
 < Day Day Up >

Visual Basic 2005 Jumpstart

By Wei-Meng Lee
...
Publisher: O'Reilly
Pub Date: September 2005
ISBN: 0-596-10071-X
Pages: 214

Table of Contents | Index | Errata

Okay, all you VB6 developers--time's up. As of March 2005, Microsoft no longer supports this version of Visual
Basic. And you can't blame them. Three years ago, they introduced the .NET Framework--an elegant, powerful
platform--along with the new component-based VB.NET language. But roughly five million of you decided to stick
with VB6, mostly to maintain legacy Windows and COM projects.

Now, with the upcoming release of VB 2005, Microsoft has several attractive reasons to upgrade that you'll find hard
to resist, including the return of some VB6 features. And we have the perfect book to help you make the conversion:
Visual Basic 2005 Jumpstart. Now, you can test-drive the beta version of VB 2005 with three hands-on projects that
enable you to learn the syntax of this new language quickly.

VB 2005 not only lets you convert the bulk of your existing VB6 code, but offers several familiar features, such as
compile-and-run debugging, new MyClasses that simplify use of .NET libraries and frameworks, lots of IDE support
for Windows, web and mobile GUI development, and data access controls that closely resemble what you use now.
The real plus is that you'll be using these features with the .NET platform, which is more secure, less complex than
COM, and offers OneClick deployment.

Visual Basic 2005 Jumpstart lets you get the feel of this platform for building smart/rich Windows Forms clients,
ASP.NET web applications, and web services. Author Wei-Meng Lee, a Microsoft .NET MVP, veteran O'Reilly
author and frequent contributor to the O'Reilly Network, has put together three useful test-drive projects, complete
with code samples, that let you develop:

A personal library Windows application

A Web-based shopping cart application

A stock enquiry Web Service

Our jumpstart guide is the quick, painless way to migrate from VB6 to VB 2005, and the perfect training manual for
moving your organization to the more robust, dynamic and secure world of .NET.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Visual Basic 2005 Jumpstart

By Wei-Meng Lee
...
Publisher: O'Reilly
Pub Date: September 2005
ISBN: 0-596-10071-X
Pages: 214

Table of Contents | Index | Errata

 Copyright

 About the Author

 Foreword

 Preface

 Who This Book Is For

 What You Need to Use This Book

 Conventions Used in This Book

 Using Code Examples

 Safari Enabled

 I'd Like to Hear from You

 Comments and Questions

 Acknowledgments

 Chapter 1. Introducing Visual Basic 2005

 Section 1.1. Create the Application and Its Main Window

 Section 1.2. Add a Menu and Toolbar

 Section 1.3. Connect to a Database and Browse Records

 Section 1.4. Create an Exit Dialog Box

 Section 1.5. Handle Exit and Close Events

 Section 1.6. Run and Debug the Application

 Section 1.7. Inspect an Object at Runtime

 Section 1.8. Add an About Box

 Section 1.9. Configure the Application

 Section 1.10. Summary

 Chapter 2. Programming with Visual Basic

 Section 2.1. Data Types

 Section 2.2. Variables

 Section 2.3. Constants

 Section 2.4. Strings

 Section 2.5. Arrays

 Section 2.6. Type Conversion

 Section 2.7. Operators

 Section 2.8. Statements

 Section 2.9. Functions and Subroutines

 Section 2.10. Error Handling

 Section 2.11. My Namespace

 Section 2.12. Summary

 Chapter 3. Putting Object-Oriented Programming to Work

 Section 3.1. Working with Classes and Objects

 Section 3.2. Reusing and Customizing Classes

 Section 3.3. Designing Your Own Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.4. Controlling How Classes Are Implemented

 Section 3.5. Summary

 Chapter 4. Developing a Windows Application

 Section 4.1. Creating the Windows Application and Building the Main Window

 Section 4.2. Viewing Book Information Offline

 Section 4.3. Deploying the Application

 Section 4.4. Automatic Updating

 Section 4.5. Summary

 Chapter 5. Building Web Applications

 Section 5.1. Building the Storefront

 Section 5.2. Creating a Shopping Cart

 Section 5.3. Members Area

 Section 5.4. Testing the Application

 Section 5.5. Summary

 Chapter 6. Moving from VB 6 to VB 2005

 Section 6.1. Migrate, Replace, Rewrite, or Reuse?

 Section 6.2. Using COM Objects in VB 2005

 Section 6.3. Upgrading VB 6 Applications

 Section 6.4. Summary

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Table
Editor: John Osborn

Production Editor: Adam Witwer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Visual Basic 2005 Jumpstart, the image of moor frogs, and related trade dress are trademarks of
O'Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-10071-X

[M]
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Author
Wei-Meng Lee (Microsoft MVP) is a technologist and founder of Developer Learning Solutions
(http://www.developerlearningsolutions.com), a technology company specializing in hands-on training in the latest
Microsoft technologies. Wei-Meng speaks regularly at international conferences and has authored numerous books
on .NET, XML, and wireless technologies, including ASP.NET 2.0: A Developer's Notebook and the .NET Compact
Framework Pocket Guide (both from O'Reilly). He writes extensively for the O'Reilly Network on topics ranging
from .NET to Mac OS X. Wei-Meng is currently a Microsoft Regional Director for Singapore. Visit Wei-Meng's
blog at http://weimenglee.blogspot.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
Visual Basic revolutionized programming when it was first released in 1991 by making it easier than ever for
developers to build Windows programs. This success continued with Visual Basic 6.0, which became one of the
world's most popular programming languages. The transition from Visual Basic 6.0 to Visual Basic .NET offered
developers a new range of development possibilities. Using the same set of development skills, developers could
now target Windows, Web, Mobile, and Office applications better than ever before. Visual Basic 2005 is the most
powerful and accessible version of Visual Basic. The addition of features like the My namespace and Edit and
Continue help developers to address business problems with the productivity that is the hallmark of Visual Basic
development.

This book is a great way to take your Visual Basic 6.0 development skills forward to become an expert in Visual
Basic 2005 programming. I'm happy to have partnered with Wei-Meng and O'Reilly to create this book which is a
part of an ongoing effort to enable Visual Basic 6.0 developers to leverage their existing skills. Experienced VB
programmers will see how their existing Visual Basic skills can be applied to quickly become productive in Visual
Basic 2005.

I hope that you find this book useful and look forward to hearing from you with any comments. Please feel free to
contact me directly at jroxe@microsoft.com.

—Jay Roxe

Product Manager, Visual Basic

Microsoft Corporation
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Who This Book Is For

What You Need to Use This Book

Conventions Used in This Book

Using Code Examples

Safari Enabled

I'd Like to Hear from You

Comments and Questions

Acknowledgments

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who This Book Is For

Visual Basic 2005 Jumpstart is written for VB 6 programmers who have yet to move to Visual Basic 2005, the
latest release of Microsoft Visual Basic, one of the world's most popular programming languages. With VB 2005,
Microsoft has given VB 6 developers a host of reasons to upgrade now, including the return of VB 6 features
omitted from earlier versions of VB.NET.

My aim is to provide you with a starting point—a jumpstart—that demonstrates how easy it is to become productive
with the new language when it's paired with the Visual Studio 2005 development environment.

To get the most out of this book, you'll need a copy of Visual Studio 2005 that supports Visual Basic (see "What
You Need to Use This Book"). I encourage you to work your way through the sample applications, especially those
in Chapters 1, Chapters 4, and Chapters 5, as they are purposefully small and designed to show off the best of the
new features in VB 2005. You'll be surprised at how easily and quickly you can build a relatively sophisticated
Windows or web application. The complete source code for the book (along with any errata) is available on the
O'Reilly web page for this book, http://www.oreilly.com/catalog/vbjumpstart/.

How This Book Is Organized

Visual Basic 2005 Jumpstart consists of six chapters, each of which focuses on a particular aspect of the VB 2005
language or a type of project that VB 6 programmers are likely to encounter in making the move to the new tool.

