
‘ProductID’. as ErrorMessage column values.

The CATCH block doesn’t trap warnings or errors with a severity level greater than 20, which usually
terminate the connection.

PIVOT and UNPIVOT Operators
The PIVOT operator rotates a table’s columns and rows to generate summary crosstab reports. PIVOT adds
columns that you specify by an IN predicate list. The IN predicate matches — and usually aggregates —
unique values of the column specified by the FOR operator in columns added to the SELECT statement.
The resulting rowset is identical to that produced by an Access crosstab query and is similar to a static
Excel PivotTable.

Here’s the generalized syntax of the PIVOT and FOR operators:

SELECT RowHeader1, RowHeader2, ... ColValue1 AS ColHeader1,
ColValue2 AS ColHeader2, ColValue3 AS ColHeader3, ...

FROM TableName
PIVOT (Aggregate(ValueColName) FOR ValueSourceColName

IN(ColValue1, ColValue2, ColValue3, ...))

The PIVOT operator replaces the complex SQL statements required by earlier SQL Server versions to
generate crosstab tables. Unlike Access crosstabs, which can generate the added columns from an
expression, PIVOT operators require a specified set of column header names.

The section “Explore the PIVOT and UNPIVOT Operators,” later in this chapter, has examples for
creating a crosstab table and normalizing the crosstab table by converting the repeating columns
to rows.

SNAPSHOT Transaction Isolation
SQL 2005 introduces a new SNAPSHOT transaction isolation level, which implements an optimistic
concurrency error detection method that isn’t in the ANSI SQL-99 specification. Each SNAPSHOT
transaction behaves as if it has received a copy of the data that was committed when the first statement

418

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 418

after BEGIN TRANSACTION executes. SNAPSHOT isolation doesn’t request read locks during execution, so
it increases data availability when compared to SQL Server’s default READ COMMITTED isolation. READ
COMMITTED isolation holds locks on all data read by the transaction for its duration and implements
pessimistic concurrency.

Pessimistic concurrency with READ COMMITTED isolation doesn’t apply to DataSet updates with opti-
mistic concurrency specified for DELETE, INSERT, and UPDATE commands. In this case, stored proce-
dures or SQL statements manage concurrency conflicts.

SNAPSHOT is the only isolation level that implements optimistic concurrency by row versioning and isn’t
subject to dirty or non-repeatable reads, or phantom rows. A SNAPSHOT transaction won’t commit if a
second transaction on another connection modifies the same data after the first transaction starts and
before it completes.

For detailed information on row versioning, see Books Online’s “Isolation Levels in the Database
Engine” and “Choosing Row Versioning” topics.

Enabling SNAPSHOT transactions within a database requires executing an ALTER DATABASE Name
SET ALLOW_SNAPSHOT_ISOLATION ON statement, which enables row versioning. You issue a
T-SQL SET TRANSACTION_LEVEL SNAPSHOT statement or execute ADO.NET 2.0’s SqlConnection
.BeginTransaction(IsolationLevel.Snapshot) instruction to create a snapshot transaction object.

You can force READ COMMITTED isolation to use row versioning by issuing a T-SQL SET READ_COMMITTED
_SNAPSHOT ON statement, which changes READ COMMITTED isolation to optimistic concurrency, but
permits non-repeatable reads and phantom rows.

Row versioning is best suited to scenarios where read operations predominate over transacted updates
and the probability of concurrency conflicts is low. Row versioning consumes additional resources and
adds 14 bytes to each row header. The tempdb database stores row versions, so I/O operations between
the user database and tempdb might affect transaction performance.

TOP n and TABLESAMPLE Operators
The TOP operator now supports a numeric variable value, in addition to an explicit number for TOP (n)
rows or TOP (n) PERCENT. The parentheses are required if you specify a variable, which SQL Server 2005
converts to bigint for TOP (n) or float for TOP (n) PERCENT. You can pass the variable as a parameter
to SQL queries or stored procedures, which eliminates the need for dynamic SQL or individual SELECT
statements in stored procedures to support multiple values.

The FROM clause’s TABLESAMPLE operator resembles the TOP operator but returns a random sampling of
rows from a query. SELECT * FROM TableName TABLESAMPLE SYSTEM (10 ROWS) [REPEATABLE (n)]
returns a representative set of about ten rows. SELECT * FROM TableName TABLESAMPLE SYSTEM (25
PERCENT) [REPEATABLE (n)] returns all rows from 25 percent of the pages. Thus, the number of rows
is approximately 25 percent. The TABLESAMPLE operator is useful for quickly estimating aggregate
values from tables with a very large number of records.

419

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 419

As an example, the following T-SQL expression (OrdersTablesample.sql returns two resultsets from the
840-row Orders table:

USE Northwind;
GO
SELECT * FROM Orders TABLESAMPLE SYSTEM (10 PERCENT) REPEATABLE (1);
GO
SELECT * FROM Orders TABLESAMPLE SYSTEM (84 ROWS) REPEATABLE (2);
GO

Tests show the first resultset has 79 rows and the second has 83 rows; you’re likely to receive different
numbers of rows when you execute the preceding query.

Rank and Windowed Table Functions
Rank and windowed table functions return row number values. The following query (ProductsRank.sql)
generates RANK(), DENSE_RANK(), and ROW_NUMBER() values for the Northwind Products table’s
UnitPrice column:

USE Northwind
GO
SELECT ProductID, ProductName, UnitPrice,
RANK() OVER (ORDER BY UnitPrice DESC) AS Rank,
DENSE_RANK() OVER (ORDER BY UnitPrice DESC) AS DenseRank,
ROW_NUMBER() OVER (ORDER BY UnitPrice DESC) AS RowNumber
FROM Products
GO

This table represents a subset of the preceding query’s resultset that demonstrates the difference
between RANK() and DENSE_RANK().

ProductID ProductName UnitPrice Rank DenseRank RowNumber

43 Ipoh Coffee 46.00 9 9 9

28 Rössle Sauerkraut 45.60 10 10 10

27 Schoggi Schokolade 43.90 11 11 11

63 Vegie-spread 43.90 11 11 12

8 Northwoods Cranberry Sauce 40.00 13 12 13

17 Alice Mutton 39.00 14 13 14

12 Queso Manchego La Pastora 38.00 15 14 15

56 Gnocchi di nonna Alice 38.00 15 14 16

69 Gudbrandsdalsost 36.00 17 15 17

420

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 420

RANK() and DENSE_RANK() designate ties with the same value, as illustrated by row numbers 11 and 12,
and 15 and 16. RANK() values have gaps in the ranking after encountering ties; DENSE_RANK() generates
sequential values (no gaps) following ties.

You can add the PARTITION ColumnName operator to window (group) rankings and row numbers into
groups based on unique values in ColumnName. Ranking and row numbers start over for each new partition.
The following query (ProductsPartition.sql) partitions the preceding resultset by CategoryID values:

USE Northwind
GO
SELECT CategoryID, ProductID, ProductName, UnitPrice,
RANK() OVER (PARTITION BY CategoryID ORDER BY UnitPrice DESC) AS Rank,
DENSE_RANK() OVER (PARTITION BY CategoryID ORDER BY UnitPrice DESC) AS DenseRank,
ROW_NUMBER() OVER (PARTITION BY CategoryID ORDER BY UnitPrice DESC) AS RowNumber
FROM Products
GO

The following subset of the preceding query’s resultset illustrates the effect of adding PARTITION BY
CategoryID to the query.

ProductID ProductName UnitPrice Rank DenseRank RowNumber

1 70 Outback Lager 15.00 8 5 8
1 67 Laughing Lumberjack Lager 14.00 9 6 9
1 34 Sasquatch Ale 14.00 9 6 10
1 75 Rhönbräu Klosterbier 7.75 11 7 11
1 24 Guaraná Fantástica 4.50 12 8 12
2 63 Vegie-spread 43.90 1 1 1
2 8 Northwoods Cranberry Sauce 40.00 2 2 2
2 61 Sirop d’érable 28.50 3 3 3
2 6 Grandma’s Boysenberry Spread 25.00 4 4 4
2 4 Chef Anton’s Cajun Seasoning 22.00 5 5 5

You can further subdivide partitions into n groups (buckets) of approximately the same number of rows
by adding an NTILE(n) OVER (...) expression, which returns the consecutive group number 1...n.
Aggregate expressions in the SELECT list preclude use of the ORDER BY clause.

Common Table Expressions and Recursive Queries
Common table expressions (CTEs) are temporary, in-memory table objects that can reference themselves.
Recursive CTEs enable recursive queries, which typically return tables containing hierarchical data. A
recursive query has a minimum of two SELECT statements; the first creates the anchor member, and the
second defines the recursive member. Recursion terminates when no more records are added by the
recursive member.

You create a CTE by executing WITH CTEName(ColumnList) AS (SELECT statement) to return the
anchor member row(s). Recursive CTE’s add UNION ALL and a second SELECT statement to return the
recursive rows. The following recursive query (EmployeeDirectReportsCTE.sql) returns Northwind
employee FirstName and LastName, EmployeeID, and ReportsTo ID values:

421

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 421

USE Northwind
GO
WITH DirectReports (Name, EmployeeID, ReportsTo) AS
--Anchor member
(SELECT FirstName + ‘ ‘ + LastName, EmployeeID, ReportsTo
FROM Employees
WHERE ReportsTo IS NULL
UNION ALL
--Recursive member
SELECT emp.FirstName + ‘ ‘ + emp.LastName, emp.EmployeeID, emp.ReportsTo
FROM Employees emp INNER JOIN DirectReports dr
ON emp.ReportsTo = dr.EmployeeID)

SELECT * FROM DirectReports;
GO

The section “Replace the Source Table with a Common Table Expression,” later in this chapter, illustrates
use of a CTE with the new PIVOT operator.

FOR XML Enhancements
The most significant new FOR XML feature is the capability to generate nested queries with the TYPE
directive, which returns an xml type for inner, outer, or both queries. Adding the TYPE directive to both
queries lets you populate xml columns with individual fragments of the structure that you define by the
FOR XML AUTO clause.

As an example, the following query (NestedQueryType.sql) returns a nested structure of element-centric
Orders fragments as an xml type:

USE Northwind
GO
SELECT TOP 10 OrderID, CustomerID, EmployeeID, OrderDate,

(SELECT ProductID, CONVERT(decimal(6,2), UnitPrice) as UnitPrice, Quantity,
CONVERT (decimal(3,3), Discount) As Discount
FROM [Order Details] AS OrderDetail
WHERE OrderDetail.OrderID = Orders.OrderID
FOR XML AUTO, ELEMENTS, TYPE)

FROM Orders
ORDER BY OrderID DESC
FOR XML AUTO, ELEMENTS, TYPE
GO

Following is a subset of the Orders fragments (NestedQueryType.xml) returned by the preceding query:

<Orders>
<OrderID>11076</OrderID>
<CustomerID>BONAP</CustomerID>
<EmployeeID>4</EmployeeID>
<OrderDate>1998-05-06T00:00:00</OrderDate>
<OrderDetail>

<ProductID>6</ProductID>
<UnitPrice>25.00</UnitPrice>
<Quantity>20</Quantity>
<Discount>0.250</Discount>

422

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 422

</OrderDetail>
<OrderDetail>

<ProductID>14</ProductID>
<UnitPrice>23.25</UnitPrice>
<Quantity>20</Quantity>
<Discount>0.250</Discount>

</OrderDetail>
<OrderDetail>

<ProductID>19</ProductID>
<UnitPrice>9.20</UnitPrice>
<Quantity>10</Quantity>
<Discount>0.250</Discount>

</OrderDetail>
</Orders>
<Orders>

<OrderID>11075</OrderID>
<CustomerID>RICSU</CustomerID>
<EmployeeID>8</EmployeeID>
<OrderDate>1998-05-06T00:00:00</OrderDate>
<OrderDetail>

<ProductID>2</ProductID>
<UnitPrice>19.00</UnitPrice>
<Quantity>10</Quantity>
<Discount>0.150</Discount>

</OrderDetail>
<OrderDetail>

<ProductID>46</ProductID>
<UnitPrice>12.00</UnitPrice>
<Quantity>30</Quantity>
<Discount>0.150</Discount>

</OrderDetail>
<OrderDetail>

<ProductID>76</ProductID>
<UnitPrice>18.00</UnitPrice>
<Quantity>2</Quantity>
<Discount>0.150</Discount>

</OrderDetail>
</Orders>

Some sample XML document files in the \VB2005DB\Chapter10\T-SQLEnhacements folder have a
top level <addedRoot> element to enable viewing the documents in IE.

You can combine an element-centric representation of the outer query with an attribute-centric
inner query by omitting the ELEMENTS directive from the inner query. Here’s the same subset
(NestedQueryMixed.xml) returned by NestedQueryMixed.sql:

<Orders>
<OrderID>11076</OrderID>
<CustomerID>BONAP</CustomerID>
<EmployeeID>4</EmployeeID>
<OrderDate>1998-05-06T00:00:00</OrderDate>
<OrderDetail ProductID=”6” UnitPrice=”25.00” Quantity=”20” Discount=”0.25” />
<OrderDetail ProductID=”14” UnitPrice=”23.25” Quantity=”20” Discount=”0.25” />
<OrderDetail ProductID=”19” UnitPrice=”9.20” Quantity=”10” Discount=”0.25” />

</Orders>

423

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 423

<Orders>
<OrderID>11075</OrderID>
<CustomerID>RICSU</CustomerID>
<EmployeeID>8</EmployeeID>
<OrderDate>1998-05-06T00:00:00</OrderDate>
<OrderDetail ProductID=”2” UnitPrice=”19.00” Quantity=”10” Discount=”0.15” />
<OrderDetail ProductID=”46” UnitPrice=”12.00” Quantity=”30” Discount=”0.15” />
<OrderDetail ProductID=”76” UnitPrice=”18.00” Quantity=”2” Discount=”0.15” />

</Orders>

If you don’t add a TYPE directive to the inner query, FOR XML AUTO escapes (entitizes) the inner
query’s tag brackets, which creates well-formed but useless fragments (NestedQueryElements.xml).
Thus, the TYPE directive is essential for at least the inner query of nested queries.

Other new FOR XML features include the ability to add an inline XML schema with an optional namespace
by adding an XMLSCHEMA(‘namespace’) directive, specify a root element name for inner and outer
queries with ROOT(‘elementName’), and use the ELEMENT directive’s XSINIL parameter to replace
missing NULL-valued elements with <elementName xsi:nil=”true” /> elements. The new FOR XML
PATH mode lets you designate individual query columns as elements or attributes.

The XMLSCHEMA directive is limited to FOR XML AUTO and FOR XML RAW modes. The ROOT directive
applies only to FOR XML RAW and FOR XML PATH queries.

The later “Customize FOR XML Queries” section shows you how to take advantage of these new features
and describes some of their limitations.

DDL Triggers
New Data Definition Language (DDL) triggers fire on execution of CREATE, ALTER, or DROP statements.
DDL triggers give admins precise control over users’ DDL permissions for specific objects or generate
detailed audit events for object creation, modification, or deletion.

Data Encryption with Symmetric or Asymmetric Keys
SQL Server 2005 Developer Edition and higher provides column-level and cell-based data encryption to
enable conformance with government-mandated security regulations, such as the federal Health Insurance
Portability and Accountability Act (HIPAA). Data encryption also exempts organizations from the
provisions of California’s Information Practices Act (SB 1386). Hierarchical encryption and key management
services rely on a Service Master Key for an SQL Server instance and a Database Master Key for each
database that contains encrypted data. Installing SQL Server creates the master system database’s Service
Master Key automatically.

You must execute CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘strong_password’ to create a
TRIPLE_DES-encrypted Database Master Key. You can encrypt specific cleartext data as varbinary cipher-
text with an asymmetric key, an X.509v3 certificate, or a symmetric key. Symmetric key encryption with a
strong password offers the best performance; asymmetric keys and certificates aren’t recommended for
encrypting or decrypting data in table columns.

424

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 424

Data encryption is beyond the scope of this chapter. Search Books Online for encrypt with SQL
Server Database Engine as the Technology filter for a complete list of encryption-related T-SQL topics.
You can read the online article, “Encrypt and Decrypt Data in Yukon,” about SQL Server 2005
encryption and download a sample VB 2005 encryption project at http://www.ftponline.com/
vsm/2005_08/magazine/features/rjennings/.

Service Broker
Service Broker is a new feature that provides reliable asynchronous transactional messaging between local
or remote databases. Databases persist sets of related messages, called conversations, which ensure that
messages survive restarts or failovers and are preserved in backups. Messages between two databases
(one-to-one messages) are called dialogs. Service Broker and Microsoft Message Queue (MSMQ) have
similar architectures. MSMQ supports messaging between Windows applications; Service broker sup-
ports messaging within and between instances of SQL Server. Service Broker is especially efficient for
managing interactions between stored procedures and handling asynchronous interactions within a
database, such as asynchronous triggers. Several other new SQL Server 2005 features, such as query
notification services and Database Mail, depend on the Service Broker infrastructure.

SQL Server 2005 Express can receive Service Broker messages from and send messages to SQL Server
2005 Developer Edition or higher instances but can’t use Service Broker to communicate with other
SQL Server 2005 Express instances.

Set Up a Northwind Service Broker
Creating a simple, one-way Service Broker for the Northwind database involves the following steps:

1. Enable Service Broker in the database by executing an ALTER DATABASE Northwind SET
ENABLE_BROKER statement.

2. Define an XML MESSAGE TYPE with a CREATE MESSAGE TYPE NwindXmlMessage VALIDATION =
WELL_FORMED_XML; statement.

3. Define a one-way CONTRACT with a CREATE CONTRACT NwindContract (NwindXmlMessage
SENT BY INITIATOR); statement.

4. Create a QUEUE for the INITIATOR of the message with a CREATE QUEUE dbo
.NwindInitiatorQueue; statement.

5. Specify a SERVICE for the INITIATOR by executing a CREATE SERVICE NwindInitiatorService
ON QUEUE dbo.NwindInitiatorQueue; statement.

6. Specify a QUEUE for the message destination with a CREATE QUEUE dbo.NwindTargetQueue;
statement.

7. Specify a SERVICE for the destination by executing a CREATE SERVICE NwindTargetService
ON QUEUE dbo.NwindTargetQueue (NwindContract); statement.

425

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 425

Here’s the T-SQL batch statement:

USE Northwind;
GO
ALTER DATABASE Northwind SET ENABLE_BROKER;
GO
CREATE MESSAGE TYPE NwindXmlMessage VALIDATION = WELL_FORMED_XML;
GO
CREATE CONTRACT NwindContract (NwindXmlMessage SENT BY INITIATOR);
GO
CREATE QUEUE dbo.NwindInitiatorQueue;
GO
CREATE SERVICE NwindInitiatorService ON QUEUE dbo.NwindInitiatorQueue;
GO
CREATE QUEUE dbo.NwindTargetQueue;
GO
CREATE SERVICE NwindTargetService ON QUEUE dbo.NwindTargetQueue (NwindContract);

The preceding batch query is ServiceBrokerSetup.sql in the \VB2005DB\Chapter10\ServiceBroker
folder. This folder contains the batch queries listed in this and the following sections.

Send an XML Message
After you create the required Service Broker elements with the ServiceBrokerSetup.sql batch, run the fol-
lowing batch (ServiceBrokerSendMessage.sql) to start a transaction and send a well-formed XML mes-
sage to its destination queue when the transaction commits:

USE Northwind;
GO
BEGIN TRANSACTION;
GO
DECLARE @MessageXML XML;
SET @MessageXML = N’<messageXml>Message from the Northwind database</messageXml>’;
DECLARE @conversationGUID UNIQUEIDENTIFIER;
BEGIN DIALOG CONVERSATION @conversationGUID

FROM SERVICE NwindInitiatorService
TO SERVICE ‘NwindTargetService’
ON CONTRACT NwindContract;

SEND ON CONVERSATION @conversationGUID MESSAGE TYPE NwindXmlMessage(@MessageXML);
END CONVERSATION @conversationGUID;
GO
COMMIT TRANSACTION;
GO
SELECT * FROM dbo.NwindTargetQueue;
GO

Figure 10-7 shows SSMS displaying the preceding query and the queue grid after sending the preceding
message. The second message contains an empty schema for the XML message.

426

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 426

Figure 10-7

Retrieve the Message from the Queue
Run the following batch (ServiceBrokerReceiveMessages.sql) to receive the message you created with
ServiceBrokerSendMessage.sql:

USE Northwind;
GO
WHILE (1 = 1)
BEGIN

DECLARE @conversation_handle UNIQUEIDENTIFIER,
@conversation_group_id UNIQUEIDENTIFIER,
@message_body XML,
@message_type_name NVARCHAR(128);

BEGIN TRANSACTION;
WAITFOR(GET CONVERSATION GROUP @conversation_group_id

FROM dbo.NwindTargetQueue), TIMEOUT 500;
IF @conversation_group_id IS NULL

BEGIN
ROLLBACK TRANSACTION;
BREAK;

END;
WHILE (1 = 1)
BEGIN

427

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 427

RECEIVE TOP(1)
@conversation_handle = conversation_handle,
@message_type_name = message_type_name,
@message_body = CAST(message_body AS XML)

FROM dbo.NwindTargetQueue
WHERE conversation_group_id = @conversation_group_id;
IF @@ROWCOUNT = 0 OR @@ERROR <> 0 BREAK;
SELECT ‘Conversation Group Id’ = @conversation_group_id,

‘Conversation Handle’ = @conversation_handle,
‘Message Type Name’ = @message_type_name,
‘Message Body’ = @message_body;

IF @message_type_name =
‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’

OR @message_type_name =
‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’

BEGIN
END CONVERSATION @conversation_handle;

END;
END;
COMMIT TRANSACTION;

END;

Figure 10-8 shows part of the preceding query and the grid after receiving the message.

Figure 10-8

428

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 428

The Database Engine Samples’ ServiceBroker group includes three sample Service Broker applications.
The preceding examples are derived from the HelloWorld SQL Server Management Studio project
(HelloWorld.ssmssln), which includes detailed comments for most statements of the similar
ServiceBroker... .sql queries.

To install the Database Engine Samples from their .msi files, choose Microsoft SQL Server 2005 ➪

Install Samples ➪ SQL Server Database Engine Samples. The \Program Files\Microsoft SQL Server\
90\Tools\Samples\1033\Engine\Service Broker folder contains subfolders with the sample files.

To remove the Nwind... Service Broker objects that you created, execute the DropServiceBrokerObjects
.sql query.

Event Notifications
SQL Server 2005 event notifications create one or more Service Broker conversations between the SQL
Server 2005 instance and a service you specify. Event notifications can log or review database changes or
other activities and can perform a specified action in response to a particular event. For example, you can
create an event notification that’s an asynchronous equivalent to a DDL trigger. You also can perform
asynchronous operations in response to SQL Trace events. Event notification programming is beyond the
scope of this chapter.

Notification Services
Notification Services integrate SQL Server 2000 Notification Services 2.0 components into an enhanced
native service that’s included with SQL Server 2005 Developer Edition or higher. If you’re familiar with
Notification Services 2.0, native Notification Services programming methodology and basic architecture
are similar.

Programming Notification Services is beyond the scope of this chapter. The SQL Server 2005 Database
Engine Samples include several Notification Services sample projects with C# and VB versions. The
\Program Files\Microsoft SQL Server\90\Tools\Samples\1033\Engine\Notification Services folder
contains four subfolders with the sample project files.

Query Notifications
SQL Server 2005 query notifications aren’t related to Notification Service’s event notifications, other than
by common use of the Service Broker. Query notifications enable client applications to request notifications
when table updates result in a change to the resultset of a specified query or indexed view. Thus query
notifications are related to event notifications.

Query notifications eliminate unnecessary roundtrips to maintain lookup table and catalog data currency.
The primary application for query notifications is invalidating ASP.NET 2.0’s SqlCacheDependency
objects that you add to the Response object. Prior to SQL Server 2005 and .NET 2.0, invalidating the cache
required triggers or timers.

You also can use query notifications to trigger a Fill operation on a TableAdapter or execute an
SqlDataReader object that repopulates a DataTable. The database stores notification subscriptions
when a client program executes an ADO.NET 2.0 SqlCommand bound to an SqlDependency object
with a handler for its OnChange event. Data modifications that affect the query you specified as the

429

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 429

SqlCommand.CommandText property value cause SQL Server 2005 to place a message in a previously
defined queue, which fires the SqlDependency.OnChange event. Alternatively, you can program the
client to poll periodically for an SqlNotificationRequest.

The section “Process Query Notifications,” later in this chapter, describes a Windows form that
processes notifications of changes to one or more of three Northwind Products table columns.

Database Mail
SQL Server 2000 mail options — SQLMail and AgentMail — use the Extended Messaging API (MAPI),
which doesn’t have a 64-bit version. AgentMail supports 64-bit Simple MAPI, but both require Exchange
Server. SQLMail requires Outlook 2000 or later on the server and won’t run on a cluster. SQLMail and
AgentMail are deprecated, and might not be included in SQL Server versions beyond 2005.

Database Mail overcomes the MAPI issues by replacing the xp_sendmail extended stored procedure
with sendimail_sp, which has a similar parameter set. Database Mail requires you to use the Database
Mail Setup Wizard to establish a mail host database for the SQL Sever 2005 instance and a profile with at
least one designated SMTP e-mail account. When you execute sendmail_sp it adds the message to a
Service Broker queue; Service Broker then runs an instance of DatabaseMail90.exe to send the message
and archives it in the dbo.sysmail_mailitems database. Multiple DatabaseMail90.exe instances run
outside the SQL Server process, which greatly improves messaging scalability. However, there’s no
Database Mail equivalent to SQLMail’s xp_readmail extended stored procedure in SQL Server 2005.
Microsoft promises readimail_sp or its equivalent in a later SQL Server version.

The section “Automate Reorder Processing with Database Mail,” near the end of the chapter, describes
a Database Mail implementation within a query notifications demonstration project.

SQL Server Native SOAP Web Services
SQL Server 2000 and earlier rely on the Tabular Data Stream (TDS) protocol to communicate with clients.
TDS requires Windows clients to have an MDAC stack installed; other operating systems require a JDBC
or ODBC driver. SQL Server 2005 adds native SOAP Web services. This feature, like the SQLXML 3.0
SOAP Web services you create with the IIS Virtual Directory Management for SQL Server snap-in, elimi-
nates the need for MDAC but requires clients to implement a Web service proxy. Native SOAP Web ser-
vices substitute the kernel-mode HTTP.sys driver for IIS, which limits service deployment to machines
running Windows XP SP2 or Windows Server 2003. Unlike SQLXML 3.0 or ASP.NET Web services,
native SOAP Web services don’t support anonymous access; all requests must be authenticated. SQL
Server 2005 supports integrated Windows or WS-Security authentication. WS-Security authentication
requires installing the Web Service Enhancements (WSE) 3.0 runtime on machines running VS2005
Windows form clients.

Native SOAP Web services are based on SQL Server 2005 endpoints, which support SOAP, database
mirroring, Service Broker, and T-SQL payloads with HTTP and TCP protocols. It’s likely SOAP pay-
loads over the HTTP protocol will represent at least 90 percent of all production SQL Server endpoints.

To learn more about WSE 3.0 and WS-Security, go to http://msdn.microsoft.com/
webservices/building/wse/.

Native SOAP Web services let clients execute T-SQL or CLR stored procedures, UDFs that return scalar
values, or ad hoc SQL queries with or without parameters. The default format for a SELECT statement’s
SOAP response messages is an <SqlRowSet> element in diffgram format, which VS interprets as a

430

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 430

DataSet; adding the DataSet’s inline schema is optional. SELECT...FOR XML queries return <SqlXml>
elements and add as inline schema if you include the XMLSCHEMA modifier in the FOR XML clause.

The CREATE ENDPOINT command registers one or more HTTP URL namespaces, such as http://
servername/servicename with HTTP.sys. You specify servername as the SITE parameter and
/servicename with the PATH parameter. By default, HTTP.sys listens for and receives requests on TCP
ports 80 and 443, but you can specify custom port numbers with the CLEAR_PORT = number and
CLEAR_PORT = number parameters. You can specify BASIC, DIGEST, INTEGRATED, or a comma-separated
combination, as the transport AUTHENTICATION parameter; INTEGRATED is the simplest method for
Windows clients. Add COMPRESSION = ENABLED to use gzip encoding if the client’s SOAP request specifies
gzip in its accept-encoding HTTP header and SESSIONS = ENABLED to maintain session state between
multiple SOAP message pairs.

Specify WebMethods by adding FOR SOAP (WEBMETHOD...) clauses for stored procedures and scalar
UDFs; WEBMETHODs don’t support table-returning UDFs. The following T-SQL batch creates a SOAP
HTTP endpoint with methods for four of the Northwind database’s stored procedures and enables ad
hoc batch queries:

CREATE ENDPOINT NorthwindEP
STATE = STARTED
AS HTTP(

PATH = ‘/wsnwindep’,
AUTHENTICATION = (INTEGRATED),
PORTS = (CLEAR),
SITE = ‘localhost’,
COMPRESSION = ENABLED
)

FOR SOAP (
WEBMETHOD ‘TenMostExpensiveProducts’

(NAME = ‘Northwind.dbo.[Ten Most Expensive Products]’,
FORMAT = ROWSETS_ONLY, SCHEMA = STANDARD),

WEBMETHOD ‘SalesByCategory’
(NAME=’Northwind.dbo.SalesByCategory’,
FORMAT = ROWSETS_ONLY, SCHEMA = STANDARD),

WEBMETHOD ‘EmployeeSalesByCountry’
(NAME=’Northwind.dbo.[Employee Sales by Country]’,
FORMAT = ROWSETS_ONLY, SCHEMA = STANDARD),

WEBMETHOD ‘CustomerOrderHistory’
(NAME=’Northwind.dbo.CustOrderHist’,
FORMAT = ROWSETS_ONLY, SCHEMA = STANDARD),

BATCHES = ENABLED,
WSDL = DEFAULT,
DATABASE = ‘Northwind’,
NAMESPACE = ‘http://oakleaf.ws/webservices/northwindep’
)

GO

CREATE ENDPOINT can substitute TCP for HTTP as the transport protocol and the FOR clause also sup-
ports TSQL, SERVICE_BROKER, and DATABASE_MIRRORING.

Stored procedures and UDFs require three-part (database.owner.object) names. You access
the WSDL document with the conventional http://SITEvalue/PATHvalue?wsdl URL. The 706-line
WSDL document for the preceding endpoint incorporates an XML schema that correlates SQL Server

431

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 431

and XSD datatypes. The schema also includes eight instances of a 1,400-character Microsoft disclaimer
(weasel clause). You can substitute a custom-written WSDL document for the default version if the
default WSDL document isn’t interoperable with SOAP toolkits for other programming languages,
operating systems, or both.

You must run the preceding query (CreateNwindEndpoint.sql in the \VB2005DB\Chapter10\
SqlNativeWebServices folder) before you run the SqlNativeWebServices.sln client project that’s
described in the section “Consume SQL Server Native Web Services,” near the end of the chapter.

To enable users other than sysadmins members and the endpoint’s owner to execute the WEBMETHODs
with Windows authentication, you must grant them permission with the following statement:

GRANT CONNECT ON HTTP ENDPOINT::endpointname TO [domain/][username]

Users also must have appropriate permissions for stored procedures, UDFs, and objects involved in ad hoc
batch queries.

Optional SQL Server authentication requires WS-Security headers for username/password credentials, a
LOGIN_TYPE = MIXED parameter for each WEBMETHOD, and encrypted HTTPS transport. Basic transport
authentication, which probably will be the most common encryption method for clients on other
platforms, also requires SSL.

SQL Server native Web services are likely to be a controversial topic among DBAs. Serializing SOAP mes-
sages consumes substantially more server CPU and memory resources than TDS and increases data-related
network traffic by an order of magnitude or more. If your servers’ network adapters don’t have hardware-
based SSL encryption/decryption capability, basic and SQL Server authentication add more CPU load.
ASP.NET (ASMX) Web services enable three-tier architecture and can scale-out with Web gardens and
farms, probably at a lower cost than scaling up the database server hardware to handle the additional load.

Customize FOR XML Queries
FOR XML AUTO mode determines the structure (shape) of the query’s XML document by comparing
column values in adjacent rows. You have no control over the document’s shape and content, other than
adding the ELEMENTS directive and its optional XSINIL parameter, and nested FOR XML queries that
include the TYPE directive. You can’t add a root-element tag to documents that contain multiple top-
level elements.

FOR XML RAW and FOR XML EXPLICIT modes give you added control over the XML document’s shape.
FOR XML EXPLICIT mode gives you total control of the shape and content but requires very complex
queries. Books Online describes FOR XML EXPLICIT mode syntax as “cumbersome,” which is an under-
statement at best; a better description is “Query from Hell.” The new FOR XML PATH mode lets you define
the document structure with a much simpler, XPath-like syntax. The following two sections show you
how to take advantage of the new features of FOR XML RAW and FOR XML EXPLICIT modes.

The \VB2005DB\Chapter10\T-SQLEnhancements folder contains the SQL queries for the examples of
the following sections.

432

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 432

Add Root Elements and Embed XML Schemas with
FOR XML RAW Queries

The FOR XML RAW mode lets you add a named document root node and wrap nested nodes with a named
element. Like the FOR XML AUTO mode, you can add XML schemas for the outer query’s elements but not
those of the inner query.

The following nested FOR XML RAW query (NestedQueryTypeRaw.sql) includes XML schemas for an
added <Orders> root element, replaces the <Orders> fragment tags with <Order>, wraps
<OrderDetail> elements within an <OrderDetails> group, and adds elements for NULL values:

USE Northwind
GO
SELECT TOP 10 OrderID, CustomerID, EmployeeID, OrderDate, ShippedDate,

(SELECT ProductID, CONVERT(decimal(6,2), UnitPrice) as UnitPrice, Quantity,
CONVERT (decimal(3,2), Discount) As Discount

FROM [Order Details] AS OrderDetail
WHERE OrderDetail.OrderID = Orders.OrderID
FOR XML RAW(‘OrderDetail’), ELEMENTS, TYPE, ROOT(‘OrderDetails’))
-- , XMLSCHEMA(‘urn:schemas-northwind-order’) generates a schema for
-- every OrderDetails group

FROM Orders
ORDER BY OrderID DESC
FOR XML RAW(‘Order’), ELEMENTS XSINIL, TYPE, ROOT(‘Orders’)

-- Comment below to remove inline schema
, XMLSCHEMA(‘urn:schemas-northwind-order’)

GO

The RAW parameters (‘Order’ and ‘OrderDetail’) replace the default <row> element name with
<Order> and <OrderDetail>. The ROOT parameters (‘Orders’ and ‘OrderDetails’) replace <root>
with <Orders> and <OrderDetails>.

The XMLSCHEMA directive specifies a namespace for the <Order> element and adds the following inline
schemas to the <Orders> root element (NestedQueryTypeRawSchema.xml):

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”>
<xsd:simpleType name=”int”>

<xsd:restriction base=”xsd:int” />
</xsd:simpleType>
<xsd:simpleType name=”nchar”>

<xsd:restriction base=”xsd:string” />
</xsd:simpleType>
<xsd:simpleType name=”datetime”>

<xsd:restriction base=”xsd:dateTime”>
<xsd:pattern value=”((000[1-9])|(00[1-9][0-9])|(0[1-9][0-9]{2})|([1-9]

[0-9]{3}))-((0[1-9])|(1[0,1,2]))-((0[1-9])|([1,2][0-9])|(3[0,1]))
T(([0,1][0-9])|(2[0-3]))(:[0-5][0-9]){2}(\.[0-9]{2}[0,3,7])?” />

<xsd:minInclusive value=”1753-01-01T00:00:00.000” />
<xsd:maxInclusive value=”9999-12-31T23:59:59.997” />

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name=”xml”>

<xsd:complexContent mixed=”true”>

433

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 433

<xsd:restriction base=”xsd:anyType”>
<xsd:sequence>

<xsd:any processContents=”skip” minOccurs=”0” maxOccurs=”unbounded” />
</xsd:sequence>

</xsd:restriction>
</xsd:complexContent>

</xsd:complexType>
</xsd:schema>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:sqltypes=”http://schemas.microsoft.com/sqlserver/2004/sqltypes”
targetNamespace=”urn:schemas-northwind-order” elementFormDefault=”qualified”>
<xsd:import namespace=”http://schemas.microsoft.com/sqlserver/2004/sqltypes” />
<xsd:element name=”Order”>

<xsd:complexType>
<xsd:sequence>

<xsd:element name=”OrderID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”CustomerID” nillable=”1”>

<xsd:simpleType>
<xsd:restriction base=”sqltypes:nchar” sqltypes:localeId=”1033”

sqltypes:sqlCompareOptions=”IgnoreCase IgnoreKanaType IgnoreWidth”
sqltypes:sqlSortId=”52”>

<xsd:maxLength value=”5” />
</xsd:restriction>

</xsd:simpleType>
</xsd:element>
<xsd:element name=”EmployeeID” type=”sqltypes:int” nillable=”1” />
<xsd:element name=”OrderDate” type=”sqltypes:datetime” nillable=”1” />
<xsd:element name=”ShippedDate” type=”sqltypes:datetime” nillable=”1” />
<xsd:element name=”” type=”sqltypes:xml” nillable=”1” />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

The first schema defines SQL Server sqltypes for the outer query’s elements but ignores the inner query’s
elements with the <xsd:any processContents=”skip” minOccurs=”0” maxOccurs=”unbounded” />
instruction. The second schema imports the first schema and types the elements with sqltypes:int,
.sqltypes:datetime, or sqltypes:nchar. The schema validates the <Order> element and its subele-
ments, except <OrderDetails> and its subelements. If you need a basic schema for a nested document,
the better approach is to use SQL Server Management Studio’s XML Editor to infer the schema and then
edit it as necessary.

Adding a schema is the only method for namespace-qualifying the top-level element. Adding any other
namespace qualifier requires FOR XML EXPLICIT mode.

Following is a subset of the <Orders> document with an <Order> element that contains
<OrderDetails> subelements and doesn’t contain an inline schema (NestedQueryTypeRaw.xml):

<Orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<Order>

<OrderID>11071</OrderID>
<CustomerID>LILAS</CustomerID>
<EmployeeID>1</EmployeeID>
<OrderDate>1998-05-05T00:00:00</OrderDate>
<ShippedDate xsi:nil=”true” />

434

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 434

<OrderDetails>
<OrderDetail>

<ProductID>7</ProductID>
<UnitPrice>30.00</UnitPrice>
<Quantity>15</Quantity>
<Discount>0.05</Discount>

</OrderDetail>
<OrderDetail>

<ProductID>13</ProductID>
<UnitPrice>6.00</UnitPrice>
<Quantity>10</Quantity>
<Discount>0.05</Discount>

</OrderDetail>
</OrderDetails>

</Order>
...

</Orders>

The structure of the preceding XML document corresponds approximately to a serialized SalesOrders
object, as described in the section “Explore a Business Object Web Service” in Chapter 9.

Fine-Tune Document Structure with FOR XML PATH
FOR XML PATH mode lets you specify by the column alias name whether column values should appear as
element or attribute values, create group subelements, and add subelements to groups. Column alias
names use XPath syntax to specify column values as attributes of the outer query’s top element with AS
@AttributeName, subelements of the top element with AS ElementName, or members of subgroups you
specify with AS SubgroupName/ElementName. Attribute declarations must precede element declarations.

Add Attributes to Top-Level Elements
For example, a column list for the Northwind Orders table that contains OrderID AS [@OrderID],
CustomerID AS [@CustomerID], EmployeeID AS [@EmployeeID], CompanyName AS
[Customer/Name] returns the following XML fragment:

<Orders OrderID=”11077” CustomerID=”RATTC” EmployeeID=”2” />
<Customer>

<Name>Rattlesnake Canyon Grocery</Name>
</Customer>

</Orders>

Specify Group and Element Names
You also can specify group and element names for nested queries. This nested query
(OrdersPathSample1.sql) creates a <LineItems> group element with <LineItem> subelements:

SELECT TOP 10 OrderID AS [@OrderID], CustomerID AS [@CustomerID],
EmployeeID AS [@EmployeeID], OrderDate, ShippedDate, ShipRegion,
(SELECT Quantity AS [LineItem/Quantity], Products.ProductID AS [LineItem/SKU],
ProductName AS [LineItem/Product], QuantityPerUnit AS [LineItem/Package],
[Order Details].UnitPrice AS [LineItem/ListPrice], Discount AS [LineItem/Discount]
FROM [Order Details], Products
WHERE [Order Details].OrderID = Orders.OrderID AND
Products.ProductID = [Order Details].ProductID
FOR XML PATH(‘’), TYPE) AS LineItems

435

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 435

FROM Orders WHERE OrderID < 11077 ORDER BY OrderID DESC
FOR XML PATH(‘Order’), ELEMENTS XSINIL, TYPE, ROOT(‘Orders’)

Adding the highlighted ELEMENTS directive with the XSINIL parameter doesn’t preclude specifying
attributes of the top-level element. The nested query’s empty PATH parameter prevents adding attributes
to the <LineItem> element.

Here’s a subset of the document (OrdersPathSample1.xml) returned by the preceding query:

<Orders xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
...
<Order OrderID=”11073” CustomerID=”PERIC” EmployeeID=”2”>

<OrderDate>1998-05-05T00:00:00</OrderDate>
<ShippedDate xsi:nil=”true” />
<ShipRegion xsi:nil=”true” />
<LineItems>

<LineItem>
<Quantity>10</Quantity>
<SKU>11</SKU>
<Product>Queso Cabrales</Product>
<Package>1 kg pkg.</Package>
<ListPrice>21.0000</ListPrice>
<Discount>0.0000000e+000</Discount>

</LineItem>
<LineItem>

<Quantity>20</Quantity>
<SKU>24</SKU>
<Product>Guaraná Fantástica</Product>
<Package>12 - 355 ml cans</Package>
<ListPrice>4.5000</ListPrice>
<Discount>0.0000000e+000</Discount>

</LineItem>
</LineItems>

</Order>
...

</Orders>

The <Discount> element has a floating point format because the Discount column has the real data
type as a result of importing the original version of the table from an early version of Microsoft Access.

Add Attributes to Nested Query Elements
The following query (OrdersPathSample2.sql), which returns an identical document
(OrdersPathSample2.xml), specifies the <LineItems> and <LineItem> elements in the subquery’s
highlighted FOR XML PATH and ROOT parameters, which simplifies the syntax and enables you to add
attributes to the <LineItem> elements:

SELECT TOP 10 OrderID AS [@OrderID], CustomerID AS [@CustomerID],
EmployeeID AS [@EmployeeID], OrderDate, ShippedDate,
(SELECT Quantity, Products.ProductID AS SKU,

ProductName AS Product, QuantityPerUnit AS Package,
[Order Details].UnitPrice AS ListPrice, Discount
FROM [Order Details], Products
WHERE [Order Details].OrderID = Orders.OrderID AND

Products.ProductID = [Order Details].ProductID
FOR XML PATH(‘LineItem’), TYPE, ROOT(‘LineItems’))

436

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 436

FROM Orders WHERE OrderID < 11077 ORDER BY OrderID DESC
FOR XML PATH(‘Order’), ELEMENTS XSINIL, TYPE, ROOT(‘Orders’)

Generate a Complex Invoice Document
FOR XML PATH mode enables you to generate XML documents with proprietary or standards-based
structures. The most important limitation for standards-based structures — such as Universal Business
Language (UBL) 1.0 — is FOR XML PATH mode’s inability to namespace-qualify elements for validation by
published XML schemas. Post-processing documents to add XML namespace declarations and qualifiers
requires complex XSL transforms or procedural code. On the other hand, “bare-bones” documents with a
default namespace are much easier for human recipients to read, and they simplify transforms to HTML
or other XML structures.