Chapter 1, Introducing Visual Basic 2005

You'll use VB 2005 and Visual Studio 2005 to build a simple Windows application that any VB 6
programmer will recognize. Though the application is simple, building it illustrates a number of powerful
features present in the VB 2005 language and the Visual Studio 2005 development tool. Among these are
new Windows controls with Smart Tasks, new Windows application templates, restored support for edit-
and-continue, improved IntelliSense and Code Editor facilities, the Data Source Configuration Wizard, and
Application Settings.

Chapter 2, Programming with Visual Basic

you will be taken on a whirlwind tour of the VB 2005 language and its syntax, and you'll see how it
compares with that of VB 6. If you are a VB 6 programmer, you'll be happy to learn that much of what you
already know is still supported (or enhanced) in VB 2005. You'll also be introduced to the My namespace,
which vastly expands the trove of functions available to Visual Basic programmers and provides easier
access to the rich functionality of the .NET Framework Class Library.

Chapter 3, Putting Object-Oriented Programming to Work

You will be introduced to the support for object-oriented programming (OOP) available in VB 2005 and
will learn why it matters. A principal reason for using OOP features in VB 2005 is the support they provide
for reusing, customizing, and controlling the use others make of your code, and you'll learn about a variety
of techniques for accomplishing these tasks. You'll also learn about the VB 2005 Class Designer, how to
extend an existing class by inheriting from it, generic classes, Partial classes, and advanced OOP concepts
such as abstract classes and methods, interfaces, attributes, and access modifiers.

Chapter 4, Developing a Windows Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You will build a Windows application that demonstrates the ease with which Visual Studio 2005 and VB
2005 can be used to create professional Windows applications. You will also learn how to consume web
services and how data can be persisted in a SQL database, and you will see how ClickOnce makes
deployment and updating of smart clients easy and effortless.

Chapter 5, Building Web Applications

You will build a simple e-commerce web application using new controls in ASP.NET 2.0 that let you build
powerful applications without writing much VB 2005 code at all. You will see how to use a Master Page to
maintain a consistent look and feel for the pages of your site. You will also see how information about users
could be persisted using the new Profile service. Last but not least, you will learn how easy it is to
implement security in your web applications using new ASP.NET 2.0 security controls with the
Membership class that powers them.

Chapter 6, Moving from VB 6 to VB 2005

You will learn about the various factors that you need to consider when deciding whether to upgrade an
exisitng application. Upgrading from VB 6 to VB 2005 requires careful review of the application as well as
analysis of the various benefits that a migration will bring you. You will also learn how you can continue to
use your legacy COM components in VB 2005 and how the new RegFree COM feature in VB 2005 shields
you from the notorious DLL hell problem. Finally, the chapter ends with a demonstration of the Visual
Basic 6.0 Code Advisor and the Upgrade Wizard, which aim to ease the upgrade of your existing VB 6
applications to VB 2005, should you decide to go that route.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What You Need to Use This Book

To try out the many hands-on projects and code samples in this book, you'll need to install any edition of Visual
Studio 2005 on a computer running Windows. You can also use a combination of the new Visual Studio Express
Editions. To work your way through all of the examples, you'll need to install Visual Basic 2005 Express Edition,
Visual Web Developer 2005 Express Edition, and SQL Server 2005 Express Edition, all of which are available on
the MSDN web site.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories, and Unix
utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, controls, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event handlers, XML tags,
HTML tags, macros, the contents of files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Bold is also used in code samples
to highlight lines of code that are discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN.
For example: "Visual Basic 2005 Jumpstart, by Wei-Meng Lee. Copyright 2005 O'Reilly Media, Inc., 0-596-10071-
X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

I'd Like to Hear from You

Please send comments, suggestions, and errata to wei_meng_lee@hotmail.com. You can also visit my web site at:
http://www.developerlearningsolutions.com for a list of articles that I have written on .NET. Check out the Code
Library section to download sample code for topics on .NET, VB 2005, ASP.NET 2.0, and the .NET Compact
Framework.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access
this page at:

http://www.oreilly.com/catalog/vbjumpstart/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site
at:

http://www.oreilly.com
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

I am very grateful to my editor, John Osborn, for giving me this opportunity to write a book on VB 2005. His
patience and attention to detail have definitely made this book a better read. John has painstakingly read and reread
every single word I have written and has always challenged me to rethink what I have written, and for this I am
much honored to work with John. A big thank you, John!

Special thanks are also due to Jay Roxe, Product Manager of Visual Basic at Microsoft, for his support and review
of this book. Jay has played an instrumental role in shaping the outline of this book and provided many useful
suggestions for improving its content. Thanks for the hard work, Jay!

I also wish to express my gratitude to the reviewers for their comments and numerous suggestions. They include
Robert Green, Jeff Barr, Paul Yuknewicz, and Joseph Binder.

As always, it has been a pleasure working with the O'Reilly team. A big thank you to the unsung heroes behind the
scenes that made this book possible. Thanks!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introducing Visual Basic 2005
When Microsoft released its new version of Visual Basic in 2002, many developers willingly upgraded to take
advantage of the new web functionality, security, and performance provided by the .NET platform on which it was
built. But in doing so, many also felt they were leaving behind the features that had made Visual Basic 6.0 such a
popular tool for the rapid development of Windows applications in the first place.

The release of Visual Basic 2005 (VB 2005) is in many ways a return to Visual Basic's roots as the Rapid
Application Development (RAD) tool of choice. Many of the most popular features of earlier versions are back,
such as Edit and Continue, along with dozens of new controls, better IntelliSense, an improved debugger, and a host
of other tools that speed up programming, debugging, testing, and deployment.

Besides the many tools added to its interactive development environment (IDE), Visual Basic 2005 provides more
support than ever for developing the next generation of network-enabled Windows clients and web applications,
while a new set of functionality unique to VB 2005—the My namespace—gives you the means by which to perform
many common tasks without having to work your way through the complex types of the .NET class libraries.

The best way to learn about Visual Studio 2005 is by using the tool to build an application. In the following
sections, you'll assemble a straightforward Windows client that enables users to connect to a database and browse or
update the information they find there. You'll work with the authors table of the pub's database that ships with SQL
Server 2005. You'll also see how you can extend the application using some of the features new to VB 2005, such
as project templates and application configuration tools. Figure 1-1 shows how the main window of the the
completed application will look when you've finished your work.

Although this book uses Microsoft Visual Studio 2005 as the tool to build the sample
applications, you can also use Microsoft Visual Basic 2005 Express Edition.

Figure 1-1. The completed pubs database Windows client

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1. Create the Application and Its Main Window

Let's start by using Visual Studio 2005 to create a Windows application, one that you can program with VB 2005.

1. First, you need to fire up Visual Studio 2005 and open a new project by selecting File New Project…
on the Visual Studio 2005 menu. Visual Studio displays the New Project dialog shown in Figure 1-2.

2. In the Project types window of the New Project dialog, select Visual Basic and then select the Windows
Application template in the Visual Studio installed templates dialog window. Keep the default project
Name, WindowsApplication1, provided by Visual Studio. Click OK.

Visual Studio 2005 will present you with its familiar Windows development environment, shown in Figure
1-3, including a designer surface for Form1, which will become the startup window of your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2. Add a Menu and Toolbar

Let's now add a menu and toolbar to the form. In VB 2005, you can create professional looking Windows
applications, complete with menus and toolbars that look like those used with Microsoft Office applications.

Figure 1-2. Creating a new Windows application

Figure 1-3. The development environment of Visual Studio 2005

1. In the Menus & Toolbars tab in Toolbox, shown in Figure 1-4, locate and then drag and drop the
ToolStripContainer control onto the form. The ToolStripContainer control allows other
controls (such as the ToolStrip control) to anchor in the four positions available (left, right, top, and
bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-4. The various controls under the Menus & Toolbars tab in Toolbox

In the ToolStripContainer Tasks menu, click on the "Dock Fill in Form" link (see Figure 1-5) to
dock the ToolStripContainer control onto the form. This will cause the ToolStripContainer
control to fill up the entire form and automatically resize itself when the form is resized.

Figure 1-5. Filling the entire form with the ToolStripContainer control

2. Now you'll add the application menu. Double-click on the MenuStrip control in the Toolbox to add it to
the form. The MenuStrip control displays a standard list of drop-down menus at the top of a window. In
the MenuStrip Tasks menu, click on the Insert Standard Items link to add a list of commonly used menu
items to the control (see Figure 1-6).