This query (InvoicesPathXML.sql), which might contend for the “Query from Hell” title, generates a
structured XML representation of a typical business invoice that has formatted numeric values, extended
<LineItem> amounts, and a <Summary> section with <Subtotal>, <Freight>, and <Total> elements:

DECLARE @Top int, @Country nvarchar(15)
SELECT @Top = 10 SELECT @Country = ‘USA’
--Invoice groups
SELECT TOP(@Top) Orders.OrderID AS [@OrderID], Orders.CustomerID AS [@CustomerID],
Orders.EmployeeID AS [@EmployeeID], ‘1’ AS [@PaymentID], ‘1’ AS [@CurrencyID],
‘1’ AS [@FobID], Orders.ShipVia AS [@ShipperID],
Orders.OrderID + 210017 AS InvoiceNumber, Orders.ShippedDate AS InvoiceDate,
--Terms group
‘Net 30 Days’ AS [Terms/Payment], ‘US$’ AS [Terms/Currency],
--Shipment group
‘Redmond, WA’ AS [Shipment/FOB],
Shippers.CompanyName AS [Shipment/Shipper],
CONVERT(decimal(6,2), Orders.Freight) AS [Shipment/PrepaidFreight],
--BillTo group
Customers.CompanyName AS [BillTo/Name], Customers.Address AS [BillTo/Address],
Customers.City AS [BillTo/City], Customers.Region AS [BillTo/Region],
Customers.PostalCode AS [BillTo/PostalCode], Customers.Country AS [BillTo/Country],
--Buyer group
Customers.ContactName AS [BillTo/Buyer/Name],
Customers.ContactTitle AS [BillTo/Buyer/Title],
Customers.Phone AS [BillTo/Buyer/Phone], REPLACE(Customers.ContactName, ‘ ‘, ‘_’) +

‘@mail.msn.com’ AS [BillTo/Buyer/EMail],
SUBSTRING(Customers.CustomerID, 1, 1) + SUBSTRING(Customers.CustomerID, 5, 1) +
STR(Orders.OrderID + 12345, 5, 0) AS [BillTo/Buyer/PurchaseOrder],
--SalesContact group
Employees.FirstName + ‘ ‘ + Employees.LastName AS [SalesContact/Name],
Employees.Title AS [SalesContact/Title], ‘(925) 555-8081 X’ +

Employees.Extension AS [SalesContact/Phone],
LOWER(SUBSTRING(Employees.FirstName, 1, 1) + Employees.LastName) +

‘@northwind.com’ AS [SalesContact/EMail],
--OrderDates group
Orders.OrderDate AS [OrderDates/Ordered],
Orders.RequiredDate AS [OrderDates/Required],
Orders.ShippedDate AS [OrderDates/Shipped],
--ShipTo group
Orders.ShipName AS [ShipTo/Name], Orders.ShipAddress AS [ShipTo/Address],
Orders.ShipCity AS [ShipTo/City], Orders.ShipRegion AS [ShipTo/Region],
Orders.ShipPostalCode AS [ShipTo/PostalCode],

437

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 437

Orders.ShipCountry AS [ShipTo/Country],
--LineItems group inner query
(SELECT [Order Details].OrderID AS [@OrderID], [Order Details].ProductID AS
[@ProductID], ROW_NUMBER() OVER (ORDER BY [Order Details].ProductID) AS [@ItemID],
[Order Details].Quantity AS Quantity, Products.ProductID AS SKU,
Products.ProductName AS Product, Products.QuantityPerUnit AS Package,
CONVERT(decimal(6,2), [Order Details].UnitPrice) AS ListPrice,
CONVERT(decimal(3,1), [Order Details].Discount * 100) AS Discount,
CONVERT(decimal(8,2), [Order Details].Quantity * [Order Details].UnitPrice *

(1 - [Order Details].Discount)) AS Extended
FROM [Order Details], Products
WHERE [Order Details].OrderID = Orders.OrderID AND

Products.ProductID = [Order Details].ProductID
FOR XML PATH(‘LineItem’), TYPE, ROOT(‘LineItems’)),
--Summary group
(SELECT SUM(Quantity) FROM [Order Details]
WHERE [Order Details].OrderID = Orders.OrderID) AS [Summary/NumberOfItems],
(SELECT CONVERT(decimal(8,2), SUM(Quantity * UnitPrice * (1 - Discount)))
FROM [Order Details]
WHERE [Order Details].OrderID = Orders.OrderID) AS [Summary/Subtotal],
CONVERT(decimal(6,2), Freight) AS [Summary/Freight],
(SELECT CONVERT(decimal(8,2), SUM(Quantity * UnitPrice * (1 - Discount)) + Freight)
FROM [Order Details]
WHERE [Order Details].OrderID = Orders.OrderID) AS [Summary/InvoiceTotal]
--Invoice groups and Invoices wrapper
FROM Customers, Orders, Employees, Shippers
WHERE Customers.CustomerID = Orders.CustomerID AND
Employees.EmployeeID = Orders.EmployeeID AND
Shippers.ShipperID = Orders.ShipVia AND Orders.ShipCountry = @Country AND

Orders.ShippedDate IS NOT NULL
ORDER BY Orders.OrderID DESC
FOR XML PATH(‘Invoice’), ELEMENTS XSINIL, ROOT(‘Invoices’)

The Northwind tables lack many columns for values that are required to generate a representative
invoice. Thus, the preceding query simulates values, such as e-mail addresses, and creates arbitrary
invoice and purchase order numbers. A similar query creates the SalesOder2 XML documents for
Chapter 12’s xml datatype examples.

Here’s one of the <Invoice> elements returned by the preceding query:

<Invoices xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
...
<Invoice OrderID=”11006” CustomerID=”GREAL” EmployeeID=”3” PaymentID=”1”

CurrencyID=”1” FobID=”1” ShipperID=”2”>
<InvoiceNumber>221023</InvoiceNumber>
<InvoiceDate>1998-04-15T00:00:00</InvoiceDate>
<Terms>

<Payment>Net 30 Days</Payment>
<Currency>US$</Currency>

</Terms>
<Shipment>

<FOB>Redmond, WA</FOB>
<Shipper>United Package</Shipper>
<PrepaidFreight>25.19</PrepaidFreight>

</Shipment>

438

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 438

<BillTo>
<Name>Great Lakes Food Market</Name>
<Address>2732 Baker Blvd.</Address>
<City>Eugene</City>
<Region>OR</Region>
<PostalCode>97403</PostalCode>
<Country>USA</Country>
<Buyer>

<Name>Howard Snyder</Name>
<Title>Marketing Manager</Title>
<Phone>(503) 555-7555</Phone>
<EMail>Howard_Snyder@mail.msn.com</EMail>
<PurchaseOrder>GL23351</PurchaseOrder>

</Buyer>
</BillTo>
<SalesContact>

<Name>Janet Leverling</Name>
<Title>Sales Representative</Title>
<Phone>(925) 555-8081 X3355</Phone>
<EMail>jleverling@northwind.com</EMail>

</SalesContact>
<OrderDates>

<Ordered>1998-04-07T00:00:00</Ordered>
<Required>1998-05-05T00:00:00</Required>
<Shipped>1998-04-15T00:00:00</Shipped>

</OrderDates>
<ShipTo>

<Name>Great Lakes Food Market</Name>
<Address>2732 Baker Blvd.</Address>
<City>Eugene</City>
<Region>OR</Region>
<PostalCode>97403</PostalCode>
<Country>USA</Country>

</ShipTo>
<LineItems>

<LineItem OrderID=”11006” ProductID=”1” ItemID=”1”>
<Quantity>8</Quantity>
<SKU>1</SKU>
<Product>Chai</Product>
<Package>10 boxes x 20 bags</Package>
<ListPrice>18.00</ListPrice>
<Discount>0.0</Discount>
<Extended>144.00</Extended>

</LineItem>
<LineItem OrderID=”11006” ProductID=”29” ItemID=”2”>

<Quantity>2</Quantity>
<SKU>29</SKU>
<Product>Thüringer Rostbratwurst</Product>
<Package>50 bags x 30 sausgs.</Package>
<ListPrice>123.79</ListPrice>
<Discount>25.0</Discount>
<Extended>185.68</Extended>

</LineItem>
</LineItems>
<Summary>

<NumberOfItems>10</NumberOfItems>

439

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 439

<Subtotal>329.68</Subtotal>
<Freight>25.19</Freight>
<InvoiceTotal>354.87</InvoiceTotal>

</Summary>
</Invoice>
...

</Invoices>

Minor modifications to the query can create related documents — such as purchase orders, packing lists,
and receiving reports.

Explore the PIVOT and UNPIVOT Operators
Microsoft Access 1.0 popularized crosstab queries with a Crosstab Wizard that simplified the generation
of summary reports — especially time-series reports. The inability of later Access versions’ Upsizing
Wizard to export crosstab queries to SQL Server 7.0 and later was a major impediment to upgrading Jet
databases to MSDE and other SQL Server editions. SQL Server 2005’s PIVOT operator doesn’t solve the
Jet crosstab query upgrading problem because T-SQL doesn’t support Jet expressions. But the PIVOT
operator does reduce the complexity of the T-SQL statements you write to generate comparable crosstab
reports.

Create the Source Table
You can generate crosstab queries directly from OLTP tables, but it’s a more common practice to
create intermediate summary tables or views — commonly called rollups. The following batch
(OrdersByProduct1997.sql) creates a source table that aggregates the values of orders received by
Northwind Traders during each quarter of 1997 for products by name and category:

USE Northwind
GO
IF OBJECT_ID (N’OrdersByProduct1997’, N’U’) IS NOT NULL
DROP TABLE dbo.OrdersByProduct1997
GO
CREATE TABLE dbo.OrdersByProduct1997 (ProductName nvarchar(40),
CategoryName nvarchar(20), Quarter int, ProductOrders money)
GO
INSERT OrdersByProduct1997(ProductName, CategoryName, Quarter, ProductOrders)
SELECT ProductName, CategoryName, DatePart(quarter, OrderDate) AS Quarter,

CONVERT(money, SUM([Order Details].UnitPrice * Quantity * (1-Discount)))
AS ProductOrders

FROM Categories INNER JOIN (Products INNER JOIN (Orders INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID)
ON Products.ProductID = [Order Details].ProductID)
ON Categories.CategoryID = Products.CategoryID

WHERE OrderDate BETWEEN ‘1/1/1997’ And ‘12/31/1997’
GROUP BY ProductName, CategoryName, DatePart(quarter, OrderDate)
ORDER BY CategoryName, ProductName, Quarter
GO
SELECT * FROM dbo.OrdersByProduct1997
GO

440

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 440

Following are the first 8 of the 286 rows of the OrdersByProduct1997 table:

ProductName CategoryName Quarter ProductOrders

Chai Beverages 1 705.60

Chai Beverages 2 878.40

Chai Beverages 3 1174.50

Chai Beverages 4 2128.50

Chang Beverages 1 2435.80

Chang Beverages 2 228.00

Chang Beverages 3 2061.50

Chang Beverages 4 2313.25

Apply the PIVOT Operator
The following batch (OrdersByProduct1997Pivot.sql) uses the highlighted PIVOT query to create an
OrdersByProduct1997Pivot table to demonstrate the use of the UNPIVOT operator in the next section:

USE Northwind
GO
IF OBJECT_ID (N’OrdersByProduct1997Pivot’, N’U’) IS NOT NULL
DROP TABLE dbo.OrdersByProduct1997Pivot
GO
CREATE TABLE dbo.OrdersByProduct1997Pivot (Category nvarchar(20),

Product nvarchar(40), Y1997Q1 money, Y1997Q2 money, Y1997Q3 money,
Y1997Q4 money, Y1997Totals money)

GO
INSERT dbo.OrdersByProduct1997Pivot(Category, Product,

Y1997Q1, Y1997Q2, Y1997Q3, Y1997Q4)
SELECT CategoryName AS Category, ProductName AS Product,

[1] AS Y1997Q1, [2] AS Y1997Q2, [3] AS Y1997Q3, [4] AS Y1997Q4
FROM dbo.OrdersByProduct1997
PIVOT (SUM(ProductOrders) FOR Quarter IN([1], [2], [3], [4])) AS QuarterlyOrders
ORDER BY CategoryName, ProductName

GO
--The following returns 308 rows with UNPIVOT (NULL Quarter values replaced with 0)
--UPDATE dbo.OrdersByProduct1997Pivot SET Y1997Q1 = ISNULL(Y1997Q1, 0),

Y1997Q2 = ISNULL(Y1997Q2, 0), Y1997Q3 = ISNULL(Y1997Q3, 0),
Y1997Q4 = ISNULL(Y1997Q4, 0)

--UPDATE dbo.OrdersByProduct1997Pivot SET Y1997Totals = Y1997Q1 + Y1997Q2 +
Y1997Q3 + Y1997Q4

--The following returns the original 286 rows with UNPIVOT (NULL values skipped)
UPDATE dbo.OrdersByProduct1997Pivot SET Y1997Totals = ISNULL(Y1997Q1, 0) +

ISNULL(Y1997Q2, 0) + ISNULL(Y1997Q3, 0) + ISNULL(Y1997Q4, 0)
GO
SELECT * FROM dbo.OrdersByProduct1997Pivot

441

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 441

The OrdersByProduct1997’s ProductName and CategoryName columns create the crosstab report’s row
headers. Quarter numbers transform to aliased column names and ProductOrders supplies the added
columns’ values. The query’s UPDATE statements replace NULL values with 0, which enables the calculation
of the Y1997Totals column values.

Here are 8 representative rows of the 77-row OrdersByProduct1997Pivot table with NULL values replaced
by 0.00:

Category Product Y1997Q1 Y1997Q2 Y1997Q3 Y1997Q4 Y1997Totals

Beverages Outback Lager 1148.40 384.00 1252.50 2683.50 5468.40

Beverages Rhönbräu Klosterbier 437.72 1758.475 993.55 1295.80 4485.545

Beverages Sasquatch Ale 551.60 665.00 0.00 890.40 2107.00

Beverages Steeleye Stout 1310.40 1368.00 1323.00 1273.50 5274.90

Condiments Aniseed Syrup 544.00 600.00 140.00 440.00 1724.00

Condiments Chef Anton’s 225.28 2970.00 1337.60 682.00
Cajun Seasoning 5214.88

Condiments Chef Anton’s 0.00 0.00 288.225 85.40 373.625
Gumbo Mix

Condiments Genen Shouyu 0.00 331.70 1143.125 0.00 1474.825

Replace the Source Table with a Common Table
Expression

You can replace persistent tables or views with temporary tables, table-valued functions, or variables of
the table data type. Another option is to replace the rollup table with a common table expression.

The following query (OrdersByProduct1997PivotCTE.sql) produces a basic crosstab report with a CTE:

USE Northwind
GO
WITH cteRollup (ProductName, CategoryName, Quarter, ProductOrders) AS

(SELECT ProductName, CategoryName, DatePart(quarter, OrderDate) AS Quarter,
CONVERT(money, SUM([Order Details].UnitPrice * Quantity * (1-Discount)))
AS ProductOrders

FROM Categories INNER JOIN (Products INNER JOIN (Orders INNER JOIN
[Order Details] ON Orders.OrderID = [Order Details].OrderID) ON
Products.ProductID = [Order Details].ProductID) ON
Categories.CategoryID = Products.CategoryID

WHERE OrderDate BETWEEN ‘1/1/1997’ And ‘12/31/1997’
GROUP BY ProductName, CategoryName, DatePart(quarter, OrderDate))

SELECT CategoryName AS Category, ProductName AS Product,
[1] AS Y1997Q1, [2] AS Y1997Q2, [3] AS Y1997Q3, [4] AS Y1997Q4

FROM cteRollup
PIVOT (SUM(ProductOrders) FOR Quarter IN([1], [2], [3], [4])) AS QuarterlyOrders
ORDER BY CategoryName, ProductName

442

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 442

The cteRollup CTE’s column list is optional because the SELECT statement supplies the column names.
A SELECT, UPDATE, INSERT, or DELETE statement must follow the CTE’s SELECT statement, which
removes the CTE from memory.

Add the following statement to generate a well-formed XML document:

FOR XML RAW(‘Crosstab’), ELEMENTS XSINIL, ROOT(‘OrdersByProduct1997’)

If you created the OrdersByProduct1997Pivot table in the preceding section, you can populate it with the
following batch (OrdersByProduct1997PivotCTEInsert.sql):

USE Northwind
GO
TRUNCATE TABLE OrdersByProduct1997Pivot
GO
WITH cteRollup (ProductName, CategoryName, Quarter, ProductOrders) AS

(SELECT ProductName, CategoryName, DatePart(quarter, OrderDate) AS Quarter,
CONVERT(money, SUM([Order Details].UnitPrice * Quantity * (1-Discount)))
AS ProductOrders

FROM Categories INNER JOIN (Products INNER JOIN (Orders INNER JOIN
[Order Details] ON Orders.OrderID = [Order Details].OrderID) ON
Products.ProductID = [Order Details].ProductID) ON
Categories.CategoryID = Products.CategoryID

WHERE OrderDate BETWEEN ‘1/1/1997’ And ‘12/31/1997’
GROUP BY ProductName, CategoryName, DatePart(quarter, OrderDate))

INSERT dbo.OrdersByProduct1997Pivot(Category, Product,
Y1997Q1, Y1997Q2, Y1997Q3, Y1997Q4)
SELECT CategoryName AS Category, ProductName AS Product,

[1] AS Y1997Q1, [2] AS Y1997Q2, [3] AS Y1997Q3, [4] AS Y1997Q4
FROM cteRollup
PIVOT (SUM(ProductOrders) FOR Quarter IN([1], [2], [3], [4])) AS QuarterlyOrders
ORDER BY CategoryName, ProductName

GO
SELECT * FROM OrdersByProduct1997Pivot
GO

UNPIVOT the Crosstab Report
The UNPIVOT operator reverses the PIVOT operator’s operation and recreates the original table if the
crosstab report contains NULL values. If you replace NULL values with 0, the resultset also contains
these rows.

The following query (OrdersByProduct1997Unpivot.sql) regenerates the rows of the original
OrdersByProduct1997 table:

SELECT Product AS ProductName, Category AS CategoryName, Quarter, ProductOrders
FROM (SELECT Category, Product, Y1997Q1 AS [1], Y1997Q2 AS [2],

Y1997Q3 AS [3], Y1997Q4 AS [4]
FROM dbo.OrdersByProduct1997Pivot) AS P1

UNPIVOT (ProductOrders FOR Quarter IN([1], [2], [3], [4])) AS QuarterlyOrders
GO

443

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 443

Compare the preceding query with the original PIVOT query:

SELECT CategoryName AS Category, ProductName AS Product,
[1] AS Y1997Q1, [2] AS Y1997Q2, [3] AS Y1997Q3, [4] AS Y1997Q4

FROM dbo.OrdersByProduct1997
PIVOT (SUM(ProductOrders) FOR Quarter IN([1], [2], [3], [4])) AS QuarterlyOrders
ORDER BY CategoryName, ProductName

The UNPIVOT query’s sub-SELECT statement is the same as the PIVOT query’s SELECT clause with the
crosstab column names and aliases reversed. The PIVOT and UNPIVOT clauses are identical, except
the PIVOT clause aggregates the added crosstab column values.

Process Query Notifications
DML triggers are the traditional method for enabling client applications to determine changes to data
tables. A typical trigger-based example is notification of impending inventory shortages. The Northwind
Products table has UnitsInStock, UnitsOnOrder, and ReorderLevel columns. If UnitsInStock +
UnitsOnOrder – ReorderLevel <= 0, the trigger adds a row to a Reorder table. Users’ applications scan the
table periodically and process reorders. Each reorder operation adds the quantity to the UnitsOnOrder
value and deletes the corresponding record from the Reorder table. This approach is satisfactory when
shortages are infrequent, but trigger overhead can limit scalability as transaction volume increases.

SQL Server 2005 query notifications eliminate the trigger overhead but don’t provide the identity of the
row that changed to generate the notification. The notification message indicates only that data has
changed and supplies the first change’s type — updated, inserted, or deleted. This information is
adequate to invalidate an ASP.NET 2.0 page cache or refresh a Windows form’s locally persisted lookup
DataTable with the Fill method. If your application must identify the row that changed, add code to
inspect the refreshed data or a custom validation handler.

The QueryNotifications.sln project in the \VB2005DB\Chapter10\QueryNotifications folder demonstrates
the following two methods for updating locally stored data for a Windows form application:

❑ Add an SqlDependency.Notification object to an SqlCommand object and a delegated handler
for the SqlDependency_OnChanged event. In this case, out-of-band TDS packets initiate an
SqlNotificationRequest on the server and register a query notification automatically. Any
change to the table values that results in a change to the query specified as the SqlCommand.Text
property value sends an out-of-band message, which fires the OnChanged event. Clients must
have an active network connection to receive notification messages but don’t require an open
SqlConnection object.

❑ Add Service Broker QUEUE and SERVICE objects to the database, create an
SqlNotificationRequest object, and add it as the SqlCommand object’s Notification
property value. Any change to the table values that results in a change to the query specified as
the SqlCommand.Text property value adds a message to the queue. You must poll the queue
with a T-SQL RECEIVE instruction to retrieve a message, if any are present. The server persists the
message queues, so client applications usually poll for notifications on startup.

444

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 444

You don’t need to specify a Service Broker MESSAGE_TYPE because query notifications use the built-in
http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification
message type.

Both notification methods require that you execute a SELECT query or EXECUTE command with an
SqlDataReader object to register a sequentially numbered QUERY NOTIFICATION SUBSCRIPTION in the
current database. The subscription exists for the number of seconds you specify as the SqlCommand
.Notification.Timeout or SqlNotificationRequest.Timeout property value or, for SqlDependency
.Notification objects, until the server produces the notification message. Omitting the Timeout
property value of an SqlCommand.Notification object results in the default timeout of 432,000 seconds.

Query notifications share the notification engine for indexed views, so the SELECT query or stored
procedure requires an explicit column list and two-part names for local tables. You can’t include TOP(n)
or UNION operators in the query. All query notifications with the same SELECT statement share a single
notification object identified by an ObjectId value.

SQL Server 2005 Books Online’s “Creating a Query for Notification” topic lists all requirements for
SELECT statements to register a query notification. If these requirements aren’t met, you receive an
immediate error notification.

The QueryNotifications project populates Products and Suppliers DataTables from diffgram files.
Clicking the Refresh button updates the diffgram files. Figure 10-9 shows the QueryNotifications
project’s form after clicking the Refresh Data button and dismissing the message that lists low-inventory
products, which are indicated by a yellow highlight in the DataGridView.

Figure 10-9

445

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 445

Marking the form’s Enable Query Notifications checkbox enables the three radio buttons and generates a
default SqlDependency.Notification object. Clicking Add SqlNotification Objects generates the
Service Broker QUEUE, SERVICE, and optional ROUTE objects and creates a persistent
SqlNotificationRequest subscription.

As mentioned in the section “Set Up a Northwind Service Broker,” earlier in this chapter, you must
enable Service Broker in the Northwind database by executing an ALTER DATABASE Northwind SET
ENABLE_BROKER statement. If you’re using SQL Express or your SQL Server 2005 instance isn’t
localhost, change the NorthwindConnection string in App.config.

Add SqlDependency Notifications
Adding SqlDependency notifications requires enabling Service Broker in the current database but no
other T-SQL batch statements. The following sections show that the client code to add a notification and
subscription, and handle notification events, is minimal.

Create a New Notification and Subscription
The following code from the QueryNotifications project’s Notifications.vb file removes an existing event
handler and notification, and optionally creates a new notification and subscription:

Private Sub AddOrRemoveNotification(ByVal blnAdd As Boolean)
‘depProds, cmdProds, and strSql are Private variables
If depProds IsNot Nothing Then

‘Remove previous handler
RemoveHandler depProds.OnChanged, AddressOf SqlDependency_OnChanged

End If
If cmdProds IsNot Nothing Then

‘Remove previous notification
cmdProds.Notification = Nothing

End If
If blnAdd Then

‘Create the notification and subscription
strSQL = “SELECT UnitsInStock, UnitsOnOrder, ReorderLevel FROM dbo.Products”
Try

If cnNwind Is Nothing Then
cnNwind = New SqlConnection(My.Settings.NorthwindConnection)

End If
cmdProds = New SqlCommand(strSQL, cnNwind)

‘Add an SqlDependency for the connection
depProds = New SqlDependency(cmdProds)

‘Add a delegated handler for the OnChanged event
AddHandler depProds.OnChanged, _
New OnChangedEventHandler(AddressOf SqlDependency_OnChanged)

‘Execute the command to establish the notification
cnNwind.Open()
Dim sdrDep As SqlDataReader = cmdProds.ExecuteReader

446

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 446

sdrDep.Close()
cnNwind.Close()

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Exclamation,

“Create Dependency Operation Failed”)
End Try

End If
End Sub

Add a Notification Event Handler
A handler for the SqlDependency object’s OnChange event is optional, but your application will ignore
notifications if you don’t add one. Here’s the abbreviated code for the sample project’s SqlDependency
_OnChange event handler:

Private Sub SqlDependency_OnChange(ByVal sender As Object, _
ByVal args As SqlNotificationEventArgs)

‘Open a message box with query notification details (omitted for brevity)
‘This event-handler runs on its own thread

Dim strMsg As String = “Click Refresh Data to update the Products lookup table.”
MsgBox(strMsg, MsgBoxStyle.Information, “Query Notification Received”)

‘Recreate the notification
AddOrRemoveNotification(True)

End Sub

An SqlDependency query notification subscription produces a single event message. Your application
must generate another notification after receiving an SqlDependency_OnChange event.

SqlNotificationEventArgs has the following three properties:

❑ Type returns Changed for table data changes or Subscribe for notification errors, which usu-
ally result from an invalid query.

❑ Source returns one of eight SqlNotificationSource enumerations to indicate the source of
the notification, such as Data for table data changes or Object, which indicates a change to the
table structure.

❑ Info returns one of 12 SqlNotificationInfo enumerations, which provide details about the
Source property. For example, if the SqlNotificationSource is Data, Info returns Alter,
Delete, or Update.

Generate a Notification with the Sample QueryNotifications Project
To generate an SqlDependency query notification, mark the Enable Query Notifications checkbox,
change a value in one of the three updatable columns, and click Save Changes. Figure 10-10 shows the
detailed message generated from an update to the grid’s UnitsInStock column with the default All
Products Updates notification selected.

447

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 447

Figure 10-10

The default SqlDependency query generates a notification whenever any inventory-related value
changes. To emulate the more selective DDL trigger example mentioned at the beginning of this topic,
select the Reorder Required query. Select a row with a UnitsOnOrder value of 0, set the UnitsOnHand
value to less than or equal to ReorderLevel value, and click Save Changes.

Selecting the Invalid Query option results in an immediate error message because the TOP operator isn’t
permitted and the table name is one-part, not two-part.

Create SqlNotificationRequest Objects and Subscriptions
Creating an SqlNotificationRequest requires substantially more code than an SqlDependency
object, regardless of whether you create the required QUEUE and SERVICE Service Broker objects with
individual T-SQL query executions or by VB code.

Create QUEUE, SERVICE, and Optional ROUTE Objects
Here’s the abbreviated code in the Notifications.vb form’s CreateQueue function to add the required
and optional Service Broker objects:

Private Function CreateQueue(ByVal blnSilent As Boolean) As Boolean
‘Create a QUEUE
Dim strQueueSQL As String = “CREATE QUEUE ProductsQnQueue; “

‘Create a SERVICE with a PostQueryNotification MESSAGE TYPE
strQueueSQL += “CREATE SERVICE ProductsQnService ON QUEUE ProductsQnQueue” + _
“([http://schemas.microsoft.com/SQL/Notifications/PostQueryNotification]); “

‘Add an optional ROUTE to the local SQL Server instance
strQueueSQL += “CREATE ROUTE ProductsQnRoute WITH SERVICE_NAME = “ + _
“‘ProductsQnService’, ADDRESS = ‘LOCAL’; “

Dim cmdQueues As New SqlCommand(strQueueSQL, cnNwind)

448

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 448

Dim strMsg As String
Try

cnNwind.Open()
cmdQueues.ExecuteNonQuery()
cnNwind.Close()
‘Add an SqlNotificationRequest
AddSqlNotificationRequest()
Return True

Catch exc As Exception
‘Handle the exception

Finally
cmdQueues.Dispose()
cnNwind.Close()

End Try
End Function

You don’t need to create a Service Broker MESSAGE_TYPE or CONTRACT because query notifications
use the built-in http://schemas.microsoft.com/SQL/Notifications/
PostQueryNotification message type and its contract.

The CREATE ROUTE statement is optional unless you want the message to be delivered to the ADDRESS
of an SQL Server 2005 instance other than the default (LOCAL). Routing is a complex subject, as you’ll
discover in Books Online’s “Service Broker Routing” topic.

Add an SqlNotificationRequest
The following code in the AddSqlNotificationRequest procedure adds and registers the
SqlNotificationRequest:

Private Sub AddSqlNotificationRequest()
Dim strRequestSQL As String = “SELECT UnitsInStock, UnitsOnOrder, “ + _
“ReorderLevel FROM dbo.Products”

cmdRequest = New SqlCommand(strRequestSQL, cnNwind)
‘Create an SqlNotification request with the maximum timeout (Int32.MaxValue)
snsProds = New SqlNotificationRequest(Guid.NewGuid().ToString, _

“ProductsQnService”, Int32.MaxValue)
‘Attach the notification to the command
cmdRequest.Notification = snsProds
Try

‘Register the notification
cnNwind.Open()
Dim rdrProds As SqlDataReader = cmdRequest.ExecuteReader
rdrProds.Close()
cnNwind.Close()

Catch exc As Exception
MsgBox(exc.Message, MsgBoxStyle.Exclamation, _
“Error Creating SqlNotificationRequest”)

Finally
cnNwind.Close()

End Try
End Sub

The highlighted lines in the preceding code illustrate the differences between instructions for creating
SqlNotificationRequest and SqlDependency objects.

449

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 449

Remove Service Broker Objects and Subscriptions
To remove the Service Broker objects and all notification subscriptions, execute code like the following
from the CreateQueue function:

Private Function CreateQueue(ByVal blnSilent As Boolean) As Boolean
...
Try

cnNwind.Open()
Dim strDropSQL As String = “DROP SERVICE ProductsQnService; “
strDropSQL += “DROP ROUTE ProductsQnRoute; “
strDropSQL += “DROP QUEUE dbo.ProductsQnQueue; “
strDropSQL += “KILL QUERY NOTIFICATION SUBSCRIPTION ALL; “
cmdQueues.CommandText = strDropSQL
cmdQueues.ExecuteNonQuery()
cnNwind.Close()
btnCreateQueues.Text = “&Add SqlNotification Objects”

Catch ex As Exception
MsgBox(ex.Message, MsgBoxStyle.Exclamation, _
“Error Dropping Queue and Service”)

Finally
cnNwind.Close()

End Try
...
End Function

Poll the Queue for Data Change Notifications
Unlike the SqlDependency approach, you must poll the queue with a RECEIVE instruction to test for
pending notifications. The following code from the PollNotifications function returns 1 if notifications
are present, 0 if not, and -1 if Service Broker objects are missing:

Private Function PollNotifications(ByVal blnSilent As Boolean) As Integer
‘Poll the ProductsQnQueue for changes
Dim intRetValue As Integer
Dim strPollSQL As String = “RECEIVE CAST(message_body AS XML) AS “ + _
“ProductsQnMessage FROM ProductsQnQueue; “

Dim strProdsMessage As String = Nothing
Dim strMsg As String = Nothing
Dim cmdPoll As New SqlCommand(strPollSQL, cnNwind)
Try

cnNwind.Open()
Dim rdrPoll As SqlDataReader = cmdPoll.ExecuteReader
If rdrPoll.HasRows Then

‘Queue has a message
strMsg = “ProductsQnQueue has changes. “ + _
“Click Refresh Data to update the Products lookup table.” + _
vbCrLf + vbCrLf + Replace(strProdsMessage, “><”, “>” + vbCrLf + “<”)

cnNwind.Close()
If Not ListSubscriptions(True) Then

‘Don’t add duplicate notification requests
AddSqlNotificationRequest()

End If
intRetValue = 1 ‘Message present
MsgBox(strMsg, MsgBoxStyle.Information, “Polling ProductsQnQueue”)

450

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 450

Else
intRetValue = 0 ‘No message present
strMsg = “ProductsQnQueue is empty, or notification has expired “ + _
“or was deleted.”

MsgBox(strMsg, MsgBoxStyle.Information, “Polling ProductsQnQueue”)
End If
cnNwind.Close()
Return intRetValue

Catch exc As Exception
strMsg = exc.Message
If exc.Message.Contains(“Invalid object”) Then

strMsg += vbCrLf + vbCrLf + _
“Click Add SqlNotification Objects to create the queue and service.”

End If
MsgBox(strMsg, MsgBoxStyle.Exclamation, “Error Polling ProductsQnQueue”)
Return -1 ‘Error

Finally
cnNwind.Close()
cmdPoll.Dispose()

End Try
End Function

The single-row resultset that’s returned by executing the RECEIVE query has 15 columns, but the only
column of immediate significance is message_body, which has the xml data type. Figure 10-11 shows the
reformatted message_body text, which includes type, source, info, and other attribute values.

To view all columns of the RECEIVE query resultset, change a value in the DataGridView, click Save
Changes, and use SSMS to execute an external RECEIVE * FROM ProductsQnQueue query.

Figure 10-11

Test SqlNotificationRequests with the Sample Project
The QueryNotifications project doesn’t add Service Broker objects and an SqlNotificationRequest
by default. Run the project and click Add SqlNotification Objects to create them. The notification
request’s query is the same as the All Products Updates, so change a value, click Save Changes, and then
click Poll Notifications to open a message box similar to that of Figure 10-11.

The project’s Form_OnLoad event handler tests for pending notification messages when the project starts,
which justifies the effort required to add an SqlNotificationRequest. To verify that the messages
are persistent, change a value, click Save changes, and close the application. On restart, the Polling
ProductQnQueue message box opens. Stopping and restarting the server generates a similar message.

451

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 451

Automate Reorder Processing with Database Mail
Supply-chain management (SCM) projects usually interact with Web services, but you can emulate the
first phase of a simple e-mail SCM application with SQL Server 2005’s new Database Mail feature. As
mentioned in the section “Database Mail,” earlier in this chapter, Database Mail capability isn’t installed
by default. You must use SQL Server Management Studio to set up a mail host database, install Database
Mail profiles and accounts, and add the sendimail_sp stored procedure. Thus, Database Mail isn’t
available to SQL Server 2005 Express users.

The QueryNotifications project’s RefreshProducts procedure generates reorder messages and sends
them with Database Mail, if you have a profile named NorthwindSuppliers with a default SMTP
account. To install the profile and account, open Management Studio, and connect to the SQL Server
2005 localhost instance. Expand the instance’s Management node, right-click the Database Mail item,
and choose Configure Database Mail to start the Database Mail Configuration Wizard. Click Next, accept
the default Set Up Database Mail by Performing the Following Tasks option, select the Northwind
database, and create an e-mail profile named NorthwindSuppliers. Click Add to specify the mail
server parameters for a valid Exchange Server or other SMTP e-mail account. Finally, change the
RefreshOrders procedure’s strToEmail value to the destination e-mail address.

Mark the Send Reorder Message and Send by Database Mail checkboxes, and click the Refresh Data
button. Click Yes when asked if you want to send the reorder messages by Database Mail. Figure 10-12
shows a sample test message open in Outlook Express.

Figure 10-12

If you’re running SQL Express or don’t want to set up Database Mail, clear the Send by Database
Mail checkbox to send messages with the new SmtpClient class. You must replace the
SendReordersBySMTP procedure’s strHost, strFromEmail, and strPassword placeholders

452

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 452

with the values required by your e-mail provider. Find somewhere in the Notifications.vb file to locate
the placeholders.

The Books Online topic for sp_send_dbmail indicates that all parameters are optional, but the automated
Database Mail reorder process generates a statement similar to the following:

EXECUTE dbo.sp_send_dbmail
@profile_name = ‘NorthwindSuppliers’,
@recipients = ‘recipient@email.somewhere.com’,
@subject = ‘Northwind Traders Purchase Order for Uncle Bobs Organic Dried Pears’,
@body = ‘To: Grandma Kellys Homestead...’,
@body_format = ‘TEXT’,
@importance = ‘HIGH’

The @subject, @body_format, and @importance parameters are optional; @body_format
defaults to TEXT and @importance defaults to NORMAL.

Code in the SendReordersBySMTP procedure queries the dbo.sysmail_mailitems table for duplicate
messages. This table contains 27 columns of message information, including all message fields, status,
and date/time sent to the e-mail server, if the sent_status value is 1 (sent). When you send a recipient
two messages on the same day, a message box similar to that shown in Figure 10-13 opens.

Figure 10-13

Database Mail is more complex than necessary for simple Windows form messaging applications. If
you need to send basic text messages and enclosures through your ISP, consider using the new
SmtpClient class.

Consume SQL Server Native Web Services
The earlier “Consume SQL Server Native Web Services” section describes how to add Web service end-
points and WebMethods to databases with an example T-SQL script for the sample stored procedures in
the Northwind database. This section describes how code for .NET client applications that consume SQL
Server native Web services differs from code for their ASP.NET counterparts.

453

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 453

The SqlNativeWebServices.sln project in the \VB2005DB\Chapter10\SqlNativeWebServices folder is a test
harness for four Northwind Web services and ad hoc queries. You must execute the CreateNwindEndpoint
.sql script from the same folder before you run the project to create the NorthwindEP endpoint. Figure
10-14 shows the project’s Client.vb form. Select one of the WebMethods to display the results in the
DataGridView, or select Ad Hoc Batch Query, edit the SQL statement, and click Execute.

Figure 10-14

Enabling users to execute ad hoc queries with T-SQL statements in SOAP request messages is a potential
security threat and should not be used in Web methods for production Web services.

Adding a Web Reference to a native Web service requires that you type the URL (http://sitename/
pathname?wsdl) in the Add Web Reference dialog’s URL text box. You won’t find the service in the list
generated by clicking the Web Services on the Local Machine link because native Web services don’t
have a corresponding ServiceName.disco file. You must type the sitename URL element exactly as it
appears in the assignment to the HOST parameter of the AS HTTP clause; substituting localhost when
HOST =’servername’ results in an HTTP 404 error.

Expanding the Web Reference nodes shows an added file named SqlParameter.datasource. SQL Server
native Web services require parameters passed to stored procedures or UDFs to have SQL Server —
rather than native .NET — data types. As an example, passing datetime parameters to the
EmployeeSalesByCountry WebMethod requires the following code:

Private wsNwind As New WSNwindEP.NorthwindEP
Private dsNwind As DataSet
...
Dim datBegDate As New SqlDateTime(1997, 1, 1)
Dim datEndDate As New SqlDateTime(1997, 12, 31)
dsNwind = wsNwind.EmployeeSalesByCountry(datBegDate, datEndDate)

It’s not necessary to create structures for other common data types, such as SqlString, SqlInt32, or
SqlMoney, so you can pass the value.

The project saves DataSets as WebMethodName.xml files in the ...\bin folder. WebMethodName_app1.xml
and WebMethodName_app2.xml files contain the DataSets’ imported schemas.

454

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 454

The functions of the WSNwindEP.NorthwindEP proxy class cast the SOAP response message payload
for resultsets to the DataSet type. Scalar values from UDFs and XML documents from FOR XML ad hoc
queries or stored procedures have the default Object array data type. The first array member contains
the data or, in the case of an error, an SqlMessage object. For resultsets, the second member contains an
SqlRowCount object. Cast XML document payloads to the System.Xml.XmlElement data type and
invoke the OuterXml method to return a String with code such as this:

Dim objResult() As Object = Nothing
...
objResult = wsNwind.sqlbatch(strSQL, Nothing)
Dim xmlResult As XmlElement = CType(objResult(0), XmlElement)
Dim strResult As String = xmlResult.ToString
If objResult.Length > 1 Then

Dim srcCount As WSNwindEP.SqlRowCount = _
CType(objResult(1), WSNwindEP.SqlRowCount)

Dim intRowCount As Integer = srcCount.Count
End If

Enabling ad hoc queries exposes your server to the potential security risk of SQL injection attacks. Few,
if any, DBAs permit ad hoc queries against production databases.

Figure 10-15 shows the Client.vb form after executing a FOR XML AUTO query.

Figure 10-15

Executing sp_executesql to avoid recompiling the execution plan for parameter value changes allows
you to pass a ParamArray of SqlParameter objects as the second sqlbatch WebMethod argument,
which is Nothing in the preceding code snippet.

455

Upgrading from SQL Server 2000 to 2005

17_57678x ch10.qxd 11/10/05 11:30 PM Page 455

Summary
SQL Server 2005’s six editions correspond to those of SQL Server 2000 editions. SQL Server 2005 Express
Edition replaces MSDE 2000 and adds significant benefits, such as a 4GB maximum database size and no
query throttling. SQL Express has a few limitations, such as the inability to act as a replication publisher.
SQL Express Manager provides a simple GUI for managing SQL Express databases and executing
queries. All SQL Server 2005 editions install SQL Computer Manager, which combines SQL Server 2000’s
Server Network Utility, Client Network Utility, and Services Manager into a single MMC snap-in.

SQL Server Management Studio replaces SQL Server 2000’s Enterprise Manager and integrates Query
Analyzer in a VS 2005-base IDE. You can execute T-SQL, MDX, DMX, and XMLA queries against Analysis
Server databases, and write SQL Mobile queries. Business Intelligence Developer Studio integrates
Analysis Manager features and Reporting Services design/deployment capabilities, and lets you extend
Integration Services scripts. SQL Profiler and Database Tuning Advisor (formerly the Index Tuning Wizard)
get minor enhancements. Sqlcmd.exe replaces osql.exe and uses an SQL Native Client OLE DB connection.
SMO and RMO replace SQL-DMO for automating server management chores. New data availability and
reliability features include enhanced table partitioning, database mirroring, and an Sqlcmd.exe enhance-
ment that enables DBAs to run commands when the server won’t accept new connections.

CLR integration enables you to create stored procedures, UDFs, triggers, UDTs, and UDAs with
managed code that runs in the SQL Server process. VS 2005’s SQL Server projects include stubs for each
of the five object types, and automatically deploy assemblies to the target database when you build and
run the project.