Your form should now look like the one shown in Figure 1-7.

Now you'll add a toolbar to Form1. Select the MenuStrip control that you have just added by single-
clicking on it. In the Toolbox, double click on the ToolStrip control (or drag and drop it) to add it to the
form. This will add the ToolStrip control to the top of the ToolStripContainer control, thereby
making it moveable. You use the ToolStrip control to display buttons for tasks users will commonly
want to perform. Initially, the toolbar is blank. To add common toolbar items, click on the Insert Standard
Items link in the ToolStrip Tasks menus. Your form should now look like Figure 1-8.

Smart Tasks Menu
When you need to configure a control in VB6, you normally use its Properties window to do
so. However, a properties list can be quite long, making it difficult for a beginner to find a
particular property. In Visual Studio 2005, the Smart Tasks menu simplifies the task of
configuring controls by listing several commonly used properties and wizards in the new
Smart Tasks menu. You can display the Smart Tasks menu for any control by clicking the
arrow at the top-right corner of the control.

Figure 1-5 shows the ToolStripContainer Tasks menu. Using this Smart Tasks menu,
you can set the visibility of the Panel (Top, Bottom, Left, and Right) as well as cause the
control to fill up the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-6. Inserting standard menu items into the MenuStrip control

Figure 1-7. The MenuStrip control

Figure 1-8. The MenuStrip and ToolStrip controls

3. To test the application, press F5. You will now be able to drag the ToolStrip control and anchor it in one
of the four positions (see Figure 1-9).

Figure 1-9. Anchoring the ToolStrip control in various positions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3. Connect to a Database and Browse Records

One great time-saving feature in VB 2005 is its new support for automatic data binding. The automatic–data
binding feature allows you to connect to a data source and then drag and drop the connection onto a Windows
Forms application. A set of controls bound to the data source will then be automatically added to the form, and you
can perform a variety of operations on the data source, such as navigating through records, searching for a specific
record, and more, without having to write any code.

To see how automatic data binding works, you will now connect to a database and then drag and drop one of its
tables onto your form so that you can view and work with its records. You will use SQL Server 2005 Express and
the pubs database and then view and edit the records in the authors table.

1. Select Data Show Data Sources to display the Data Sources window, as shown in Figure 1-10. The
Data Sources window allows you to connect to your data sources (such as databases, web services, and
business objects) and view their content. Click on the Add New Data Source… link to add a new data
source to your project (see Figure 1-10).

When the Data Source Configuration Wizard appears, click Next.

2. The Choose a Data Source dialog, which appears next, lets you choose between a database, a web service,
or some other object as the source of your data. You'll be using a database, so click the Database icon and
then click Next.

3. Now you need to select a data connection to use to connect to your database. In the "Choose your data
connection" dialog, click New Connection….

Figure 1-10. The Data Sources window

4. The Add Connection dialog will be shown (see Figure 1-11).

For this step, I am assuming you have SQL Server 2005 Express installed on
your computer. You can download SQL Server 2005 Express from:
http://www.microsoft.com/sql/express/default.mspx.

As SQL Server 2005 Express does not come with any sample databases, you
need to install the sample database yourself. See the sidebar "SQL Server 2005
Express and the pubs and Northwind Databases" for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter the details of your database (see Figure 1-11). Type .\SQLEXPRESS for Server name if your
database is installed locally on your machine. Select the database to use (in this example, select the sample
pubs database in SQL Server 2005 Express). Click OK and Next in the next window.

5. Visual Studio 2005 now has the information it needs to create the connection string that will let your
application access the pubs database. The "Save the connection string to the application configuration file"
step gives you the useful option of naming and saving the connection string in the application configuration
file, as shown in Figure 1-12. Having the information in a configuration file lets you change database details
without recompiling the application, even after it has been deployed. Leave the checkbox checked, give the
connection string the name pubsConnectionString, and click Next to display the next part of the Data
Source Configuration Wizard dialog.

6. With a connection string in place, you're now in a position to select the table(s) you want to work with. The
"Choose your database objects" step shown in Figure 1-13 displays the tables (and fields) of the pubs
database. Your application will give users access to author information stored in the pubs database, so check
the authors table to select all fields and then click Finish to move to the next step, which displays a
completed Data Sources window for your application. You can return to the Data Sources window
whenever you need to make changes by clicking on the Data Sources tab next to the Solution Explorer or by
going to the Visual Studio menu and selecting Data Show Data Sources.

Figure 1-11. Adding a new database connection

SQL Server 2005 Express and the pubs and
Northwind Databases

SQL Server 2005 Express does not ship with the pubs and Northwind sample databases. But
you can install them by downloading the pubs and Northwind database installation scripts at
http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en.

Once the scripts are installed on your system, go to the Visual Studio 2005 command prompt
(Start Programs Microsoft Visual Studio 2005 Visual Studio Tools

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Start Programs Microsoft Visual Studio 2005 Visual Studio Tools
Visual Studio 2005 Command Prompt) and change to the directory containing your installation
scripts (assuming your installation scripts are stored in C:\). Type in the following to install the
pubs and Northwind databases:

 C:\>sqlcmd -S .\SQLEXPRESS -i instpubs.sql
 C:\>sqlcmd -S .\SQLEXPRESS -i instnwnd.sql

Figure 1-12. Saving the connection string in the application configuration file

Figure 1-13. Selecting the table to work with

7. One last step is required to make the authors table accessible to your users: you need to bind each field to a
control that can be displayed in the application window. In the Data Sources window, you'll see that the
authors table is displayed as a tree, as shown in Figure 1-14, and that each field has been bound to a specific
type of control. For example, the au_lname field is bound to a text box (represented by the icon containing
the letters "abl"). You can change the binding by clicking on the field name and then choosing another
binding. For now, we'll make only one change. Click on the drop-down menu for the au_id field and then
choose the Label control (as represented by the icon containing the letter A, as shown in Figure 1-14).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-14. Changing the bindings of the fields

Also, you should change the authors table binding to Details (using the drop-down menu for the authors
field shown in Figure 1-15) so that you can view the authors table one record at a time. The reason for doing
this will become evident to you in the next step when we add the ability for users to navigate through the
table.

Now you're ready the drag and drop the authors item in the Data Sources window onto the default Windows
Form and watch Visual Studio 2005 perform some real magic. For starters, Visual Studio automatically
populates Form1 with the controls shown in Figure 1-16. Visual Studio 2005 also adds a new
BindingNavigator control to the top of the form. The new BindingNavigator control lets users
navigate through all the records in the table as displayed in the form.

8. By default, the BindingNavigator control is docked (fixed) to the top of the form and is not moveable.
Set the Dock property to None and rearrange the controls as shown in Figure 1-17.

Figure 1-15. Changing the binding of the table

Figure 1-16. The populated Windows Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can rearrange the BindingNavigator control by increasing the size of
the ToolStripContainer control. Simply click the arrow shown at the top
of the ToolStripContainer control.

Figure 1-17. Arranging the controls at the top of the Form

9. You can now test the application by pressing F5. Form1, the main window of your application, will display,
complete with menu, toolbar, and navigation control, as shown in Figure 1-18. You should be able to
navigate the records in the authors table as well as move the various toolbars around. Try scrolling through
the table by clicking the arrows on the BindingNavigator control.

Figure 1-18. Navigating the records in the table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should also be able to edit individual records by modifying the values in the text box bound to each
field. Try it. To save a modified record to the database, you need to click on the Save icon, which is
represented by the diskette icon in the BindingNavigator control.

Visual Studio 2005 automatically adds the relevant code to the code behind of the form to handle the
retrieving and saving of data. To see the code added by Visual Studio 2005, double-click on the diskette
icon to reveal the code behind. You will see the code shown in Example 1-1.