New Large Data types —nvarchar(max), varchar(max), and varbinary(max)— store up to 2^31-1
bytes of data and replace the ntext, text, and image data types, which remain for backward compatibility
only. The new xml scalar data type can be used for table columns and as a T-SQL variable, stored procedure
or UDF parameters, and UDF return values. T-SQL gains many new enhancements, including nested FOR
XML queries, structured exception handling, common table expressions and recursive queries, PIVOT and
UNPIVOT operators, SNAPSHOT Transaction Isolation, TOP n and TABLESAMPLE operators, ranking table
functions (RANK() OVER, DENSE_RANK() OVER, and ROW_NUMBER() OVER), TABLESAMPLE, DDL triggers,
and cell-scoped or column-scoped data encryption with certificates stored in the database.

Service Broker provides reliable asynchronous transactional messaging between local or remote
databases, enhances Notification Services, and enables query notifications. Query notifications occur
when DML or DDL operations affect the resultset of a specified query. Database Mail replaces SQLMail’s
extended stored procedures, and SQL native SOAP Web services use HTTP.sys to emulate SQLXML 3.0
Web services without a requirement for setting up IIS virtual directories. Native Web services also enable
ad hoc queries.

456

Chapter 10

17_57678x ch10.qxd 11/10/05 11:30 PM Page 456

Creating SQL Server
Projects

Visual Studio 2005 and SQL Server 2005 introduce SQL Server projects, which let you substitute
.NET Framework 2.0 assemblies for T-SQL stored procedures, scalar and table-returning functions,
and triggers. You also can create custom user-defined data types and user-defined aggregates,
which isn’t possible with T-SQL. This chapter calls the objects defined within SQL Server project
assemblies SQL/CLR objects.

The capability to substitute assemblies, which can define one or more SQL/CLR objects of the
six types, for tried-and-true T-SQL objects doesn’t mean that .NET developers should abandon
T-SQL for VB or C# 2005 to define stored procedures, user-defined functions, and triggers. T-SQL
remains the better language choice for creating conventional SQL Server objects that operate on
sets of tabular data. Moving code from Data Access Logic Components (DALC) in a middle tier to
a production database server’s engine requires business justification, thorough planning, expert
coding, exhaustive testing, and a willing DBA. As is the case for SQL Server–hosted Web services,
you can expect DBAs to be very reluctant to add SQL/CLR objects to “their” production
databases.

Consider using SQL/CLR objects when T-SQL queries and commands require procedural code,
complex string manipulation or calculations, temporary tables, or cursors to meet your data access or
update requirements. T-SQL procedural code, such as WHILE, CASE, and data-dependent IF...ELSE
blocks, is interpreted. SQL/CLR objects are compiled, so performance is likely to be better. SQL/CLR
objects enable array processing, which T-SQL doesn’t support. Data-intensive applications, such as
sales and production forecasting, that require performing calculations on many records to return a
small amount of data are logical candidates for SQL/CLR objects; so are operations that perform
processing on individual rows returned by a forward-only (firehose) cursor.

Most sample code for SQL/CLR objects in SQL Server Books Online and on the Internet is trivial,
can be implemented with T-SQL easily, and doesn’t meet the test of the preceding use cases. The
beginning of this chapter offers a few such simplified examples to illustrate SQL/CLR object coding

18_57678x ch11.qxd 11/10/05 11:26 PM Page 457

and deployment methods. Later sections concentrate on more complex examples of stored procedures
and user-defined types that might justify adding .NET assemblies and SQL/CLR objects to a production
database.

An Introduction to SQL Server Projects
VS 2005 SQL Server projects generate assemblies that SQL Server 2005 executes with an instance of the
.NET Framework 2.0 runtime that’s hosted by the database engine. Thus, these projects run within the
SQL Server process and share its memory space. The database engine, not the .NET Framework, handles
SQL/CLR object memory management, garbage collection, and threading. By default, SQL Server project
assemblies can’t access external system resources or execute unmanaged code, which preserves the
server’s security and reliability. However, substituting complex managed code for conventional T-SQL
stored procedures, functions, user-defined data types, triggers, and native aggregate functions can affect
server performance.

Commands to Enable CLR Integration
As mentioned in the section “CLR Integration” in Chapter 10, SQL Server 2005 or SQL Express CLR
integration isn’t enabled by default. In most cases, you enable CLR integration on the SQL Server 2005
Surface Area Configuration Tool’s Surface Area Configuration page. To enable and verify CLR integration
with T-SQL, execute the following batch in SQL Server Management Studio (SMSS):

EXEC[UTE] sp_configure ‘clr enabled’, 1
RECONFIGURE
[EC[UTE] sp_configure]

Include EXEC[UTE] sp_configure to confirm clr enabled = 1.

Attribute Decorations for SQL Server Projects
The following five attribute decorations identify classes and structures as SQL/CLR objects:

❑ <SqlProcedure()> specifies a CLR stored procedure (CSP) and is used for VS 2005
deployment only.

❑ <SqlUserDefinedFunction()> specifies a CLR scalar or table-valued user-defined function
(CFS or CFT) and is used for deployment and at runtime. This book considers scalar and table-
valued functions to be individual SQL/CLR object types because there are substantial
differences in their implementation.

❑ <SqlUserDefinedType()> specifies a CLR user-defined type (UDT), which is an extended
version of SQL Server’s user-defined data type (UDDT) and is used for deployment and at
runtime.

❑ <SqlUserDefinedAggregate()> specifies a CLR user-defined aggregate (UDA), which
extends SQL Server’s native aggregation functions, such as COUNT and SUM and is used for
deployment and at runtime.

❑ <SqlTrigger> specifies a CLR trigger (CTR) for INSERT, UPDATE, or DELETE operations and is
used for deployment only.

458

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 458

The UDT and UDA abbreviations are commonly used by SQL/CLR developers. The CSP, CFS, CFT,
and CTR abbreviations identify objects that are user-defined by definition — stored procedures and
triggers — and distinguish a CLR scalar or table-valued functions from a T-SQL user-defined function
(UDF). This book uses the abbreviations as prefixes or suffixes to identify SQL/CLR object types (other
than UDTs).

A method within a UDT project’s Public Class or Public Structure requires an <SqlMethod
(DataAccess:=DataAccessKind.Read)> attribute to gain access to tables in the current or another
database.

Visual Studio 2005 SQL Server Project Templates
Creating a complex user-defined object, such as a UDT or UDA, is a daunting task for the uninitiated
developer. Thus, VS 2005 Developer Edition and higher include Class and Structure templates for an
SQL Server project. You add the templates by choosing them from the Project menu or the Solution
Explorer ProjectName node’s Add context menu.

Following are brief descriptions of the five Class and Structure templates:

❑ Stored Procedure has skeleton code for Public Partial Class StoredProcedures with an
empty Public Public Shared Sub StoredProcedure1 that’s decorated with the required
<[Microsoft.SqlServer.Server].SqlProcedure()> attribute. The class can contain
multiple CSPs defined as Public Subs or Functions.

❑ User-Defined Function is a stub for Partial Public Class UserDefinedFunctions with a
sample <[Microsoft.SqlServer.Server].SqlFunction()>Public Shared Function
Function1() As SqlString method that returns “Hello” without “World”. Like stored
procedures, you can define multiple CFSs and CFTs in a single Class file.

❑ User-Defined Type is a stub for Public Structure Type1 with
<Serializable()><[Microsoft.SqlServer.Server].SqlUserDefinedType(Format
.Native)> attributes and required (but mostly empty) methods, properties, and a var1 field
member. Each UDT requires its own Structure or Class, which names the UDT.

❑ Aggregate is a stub for Public Class Aggregate1 with <Serializable()> <[Microsoft
.SqlServer.Server].SqlUserDefinedAggregate(Format.Native)> attributes and empty
Init, Accumulate, Merge, and Terminate methods. Each UDA requires its own Class, which
names the UDA.

❑ Trigger is a stub for Public Class Triggers with an empty Public Shared Sub Trigger1
and a commented <[Microsoft.SqlServer.Server].SqlTrigger(Name:=”Trigger1”,
Target:=”Table1”, Event:=”FOR UPDATE”)> attribute.

All templates include Imports System, Imports System.Data, Imports System.Data.Sql, Imports
System.Data.SqlTypes, and Imports Microsoft.SqlServer.Server. Thus, the Microsoft
.SqlServer.Server prefix for attribute names is optional. You must add Imports System.Data
.SqlClient to create an ADO.NET 2.0 SqlConnection to the SQL Server instance that hosts the
assembly (called a context connection) or a conventional SqlConnection to the local or another SQL Server
instance.

Visual Basic 2005 Express Edition doesn’t include an SQL Server Project template, so you must create
SQL Server projects as class libraries and add class files to implement user-defined SQL Server CLR
objects. All editions of SQL Server 2005, including SQL Server Express, have the same support for
SQL Server projects. 459

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 459

The SqlServerProjectCLR Sample Project
You can build an SQL Server project by adding the five default Class and Structure templates and
deploy the project by pressing F5 or choosing Build ➪ Deploy Solution in VS 2005. However, the only
functional class is the user-defined function, which returns Hello. The SqlServerProjectCLR.sln project in
the \VB2005DB\Chapter11\SqlServerProjectCLR folder provides examples of five simple but opera-
tional CLR object types that you can deploy to the Northwind database with VS 2005’s automatic
post-build deployment process.

The sample project’s connection string specifies localhost as the SQL Server 2005 instance that includes
the Northwind database. If you receive a message similar to Figure 11-1 when you open the project in VS
2005, click Yes. Open the project’s Properties window’s Database page and click the builder button at the
right of the Connection String text box to open the Add Database Reference dialog (see Figure 11-2). If
you’ve defined a connection to the instance, select it and click OK. Otherwise click Add New Reference
and create the appropriate connection.

Figure 11-1

Figure 11-2

460

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 460

Code for SQL Server Objects
SqlServerProjectCLR’s objective is to create simple, deployable examples of the five basic SQL/CLR
object types. The code for the sample objects is trivial and, with the exception of the SampleUDT
Structure and SampleUDA Class, the objects are better suited to implementation with T-SQL than
managed code.

The SampleCSP Stored Procedure Class
The SampleCSP Class’s csp_OrdersByCustomerID stored procedure introduces the SqlContext and
SqlPipe objects from the Microsoft.SqlServer.Server namespace that’s provided by the reference
to System.Data.dll. Following are brief descriptions of the SqlContext object’s two commonly used
methods:

❑ Pipe returns the SqlPipe object, which has an overloaded Send method and related methods.
You use the Send method to send an ISqlReader (SqlDataReader), SqlError, or a message
(SqlString) to the calling application.

❑ TriggerContext returns the SqlTriggerContext object that’s used in the SampleCTR class.

Creating a context connection to the SQL Server instance running the SQL/CLR stored procedure requires
a special “context connection=true” connection string. Context connections and SqlCommands
within the SQL/CLR context are identical to those in ordinary Windows and Web form contexts.

The following SQL/CLR stored procedure code returns Orders rows for the specified CustomerID
parameter value:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

‘Added
Imports System.Data.SqlClient

Partial Public Class StoredProcedures
<SqlProcedure()> _
Public Shared Sub csp_OrdersByCustomerID(ByVal CustomerID As SqlString)

Using cnNwind As New SqlConnection(“context connection=true”)
Dim strSQL As String = “SELECT * FROM Orders WHERE CustomerID = ‘“ + _
CustomerID.ToString + “‘ ORDER BY OrderID DESC”

Dim cmOrders As New SqlCommand(strSQL, cnNwind)
cmOrders.CommandType = CommandType.Text
cnNwind.Open()
SqlContext.Pipe.ExecuteAndSend(cmOrders)
cnNwind.Close()

End Using
End Sub
End Class

461

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 461

The SqlPipe.ExecuteAndSend(SqlCommand) method enables you to send the resultset directly, rather
than by creating and executing an SqlDataReader.

If you want to add a return value to your CSP, change Public Shared Sub to Public Shared
Function and add a Return Value instruction. For the preceding example, a useful return value is
the number of rows in the resultset.

Run the following command from SMSS with Northwind as the current database to test the procedure:

EXEC [dbo.]csp_OrdersByCustomerID ‘ALFKI’

The SampleCFS Scalar User-Defined Function Class
The following cfs_OrderCountByCustomerID scalar function returns the number of orders placed by
the customer with the CustomerID parameter value:

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

‘Added
Imports System.Data.SqlClient

Partial Public Class UserDefinedFunctions
<SqlFunction(DataAccess:=DataAccessKind.Read)> _
Public Shared Function cfs_OrderCountByCustomerID(ByVal CustomerID As SqlString)

As SqlInt32
Using cnNwind As New SqlConnection(“context connection=true”)

Dim strSQL As String = “SELECT COUNT(OrderID) “ + _
“FROM Orders WHERE CustomerID = ‘“ + CustomerID.ToString + “‘“

Dim cmOrders As New SqlCommand(strSQL, cnNwind)
cmOrders.CommandType = CommandType.Text
cnNwind.Open()
Dim intCount As SqlInt32 = CType(CInt(cmOrders.ExecuteScalar), SqlInt32)
cnNwind.Close()
Return intCount

End Using
End Function
End Class

The SqlFunction requires the DataAccess:=DataAccessKind.Read member to read values from
database objects. If the member is missing or DataAccess:=DataAccessKind.None, you incur an
exception when you execute a function that invokes an SqlCommand.

Run the following command from SMSS with Northwind as the current database to test the function:

SELECT dbo.cfs_OrderCountByCustomerID(‘RATTC’)

462

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 462

The SampleUDT User-Defined Type Structure
The SampleUDT Structure for the PointUDT type is an abbreviated version of code for the Point UDT,
which the section “A Simple Value-Type UDT,” later in this chapter, describes in depth. The PointUDT
type doesn’t implement the Point type’s DistanceTo method.

The SampleUDA User-Defined Aggregate
The SampleUDA Class’s CSVStringUDA aggregate returns a comma-separated-value (CSV) formatted
string for all values in the column of the table that you specify as the UDA’s argument. For example,
executing SELECT dbo.CSVStringUDA(CompanyName) AS CSVString FROM Customers returns
“Alfreds Futterkiste”,”Ana Trujillo Emparedados y helados”, ... “Wilman Kala”,”Wolski
Zajazd”.

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

‘Added
Imports System.Text
Imports System.IO

<Serializable()> _
<SqlUserDefinedAggregate(Format.UserDefined, IsInvariantToDuplicates:=False, _
IsInvariantToNulls:=True, IsInvariantToOrder:=False, IsNullIfEmpty:=True,
MaxByteSize:=8000)> _

Public Class CSVStringUDA
Implements IBinarySerialize

Private sbCSV As StringBuilder

Public Sub Init()
‘Initialize with an opening “
sbCSV = New StringBuilder()
sbCSV.Append(ControlChars.Quote)

End Sub

Public Sub Accumulate(ByVal sqlString As SqlString)
If (sqlString.IsNull) Then

Return
Else

‘Append the separator (“,”)
sbCSV.Append(sqlString.Value).Append(“””,”””)

End If
End Sub

Public Sub Merge(ByVal csvString As CSVStringUDA)
‘Merge the current instance with the another thread’s instance, if present
sbCSV.Append(csvString.sbCSV)

End Sub

Public Function Terminate() As SqlString
‘Return the string from the StringBuilder or an empty string

463

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 463

If sbCSV.Length > 0 Then
sbCSV.Append(vbCrLf)
Return New SqlString(sbCSV.ToString(0, sbCSV.Length - 4))

Else
Return New SqlString(“”)

End If
End Function

Public Sub Read(ByVal brCSV As System.IO.BinaryReader) _
Implements IBinarySerialize.Read

‘Format.UserDefined, so a BinaryReader is required
sbCSV = New StringBuilder(brCSV.ReadString())

End Sub

Public Sub Write(ByVal bwCSV As System.IO.BinaryWriter) _
Implements IBinarySerialize.Write

‘Format.UserDefined, so a BinaryWriter is required
bwCSV.Write(sbCSV.ToString())

End Sub
End Class

The Format.UserDefined attribute requires that you implement the IBinarySerialize interface and
its Read and Write methods. The section “UserDefined-Format UDT Class Code,” later in this chapter,
illustrates a more complex implementation of this interface.

The CSVStringUDA aggregate isn’t limited to SqlString fields. As an example, you can return CSVs for
the Products table’s UnitPrice (money), QuantityOnHand (smallint), and Discontinued (bit) columns.
The preceding code doesn’t include protection against generating strings longer than 8,000 bytes (4,000
Unicode characters), which is specified by the MaxByteSize:=8000 attribute and is the maximum
permissible value. If you execute SELECT dbo.CSVStringUDA(OrderDate) AS CSVString FROM
Orders, you receive an exception that states: “The buffer is insufficient. Read or write operation failed.”
You can limit the length of the return value by adding GROUP BY clauses to the SELECT statement.

The SampleCTR Trigger
The SampleCTR Class’s ctr_Products method returns a message when an application updates the
Products table. The code uses the SqlTriggerContext object to determine the update type and send
the appropriate message with the SqlPipe.Send method’s String overload.

Imports System
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server

Partial Public Class SampleCTRs
<SqlTrigger(Name:=”ctr_Products”, Target:=”Products”, _
Event:=”FOR INSERT, UPDATE, DELETE”)> _
Public Shared Sub ctr_Products()

Dim ctxTrigger As SqlTriggerContext
Dim spPipe As SqlPipe = SqlContext.Pipe
ctxTrigger = SqlContext.TriggerContext()

464

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 464

Select Case ctxTrigger.TriggerAction

Dim intCol As Integer
Dim strCols As String = Nothing
For intCol = 0 To ctxTrigger.ColumnCount - 1

If ctxTrigger.IsUpdatedColumn(intCol) Then
Select Case intCol

Case 6
strCols += “UnitsInStock, “

Case 7
strCols += “UnitsOnOrder, “

Case 8
strCols += “ReorderLevel, “

End Select
End If

Next
If strCols Is Nothing Then

spPipe.Send(“Products table row updated.”)
Else

strCols = strCols.Substring(0, strCols.Length - 2)
strCols = “Products table “ + strCols
If strCols.IndexOf(“, “) > 0 Then

strCols += “ columns updated.”
Else

strCols += “ column updated.”
End If
spPipe.Send(strCols)

End If
End Select

End Sub
End Class

The SqlTriggerContext.IsUpdatedColumn() property returns a Boolean True value for an
updated column. The preceding code sends a “Products table UnitsInStock, UnitsOnOrder,
ReorderLevel columns updated” message if the three column values are updated.

DDL triggers return an SqlTriggerContext.EventData XML document that describes the DDL
operation.

You can trace VS 2005’s automatic deployment commands by selecting SQL Profiler’s T-SQL template
and pressing F5 to build and deploy the project.

Test Scripts
A Test.sql script in the project’s Test Scripts folder enables you to debug the code for each object. VS 2005’s
post-build process for SQL Server projects reads and executes the test script as the last step in the build-and-
run process. The script’s return values appear in the Output window when you select the Debug item in the
Show Output From list. The default Test.sql script is a placeholder. The SqlServerProjectCLR project includes
a Test.sql script with instructions to execute each of the sample SQL/CLR objects. Figure 11-3 shows the
Database output from Test.sql. The first value (6) is generated by csf_OrderCountByCustomerID; PointUDT
outputs the following three numeric rows. The remaining sections represent the output from csp_
OrdersByCustomer, ctr_Products, and CSVStringUDA. The sequence represents completion of execution,
not the order of the Test.sql script’s command.

465

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 465

Figure 11-3

If you receive a “Cannot deduce the default test script” message, expand the Test Scripts node, right-
click Test.sql, and choose Set as Default Debug Script.

To add an empty Test1.sql script to a new SQL Server project, right-click the ProjectName node, and
choose Add Test Script to create the TestScripts folder and file. Change the file name, if you want, and
then set it as the Default Debug Script.

The section “Debug SQL Server Projects,” later in this chapter, describes alternative debugging methods
for VS 2005 and VB Express.

The CREATE ASSEMBLY Instruction
VS 2005’s post-build T-SQL script installs assemblies automatically. If you’re using VB Express or your
project includes a reference to another assembly, you must install the assembly in SQL Server manually.
The following T-SQL instruction adds an SQL Server project assembly and its related files to the current
database:

466

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 466

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { <client_assembly_specifier> | <assembly_bits> [,...n] }
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]

where:

❑ assembly_name is the symbolic name of the assembly, such as StoredProceduresCLR, which
must be unique within the database. The value normally is the assembly name without the .dll
extension, but can be any value that’s valid for SQL Server symbolic names.

❑ owner_name is the name of a role that’s valid for the current user. Omitting AUTHORIZATION
owner_name assigns ownership to the current user.

❑ <client_assembly_specifier> is the well-formed path to the assembly DLL, such as
C:\SQLServerProjects\bin\StoredProceduresCLR.dll. You also can specify a UNC path.
Dependent assemblies are added automatically and must be located in the same folder. The alter-
native <assembly_bits> is the binary representation of an assembly and its dependent assem-
blies, if any. VS 2005 post-build deployment uses <assembly_bits> instead of the assembly’s
path and file name.

❑ SAFE is the default permission set and prohibits access to external resources, such as the file sys-
tem, registry, network, and environment variables. SAFE assemblies have execute permissions
only and can’t compromise the server’s security or reliability.

❑ EXTERNAL_ACCESS permission extends SAFE permission to enable access to external resources,
such as the network or local file system.

❑ UNSAFE permission enables running wrapped COM objects, PInvoke, and unmanaged code in
the server process. Only members of the sysadmin role can register UNSAFE assemblies, which,
like COM-based extended stored procedures, can compromise the server’s security and reliability.

The following instruction installs the SqlServerProjectCLR assembly from the specified local file:

CREATE ASSEMBLY SqlServerProjectCLR FROM
‘D:\WROX\Projects\Chapter11\SqlServerProjectCLR\bin\SqlServerProjectCLR.dll’

with the default SAFE permission set. You must be logged into the SQL Server 2005 instance with
Windows authentication to execute the CREATE ASSEMBLY command.

The CreateAllObjects.sql script in the \VB2005DB\Chapter11\SqlServerProjectCLR\bin folder
includes the preceding CREATE ASSEMBLY instruction and the CREATE ObjectType instructions
that the following sections describe. You must edit the file path to conform to your sample files installa-
tion. A DropAllObjects.sql script enables recreating the SQL/CLR objects.

The server tests the assembly for type-safeness and conformance to the PERMISSION_SET value, which
eliminates the need for the JIT compiler’s test on initial loading. If the assembly is conformant, the
assemblies are cataloged in the target database’s sys.assemblies and sys.assembly_files system tables.
Entries in the sys.assembly_types, sys.assembly_modules, and sys.assembly_references tables occur
when required by a specific assembly.

To specify a PERMISSION_SET value other than SAFE, open the ProjectName Properties window,
select the Database page, and select the value from the Permission Level list. You must be a member of
the sysadmin role to specify UNSAFE.

467

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 467

The assembly you add appears under the \DatabaseName\Assemblies node of the VS 2005 Server
Explorer and under the \DatabaseName\Programmability\Assemblies node of SMSS’s Object Explorer.
Expanding Server Explorer’s AssemblyName node displays links to source code files and object items.

Create ObjectType Instructions
After you catalog the assembly in the database, you must execute a CREATE ObjectType instruction for
each SQL Server object you define in a Class or Structure. The instructions follow conventional T-SQL
syntax for creating stored procedures, user-defined functions, and triggers. You substitute EXTERNAL
NAME for the T-SQL code that ordinarily follows the AS predicate. The EXTERNAL NAME syntax for stored
procedures, functions, and triggers, whose classes can contain multiple objects, is:

[CatalogName].[AssemblyName.ClassName].[ProcedureOrFunctionName]

UDTs and UDAs, which don’t have T-SQL implementations, contain a single object per Structure or
Class, and require the following syntax:

[CatalogName].[AssemblyName.TypeOrAggregateName]

The following instructions create the five basic SQL/CLR object types from the SqlServerProjectCLR
assembly added in the preceding section, and typical batch commands to return values. The assembly
doesn’t implement a table-valued function because of the complexity of implementing the required
ISqlReader, ISqlRecord, and ISqlTypeData interfaces, which require writing more than 60 methods
and properties.

The batch commands are variations on instructions provided earlier in the chapter.

Stored Procedures
The following command adds the csp_OrdersByCustomerID stored procedure to the Northwind
database:

CREATE PROCEDURE [csp_OrdersByCustomerID] @CustomerID nvarchar(MAX)
AS EXTERNAL NAME
[SqlServerProjectCLR].[SqlServerProjectCLR.SampleCSP].[csp_OrdersByCustomerID]

Execute the following instruction to return 18 rows of Orders data:

EXEC dbo.csp_OrdersByCustomerID ‘RATTC’

The Test.sql script includes the execution instructions in this and the following sections.

Scalar Functions
The following command adds the cfs_OrderCountByCustomerID scalar user-defined function:

CREATE FUNCTION [cfs_OrderCountByCustomerID](@CustomerID nvarchar(MAX))
RETURNS [int]
AS EXTERNAL NAME
[SqlServerProjectCLR].[SqlServerProjectCLR.SampleCFS].[cfs_OrderCountByCustomerID]

468

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 468

Execute the following instruction to return 18:

PRINT dbo.cfs_OrderCountByCustomerID(‘RATTC’)

Table-Valued Functions
As mentioned earlier, the sample project doesn’t include an SQL/CLR table-valued function. If you
create a cft_OrdersByCustomerID TVF that returns Orders table rows, the following instruction would
install it:

CREATE FUNCTION [cft_OrdersByCustomerID(@CustomerID nvarchar(5))
RETURNS @Orders TABLE
(OrderID int, CustomerID nchar(5), EmployeeID int, OrderDate datetime,
RequiredDate datetime, ShippedDate datetime, ShipVia int, Freight money,
ShipName nvarchar(40), ShipAddress nvarchar(60), ShipCity nvarchar(15),
ShipRegion nvarchar(15), ShipPostalCode nvarchar(10),
ShipCountry nvarchar(15))

AS EXTERNAL NAME
[SqlServerProjectCLR].[SqlServerProjectCLR.SampleCFT].[cft_OrdersByCustomerID]

and the following command would return a table with 18 rows:

SELECT * FROM cft_OrdersByCustomerID(‘RATTC’)

User-Defined Types
The following command adds a user-defined PointUDT type to the current database:

CREATE TYPE PointUDT
EXTERNAL NAME SqlServerProjectCLR.[SqlServerProjectCLR.PointUDT]

and these commands test the UDT by creating an instance of the point and printing its values:

DECLARE @pt PointUDT
SET @pt = CONVERT(PointUDT, ‘2.5,3.6’);
PRINT @pt.X;
PRINT @pt.Y;
PRINT @pt.ToString();

The section “Test the Point UDT with T-SQL Instructions,” later in this chapter, describes UDT test
instructions.

User-Defined Aggregates
The following instruction creates the CSVStringUDA aggregate and its argument and returns data types:

CREATE AGGREGATE CSVStringUDA(@sqlString nvarchar(MAX))
RETURNS nvarchar(MAX)
EXTERNAL NAME SqlServerProjectCLR.[SqlServerProjectCLR.CSVStringUDA]

This command returns a comma-separated-value string of CompanyNames:

SELECT dbo.CSVStringUDA(CompanyName) AS CSVString FROM Customers

469

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 469

This UDA can return CSV strings from columns of any native or user-defined data type. As an example,
the following command returns a CSV string from the PointUDT column of the PointsUDT table that
you create later in the chapter:

SELECT dbo.CSVStringUDA(PointUDT.ToString()) AS CSVString FROM PointsUDT

Triggers
Execute the following instruction to create a trigger that fires on any Products table value modification:

CREATE TRIGGER [ctr_Products] ON Products
FOR INSERT, UPDATE, DELETE
AS EXTERNAL NAME

[SqlServerProjectCLR].[SqlServerProjectCLR.SampleCTRs].[ctr_Products]

These commands fire the trigger and return the column value to its initial state:

UPDATE Products SET UnitsInStock = UnitsInStock + 1 WHERE ProductID = 1;
UPDATE Products SET UnitsInStock = UnitsInStock - 1 WHERE ProductID = 1;

Drop SQL/CLR Objects
The DropAllObjects.sql script in the sample project’s Test Scripts folder illustrates the T-SQL commands
for dropping each type of SQL/CLR object. You can use IF OBJECT_ID(‘ObjectName’) IS NOT NULL
tests for all but UDTs and assemblies, which require queries against the sys.types and sys.assemblies
system views. Following is the script to drop the SQL/CLR objects created in the preceding sections:

USE Northwind;
GO
IF OBJECT_ID(‘csp_OrdersByCustomerID’) IS NOT NULL
DROP PROCEDURE [csp_OrdersByCustomerID];
GO
IF OBJECT_ID(‘cfs_OrderCountByCustomerID’) IS NOT NULL
DROP FUNCTION [cfs_OrderCountByCustomerID];
GO
IF OBJECT_ID(‘CSVStringUDA’) IS NOT NULL
DROP AGGREGATE [CSVStringUDA];
GO
IF EXISTS(SELECT name FROM sys.types WHERE name = ‘PointUDT’)
DROP TYPE [PointUDT];
GO
IF OBJECT_ID(‘ctr_Products’) IS NOT NULL
DROP TRIGGER [ctr_Products];
GO
IF EXISTS(SELECT name FROM sys.assemblies WHERE name = ‘SqlServerProjectCLR’)
DROP ASSEMBLY [SqlServerProjectCLR];
GO

You must drop all objects created by the assembly before you can drop the assembly.

470

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 470

Debug SQL Server Projects
VS 2005’s Test.sql script lets you debug SQL/CLR objects automatically during the build-and-deploy
process. This debugging technique commonly is called F-5 debugging. If you’re using VS 2005 and don’t
want to write a Test.sql script or are running VB Express, you must use the Attach to Process method to
debug the object. The following sections describe these two debugging methods.

Debugging an SQL/CLR database object disables execution of all other SQL/CLR objects of the SQL
Server instance. Thus, it’s not a good troubleshooting practice to debug SQL/CLR objects on production
servers.

Automatic Debugging with VS 2005 and Test.sql
If you replace VS 2005’s Test.sql’s default instructions with the execution commands from the preceding
sections, you can debug the CLR objects after post-build deployment. Debugging with Test.sql
commands requires the following procedure:

1. Add the appropriate instructions to the Test.sql script in the TestScripts folder and specify
Test.sql as the default test script. (You can choose a different file name, if you want.)

2. Mark the Enable SQL Server Debugging checkbox on the Debugging page of the ProjectName
Properties window. (This checkbox is marked by default.)

3. Right-click Server Explorer’s current database node, choose Allow SQL/CLR Debugging, and
acknowledge the warning message about stopping managed threads on the server.

4. Add a breakpoint at an appropriate location in your code.

When you build and deploy the project, execution halts at the breakpoint. The project remains in the
Running state, so you must press Shift+F5 to halt the debugging process. Allow SQL/CLR Debugging is a
toggle, so you must choose Allow SQL/CLR Debugging again to return to normal build-and-deploy mode.

Manual Debugging with VS 2005 or VB Express
Manual debugging uses the Attach to Process method and T-SQL commands executed with SMSS to
debug your code. Manual debugging requires the following steps:

1. If you specified Allow SQL/CLR Debugging in VS 2005, choose Allow SQL/CLR Debugging
again to toggle the setting off.

2. Choose Debug ➪ Attach to Process to open the dialog of the same name, select sqlservr.exe (see
Figure 11-4), and click Attach to close the dialog to place your project in Running mode.

3. Add a breakpoint at an appropriate location in the code to debug (SampleCSP’s csp_
OrdersByCustomerID method for this example).

4. Open SMSS, and type a T-SQL command to execute the method (EXEC dbo.csp_
OrdersByCustomerID ‘RATTC’ for this example).

471

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 471

Figure 11-4

When you execute the T-SQL command, execution stops at the breakpoint. Choose Debug ➪ Detach All
to return from Running to editing mode.

Design SQL/CLR Stored Procedures
SQL/CLR stored procedures are best suited to methods that return custom resultsets, create specialized
data structures, manipulate strings or date/time values, access local or network resources, or perform
complex calculations. The following sections illustrate SQL/CLR stored procedures that perform more
complex operations than the preceding introductory examples.

The StoredProceduresCLR.sln project in the \VB2005DB\Chapter11\StoredProceduresCLR folder
contains code for the three SQL/CLR stored procedures that are the subjects of the sections that follow.
The project’s ...\Test Scripts folder contains CreateAllObjects.sql and DropAllObjects.sql scripts for
manual installation and deletion of the procedures.

The StoredProceduresClient.sln project in the \VB2005DB\Chapter11\StoredProceduresClient folder
is a test harness for the SQL/CLR procedures. You must run the StoredProceduresClient project to
create one or two user stored procedures for the csp_LinearRegression procedure before you run
StoredProceduresCLR.

472

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 472

Return Content-Dependent SqlDataRecords
The csp_CustomerDataRecord procedure illustrates the delivery of a customized SQLDataRecord object
whose metadata is partly determined by the value of the Customers table’s Country column. The meta-
data changes original CompanyName, ContactName, ContactTitle, and Address fields to Name, Buyer,
Title, and Street. For USA values, the procedure changes the Region column name to State, PostalCode to
ZIPCode, and returns a NULL Country value. Other countries return the original two column names with
NULL values for Region and PostalCode, depending on the Customers row’s values.

This procedure introduces the SqlMetaData object, which defines the structure of a custom
SqlDataRecord column. You specify the number of columns by the size of the array of SqlMetaData
objects, and add column metadata with the following generic instruction:

mdName(intColIndex) = New SqlMetaData(strColumnName, SqlDbType.Type [, intMaxSize])

The intMaxSize argument is required for character data and is optional for the SqlDecimal data
type. For the SqlDecimal data type you substitute intPrecision, intScale for intMaxSize.

Then you create a new SqlDataRecord object and assign column values with the following generic
instructions:

Dim sdrName As New SqlRecord(mdName)
sdrName.SetDataType(intColIndex, typColValue)
...

The application-specific versions of the preceding instructions are highlighted in the following code for
the csp_CustomerDataRecord function:

<SqlProcedure()> _
Public Shared Function csp_CustomerDataRecord(ByVal CustomerID As SqlString) _

As Integer
‘Define the metadata for an SqlDataRecord (default for USA)
Dim mdCust(8) As SqlMetaData
mdCust(0) = New SqlMetaData(“ID”, SqlDbType.NVarChar, 5)
mdCust(1) = New SqlMetaData(“Company”, SqlDbType.NVarChar, 40)
mdCust(2) = New SqlMetaData(“Buyer”, SqlDbType.NVarChar, 30)
mdCust(3) = New SqlMetaData(“Title”, SqlDbType.NVarChar, 30)
mdCust(4) = New SqlMetaData(“Street”, SqlDbType.NVarChar, 60)
mdCust(5) = New SqlMetaData(“City”, SqlDbType.NVarChar, 15)
mdCust(6) = New SqlMetaData(“State”, SqlDbType.NVarChar, 15)
mdCust(7) = New SqlMetaData(“ZIPCode”, SqlDbType.NVarChar, 10)
mdCust(8) = New SqlMetaData(“Country”, SqlDbType.NVarChar, 15)

Dim spCust As SqlPipe = SqlContext.Pipe
Dim cnNwind As New SqlConnection(“context connection=true”)
Dim cmCust As New SqlCommand
With cmCust

.Connection = cnNwind

.CommandType = CommandType.Text

.Parameters.Clear()

.Parameters.AddWithValue(“@CustomerID”, CustomerID)

.CommandText = “SELECT CustomerID, CompanyName, ContactName, “ + _
“ContactTitle, Address, City, Region, PostalCode, Country “ + _

473

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 473

“FROM Customers WHERE CustomerID = @CustomerID;”
End With
Try

Dim sdrCustOrig As SqlDataReader = cmCust.ExecuteReader
If sdrCustOrig.HasRows Then

sdrCustOrig.Read()
Else

Throw New Exception(“CustomerID ‘“ + CustomerID.ToString + “‘ not found.”)
sdrCustOrig.Close()
cnNwind.Close()
Return 1

End If
Dim intIsUSA As Integer
If sdrCustOrig(8).ToString = “USA” Then

intIsUSA = -1
Else

‘Use international field names
mdCust(6) = New SqlMetaData(“Region”, SqlDbType.NVarChar, 15)
mdCust(7) = New SqlMetaData(“PostalCode”, SqlDbType.NVarChar, 10)

End If
Dim sdrCust As New SqlDataRecord(mdCust)
Dim intCtr As Integer
For intCtr = 0 To 8

If intIsUSA = -1 Then
If intCtr = 8 Then

‘NULL country
Exit For

End If
End If
If sdrCustOrig(intCtr).ToString = “” Then

‘NULL Region or PostalCode
Else

sdrCust.SetString(intCtr, sdrCustOrig(intCtr).ToString)
End If

Next intCtr
sdrCustOrig.Close()
cnNwind.Close()
spCust.Send(sdrCust)
Return intIsUSA

Catch exc As Exception
cnNwind.Close()
Throw New Exception(exc.Message)
Return 1

End Try
End Function

If you want to send a return value, change Public Shared Sub to Public Shared Function and
specify the return value, as illustrated near the end of the preceding listing.

Figure 11-5 shows the StoredProceduresClient project’s startup form displaying SqlDataRecord column
names and values for a U.S. customer. The client also generates mailing label text.

474

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 474

Figure 11-5

The StoredProceduresCLR project includes a csp_CustomerDataStream function that delivers all
Customers table rows as SqlDataRecord objects. This approach eliminates the need to implement the
IDataReader interface, which requires implementing several required and many provider-specific
members. The sample code executes an initial SqlPipe.SendResultsStart(SqlDataRecord,
False) instruction, followed by an SqlPipe.SendResultsRow(SqlDataRecord) for each row, and a
terminating SqlPipe.SendResultsEnd() instruction. The client reads the rows into an SqlDataReader
object with an SqlCommand.ExecuteReader instruction. The CLR stored procedure can interleave
SqlDataReader.Read and SqlPipe.SendResultsRow(SqlDataRecord) instructions without
implementing Multiple Active Result Sets (MARS). However, streaming the data disables country-based
changes to the metadata, which is determined by the initial
SqlPipe.SendResultsStart(SqlDataRecord) instruction.

Clicking the client’s Get All Addresses with SqlDataReader button demonstrates fixed metadata, which
is required for resultsets that the ExecuteReader method returns to an SqlDataReader.

Generate XML Documents with an XmlWriter
Chapter 10’s “Generate a Complex Invoice Document” section describes the T-SQL required to generate
an invoice XML document with a 70-line T-SQL FOR XML PATH query. The StoredProceduresCLR project’s
csp_SalesOrderXML procedure uses an XmlWriter object to generate a similar sales order document,
save it as a file in the project’s ...\Test Scripts folder, and send the contents to the client. The following
chapter, which covers SQL Server 2005’s xml data type, uses similar sample documents to emulate
real-world business processes.

475

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 475

The .NET Framework 2.0’s XmlWriter object, which you instantiate with the static XmlWriter
.Create method, replaces the earlier XmlTextWriter, which is a concrete implementation of the
XmlWriter class.

It requires about 200 lines of code to create a document that’s similar to the FOR XML PATH version.
Generating documents with an XmlWriter lets you format the content with indentation and line breaks;
the FOR XML PATH query returns an unformatted character stream. An XmlWriter also enables you to
insert the XML document prefix, and add namespace prefixes and xmlns attributes to subelements,
which FOR XML PATH queries don’t support. Adding WITH PERMISSION_SET = EXTENAL_ACCESS to the
CREATE ASSEMBLY instruction or setting the Permission Level to External on the ProjectName Properties
window’s Database page lets you save the XML document to a file for further processing.

You can pass the path to the folder for the XML document files as a stored procedure parameter. This
example stores the files in the project’s ...\Test Scripts folder by querying the SqlAssemblyProjectRoot
extended property with the highlighted code at the beginning of the csp_SalesOrderXML procedure
listing. If you install the assembly manually, you must add the following instruction after CREATE
ASSEMBLY to add the extended property:

EXEC sp_addextendedproperty ‘SqlAssemblyProjectRoot’,
N’d:\path\Chapter11\StoredProceduresCLR’,
‘ASSEMBLY’,N’StoredProceduresCLR’;

where d:\path is the installation path.

Following is the code for the csp_SalesOrderXML stored procedure with the code to return the assembly
folder (near the start of the procedure) highlighted:

<SqlProcedure()> _
Public Shared Sub csp_SalesOrderXML(ByVal OrderID As SqlInt32)

‘Save an XML representation of a SalesOrder object as a local file
‘and send the XML document string with a pipe
‘This requires the assembly to be deployed with External Permission Level
Dim spOrder As SqlPipe = SqlContext.Pipe
Dim cnNwind As New SqlConnection(“context connection=true”)
Dim cmNwind As New SqlCommand
Dim sdrOrder As SqlDataReader = Nothing
‘Get the directory for the SQL Server project (extended property)
Dim strDir As String = Nothing
Dim strSQL As String = “SELECT value FROM “ + _
“fn_listextendedproperty(‘SqlAssemblyProjectRoot’, “ + _
“‘ASSEMBLY’, default, default, default, default, default) “ + _
“WHERE objname = ‘StoredProceduresCLR’”

Try
cnNwind.Open()
With cmNwind

.Connection = cnNwind

.CommandText = strSQL

.CommandType = CommandType.Text
strDir = CStr(.ExecuteScalar)

End With
Catch exc As Exception

cnNwind.Close()
Throw New Exception(“Exception getting folder location.”)

476

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 476

Return
End Try
If strDir = Nothing Then

cnNwind.Close()
Throw New Exception(“No folder location returned by query.”)

End If

strDir += “\Test Scripts\”

strSQL = “SELECT o.OrderID, o.CustomerID, c.CompanyName, c.ContactName, “ + _
“c.ContactTitle, c.Address, c.City, c.Region, c.PostalCode, c.Country, “ + _
“c.Phone, o.EmployeeID, e.FirstName, e.LastName, e.Title, e.Extension, “ + _
“o.OrderDate, o.RequiredDate, o.ShippedDate, o.ShipVia, s.CompanyName, “ + _
“o.Freight, o.ShipName, o.ShipAddress, o.ShipCity, o.ShipRegion, “ + _
“o.ShipPostalCode, o.ShipCountry “ + _
“FROM Orders AS o, Customers AS c, Employees AS e, Shippers AS s “ + _
“WHERE o.OrderID = “ + OrderID.ToString + _
“AND c.CustomerID = o.CustomerID AND e.EmployeeID = o.EmployeeID “ + _
“AND s.ShipperID = o.ShipVia”

Try
With cmNwind

.CommandText = strSQL
sdrOrder = .ExecuteReader

End With
If sdrOrder.HasRows Then

sdrOrder.Read()
Else

sdrOrder.Close()
cnNwind.Close()
Throw New Exception(“Order “ + OrderID.ToString + “ is missing.”)
Return

End If
Catch exc As Exception

sdrOrder.Close()
cnNwind.Close()
Throw New Exception(“Exception executing order body query.”)
Return

End Try
If sdrOrder Is Nothing Then

cnNwind.Close()
Throw New Exception(“Order body query returned nothing.”)
Return

End If
‘OrderID = 0, CustomerID = 1, CompanyName = 2, ContactName = 3 ContactTitle = 4
‘Address = 5, City = 6, Region = 7, PostalCode = 8, Country = 9, Phone = 10
‘EmployeeID = 11, FirstName = 12, LastName = 13, Title = 14, Extension = 15
‘OrderDate = 16, RequiredDate = 17, ShippedDate = 18, ShipVia = 19,
‘ShipCompanyName = 20, Freight = 21 ‘ShipName = 22, ShipAddress = 23,
‘ShipCity = 24, ShipRegion = 25, ShipPostalCode = 26, ShipCountry = 27
Dim intOrderID As Integer = sdrOrder.GetInt32(0)

Dim strFile As String = strDir + “SO” + intOrderID.ToString() + “.xml”
Dim xwSettings As New XmlWriterSettings
With xwSettings

.Encoding = Encoding.UTF8

477

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 477

.Indent = True

.IndentChars = (“ “)

.OmitXmlDeclaration = False

.ConformanceLevel = ConformanceLevel.Document
End With
Dim xwOrder As XmlWriter = XmlWriter.Create(strFile, xwSettings)
With xwOrder

.WriteStartElement(“SalesOrder”, _
“http://www.northwind.com/schemas/SalesOrder”)

.WriteAttributeString(“OrderID”, sdrOrder.GetInt32(0).ToString)

.WriteAttributeString(“OrderDate”, sdrOrder.GetDateTime(16).ToString(“s”))

.WriteAttributeString(“CustomerID”, sdrOrder.GetString(1))

.WriteAttributeString(“EmployeeID”, sdrOrder.GetInt32(11).ToString)

.WriteAttributeString(“PaymentID”, “1”)

.WriteAttributeString(“CurrencyID”, “1”)

.WriteAttributeString(“FobID”, “1”)

.WriteAttributeString(“ShipperID”, sdrOrder.GetInt32(19).ToString)

.WriteElementString(“SalesOrderNumber”, sdrOrder.GetInt32(0).ToString)

.WriteElementString(“SalesOrderDate”, sdrOrder.GetDateTime(16).ToString(“s”))

.WriteStartElement(“Terms”)

.WriteElementString(“Payment”, “Net 30 Days”)

.WriteElementString(“Currency”, “US$”)

.WriteEndElement() ‘Terms

.WriteStartElement(“Shipment”)

.WriteElementString(“FOB”, “Redmond, WA”)

.WriteElementString(“Shipper”, sdrOrder.GetString(20))

.WriteElementString(“EstimatedFreight”,
sdrOrder.GetDecimal(21).ToString(“#0.00”))

.WriteEndElement() ‘Shipment

.WriteStartElement(“BillTo”)

.WriteElementString(“Name”, sdrOrder.GetString(2))

.WriteElementString(“Address”, sdrOrder.GetString(5))

.WriteElementString(“City”, sdrOrder.GetString(6))
If sdrOrder.IsDBNull(7) Then

.WriteElementString(“Region”, “”)
Else

.WriteElementString(“Region”, sdrOrder.GetString(7))
End If
If sdrOrder.IsDBNull(8) Then

.WriteElementString(“PostalCode”, “”)
Else

.WriteElementString(“PostalCode”, sdrOrder.GetString(8))
End If
.WriteElementString(“Country”, sdrOrder.GetString(9))
.WriteStartElement(“Buyer”)
.WriteElementString(“Name”, sdrOrder.GetString(3))
.WriteElementString(“Title”, sdrOrder.GetString(4))
.WriteElementString(“Phone”, sdrOrder.GetString(10))
Dim strEmail As String = sdrOrder.GetString(3)
strEmail = Replace(strEmail, “ “, “_”) + “@mail.msn.com”
.WriteElementString(“EMail”, strEmail)
Dim strPurch As String = Now.Ticks.ToString.Substring(12)
.WriteElementString(“PurchaseOrder”, strPurch)
.WriteEndElement() ‘Buyer
.WriteEndElement() ‘BillTo

478

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 478

.WriteStartElement(“SalesContact”)
Dim strEmplName As String = sdrOrder.GetString(12) + _
“ “ + sdrOrder.GetString(13).ToString

.WriteElementString(“Name”, strEmplName)

.WriteElementString(“Title”, sdrOrder.GetString(14))
Dim strEmpPhone As String = “(925) 555-8081 X” + sdrOrder.GetString(15)
.WriteElementString(“Phone”, strEmpPhone)
strEmail = sdrOrder.GetString(12).ToString.Substring(0, 1).ToLower
strEmail += sdrOrder.GetString(13).ToLower + “@northwind.com”
.WriteElementString(“EMail”, strEmail)
.WriteEndElement() ‘SalesContact
.WriteStartElement(“OrderDates”)
.WriteElementString(“OrderDate”, sdrOrder.GetDateTime(16).ToString(“s”))
.WriteElementString(“RequiredDate”, sdrOrder.GetDateTime(17).ToString(“s”))
.WriteEndElement() ‘OrderDates
.WriteStartElement(“ShipTo”)
.WriteElementString(“Name”, sdrOrder.GetString(22))
.WriteElementString(“Address”, sdrOrder.GetString(23))
.WriteElementString(“City”, sdrOrder.GetString(24))
If sdrOrder.IsDBNull(25) Then

.WriteElementString(“Region”, “”)
Else

.WriteElementString(“Region”, sdrOrder.GetString(25))
End If
If sdrOrder.IsDBNull(26) Then

.WriteElementString(“PostalCode”, “”)
Else

.WriteElementString(“PostalCode”, sdrOrder.GetString(26))
End If
.WriteElementString(“Country”, sdrOrder.GetString(27))
.WriteEndElement() ‘ShipTo
.WriteStartElement(“LineItems”)

End With
‘Save estimated freight
Dim decFreight As Decimal = sdrOrder.GetDecimal(21)
sdrOrder.Close()

‘Add line items with full product descriptions
Dim intItem As Integer
Dim intItems As Integer
Dim decAmount As Decimal
strSQL = “SELECT d.ProductID, p.ProductName, p.QuantityPerUnit, “ + _
“d.Quantity, d.UnitPrice, d.Discount “ + _
“FROM [Order Details] AS d, Products AS p “ + _
“WHERE d.OrderID = “ + intOrderID.ToString + _
“ AND p.ProductID = d.ProductID”

Dim sdrItem As SqlDataReader = Nothing
Try

With cmNwind
‘Use current connection
.CommandText = strSQL
sdrItem = .ExecuteReader

End With
Catch exc As Exception

cnNwind.Close()

479

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 479

Throw New Exception(“Exception executing line item query.”)
Return

End Try
With sdrItem

If .HasRows Then
While .Read

intItem += 1
xwOrder.WriteStartElement(“LineItem”)
xwOrder.WriteAttributeString(“OrderID”, intOrderID.ToString)
xwOrder.WriteAttributeString(“ProductID”, .GetInt32(0).ToString)
xwOrder.WriteAttributeString(“ItemID”, intItem.ToString)
xwOrder.WriteElementString(“ItemNumber”, intItem.ToString)
xwOrder.WriteElementString(“Ordered”, .GetInt16(3).ToString)
xwOrder.WriteElementString(“SKU”, .GetInt32(0).ToString)
xwOrder.WriteElementString(“Product”, .GetString(1))
xwOrder.WriteElementString(“Package”, .GetString(2))
xwOrder.WriteElementString(“ListPrice”, _
.GetDecimal(4).ToString(“#0.00”))

‘Following accommodates real and decimal data types
Dim decDisc As Decimal = CDec(.GetValue(5))
xwOrder.WriteElementString(“Discount”, (100 * _
CDec(.GetValue(5))).ToString(“#0.0”))

Dim decExt As Decimal = .GetInt16(3) * .GetDecimal(4) * (1 - decDisc)
xwOrder.WriteElementString(“Extended”, (decExt.ToString(“0.00”)))
xwOrder.WriteEndElement() ‘LineItem
intItems += CInt(.GetInt16(3))
decAmount += decExt

End While
.Close()
cnNwind.Close()

Else
.Close()
cnNwind.Close()
Throw New Exception(“No rows returned by line item query.”)
Return

End If
End With
With xwOrder

.WriteEndElement() ‘LineItems

.WriteStartElement(“Summary”)

.WriteElementString(“ItemsOrdered”, intItems.ToString)

.WriteElementString(“Subtotal”, decAmount.ToString(“0.00”))

.WriteElementString(“EstimatedFreight”, decFreight.ToString(“0.00”))
Dim decTotal As Decimal = decAmount + decFreight
.WriteElementString(“Total”, decTotal.ToString(“0.00”))
.WriteEndElement() ‘Summary
.WriteEndElement() ‘SalesOrder
.Flush()
.Close()

End With

Dim strOrderXML As String = Nothing

480

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 480

If File.Exists(strFile) Then
strOrderXML = File.ReadAllText(strFile, Encoding.Unicode)
Dim intCols As Integer = (strOrderXML.Length \ 4000)
Dim intCol As Integer
Dim strColName As String = “SalesOrderXML”
Try

‘spOrder.Send(strOrderXML) doesn’t work, because order 11077
‘is 10,487 chars and SqlPipe is limited to 4,000 chars
‘Create multiple 4,000-char columns when necessary
Dim mdCust(intCols) As SqlMetaData
For intCol = 0 To intCols

mdCust(intCol) = New SqlMetaData(strColName + intCol.ToString, _
SqlDbType.NVarChar, 4000)

Next intCol
Dim sdrCust As New SqlDataRecord(mdCust)
For intCol = 0 To intCols

If strOrderXML.Length <= 4000 Then
sdrCust.SetString(intCol, strOrderXML)

Else
sdrCust.SetString(intCol, strOrderXML.Substring(0, 4000))
strOrderXML = strOrderXML.Substring(4000)

End If
Next intCol
spOrder.Send(sdrCust)

Catch exc As Exception
Throw New Exception(exc.Message)

End Try
Else

Throw New Exception(“Failed to create ‘“ + strFile + “‘ file.”)
End If

End Sub

The SqlPipe.Send method is limited to 8,000 bytes or 4,000 Unicode characters. The highlighted
code at the end of the preceding listing breaks documents that are longer than 4,000 characters —
such as that for OrderID 11077 — into multiple, sequentially numbered SqlDataRecord columns. The
StoredProcedureClient project’s GetSalesOrderXML procedure concatenates the characters from multi-
ple columns.

Figure 11-6 shows the StoredProcedureClient’s startup form displaying part of the 10,503-character XML
document generated by OrderID 11077, which requires three SqlDataRecord columns. Generating most
SalesOrderXML documents with a fast (2.66 GHz) computer requires 16 milliseconds or less, which
includes the time required to save and read the file.

Performance of SQL/CLR objects depends on available RAM, CPU speed, and disk I/O performance. If
you don’t have enough RAM to avoid paging when creating and saving the XML document, perfor-
mance deteriorates dramatically.

481

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 481

Figure 11-6

Following is the complete XML document for the first Northwind order:

<?xml version=”1.0” encoding=”utf-8”?>
<SalesOrder OrderID=”10248” OrderDate=”1996-07-04T00:00:00” CustomerID=”VINET”
EmployeeID=”5” PaymentID=”1” CurrencyID=”1” FobID=”1” ShipperID=”3”
xmlns=”http://www.northwind.com/schemas/SalesOrder”>

<SalesOrderNumber>10248</SalesOrderNumber>
<SalesOrderDate>1996-07-04T00:00:00</SalesOrderDate>
<Terms>

<Payment>Net 30 Days</Payment>
<Currency>US$</Currency>
</Terms>
<Shipment>

<FOB>Redmond, WA</FOB>
<Shipper>Federal Shipping</Shipper>
<EstimatedFreight>32.38</EstimatedFreight>
</Shipment>
<BillTo>

<Name>Vins et alcools Chevalier</Name>
<Address>59 rue de l’Abbaye</Address>
<City>Reims</City>
<Region />
<PostalCode>51100</PostalCode>
<Country>France</Country>
<Buyer>

<Name>Paul Henriot</Name>
<Title>Accounting Manager</Title>

482

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 482

<Phone>26.47.15.10</Phone>
<EMail>Paul_Henriot@mail.msn.com</EMail>
<PurchaseOrder>517098</PurchaseOrder>

</Buyer>
</BillTo>
<SalesContact>

<Name>Steven Buchanan</Name>
<Title>Sales Manager</Title>
<Phone>(925) 555-8081 X3453</Phone>
<EMail>sbuchanan@northwind.com</EMail>
</SalesContact>
<OrderDates>

<OrderDate>1996-07-04T00:00:00</OrderDate>
<RequiredDate>1996-08-01T00:00:00</RequiredDate>
</OrderDates>
<ShipTo>

<Name>Vins et alcools Chevalier</Name>
<Address>59 rue de l’Abbaye</Address>
<City>Reims</City>
<Region />
<PostalCode>51100</PostalCode>
<Country>France</Country>
</ShipTo>
<LineItems>

<LineItem OrderID=”10248” ProductID=”11” ItemID=”1”>
<ItemNumber>1</ItemNumber>
<Ordered>12</Ordered>
<SKU>11</SKU>
<Product>Queso Cabrales</Product>
<Package>1 kg pkg.</Package>
<ListPrice>14.00</ListPrice>
<Discount>0.0</Discount>
<Extended>168.00</Extended>

</LineItem>
<LineItem OrderID=”10248” ProductID=”42” ItemID=”2”>

<ItemNumber>2</ItemNumber>
<Ordered>10</Ordered>
<SKU>42</SKU>
<Product>Singaporean Hokkien Fried Mee</Product>
<Package>32 - 1 kg pkgs.</Package>
<ListPrice>9.80</ListPrice>
<Discount>0.0</Discount>
<Extended>98.00</Extended>

</LineItem>
<LineItem OrderID=”10248” ProductID=”72” ItemID=”3”>

<ItemNumber>3</ItemNumber>
<Ordered>5</Ordered>
<SKU>72</SKU>
<Product>Mozzarella di Giovanni</Product>
<Package>24 - 200 g pkgs.</Package>
<ListPrice>34.80</ListPrice>
<Discount>0.0</Discount>
<Extended>174.00</Extended>

</LineItem>
</LineItems>

483

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 483

<Summary>
<ItemsOrdered>27</ItemsOrdered>
<Subtotal>440.00</Subtotal>
<EstimatedFreight>32.38</EstimatedFreight>
<Total>472.38</Total>
</Summary>

</SalesOrder>

The StoredProceduresCLR project includes a SalesOrdersXML_NS procedure to demonstrate the
XmlWriter’s namespace assignment capabilities. Marking the client application’s Show Namespaces
checkbox displays attributes and subelements that are qualified with namespace prefixes and local
xmlns attributes, such as xmlns:nwbt=”http://www.northwind.com/schemas/BillTo, as shown in
Figure 11-7.

Figure 11-7

Project Product Sales with Linear Regression Analysis
Linear regression analysis is a statistical method to determine the coordinates of a straight line that best
fits the values of a set of data points. Analysts use linear regression and related, more complex non-linear
techniques to generate projections that are based on historical data. The StoredProceduresCLR project’s
csp_LinearRegression procedure accepts ProductID, LastMonth, Months, and UseSalesOrders
parameters to return an 11-column SqlDataRecord. The columns provide the intercept (a) and slope (b)
of the regression line, and additional statistical data, such as the correlation coefficient (r), significance (t),
and confidence interval (c). Additional columns provide average unit and dollar sales for the selected
product.

484

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 484

The csp_LinearRegression procedure illustrates use of date/time calculations, arrays, and complex cal-
culations in SQL/CLR stored procedures. If a middle-tier or client application was to perform the linear
regression calculations, many rows would be returned for a real-world application. Thus, this procedure is
well suited to SQL/CLR implementation.

If you’re not familiar with linear regression statistics techniques, see “Correlation and Regression
Analysis” at http://home.millsaps.edu/~lawrecn/f04/plsc2550/lectures/schacht-
10-web.pdf. For a more detailed analysis of significance tests and confidence intervals, go to
http://psych.rice.edu/online_stat/chapter11/inferential.html.

A significant problem with aggregate queries that supply the historical sales data is handling periods —
usually months — with no sales for the specified product. A data point for the specified product is required
for each period, including periods with no sales. (Many Northwind products have several months with no
sales.) One solution is to create a temporary pivot table, replace NULL values with 0, and then unpivot
the table, as described in the section “Explore the PIVOT and UNPIVOT Operators” in Chapter 10. An
alternative approach, which demonstrates the use of arrays in SQL Server projects, requires these steps:

1. Create a multi-dimension array with elements for each historical period. Elements contain the
period ordinals (year and month), an optional sequential month number, and empty values for
unit and dollar sales for the period.

2. Execute a conventional aggregate query or stored procedure to populate an array of the same
structure that has values for unit and dollar sales, but has no elements for periods without sales.

3. Replace the empty unit and dollar sales values of the first array with values from the second
array by matching period ordinals.

4. Iterate the second array and perform calculations to generate regression line coordinates,
correlation coefficient, statistical significance, and confidence interval data.

5. Return the statistical and related data to the client as an SqlDataRecord.

The T-SQL statement for the aggregate stored procedure (usp_GetOrdersAggregates or
usp_GetSalesOrdersAggregates) is:

CREATE PROCEDURE usp_GetOrdersAggregates (@ProductID int, @StartDate datetime,
@EndDate datetime) AS
SELECT @ProductID AS ProductID,
DATEPART(year, OrderDate) AS Year, DATEPART(month, OrderDate) AS Month,
ROW_NUMBER() OVER(ORDER BY DATEPART(year, OrderDate),
DATEPART(month, OrderDate)) AS MonthNum,
SUM(Quantity) AS TotalUnits,
CONVERT(int, SUM([Order Details].UnitPrice * Quantity * (1 - Discount))) AS
TotalSales , ProductName
FROM Orders, [Order Details], Products
WHERE Orders.OrderID = [Order Details].OrderID
AND [Order Details].ProductID = @ProductID
AND Products.ProductID = @ProductID
AND OrderDate BETWEEN @StartDate AND @EndDate
GROUP BY DATEPART(year, OrderDate), DATEPART(month, OrderDate), ProductName
ORDER BY DATEPART(year, OrderDate) DESC, DATEPART(month, OrderDate) DESC;

485

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 485

The @EndDate parameter value is the last day of the month that precedes the latest month with sales of
any product. The @StartDate value is the date of the first day of the month that begins the historical
period.

The usp_GetSalesOrderAggregates stored procedure substitutes potentially very large SalesOrders and
SalesOrderItems tables for the original Northwind Orders and Order Details tables. The SalesOrders
table contains a SalesOrderXML column of the xml datatype for use in the next chapter’s examples. See
the section “Create and Fill the SalesOrders and SalesOrderItems Tables” in Chapter 12 for instructions
on how to add these two tables to your Northwind database and populate them with randomized data.

Following is the code for the csp_LinearRegression procedure, with highlighted comments that cor-
respond to the steps described in the earlier list:

<SqlProcedure()> _
Public Shared Sub csp_LinearRegression(ByVal ProductID As SqlInt32, _

ByVal LastMonth As SqlDateTime, ByVal Months As SqlByte, _
ByVal UseSalesOrders As SqlByte)

Dim cnNwind As New SqlConnection(“context connection=true”)
Dim cmNwind As New SqlCommand
Dim strSQL As String = Nothing
Dim strProductName As String = Nothing
Dim intMonths As Integer = CInt(Months)
Dim datLastMonth As DateTime = CDate(LastMonth)
Dim blnUseSalesOrders As Boolean
If CByte(UseSalesOrders) <> 0 Then

blnUseSalesOrders = True
End If

‘Calculate the starting and ending date parameters
Dim datStartParam As DateTime = datLastMonth.AddMonths(-intMonths)
‘End date is the last day of the month preceding the date of the last order
Dim datEndParam As DateTime = datLastMonth.AddDays(-1)

‘Create an array of months in ascending date sequence
Dim intMonth As Integer
Dim datMonth As DateTime = datLastMonth.AddMonths(-1)
Dim astrFinal(intMonths - 1, 5) As String
For intMonth = intMonths To 1 Step -1

astrFinal(intMonth - 1, 0) = ProductID.ToString
astrFinal(intMonth - 1, 1) = datMonth.Year.ToString
astrFinal(intMonth - 1, 2) = datMonth.Month.ToString
astrFinal(intMonth - 1, 3) = intMonth.ToString
astrFinal(intMonth - 1, 4) = “0”
astrFinal(intMonth - 1, 5) = “0”
datMonth = datMonth.AddMonths(-1)

Next intMonth

‘Execute the appropriate stored procedure
If blnUseSalesOrders Then

strSQL = “usp_GetSalesOrdersAggregates”
Else

strSQL = “usp_GetOrdersAggregates”
End If

486

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 486

Try
cnNwind.Open()
With cmNwind

.Connection = cnNwind

.Parameters.Clear()

.CommandText = strSQL

.Parameters.AddWithValue(“@ProductID”, ProductID)

.Parameters.AddWithValue(“@StartDate”, datStartParam)

.Parameters.AddWithValue(“@EndDate”, datEndParam)

.CommandType = CommandType.StoredProcedure
End With
Dim rdrData As SqlDataReader = cmNwind.ExecuteReader

‘Create the array for months with sales
Dim intRow As Integer
Dim astrData(intMonths - 1, 5) As String
With rdrData

If .HasRows Then
While .Read

astrData(intRow, 0) = .GetInt32(0).ToString ‘Product ID
astrData(intRow, 1) = .GetInt32(1).ToString ‘Year
astrData(intRow, 2) = .GetInt32(2).ToString ‘Month
astrData(intRow, 3) = .GetInt64(3).ToString ‘MonthNum (x)
astrData(intRow, 4) = .GetInt32(4).ToString ‘TotalUnits (y)
astrData(intRow, 5) = .GetInt32(5).ToString ‘TotalSales
If intRow = 0 Then

strProductName = .GetString(6)
End If
intRow += 1

End While
.Close()
cnNwind.Close()

Else
.Close
cnNwind.Close()
Throw New Exception(“No rows returned by stored procedure”)
Return

End If
End With

‘Fill the astrFinal array with matching astrData sales values
Dim intMax As Integer = intRow
For intRow = 0 To intMax - 1

For intMonth = 0 To intMonths - 1
If astrData(intRow, 1) = astrFinal(intMonth, 1) And _
astrData(intRow, 2) = astrFinal(intMonth, 2) Then

astrFinal(intMonth, 4) = astrData(intRow, 4)
astrFinal(intMonth, 5) = astrData(intRow, 5)
Exit For

End If
Next

Next

‘Linear Regression variables
Dim SumX As Long, SumY As Long, SumXY As Long, SumX2 As Long

487

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 487

Dim SumY2 As Long, SumSales As Decimal, N As Integer, b As Double
Dim a As Double, r As Double, t As Double, t95 As Boolean, t99 As Boolean

‘Aggregate the datapoints for the regression line
Dim intRows As Integer
For intRow = 0 To intMonths - 1

SumX += CLng(astrFinal(intRow, 3))
SumY += CLng(astrFinal(intRow, 4))
SumXY += CLng(astrFinal(intRow, 3)) * CLng(astrFinal(intRow, 4))
SumX2 += CLng(astrFinal(intRow, 3)) * CLng(astrFinal(intRow, 3))
SumY2 += CLng(astrFinal(intRow, 4)) * CLng(astrFinal(intRow, 4))
SumSales += CLng(astrFinal(intRow, 5))
intRows += 1

Next intRow
N = intMonths
b = (SumXY - (SumX * SumY) / N) / (SumX2 - (SumX * SumX) / N) ‘Slope
a = SumY / N - (b * SumX / N) ‘Intercept

‘Correlation coefficient
r = Abs(SumXY - (SumX * SumY) / N) / + _
(Sqrt(SumX2 - ((SumX * SumX) / N)) * Sqrt(SumY2 - ((SumY * SumY) / N)))

‘Significance test (Student’s t)
t = r * Sqrt((N - 2) / (1 - (r * r)))

‘Confidence intervals - 95% and 99%
If N > 3 Then

Dim df As Integer = N - 2
Dim tCrit95 As Double
Select Case df

Case Is >= 20
tCrit95 = 2.086

Case Is >= 10
tCrit95 = 2.228

Case Is >= 8
tCrit95 = 2.306

Case Is >= 5
tCrit95 = 2.571

Case Is >= 4
tCrit95 = 2.776

Case Is >= 3
tCrit95 = 3.182

Case Is >= 2
tCrit95 = 4.303

End Select
If t >= tCrit95 Then

t95 = True
End If

Dim tCrit99 As Double
Select Case df

Case Is >= 20
tCrit99 = 2.845

Case Is >= 10
tCrit99 = 3.169

488

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 488

Case Is >= 8
tCrit99 = 3.554

Case Is >= 5
tCrit99 = 4.032

Case Is >= 4
tCrit99 = 4.604

Case Is >= 3
tCrit99 = 5.841

Case Is >= 2
tCrit99 = 9.925

End Select
If t >= tCrit99 Then

t99 = True
End If

End If
Dim dblAverageUnits As Double = SumY / N
Dim decAverageSales As Decimal = CDec(SumSales / N)

‘Define and populate the SqlDataRecord
Dim mdRegr(10) As SqlMetaData
mdRegr(0) = New SqlMetaData(“ProductID”, SqlDbType.Int)
mdRegr(1) = New SqlMetaData(“ProductName”, SqlDbType.NVarChar, 40)
mdRegr(2) = New SqlMetaData(“StartDate”, SqlDbType.DateTime)
mdRegr(3) = New SqlMetaData(“Months”, SqlDbType.TinyInt)
mdRegr(4) = New SqlMetaData(“Intercept”, SqlDbType.Decimal, 16, 6)
mdRegr(5) = New SqlMetaData(“Slope”, SqlDbType.Decimal, 12, 6)
mdRegr(6) = New SqlMetaData(“Correlation”, SqlDbType.Decimal, 7, 6)
mdRegr(7) = New SqlMetaData(“Significance”, SqlDbType.Decimal, 10, 6)
mdRegr(8) = New SqlMetaData(“Confidence”, SqlDbType.TinyInt)
mdRegr(9) = New SqlMetaData(“AverageUnits”, SqlDbType.Int)
mdRegr(10) = New SqlMetaData(“AverageSales”, SqlDbType.Money)
Dim sdrRegr As New SqlDataRecord(mdRegr)
sdrRegr.SetSqlInt32(0, ProductID)
If strProductName IsNot Nothing Then

sdrRegr.SetSqlString(1, strProductName)
End If
sdrRegr.SetSqlDateTime(2, datStartParam)
sdrRegr.SetSqlByte(3, CByte(Months))
sdrRegr.SetSqlDecimal(4, CDec(a))
sdrRegr.SetSqlDecimal(5, CDec(b))
sdrRegr.SetSqlDecimal(6, CDec(r))
sdrRegr.SetSqlDecimal(7, CDec(t))
If t95 Then

sdrRegr.SetSqlByte(8, CByte(95))
End If
If t99 Then

sdrRegr.SetSqlByte(8, CByte(99))
End If
sdrRegr.SetSqlInt32(9, CInt(dblAverageUnits))
sdrRegr.SetSqlMoney(10, decAverageSales)

‘Send the LinearRegression record
Dim spRegr As SqlPipe = SqlContext.GetPipe
spRegr.Send(sdrRegr)

Catch exc As Exception

489

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 489

Throw New Exception(exc.Message)
End Try
End Sub

The StoredProceduresClient project’s CSPRegression.vb form determines the date of the last order for
any product, and then executes the appropriate user stored procedure to populate the list box, which
provides data that you can use to test the reasonableness of the regression data. Code then executes
csp_LinearRegression to populate the Intercept (a), Slope (b), Correlation (r), Significance (t), Confidence
(c), Average Units, and Average Sales text boxes. The client calculates values for This Month, Three
Months, (average) Unit Price, Average Discount, Inventory Units, and (inventory) Days text boxes.
Figure 11-8 shows the data for Chai, whose regression line has a 99 percent confidence interval.

Figure 11-8

It’s surprising to find several products with regression lines that have confidence intervals of 95 percent
or more, when you consider the small sample size of the Northwind Order Details table. A confidence
interval of 95 percent or more indicates that the regression data is reasonably trustworthy for projecting
future sales (This Month and Three Months). You can shorten or lengthen the historical period by
selecting other values from the Months combo box to gain better insight into sales trends over time.

Clicking the All Products Stats button fills the list box with items representing statistical data for all
Northwind products. Clicking an item displays a tooltip with all data for the row. Double-clicking an
item populates the text boxes for the selected ProductID, as shown in Figure 11-9.

490

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 490

Figure 11-9

The csp_LinearRegression procedure’s execution time with the computer used to write this book is less
than 16 milliseconds for a 12-month analysis of a single product and about 0.75 second for all products,
which scans a total of 1,369 Order Details records. As you’d expect, scans of large OLTP tables take longer.
For example, with a SalesOrders table with 500,000 rows and about 2 million SalesOrderItems rows, the
average execution time for a single product with an average of 14,000 records is about 6 seconds. Returning
data for all products in the period (940,000 SalesOrderItems records) takes about 7 minutes. In a real-world
scenario, statistical calculations usually query tables or OLAP cubes of pre-aggregated data. SQL Server
Analysis Services and data mining features provide several built-in time series algorithms.

Create User-Defined Types
User-defined types (UDTs) let you design and implement custom data types of arbitrary complexity. All
recent SQL Server versions enable the creation of user-defined data types (UDDTs). UDDTs — also
called alias data types — return SQL Server native data types and can incorporate a single RULE to specify
acceptable values. UDDTs are most useful for ensuring data-type consistency among columns in multiple
tables of one or more databases. Nullability, precision, and scale of decimal or numeric data types, and
RULE-based value restrictions are typical consistency constraints. UDTs extend the scope of UDDTs by
eliminating the native data-type restriction and enabling more sophisticated value constraints. UDTs
also support custom instance methods that can return different representations of the data, execute
comparisons, or perform calculations.

491

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 491

Creating a UDDT or UDT in the model database adds the UDDT or UDT and its assembly to new
databases. According to Books Online’s “CREATE RULE” topic, future SQL Server versions won’t
include the CREATE RULE instruction and will rely on table-based CHECK constraints for restricting
values. Thus, UDDTs will lose one of their primary features. To ensure future-version compatibility,
write and deploy a CLR UDT to emulate a UDDT with a RULE.

You specify a UDT’s type by the following Format enum members:

❑ Format.Native is the simplest UDT type, and you can implement the UDT with a Structure
or Class. Native serialization restricts field data types to fixed-length value types — specifically
Boolean, Byte, SByte, Short, UShort, Int, UInt, Long, ULong, Float, Double, SqlByte,
SqlInt16, SqlInt32, SqlInt64, SqlDateTime, SqlSingle, SqlDouble, SqlMoney, and
SqlBoolean. (Notice that Decimal and SqlDecimal types are missing from the list because
precision specifies the data type’s length.) Serialization to and deserialization from byte-
ordered format is automatic. The database engine saves the storage size requirement as UDT
metadata. The later section, “A Simple Value-Type UDT,” describes the code required to
implement a Native-format UDT.

❑ Format.UserDefined lets you include reference types —String and SqlString— and
Decimal and SqlDecimal as field data types. Reference and Decimal types require adding
serialization and deserialization code by implementing the IBinarySerialize interface with Public
Overridable Read and Write procedures that handle interaction between T-SQL and managed
code. You must implement the UserDefined type as a Class and add a default constructor.

All UDTs must implement the INullable interface to support required IsNull and Null read-only
properties for compatibility with NULL column values. The required Parse and ToString functions
enable T-SQL statements to handle writing and reading character-based representations of property
values. You can index UDT columns of Native types; indexing UserDefined types requires that you add
the IsByteOrdered:=True attribute. You also can specify an indexable UDT column as the table’s
primary key.

Like CLR stored procedures and user-defined functions, pressing F5 in VS 2005 Standard Edition and
higher builds and deploys UDTs to the database of the connection you assign when you start the SQL
Server Project.

Native-Format UDT Code for Structures and Classes
Following is the skeleton code for a Native-format UDT implemented as a Structure:

Imports System
Imports System.Data.Sql
Imports System.Data.SqlTypes ‘Provides INullable
Imports Microsoft.SqlServer.Server ‘Provides SqlUserDefinedTypeAttribute

<Serializable(), SqlUserDefinedType(Format.Native)> _
Public Structure UDTName
Implements INullable

Private blnIsNull As Boolean
‘Private field definitions
Private fieldName as ValueDataType

492

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 492

‘...

Public ReadOnly Property IsNull() As Boolean _
Implements INullable.IsNull
Get

Return blnIsNull
End Get

End Property

Public Shared ReadOnly Property Null() As UDTName
Get

Dim udtNew As [New] UDTName
udtNew.blnIsNull = True
Return udtNew

End Get
End Property

Public Overrides Function ToString() As String
If Me.IsNull Then

Return “Null” ‘Or “NULL” or “null”
Else

‘Code to create string representation
End If

End Function

Public Shared Function Parse(ByVal sqlString As SqlString) As UDTName
‘Creates a Point by splitting an input string at the separator character
If sqlString.IsNull Then

Return Nothing
Else

Dim udtNew As [New] UDTName
Dim strNew As String = sqlString.ToString
Dim astrNew() As String = strNew.Split(“?”c)
‘Code to populate array by parsing string representation at ?
fieldName = astrNew(0)
‘Remaining field assignments
Return udtNew

End If
End Function

Public Property prpName As ValueDataType
‘For each field
Get

Return Me.fieldName
End Get
Set(ByVal Value As ValueDataType)

Me.fieldName = Value
blnIsNull = False

End Set
End Property

Public Function optFunction As ValueDataType
‘Optional function(s) that perform calculations or other operations

End Function
End Structure

493

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 493

To implement the UDT as a Class, you must add a StructLayout(LayoutKind.Sequential) attribute
from the System.Runtime.InteropServices namespace and a default constructor by making the
following emphasized modifications to the Structure code:

Imports System
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Runtime.InteropServices ‘Provides StructLayout()

<Serializable(), SqlUserDefinedType(Format.Native), _
StructLayout(LayoutKind.Sequential)> _

Public Class UDTClass
Implements INullable

Private blnIsNull As Boolean
‘Private field definitions
Private fieldName As ValueDataType
‘...

Public Sub New()
‘Default constructor required for class
Me.blnIsNull = True
Me.fieldName = 0
‘Additional private fields

End Sub

‘Same properties, procedures, and functions as Structure version

End Class

The New keyword, which is optional (and disregarded) in the Structure code example, is required for
the Class implementation.

It’s up to you whether to use a Structure or Class to implement value-type UDTs; Structures
are simpler to implement. The default skeleton code that VS 2005 Standard Edition and higher creates
by choosing Project ➪ New User-Defined Type is a Structure.

UserDefined-Format UDT Class Code
Following is the skeleton code for the additions and modifications — shown emphasized — required for
a Native-format class to create a UserDefined UDT with String or Decimal field data types:

Imports System
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.IO ‘Provides IBinarySerialize

<Serializable(), SqlUserDefinedType(Format.UserDefined, IsByteOrdered:=True, _
[IsFixedLength:=False], MaxByteSize:=200)> _

494

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 494

Public Class UDTName
Implements INullable, IBinarySerialize

Private blnIsNull As Boolean
‘Private field definitions
Private fieldName As String
‘...

‘Same constructor, IsNull and Null procedures, ToString and Parse functions,
‘Properties and optional functions as Native Class version.

Public Overridable Sub Write(ByVal binWriter As BinaryWriter) _
Implements IBinarySerialize.Write

Dim bytHeader As Byte
If Me.IsNull Then

bytHeader = 0
Else

bytHeader = 1
End If
With binWriter

.Write(bytHeader)
If bytHeader = 0 Then

Return
End If
.Write(Me.fieldName)
‘...

End With
End Sub

Public Sub Read(ByVal binReader As BinaryReader) _
Implements IBinarySerialize.Read

Dim bytHeader As Byte = binReader.ReadByte()
If bytHeader = 0 Then

Me.blnIsNull = True
Return

End If

Me.blnIsNull = False
With binReader

Me.fieldName = .ReadString()
‘...

End With
End Sub
EndClass

The IsByteOrdered:= True attribute specifies that the UDT members can be used in WHERE constraints
with T-SQL comparison operators, and ORDER BY, GROUP BY, and PARTITION clauses. The section “Test
the Address UDT with WHERE Constraints and ORDER BY Clauses,” later in this chapter, describes
T-SQL WHERE, ORDER BY, and GROUP BY syntax for tables that include a UserDefined-format UDT column.
The MaxByteSize:=Number attribute determines the UDT’s storage space; Number must be greater than
the maximum number of bytes contained in a serialized instance.

495

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 495

A Simple Value-Type UDT
The Point type, which requires two numeric (Double or Integer) coordinates, is the archetypical
example of a simple value-type UDT, but few sample implementations have identical code. The following
code implements a Point Structure with Point.X and Point.Y properties and an optional DistanceTo
function that computes and returns the distance between the current Point instance and a second ptTest
instance:

Imports System
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports Microsoft.SqlServer.Server
Imports System.Math

<Serializable(), SqlUserDefinedType(Format.Native, MaxByteSize:=512)> _
Public Structure Point
Implements INullable

Private blnIsNull As Boolean
‘Coordinates
Private dblX As Double
Private dblY As Double

Public ReadOnly Property IsNull() As Boolean _
Implements INullable.IsNull
‘Required
Get

Return blnIsNull
End Get

End Property

Public Shared ReadOnly Property Null() As Point
‘Required
Get

Dim ptNew As Point
ptNew.blnIsNull = True
Return ptNew

End Get
End Property

Public Overrides Function ToString() As String
‘Return the comma-separated values
If Me.IsNull Then

Return “Null”
Else

Return Me.dblX.ToString + “,” + Me.dblY.ToString
End If

End Function

Public Shared Function Parse(ByVal sqlString As SqlString) As Point
‘Creates a Point by splitting an input string at the separator character
If sqlString.IsNull Then

Return Nothing
Else

Dim ptNew As Point

496

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 496

Dim strNew As String = sqlString.ToString
Dim astrXY() As String = strNew.Split(“,”c)
ptNew.X = CType(astrXY(0), Double)
ptNew.Y = CType(astrXY(1), Double)
Return ptNew

End If
End Function

Public Property X() As Double
‘X-coordinate
Get

Return Me.dblX
End Get
Set(ByVal Value As Double)

Me.dblX = Value
blnIsNull = False

End Set
End Property

Public Property Y() As Double
‘Y-coordinate
Get

Return Me.dblY
End Get
Set(ByVal Value As Double)

Me.dblY = Value
blnIsNull = False

End Set
End Property

Public Function DistanceTo(ByVal ptTest As Point) As Double
‘Optional function: Calculate the distance from Me to ptTest
Return Sqrt((Me.X - ptTest.X) * (Me.X - ptTest.X) + _

(Me.Y - ptTest.Y) * (Me.Y - ptTest.Y))
End Function
End Structure

The string representation of a Point instance is ‘X, Y’ for input (Parse()) and output (ToString()),
where X and Y are literal values within the range of the Double data type.

The sample UserDefinedTypesCLR.sln project in the \VB2005DB\Chapter11\UserDefinedTypesCLR
folder includes Point and PointClass UDTs that you can deploy to the Northwind database. Like
other SQL Server projects, the project’s Properties window contains a Database page with a Connection
String text box for localhost as the default instance. Edit the Connection String, if necessary, to
specify your SQL Server 2005 instance with the Northwind sample database.

Deploy the UDT with the CREATE TYPE Instruction
Visual Studio 2005 Express Editions don’t deploy UDTs automatically. Use the following batch to deploy
the Point UDT with the T-SQL CREATE ASSEMBLY and CREATE TYPE instructions:

CREATE ASSEMBLY UserDefinedTypesCLR FROM ‘\Path\bin\UserDefinedTypesCLR.dll’;
CREATE TYPE Point EXTERNAL NAME UserDefinedTypesCLR.UserDefinedTypesCLR.Point;

497

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 497

Path is the well-formed path to the \VB2005DB\Chapter11\UserDefinedTypesCLR folder.

To redeploy a revised version of the Point UDT, add the following commands before the preceding
instructions: If you’ve added an instance of a Point type as a table column, you must drop the table
before dropping the UDT.

DROP TYPE Point;
DROP ASSEMBLY UserDefinedTypesCLR;

The CreateUDT.sql script in the \VB2005DB\Chapter11\UserDefinedTypesCLR\Test Scripts folder
creates the ASSEMBLY and the project’s four TYPEs —Point, PointClass, Address, and
AddressBasic. Commented instructions drop the TYPEs and then the ASSEMBLY. You must edit the
file paths to point to your sample files installation folder.

Test the Point UDT with T-SQL Instructions
It’s a good practice to verify the behavior of your UDT before creating a table with a UDT field. After
you assign the UDT to a table column, you can’t redeploy assembly revisions. You must drop all tables
that include the UDT column and then redeploy the UDT assembly to the database.

Connect to the database in SMSS and type instructions like the following to test the Point UDT:

DECLARE @pt Point
SET @pt = CONVERT(Point, ‘0,0’)
SET @pt.X = 1
SET @pt.Y = 2
PRINT @pt.ToString()
--Returns 1,2

SET @pt = CONVERT(Point, ‘2.5,3.6’)
PRINT @pt.X
PRINT @pt.Y
PRINT @pt.ToString()
--Returns 2.5,3.6

SET @pt.X = 2
SET @pt.Y = 2
PRINT @pt.ToString()
--Returns 2,2

PRINT @pt.DistanceTo(CONVERT(Point, ‘1,1’))
--Returns 1.41421...

TheUserDefinedTypesCLR project’s Test.sql script includes the preceding commands. The
UserDefinedTypesClient.sln project in the \VB2005DB\Chapter11\UserDefinedTypesClient folder
executes a T-SQL script (Point.sql in the ...\bin\Debug folder) that tests the Point UDT.

498

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 498

Add a UDT Column to a Table
The process for creating a table with a UDT column is identical to that for columns of native data types.
UDTs that you add to a database appear at the end of the Data Type list when you right-click Server
Explorer’s Northwind Tables node and choose Add New Table. Add PointID int and PointUDT
dbo.Point columns, as shown in Figure 11-10. Right-click the PointID column, select Set Primary Key,
and save the table as PointUDT.

Figure 11-10

To add Point instances to the table rows, right-click the PointsUDT table and choose Show Table Data.
Type a few PointID values and PointUDT coordinates (X, Y), as shown in Figure 11-11.

499

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 499

Figure 11-11

Typing an invalid PointUDT value, such as a space after the comma separator, displays a validation
error icon, which you can remove by correcting the error. You must correct the error, and then close and
reopen the grid.