Example 1-1. Save menu item code behind added by Visual Studio 2005

Private Sub bindingNavigatorSaveItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles bindingNavigatorSaveItem.Click

 If Me.Validate Then

 Me.AuthorsBindingSource.EndEdit()

 Me.AuthorsTableAdapter.Update(Me.PubsDataSet.authors)

 Else

 System.Windows.Forms.MessageBox.Show(_

 Me, "Validation errors occurred.", "Save", _

 System.Windows.Forms.MessageBoxButtons.OK, _

 System.Windows.Forms.MessageBoxIcon.Warning)

 End If

End Sub

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4. Create an Exit Dialog Box

For most Windows applications, it is customary to ask users if they really want to quit an application when they
either click the Close window button or select Exit on the File menu. In this section, you'll use Visual Studio 2005
and VB 2005 to add a dialog box that asks users to confirm that they really want to quit the application when they
select either action.

1. First, let's create the dialog box by adding a new Dialog to the project. You add a new Dialog to your
project by right-clicking on the project name in Solution Explorer, which is WindowsApplication1,
and then selecting Add New Item…. In the Add New Item dialog, select Dialog and use the default
name of Dialog1.vb as shown in Figure 1-19.

Figure 1-19. Adding a new Windows Form to the project

2. Notice that the Dialog window already comes with two buttons: OK (OK_Button) and Cancel
(Cancel_Button).

3. Populate the dialog with the Label control shown in Figure 1-20 by dragging and dropping it from the
Toolbox. Also, resize the dialog window.

Figure 1-20. Populating the dialog window with the Label control

Snaplines
One of the most visible enhancements in Windows Forms 2.0 is the snaplines that are
automatically shown when you drag and drop a control onto a form. Using snaplines, you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

automatically shown when you drag and drop a control onto a form. Using snaplines, you can
position controls on your form so that they are evenly spaced out. The figure shows snaplines
in action when you try to position the Label control.

4. Set the properties of the various controls to the values shown in Table 1-1. To set the properties of a control,
right-click the control and select Properties to display its Property window. Look for each Property you wish
to set by scrolling through the Properties window and entering the appropriate value.

Table 1-1. Properties of the various controls
Control Property Value Comments

Dialog1 Text Exit Changes the title of the Windows
Form

Dialog1 AcceptButton OK_Button

Sets the OK button to the default
button of the form so that it is
clicked when the user presses the
Enter key.

Note that this has already been
set for you by Visual Studio
2005.

Dialog1 CancelButton Cancel_Button

Sets the Cancel button to be
activated when the user presses
the Esc key.

Note that this has already been
set for you by Visual Studio
2005.

OK_Button DialogResult OK Sets the OK button to the value
of OK for the dialog result.

Cancel_Button DialogResult Cancel
Sets the Cancel button to the
value of Cancel for the dialog
result.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5. Handle Exit and Close Events

Now it's time to write some code to link the Exit dialog with the events triggered by users when they attempt to exit
or close the application.

1. First, you'll add code to deal with the Exit menu item when a user selects it. To get started, expand the File
menu in Form1 and doubleclick on the Exit menu item (see Figure 1-21) to open the code-behind page
shown in Figure 1-22.

Figure 1-21. Coding the File Exit menu item

Figure 1-22. The code behind of Form1

The code-behind page contains all of the code that you write for the application. So far in this chapter, all of
the work has been done by Visual Studio, but the code it has generated to support your work with the
designer and wizards is hidden and out of sight for now. You'll see how to view this code in Chapter 2.

When you double-click on the Exit item of the application menu on Form1, Visual Studio deduces that you
wish to write code to specify how the exit event will be handled, just as it does in VB 6. Note that the code
behind page in this example is named Form1.vb. As you can see in Figure 1-22, Visual Studio has already
generated the code to create the event handler. All you need to do is specify what specific actions are to be
taken when the event handler is called by placing your cursor on the line below the handler declaration and
entering your own code.

2. Now, code the exit event of the ToolStrip control by entering the code shown in bold in Example 1-2 on
the code-behind page.

Example 1-2. Exit menu item event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub exitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles exitToolStripMenuItem.Click

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 End
 End If
End Sub

When users select the Exit item on the File menu, an exit event fires and the code in Example 1-2 displays
Dialog1, which forces users to confirm whether or not they really want to exit the application. If a user
selects OK, then the application exits; otherwise, no action is taken and the dialog window closes.

Much of the code in Example 1-2 will seem familiar to VB 6 users. Dim statements are still used to declare
variables, the If…Then statement is unchanged, and the Sub…End Sub block is still used to define
subroutines. What's new is the way in which the code makes use of classes, methods, and properties found
in the .NET Framework, most visibly in the use of dot (.) syntax to reference them. You'll learn more about
VB 2005 data types and language syntax in Chapter 2. Later in Chapter 3, you'll see how to use the new
support for object-oriented programming and the .NET Framework in VB 2005 to greatly increase your
productivity.

3. Now you need to add code to handle the case when the user closes the application window (Form1) by
clicking on the Close button at top the right of the application windowt. This is handled by coding the
FormClosing event of Form1, as shown in Example 1-3. Again, when the user clicks the Close button,
you'll display Dialog1. If the user selects the OK button, end the application. If the user selects the Cancel
button, cancel the close operation by setting the Cancel property of the
System.Windows.Forms.FormClosingEventArgs argument to true. You can get Visual Studio
2005 to generate the code stub for the FormClosing event by selecting the Form1 Events item in the left
drop-down list (see Figure 1-23) and then selecting FormClosing in the second drop-down list. Enter the
code shown in bold in Example 1-3.

Sideline Coloring
The IDE in Visual Studio 2005 uses sideline coloring to highlight the lines that you have
changed. The figure below shows the different colors that are displayed to the left of the code
edit window after you enter the bold code in Example 1-2.

The green color means that the lines have been modified and saved in the current edit session.

The yellow color signifies that the lines have been changed but have not yet been saved. When
you save the project or run the application, the yellow coding will turn green. When the project
is closed and opened again in Visual Studio 2005, the green coding will disappear.

Note that sideline coloring is activated only if the Track Changes option is set. By default, it is
set on in the Visual Studio 2005/Team System Beta, but it is not set by default in VB Express.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-23. Generating the code stub for the FormClosing event

Example 1-3. FormClosing event handler

Private Sub Form1_FormClosing(_

 ByVal sender As Object, _

 ByVal e As System.Windows.Forms.FormClosingEventArgs) _

 Handles Me.FormClosing

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 End
 Else
 e.Cancel = True
 End If
End Sub

Improved IntelliSense
One of the most useful features of VB 2005 is the IntelliSense feature in Visual Studio.
IntelliSense greatly reduces the amount of memorizing you need to do and automatically
completes statements as you type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IntelliSense now performs smart filtering to list only the relevant methods, properties, and
events of objects into two tabs—Common and All—so that you can quickly access the
commonly used properties, methods, and events of an object without having to wade through
the entire list (see figure).

This improvement reduces the number of items showing up in an IntelliSense list, thereby
making it easier for developers to search for what they want. If what you need cannot be found
on the Common tab, you can always click on the All tab to see the complete list.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6. Run and Debug the Application

With the code you have added in the last section, it is now time to test the application. This is a good chance for you
to see some of the new enhancements in the new Visual Studio 2005 debugger. For this example, you will set a
breakpoint so that you can examine the values of variables at a particular point in the code.

1. Now set a breakpoint in the application by clicking on the gray bar on the left of the code edit window (see
Figure 1-24) and then running the application by pressing F5. You will set the breakpoint so that the
program halts when you click on the Close box, allowing you to examine the value of DialogResult
returned by the Exit dialog box (Dialog1).

Figure 1-24. Setting a breakpoint

2. When the form is loaded, close the form to display the dialog box. Click OK, and the application will stop at
the breakpoint you have set. To step through the code one line at a time, press F11 (see Figure 1-25).

Figure 1-25. Stepping through the code

Edit and Continue
Yes! The edit-and-continue feature that VB 6 programmers have always taken for granted is
supported in VB 2005. Using the edit-and-continue feature, programmers can set breakpoints
using the debugger in Visual Studio and then make changes on the fly (you can even roll back
execution steps). After the changes are made, the application can continue executing without
the need to stop entirely and recompile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.7. Inspect an Object at Runtime

The debugger in Visual Studio 2005 now supports a new feature known as DataTips. Using DataTips, you can
examine the values in a complex data type while you are debugging the application, otherwise known as debug
time. This is a marked improvement over Visual Studio .NET 2003, where only simple data types can be examined
by placing the cursor over a variable name.