Display Table Rows with UDT Columns
Executing SELECT * FROM PointsUDT in the SMSS query editor returns “An error occurred while
uting batch. Error message is: File or assembly name ‘UserDefinedTypesCLR, Version=1.0.1822.31408,
Culture=neutral, PublicKeyToken=null’, or one of its dependencies, was not found” error message. The
message occurs because neither application is aware of the assembly. If you add the assembly with a
strong name to the GAC, the query succeeds. The query returns the PointID value followed by the
binary representation of the PointUDT instance, similar to this:

1 0x00000000000000f03f00000000000022c0

SQLCMD.exe returns the preceding binary representation of the UDT when you execute a SELECT *
FROM PointsUDT query from an input batch file with a Visual Basic Shell instruction.

The query editors require you to invoke the ToString() method to return string values. Executing
SELECT PointID, PointUDT.ToString() FROM PointsUDT solves the problem and returns the rows
you added.

UDT column names aren’t case-sensitive, but method names are case-sensitive and the parenthesis
pair is required. If you type PointUDT.tostring() instead of PointUDT.ToString() you
receive a “Could not find method ‘tostring’ for type ‘UserDefinedTypesCLR.Point’ in assembly
‘UserDefinedTypesCLR’” error message. Typing PointUDT.ToString returns a similar message.

The UserDefinedTypesClient project displays data from the PointsUDT and AddressesUDT tables in several
formats. Later sections describe the UserDefined-format Address UDT and the AddressesUDT table.

500

Chapter 11

18_57678x ch11.qxd 11/10/05 11:26 PM Page 500

Use an SqlDataReader to Return UDT Values
The following snippet is extracted from the UserDefinedTypesClient project’s btnPopulate_Click
event handler behind the UDTTables.vb form. This simplified code retrieves from the PointsUDT table
the PointID, PointUDT, and DistanceTo a fixed (10,0) Point object:

...
strSQL = “SELECT PointID, PointUDT.ToString(), “ + _
“PointUDT.DistanceTo(CONVERT(Point, ‘10,0’)) FROM PointsUDT”

cmNwind = New SqlCommand(strSQL, cnNwind)
cnNwind.Open()
Dim rdrData As SqlDataReader = cmNwind.ExecuteReader
With rdrData

If .HasRows Then
While .Read

strRow = “ID: “ + .GetInt32(0).ToString
strRow += “ UDT: “ + .GetString(1)
strRow += “ Distance from 10,1: “ + .GetDouble(2).ToString

End While
.Close()

End If
End With
cnNwind.Close()
...

Figure 11-12 shows the UDTTables.vb form with values generated by the full version of the preceding code.

Figure 11-12

501

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:26 PM Page 501

The PointsUDT table is a version of the PointUDT table that’s generated by the CreateUDTTables
procedure behind the UserDefinedTypesClient project’s UDTInteractive.vb form. You must drop the
PointUDT table manually before redeploying the Point UDT from the UserDefinedTypesCLR project.

The Drop PointsUDT and AddressesUDT Tables button that’s shown in Figure 11-14 enables you to
redeploy the Point and Address UDTs after you delete the PointUDT table.

Work with a Complex
UserDefined-Format UDT

The UserDefinedTypesCLR project creates two UserDesigned-format UDTs —Address and
AddressBasic— that are based on the six address columns of the Northwind Customers table. UDT best
practices dictate that developers withstand the temptation to create UDTs to represent objects whose public
fields are values from what ordinarily would be table columns. The ability to represent objects with UDTs
doesn’t — or at least shouldn’t — imply that SQL Server 2005 is an object-oriented or object-relational
database management system. Operations other than value comparison require the database engine to
deserialize the UDT prior to invoking a method. Deserializing large objects consumes substantial resources
and impacts performance.

Object-relational transformations ordinarily belong in a middle tier. The purpose of this section’s UDTs
is to demonstrate the flexibility of optional methods and illustrate incorporation of UserDefined-format
UDT property (field) values in T-SQL WHERE constraints, and ORDER BY and GROUP BY clauses. The
Address UDT also contains data-access methods that generate XML fragments and execute SELECT
statements. Don’t interpret the Address UDT examples as a recommendation to model complex
business objects in production UDTs.

UDT examples similar to AddressBasic appear in several Microsoft blogs and the “Managed UDTs
Let You Extend the SQL Server Type System” MSDN article
(http://msdn.microsoft.com/msdnmag/issues/04/02/UDTsinYukon/).

The Address UDT includes code to validate the presence and length of required Name, Address, City,
and Country values, and optional Region and PostalCode values. Required column zero-length string or
excessive-length values throw an ArgumentException with an explanation of the error. Exceeding the
nvarchar(length) constraint returns an SQL Server error message, but a zero-length string in a
required column doesn’t.

The Address UDT adds the following methods to the AddressBasic UDT:

❑ MailingLabel() and MailingListCSV() generate formatted, plain-text mailing labels and
strings of address data in standard comma-separated-value (CSV) format.

❑ MailingListHeaderCSV() demonstrates a function to return a String constant that doesn’t
rely on a Not IsNull UDT instance.

❑ AddressXML() uses an XmlTextWriter to return address data as well-formed XML fragments
and demonstrates how to add a SELECT query to a method.

❑ OrderCountByCustomerID and CustomerOrderCount use aggregate queries to return the
number of orders for a customer specified by a CustomerID argument or the instance’s
Me.Name property value.

502

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 502

❑ IsEqualTo() returns 1 if the String representations of the current and a test Address object
are identical; otherwise the function returns 0.

❑ GetHashCode() returns the Integer value of the hash code for the String representation.

Code in the CreateUDTTables procedure behind the UserDefinedTypesClient project’s
UDTInteractive.vb form generates the AddressesUDT table and populates it from the Northwind
Customers table. Handling NULL values in UDTs requires complex code, so the code that generates the
AddressesUDT table replaces NULL Region and PostalCode values with String.Empty.

The AddressBasic UDT
Address UDT contains 400 lines of code and is too lengthy to reproduce here, so following is the
bare-bones code of the AddressBasic UDT:

Imports System
Imports System.Data.SqlTypes
Imports System.Data.Sql
Imports Microsoft.SqlServer.Server
Imports System.IO

<Serializable(), SqlUserDefinedType(Format.UserDefined, _
IsByteOrdered:=True, IsFixedLength:=False, MaxByteSize:=500)> _

Public Class AddressBasic
‘The AddressBasic UDT expects zero-length strings instead of nulls
‘for Region and PostalCode fields
Implements INullable, IBinarySerialize

Private blnIsNull As Boolean
Private strName As String
Private strAddress As String
Private strCity As String
Private strRegion As String
Private strPostalCode As String
Private strCountry As String

Public Sub New()
‘Default constructor (required for a class)
Me.blnIsNull = True
Me.strName = “”
Me.strAddress = “”
Me.strCity = “”
Me.strRegion = “”
Me.strPostalCode = “”
Me.strCountry = “”

End Sub

Public ReadOnly Property IsNull() As Boolean _
Implements INullable.IsNull

‘IsNull property is required for all UDTs
Get

Return blnIsNull
End Get

503

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:27 PM Page 503

End Property

Public Shared ReadOnly Property Null() As AddressBasic
Get

Dim objAddr As New AddressBasic()
objAddr.blnIsNull = True
Return objAddr

End Get
End Property

Public Shared Function Parse(ByVal sqlAddr As SqlString) As AddressBasic
If sqlAddr.IsNull Then

Return Nothing
Else

Dim objAddr As New AddressBasic
Dim str As String = sqlAddr.ToString
Dim astrAddr As String() = str.Split(“;”c)
objAddr.strName = astrAddr(0)
objAddr.strAddress = astrAddr(1)
objAddr.strCity = astrAddr(2)
objAddr.strRegion = astrAddr(3)
objAddr.strCountry = astrAddr(5)
objAddr.blnIsNull = False
Return objAddr

End If
End Function

Public Overrides Function ToString() As String
If Me.IsNull Then

Return “Null”
Else

Dim strDelimeter As String = “;”
Return Me.strName + strDelimeter + Me.strAddress + strDelimeter + _
Me.strCity + strDelimeter + Me.strRegion + strDelimeter + _
Me.strPostalCode + strDelimeter + Me.strCountry

End If
End Function

‘Fields
Public Property Name() As String

Get
Return Me.strName

End Get
Set(ByVal value As String)

Me.strName = value
Me.blnIsNull = False

End Set
End Property

Public Property Address() As String
Get

Return Me.strAddress
End Get
Set(ByVal value As String)

Me.strAddress = value

504

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 504

Me.blnIsNull = False
End Set

End Property

Public Property City() As String
Get

Return Me.strCity
End Get
Set(ByVal value As String)

Me.strCity = value
Me.blnIsNull = False

End Set
End Property

Public Property Region() As String
Get

Return Me.strRegion
End Get
Set(ByVal value As String)

Me.strRegion = value
Me.blnIsNull = False

End Set
End Property

Public Property PostalCode() As String
Get

Return Me.strPostalCode
End Get
Set(ByVal value As String)

Me.strPostalCode = value
Me.blnIsNull = False

End Set
End Property

Public Property Country() As String
Get

Return Me.strCountry
End Get
Set(ByVal value As String)

Me.strCountry = value
Me.blnIsNull = False

End Set
End Property

‘Required serializer and deserializer
Public Overridable Sub Write(ByVal binWriter As BinaryWriter) _
Implements IBinarySerialize.Write

Dim bytHeader As Byte
If Me.IsNull Then

bytHeader = 0
Else

bytHeader = 1
End If
With binWriter

.Write(bytHeader)

505

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:27 PM Page 505

If bytHeader = 0 Then
Return

End If
.Write(Me.Name)
.Write(Me.Address)
.Write(Me.City)
.Write(Me.Region)
.Write(Me.PostalCode)
.Write(Me.Country)

End With
End Sub

Public Sub Read(ByVal binReader As BinaryReader) _
Implements IBinarySerialize.Read

‘Required for Format.UserDefined, not Format.Native
Dim bytHeader As Byte = binReader.ReadByte()
If bytHeader = 0 Then

Me.blnIsNull = True
Return

End If
Me.blnIsNull = False
With binReader

Me.strName = .ReadString()
Me.strAddress = .ReadString()
Me.strCity = .ReadString()
Me.strRegion = .ReadString()
Me.strPostalCode = .ReadString()
Me.strCountry = .ReadString()

End With
End Sub
End Class

The maximum allowable length of the six nvarchar (Unicode) String fields is 310 bytes (155
characters) so the MaxByteSize:=500 attribute value is adequate. The maximum size of values from
the Customers table is about 200 bytes.

Verify the Address UDT Methods
Running the following batch in the SMSS query editor verifies that the Address UDT’s basic functions
execute as expected:

DECLARE @Addr Address
SET @Addr = CONVERT(Address, ‘ ; ; ; ; ; ‘)
SET @Addr.Name = ‘Rattlesnake Canyon Grocery’
SET @Addr.Address = ‘2817 Milton Dr.’
SET @Addr.City = ‘Albuquerque’
SET @Addr.Region = ‘NM’

506

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 506

SET @Addr.PostalCode = ‘87110-5455’
SET @Addr.Country = ‘USA’
PRINT @Addr.ToString()
PRINT @Addr.MailingLabel()
PRINT @Addr.MailingListHeaderCSV()
PRINT @Addr.MailingListCSV()
DECLARE @Addr1 Address
SET @Addr1 = CONVERT(Address, ‘Rattlesnake Canyon Grocery;2817 Milton
Dr.;Albuquerque;NM;94610-5708;USA’)
PRINT @Addr1.MailingLabel()

The SET @Addr1 instruction must be a single line to prevent generating a mailing label with a two-line
address.

The preceding batch returns the following output:

Rattlesnake Canyon Grocery;2817 Milton Dr.;Albuquerque;NM;87110-5455;USA
Rattlesnake Canyon Grocery
2817 Milton Dr.
Albuquerque, NM 87110-5455
“Name”,”Address”,”City”,”Region”,”PostalCode”,”Country”
“Rattlesnake Canyon Grocery”,”2817 Milton Dr.”,”Albuquerque”,”NM”,
“87110-5455”,”USA”
Rattlesnake Canyon Grocery
2817 Milton Dr.
Albuquerque, NM 94610-5708

TheUserDefinedTypesCLR project’s Test.sql script includes the preceding commands. Selecting the
UDTInteractive.vb form’s Address radio button loads the upper text box with the Address.sql script,
which also contains the preceding batch instructions.

Test the Address UDT with WHERE Constraints and
ORDER BY Clauses

The following query tests UDT value comparison and returns Address strings for customers in
Germany in descending PostalCode order:

SELECT CustomerID, AddressUDT.ToString() AS AddressUDT FROM AddressesUDT
WHERE AddressUDT.Country = ‘Germany’
ORDER BY AddressUDT.PostalCode DESC

This query returns the 11 rows shown in Figure 11-13. Adding AND AddressUDT.PostalCode < 50000
to the WHERE clause returns 4 rows.

507

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:27 PM Page 507

Figure 11-13

You also can specify fields for use in GROUP BY clauses. The following aggregate query returns the
expected resultset of 21 rows:

SELECT AddressUDT.Country, COUNT(*) AS [Count] FROM AddressesUDT
GROUP BY AddressUDT.Country
ORDER BY AddressUDT.Country

As mentioned earlier, the UserDefinedTypesClient project’s UDTInteractive.vb form uses the Shell
instruction to execute T-SQL scripts with SQLCMD.exe. Following is the Shell instruction’s Path
argument to run the Address.sql script from the project’s bin folder:

sqlcmd -S localhost –d Northwind
-i “\InstallPath\Chapter11\UserDefinedTypesClient\bin\Address.sql”
-o “\InstallPath\Chapter11\UserDefinedTypesClient\bin\Address.txt” -y 0 –u

The preceding command stores SQLCMD’s output in the Address.txt file, which populates the lower
text box of Figure 11-15. The –S[erver] argument is obtained from the Server=localhost; element
of the project’s connection string. The –y 0 argument ensures that UDT field values aren’t truncated.
The –u argument specifies Unicode (UTF-16) encoding of the output text in the Address.txt file. If you
don’t include the –u argument, Latin-1 characters with diacritical marks, such as ü, don’t appear in the
output text box.

508

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 508

Access Data from Other Fields or Tables with UDT Queries
Adding the <SqlMethod(DataAccess:=DataAccessKind.Read)> attribute to a UDT method enables
you to execute queries against other fields in the table that contains the UDT column or a table in the
same or another database. This attribute lets you create an SqlCommand object with the SqlContext
.GetConnection.CreateCommand() instruction that’s used with CLR functions and stored
procedures.

The Address UDT doesn’t include a CustomerID field because the Address type might be used as
AddressUDT columns of vendors, contacts, or other tables. If you want to provide a method that returns
the number of orders for the current Address instance, you can query the Customers table to return
the CustomerID for a CompanyName value supplied by the Me.Name property. Then you execute an
aggregate query against the Orders table to return the number of orders for the customer.

The following CustomerOrderCount() method illustrates external data access by a UDT:

<SqlMethod(DataAccess:=DataAccessKind.Read)> _
Public Function CustomerOrderCount() As Integer

‘Return the number of orders from the current-instance customer
If Me.IsNull Then

Return 0
End If
Dim cmNwind As SqlCommand = SqlContext.GetConnection.CreateCommand()
With cmNwind

.CommandText = “SELECT COUNT(OrderID) FROM Orders “ + _
“WHERE CustomerID IN (SELECT CustomerID FROM Customers WHERE “ + _
“CompanyName = N’” + Replace(Me.Name, “‘“, “‘’”) + “‘)”

.CommandType = CommandType.Text
Return CInt(.ExecuteScalar())

End With
End Function

Escaping single quote characters with Replace(Me.Name, “‘“, “‘’”) is critical for fields that
might contain them, such as Name, Address, and City.

Execute the following query to test the CustomerOrderCount() method:

DECLARE @Addr1 Address
SET @Addr1 = CONVERT(Address, ‘Rattlesnake Canyon Grocery;2817 Milton
Dr.;Albuquerque;NM;94610-5708;USA’)
PRINT @Addr1.CustomerOrderCount()

The method returns 18 if you haven’t added or deleted RATTC orders.

Generate Well-Formed XML with an XmlTextWriter
If users need an XML representation of the UDT type, you can use an XmlWriter or XmlTextWriter
object to create a serialized version of an Address instance with the following method:

<SqlMethod(DataAccess:=DataAccessKind.Read)> _
Public Function AddressXML() As String
‘Return the XML representation of an address

509

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:27 PM Page 509

If Me.IsNull Then
Return Nothing

End If
‘Get the CustomerID for the attribute value
Dim strCustomerID As String = Nothing
Dim cmNwind As SqlCommand = SqlContext.GetConnection.CreateCommand()
With cmNwind

.CommandText = “SELECT CustomerID FROM Customers WHERE “ + _
“CompanyName = N’” + Replace(Me.Name, “‘“, “‘’”) + “‘“

.CommandType = CommandType.Text
strCustomerID = .ExecuteScalar.ToString

End With

Dim msAddr As New MemoryStream()
Dim xtwAddr As New XmlTextWriter(msAddr, Encoding.UTF8)
With xtwAddr

.Formatting = Formatting.Indented

.Indentation = 2

.WriteStartElement(“Address”)
If strCustomerID IsNot Nothing Then

.WriteAttributeString(“CustomerID”, strCustomerID)
End If
.WriteElementString(“Name”, Me.Name)
.WriteElementString(“Street”, Me.Address)
.WriteElementString(“City”, Me.City)
.WriteElementString(“Region”, Me.Region)
.WriteElementString(“PostalCode”, Me.PostalCode)
.WriteElementString(“Country”, Me.Country)
.WriteEndElement()
.Flush()
.Close()

End With
‘Return the MemoryStream buffer’s Byte array as a UTF-8 string
Dim strAddrXML As String = Encoding.UTF8.GetString(msAddr.GetBuffer())
msAddr.Close()
‘The buffer has extra characters at the end
Dim intLength As Integer = strAddrXML.IndexOf(“</Address>”) + 9
strAddrXML = strAddrXML.Substring(1, intLength)
Return strAddrXML

End Function

The preceding method requires that you add Imports System.Xml and Imports System.Text
directives.

Test the method with the following batch:

DECLARE @Addr1 Address
SET @Addr1 = CONVERT(Address, ‘Rattlesnake Canyon Grocery;2817 Milton
Dr.;Albuquerque;NM;94610-5708;USA’)
PRINT @Addr1.AddressXML()

which returns:

510

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 510

<Address CustomerID=”RATTC”>
<Name>Rattlesnake Canyon Grocery</Name>
<Street>2817 Milton Dr.</Street>
<City>Albuquerque</City>
<Region>NM</Region>
<PostalCode>94610-5708</PostalCode>
<Country>USA</Country>

</Address>

TheUserDefinedTypesCLR project’s Test.sql script includes the preceding commands and the resulting
XML document.

Figure 11-14 shows the UDTTables.vb form displaying an AddressXML() instance with extended
characters ó and é, which proves that the Encoding.UTF8.GetString(msAddr.GetBuffer()) instruc-
tion behaves as expected.

Figure 11-14

Data-access methods in UDTs encroach on the realm of CLR functions and stored procedures, but UDTs
offer a single object that can incorporate a multitude of type-specific optional functions. The obvious
downside of complex UDTs is the need to drop all tables that contain the UDT before redeploying
assemblies with bug fixes or modifications, such as added methods. Thus, each production UDT you
develop should have its own assembly.

511

Creating SQL Server Projects

18_57678x ch11.qxd 11/10/05 11:27 PM Page 511

Summary
The capability to write CLR stored procedures, user-defined functions, triggers, UDTs, and UDAs and
quickly deploy them for execution within the SQL Server 2005 database engine’s process is a major
accomplishment of the .NET and SQL Server development teams. VS 2005’s SQL Server Project templates
ease the development process and simplify testing and deployment. Conservative DBAs and IT manage-
ment will be reluctant to deploy SQL/CLR objects in production databases. You must be ready to demon-
strate short-term and long-term returns on the investment required to prove the security, reliability, and
performance of SQL/CLR objects that replace or supplement conventional T-SQL–based objects.

The greatest return on development investments will come from SQL/CLR objects that process data
with methods that T-SQL doesn’t support, such as array processing, complex mathematics, or convo-
luted string manipulation. Lesser returns result from replacing T-SQL procedural code and cursors
with .NET counterparts. Avoid the temptation to substitute SQL/CLR objects for T-SQL stored
procedures, user-defined functions, and triggers that operate on conventional sets of relational data.
UDTs and UDAs bring new functionality to SQL Server 2005, but UDTs, in particular, are subject to
misuse by enthusiastic developers. Best practices dictate that UDTs not be used to represent objects
whose fields consist of values that are suited to table columns.

This chapter provides an initial set of trivial SQL/CLR sample objects, which is intended to demon-
strate basic coding and deployment techniques. More complex examples of SQL/CLR stored procedures
and UDTs perform functions that are difficult or impossible to achieve with T-SQL objects. With the
exception of the csp_SalesOrdersXML_NS and csp_LinearRegression stored procedures, the complex
examples are contrived. Don’t consider their presence in this chapter as a recommendation to implement
similar SQL/CLR objects in real-world database projects.

512

Chapter 11

18_57678x ch11.qxd 11/10/05 11:27 PM Page 512

Exploring the XML Data Type

SQL Server 2000 XML document management methods often involved storing the full text as
Unicode (UTF-16) XML documents or fragments in nvarchar or ntext columns. Creating effective
columnar indexes for text-based XML in content was difficult, and full-text indexes seldom returned
useful results from complex documents. Alternative generation and retrieval methods included
dynamic XML document generation with FOR XML queries, preparing documents and retrieving
rowsets with OPENXML, shredding element and attribute values into relational columns, and retriev-
ing documents with annotated XML schemas and XML views. XML-to-relational and relational-to-
XML mapping techniques were complex and involved substantial development and testing time.

SQL Server 2005’s new native xml data type and XQuery 1.0 implementation simplifies and adds
flexibility to XML document storage, retrieval, and management. The native xml data type lets you
store a representation of the original document or fragment in a variant of an nvarbinary(max)
field, ensure the content is well-formed, use the XPath 2.0 and XQuery 1.0 languages to perform
SELECT-style queries, and speed query performance with specialized XML indexes. If you associate
one or more XML schemas with the xml column, validation occurs when content is added or
updated, and values become strongly typed. Full-text search on xml columns examines element
values only.

The XQuery 1.0 specification doesn’t include methods for updating content, so the SQL Server
team added a modify method to add or remove optional elements and alter element or attribute
values. Microsoft calls modify expressions XML DDL. The sql:column and sql:variable
extended functions support incorporating relational data in XQuery expressions. Microsoft calls
such expressions cross-domain queries because they bridge the hierarchical (XML) and relational
(SQL) domains.

W3C’s set of XQuery 1.0 and XPath 2.0 recommendations were in the Working Draft stage
when this book was written (mid-2005). SQL Server 2005’s XQuery and XPath implementations
are based on Working Drafts in effect as of the XQuery 1.0 and XPath 2.0 Data Model draft of
November 2003 at http://www.w3.org/TR/2004/WD-xpath-datamodel-20040723/.

19_57678x ch12.qxd 11/10/05 11:20 PM Page 513

Part 14 of the ANSI SQL specification, which also is a work in progress, is based on the forthcoming
W3C XQuery 1.0 and XPath 2.0 recommendations. According to an article by Bob Beauchemin in
MSDN Magazine, the “new XML features in SQL Server follow the standard closely.” You can read
the entire article at http://msdn.microsoft.com/msdnmag/issues/04/02/XMLinYukon/.

This chapter covers the essential features of the SQL Server 2005 native xml data type, simple and complex
XmlSchemaCollections and XML namespaces, XML indexes, and basic XPath and XQuery expressions
for retrieving and modifying xml column content. With the exception of one section, which uses the
AdventureWorks database, the sample documents are contained in pairs of xml columns you add to the
Northwind database’s Customers and Orders tables.

To get the most out of this chapter, you should have the following sample VB 2005 projects available on
your development machine:

❑ The NWxmlColumns.sln project in the \VB2005DB\Chapter12\NWxmlColumns folder, which
automates adding two temporary xml columns to the Northwind Customers and Orders tables,
generating and associating XmlSchemaCollections, and adding XML indexes to the columns.
This project offers sample XQuery expressions that you can edit to gain experience with XQuery
syntax. This project demonstrates the effect of document size, XML indexes, and schema
validation on xml column UPDATE performance and XQuery response time.

❑ The xmlColumnExplorer.sln project in the \VB2005DB \Chapter12\xmlColumnExplorer
folder, which lets you view all columns of the native xml data type in the AdventureWorks
and Northwind databases, display the content of selected documents, and read the
XmlSchemaCollections of typed xml columns.

❑ The FillSalesOrdersTables.sln project in the \VB2005DB \Chapter12\FillSalesOrdersTables
folder, which lets you clone the Orders and Order Details tables with automatically generated
SalesOrders and SalesOrderItems tables. The tables can contain a number of rows that’s limited
only by your patience and available disk space. The rows consist of simulated orders with
random CustomerID and ProductID values, as well as a specified average number of line items
per order. Creating these tables is optional, but they are useful for determining the effect of XML
indexes on XQuery response time. The XQuery performance test data near the end of this
chapter is based on a SalesOrders table with 10,000 rows and two xml columns.

An understanding of basic XPath 1.0 expression syntax is required and some familiarity with XQuery
1.0 and XPath 2.0 concepts is helpful for executing XQuery expressions against xml column content.
The NWxmlColumns project’s relatively simple XQuery expressions can serve as a starting point for adapt-
ing your SQL authoring skills to more complex XQuery equivalents. Making the transition from T-SQL
to XPath 2.0 and XQuery syntax is similar to that for learning to write and debug Multidimensional
Expressions (MDX). The familiar SQL SELECT, FROM, and WHERE keywords are supported, but what fol-
lows them differs greatly.

Like all other sample projects in this book, the default SQL Server instance is localhost. Edit the
app.config file’s connectionString attribute value to suit your SQL Server 2005 or SQL Express
instance.

514

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 514

Select the Appropriate XML Data Model
Governmental regulations or business policies often dictate storing original or archival copies of
XML documents in nvarchar(max) columns. If full-text search or WHERE ColumnName LIKE
‘%SomeElementOrAttributeAndValue%’ queries don’t return the results you need, you must add
columns to contain key values for conventional SELECT queries. Shredding complex XML instances into
relational columns isn’t a simple task, but indexing the added columns improves query performance.

If document structure variation or indexing requirements exceed your ability to create an adequate set of
key columns, consider importing the original document into an xml column. However, inserting XML
content into an xml column might not return an exact duplicate of the original document. The process
removes whitespace to minimize storage requirements and might not preserve element order with
recursive document structures. If you don’t require absolute identity between the source and retrieved
documents, xml columns enable execution of XQuery-based SELECT and UPDATE expressions on the
XML content. The following sections describe options for xml column content management, validation,
and indexing.

SQL Server 2005 Books Online contains help topics for xml columns and XQuery expressions.

Untyped XML Columns
Native xml columns are untyped by default and don’t require associated XML schemas. Use the following
syntax to add an untyped xml column to a new or existing table:

CREATE TABLE TableName(KeyColumnName data_type PRIMARY KEY, xmlColumnName XML
[NULL][, ...]);
ALTER TABLE TableName ADD xmlColumnName XML [NULL];

You can’t specify an xml column as the table’s primary key or a foreign key; you receive an error message
if you try. However, you can add a primary XML index to an xml column, as described in the section
“Indexed xml Columns,” later in this chapter. You can’t apply a UNIQUE constraint or add a COLLATE
modifier to an xml column.

Launch the NWxmlColumns project and, with the default Customers Table tab active, click the Drop
xml Columns button and then click Add xml Columns to execute typical ALTER TABLE statements to
drop and add two xml columns.

Populate an XML Column
Populating an xml column requires an INSERT or UPDATE operation with the following syntax:

INSERT TableName(xmlColumnName) VALUES(N’well_formed_xml_content’);
UPDATE TableName SET xmlColumnName = N’well_formed_xml_content’;

The content must be UTF-16-encoded and either a well-formed document or document fragment(s).

The following batch adds CustomersXML1 and CustomersXML2 columns to the Customers table and
updates the CustomersXML1 column with content that’s generated by a parameterized FOR XML AUTO
TYPE query against the Customers table:

515

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 515

ALTER TABLE dbo.Customers ADD CustomerXML1 xml NULL, CustomerXML2 xml NULL;
DECLARE @CustomerXML xml SET @CustomerXML = (SELECT CustomerID, ContactName,

ContactTitle, CompanyName, Address, City, Region, PostalCode, Country, Phone, Fax
FROM Customers AS Customer
WHERE CustomerID = @CustomerID FOR XML AUTO, ELEMENTS, TYPE)
UPDATE Customers SET CustomerXML1 = @CustomerXML WHERE CustomerID = @CustomerID;

The highlighted TYPE modifier causes FOR XML AUTO to return a stream of the highlighted xml type.

Figure 12-1 shows the NWxmlColumns project’s Customers Table tab page displaying the first
CustomerXML1 column content created from a FOR XML AUTO query.

Figure 12-1

If you can generate the document structure you need with a FOR XML AUTO query, consider the tradeoffs
between creating the document dynamically or storing it in an xml column. Generating large documents
on demand consumes substantial CPU resources, but inserting them in xml columns — especially
indexed xml columns — is resource- and I/O-intensive, and can consume substantial storage resources.

Alternatively, you can pass the XML content as a string, as shown in the following example for the
CustomersXML2 column:

SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address,
City, Region, PostalCode, Country, Phone, Fax

FROM Customers WHERE CustomerID = ‘ALFKI’;
UPDATE Customers SET CustomerXML2 = N’<?xml version=”1.0” encoding=”utf-16”?>
<nwc:Customer xmlns:nwc=”http://www.northwind.com/schemas/Customer”>

516

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 516

<nwc:CustomerID>ALFKI</nwc:CustomerID>
<nwc:CompanyName>Alfreds Futterkiste</nwc:CompanyName>
<nwc:ContactName>Maria Anders</nwc:ContactName>
<nwc:ContactTitle>Sales Representative</nwc:ContactTitle>
<nwc:Address>Obere Str. 57</nwc:Address>
<nwc:City>Berlin</nwc:City>
<nwc:PostalCode>12209</nwc:PostalCode>
<nwc:Country>Germany</nwc:Country>
<nwc:Phone>030-0074321</nwc:Phone>
<nwc:Fax>030-0076545</nwc:Fax>

</nwc:Customer>’ WHERE CustomerID = ‘ALFKI’;

Notice that the string must be formatted as UTF-16, as illustrated by the highlighted encoding attribute.
The XML declaration is optional, but UTF-16 encoding with N’ isn’t. Each character requires 2 bytes of
storage space.

Click Fill CustomerXML1 and Fill CustomerXML2 to execute the two preceding batches for all
Customers table rows. The SQL batch statement appears in the upper text box and the lower text box
shows the first row data.

You also can declare a variable of the xml data type, CAST or CONVERT a string to the xml type, assign the
xml value, and then substitute the variable for the literal content string with the following generic
instructions:

DECLARE @XmlVar xml;
SET @XmlVar = CONVERT(xml, ‘well_formed_xml_content’);
UPDATE TableName SET xmlColumnName = @XmlVar;

This approach is useful when you populate xml columns with XML documents stored in the file system
or delivered as a stream.

Retrieve and Reformat Data from an XML Column
The SqlCommand.ExecuteXmlReader method returns a single row’s xml column content — usually
to an XmlReader. In this respect, the ExecuteXmlReader method is similar to the ExecuteScalar
method for relational data types. The highlighted lines of the following snippet illustrate retrieval by an
XmlReader and formatting by an XmlTextWriter:

...
cmNwind.CommandText = “SELECT CustomerXML1 FROM Customers”
cnNwind.Open()
Dim xrData As XmlReader = cmNwind.ExecuteXmlReader
‘Use an XmlTextWriter for simplicity
Dim xtwData As New XmlTextWriter(strXmlFile, Encoding.Unicode)
xtwData.Formatting = Formatting.Indented
xrData.MoveToContent()
xtwData.WriteNode(xrData, False)
xtwData.Flush()
xtwData.Close()
xrData.Close()
cnNwind.Close()
Dim strXML As String = File.ReadAll(strXmlFile)
...

517

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 517

The preceding snippet is from the sample NWxmlColumns project’s SaveAndDisplayData function
in the NwXmlCols.vb file.

You use an SqlDataReader and the SqlXml SqlDataType to return multiple rows of typed data to an
XmlReader for formatting and, optionally, appending to a StringBuilder with an XmlWriter, as
shown in the following (condensed) GetXQueryResult function:

Private Function GetXQueryResult(ByVal strXQL As String)
ByVal strRootName As String, ByVal As String

Dim xrResult As XmlReader
Dim xwSettings As XmlWriterSettings
Dim xwResult As XmlWriter = Nothing
Dim sbXML As New StringBuilder()
xwSettings = New XmlWriterSettings
With xwSettings

.Encoding = Encoding.Unicode

.Indent = True

.IndentChars = (“ “)

.OmitXmlDeclaration = False

.ConformanceLevel = ConformanceLevel.Document
End With
‘Create an XmlWriter to format the result
xwResult = XmlWriter.Create(sbXML, xwSettings)
cmNwind.CommandText = strXQL
cnNwind.Open()
Dim sdrData As SqlDataReader
sdrData = cmNwind.ExecuteReader
With sdrData

If .HasRows Then
Dim xmlData As SqlXml
xwResult.WriteStartElement(“Customer”)
While .Read

xmlData = .GetSqlXml(0)
‘Add child elements to the XmlWriter
xrResult = xmlData.CreateReader
xrResult.MoveToContent()
xwResult.WriteNode(xrResult, False)

End While
‘Add the end element
xwResult.WriteEndElement()
xwResult.Flush()
xwResult.Close()

Else
sbXML.Append(“XQuery expression returned no rows. “)

End If
.Close()

End With
cnNwind.Close()
Return sbXML.ToString

End Function

The full version of the preceding function is in the NWxmlColumns project’s NwXmlCols.vb file. The
XmlWriter has many more overloads than the XmlTextWriter, including the StringBuilder
target object.

518

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 518

Typed XML Columns
Applying strong typing to an xml column by associating an XmlSchemaCollection provides the
following benefits:

❑ The schema validates the inserted or updated content. The database engine returns an immediate
error message if the content fails validation.

❑ Static types eliminate the need to perform explicit casts in some cases, such as from an XQuery
string to a double value.

❑ XQuery operations on atomic types (values) are more precise. For example, an XQuery order
by clause on an xs:int often is more precise than with an xs:string.

❑ The column stores atomic values as types, which saves storage space and can improve XQuery
performance in some cases.

❑ You can perform indexed range scans. You can’t perform indexed range scans with the XQuery
comparison operators, such as > or <, on untyped values. Indexed range scans increase SELECT
query performance markedly, as you’ll see in the later sections that discuss the benefits and
drawbacks of XML indexes.

Create XMLSchemaCollections
An XmlSchemaCollection contains one or more schemas for each document namespace. You create a
member of an XmlSchemaCollection and associate it with an xml column by executing the following
generic syntax:

CREATE XML SCHEMA COLLECTION SchemaCollectionName AS
N’<xs:schema>PrimarySchema</xs:schema>[<xs:schema>ImportedSchema1</xs:schema>]
[<xs:schema>ImportedSchema2</xs:schema> ...]’;
ALTER TABLE TableName ADD XmlColumnName xml([DOCUMENT] SchemaCollectionName)
[NULL];

You also can create an XmlSchemaCollection from a primary schema that includes the <xs:import
namespace=”ValidUri” /> directive. The imported schemas’ content, which is highlighted in the
preceding batch commands, follow that of the primary schema.

XML schemas that you produce with VS 2005’s XML editor’s schema inference engine from XML source
documents are adequate for simple to moderately complex documents, including documents that
contain multiple namespaces. As noted in earlier chapters, you must edit the schema(s) to correct
inferred XSD datatypes for numeric, date/time, and other non-string elements and attributes. You also
must add minOccurs=”0” attributes for optional elements and, in some cases, add element definitions
for those elements that are missing in the initial source document.

The \VB2005DB\Chapter12\NWxmlColumns\bin folder holds *.xsd files that contain the sample
schemas and use the column names as file names. An exception is the set of four SalesOrder*.xsd files
that provide the source for the OrderXML2 columns’ primary and imported XmlSchemaCollections.
These schema files were created and edited with the VS 2005 XML editor.

If the ALTER TABLE instruction doesn’t include the highlighted DOCUMENT directive, which requires that
the column’s documents have a single root node, the default CONTENT directive applies and document
fragments are valid.

519

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 519

You must drop an existing untyped xml column before associating it with an XmlSchemaCollection.
The following batch drops the OrderXML1 column, creates an OrderXML1SchemaColl collection, and
associates the collection with the re-created column:

ALTER TABLE dbo.Orders DROP COLUMN OrderXML1;
CREATE XML SCHEMA COLLECTION OrderXML1SchemaColl
AS N’<?xml version=”1.0” encoding=”utf-16”?>
<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”Order”>
<xs:complexType>

<xs:sequence>
<xs:element name=”OrderID” type=”xs:int” />
<xs:element name=”EmployeeID” type=”xs:int” />
<xs:element name=”OrderDate” type=”xs:dateTime” />
<xs:element name=”RequiredDate” type=”xs:dateTime” />
<xs:element name=”ShippedDate” type=”xs:dateTime” minOccurs=”0”/>
<xs:element name=”ShipVia” type=”xs:int” />
<xs:element name=”Freight” type=”xs:decimal” />
<xs:element name=”ShipName” type=”xs:string” />
<xs:element name=”ShipAddress” type=”xs:string” />
<xs:element name=”ShipCity” type=”xs:string” />
<xs:element name=”ShipRegion” type=”xs:string” minOccurs =”0”/>
<xs:element name=”ShipPostalCode” type=”xs:string” minOccurs =”0”/>
<xs:element name=”ShipCountry” type=”xs:string” />

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>’;
ALTER TABLE dbo.Orders ADD OrderXML1 xml (DOCUMENT OrderXML1SchemaColl) NULL;

To execute the preceding batch with the NWxmlColumns project, select the Orders Table tab and mark
the Schema checkbox adjacent to the Fill OrderXML1 button. The CreateXmlSchemaCollection
function in the NwXmlCols.vb file contains the code that generates the XmlSchemaCollection.
OrderXML2 document instances are based on the SalesOrders XML document of Chapter 11’s
“Generate XML Documents with an XmlWriter” section.

After you’ve created the column and associated the XmlSchemaCollection, you can add new namespaces
or element(s) with the following generic syntax:

ALTER XML SCHEMA COLLECTION SchemaCollectionName ADD ‘SchemaComponent’

XmlSchemaCollections have database-level scope. You can’t remove namespaces, elements, or
attributes with the ALTER XML SCHEMA COLLECTION instruction. These modifications require recreating
the column and its XmlSchemaCollection.

Read XMLSchemaCollections
SQL Server 2005 shreds the XmlSchemaCollections you create into components that are optimized for
document validation. Shredding removes whitespace and comments, and substitutes abbreviations for
namespace prefixes. As an example, following are the root and xs:import elements of the schema for
the SalesOrder documents of the Orders table’s OrderXML2 column, with the namespaces highlighted
for comparison:

520

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 520

<xs:schema xmlns:nwst=”http://www.northwind.com/schemas/ShipTo”
xmlns:nwsc=”http://www.northwind.com/schemas/SalesContact”
xmlns:nwbt=”http://www.northwind.com/schemas/BillTo”
xmlns:nwso=”http://www.northwind.com/schemas/SalesOrder”
attributeFormDefault=”unqualified” elementFormDefault=”qualified”
targetNamespace=”http://www.northwind.com/schemas/SalesOrder”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:import namespace=”http://www.northwind.com/schemas/BillTo” />
<xs:import namespace=”http://www.northwind.com/schemas/SalesContact” />
<xs:import namespace=”http://www.northwind.com/schemas/ShipTo” /> ...

Here’s the reconstructed version of the preceding elements in the XmlSchemaCollection:

<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:ns3=”http://www.northwind.com/schemas/ShipTo”
xmlns:ns2=”http://www.northwind.com/schemas/SalesContact”
xmlns:ns1=”http://www.northwind.com/schemas/BillTo”
xmlns:t=”http://www.northwind.com/schemas/SalesOrder”
targetNamespace=”http://www.northwind.com/schemas/SalesOrder”
elementFormDefault=”qualified”>
<xsd:import namespace=”http://www.northwind.com/schemas/ShipTo”

schemaLocation=”urn:schemas-microsoft-com:sql:database” />
<xsd:import namespace=”http://www.northwind.com/schemas/SalesContact”

schemaLocation=”urn:schemas-microsoft-com:sql:database” />
<xsd:import namespace=”http://www.northwind.com/schemas/BillTo”

schemaLocation=”urn:schemas-microsoft-com:sql:database” /> ...

Shredding replaces the primary schema’s nwso namespace prefix with t, and the imported nwbt, nwsc,
and nwst namespaces with ns1, ns2, and ns3, respectively, as highlighted in the preceding schema
fragment. The highlighted schemaLocation attribute values specify that the imported schemas are
stored in the XmlSchemaCollection.

Shredding XML schemas makes substantial changes to their content, so it’s a good practice to archive
the original schemas in individual SchemaName.xsd files or an nvarchar(max) table column.

Shredded schemas aren’t readable directly, so you must execute the xml_schema_namespace system
function to return their content for review as xml data. As an example, the following instruction returns
the complete schema for the OrderXML2 column:

SELECT xml_schema_namespace(N’dbo’,N’OrderXML2SchemaColl’). _
query(‘/xs:schema[@targetNamespace=”http://www.northwind.com/schemas/SalesOrder”]’)

If you don’t include the XQuery query method to specify the SalesOrder (nwso) namespace, the
preceding instruction returns only schemas for the three imported namespaces. Later sections describe
XQuery method syntax. Figure 12-2 shows the NWxmlColumns sample project displaying part of the
batch command and the reformatted XmlSchemaCollection.

521

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 521

Figure 12-2

To display the batch commands and reconstructed content of the four schemas, select the Orders
Table tab and mark the Schema checkbox adjacent to the Fill OrderXML2 button. The
ReadXmlSchemaCollection function in the NwXmlCols.vb file contains the code that executes
the xml_schema_namespace system function.

Indexed XML Columns
XML indexes on xml columns improve the performance of XQuery SELECT queries. The performance
improvement is most effective for queries that include WHERE constraints based on atomic values of an
xml column’s content. The table must contain a conventional (relational) primary key column to add an
XML index, and you can’t create composite or clustered indexes on xml columns.

Following are the four types of XML indexes you can apply to xml columns:

❑ PRIMARY is an XML index that relates xml column nodes to the relational primary key column.
A PRIMARY index assists the query processor when optimizing the execution plan. Ad hoc
XQuery SELECT and UPDATE...WHERE statements take advantage of PRIMARY XML indexes,
which are required to add any of the following three secondary XML indexes. According to
Microsoft’s Michael Rys, “The primary index is basically like a materialized view on a table-valued
function. As such, it is a node table and a b-tree.”

❑ PATH is a secondary XML index that speeds execution of XQuery path expressions, especially
those with extended paths, such as \nwso:SalesOrder\nwbt:BillTo\nwbt:Buyer\
nwbt:Name.

522

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 522

❑ VALUE indexes all atomic element and attribute values and speeds searches for specific values or
ranges of values.

❑ PROPERTY indexes are intended to improve query performance for simple XML document
hierarchies that represent primarily name-value pairs.

If you don’t create a PRIMARY index on an xml column, XPath queries generate the node table dynamically,
which causes a performance hit — especially with large documents. After you create a PRIMARY index,
you can add any or all three secondary index(es).

Add and Drop XML Indexes
You add XML primary and secondary indexes to xml columns with the following generic syntax:

CREATE [PRIMARY] XML INDEX PrimaryIndexName ON TableName (xmlColumnName);
CREATE XML INDEX SecondaryIndexName ON TableName (xmlColumnName)

USING XML INDEX PrimaryXmlIndexName FOR {PATH|VALUE|PROPERTY};

For example, the following batch commands add a PRIMARY and three secondary indexes to the
Customers table’s CustomerXML1 column:

CREATE PRIMARY XML INDEX pidx_CustomerXML1 ON Customers (CustomerXML1);
CREATE XML INDEX sidx_path_CustomerXML1 ON Customers (CustomerXML1)

USING XML INDEX pidx_CustomerXML1 FOR PATH;
CREATE XML INDEX sidx_value_CustomerXML1 ON Customers (CustomerXML1)

USING XML INDEX pidx_CustomerXML1 FOR VALUE;
CREATE XML INDEX sidx_prop_CustomerXML1 ON Customers (CustomerXML1)

USING XML INDEX pidx_CustomerXML1 FOR PROPERTY;

The syntax for dropping an XML index is identical to that for relational indexes:

DROP INDEX XmlIndexName ON TableName

You must drop all secondary indexes before you drop the PRIMARY index.

To execute the preceding instruction sets, mark and clear the sample project’s Customers Table page’s
Index checkbox adjacent to the Fill CustomersXML1 button.

Figure 12-3 shows the report returned from the sys.dm_db_index_physical_stats system data
management function with the following query:

SELECT ix.name, dm.index_type_desc, dm.page_count, dm.avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats (DB_ID(), @objID , NULL, NULL, ‘LIMITED’) AS dm
INNER JOIN sys.indexes ix
ON dm.object_id = ix.object_id AND dm.index_id = ix.index_id ORDER BY ix.index_id;

where @objID is the sys.object.object_id (int) of the Orders table.

The four XML indexes added by the GetXMLIndexStats function after marking the Index checkbox
adjacent to the Fill CustomersXML2 button are highlighted in Figure 12-3.

523

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 523

Figure 12-3

The sys.dm_db_index_physical_stats data management function replaces the DBCC
SHOWCONTIG command, which is deprecated. You can use the data management function to verify the
existence of indexes on xml columns, estimate their size in pages, and display their fragmentation
percentage.

Promote xml Atomic Values to Table Columns
As mentioned earlier, XML indexes slow INSERT, UPDATE, and DELETE modify function execution on
xml columns. Each secondary index type you add contributes to the performance hit. The reduction in
modify function performance can be dramatic, as demonstrated with the NWxmlColumns project in
later sections. Corresponding indexes on relational columns usually have a much lesser effect on the
performance of modify operations.

You probably can improve query method performance by adding a computed column that you populate
with atomic (scalar) values extracted from the xml column. This process is called property promotion.
Improvements to the modify method result from elimination of all XML indexes or a reduction of the
number of secondary indexes required for query optimization. You write a user-defined function to
extract the values from the xml column and populate a computed column, and then add an index to the
column, with SQL statements similar to the following example:

CREATE FUNCTION udf_xmlCountry (@xmlCountry xml) RETURNS varchar(15)
WITH SCHEMABINDING

BEGIN
RETURN @xmlCountry.value(‘/Order[1]/ShipCountry’, ‘varchar(15)’)

524

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 524

END;

ALTER TABLE Orders ADD c_ShipCountry AS dbo.udf_xmlCountry(OrderXML1);

CREATE INDEX idx_c_ShipCountry ON Orders(c_ShipCountry);

You use the c_ShipCountry column as needed in SELECT lists, WHERE constraints, and ORDER BY clauses.

The section “Execute XPath and XQuery Expressions,” later in this chapter, explains the syntax of the
RETURN XQuery expression.

The Customers and Orders tables with added xml columns emulate a table in which all or, in the case of
the Orders.OrderXML2 column, most properties have been promoted to computed columns.

Explore the AdventureWorks xml Columns
The AdventureWorks sample database has tables with seven xml columns, six of which are typed. The
untyped column (Production.Illustration.Diagram) contains scalable vector graphics (SVG) content. You
can list all columns of the xml data type in a database by executing the following query against the
sys.schemas, sys.tables, and sys.columns system views:

SELECT sys.schemas.name AS SchemaName, sys.tables.name AS TableName,
sys.columns.name AS ColumnName

FROM sys.schemas, sys.tables, sys.columns
WHERE sys.tables.schema_id = sys.schemas.schema_id

AND sys.tables.object_id = sys.columns.object_id
AND sys.columns.system_type_id = 241

ORDER BY SchemaName, TableName, ColumnName;

The xmlColumnExplorer.sln sample project lets you explore xml columns and members of
XmlSchemaCollections in the AdventureWorks database or those that you add to the Northwind
database. All SQL Server 2005 Books Online examples for operations on xml columns use the
AdventureWorks database, so you’ll probably find this project to be of assistance when executing the
sample code. By default, the first tab page displays all xml columns in the AdventureWorks database by
executing the preceding query when loading.

The following query returns rows that include the xml_schema_collections.name and xml_namespace
.name values for typed xml columns:

SELECT sys.schemas.name AS SchemaName, sys.tables.name AS TableName,
sys.columns.name AS ColumnName, sys.xml_schema_collections.name AS XmlSchemaName,
sys.xml_namespaces.name AS XmlNamespace

FROM sys.schemas, sys.tables, sys.columns, sys.xml_schema_collections,
sys.xml_namespaces

WHERE sys.tables.schema_id = sys.schemas.schema_id
AND sys.tables.object_id = sys.columns.object_id
AND sys.xml_schema_collections.schema_id = sys.schemas.schema_id
AND sys.xml_namespaces.xml_collection_id =

sys.xml_schema_collections.xml_collection_id
AND sys.columns.system_type_id = 241

ORDER BY SchemaName, TableName, ColumnName

525

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 525

The sys.columns.system_type_id value of 241 represents a column of the xml data type.

Clicking the sample project’s Get Typed xml Columns button executes the preceding query and displays
a DataGridViewRow for each XmlSchemaCollection namespace on the Tables with Typed xml
Columns tab page, as shown in Figure 12-4. If you’ve added typed xml columns to the Northwind
database with the NWxmlColumns project, clicking the Northwind (toggle) button displays them.

Figure 12-4

Selecting a row and the second tab page displays, by default, only the rows that contain content in the
selected xml column, as shown in Figure 12-5.

Selecting a row that contains XML data displays the content in the third tab page, as shown in Figure
12-6. The AdditionalContactInfo column contains mixed content, which is highlighted in the figure. This
proves that typed xml columns can handle mixed content, which causes problems for some XML-based
applications — such as InfoPath 2003.

526

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 526

Figure 12-5

Figure 12-6

527

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 527

The fourth tab page displays the schema for the namespace you specify on the first tab page. Figure
12-7 shows the AdditionalContactInfo column’s simple schema with one of the mixed content
specifiers highlighted.

Figure 12-7

Execute XQuery Expressions
A thorough exposition of XQuery 1.0 and XPath 2.0 query syntax is beyond the scope of this book, but
expressions specific to SQL Server 2005’s XQuery implementation for xml columns deserve simple
examples and a brief explanation.

The W3C XML Query Use Cases Working Draft at http://www.w3.org/TR/xquery-use-cases/
provides examples of abbreviated-syntax XQuery expressions that return values from individual
documents. As an example, the following expressions return all author names from a bib.xml document:

doc(“http://bstore1.example.com/bib.xml”)//author
doc(“C:\usecases\bib.xml”)//author

The basic syntax for executing XQuery methods on xml columns is:

SELECT xmlColumn.XQueryMethod(XQueryExpressionString) FROM TableName
[WHERE Criteria]

UPDATE xmlColumn.modify(XML_DDLExpressionString) FROM TableName
[WHERE Criteria]

528

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 528

This statement returns all Customer documents from the CustomerXML1 column:

SELECT CustomerXML1.query(‘/Customer’) FROM Customers;

The following statement uses an XML DDL expression to insert a <Fax> element into a specific
Customer document specified by a WHERE constraint on a relational column:

UPDATE Customers SET CustomerXML1.modify(‘insert <Fax>(5) 555-3933 (Inserted)</Fax>
as last into (/Customer)[1]’) WHERE CustomerID = ‘ANTON’;

The as last modifier specifies that the <Fax> element is the last child of the Customer document.
Other modifiers are as first (NodeExpression), before (NodeExpression), and after
(NodeExpression).

This modified expression specifies the row to update without reference to a relational column as a WHERE
constraint:

UPDATE Customers SET CustomerXML1.modify(‘insert <Fax>(5) 555-3933 (Inserted)</Fax>
as last into (/Customer)[/Customer/CustomerID=”ANTON”]’);

INSERT and DELETE statements apply at the row level, so they aren’t applicable to operations on xml
column content.

The sections that follow describe the XQuery methods and offer simple, abbreviated-syntax XQuery
expressions that you can execute against the xml columns of the Customers and Orders tables. Most
expressions are based on examples provided by the NWxmlColumns project’s Customers XQuery and
Orders XQuery tab pages.

XQuery Methods for xml Columns
Following are the five methods that the SQL Server 2005 XQuery engine supports for xml columns:

❑ xmlColumn.query(‘expression’) returns a document, document node(s), or atomic
value(s), depending on the XQuery expression string’s value. The query method corresponds
to a simple SQL SELECT statement that substitutes the result of executing expression for the
column list.

❑ xmlColumn.value(‘expression’, ‘SqlDataType’) returns a single atomic (scalar) value
with the SQL Server data type that you specify as the SqlDataType argument value. The value
method corresponds to a SELECT ‘expression’ statement executed by the SqlCommand
.ExcuteScalar method. If ‘expression’ returns a non-scalar value, more than one value, or
the value can’t be cast to the specified SqlDataType, the XQuery processor returns an error
message.

❑ xmlColumn.exist(‘expression’) returns 1 (true) if the item specified by expression exists
or 0 (false) if the item doesn’t exist (is null). The exist method is most useful for establishing
WHERE clause constraints.

529

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 529

❑ xmlColumn.nodes(‘expression’) returns an unnamed rowset that contains logical copies of
the document instances contained in the specified xml column; ‘expression’ specifies the
context node. Invoking value methods on the rowset to return multiple scalar values lets you
shred document instances into a relational table format.

❑ xmlColumn.modify(‘expression’) executes one of three SQL Server 2005 XML DDL exten-
sions —insert, replace [value of], and delete, which usually operate on a single node or
specified group of nodes.

Namespace Declarations and Case-Sensitivity
XQuery expressions consist of a prolog and body, which are separated by a semicolon. Documents that
have element or attribute namespace prefixes require an XQuery prolog that includes the declare
namespace prefix=”ValidUri”; instruction. Here’s a modification of the earlier Customers query for
the CustomerXML2 column, which has an nwc namespace prefix:

SELECT CustomerXML2.query(‘declare namespace
nwc=”http://www.northwind.com/schemas/Customer”;
/nwc:Customer’) FROM Customers;

The default collation for SQL Server 2005 and its recent predecessors is case-insensitive for comparisons.
XQuery expressions, however, are case-sensitive. Thus, namespace declarations must match the text
and case of their document and schema counterparts. XQuery keywords and node names are case-
sensitive also.

You specify multiple namespace prefixes by adding declare namespace instructions followed by a
semicolon prolog terminator. Whitespace between multiple instructions is optional. Following is a more
complex expression that returns BillTo nodes for all OrdersXML2 instances:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
declare namespace nwbt=”http://www.northwind.com/schemas/BillTo”;
/nwso:SalesOrder/nwbt:BillTo’) FROM Orders;

Alternatively, you can specify a default namespace for the returned node(s) with a declare default
namespace “AnyUri” instruction.

Sample query Expressions
The simplest XQuery expression that you can execute is the following:

SELECT OrderXML1.query(‘/’) FROM Orders

which returns all Customer document instances.

The following query returns the Customer instance for a CustomerID value of WOLZA:

SELECT CustomerXML1.query(‘(/Customer[/Customer/CustomerID=”WOLZA”])’)
FROM Customers;

The highlighted expression (within brackets) is called a predicate, which returns a boolean predicate truth
value that filters child nodes.

530

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 530

This query returns an Order instance for the specified (integer) OrderID element value:

SELECT OrderXML1.query(‘(/Order[/Order/OrderID=11076])’) FROM Orders;

Replacing [/Order/OrderID=11076] with [//OrderID=11076] achieves the same result because
there’s only one instance of an OrderID element within the document.

You can substitute the other XQuery general comparison operators (<, <=, !=, >=, and >) for = in predicates.
These operators can compare node sequences. Value comparison operators (lt, le, eq, ne, ge, and gt)
compare atomic values of the same XML datatypes. XQuery also has the common numeric operators (+, -,
*, and /).

OrderID is an attribute in OrderXML2 instances, so you add an at-symbol (@) to specify an attribute
value, as highlighted in this example:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
(/nwso:SalesOrder[/nwso:SalesOrder/@nwso:OrderID=11076])’) FROM Orders;

The @nwso:OrderID and 11076 operands are atomic values, but the attribute value is xs:untypedAny in
an untyped xml column and the 11076 literal is xs:int. The following expression with the highlighted
value comparison returns an error with an untyped column; a typed column returns the expected node set:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
(/nwso:SalesOrder[/nwso:SalesOrder/@nwso:OrderID eq 11076])’) FROM Orders;

XQuery offers numeric functions —ceiling, floor, and round— and aggregate functions —count,
sum, avg, max, and min. String functions include concat, contains, substring, and string-length.

The following sections provide examples of query method expressions that are executed in combination
with other method types, and use of several numeric, aggregate, and string functions.

Sample value Expressions
The following query returns Wolski Zajazd with a WHERE constraint that accepts an SQL Server
nvarchar(5) value:

SELECT CompanyName FROM Customers WHERE
CustomerXML1.value(‘(/Customer/CustomerID)[1]’, ‘nvarchar(5)’) = ‘WOLZA’

The [1] numeric predicate specifies a singleton (first) element from the document instance, which is
required for most value expressions. The numeric predicate also assists the query optimizer in preparing
the most efficient execution plan. If you omit the predicate and the expression returns more than one
value, you receive an error message.

This variation with the OrdersXML2 column returns Rattlesnake Canyon Grocery with a WHERE con-
straint that accepts an int value:

SELECT ShipName FROM Orders
WHERE OrderXML2.value(‘declare namespace

nwso=”http://www.northwind.com/schemas/SalesOrder”;
/nwso:SalesOrder[1]/@nwso:OrderID[1]’, ‘int’) = 11077;

531

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 531

The numeric predicates are optional in this case also, but they illustrate an alternative syntax that would
retrieve the first OrderID value from the first SalesOrder node, if there were more than one of each.

Sample exist Expressions
The exist method is a logical operator that’s usable as a WHERE constraint, as in the following example,
which returns Order instances for shipment to U.S. addresses:

SELECT OrderXML1.query(‘/Order’) FROM Orders
WHERE OrderXML1.exist(‘/Order[data(ShipCountry)=”USA”]’) = 1

The data function returns the typed value of the ShipCountry node if the xml column has an
XmlSchemaCollection. ShipCountry is a string, so you can substitute the string function for the
data function and achieve the same result.

This expression returns a singleton Order instance:

SELECT OrderXML1.query(‘/Order’) FROM Orders
WHERE OrderXML1.exist(‘/Order[data(OrderID)=10262]’) = 1

Substituting the string for the data function with a typed column results in an error message.

Here’s a more complex variation that returns BillTo nodes for U.S. orders:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
declare namespace nwbt=”http://www.northwind.com/schemas/BillTo”;
/nwso:SalesOrder/nwbt:BillTo’) FROM Orders

WHERE OrderXML2.exist(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”; declare namespace
nwbt=”http://www.northwind.com/schemas/BillTo”;
/nwso:SalesOrder/nwbt:BillTo[data(nwbt:Country)=”USA”]’) = 1

You must add namespace declarations to the exist expression for each namespace prefix it contains.

The following query highlights the syntax for casting string literals to the xs:dateTime datatype for use
with XQuery comparison operators to return Order instances for a range of dates:

SELECT OrderXML1.query(‘/Order’) FROM Orders
WHERE OrderXML1.exist(‘/Order[data(OrderDate) >=

xs:dateTime(“1996-07-10T00:00:00Z”)]’) = 1
AND OrderXML1.exist(‘/Order[data(OrderDate) <=

xs:dateTime(“1997-07-10T00:00:00Z”)]’) = 1;

This alternative syntax uses the dot (.) selector to return the OrderDate context node’s value:

SELECT OrderXML1.query(‘/Order’) FROM Orders
WHERE OrderXML1.exist(‘/Order/OrderDate[. >=

xs:dateTime(“1996-07-10T00:00:00Z”)]’) = 1
AND OrderXML1.exist(‘/OrderOrderDate[. <=

xs:dateTime(“1997-07-10T00:00:00Z”)]’) = 1;

532

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 532

Multiple exist methods exact a performance penalty. Combining the two OrderDate expressions as
emphasized in the following query reduces by about half the execution time of the preceding expression:

SELECT OrderXML1.query(‘/Order’) FROM Orders
WHERE OrderXML1.exist(‘/Order/OrderDate[. >=

xs:dateTime(“1996-07-10T00:00:00Z”) and
. <= xs:dateTime(“1997-07-10T00:00:00Z”)]’) = 1

The performance improvement is about 15 to 20 percent with PRIMARY and PROPERTY XML indexes on
the OrderXML1 column.

Sample nodes Expressions
The nodes method returns a rowset that consists of logical copies of the document instances that you
specify with the following generic expression:

xmlColumn.nodes(/ContextNode) AS RowSet(Columns)

You can’t execute a SELECT XQuery expression against the node copies directly because the copies
aren’t materialized. You must use the new T-SQL CROSS APPLY operator to expose the node copies to an
XQuery SELECT expression. The CROSS APPLY operator lets you invoke a table-valued function (TVF) on
each row returned by a query. The xmlColumn.nodes(/ContextNode) expression serves as the TVF.
Alternatively, you can substitute the OUTER APPLY operator, which returns NULL values for missing
instances. CROSS APPLY returns NULL values for elements that are missing in an instance.

One of the most useful features of the nodes method is its capability to return multiple atomic (scalar)
values as columns of a relational rowset. You shred the instances with a SELECT statement whose col-
umn list consists of comma-separated Columns.value(‘NodeName’, ‘data type’) AS ColumnName
expressions.

The following query returns a relational resultset from OrdersXML1 column instances for Rattlesnake
Canyon Grocery (RATTC):

SELECT Columns.value(‘./OrderID’, ‘int’) AS OrderID,
Columns.value(‘./EmployeeID’, ‘int’) AS EmployeeID,
CONVERT(datetime, Columns.value(‘./OrderDate’, ‘varchar(19)’), 126)

AS OrderDate,
CONVERT(datetime, Columns.value(‘./RequiredDate’, ‘varchar(19)’), 126)

AS RequiredDate,
CONVERT(datetime, Columns.value(‘./ShippedDate’, ‘varchar(19)’), 126)

AS ShippedDate,
Columns.value(‘./ShipVia’, ‘int’) AS ShipVia,
Columns.value(‘./Freight’, ‘money’) AS Freight
-- Ship... elements omitted for brevity

FROM Orders
CROSS APPLY OrderXML1.nodes(‘/Order’) AS RowSet(Columns)
WHERE OrderXML1.exist(‘/Order[data(CustomerID)=”RATTC”]’) = 1
ORDER BY OrderXML1.value(‘/Order[1]/OrderID[1]’, ‘int’) DESC;

The CONVERT operator and truncation of xs:datetime string values is required for the datetime
data type because SQL Server’s ISO-8601 date format (126) won’t accept the trailing Z (Zulu or UTC)
indicator or time-zone offsets. The ‘/Order’ node name is required in the nodes expression; using ‘.’
returns an error message.

533

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 533

You can execute the preceding query from the NWxmlColumns project’s Orders XQuery page by
selecting the Nodes (Shred) option and clicking Execute XQuery. A DataGridView displays the resulting
rowset, as shown in Figure 12-8.

Figure 12-8

Sample modify Expressions
The following three statements and expressions add, modify the value of, and delete a <Fax> element
for a Customer instance:

UPDATE Customers SET CustomerXML1.modify(‘insert <Fax>(5) 555-3933 (Inserted)</Fax>
as last into (/Customer)[1]’) WHERE CustomerID = ‘ANTON’;
UPDATE Customers SET CustomerXML1.modify(‘replace value of
(/Customer/Fax[1])[1] with “(5) 555-3934 (Modified)”’) WHERE CustomerID = ‘ANTON’;
UPDATE Customers SET CustomerXML1.modify(‘delete /Customer[1]/Fax’)
WHERE CustomerID = ‘ANTON’;

Even a minor update to an xml document instance requires you to extract the entire instance, modify
the instance, and reinsert it in the column. Thus, increasing document size reduces the performance of
modify operations. XML indexes also impose a performance toll on the modify method.

The first statement appeared in the section “Execute XPath and XQuery Expressions” section, but is
repeated here for completeness.

534

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 534

This statement and expression updates the ShipperID attribute value to 1 in all OrdersXML2 instances
for U.S. customers:

UPDATE Orders SET OrderXML2.modify(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
replace value of (/nwso:SalesOrder/@nwso:ShipperID)[1] with xs:unsignedByte(1)’)

WHERE ShipCountry = ‘USA’;

You can edit the preceding statement to compare UPDATE performance with WHERE constraints that use
exist method expressions. The execution time difference is negligible.

FLWOR XQuery Expressions
Section 3.8, “FLWOR Expressions,” of W3C’s “XQuery 1.0: An XML Query Language” specification
defines an SQL-like syntax to add support for node iteration, intermediate variable binding, joins between
documents, element or attribute construction, and ordering of results. The FLWOR acronym, pronounced
“flower” as you’d expect, derives from the syntax’s basic keywords —for, let, order by, where, and
return. SQL Server 2005’s FLWOR implementation doesn’t support the let keyword, which is an
alternative to the for clause, and is missing a few minor modifier keywords. However, these omissions
aren’t likely to impair your ability to emulate basic SQL SELECT statements and XSLT-like features.

The following table compares T-SQL and basic FLWOR clauses for SELECT operations.

SQL Clause FLWOR Clause

SELECT table1.xmlColA, table1 return $varA (! $varB or $varC)
.xmlColB, table2.xmlColC

FROM table1, table2 for $varA in /path1 (! for $varB in /path1 or for
$varA in /path2)

WHERE where

ORDER BY order by

Unlike XQuery expressions for conventional document instances, you can’t create joins between instances
in two xml columns. SQL Server 2005 XQuery methods are limited to operations on a single xml column.
Thus you can’t set the value of $varB from xmlColB or $varC from xmlColC, which is in a different table.
However, you can use the sql:column function to include values from relational columns from the same
or another table in the query result document instance, as described in the section “The sql:column
Function, Joins, and Conditional Expressions,” later in this chapter.

Following is the simplest XQuery expression you can write:

SELECT CustomerXML1.query(‘for $Result in /Customer return $Result’)
FROM Customers;

which returns all Customer instances. Unlike the earlier simplest query method example, the path must
contain at least the root node name; a / without a node name returns an error message.

535

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 535

Selecting Get All (FLWOR) and clicking Execute XQuery on the NWxmlColumns project’s Customers
XQuery tab page project executes the preceding query.

Adding a where constraint returns those instances that comply with the where expression. As an exam-
ple, the following two expressions return orders for Alfreds Futterkiste:

SELECT OrderXML1.query(‘for $Result in /Order
where /Order/CustomerID=”ALFKI” return $Result’) FROM Orders;

SELECT OrderXML1.query(‘for $Result in /Order
where $Result/CustomerID=”ALFKI” return $Result’) FROM Orders;

The preceding FLWOR expression eliminates the need for a separate WHERE
OrderXML1.value(‘/Order[1]/CustomerID[1]’, ‘nvarchar(5)’) = ‘ALFKI’ constraint.
However, the query performs a full table scan and returns empty (zero-length string) instances for
orders that don’t match the ALFKI criterion.

The following expression substitutes a where expression for the sample OrderXML1.exist(...)
method expression for a date range and returns the resulting instances in descending OrderID order.

SELECT OrderXML1.query(‘for $Result in /Order
where $Result/OrderDate >= xs:dateTime(“1996-07-10T00:00:00Z”) and
$Result/OrderDate <= xs:dateTime(“1997-07-10T00:00:00Z”) return $Result’)
FROM Orders ORDER BY OrderXML1.value(‘/Order[1]/OrderID[1]’, ‘int’) DESC;

The ORDER BY expression must use the OrderXML1.value(...) method because an order by expres-
sion within the FLWOR query operates on the current instance, not the collection of instances returned
by the SELECT statement. This statement returns empty instances for out-of-range OrderDate values.

To test the preceding expressions that contain where constraints, select the Get All query on the
Orders XQuery tab page, edit the default expression, and click Execute XQuery. Notice that the Rows
text box displays 830 for any where constraint. (The Rows value will differ if you’ve added or deleted
Orders table rows.) Compare the number of rows returned by the last query with the 303 rows returned
by executing the Find by Dates query.

Element and Attribute Constructors
XQuery includes XML constructors, which let you emulate XSLT transformations of XML documents.
Constructors generate document, element, attribute, text, comment, and processing instruction nodes. A
direct element constructor uses constants for element names and supports expressions, which must be
enclosed by French braces, for element values.

Following is an example of a direct element and attribute constructor expression that generates instances
with renamed Customer elements:

SELECT CustomerXML1.query(‘for $Result in /Customer return
<USCustomer CustomerID=”{data($Result/CustomerID[1])}”>

<Name>{data($Result/CompanyName)}</Name>
<Contact>{concat(“Attn: “, data($Result/ContactName[1]), “, “,

data($Result/ContactTitle[1]))}</Contact>
<Street>{data($Result/Address)}</Street>
<City>{data($Result/City)}</City>
<State>{data($Result/Region)}</State>

536

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 536

<ZIPCode>{data($Result/PostalCode)}</ZIPCode>
</USCustomer>’)
FROM Customers WHERE Country = ‘USA’;

Figure 12-9 shows part of the preceding query and the first instance produced by the preceding query,
which also demonstrates use of the concat function.

Figure 12-9

Selecting Find by Country (FLWOR) and clicking Execute XQuery on the Customers XQuery tab page
executes the preceding query.

Element constructors are especially useful when creating instances with elements whose values are
returned by XQuery aggregate functions. The following query demonstrates use of count, sum, and
average aggregate functions, plus round and string functions, with SalesOrder instances:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;
for $Result in /nwso:SalesOrder return
<SalesOrder>

<SalesOrderNum>{data($Result/@nwso:OrderID)}</SalesOrderNum>
<SalesOrderDate>{data($Result/@nwso:OrderDate)}</SalesOrderDate>
<LineItemsCount>{count($Result/nwso:LineItems/nwso:LineItem)}</LineItemsCount>
<LineItemsValue>{concat(“$”, xs:string(round(sum($Result/nwso:LineItems/

nwso:LineItem/nwso:Extended))))}</LineItemsValue>
<LineItemsAverage>{concat(“$”, xs:string(round(avg($Result/nwso:LineItems/

nwso:LineItem/nwso:Extended))))}</LineItemsAverage>
</SalesOrder>’) FROM SalesOrders;

537

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 537

You must use the string function to concatenate string constants or variables with numeric values.
The pairs of lines split at nwso:LineItems/ for the book’s line-length limitation must be single lines
to execute correctly.

Here’s the first instance returned by the preceding query:

<SalesOrder>
<SalesOrderNum>10248</SalesOrderNum>
<SalesOrderDate>1996-07-04T00:00:00</SalesOrderDate>
<LineItemsCount>3</LineItemsCount>
<LineItemsValue>$440</LineItemsValue>
<LineItemsAverage>$147</LineItemsAverage>

</SalesOrder>

Selecting Aggregate Functions and clicking Execute XQuery on the Orders XQuery tab page executes
the preceding query, which runs against the OrderXML2 column only.

The sql:column Function, Joins, and Conditional Expressions
As mentioned earlier, you can use the sql:column function to supply relational values to direct element
or attribute constructors. The generic syntax of this function is:

sql:column(“[SchemaName.][TableName.]ColumnName”)

If the column is in another table, you must specify a join between the other table’s column and a value
expression from the document instance, if you haven’t promoted a calculated column for the property.

FLWOR also has keywords for if, then, and else conditional expressions, whose counterparts are
available only in T-SQL stored procedures.

This FLWOR query demonstrates the use of a conditional expression with an sql:column function
and a join of the Customers.CustomerID column with the value of the Order instance’s CustomerID
element:

SELECT OrderXML1.query(‘for $Result in /Order return
<Order>

<OrderDate>{data($Result/OrderDate)}</OrderDate>
<OrderID>{data($Result/OrderID)}</OrderID>
<ShipName>{data($Result/ShipName)}</ShipName>
<ShipPhone>{sql:column(“Customers.Phone”)}</ShipPhone>
{if (not(empty(sql:column(“Customers.Fax”)))) then

<ShipFax>{sql:column(“Customers.Fax”)}</ShipFax>
else ()}

</Order>’)
FROM Orders, Customers WHERE

OrderXML1.exist(‘/Order/OrderDate[. >=
xs:dateTime(“1996-07-10T00:00:00Z”) and
. <= xs:dateTime(“1997-07-10T00:00:00Z”)]’) = 1 AND

Customers.CustomerID = OrderXML1.value(‘(/Order/CustomerID)[1]’, ‘nvarchar(5)’);

The preceding FLWOR expression also illustrates use of the XQuery not and empty logical functions.
Figure 12-10 shows the sample project’s Orders XQuery tab page displaying part of the preceding query
and the first result instances.

538

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 538

Figure 12-10

Here’s the full version of the first two instances returned by the preceding query:

<Order>
<OrderDate>1996-07-10T00:00:00</OrderDate>
<OrderID>10253</OrderID>
<ShipName>Hanari Carnes</ShipName>
<ShipPhone>(21) 555-0091</ShipPhone>
<ShipFax>(21) 555-8765</ShipFax>

</Order>
<Order>

<OrderDate>1996-07-11T00:00:00</OrderDate>
<OrderID>10254</OrderID>
<ShipName>Chop-suey Chinese</ShipName>
<ShipPhone>0452-076545</ShipPhone>

</Order>

The second instance omits the ShipFax element as a result of the conditional if (not(empty...))
then test. The else keyword with parenthesis is required, regardless of whether you supply an else
expression.

Selecting Find By Country and clicking Execute XQuery on the Orders XQuery tab page executes the
preceding query.

The SQL Server XQuery engine also supports some, every, and satisfies keywords for quantified
expressions, which are beyond the scope of this chapter.

539

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 539

Execute XQuery Expressions with Code
The CustomersXQuery.vb and OrdersXQuery.vb files start with the code that generates the sample
XQuery expressions. Most expression code uses the Replace function to modify the basic
CustomerXML1 and OrderXML1 expressions to accommodate the more complex CustomerXML2 and
OrderXML2 instances.

Many of the sample project’s XQuery expression examples return multiple document instances, in which
case the single-instance SqlCommand.ExecuteXmlReader method isn’t applicable. Instead, invoking
the SqlCommand.ExecuteReader method creates an SqlDataReader that iterates and returns the
instances as SqlXml objects by invoking the SqlDataReader.GetSqlXml(0) method. Alternatively,
you can return untyped Objects by invoking the SqlDataReader.GetValue(0) method.

The following abbreviated version of the NwXmlCols.vb file’s GetXQueryResult function executes the
XQuery expression (strXQuery) and returns a formatted string of one or more instances enclosed
within a <Root> element:

Private Function GetXQueryResultShort(ByVal strXQuery As String,
ByVal strRoot As String) As String

Dim xrResult As XmlReader
Dim xwSettings As XmlWriterSettings
Dim xwResult As XmlWriter = Nothing
sbXML = New StringBuilder() ‘Private-scope variable
xwSettings = New XmlWriterSettings
With xwSettings

.Encoding = Encoding.Unicode

.Indent = True

.IndentChars = (“ “)

.OmitXmlDeclaration = False

.ConformanceLevel = ConformanceLevel.Document
End With
‘Create an XmlWriter to format the result
xwResult = XmlWriter.Create(sbXML, xwSettings)
cmNwind.CommandText = strXQuery
cnNwind.Open()
Dim sdrData As SqlDataReader
sdrData = cmNwind.ExecuteReader
With sdrData

If .HasRows Then
Dim xmlData As SqlXml
xwResult.WriteStartElement(strRoot)
While .Read

xmlData = .GetSqlXml(0)
xrResult = xmlData.CreateReader
xrResult.MoveToContent()
‘Add the instances to the StringBuilder
xwResult.WriteNode(xrResult, False)

End While
‘Add the end element
xwResult.WriteEndElement()
xwResult.Flush()
xwResult.Close()

End If

540

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 540

End With
Return sbXML.ToString

End Function

SqlXml objects outperform untyped Objects by about 15 percent for documents that have an average
size of 560 bytes (OrderXML1) to 3.7KB (OrderXML2), despite the overhead of formatting the instances
with an XmlWriter. Thus, the project uses SqlXml as the default, except for XQuery examples that
return scalar values and the Random IDs query.

Clicking the Execute XML button’s event handler invokes the GetXQueryResult function to return and
display the resulting instance(s) in the lower text box. Alastair Dallas’s Stopwatch class (http://www
.codeproject.com/vb/net/vbnetstopwatch.asp) uses the QueryPerformanceCounter API to
provide microsecond-resolution interval measurement for query execution. Writing the instance content
from the XmlWriter’s StringBuilder to the text box isn’t included in the elapsed-time value.

The following simplified example, which is based on the ReadXmlSchemaCollection function,
illustrates code to execute the XQuery expression by invoking the ExecuteXmlReader method and save
the result to a file with an XmlTextWriter:

Private Sub SaveSingleInstance(ByVal strXQuery As String,
ByVal strXmlFile As String)

‘Execute strXQuery and save result to a file with an XmlTextWriter
cmNwind.CommandText = strXQuery
cnNwind.Open()
Dim xrXQuery As XmlReader = cmNwind.ExecuteXmlReader
cnNwind.Close()
Dim xtwXQuery As New XmlTextWriter(strXmlFile, Encoding.Unicode)
xtwXQuery.Formatting = Formatting.Indented
xrXQuery.MoveToContent()
With xtwXQuery

.WriteNode(xrXQuery, False)

.Flush()

.Close()
End With
xrXQuery.Close()

End Sub

Evaluate Performance Effects of Data
Model Choices

Obviously, the verbosity of xml columns’ document instances negatively affects query and update
performance. Dire warnings abound in the computer press about network overloads caused by moving
bloated XML documents instead of the compact binary representation of relational data. Script-laden
HTML pages — especially pages containing images — display similar bloat, although the increasing use
of gzip HTTP 1.1 compression ameliorates this issue except for bitmapped graphics. You can minimize
storage requirements by applying lossless compression algorithms to original XML documents that you
store in varbinary(max) columns, but you lose text search capability and consume substantial CPU
resources to compress and decompress the content.

541

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 541

Performance and resource consumption are vital issues for developers who face the requirement to
generate, validate, store, modify, and transport XML documents. As mentioned earlier in the chapter,
indexing xml columns speeds most XQuery query, value, and exists operations at the expense of SQL
Server UPDATE and XQuery modify operations. At this early point in SQL Server 2005’s lifecycle, it’s
difficult — perhaps impossible — to anticipate the XML index combinations that strike the right balance
between these competing factors, and the structure and volatility of xml column content.

The “Performance Optimizations for the XML Data Type” white paper at http://msdn.microsoft
.com/library/en-us/dnsql90/html/sqloptxml.asp states, “Analysis of the query workload
is required to determine whether one or more of the secondary XML indexes are helpful. Index mainte-
nance cost should be taken into account in measuring the overall benefit of indexing the XML data.”

You can accurately predict the effect of XML indexes on xml column population with UPDATE operations
only by running a test regimen on production hardware with document instances that reflect the size,
complexity, and diversity of production versions. This rule also is true for testing how XML indexes
affect the performance of query, value, exists, and modify methods. Finally, tests should run against
tables having row counts that are representative of the production environment.

A reasonably complete index performance test suite, using the SalesOrders table as an example, consists
of the following activities:

1. Populate the untyped OrderXML1 and OrderXML2 xml columns with randomized XML document
instances. The average size of randomly generated OrderXML1 instances is 511 characters
with whitespace and 449 characters without whitespace. OrderXML2 documents average 4,315
characters with whitespace and 3,648 characters without whitespace. Elapsed times include
generating the document instance and updating the xml columns.

2. Obtain the elapsed time to generate the documents without performing the UPDATE operation.
Subtract the value from the elapsed times to fill the xml columns. You need the net elapsed time
to compare the effects of indexes on UPDATE operations accurately.

3. Repopulate the OrderXML1 and OrderXML2 columns with typed columns, PRIMARY-only,
PRIMARY and PATH, PRIMARY and VALUE, PRIMARY and PROPERTY, and PRIMARY, PATH, and
PROPERTY indexes. These tests predict the performance hit of indexes on column population.

4. Execute a suite of typical XQuery query, value, exists, and modify methods to predict the
performance improvement gained by indexes on the first three methods and the penalty
imposed on the modify method.

5. Optionally, analyze Showplan query optimization data to uncover XQuery expressions that
demonstrate abnormally high I/O and CPU resource consumption. For more accurate data,
substitute SET STATISTICS [XML] ON for SET SHOWPLAN[_XML] ON. STATISTICS XML and
SHOWPLAN_XML are new SQL Server 2005 options.

To obtain representative performance comparisons, you should test your fixed disks for fragmentation. If
the analyzer recommends it, defragment the volume on which you run SQL Server 2005 before or after
creating the SalesOrders and SalesOrderItems tables. Running the tests with the four sample index
configurations requires about 300MB of free disk space.

The following sections describe a typical xml column and index performance test scenario with an
autogenerated, 10,000-row SalesOrders table running under SQL Server 2005 Standard Edition on a
single-CPU Dell server with Windows 2003 Server Standard Edition. The section “Hardware Used to

542

Chapter 12

19_57678x ch12.qxd 11/10/05 11:20 PM Page 542

Create and Run the Sample Projects” in the Introduction describes the test hardware in detail. The
sample FillSalesOrders and NWxmlColumns projects let you perform similar tests with any Windows
2000 or later operating system and a hardware configuration that meets Microsoft’s recommendations —
not minimum requirements — for VS 2005 and SQL Server or SQL Express 2005.

The \VB2005DB\Chapter12 folder contains a ShortFormInstructions.txt file that provides an abbreviated
version of the next two sections’ instructions.

Create and Fill the SalesOrders and SalesOrderItems
Tables

The sample FillSalesOrders.sln project lets you create an up-to-date clone of the Northwind Orders and
Order Details tables as SalesOrders and SalesOrderItems tables in the Northwind database.

When you first run FillSalesOrders from VS 2005 or start FillSalesOrders.exe, a message box asks if you want
to create the two tables. Click Yes to execute the CreateSalesOrdersFromProject.sql script from the ...\bin
folder, and click OK to acknowledge the message box that confirms the process.

If you’ve added the SalesOrders and SalesOrderItems tables previously, click the Truncate Tables button
to open a message box that lets you choose whether to truncate or drop the tables. Click No to drop the
tables and start over with an initial OrderID of 100001.

The initial form defaults create 10,000 SalesOrders records having OrderDate values that end with the
system date. The OrderDate values start at an earlier date that’s calculated from the Orders per Day values.
Accept 50 Orders per Day as the Start value, set 50 as the End value to maintain a constant number of
orders per month, and click Recalculate to estimate the ending date. To deliver a consistent number of
records with the Find by Dates query, the End Date should be the last day of a recent month. Adjust the
Start Date as necessary and click Recalculate to set an appropriate End Date, as shown in Figure 12-11.

Figure 12-11

Optionally, mark the Actual Date checkbox and click Recalculate to run a test that determines the
actual end date. Then clear the checkbox to enable the Start Adding Rows button. For this example, the
two values match within a day or two.

Accept the remaining default values, and click the Start Adding Rows button to fill the tables with 10,000
Sales Orders records and approximately 41,000 SalesOrderItems records. Figure 12-12 shows the form as
the project adds rows.

543

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:20 PM Page 543

Figure 12-12

When addition completes, which usually takes less than a minute, the form expands to display the last
SalesOrder and SalesOrderItems added, as shown in Figure 12-13. CustomerID, EmployeeID, ShipperID,
and Freight values are random. The number of SalesOrderItems per SalesOrder varies randomly from 2
to 8 with an average of about 4. ProductID and Quantity values also are random. A table based on
Quantity assigns Discount percentages.

Figure 12-13

544

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 544

You can add more than 10,000 orders to start, if you have the patience and disk space. The two projects
let you automatically add rows and populate xml columns incrementally, so you can perform tests with
more rows at any time.

You now have the records that are required for generating XML documents to populate the SalesOrder
table’s OrdersXML1 and OrdersXML2 columns, so close the project to conserve resources.

Populate the SalesOrders Table’s OrdersXML1 and
OrdersXML2 Columns

Close all open applications, start NWxmlColumns.exe, and click OK to close the message box that lets
you choose whether to use the SalesOrders table. After an initial delay induced by executing the DBCC
CLEAN TABLE command, the form opens. Populate the default Customers columns by clicking Fill
CustomerXML1 and Fill CustomerXML2. Open the Orders Table page, fill both Orders columns, and
then mark the Use SalesOrders checkbox, which is enabled when the SalesOrders table is present. Accept
10000 in the Set Number of SalesOrders Rows to Update input box, and click OK.

Running NWxmlColumns.exe — rather than NWxmlColumns.sln — makes additional RAM resources
available to SQL Server.

With the default Schema and Index selections, click Fill OrderXML1 to populate the untyped column;
note the elapsed time. Click Fill OrderXML2 and again note the elapsed time. Figure 12-14 shows the
SalesOrders Table page after filling the OrderXML2 column.

Figure 12-14

545

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 545

Obtain Baseline Times for Document Generation
One of the objectives of the test scenario is to isolate the elapsed time of bulk UPDATE operations from
the effect of document generation, which is substantial for the XmlWriter used to populate the
OrderXML2 column. The project includes an UpdateColumns application-level setting that you set as
False to generate document instances without updating the columns.