Figure 1-26 shows the DataTips display for the FormClosingEventArgs object. To see this result, simply
position your cursor over the name of the variable or object that you are interested in while the program is stopped
at a breakpoint. Not only can you view the values of variables and objects, you can also edit and change their values
during debug time.

Figure 1-26. Using the DataTips in Visual Studio 2005

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.8. Add an About Box

VB 2005 now comes with several new templates that make developing a Windows application easy. Among the
new templates are:

Explorer Form

Allows you to build applications similar to Windows Explorer, with a tree-like display on the left pane and a
detailed view on the right pane.

About Box

Displays an About window listing detailed information (such as version number, copyright, credits, etc.)
about the current application.

Login Form

Creates a standard login window to simplify the task of user authentication.

Splash Screen

Displays a welcome screen when your application is launched.

In this section, you will add an About box to your application using the About Box template. The About box for an
application is displayed when a user selects Help About… and contains useful information about the
application, including its manufacturer and version number. Much of the information in the About box is available
from the application and its configuration files.

1. First, you need to create an About box form. Right-click on the project name (WindowsApplication1)
in Solution Explorer and select Add New Item…. Select the About Box template and accept the default
name of AboutBox1.vb provided by Visual Studio 2005. Click Add (see Figure 1-27).

Figure 1-27. Adding an About box to the project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The AboutBox1.vb form will be added to your project, and Visual Studio 2005 will display a designer for the
feature as shown in Figure 1-28.

2. Let's personalize the form by adding an image of the cover for this book to replace the default pretzel-like
image. Click the LogoPictureBox control and then, in the Property window for the control, click the
"…" button of its Image property. This will display the Select Resource dialog window. Click the Import…
button of the dialog to select your own image for the About box (C:\vbjumpstartpg.gif). Click OK (see
Figure 1-29).

Figure 1-28. The controls on the AboutBox1 window

Figure 1-29. Selecting an image resource

You can download the vbjumpstartpg.gif image from:
http://www.oreilly.com/catalog/vbjumpstart/.

3. Set the SizeMode property of the LogoPictureBox control to CenterImage.

4. To configure the information about your application so that it can be displayed by the About box, right-click
on the project name in Solution Explorer and then select Properties. In the Application tab, click on the
Assembly Information… button (see Figure 1-30).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Set the information as shown in Figure 1-31.

Figure 1-30. Configuring project information

Figure 1-31. Setting project information

6. The AboutBox1 window should now look like the one shown in Figure 1-32.

7. To link Form1 with the AboutBox1 window, expand the Help menu and double-click on the About… menu
item (see Figure 1-33) to open the code-behind page for Form1 and generate a code stub for the About box
selection event handler.

8. Now add the line of code shown in bold to the code stub generated by Visual Studio, as shown in Example
1-4). You use the ShowDialog method of the dialog window to get the object display itself.

Figure 1-32. The AboutBox1 window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-33. Coding the Help About… menu item

Example 1-4. Help About… menu selection event handler

Private Sub aboutToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles aboutToolStripMenuItem.Click

 AboutBox1.ShowDialog()
End Sub

9. Finally, it's time to take your work for a trial run. Press F5 to run the application. Click Help About…
and you will see the About box shown in Figure 1-34.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.9. Configure the Application

In the application that you have built, you can move and anchor the ToolStrip control as you wish while you are
using the application. However, you may have noticed that its position is lost each time you exit the application.
This is because you need to manually save its positions each time you exit the application, or else the information
will be lost. Fortunately, this can be done easily with the new Application Settings feature in VB 2005. In this
section, you'll see how.

Figure 1-34. Displaying the About box

Application Settings
In VB 2005, you can now save the state of your application. For example, if a user resizes your
application window, then your application can "remember" the last displayed size, if you take the
appropriate steps. Using the new Application Settings feature in Windows Forms 2.0, you can create
application settings for your application and then bind your controls (including Windows Forms) to
these application settings via the Properties window.

1. You'll begin by adding code to save the location of the ToolStrip control. Select the ToolStrip
control and, in its Properties window, select the PropertyBinding property (under the "
(ApplicationSettings)" property; see Figure 1-35). Click the "…" button.

Figure 1-35. Binding application settings

2. Locate the Location property (this property determines where the control should be placed) and click the
drop-down listbox. Click on the New… link at the bottom and create a new application setting called
ToolStripLocation (see Figure 1-36). Be sure to set the scope to User. Click OK. Be sure to set the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolStripLocation (see Figure 1-36). Be sure to set the scope to User. Click OK. Be sure to set the
Location property to the newly created application setting.

Figure 1-36. Creating the new application setting

You have now created an application setting that binds the position of the ToolStrip control to the
ToolStripLocation application setting. When the form is loaded, the ToolStrip control will get its
Location property from the application settings, which is saved in the app.config file.

The app.config file contains configuration settings pertaining to your project,
such as database connection strings, application logfiles, etc. It is beyond the
scope of this book to discuss the app.config file in detail.

3. Now, perform the same steps 1 and 2 for the MenuStrip control, MenuStrip1. Name its application
setting MenuLocation.

4. You will want to save the current locations of all two controls whenever Form1 is closed, so add the bold
code to the FormClosing event and Exit menu item event as shown in Example 1-5.

Example 1-5. Saving control location data when a user exits or closes Form1

Private Sub Form1_FormClosing(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.FormClosingEventArgs) _

 Handles Me.FormClosing

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 My.Settings.MenuLocation = MenuStrip1.Location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.Settings.MenuLocation = MenuStrip1.Location
 My.Settings.ToolStripLocation = ToolStrip1.Location
 My.Settings.Save()
 End
 Else
 e.Cancel = True
 End If
End Sub

Private Sub exitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles exitToolStripMenuItem.Click

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 My.Settings.MenuLocation = MenuStrip1.Location
 My.Settings.ToolStripLocation = ToolStrip1.Location
 My.Settings.Save()
 End
 End If
End Sub

Note that in this example, only the ToolStrip control is moveable. You can make
the MenuStrip control moveable by changing its GripStyle property from
Hidden to Visible.

In Example 1-5, when a user closes the application either by closing the window or clicking on the Exit menu item,
the application saves the position of the MenuStrip and ToolStrip controls using the application settings that
you have created. You can access the application settings programmatically by using the My.Settings object
(they automatically appear under the My.Settings object after you have created them). Once the locations of
these two controls are assigned to the application settings, you use the Save method of the My.Setting object to
persist this information to the app.config file.

The My Namespace
The use of My.Settings in Example 1-5 demonstrates one of the most useful and unique additions
to VB 2005, the new My namespace, which encapsulates some of the most common functionalities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to VB 2005, the new My namespace, which encapsulates some of the most common functionalities
that developers need for their daily work. The My namespace exposes several different objects, which
you can observe by going to the code-behind page (Form1.vb) and typing My.. IntelliSense shows
the objects of the My namespace as shown in the figure.

The aim of the My namespace is to provide direct access to commonly used libraries in the .NET
Framework that were previously difficult to access. The intuitive hierarchy of the My namespace
provides a mechanism that VB 2005 developers can use to easily navigate the .NET Framework class
libraries and locate the classes required to perform a particular task. For example, suppose you want
to play an audio file in your application. But which class should you use? Using the My namespace, it
is easy to locate the right class to use. As it turns out, the class to use can be found in
My.Computer.Audio.Play!

You will learn more about the My namespace in Chapter 2.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.10. Summary

In this chapter, you built a Windows application using VB 2005 and Visual Studio 2005. Though the application is
simple, its assembly illustrates several key enhancements to the VB 2005 language and the Visual Studio 2005
development tool. To recap, here are the major features you explored:

New controls with Smart Tasks menus

New Windows application templates

Debugging and restored support for edit-and-continue

Improved IntelliSense and improved Code Editor

Data Source Configuration Wizard

Application Settings

In next chapter, you will learn more about the language syntax of the new VB 2005.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Programming with Visual Basic
The Visual Basic 2005 IDE is a powerful RAD tool, but as you saw in Chapter 1, sooner or later you have to roll up
your sleeves and write some code, whether it's to handle a simple button event or perform a complex series of
calculations on stored data. In this chapter, you'll take a look at the syntax of the VB 2005 language itself. While
VB 2005 is a member in good standing of the .NET family of languages, it retains much of the flavor of its VB 6
lineage. This chapter will get you quickly up to speed with VB 2005 language and along the way will show you
how some of its features have changed from those of VB 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1. Data Types

Table 2-1 lists the data types supported by VB 2005 and their counterparts in VB 6. If the size of a VB 6 type
differs from that of its corresponding VB 2005 type, its size in bytes is shown in parentheses. For example, the
Currency type (which takes up 8 bytes) in VB 6 is replaced in VB 2005 by the Decimal type. The old
Decimal type (which takes up 12 bytes in VB 6), is now 16 bytes. Integer is now 4 bytes, instead of its 2 bytes
in VB 6. Likewise, the Long data type is now 8 bytes, instead of its 4 bytes in VB 6.

VB 6 Tip: The venerable VB 6 Variant data type in VB 6 is no longer supported in
VB 2005; you should use the Object type instead. Object and the types that derive
from it are discussed at greater length in Chapter 3.

Intrinsic and User-Defined Types
VB 6 and VB 2005 support two types of intrinsic data types and user-defined types. Intrinsic data
types are those types that are built into the language. Examples of intrinsic data types are Integer,
Short, and Char. User-defined types (UDT), on the other hand, are data types defined by
programmers. Examples of user-defined data types are classes and structures. Most of the data types
discussed in this chapter are intrinsic data types; Chapter 3 will discuss user-defined data types in
more detail.

Table 2-1. Data types in VB 2005
VB 2005 type Size (bytes) VB 6 type (size in bytes)

Boolean Depends on implementing
platform Boolean

Byte 1 Byte
Char 2 N/A
Date 8 Date
Decimal 16 Currency (8), Decimal (12)
Double 8 Double
Integer 4 Integer (2)
Long 8 Long (4)
Object 4 Variant
SByte 1 N/A
Short 2 N/A
Single 4 Single
String (variable
size only) Depends String (supports fixed and

variable size)
UInteger 4 N/A
ULong 8 N/A
UShort 2 N/A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User-Defined
(Structure) Depends User-Defined (Type)

In both VB 6 and VB 2005, data types fall into one of two categories based on how they are stored and accessed:

Value types

A value type holds its data within its own memory allocation. You can access a value type directly without
having to create a reference to it. Examples of value types are Integer and Single.

Reference types

A reference type contains a pointer to another memory location that holds the data. Examples of reference
types are String and Object. We will discuss reference types in more detail in Chapter 3.

Variables in an application are stored in one of two different locations in memory: either on the stack or on the
heap. Stacks are used for storing variables created in a function and are destroyed when the function exits. A heap,
on the other hand, is used to store long-lived variables such as global and static variables.

Value types are stored directly on the stack at execution time, as opposed to being stored on the heap, as is done for
reference types. You can access a value type directly without needing to create a reference to it. For a reference
type, you must use a variable that contains a reference to the value of the type.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2. Variables

In VB 2005, you declare a variable with the Dim (dimension) keyword and you specify its type using the As
keyword:

 Dim num1
 Dim num2 As Integer

The first statement declares num1, by default, to be an Object type. The Object type is the base class of all the
classes in the .NET Framework. You can think of the Object type as equivalent to the Variant type in VB 6.

The second statement explicitly declares num2 to be an Integer variable.

The following statements declare num1 as a Short type and then assign a value to it:

 '---range: -32768 <--> 32767

 Dim num1 As Short
 num1 = 32767

You should always specify the data type of a variable, because this assures the variable is strongly typed. Strong
typing reduces the likelihood of runtime errors and makes your application much more efficient.

In VB 2005, to ensure that variables are declared with a data type (strongly typed), you
should add the Option Strict On statement at the top of your code file. All
variables must now be declared with a type.

You'll learn more about the importance of strong typing, also known as early binding,
in Chapter 3.

In VB 2005, you must declare all of the variables that you use, although you can work around this restriction and
use variables without first declaring them with the Option Explicit Off statement. VB 2005 turns on
Option Explicit On by default.

VB 6 Tip: VB 6 turns on Option Explicit Off by default. In both VB 6 and VB
2005, it is advisable for you to turn Option Explicit on, because using variables
without first declaring them can easily inject potential bugs into your program.

Scope of Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scope of a variable determines which parts of a program can access it. Consider the following
VB 6 code:

 For i = 0 To 10

 Dim j As Integer

 …

 Next i

 j = 0 '<-- j is still accessible

Notice that the variable j was declared within the For loop. Outside the loop, j is still accessible.

In VB 2005, accessing a variable outside the scope in which it was declared is not allowed. Hence
trying to access j outside the For loop will result in a compile-time error.

As shown in Figure 2-1, when you assign the value of one value type to another (num2 = num1), VB 2005—or
more correctly, .NET—makes a copy of the value type:

 Dim num1 as Short

 Dim num2 as Short

 num1 = -32768

 num2 = num1

Figure 2-1. Representation of a value type in memory

Contrast this to the reference type. When you assign the value of a reference type to another, it causes the second
variable to make a reference to the first without creating another copy of the value. The following example assigns
one string variable to another:

 Dim str1, str2 As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim str1, str2 As String
 str1 = "VB"

 str2 = str1

The memory allocation of str1 and str2 is as shown in the Figure 2-2.

Figure 2-2. Representation of a reference type in memory

Unlike VB 6, with VB 2005, you can declare two variables to be of the same type in a single statement, as follows:

 Dim num1, num2 As Short

VB 6 Tip: In VB 6, if you declare two variables in the same statement, as in the
following Dim statement, the results are not the same:

 Dim num1, num2 As Short

Here, num1 is of the Variant type and num2 is of the Short type.

In VB 2005, you can also declare two variables of different data types in the same statement:

 Dim num1 As Short, num2, num3 As Integer

In this case, num1 is declared as Short, and num2 and num3 are both of type Integer.

Unlike VB 6, in VB 2005, you can declare and initialize a variable in the same statement:

 Dim num1 As Short = 56

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB 2005 now supports three new unsigned data types: UShort, UInteger, and ULong.

In VB.NET 2002 and 2003, you can use the .NET Frame-work's unsigned types, but
you cannot perform mathematical operations on them. With the new unsigned data type
support in the new VB 2005, you can now do so.

The following statements declare unum as an unsigned 16-bit integer:

 Dim unum As UShort

 unum = 65535

Type Characters
Instead of using the As keyword to specify the data type of a variable, you can append one the
following type characters to the end of the variable name instead:

Integer: %

Long: &

Decimal: @

Single: !

Double: #

String: $

For example, the following statement declares num to be an Integer type:

 Dim num%

 num = 5

While type characters in VB 2005 preserve a popular feature found in VB 6, many .NET developers
feel they should be avoided and that spelling out the type name makes for code that is easier to
maintain and read.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3. Constants

While variables are a powerful tool, there are times when you want their values to remain constant. Perhaps your
program makes repeated use of the value of pi or the natural logarithm e. A constant is like a variable in that it can
store a value; unlike a variable, the value of a constant cannot be changed while the program runs. You declare
constants using the Const keyword. The following definition assigns the value 3.14 to a constant whose name is
pi and then uses it in calculating the area of a circle:

 Const pi As Double = 3.14
 Dim radius as Double = 5
 Dim area as Double = pi * radius ^ 2

A constant of this type is sometimes called a symbolic constant, because it uses a word to represent a value. VB
2005 supports two additional kinds of constants: literals (see "Literals") and enumerations, or enums (See
"Enumerations").

2.3.1. Literals

As in VB 6, a literal, or literal constant, as it is sometimes called, represents a particular value in text. For example,
the number 32, as it appears in this sentence, is a literal constant. The value of 32 is always 32. Likewise, a quoted
string like "Hello World" is also a literal constant. Literal types include Booleans, integers, floating-point numbers,
strings, characters, and dates. Any number that is within the range of Integer types, such as 32, is an Integer
type by default.