The Orders/SalesOrders tab page has a Use XmlWriter for XML1 checkbox that lets you compare the
performance of FOR XML AUTO, ELEMENTS, TYPE queries with an XmlWriter that uses the table’s
relational columns to generate the OrderXML1 document instance. The XmlWriter method is about
ten times slower than the FOR XML AUTO query with no XML indexes.

Close NWxmlColumns.exe, open the app.config file, locate the <setting name=”UpdateColumns” ...>
element, and change its <value> element value from True to False. Reopen NWxmlColumns.exe, and
click Yes to dismiss the startup message. Repeat the preceding section’s two fill operations, and note the
completion times. Close the application, reset the UpdateColumns attribute to its original True value, and
start a new session.

The baseline values are 4.023 seconds for OrderXML1 and 75.244 seconds for OrderXML2 with the
hardware used to write this book. All time values in this chapter are based on VS 2005 release candidate
and SQL Server 2005 September CTP, so you might find some differences with the release versions.
However, the test suite’s performance comparisons are relative — not absolute — so comparisons aren’t
likely to change dramatically.

Re-create and Repopulate Typed Columns with Indexes
The SalesOrder tab page lets you add or drop the XmlSchemaCollection and PRIMARY XML indexes
with or without secondary XML indexes of both xml columns. As mentioned earlier in the chapter,
adding or dropping an XmlSchemaCollection requires dropping XML indexes, dropping the column,
and then recreating and repopulating the column.

Adding or dropping XML indexes doesn’t affect the column contents or XmlSchemaCollection, but
you must mark the secondary index checkbox(es) you want to add before marking the associated Index
checkbox. Clearing the Index checkbox drops all XML indexes on the column.

Determining the effect of XML indexes on xml column population time requires dropping, recreating, and
repopulating the columns with the new index combination. Simply dropping and recreating the index(es)
is much faster but doesn’t yield useful performance measurements. The fastest method for starting over is
to clear and mark the Schema checkbox. Adding an XmlSchemaCollection to both xml columns
increases population time by about 40 percent and adds about 5 percent to the size of the sample
database.

When you drop an XmlSchemaCollection, a message box lets you defer recreating previous indexes.
If you’re not testing population time with indexes, click Yes to prevent adding the previous indexes,
repopulate the column, and then regenerate the index.

Evaluate the Effect of XML Indexes on UPDATEs
As mentioned earlier in the chapter, adding XML indexes to xml columns has a profound effect on the
performance of UPDATE and INSERT operations. If your application requires real-time addition of a large
number of document instances to a table, such as when archiving Web services SOAP messages, adding

546

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 546

indexes might reduce overall system scalability. Running the tests in the following two sections provides
the initial data required for analyzing tradeoffs between update and query execution speed.

Populate xml Columns with New Instances
The following table compares the net elapsed time (total population time reduced by document generation
time) to update 10,000 rows of empty OrderXML1 and OrderXML2 columns with randomized document
instances. SQL Server Management Studio’s TableName Properties dialog provides the Table Data Size.
Index size is calculated from the number of pages reported by SMSS’s IndexName Properties dialog after
rebuilding the indexes to minimize fragmentation. All indexed data is based on typed xml columns.

Population Time, and Net Order
Table and Index Size Population Table Data Index Size, MB
for 10,000 Rows Time, Secs. Size, MB (Defragmented)

Columns and Indexes XML1 XML2 Both XML1 XML2

Untyped with No Indexes 8.52 64.63 78.13 N/A N/A

Typed with No Indexes 11.69 90.43 84.84 N/A N/A

PRIMARY Index 114.47 255.09 84.60 9.16 71.13

PRIMARY and PATH Indexes 166.28 513.49 84.84 15.30 120.87

PRIMARY and VALUE Indexes 130.30 339.49 84.79 15.29 120.83

PRIMARY and PROPERTY Indexes 131.15 322.56 84.62 15.2 98.39

The size of the SalesOrders table before adding the xml columns was 1.906MB with 0.964MB of
relational indexes. The 10,000 OrderXML1 instances contain about 4,960,000 characters and
OrderXML2 instances contain about 36,240,000 characters without whitespace. Multiplying by 2 for
UTF-16 storage corresponds approximately to the 78.13MB data size for untyped columns with no
indexes.

It’s clear from the preceding table that PRIMARY XML indexes are heavyweight database objects — about
the same size as the table data without secondary indexes and about 60 percent larger than the table data
with a PATH or VALUE secondary index. Adding a primary index slows column updates by a factor of 10
for small (0.5MB) instances and about 2.5 for moderate-size (3.6MB) instances. Of the three secondary
index options, a PROPERTY index adds the least index maintenance overhead and database growth. XML
index size, not table data size, is the most important factor when planning storage resources for tables
with xml columns.

Add XML Indexes to Populated xml Columns
It’s obvious that you would bulk-populate xml columns by the NWxmlColumns project’s techniques or
BCP without XML indexes. Adding indexes after bulk operations is faster by at least an order of magni-
tude than for bulk UPDATE operations with XML indexes. The following table compares the times to add
XML indexes to prepopulated typed XML columns.

547

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 547

Index Regeneration
Times for 10,000
SalesOrders Rows Regenerate Index, Seconds

Column OrderXML1 OrderXML2

PRIMARY Index 2.440 17.494

PRIMARY and PATH Indexes 6.261 41.511

PRIMARY and VALUE Indexes 8.131 45.535

PRIMARY and PROPERTY Indexes 3.534 27.318

PRIMARY, PATH, and PROPERTY 7.747 60.245

As was the case for column repopulation, the PROPERTY index has the least impact of the three sec-
ondary index types on index regeneration time. Adding more than one secondary index has the
expected effect.

Analyze Improvement of XQuery Performance
The sole objective of XML indexes is to improve the performance of XQuery methods other than the
modify function. In addition to demonstrating XQuery syntax, the sample SELECT queries of the
SalesOrders XQuery tab page are designed to test the effect of XML indexes on all XQuery methods
other than nodes. The following sections describe the sample queries and compare their performance
with combinations of XML indexes. Elapsed time values — except for the Random IDs query — don’t
include the time to open the SqlConnection or the SqlDataReader, or the time to copy the data to the
lower text box. The timer starts when SqlDataReader.HasRows returns True and stops after the
instance appends to the StringBuilder. The Last by ID and Last by Value queries aren’t included in
the following analysis because these queries execute in less than a millisecond with or without indexes.

The execution times reported in the following sections are the least of three trials, which were executed
without caching. When set to True, the ClearQueryCache configuration setting sends a DBCC
FREEPROCCACHE instruction before executing the XQuery expression. You can monitor cache state by
setting CheckCacheState to true. In this case, the program queries the sys.syscacheobjects system
table and reports cache reference counts, use counts, and pages used after the expression executes.

Return SHOWPLAN_XML or STATISTICS XML Data
Analyzing Showplan data is useful for determining queries’ CPU and I/O resource consumption.
Showplan reports query optimizer data for individual operations, such as row scans, joins, nested loops,
table spools, and clustered index updates of optimized queries. The following generic batch returns a
Showplan report as an XML document:

SET {SHOWPLAN_XML | STATISTICS XML} ON
GO
{SELECT | UPDATE} xmlColumn.method.XQueryExpression FROM TableName

[WHERE {xmlColumn.exist.XQueryExpression | RelationalConstraint}]
GO
SET {SHOWPLAN_XML | STATISTICS XML} OFF
GO

548

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 548

SHOWPLAN_XML prepares an execution plan but doesn’t execute the query. STATISTICS XML executes
the query to provide actual compilation and execution costs.

You can save the instances returned by the preceding batch in an xml column of a dedicated Showplan
table or as individual ShowPlan.xml files. XQuery expressions can return individual or aggregated
EstimateIO, EstimateCPU, and EstimatedTotalSubtreeCosts attribute values for physical and log-
ical operations (PhysicalOp and LogicalOp). Setting STATISTICS XML ON adds <RunTimeInformation>
nodes with ActualRows, ActualRebinds, and ActualRewinds attribute values. In this case, the
Showplan document appears in a second rowset that follows the query rowset.

Optimization of queries against xml columns is a much more complex process than that for queries
against relational columns only. As an example, the Showplan document for the sample Find by Dates
query against the OrdersXML2 column with three secondary indexes is 120KB without whitespace.
A similar relational query generates a 5KB document. Much of the Showplan content consists of
<OutputList> elements with mysterious <ColumnReference Column=”Expr1133” /> or similar child
elements, which refer to elements or attributes of the xml column’s instance.

The 60KB Showplanxml.xsd schema file for Showplan documents is in the \Program Files\Microsoft
SQL Server\90\Tools\Binn\schemas\sqlserver\2003\03\showplan\ folder. The file contains mini-
mal documentation.

The NWxmlColumns project’s NwXmlCols.vb file includes a ShowPlanXML function, which executes
SHOWPLAN_XML or STATISTICS XML for the sample query you select in the group box and displays the
instance in the lower text box, as shown for the Find by Dates query in Figure 12-15.

Figure 12-15

549

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 549

The DisplayShowplanXML, DisplayStatisticsXML, ExpandShowplanEntities, and ShowplanInGrid
application-level settings, which are False by default, control if and how ShowPlanXML executes. Set
DisplayShowplanXML to True to enable the function. Setting DisplayStatisticsXML to True
executes the query before returning the content, which is time-consuming on slower machines. Setting
ExpandShowplanEntities to True translates <, >, and " to <, >, and “ to improve
readability but results in a malformed instance.

Setting ShowplanInGrid to True executes SHOWPLAN_ALL instead of SHOWPLAN_XML and displays the
resultset in a DataGridView control. The grid makes it easier to compare EstimateRows, EstimateIO,
EstimateCPU, AverageRowSize, and TotalSubtreeCost values for the sample queries, as shown for
the Find by Dates query in Figure 12-16.

Figure 12-16

The code retrieves Showplan data prior to query execution, so edits you make to the query aren’t reflected
in the XML elements or grid columns. The grid doesn’t appear if you specify SHOWPLAN_XML data.

Get Max
The Get Max FLWOR query returns the number of instances specified in the Max. Rows text box and
displays the first million characters in the lower text box.

SELECT OrderXML1.query(‘for $Result in /Order return $Result’)
FROM SalesOrders WHERE OrderXML1 IS NOT NULL;

The following table shows the time in seconds to execute the preceding expression against the
OrderXML1 and OrdersXML2 columns.

550

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 550

Get Max (10,000 Rows) OrderXML1 OrderXML2

No Indexes 4.882 26.571

PRIMARY XML Index 4.109 24.874

PRIMARY and PATH Indexes 4.124 25.484

PRIMARY and VALUE Indexes 4.149 25.364

PRIMARY and PROPERTY Indexes 4.170 25.269

The query performs a row scan in primary key order, so adding a PRIMARY XML index doesn’t provide a
significant performance improvement. Adding a secondary index slows execution slightly.

The query’s WHERE constraint prevents you from testing rows without OrderXML1 content, which
isn’t applicable to the test examples. If you omit the WHERE xmlColumn IS NOT NULL constraint, the
query optimizer adds it.

Find by Country
The Find by Country query returns an average of about 1,415 Order instances. The query’s WHERE constraint
uses the exist method, which benefits from XML indexing.

SELECT OrderXML1.query(‘for $Result in /Order return $Result’)
FROM SalesOrders WHERE OrderXML1.exist(‘/Order[data(ShipCountry)=”USA”]’) = 1

The following table shows the time in seconds to return 1,417 Orders and SalesOrders instances.

Find by Country (1,417 Rows) OrderXML1 OrderXML2

No Indexes 2.132 4.299

PRIMARY XML Index 1.155 2.198

PRIMARY and PATH Indexes 1.071 1.367

PRIMARY and VALUE Indexes 1.086 1.468

PRIMARY and PROPERTY Indexes 0.979 1.158

PRIMARY, PROPERTY, and PATH Indexes 0.986 1.200

In this case, adding a PRIMARY index provides a substantial performance boost, and any secondary
XML index delivers an incremental improvement. Adding a PROPERTY index provides better query
performance than a VALUE index. Adding PROPERTY and PATH indexes doesn’t improve performance.

You can compare the performance of XML and relational indexes by replacing the original WHERE constraint
with WHERE ShipCountry = ‘USA’, which emulates adding an indexed promoted column. The Orders
and SalesOrders tables have a non-clustered index (IDX_ShipCountry) on the ShipCountry field.
Executing the query with the modified constraint requires 0.647 seconds for OrdersXML1 and 1.634 seconds
for OrdersXML2. This unexpected result for OrdersXML2 indicates that XML indexes optimize the
response time of larger document instances.

551

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 551

Find by Dates
The Find by Dates FLWOR query returns a transformation of Orders and SalesOrders instances with
a cross-domain join to the Customers table. The Customers table supplies the <ShipPhone> and, if
present, the <ShipFax> element values. Here’s the query for the OrdersXML1 column:

SELECT OrderXML1.query(‘for $Result in /Order return
<Order>

<OrderDate>{data($Result/OrderDate)}</OrderDate>
<OrderID>{data($Result/OrderID)}</OrderID>
<ShipName>{data($Result/ShipName)}</ShipName>
<ShipPhone>{sql:column(“Customers.Phone”)}</ShipPhone>
{if (not(empty(sql:column(“Customers.Fax”)))) then

<ShipFax>{sql:column(“Customers.Fax”)}</ShipFax>
else ()}

</Order>’)
FROM SalesOrders, Customers WHERE
OrderXML1.exist(‘/Order/OrderDate[.>= xs:dateTime(“2004-12-12T00:00:00Z”) and

.<= xs:dateTime(“2005-01-11T00:00:00Z”)]’) = 1 AND
Customers.CustomerID = OrderXML1.value(‘(/Order/CustomerID)[1]’, ‘nvarchar(5)’);

The following table lists the time in seconds to execute the preceding FLWOR query.

Find by Dates
(One exist Method, 1,666 Rows) OrderXML1 OrderXML2

No Indexes 1.580 3.731

PRIMARY XML Index 1.188 2.531

PRIMARY and PATH Indexes 1.103 2.145

PRIMARY and VALUE Indexes 1.109 2.275

PRIMARY and PROPERTY Indexes 1.171 2.403

PRIMARY, PROPERTY, and PATH Indexes 1.117 2.248

The section “Sample exist Expressions,” earlier in this chapter, mentioned that using multiple exist
methods for OrderDate tests, as in the following query, exacts a performance penalty:

SELECT OrderXML1.query(‘for $Result in /Order return
<Order>

<OrderDate>{data($Result/OrderDate)}</OrderDate>
<OrderID>{data($Result/OrderID)}</OrderID>
<ShipName>{data($Result/ShipName)}</ShipName>
<ShipPhone>{sql:column(“Customers.Phone”)}</ShipPhone>
{if (not(empty(sql:column(“Customers.Fax”)))) then

<ShipFax>{sql:column(“Customers.Fax”)}</ShipFax>
else ()}

</Order>’)
FROM SalesOrders, Customers WHERE
OrderXML1.exist(‘/Order[data(OrderDate) >=

552

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 552

xs:dateTime(“2004-12-12T00:00:00Z”)]’) = 1 AND
OrderXML1.exist(‘/Order[data(OrderDate) <=

xs:dateTime(“2005-01-11T00:00:00Z”)]’) = 1 AND
Customers.CustomerID = OrderXML1.value(‘(/Order/CustomerID)[1]’, ‘nvarchar(5)’);

This table reports the time in seconds to execute the preceding query.

Find by Dates
(Two exist Methods, 1,666 Rows) OrderXML1 OrderXML2

No Indexes 4.488 8.563

PRIMARY XML Index 1.921 3.574

PRIMARY and PATH Indexes 2.035 3.333

PRIMARY and VALUE Indexes 1.972 3.387

PRIMARY and PROPERTY Indexes 1.726 2.774

PRIMARY, PROPERTY, and PATH Indexes 1.733 2.786

In this case, the PRIMARY and PROPERTY indexes, rather than the PRIMARY and PATH indexes, provide
better performance. The example also demonstrates that XML indexes can mask the full
performance impact of non-optimized FLWOR queries.

Aggregate Functions
The following Aggregate Functions FLWOR query returns the counts, sums, and averages of
<LineItems> child elements for all OrderXML2 column instances:

SELECT OrderXML2.query(‘declare namespace
nwso=”http://www.northwind.com/schemas/SalesOrder”;

for $Result in /nwso:SalesOrder return
<SalesOrder>

<SalesOrderNum>{data($Result/@nwso:OrderID)}</SalesOrderNum>
<SalesOrderDate>{data($Result/@nwso:OrderDate)}</SalesOrderDate>
<LineItemsCount>{count($Result/nwso:LineItems/nwso:LineItem)}</LineItemsCount>
<LineItemsValue>

{concat(“$”,
xs:string(round(sum($Result/nwso:LineItems/nwso:LineItem/nwso:Extended))))}

</LineItemsValue>
<LineItemsAverage>

{concat(“$”,
xs:string(round(avg($Result/nwso:LineItems/nwso:LineItem/nwso:Extended))))}

</LineItemsAverage>
</SalesOrder>’) FROM SalesOrders;

The following table reports execution time in seconds for the OrderXML2 column only because the
OrderXML1 column doesn’t have element values that can be aggregated.

553

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 553

Aggregate Functions (10,000 Rows) OrderXML2

No Indexes 23.732

PRIMARY XML Index 21.922

PRIMARY and PATH Indexes 21.415

PRIMARY and VALUE Indexes 22.068

PRIMARY and PROPERTY Indexes 15.360

PRIMARY, PROPERTY, and PATH Indexes 15.601

In contrast to most previous examples, a PRIMARY XML index delivers little performance improvement.
In this case, a PROPERTY secondary index is required to optimize query performance.

Random IDs
The following Random IDs FLWOR query returns the number of rows specified by the Max. Rows text
box value with a constraint on the OrderID value:

SELECT OrderXML1.query(‘for $Result in /Order return $Result’)
FROM SalesOrders
WHERE OrderXML1.exist(‘/Order/OrderID[.> 109990 and .<= 110000]’) = 1;

Code in the sample application’s btnExecuteOrders event handler in the OrdersXQuery.vb file exe-
cutes the preceding expression the number of times specified in the Max. Rows text box. Thus, the
default 10 Max. Rows value returns 100 rows. Starting OrderID values are random, which prevents
caching the multiple query expressions.

The RandomIDs query uses the SqlDataReader.GetValues(0) method, which is slower than the
GetSqlXml(0) method, but this query doesn’t require an XmlReader and XmlWriter to return content
for all instances. The sample project displays the first ten query expressions and the last instance of the
query in the lower text box, as shown in Figure 12-17.

554

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 554

Figure 12-17

Following are the execution times in seconds for the Random IDs query with 100 as the Max. Rows value.

Random IDs
(100 Repetitions, 10,000 Instances) OrderXML1 OrderXML2

No Indexes 50.094 216.507

PRIMARY XML Index 18.381 89.012

PRIMARY and PATH Indexes 9.571 33.805

PRIMARY and VALUE Indexes 10.210 36.793

PRIMARY and PROPERTY Indexes 14.868 64.688

PRIMARY, PATH, and VALUE Indexes 9.986 35.041

The preceding query is another example of substantial performance improvement by adding any sec-
ondary XML index. In this case, the PATH secondary index delivers the optimum result, followed by the
PATH index.

555

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 555

Executing this simpler XQuery expression instead of the preceding FLWOR query produces unexpected
results:

SELECT OrderXML1.query(‘(/Order[./OrderID > 109990 and ./OrderID <= 110000])’)
FROM SalesOrders;

The SqlDataReader executed by the GetXQueryResults procedure in the NwXmlCols.vb file returns an
average of about 5,000 empty (zero-length, not NULL) SqlXml instances before returning the xml column
content for each random starting OrderID value. The empty instances indicate that the XQuery engine
doesn’t treat the starting OrderID value as the equivalent of a WHERE clause criterion. Returning empty
rows causes severe performance degradation, regardless of the XML index(es) in use.

You can test the preceding XQuery expression by setting the UseFLWORForRandomIDs configuration
setting value to False. In this case, the lower text box reports the total number of SqlXml instances
returned, as illustrated by Figure 12-18.

Figure 12-18

Update (DDL)
This XML DDL instruction demonstrates the effect of one or more indexes on a simple update to the
ShipVia element value of the OrderXML1 column:

UPDATE SalesOrders SET OrderXML1.modify(‘replace value of
(/Order/ShipVia/text())[1] with “1”’)

WHERE ShipCountry = ‘USA’ AND OrderXML1 IS NOT NULL;

556

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 556

Updating an instance requires the XQuery engine to extract the instance, perform the update, reinsert
the modified instance into the row, and update the column’s index(es). Updates to multiple nodes or
atomic values require a modify operation for each update. The following table demonstrates the effect of
indexes on the modify method.

Update (DDL) (1,417 Rows) OrderXML1 OrderXML2

No Indexes 2.188 4.345

PRIMARY XML Index 5.037 36.492

PRIMARY and PATH Indexes 6.458 52.408

PRIMARY and VALUE Indexes 7.072 56.532

PRIMARY and PROPERTY Indexes 7.218 46.145

PRIMARY, PROPERTY, and PATH Indexes 8.764 76.541

The preceding data corresponds approximately to comparisons of the effect of PRIMARY and secondary
indexes on bulk updates in the section “Re-create and Repopulate Typed Columns with Indexes,” earlier
in this chapter. If your application needs to make frequent modifications to document instances, index
maintenance might become the critical bottleneck.

Conclusions
It’s clear from the elapsed times reported in the preceding tables that PRIMARY indexes deliver the
greatest performance boost for queries other than simple table scans, such as the Get Max query.
However, predicting the most effective secondary index for a particular XQuery expression isn’t easy. A
PROPERTY index provides the greatest performance increase for the sample queries other than Get by
Dates and Random IDs. This index also has the least impact on UPDATE operations, including indexed
column population time, and its size for the more complex OrderXML2 column is about 20 percent
smaller than the other two choices. If a PRIMARY index doesn’t satisfy your performance requirements,
try adding a PROPERTY index first.

Summary
The native xml data type is one of the most important additions to SQL Server 2005. The xml data type
enables you to store related document instances in special-purpose varchar(max) columns. Optional
XmlSchemaCollections apply strong-typing and validate instances on content insertion or modification.
XQuery expressions return the instances, subnodes, or values you specify, and FLWOR queries let you
customize the structure of the returned instance. Optional PRIMARY and three types of secondary XML
indexes —PATH, VALUE, and PROPERTY— improve performance of most SELECT queries but slow
instance insertions and modifications.

SQL Server 2005 SELECT statements support four XQuery methods: query, exist, value, and nodes.
The query method returns the result of an XPath 2.0 expression or FLWOR query. Invoking the
SqlCommand.ExecuteXmlReader method returns the query result from the first document instance to
an XmlWriter for processing. Queries that return data from multiple rows require an SqlDataReader,

557

Exploring the XML Data Type

19_57678x ch12.qxd 11/10/05 11:21 PM Page 557

which returns nodes as instances of the SqlXml type that you process with an XmlReader and
XmlWriter. The exist and value methods most commonly supply values for WHERE clauses and joins.
The exist method returns 1 if the node specified in the XQuery expression exists or an atomic value
specified matches that of the corresponding node in an instance. Otherwise the method returns 0. The
value method requires an expression that returns a single atomic value, which you cast to an SQL
Server data type, such as int. The sample NWxmlColumns.sln project has XQuery expression examples
for each SELECT query method except nodes, which most commonly shreds instances to return
relational resultsets.

The XQuery 1.0 specification doesn’t include data manipulation keywords that are equivalent to SQL’s
INSERT, UPDATE, and DELETE keywords. The editors of the specification intended XQuery 1.0 to be
limited to returning — not modifying — data. Microsoft’s proprietary XML DML extension to the
XQuery modify method enables you to execute insert, replace value of, and delete expressions.
The sample project’s XQuery expressions also illustrate use of all XML DML keywords.

Adding optional XML PRIMARY and secondary PATH, VALUE, or PROPERTY indexes increases execution
speed of most XQuery query, exist, and value expressions. The SQL Server 2005 query optimizer
references XML indexes when generating execution plans. An index performance test regimen shows
that XML indexes slow xml column population and content updates with the modify method. The
impact of XML indexes on update operations is substantially greater than that of corresponding relational
indexes. Comparing the execution time of the NWxmlColumns project’s sample XQuery expressions
aids in selecting the optimum secondary index for typical queries.

558

Chapter 12

19_57678x ch12.qxd 11/10/05 11:21 PM Page 558

Index

20_57678X bindex.qxd 11/10/05 11:23 PM Page 559

20_57678X bindex.qxd 11/10/05 11:24 PM Page 560

In
de

x

Index

A
accelerator keys, for heads-down data entry,

146
Access database

ad hoc projects using, 83
images from OLE object fields in, 234
OleDb data provider for, 17

AccessDataSource control, 273
action verbs, FormView control, 292
AddNew method, BindingSource object,

166–167
Admin connection, SQL Server, 416
ADODB objects, compared to ADO.NET 2.0

objects, 2, 3, 5–6, 14
ADODB.Command object, 3
ADODB.Connection object, 3
ADO.NET 2.0

autogenerating Windows forms
features for, 36
modifying autogenerated code, 132–133
procedure for, 28–30, 32–35

data access features, 2–5
data objects, basic

creating with Odbc, 19
creating with OleDb, 16–18
creating with SqlClient, 6–13
data-specific enumerations for, 19–21
list of, 5–6

migrating to, 1–2
persistent form objects, 69–70
runtime objects, 39–40
typed DataSets, 21–28, 30–31

AdventureWorks sample database
compared to Northwind sample database,

133
xml columns in, 525–528

adXactBrowse isolation level, 14
adXactChaos isolation level, 14
adXactCursorStability isolation

level, 14
adXactIsolated isolation level, 14
AdXactReadCommitted isolation level, 14
AdXactReadUncommitted isolation

level, 14
adXactRepeatableRead isolation level, 14
AdXactSerializable isolation level, 14
adXactUnspecified isolation level, 14
AgentMail, SQL Server, 430
Aggregate template, 459
alias data types, 491
Analysis Manager, SQL Server, 409
AntiPatterns Web site, 86
App_Assemblies folder, 272
App_Browsers folder, 272
App_Code folder, 272, 325

20_57678X bindex.qxd 11/10/05 11:24 PM Page 561

App.config file
adding Web Reference to, 362
configuring for SQL Server Express, 133
connection strings in, 119, 138
setting UpdateColumns in, 546
when not to save connection string in, 335,

381
App_Data folder, 272
App_GlobalResources folder, 272
Application Architecture for .NET: Designing

Applications and Services, 84, 85–86
application blocks

best practices for
Data Access Application Block (DAAB),

90–94
DataAccessQuickStart client, 94–96
list of application blocks, 89
using application blocks, 90

definition of, 85, 89
list of, 89

Application_Code folder, 363
App_LocalResources folder, 272
App_Themes folder, 272
App_WebReferences folder, 272
architectural best practices, 84–86
ASP.NET 2.0

compilation model, 269–271
creating Web applications, 266–269
data-related server controls, 272
DataSource controls, 273–274
special (reserved) folders in, 271–272
Web services features, 359–360

assemblies for SQL Server projects
creating, 466–468
definition of, 457, 458

attribute decorations, SQL Server projects,
458–459

authentication, for Web services, 372–374,
376–377

autoenlisting in implicit transaction, 217–219
autogenerating Windows forms, 28–30, 32–35,

36, 132–133
automating test-driven development, 112–116

B
“Bad Code? FxCop to the Rescue” (Robbins),

110
BaseColumnNamespace property,

DataTableReader object, 45
BaseTableNamespace property,

DataTableReader object, 45
Basic credentials, 373
basic data objects

creating with Odbc, 19
creating with OleDb, 16–18
creating with SqlClient, 6–13
data-specific enumerations for, 19–21
list of, 5–6

Basic Profile (BP), WS-I, 106
batch inserts, 47–50
batch queries, using instead of stored

procedures, 122
batch updates, 77–79, 126, 169
BEGIN CATCH statement, T-SQL, 417–418
BEGIN TRY statement, T-SQL, 417–418
BeginExecuteNonQuery method,

SqlCommand object, 52
BeginExecuteReader method, SqlCommand

object, 52
BeginExecuteXmlReader method,

SqlCommand object, 52
BeginTransaction method,

SqlTransaction object, 13
BEs (business entities), 97–102
best practices

application blocks
Data Access Application Block (DAAB),

90–94
DataAccessQuickStart client, 94–96
list of, 89
using, 90

architectural, 84–86
automating test-driven development, 112–116
batch queries, using instead of stored

procedures, 122
batch updates, 126
class library design guidelines for, 102–103
client-side validation, 126–127

562

App.config file

20_57678X bindex.qxd 11/10/05 11:24 PM Page 562

CommandBuilder object, not instantiating at
runtime, 121

concurrency tests, checking all related records
for, 126

default values for parameters, 122
definition of, 84
design guides for, 96–102
FxCop code analysis tool, 110–111
for heads-down data-entry forms, 146–147
inspecting queries with SQL Server Profiler,

120–121
for offline DataSet updates, 209
optimistic concurrency control, 123–125
patterns, 86–89
pooling database connections, 118–120
reusing cached query plans, 122–123
service-oriented architecture (SOA)

definition of, 103
ensuring interoperability, 106–110
history of, 104
implementing with Web services, 105–106

SQL Server 2000 Best Practices Analyzer
(BPA), 116–118

Best Practices Analyzer (BPA), 116–118
bidirectional cursors, 6
BIDS (Business Intelligence Development

Studio), 410
BindingList collection, 259–261
BindingNavigator control

adding to form, 28–30
definition of, 29, 70

BindingSource object
adding records to, 149, 150, 166–167
definition of, 70
synchronization of DataGridViews by, 152

bound controls
DataBoundControl class, 274
DataList control

definition of, 274
editing items in, 286–288
formatting datetime values, 281–282
formatting money values, 281–282
properties of, 280
SqlDataSource for, 275–279
templates for, 281–283

DetailsView control
adding ObjectDataSource control to, 332–333
assigning default values, 304
definition of, 303
displaying business objects, 339–343
editable composite primary keys, 304
errors in updates or insertions, 304–305
linking to GridView page, 306–307
SqlDataSource for, 275–279
synchronizing with child table GridView, 304
validating user input in, 310, 322–324

formatting datetime values, 281–282
formatting money values, 281–282
FormView control

command buttons for action verbs, 292–293
definition of, 288
editing, adding, deleting records in, 291–292
paging, 288–289
replacing null values, 289–290
SqlDataSource for, 275–279

GridView control
adding ObjectDataSource control to, 328–332
definition of, 293–295
displaying business objects, 339–343
field types in, 295
ImageFields in, 299–303
linking to DetailsView page, 306–307
populating with XML file, 346
replacing TextBoxes with DropDownLists,

297–298
SqlDataSource for, 275–279
synchronizing with DetailsView, 306–307
validating user input in, 295–297, 313–321
validation groups and, 311

list of, 274
properties of, 280
Repeater control

design with XmlDataSource control, 347–348
SqlDataSource for, 275–279

SqlDataSource for, 275–279
templates for, 281–283
TreeView control

populating from XmlDataSource control,
348–350

SqlDataSource for, 275–279
WHERE clause constraints, 283–286

563

bound controls

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 563

BoundFields, GridView control
converting to TemplateFields, 295–297
definition of, 295

BP (Basic Profile), WS-I, 106
BPA (Best Practices Analyzer), 116–118
BPCs (business process components), 97
brittleness of applications, 104
business entities (BEs), 97–102
Business Intelligence Development Studio

(BIDS), 410
business objects, custom

creating ObjectDataSource control from,
336–343

with Web services
as alternative to DataSets, 384–391
binding to DataGridViews, 391–395
client for, 397–399
updating, inserting, deleting, 395–397
using, issues regarding, 361

business process components (BPCs), 97
business rules, 168–169
ButtonFields, GridView control, 295

C
cached query plans, reusing, 122–123
callback model, asynchronous SqlCommand

execution, 55–58
camelCase, 102
CancelEdit method, BindingSource

object, 166–167
CancelNew method, BindingSource object,

166–167
cascading updates, 170
case, for class and member names, 102–103
Cassini Web server, 265
CATCH blocks, T-SQL, 417–418
CellValidated event, 184
CellValidating event, 184
CFS (CLR scalar user-defined function)

creating, 468–469
definition of, 458, 459
example of, 462

CFT (CLR table-valued user-defined function)
creating, 469
definition of, 458, 459

Chaos isolation level, 14
CheckBoxFields, GridView control, 295
CheckConstraints member, SqlBulk

CopyOptions enumeration, 48
child rows, testing for concurrency errors,

194–195
child-record count mismatches, detecting,

192–194
class library design guidelines, 102–103
classes, serializable

creating data sources from, 257–259
generating from XML schema, 255–261

clients of Web services
DataGridView control for, 380–382
proxies for, 369–372

client-server architecture, 104, 131
client-side validation

best practices for, 126–127
enabling, 311
example of, 323–324

CLR integration, SQL Server
definition of, 413
enabling, 458
SQL/CLR objects

attribute decorations identifying, 458–459
creating, 468–470
definition of, 457
dropping, 470
examples of, 461–465
performance and, 458
when to use, 457

CLR scalar user-defined function (CFS)
creating, 468–469
definition of, 458, 459
example of, 462

CLR stored procedure (CSP)
creating, 468
definition of, 458, 459
examples of

generating XML documents, 475–484
projecting product sales, 484–491
returning content-dependent

SqlDataRecords, 473–475
returning specified order rows, 461–462

when to use, 472

564

BoundFields, GridView control

20_57678X bindex.qxd 11/10/05 11:24 PM Page 564

CLR table-valued user-defined function (CFT)
creating, 469
definition of, 458, 459

CLR trigger (CTR)
creating, 469–470
definition of, 458, 459
example of, 464–465

code analysis tool, FxCop, 110–111
coding, best practices for. See best practices
coincidence, leading to pattern, 86
ColumnMapping property,

DataTableReader object, 45
ColumnSize property
DataReader object, 45
DataTableReader object, 45
SqlDataReader object, 45

Command object, 5, 6
CommandBehavior.CloseConnection flag, 11
CommandBehavior.SingleRow flag, 11
CommandBuilder object

not instantiating at runtime, 109, 121
using for updates, 382–383
using in transactions, 214–217

CommandFields, GridView control, 295
CommittableTransaction object, 217,

220–221
CommitTransaction method,

SqlTransaction object, 13, 14
Common namespace, 3
common table expressions (CTEs), T-SQL,

421–422
CompareValidator control, 311, 318
compensating transactions, 360
ComponentModel namespace, 3, 259
composite primary keys, 334
concurrency control, optimistic, 123–125
concurrency management

approaches to, 189
child rows, testing for concurrency errors,

194–195
child-record count mismatches, detecting,

192–194
by DataAdapters, 190–191
definition of, 181, 189

deleted records, allowing recreation of,
195–198

handling errors
comparing client and server values, 203–208
getting current data from server for, 202–203
methods of, 201–202

new features for, 189–191
primary key constraint violations, catching,

198–201
specification for, 191–192
by TableAdapters, 190–191
transactions for, 190

concurrency tests, checking all related records
for, 126

configuration files
App.config file

adding Web Reference to, 362
configuring for SQL Server Express, 133
connection strings in, 95, 119, 138
setting UpdateColumns in, 546
when not to save connection string in,

335, 381
Web.config file

adding to project, 268
adding Web Reference to, 362
ConfigurationManager class for, 379
connection strings in, 119, 120, 325, 376
enabling anonymous Web service users, 377
removing debugging symbols from temporary

files, 355, 369
specifying multiple traces in, 352

Configuration Manager, SQL Server, 407–408
Connection control, adding to toolbox, 72
Connection object, 5, 6
connection statistics, SQL Server, 51–52
connection strings

in configuration files
encryption of, 120
how to store, 119, 325, 376
modifying, 138

encrypting, 120
for Web services, 376–377
when not to save in configuration files,

335, 381

565

connection strings

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 565

connections, database
connection statistics, SQL Server, 51–52
connection strings

in configuration files, 119, 120, 138,
325, 376

encrypting, 120
for Web services, 376–377
when not to save in configuration files,

335, 381
pooling, best practices for, 118–120
storing connection strings in configuration

files, 119
constraint violations for primary key, catching,

186–187, 198–201
ContinueUpdateOnError property
DataAdapter object, 191
TableAdapter object, 191

controls. See also specific controls
data-related server controls, 272
DataSource controls, 273–274
non-standard, adding to toolbox, 72
Web controls

for data binding and updates, list of,
272, 273

for data validation, list of, 310–311
ControlToValidate property, 311
CREATE ASSEMBLY instruction, 466–468
CREATE ObjectType instructions, 468–470
CreateCommand method,

DbProviderFactories object, 17
CreateConnection method,

DbProviderFactories object, 17
credentials. See also connection strings
Connection object for, 5
for Web service authentication, 372–374, 377

Credentials property,
SoapHttpClientProtocol class, 371

CRM (customer relationship management), 235
cross-domain queries, 513
CSP (CLR stored procedure)

creating, 468
definition of, 458, 459
examples of

generating XML documents, 475–484
projecting product sales, 484–491

returning content-dependent
SqlDataRecords, 473–475

returning specified order rows, 461–462
when to use, 472

CTEs (common table expressions), T-SQL,
421–422

CTR (CLR trigger)
creating, 469–470
definition of, 458, 459
example of, 464–465

currency values, formatting, 281–282
custom business objects

creating ObjectDataSource control from,
336–343

with Web services
as alternative to DataSets, 384–391
binding to DataGridViews, 391–395
client for, 397–399
updating, inserting, deleting, 395–397
using, issues regarding, 361

customer orders example
basic data entry form for, 132–138
business rules, applying, 168–169
combo boxes in

associating with text boxes, 159–161
setting additional values with, 162–165
text boxes replaced with, 156–159

data source for, 133–134
DataGridView controls

adding computed column to, 141–143
creating, 133–134
formatting, 140–141
handling DataErrors event for, 146
populating, 137

DataTables, populating, 135–136
default values for new records, 143–145,

150–151
heads-down data entry, streamlining, 146–148
lookup lists for primary key values, 153–161
new customers, adding lookup table rows for,

166–169
referential integrity, maintaining, 170
saving changes to base tables

maintaining referential integrity, 170
procedure for, 171–180
strategy for, 169

tabbed form, migrating data entry form to,
149–153

566

connections, database

20_57678X bindex.qxd 11/10/05 11:24 PM Page 566

customer relationship management (CRM),
235

CustomValidator control, 311, 319–320

D
DAAB (Data Access Application Block), 90–94
DALCs (data access logic components)

creating ObjectDataSource control from,
335–336

definition of, 97
ObjectDataSource control enabling, 325

Data Access Application Block (DAAB), 90–94
data access features, 2–5
data access logic components (DALCs)

creating ObjectDataSource control from,
335–336

definition of, 97
ObjectDataSource control enabling, 325

data binding. See DataSet object
Data Definition Language (DDL) triggers, 424
data encryption, SQL Server, 424–425
data entry

autogenerated forms for, 36, 132–133
creating, process for, 70–71
database-agnostic applications for, 40
heads-down, 146–148

Data Mining Extensions (DMX) scripts, 409
Data namespace, 2–4
data objects, basic

creating with Odbc, 19
creating with OleDb, 16–18
creating with SqlClient, 6–13
data-specific enumerations for, 19–21
list of, 5–6

Data Patterns, 84, 87–88
data providers. See also specific data providers

all available, generating connection and
commands for, 17

checking for available providers, 46–47
by DataDirect Technologies, 40–41
list of, 4–5
namespaces for, 3, 4

data source
creating from serializable classes, 257–259
definition of, 22
generating typed DataSet object from, 24–28

data source-agnostic projects, 40–43
Data Sources window

adding data source, 24, 71, 73
adding related table to, 32, 35, 73
creating DataGridViews from, 28
creating Details from, 31
multiple tables in, 73–75

Data Transfer Object (DTO), 87
data types

alias data types, 491
namespace for, SQL Server, 4
nullable types, 40, 66–69
UDDTs (user-defined data types), 491–492
xml data type, SQL Server

definition of, 413–414, 513–514
indexed xml columns, 522–525
sample database containing, 525–528
typed xml columns, 519–522
untyped xml columns, 515–518

data validation
client-side validation, 126–127, 311,

323–324
for DataGridView control, 184–186
for default values, 187–188
definition of, 181, 183, 310
for GridView control

adding controls to template, 313–315
CompareValidator control for, 318
CustomValidator control for, 319–320
RangeValidator control for, 316–318
RegularExpressionValidator control for,

315–316, 317–318
ValidationSummary control for, 321

primary key constraint violations, catching,
186–187

for text boxes, 183–184
validation groups, 311
Web controls for

list of, 310–311
properties of, 311–312

DataAccessQuickStart client, 94–96
DataAdapter control

adding to toolbox, 72
batch updates using, 169
concurrency management by, 190
updates using, 172

567

DataAdapter control

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 567

database connections
connection statistics, SQL Server, 51–52
connection strings

in configuration files, 95, 119, 138
encrypting, 120
for Web services, 376–377
when not to save in configuration files,

335, 381
pooling, best practices for, 118–120
storing connection strings in configuration

files, 119
Database Mail, SQL Server, 430
database mirroring, SQL Server, 416
Database Tuning Advisor, SQL Server, 412
databases, sample

AdventureWorks sample database
compared to Northwind sample database,

133
xml columns in, 525–528

Northwind sample database
compared to AdventureWorks sample

database, 133
configuration change for Access MSDE 2000

server, 7
configuration change for SQL Server Express,

39, 133
size of, 132

DataBoundControl class, 274
DataDirect Technologies, data providers by,

40–41
DataErrors event, DataGridView control, 146
DataGridView control. See also GridView

control
adding to form, 133–134
combo boxes in, associating with text boxes,

159–161
computed columns in, 141–143
DataErrors event for, handling, 146
default values for new records, 143–145
definition of, 70
error provider for, 181, 184
formatting columns in, 140–141
images in, 229–234
joins in, 224–227
lookup lists for primary key values, 153–161

populating
with DataReader object, 10–11
with DataSet object, 28–30, 32–35

text boxes in, replacing with combo boxes,
156–159

validating, 184–186
for Web service client, 380–382

DataList control
definition of, 274
editing items in, 286–288
formatting datetime values, 281–282
formatting money values, 281–282
properties of, 280
SqlDataSource for, 275–279
templates for, 281–283

DataNaviagor control, 28–29, 31
DataReader object

creating from DbProviderFactories
class, 41

definition of, 5, 6
inserting rows from, to base table, 48
populating DataGridView control with, 10–11
properties of, 44–45
table schemas and, 43–46
typed data from, 19–21

data-related server controls in ASP.NET 2.0,
272

DataSet object
adding to existing Web site, 326–327
compared to disconnected Recordsets, 21–22
creating from SQL Server data source, 22–28
creating in ADO.NET 1.x, 70–71
creating in ADO.NET 2.0, 71
creating ObjectDataSource control from,