For example, the following statements assign the literal A to ch1 and ch2, both of which are Char types:

 '---assign the character "A" to ch1 and ch2

 Dim ch1 As Char = "A"c

 Dim ch2 As Char = Chr(65)

 Dim longValue as Long = 100L

To represent the quotation character (") in a string variable, use the quotation character twice in succession, as in the
following snippet:

 Dim str As String

 ' assigns str to "He said: "VB is so cool!""

 str = "He said: ""VB is so cool!"""

To assign a date and time to a DateTime variable, use the # character:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To assign a date and time to a DateTime variable, use the # character:

 Dim timeNow As DateTime

 timeNow = #3/22/2005 10:01:19 AM#

To represent a large number, you can use the exponent symbol (E) to separate its mantissa (the significant digits;
3.8896, in the example below) and its exponent (a power of 10; 23, in this case):

 Dim f As Double

 f = 3.8896E+23

2.3.2. Enumerations

Sometimes it is easier to work with named constants than with numeric constants. Enumerations provide a powerful
tool for creating logically related collections of named constants, such as the names of the primary colors, or the
days of the week. For example, you might wish to represent the days of the week with numbers, such as 1 for
Monday, 2 for Tuesday, and so on.

But when it comes to writing a program, it will likely be more intuitive to use the names of the days instead. You
can do so by declaring an enumeration that associates each day of the week with a number.

VB 6 Tip: Enumerations are not new in VB 2005; VB 6 programmers should already
be familiar with enumerations.

The following shows the Week enumeration:

 Enum Week
 Sunday = 0

 Monday = 1

 Tuesday = 2

 Wednesday = 3

 Thursday = 4

 Friday = 5

 Saturday = 6

 End Enum

To use the enumeration, declare a variable of type Week:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the enumeration, declare a variable of type Week:

 Dim theWeek As Week

You can now assign the day of a week using a named constant:

 theWeek = Week.Monday ' or

 theWeek = 1 ' both are equivalent

Note that if you turn Option Strict On, the second statement above should be:

 theWeek = CType(1, Week)

You need to explicitly convert the Integer value to the enumeration. In "Type
Conversion," later in this chapter, you will learn about the Option Strict
statement in more detail.

If you do not explicitly perform the conversion, Visual Studio 2005 will underline the
number 1. You can position your cursor under the number and click on the down arrow
(see Figure 2-3). Visual Studio 2005 will suggest to you the remedy. This feature is
known as AutoCorrect.

To print out the month, you can use either of the following:

 MsgBox(theWeek) ' prints out 1

 MsgBox(theWeek.ToString) ' prints out Monday

Besides defining your own enumerations, there are also predefined enumerations with which you might already be
familiar. For example, the result from the MsgBox function is an enumeration called MsgBoxResult:

Figure 2-3. AutoCorrect in Visual Studio 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim response As MsgBoxResult

 response = MsgBox("Are you sure?", MsgBoxStyle.YesNo)

 If response = MsgBoxResult.Yes Then

 ' do something

 Else

 ' do something

 End If

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4. Strings

As in VB 6, VB 2005 String types are used to represent text and are a good example of a reference type, as you
saw in "Variables," earlier in this chapter. Strings in .NET are immutable, which means that once you've assigned a
value to a string variable, it cannot be changed. If the value of a string variable is changed, another string object is
created during runtime. Consider this example:

 Dim st As String

 st = "Hello"

 st &= " World!"

 MsgBox(st) ' prints "Hello World!"

In the above example, two string objects are involved: one for the initialization and one for the concatenation. This
problem gets worse if you are doing concatenation in a loop, like the following:

 Dim i As Integer, str As String = ""

 For i = 0 To 10000

 str &= i.ToString

 Next

A much more efficient way to manipulate strings is to use the StringBuilder class, located in the
System.Text namespace:

 Dim i As Integer, str As New _

 System.Text.StringBuilder()
 For i = 0 To 10000

 str.Append(i.ToString)

 Next

The "_" (underscore) character is the continuation character in Visual Basic (all
versions). It is used to break a long statement into multiple lines.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5. Arrays

As in VB 6, a VB 2005 array is a collection of variables in which each variable is identified by an index, like
mailboxes on a street or players on a team.

For example, the following declaration defines num1 as an array by adding open and closed parentheses to its
name:

 Dim num1() As Integer

Note that this declaration simply declares num1 to be an array; the actual size of the array is not known yet. To get
num1 to point to an actual array, use the New keyword:

 num1 = New Integer() {1, 2, 3}

num1 is now an array containing three members of Integer data type with values 1, 2, and 3.

Here are some other possible ways to declare and initialize an array:

 Dim num2(2) As Integer

 num2(0) = 1

 num2(1) = 2

 num2(2) = 3

The size of the array is one plus the number declared, as is the case in VB 6. In the above case, the valid index is
from 0 to 2, giving a total of 3 members. Note that the following is not allowed:

 Dim num2(2) As Integer = New Integer

 '---Not allowed since size is

 ' already indicated

You can also combine the declaration together with the initialization:

 Dim num3() As Integer = _

 New Integer() {1, 2, 3}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following are not allowed:

 Dim num3() As Integer = New Integer()

 '---Not allowed; missing {}

 Dim num3() As Integer = New Integer(3)

 '---Not allowed; missing {}

 Dim num3() As New Integer

 '---Not allowed, arrays cannot use New

 Dim num3() as New Integer() {1,2,3}

 '---Syntax error

Once an array is declared, you can change its size by using the ReDim keyword:

 Dim num4() As Integer() = New Integer() {1, 2, 3}

 ReDim num4(5)

VB 6 Tip: In VB 6, you can only ReDim an array if the array is initially declared as a
variable length array, as the following shows:

 ' array is fixed length

 Dim num1(3) As Integer

 ReDim num1(5) '---error

 ' array is variable length

 Dim num2() As Integer

 ReDim num2(5) '---OK

When an array is redimensioned, all its previous values will be lost. To retain the previous values, use the
Preserve keyword:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preserve keyword:

 ReDim Preserve num4(5)

VB 2005 adds the new To keyword. You can explicitly specify the range of an array using the To keyword:

 Dim num1(0 To 19) As Integer

Note that the To keyword is used only to make your code more readable; you cannot
alter the lower bounds of the array to, say, 1. The only bound must be 0.

Note that in VB 6, you can change the base of an array using the Option Base statement. However, VB 2005
does not allow you to change the base of an array.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6. Type Conversion

You perform a type conversion when you need to convert or assign values from one type to another. This is also
known in some circles as casting. Consider the following code:

 Dim num1 as Short = 25

 Dim num2 as Long

 num2 = num1

In this case, the VB 2005 compiler will automatically perform an implicit conversion from the Short type to the
Long type. Since all the values that could be stored by the Short type can fit into a Long type, this conversion is
known as a widening conversion and is a safe operation. The reverse of widening is a narrowing conversion, which
is a conversion from a data type that has a larger range to one with a lower range. Consider the following:

 Dim num1 As Long = 25

 Dim num2 As Short

 num2 = num1

In this example, num1 may potentially contain a value that will cause an overflow in num2 if the assignment takes
place. In VB 2005, you can restrict automatic data type conversion by using the Option Strict statement. By
default, in VB 2005, the Option Strict statement is set to Off.

VB 6 Tip: In VB 6, there is no Option Strict statement. Hence, the design
decision of VB 2005 was to turn Option Strict Off by default so that VB 6 code
can be migrated easily.

If you turn Option Strict On, you will need to perform an explicit conversion (or else the compiler will
complain):

 '---if option strict on

 num2 = CShort(num1)

 '--OR--

 num2 = CType(num1, Short)

You should preferably turn Option Strict On, so that any narrowing operations
you are doing are flagged. This will allow you to take action to catch potential errors
that might result from a narrowing conversion. Note that in VB 6, performing a
narrowing conversion will not set off a warning since the Option Strict statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

narrowing conversion will not set off a warning since the Option Strict statement
is not supported.

VB 6 Tip: The familiar type conversion functions like CInt, CStr, and CSng in VB
6 are still supported in VB 2005. In addition, VB 2005 supports the general purpose
CType function, which allows you to specify the data type to convert to.

When performing a narrowing conversion, you should always take care to ensure that the operation will not result in
a runtime error, such as performing the operation within a try-Catch block. See "Error-Handling," later in this
chapter, for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.7. Operators

VB 2005 supports the various operators shown in Table 2-2.