325–334
custom business objects as alternative to,

384–391
definition of, 21
files generated by, 26–27
generating from adapted XML schema

considerations for, 235–236
flat schemas, 245–248
nested schemas, 236–245

locally persisted DataSets, 209
lookup DataSets, 154–155

568

database connections

20_57678X bindex.qxd 11/10/05 11:24 PM Page 568

persisting and reopening, 30–31
populating DataGridView control with, 28–30,

32–35
populating details form with, 31–32
returning in Web service, 377–380
size of, reducing, 132–133, 227–229
updating base tables from

maintaining referential integrity, 170
procedure for, 171–180
strategy for, 169

updating in a transaction, 214–221
updating in Web service, 382–384
updating offline DataSets, 208–212
with Web services, 361

DataSetWS Web service
installing and publishing, 107–109
testing, 109–110
VSTS suite used with, 112–116

DataSource controls
definition of, 273–274
list of, 273
performance of, 351–353

DataSourceControl class, 274
DataSourceView object, 274
DataTable object

adding to existing Web site, 326–327
batch updates to, 77–79
creating ObjectDataSource control from,

325–334
features for, 40
lookup lists for, 154–156
populating, 135–136, 137
snapshot data stored by, 189
standalone, 62–66
table schemas and, 43–46

DataTableAdapter object
concurrency management for, 181
limiting DataSet size with, 227
reconfiguring to use stored procedures, 71

DataTableReader object
properties of, 44–45
table schemas and, 43–46

DataType property
DataReader object, 45
DataTableReader object, 45
SqlDataReader object, 45

DataView object
retrieving current data from, 202–203
sorted, creating and binding, 162–163
sorting performance of, 194

dates, validating, 317–318
datetime values, formatting, 281–282
DateTimePicker control, problems with, 152
DBConcurrencyException exception

definition of, 181
methods of handling, 201–202

DbConnection namespace, 3
DBNull value, 40, 66–69
DbProviderFactories class, 17, 40–43
DbProviderFactory object

creating, 41
definition of, 40

DbType enumeration, 20
DDL (Data Definition Language) triggers, 424
debugging SQL Server projects, 471–472
Default member, SqlBulkCopyOptions

enumeration, 48
default values

best practices for, 122
data validation for, 187–188
setting for new records, 143–145, 150–151

Default.aspx file, 267
dehydrating an object, 256
deleted records, allowing recreation of,

195–198
DENSE_RANK() function, T-SQL, 420–421
deserializing an object, 256
“Design Guidelines for Class Library

Developers”, 102–103
design guides, 85, 96–102
Designing Data Tier Components and Passing

Data Through Tiers, 85, 97–102
details form, 31–32
DetailsView control

adding ObjectDataSource control to, 332–333
assigning default values, 304
definition of, 303
displaying business objects, 339–343
editable composite primary keys, 304
errors in updates or insertions, 304–305
linking to GridView page, 306–307
SqlDataSource for, 275–279

569

DetailsView control

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 569

DetailsView control (continued)
synchronizing with child table GridView, 304
validating user input in

client-side validation, 323–324
EditItemTemplate fields for, 310, 322
InsertItemTemplate fields for, 322
server-side validation, 322–323

Developer Edition, SQL Server, 405
development, best practices for. See best

practices
Digest credentials, 373
disconnected client scenario, 86
disconnected users, enabling data

modifications by, 182, 208–212
DisplayMode property, 311
Distributed Systems Patterns, 88
DMO (SQL-DMO, SQL Distributed Management

Objects), 411
DMX (Data Mining Extensions) scripts, 409
drag-and-drop methods, 36, 39–40
DTO (Data Transfer Object), 87

E
EAI (enterprise application integration)

patterns, 88
editing forms, creating from XML documents,

250–254
EditItemTemplate control, in GridView

control, 295–297, 310, 313–315
EditMode property, DataGridView control,

147
Electronic Commerce Dictionary, 88
EnableClientScript property, 311
EnableDecompression property,

SoapHttpClientProtocol class, 371,
374

EnableStatistics property,
SqlConnection object, 51

encryption
connection strings, 120
SQL Server, 424–425

END CATCH statement, T-SQL, 417–418
END TRY statement, T-SQL, 417–418
EndEdit method, BindingSource object,

166–167

EndExecuteNonQuery method, SqlCommand
object, 52

EndExecuteReader method, SqlCommand
object, 52

EndExecuteXmlReader method,
SqlCommand object, 52

enlistment of resource manager for
transactions, 217–221

enterprise application integration (EAI)
patterns, 88

Enterprise Development Reference
Architecture (ERDA), 86

Enterprise Edition, SQL Server, 406
Enterprise Library application blocks, 89–90
Enterprise Manager, SQL Server, 409
Enterprise Solution Patterns Using Microsoft

.NET, 87
ERDA (Enterprise Development Reference

Architecture), 86
error icon, 181
ErrorMessage property, 311
ErrorProvider object, 181, 183
errors, concurrency

current data from server, getting, 202–203
methods of handling, 201–202
resolving by comparing client and server

values, 203–208
events

for data validation, 183–184
DataErrors event, handling, 146
leading to patterns, 86

eWeek article on Gartner market share
numbers, 403

examples
AdventureWorks sample database

compared to Northwind sample database,
133

xml columns in, 525–528
customer orders example

basic data entry form for, 132–138
business rules, applying, 168–169
combo boxes in, 156–165
data source for, 133–134
DataGridView controls, 133–134, 137,

140–143, 146

570

DetailsView control (continued)

20_57678X bindex.qxd 11/10/05 11:24 PM Page 570

DataTables, populating, 135–136
default values for new records, 143–145,

150–151
heads-down data entry, streamlining,

146–148
lookup lists for primary key values, 153–161
new customers, adding lookup table rows for,

166–169
referential integrity, maintaining, 170
saving changes to base tables, 169–180
tabbed form, migrating data entry form to,

149–153
Northwind sample database

compared to AdventureWorks sample
database, 133

configuration change for Access MSDE 2000
server, 7

configuration change for SQL Server Express,
39, 133

size of, 132
exclamation mark icon, 181
ExecuteNonQuery method, SqlCommand

object, 12–13, 14
ExecutePageReader method, 6
ExecuteReader method, SqlCommand

object, 7
ExecuteScalar method, SqlCommand

object, 14
ExecuteXmlReader method, SqlCommand

object, 8–9
Express Edition, SQL Server, 404–405
Expression property, DataTableReader

object, 45

F
fields, usage guidelines for, 103
FillBy methods, 132, 135–136
FireTriggers member,

SqlBulkCopyOptions enumeration, 48
flat XML schema, 245–248
FLWOR XQuery expressions, 535–539
folders

special (reserved) folders in ASP.NET 2.0,
271–272

for Web services, 363

FOR XML AUTO clause, T-SQL, 8–10,
422–424, 432

FOR XML EXPLICIT clause, T-SQL, 432
FOR XML PATH clause, T-SQL, 435–440
FOR XML RAW clause, T-SQL, 432–435
foreign-key constraints, 170
forms (Web). See also bound controls

compilation model, 269–271
creating, process for, 266–269
scalability requirements, 2
Web controls

for data binding and updates, list of, 272,
273

for data validation, list of, 310–311
forms (Windows). See also DataGridView

control
autogenerating

features for, 36
modifying autogenerated code, 132–133
procedure for, 28–30, 32–35

data entry forms
autogenerating, 36, 132–133
creating, process for, 70–71
database-agnostic applications for, 40
heads-down, 146–148

details form, 31–32
drag-and-drop methods for, 36, 39–40
editing forms, creating from XML documents,

250–254
master-detail forms, 71
master-detail, parameterized, 75–77
multi-level subforms, 73–75
objects for, 39–40
persistent form objects

adding ADO.NET 1.x components to
toolbox, 72
batching multiple updates, 77–79
comparing ADO.NET 1.x to 2.0, 70–71
list of, 69–70
multi-level subforms, 74–75
parameterized MasterDetailsForm, 75–77
upgrading to ADO.NET 2.0, 72–73

tabbed form, migrating data entry form to,
149–153

571

Forms (Windows)

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 571

FormView control
command buttons for action verbs, 292–293
definition of, 288
editing, adding, deleting records in, 291–292
paging, 288–289
replacing null values, 289–290
SqlDataSource for, 275–279

FxCop code analysis tool, 110–111

G
Gartner market share numbers for SQL Server,

403
GBI (Global Bank Implementation) project, 86
Generics namespace, 259
GetDataSources method, 46–47
GetFactory method,

DbProviderFactories object, 17
GetFactoryClasses method,

DbProviderFactories class, 46–47
GetSchemaTable method
DataReader object, 43–46
DataTableReader object, 43–46

Global Bank Implementation (GBI) project,
86, 88

GridView control. See also DataGridView
control

adding ObjectDataSource control to, 328–332
definition of, 293–295
displaying business objects, 339–343
field types in, 295
ImageFields in, 299–303
linking to DetailsView page, 306–307
populating with XML file, 346
replacing TextBoxes with DropDownLists,

297–298
SqlDataSource for, 275–279
synchronizing with DetailsView, 306–307
validating user input in

adding controls to template, 313–315
CompareValidator control for, 318
CustomValidator control for, 319–320
EditItemTemplate fields required for,

295–297, 310, 313–315
RangeValidator control for, 316–318

RegularExpressionValidator control for,
315–316, 317–318

ValidationSummary control for, 321
validation groups and, 311

Gzip compression, 361

H
heads-down data entry, 146–148
help page, for Web services, 364–369
HR-XML (Human Resources XML), 236
HTTPS protocol, 363
hydrating an object, 256
HyperlinkFields, GridView control, 295

I
IDataReader object, 41
IDataSource interface, 274
IDbCommand object, 41
IDbConnection object, 41
IIS virtual directory, deploying Web

applications to, 353–356
Image Web server control, 302–303
ImageFields, GridView control

creating, 299–301
definition of, 295
scaling, 302–303

images
from Access OLE object fields, 234
in DataGridView control

image columns for, 230–231
layout for, 231–232
saving and displaying from a file, 232–234

scaling, 302–303
“Improving .NET Application Performance and

Scalability”, 96–97
indexed xml columns

add and drop XML indexes, 523–524
definition of, 522–523
performance of, 546–557
promoting xml values to table columns,

524–525
InsertItemTemplate control, in DetailsView

control, 322

572

FormView control

20_57678X bindex.qxd 11/10/05 11:24 PM Page 572

inserts
batch inserts, 47–50
errors in, 304–305

Integration Patterns, 88–89
Integration Services, SQL Server, 411
IsInRole method, 147
IsLong property
DataReader object, 45
DataTableReader object, 45
SqlDataReader object, 45

isolation levels
SqlTransaction object, 13–14
T-SQL, 418–419

IsolationLevel property,
SqlTransaction object, 13, 14

IsolationLevelEnum property, 14

J
Jet databases, ad hoc projects using, 83
joins

adding to SelectCommand object, 222–224,
225–226

in DataGridView control, 224–227

K
KeepIdentity member,

SqlBulkCopyOptions enumeration, 48
KeepNulls member, SqlBulkCopyOptions

enumeration, 48

L
Language Integrated Query (LINQ) project, 261
“last user wins” approach, 189
latency of snapshot data, 189, 209
Lightweight Transaction Manager (LTM), 217,

218
linear regression analysis, projecting product

sales using, 484–491
LINQ (Language Integrated Query) project, 261
ListControl class, 274
long-running transactions, 360
lookup lists for primary key values, 153–161
LTM (Lightweight Transaction Manager),

217, 218

M
Management Studio, SQL Server, 409–410
MARS (Multiple Active Result Sets), 415–416
MarshalByRefObject namespace, 3
master-detail forms

definition of, 71
parameterized, 75–77

MDX (Multidimensional Expressions) scripts,
409

member usage guidelines for class libraries,
103

methods, usage guidelines for, 103. See also
specific methods

Microsoft Architects JOURNAL, 85
Mobile Edition, SQL Server, 406
mode verbs, FormView control, 292
modify method, 513
money values, formatting, 281–282
monolithic architecture, 104
MSDN Web Services Developer Center, 106
Multidimensional Expressions (MDX) scripts,

409
“Multiple Active Result Set (MARS) in SQL

Server 2005” (white paper), 416
Multiple Active Result Sets (MARS), 415–416

N
named pipes (Np), SQL Server, 408
naming guidelines for class libraries, 102–103
native SOAP Web services, SQL Server,

430–432, 453–455
navigable cursors, 6
nested XML schema, generating DataSet

from, 236–245
.NET Data Access Architecture Guide, 85, 96
NextResult method, SqlDataReader

object, 7
Northwind sample database

compared to AdventureWorks sample
database, 133

configuration change for Access MSDE 2000
server, 7

configuration change for SQL Server Express,
39, 133

size of, 132

573

Northwind sample database

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 573

Notification Services, SQL Server, 409, 429
Np (named pipes), SQL Server, 408
n-tier architecture, 104
nullable types, 40, 66–69

O
Object namespace, 3
ObjectDataSource control

adding to DetailsView control, 332–333
adding to GridView control, 328–332
compared to SqlDataSource control, 325
creating from custom business objects,

336–343
creating from DALCs, 335–336
creating from DataTable objects, 325–334
definition of, 273
enabling DALCs, 325

object-relational mapping (OR-M), 387
objects. See also specific objects

ADODB objects, 2, 3, 5–6, 14
data objects, basic, 5–6
persistent form objects

adding ADO.NET 1.x components to
toolbox, 72

batching multiple updates, 77–79
comparing ADO.NET 1.x to 2.0, 70–71
list of, 69–70
multi-level subforms, 74–75
parameterized MasterDetailsForm, 75–77
upgrading to ADO.NET 2.0, 72–73

re-hydrating an object, 256
runtime objects, 39–40

ObjectSpaces framework, 387
Odbc data provider, 19
Odbc namespace, 4, 5
offline DataSets, 208–212
OLE object fields, images from, 234
OleDb data provider

creating basic data objects, 16–18
returning XmlReader objects, 18

OleDb namespace, 4, 5
OleDbCommand object, 17–18
optimistic concurrency control, 189
OracleClient namespace, 4
OR-M (object-relational mapping), 387
OTM (OleTx Transaction Manager), 217

P
PAG (Platform Architectural Guidance)

team, 84
paging, FormView control, 288–289
parameterized queries

creating, 75–77
default values for, 122
reducing DataSet size with, 132–133
reusing cached query plans with, 122–123

partial classes for TableAdapter object,
228–229

partitioning, SQL Server, 416
PascalCase, 102
passwords

authentication, for Web services, 372–374,
376–377

credentials
Connection object for, 5
for Web service authentication, 372–374,

377
PATH XML index, 522
pattern template, 87
patterns

best practices for, 86–89
definition of, 84

patterns and practices (P&P), by Microsoft,
84–86. See also best practices

performance
batch queries and, 122
batch updates and, 126, 169
CommandBuilder object, not instantiating at

runtime, 121
of DataSource controls, 351–353
DataViews and, 194
of locally persisted DataSets, 209
publications regarding, 96–97
reusing cached query plans for, 122–123
size of DataSets and, 132, 227–229
XML data model and

creating and filling tables, 543–545
populating xml columns, 545–546
tests for, 541–543
updating tables, 546–548
XML indexes and, 546–557

574

Notification Services, SQL Server

20_57678X bindex.qxd 11/10/05 11:24 PM Page 574

persistent form objects
adding ADO.NET 1.x components to

toolbox, 72
batching multiple updates, 77–79
comparing ADO.NET 1.x to 2.0, 70–71
list of, 69–70
multi-level subforms, 74–75
parameterized MasterDetailsForm, 75–77
upgrading to ADO.NET 2.0, 72–73

pessimistic concurrency control, 189
PIVOT operator, T-SQL, 418, 440–444
Platform Architectural Guidance (PAG)

team, 84
polling model, asynchronous SqlCommand

execution, 54–55
pooling database connections, 118–120
P&P (patterns and practices), by Microsoft,

84–86. See also best practices
primary keys

composite primary keys, 334
constraint violations, catching, 186–187,

198–201
PRIMARY XML index, 522, 557
product sales, projecting with linear regression

analysis, 484–491
programming, best practices for. See best

practices
projects

data source-agnostic projects, 40–43
scalability of, 2
upgrading to ADO.NET 2.0, 72–73

properties, usage guidelines for, 103. See also
specific properties

PROPERTY XML index, 523, 557
ProviderSpecificDataType property,

SqlDataReader object, 45
ProviderType property
DataReader object, 45
DataTableReader object, 45
SqlDataReader object, 45

proxy class for Web services, 369–372
Proxy method, SoapHttpClientProtocol

class, 371

publications
Application Architecture for .NET: Designing

Applications and Services, 84, 85–86
“Bad Code? FxCop to the Rescue” (Robbins),

110
Data Patterns, 84, 87–88
“Design Guidelines for Class Library

Developers”, 102–103
Designing Data Tier Components and Passing

Data Through Tiers, 85, 97–102
Distributed Systems Patterns, 88
Enterprise Solution Patterns Using Microsoft

.NET, 87
“Improving .NET Application Performance and

Scalability”, 96–97
Integration Patterns, 88–89
“Multiple Active Result Set (MARS) in SQL

Server 2005”, 416
.NET Data Access Architecture Guide, 85, 96
“Service-Oriented Integration”, 361
SQL Server 2005 Books Online, 515
“Web Services and DataSets” (Skonnard), 107
Windows Server System Reference Architecture

(WSSRA), 84
WS-Addressing specification, 371
WS-Discovery specification, 371

Q
queries. See also inserts; updates

batch queries, 122
FOR XML queries, 432
inspecting with SQL Server Profiler, 120–121
with no returned data, 12–13
parameterized, 75–77, 132–133
recursive queries, 421–422
returning multiple resultsets, 7–8
returning resultset as XML stream, 8–10
returning scalar value, 12
returning single row, 11–12
returning tabular data in grid, 10–11
reusing cached query plans, 122–123
RPC queries, inspecting, 120–121
Top n queries, 228

Query Analyzer, SQL Server, 409
Query Editor, SQL Server, 409

575

Query Editor, SQL Server

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 575

query notifications, SQL Server
automating reorder processing using,

452–453
definition of, 429–430
methods for, 444–446
SqlDependency notifications, 446–448
SqlNotificationRequest objects,

448–451
query plans, cached, 122–123

R
RangeValidator control, 310, 316–318
RANK() function, T-SQL, 420–421
Read method
SqlDataReader object, 7
XmlReader object, 9

ReadCommitted isolation level, 14
ReadUncommitted isolation level, 14
Recordset object

concurrency management by, 189
disconnected, compared to DataSets, 21–22

recursive queries, T-SQL, 421–422
reference architectures, 84, 85–86
referential integrity, maintaining, 170
regular expressions, resources for, 315
RegularExpressionValidator control, 310–311,

315–316, 317–318
re-hydrating an object, 256
RepeatableRead isolation level, 14
Repeater control

design with XmlDataSource control, 347–348
SqlDataSource for, 275–279

Replication Management Objects (RMO), 411
Report Builder, 79
Report Manager, SQL Server, 409
Reporting Services, SQL Server, 79, 409,

412–413
reports, creating, 79–82, 412–413
ReportViewer control, 79–82
RequiredFieldValidator control, 310, 312
reserved folders in ASP.NET 2.0, 271–272
ResolveConcurrencyErrors function, 203–208
resource manager (RM), 217
resultsets

multiple, with SqlDataReader objects, 7–8
returning first column of first row of, 12

returning first row of, 11–12
as XML stream, 8–10

Resync method, Recordset object, 189
RetrieveStatistics method,

SqlConnection object, 40, 51–52
RM (resource manager), 217
RMO (Replication Management Objects), 411
Robbins, John (“Bad Code? FxCop to the

Rescue”), 110
RollbackTransaction method,

SqlTransaction object, 13, 14
ROW_NUMBER() function, T-SQL, 420–421
RowValidated event, 184
RowValidating event, 184
RPC queries, inspecting, 120–121
runtime objects, 39–40

S
SACT (SQL Server Surface Area Configuration

Tool), 408–409
Saenz-Badillos, Angel (opinions on MARS

feature), 415–416
sales, projecting with linear regression

analysis, 484–491
sample databases

AdventureWorks sample database
compared to Northwind sample database,

133
xml columns in, 525–528

Northwind sample database
compared to AdventureWorks sample

database, 133
configuration change for Access MSDE 2000

server, 7
configuration change for SQL Server Express,

39, 133
size of, 132

scalability
project requirements for, 2
publications regarding, 96–97

schema DataTable objects, 43–46
schema, XML

adapting to generate a DataSet
considerations for, 235–236
flat schemas, 245–248
nested schemas, 236–245

576

query notifications, SQL Server

20_57678X bindex.qxd 11/10/05 11:24 PM Page 576

flat schema, 245–248
generating serializable classes from, 255–261
inferring to generate a DataSet, 248–250
nested schema, generating DataSet from,

236–245
SCM (supply chain management), 235
Secure Sockets Layer (SSL), 363
security, for Web services, 363, 372–374
SelectCommand property, DataTable object,

222–224, 225–226
serializable classes

creating data sources from, 257–259
generating from XML schema, 255–261

Serializable isolation level, 14
Serialization namespace, 255
server controls in ASP.NET 2.0, 272
server validation controls, 310–311
server-side validation, 322–323
Service Broker, SQL Server, 425–429
Service.asmx file, 363
service-oriented architecture (SOA)

definition of, 103
history of, 104
implementing with Web services, 105–110

“Service-Oriented Integration”, 361
Service.vb file, 363, 364
SetSqlDataType method, SqlResultSet

object, 21
shared memory (Sm), SQL Server, 408
shredding, 47
SiteMapDataSource control, 273
Skonnard, Aaron (“Web Services and

DataSets”), 107
Slammer/Sapphire worm, 84
Sm (shared memory), SQL Server, 408
“Smart Client” applications, 131
SMO (SQL Management Objects), 410, 411
SNAC (SQL Native Client), 414–415
Snake/Spida exploit, 84
snapshot data, DataTable storing, 189
Snapshot isolation level, 14
SNAPSHOT isolation level, T-SQL, 418–419
SOA (service-oriented architecture)

definition of, 103
history of, 104
implementing with Web services, 105–110

SOAP Web services, SQL Server, 430–432,
453–455

SOAP-based Web services, 105
SoapHttpClientProtocol class, 371, 374
SoapVersion method,

SoapHttpClientProtocol class, 371
software patterns

best practices for, 86–89
definition of, 84

special (reserved) folders in ASP.NET 2.0,
271–272

sp_executesql command?, 122–123
SQL Distributed Management Objects (SQL-

DMO), 411
SQL Management Objects (SMO), 410, 411
SQL Mobile scripts, 409
SQL Native Client (SNAC), 414–415
SQL Profiler, SQL Server

definition of, 412
tracing transactions with, 219–220

SQL queries. See queries
SQL Server

Admin connection, 416
batch inserts, 47–50
BIDS (Business Intelligence Development

Studio), 410
checking for available instances, 46–47
CLR integration, 413, 458
connection statistics, 51–52
data encryption, 424
data types, namespace for, 4
Database Mail, 430
database mirroring, 416
Database Tuning Advisor, 412
DDL (Data Definition Language) triggers, 424
Developer Edition, 405
Enterprise Edition, 406
Express Edition, 404–405
generating typed DataSet object from, 22–28
Management Studio, 409–410
MARS (Multiple Active Result Sets), 415–416
Mobile Edition, 406
namespace for, 4
native SOAP Web services, 430–432,

453–455
Notification Services, 409, 429

577

SQL Server

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 577

SQL Server (continued)
query notifications

automating reorder processing using,
452–453

definition of, 429–430
methods for, 444–446
SqlDependency notifications, 446–448
SqlNotificationRequest objects,

448–451
Reporting Services, 79, 409, 412–413
RMO (Replication Management Objects), 411
SACT (SQL Server Surface Area Configuration

Tool), 408–409
Service Broker, 425–429
SMO (SQL Management Objects), 410, 411
SNAC (SQL Native Client), 414–415
SQL Profiler, 219–220, 412
SSCM (SQL Server Configuration Manager),

407–408
SSIS (SQL Server Integration Services), 411
Standard Edition, 406
table partitioning, 416
T-SQL

CTEs (common table expressions), 421–422
data encryption, 424–425
DDL (Data Definition Language) triggers, 424
DENSE_RANK() function, 420–421
FOR XML AUTO clause, 422–424
FOR XML PATH clause, 435–440
FOR XML queries, 432
FOR XML RAW clause, 433–435
new features, list of, 416
PIVOT and UNPIVOT operators, 418,

440–444
RANK() function, 420–421
recursive queries, 421–422
ROW_NUMBER() function, 420–421
SNAPSHOT isolation level, 418–419
TABLESAMPLE operator, 419–420
TOP n operator, 419–420
TRY...CATCH blocks, 417–418

version 2000, success of, 403
version 2005

editions in, 404–406
list of new features in, 407

Workgroup Edition, 405–406
xml data type, 413–414, 513–514
XQuery, 413–414, 513–514

SQL Server CE, namespace for, 4
SQL Server Configuration Manager (SSCM),

407–408
SQL Server Integration Services (SSIS), 411
SQL Server Management Studio (SSMS),

409–410
SQL Server Mobile Edition, namespace for, 4
SQL Server Profiler, 120–121
SQL Server projects

assemblies generated by, 457, 458
attribute decorations for, 458–459
definition of, 457, 458
sample project

assembly for, creating, 466–468
CFS (CLR scalar user-defined function), 462
creating SQL/CLR objects, 468–470
CSP (CLR stored procedure), 461–462
CTR (CLR trigger), 464–465
database connection for, 460
debugging, 471–472
description of, 460, 461
dropping SQL/CLR objects, 470
test scripts for, 465–466, 471–472
UDAs (user-defined aggregates), 463–464
UDTs (user-defined types), 463

templates for, 459
SQL Server Reporting Services, 79
SQL Server Surface Area Configuration Tool

(SACT), 408–409
SQL Server 2000 Best Practices Analyzer

(BPA), 116–118
SQL Server 2005 Books Online, 515
SqlBulkCopy object, 40, 47–50
SqlBulkCopyOptions enumeration, 48
SqlCeClient namespace, 4
SqlClient data provider

bidirectional (navigable) cursors, not
supported, 6

creating basic data objects, 6–13
SqlClient namespace, 4
SqlClientCe namespace, 4

578

SQL Server (continued)

20_57678X bindex.qxd 11/10/05 11:24 PM Page 578

SQL/CLR objects
attribute decorations identifying, 458–459
CLR integration

definition of, 413
enabling, 458

creating, 468–470
definition of, 457
dropping, 470
examples of, 461–465
performance and, 458
when to use, 457

SQLCMD mode, SQL Server Management
Studio, 410

sql:column function, 513, 538–539
SqlCommand object

asynchronous execution of
callback model, 55–58
definition of, 40
execution models for, 52–53
polling model, 54–55
WaitAll model, 59–62

definition of, 3
SqlCommandBuilder object, 121
SqlConnection object

creating, 24, 26
definition of, 3
statistics from, retrieving, 51–52

SqlContext object, 461
SqlDataAdapter object

autoenlisting in implicit transaction, 217–218
manually enlisting in explicit transaction,

220–221
SqlDataReader object

with multiple resultsets, 7–8
populating hierarchical objects with, 387–391
properties of, 44–46

SqlDataRecord object, 473–475
SqlDataSource control

compared to ObjectDataSource control, 325
creating, 275–279
definition of, 273

SqlDbType enumeration, 20
SqlDependency notifications, SQL Server,

446–448
SQL-DMO (SQL Distributed Management

Objects), 411

SqlException exception, 181
SQLMail, SQL Server, 430
SqlMetaData object, 473
SqlNotificationRequest object, SQL

Server, 448–453
SqlParameter collection, 122
SqlPipe object, 461
<SqlProcedure()> attribute decoration, 458
SqlResultset object, removed from

product, 6
SqlResultSet object, typed data from,

19–21
SqlTableAdapter object

autoenlisting in implicit transaction, 218–219
manually enlisting in explicit transaction,

220–221
SqlTransaction object

multi-table updates, transactions for, 13–16
updating DataSets using, 214

<SqlTrigger> attribute decoration, 458
SqlTypes namespace, 4, 20
<SqlUserDefinedAggregate()> attribute

decoration, 458
<SqlUserDefinedFunction()> attribute

decoration, 458
<SqlUserDefinedType()> attribute

decoration, 458
sql:variable function, 513
SQLXML Managed Classes, 17
SSCM (SQL Server Configuration Manager),

407–408
SSIS (SQL Server Integration Services), 411
SSL (Secure Sockets Layer), 363
SSMS (SQL Server Management Studio),

409–410
standalone DataTable objects, 62–66
Standard Edition, SQL Server, 406
Stored Procedure template, 459
stored procedures

batch queries as substitute for, 122
CSP (CLR stored procedure)

creating, 468
definition of, 458, 459
example of, 461–462
examples of, generating XML documents,

475–484

579

stored procedures

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 579

stored procedures (continued)
examples of, projecting product sales,

484–491
examples of, returning content-dependent

SqlDataRecords, 473–475
when to use, 472

reconfiguring DataTableAdapter object to
use, 71

subforms, multi-level, 73–75
supply chain management (SCM), 235
Surface Area Configuration Tool, SQL Server,

408–409
surfacing, 28
System.Collections.Generics

namespace, 259
System.ComponentModel namespace, 3, 259
System.Data namespace, 2–4
System.Data.Common namespace, 3
System.Data.Common.DbConnection

namespace, 3
System.Data.dll assembly, 3
System.Data.Odbc namespace, 4, 5
System.Data.OleDb namespace, 4, 5
System.Data.OracleClient namespace, 4
System.Data.SqlCeClient namespace, 4
System.Data.SqlClient namespace, 4
System.Data.SqlTypes namespace, 4, 20
System.MarshalByRefObject

namespace, 3
System.Object namespace, 3
System.Transactions namespace, 217–221
System.XML namespace, 3, 4
System.Xml.Serialization namespace,

255

T
tabbed forms, migrating data entry form to,

149–153
table partitioning, SQL Server, 416
table schemas, 43–46
TableAdapter object

autogenerating, 132
concurrency management by, 190
definition of, 70

parameterized queries in, 75–77
partial classes for, 228–229
updatable, commands for, 22
updates and, 171, 172
Web services and, 376

TableLock member, SqlBulkCopyOptions
enumeration, 48

tables
adding UDT column to, 499–500
batch inserts, 47–50
batch updates, 77–79, 126, 169
displaying table rows with UDT columns, 500
multiple, viewing, 32–35, 73–75
relationships between parent and child tables,

170
returning values from UDT columns, 501–502
saving changes to

maintaining referential integrity, 170
procedure for, 171–180
strategy for, 169

viewing in DataGridView control, 28–30
viewing in details form, 31–32

TABLESAMPLE operator, T-SQL, 419–420
Tcp (TCP/IP), SQL Server, 408
TDD (test-driven development), automating,

112–116
TemplateFields, GridView control, 295–297
templates

for bound controls, 281–283
pattern template, 87
SQL Server projects, 459

TerraService Web service client, 362
test scripts, SQL Server projects, 465–466,

471–472
test-driven development (TDD), automating,

112–116
text boxes

replacing with combo boxes, 156–159
validating, 183–184

Timeout method,
SoapHttpClientProtocol class, 371

timestamp column, using for optimistic
concurrency control, 123–125

ToolTip property, 311
TOP n operator, T-SQL, 419–420

580

stored procedures (continued)

20_57678X bindex.qxd 11/10/05 11:24 PM Page 580

Top n queries, 228
tracing Web applications, 351–353
Transaction object, 217
Transaction property
SqlTransaction object, 13
TableAdapter object, 190

TransactionConnection property,
TableAdapter object, 190

transactions
for concurrency management, 190
enlistment of resource manager for, 217–221
for multi-table updates, 13–16
tracing with SQL Profiler, 219–220
updating DataSets in, 214–221
with Web services, 360

Transactions namespace, 217–221
TransactionScope object, 217–218, 221
TreeView control

populating from XmlDataSource control,
348–350

SqlDataSource for, 275–279
Trigger template, 459
TRY...CATCH blocks, T-SQL, 417–418
T-SQL, SQL Server

CTEs (common table expressions), 421–422
data encryption, 424–425
DDL (Data Definition Language) triggers, 424
DENSE_RANK() function, 420–421
FOR XML AUTO clause, 422–424
new features, list of, 416
PIVOT and UNPIVOT operators, 418
RANK() function, 420–421
recursive queries, 421–422
ROW_NUMBER() function, 420–421
SNAPSHOT isolation level, 418–419
TABLESAMPLE operator, 419–420
TOP n operator, 419–420
TRY...CATCH blocks, 417–418
when to use, 457

typed xml columns
creating XmlSchemaCollection for, 519–520
definition of, 519
reading XmlSchemaCollection for, 520–522

U
UBL (Universal Business Language), 236
UDAs (user-defined aggregates)

creating, 413, 469–470
definition of, 458, 459
example of, 463–464

UDDTs (user-defined data types), 491–492
UDFs (user-defined functions), 413
UDTs (user-defined types)

adding UDT column to table, 499–500
creating

native-format UDT code, 492–494
procedure for, 413, 469
simple value-type UDT code, 496–498
type for, specifying, 492
UserDefined-format UDT code, 494–495

definition of, 458, 459, 491
displaying table rows with UDT columns, 500
example of, 463
returning values from UDT columns, 501–502

Universal Business Language (UBL), 236
UNPIVOT operator, T-SQL, 418, 440–444
Unspecified isolation level, 14
untyped xml columns

definition of, 515
populating xml columns, 515–517
retrieving and reformatting xml column data,

517–518
UpdateBatch method, Recordset object,

189
UpdateBatchSize property
OracleDataAdapter object, 77
SqlDataAdapter object, 77

updates
batch updates, 77–79, 126, 169
cascading updates, 170
multi-table, transactions for, 13–16
referential integrity, maintaining, 170

Url method, SoapHttpClientProtocol
class, 371

UseInternalTransaction member,
SqlBulkCopyOptions enumeration, 48

user credentials, for Web service
authentication, 372–374, 377

581

user credentials, for Web service authentication

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 581

UserAgent method,
SoapHttpClientProtocol class, 371

user-defined aggregates (UDAs)
creating, 413, 469–470
definition of, 458, 459
example of, 463–464

user-defined data types (UDDTs), 491–492
User-Defined Function template, 459
user-defined functions (UDFs), 413
User-Defined Type template, 459
user-defined types (UDTs)

adding UDT column to table, 499–500
creating

native-format UDT code, 492–494
procedure for, 413, 469
simple value-type UDT code, 496–498
type for, specifying, 492
UserDefined-format UDT code, 494–495

definition of, 458, 459, 491
displaying table rows with UDT columns, 500
example of, 463
returning values from UDT columns, 501–502

UserDefined-format UDT
accessing data from other fields or tables

using, 509
creating, 494–495
example of, 502–508
XML representation of, 509–511

users, disconnected, 182, 208–212

V
Validated event, 183, 184
Validating event, 183, 184
validation

client-side validation, 126–127, 311,
323–324

for DataGridView control, 184–186
for default values, 187–188
definition of, 181, 183, 310
for GridView control

adding controls to template, 313–315
CompareValidator control for, 318
CustomValidator control for, 319–320
RangeValidator control for, 316–318

RegularExpressionValidator control for,
315–316, 317–318

ValidationSummary control for, 321
primary key constraint violations, catching,

186–187
for text boxes, 183–184
validation groups, 311
Web controls for

list of, 310–311
properties of, 311–312

ValidationGroup property, 311
ValidationSummary control, 311, 321
VALUE XML index, 523
VB 2005, migrating to, 1–2
Venus code editor, 265
verbs, FormView control, 292
version control, for Web services, 362
VIA (Virtual Interface Architecture), 408
virtual directory, IIS, deploying Web

applications to, 353–356
Visual Basic 6, migrating to Visual Basic

2005, 1–2
Visual Basic 2005, migrating to, 1–2
Visual Studio Upgrade Wizard, 72–73
volatility in database, 189
VSTS suite, 112–116
VWD (Visual Web Developer), 265

W
WaitAll model, asynchronous SqlCommand

execution, 59–62
WaitHandle array, 59–62
Web applications

creating, 266–269
deploying to IIS, 353–356
precompiling, 355–356
tracing, to compare performance, 351–353

Web controls. See also specific controls
for data binding and updates, list of, 272, 273
for data validation, list of, 310–311

Web forms. See also bound controls
compilation model, 269–271
creating, process for, 266–269
scalability requirements, 2

582

User Agent method, SoapHttpClientProtocol class

20_57678X bindex.qxd 11/10/05 11:24 PM Page 582

Web controls
for data binding and updates, list of, 272,

273
for data validation, list of, 310–311

Web Matrix, 265
Web Reference, adding to configuration files,

362
Web services

authentication for, 372–374, 376–377
clients

DataGridView control for, 380–382
proxies for, 369–372

connection strings for, 376–377
creating

example of, 375–380
procedure for, 363–364

custom business objects
as alternative to DataSets, 384–391
binding to DataGridViews, 391–395
client for, 397–399
updating, inserting, deleting, 395–397
using, issues regarding, 361

DataSets
returning, 377–380
updating, 382–384
using, issues regarding, 361

debugging, 374–375
deploying, 369
development strategies for, 360–363
help page for, 364–369
history of, 359–360
security for, 363, 372–374
service-oriented architecture (SOA)

implemented using, 105–110
transactions and, 360
version control, 362
WebMethods and, 362
Windows Authentication Mode and, 377
WSDL document for, 364–369

“Web Services and DataSets” (Skonnard), 107
Web Services Description Language (WSDL),

105
Web Services Interoperability (WS-I)

Organization, 106
Web Site folder, 363

Web site resources
AntiPatterns Web site, 86
application blocks, 89
BPA (Best Practices Analyzer), 116
Data Patterns, 87
design guides, 96
Distributed Systems Patterns, 88
Electronic Commerce Dictionary, 88
Enterprise Solution Patterns Using Microsoft

.NET, 87
eWeek article on Gartner market share

numbers, 403
Global Bank Implementation (GBI) project, 86
HR-XML (Human Resources XML), 236
Microsoft Architects JOURNAL, 85
Microsoft Patterns, 87
Microsoft reference architectures, 85
MSDN Web Services Developer Center, 106
PAG team, 84
regular expressions, 315
service-oriented architecture (SOA), 103
TerraService Web service client, 362
UBL (Universal Business Language), 236
VSTS suite, 112
WSSRA implementation guides, 85

Web.config file
adding to project, 268
adding Web Reference to, 362
ConfigurationManager class for, 379
connection strings in

encryption of, 120
how to store, 119, 325, 376

enabling anonymous Web service users, 377
removing debugging symbols from temporary

files, 355, 369
specifying multiple traces in, 352

WebMethods
displaying WSDL document, 364–366
invoking from proxy class, 371–372
multiple, 362
returning typed DataSet, 379–380

WHERE clause constraints, 283–286
white exclamation mark icon, 181
Windows Authentication Mode, Web services

and, 377

583

Windows Authentication Mode, Web services and

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 583

Windows credentials, 373
Windows forms. See also DataGridView control

autogenerating
features for, 36
modifying autogenerated code, 132–133
procedure for, 28–30, 32–35

data entry forms
autogenerating, 36, 132–133
creating, process for, 70–71
database-agnostic applications for, 40
heads-down, 146–148

details form, 31–32
drag-and-drop methods for, 36, 39–40
editing forms, creating from XML documents,

250–254
master-detail forms, 71
master-detail, parameterized, 75–77
multi-level subforms, 73–75
objects for, 39–40
persistent form objects

adding ADO.NET 1.x components to
toolbox, 72

batching multiple updates, 77–79
comparing ADO.NET 1.x to 2.0, 70–71
list of, 69–70
multi-level subforms, 74–75
parameterized MasterDetailsForm, 75–77
upgrading to ADO.NET 2.0, 72–73

tabbed form, migrating data entry form to,
149–153

Windows Server System Reference Architecture
(WSSRA), 84, 85

Workgroup Edition, SQL Server, 405–406
wrapped nested XML schema, 243–245
WS-Addressing specification, 371
WS-Discovery specification, 371
WSDL document, for Web services, 364–369
WSDL (Web Services Description Language),

105
WS-I (Web Services Interoperability)

Organization, 106
WSSRA (Windows Server System Reference

Architecture), 84, 85

X
XML constructors, XQuery, 536–538
XML data model

choosing, 515
indexed xml columns, 522–525
performance and

creating and filling tables, 543–545
populating xml columns, 545–546
tests for, 541–543
updating tables, 546–548
XML indexes and, 546–557

typed xml columns, 519–522
untyped xml columns, 515–518

xml data type, SQL Server
definition of, 413–414, 513–514
indexed xml columns

add and drop XML indexes, 523–524
definition of, 522–523
promoting xml values to table columns,

524–525
sample database containing, 525–528
typed xml columns

creating XmlSchemaCollection for, 519–520
definition of, 519
reading XmlSchemaCollection for, 520–522

untyped xml columns
definition of, 515
populating xml columns, 515–517
retrieving and reformatting xml column data,

517–518
XML DDL, 513, 556–557
XML documents

creating editing forms from, 250–254
generating with XmlTextWriter object,

509–511
generating with XmlWriter object, 475–484

XML files
creating XmlDataSource control from,

344–345
populating GridView control with, 346
reading, 343–350

XML for Analysis (XML/A) scripts, 409
XML indexes. See indexed xml columns
XML namespace, 3, 4

584

Windows credentials

20_57678X bindex.qxd 11/10/05 11:24 PM Page 584

XML schema
adapting to generate a DataSet

considerations for, 235–236
flat schemas, 245–248
nested schemas, 236–245

flat schema, 245–248
generating serializable classes from, 255–261
inferring to generate a DataSet, 248–250
nested schema, generating DataSet from,

236–245
XML/A (XML for Analysis) scripts, 409
xmlColumn.exist() method, 529, 532–533
xmlColumn.modify() method, 530,

534–535
xmlColumn.nodes() method, 530, 533–534
xmlColumn.query() method, 529, 530–531
xmlColumn.value() method, 529, 531–532
XmlDataDocument object, 4
XmlDataSource control

creating from XML documents, 344–345
definition of, 273
designing Repeater control with, 347–348
populating TreeView control with, 348–350
reading XML files with, 343–350

XmlReader object
definition of, 5
with FOR XML AUTO clause, 8–10
returning with OleDb data provider, 18

XmlSchemaCollectionDatabase property,
SqlDataReader object, 46

XmlSchemaCollectionName property,
SqlDataReader object, 46

XmlSchemaCollectionOwningSchema
property, SqlDataReader object, 46

XmlTextWriter object, generating XML
documents with, 509–511

XmlWriter object, generating XML
documents with, 475–484

XPath, 513–514
XQuery, SQL Server

definition of, 413–414, 513–514
expressions for xml columns

case-sensitivity, 530
examples of, 530–535
executing with code, 540–541
methods for, 529–530
namespace declarations, 530
syntax for, 528–529

FLWOR expressions, 535–539
XML constructors, 536–538

585

XQuery, SQL Server

In
de

x

20_57678X bindex.qxd 11/10/05 11:24 PM Page 585

20_57678X bindex.qxd 11/10/05 11:24 PM Page 592