Table 2-2. Operators supported in VB 2005

Type Language
element Description

Arithmetic ^ Raises to the power of

 – Subtraction

 * Multiplication

 / Division

 \ Integer Division

 Mod Modulus (remainder)

 + Addition

Assignment = Assigns a value to a variable or property

 ^= Raises the value of a variable to the power of an expression and assigns the result
back to the variable (new in VB 2005)

 *= Multiplies the value of a variable by the value of an expression and assigns the
result to the variable (new in VB 2005)

 /= Divides the value of a variable by the value of an expression and assigns the result
to the variable (new in VB 2005)

 \= Divides the value of a variable by the value of an expression and assigns the integer
result to the variable (new in VB 2005)

 += Adds the value of an expression to the value of a variable and assigns the result to
the variable (works for strings as well) (new in VB 2005)

 -= Subtracts the value of an expression from the value of a variable and assigns the
result to the variable (new in VB 2005)

 &= Concatenates a String expression to a String variable and assigns the result to the
variable (new in VB 2005)

Comparison = Equal

 <> Not equal to

 < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 Like Compares a string against a pattern

 Is Compares two object reference variables

 IsNot Compares two object reference variables

Concatenation & Concatenates two strings

 + Concatenates two strings

Logical/bitwise
operations Not Logical negation on a Boolean expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 And Logical conjunction on two Boolean expressions, or bitwise conjunction on two
numeric expressions

 Or Logical disjunction on two Boolean expressions, or bitwise disjunction on two
numeric values

 Xor Logical exclusion operation on two Boolean expressions, or bitwise exclusion on
two numeric expressions

 AndAlso Short-circuiting logical conjunction on two expressions (new in VB 2005)

 OrElse Short-circuiting logical disjunction on two expressions (new in VB 2005)

Miscellaneous
operations AddressOf Creates a procedure delegate instance that references the specific procedure (new in

VB 2005)

 GetType Returns a Type object for the specified type (new in VB 2005)

When testing for the equality of numeric values, use the = operator. Use the Is operator to test the equality of
objects. Chapter 3 will discuss the use of the Is operator in greater detail.

VB 6 Tip: Of particular interest to VB 6 users is the new support for assignment
operators in Visual Basic 2005. In VB 6, to increment a variable, you must write code
that looks something like this:

 var = var + 1

In Visual Basic 2005, you can now rewrite the line as:

 var += 1

The IsNot operator is new in VB 2005. Often you need to negate the comparison of an object, such as:

 Dim obj As Button

 If Not obj Is Nothing Then

 ' obj contains an object reference

 .…

 End If

In this case, your code will be more readable if you use the IsNot operator:

 If obj IsNot Nothing Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If obj IsNot Nothing Then
 ' obj contains an object reference

 .…

 End If

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.8. Statements

As in VB 6, a complete program instruction in VB 2005 is called a statement. Programs consist of sequences of
statements. You end each statement with a carriage return.

In VB 2005, spaces, tabs, and carriage returns (newlines) are considered to be "whitespace." Extra whitespace is
ignored in VB 2005, as in VB 6, a feature that many consider an endearing (and forgiving) quality of the language.

2.8.1. Decision-Making (Branching) Statements

VB 2005 retains the traditional VB 6 statements for decision making but adds a few new wrinkles of its own.
Decision-making statements fall into two categories:

If-Then-Else

Select-Case

2.8.1.1. If-Then-Else

Just as in VB 6, in VB 2005, you make decisions using the If-Then-Else construct.

 If <condition> Then
 <statement(s)>

 Else
 <statement(s)>

 End if

Here is a short example:

 Dim day As Short = 4

 Dim dayofWeek As String

 If day = 1 Then
 dayofWeek = "Monday"

 End If

In the preceding code, if day is equal to 1, the string "Monday" is then assigned to the dayofWeek variable. For a
one-line statement, you can shorten the above code to:

 If day = 1 Then dayofWeek = "Monday"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, if you have multiple statements to execute if a condition is met, use of the End If statement is
mandatory. VB 2005 lets you pack a block of conditional code into a single line. For example, the following block
of code:

 If day = 1 Then

 dayofWeek = "Monday"

 currentTime = Now

 End If

is equivalent to this single line of code:

 If day = 1 Then dayofWeek = "Monday" : currentTime = Now

The grouping of several statements into a single line using the : character, as shown in the preceding snippet, is
useful in cases where you want to group multiple statements into a single line to improve the readability of your
code. The grouping feature is also useful for organizing a related group of variables.

You can also nest several If-Then-Else statements, as shown in Example 2-1.

Example 2-1. Nesting If-Then-Else statements

Dim day As Short = 4

Dim dayofWeek As String

If day = 1 Then

 dayofWeek = "Monday"

Else

 If day = 2 Then

 dayofWeek = "Tuesday"

 Else

 If day = 3 Then

 dayofWeek = "Wednesday"

 Else

 If day = 4 Then

 dayofWeek = "Thursday"

 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If day = 5 Then

 dayofWeek = "Friday"

 Else

 If day = 6 Then

 dayofWeek = "Saturday"

 Else

 If day = 0 Then

 dayofWeek = "Sunday"

 Else

 Msgbox("Number out of range")

 End If

 End If

 End If

 End If

 End If

 End If

End If

Note the matching End If statement for each If statement. If you have multiple nested If-Then-Else
constructs, you can simplify the above code using the ElseIf keyword (also supported in VB 6), as shown in
Example 2-2.

Example 2-2. Using the ElseIf keyword

If day = 1 Then

 dayofWeek = "Monday"

ElseIf day = 2 Then
 dayofWeek = "Tuesday"

ElseIf day = 3 Then
 dayofWeek = "Wednesday"

ElseIf day = 4 Then
 dayofWeek = "Thursday"

ElseIf day = 5 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ElseIf day = 5 Then
 dayofWeek = "Friday"

ElseIf day = 6 Then
 dayofWeek = "Saturday"

ElseIf day = 0 Then
 dayofWeek = "Sunday"

Else
 MsgBox("Number out of range")

End If

Note that if you use the ElseIf keyword, the number of End If statements is reduced to one (in this example).

Short-Circuiting
Short-circuiting is a compiler optimization technique that reduces the checking of redundant
conditions in a decision-making statement. In both the logical And and Or operations, both
conditions are evaluated regardless of their results. To short-circuit the And operation, you can
replace it with the new AndAlso operator so that if the first condition is false, the second
condition is not evaluated.

Likewise, to short-circuit the Or operations, you can use the OrElse operator. If the first condition
evaluates to true, the second condition is not evaluated.

VB 6 does not support short-circuiting when evaluating an expression. Hence, in order not to break
existing code, Microsoft added the AndAlso and OrElse operators in VB 2005 for short-circuiting.

2.8.1.2. Select…Case

If you have multiple conditions to test, it is often much easier (and more readable) to use the Select…Case
construct. Example 2-3 shows a rewrite of the previous code segment using the Select…Case construct.

Example 2-3. Using the Select…Case statement

Select Case day
 Case 1 : dayofWeek = "Monday"
 Case 2 : dayofWeek = "Tuesday"
 Case 3 : dayofWeek = "Wednesday"
 Case 4 : dayofWeek = "Thursday"
 Case 5 : dayofWeek = "Friday"
 Case 6 : dayofWeek = "Saturday"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 6 : dayofWeek = "Saturday"
 Case 0 : dayofWeek = "Sunday"
 Case Else : Msgbox(_
 "Number out of range")

End Select

2.8.2. Looping (Iteration) Statements

VB 2005 provides several looping constructs. They are all supported in VB 6 as well, unless otherwise noted:

 For

 For-Each

 While

 Do-While

 Do-Until

Each of the following examples (Example 2-4 through Example 2-8) prints a series of array members with indexes
ranging from 0 to 5 using one of the looping constructs supported by VB 2005.

Example 2-4. Using the For loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

For n as Integer = 0 To 5
 Console.Write(num(n))

Next

VB 6 Tip: In VB 6, you need to declare the loop variant (n) in a separate statement.
Only VB 2005 allows you to declare it and use it at the same time.

Example 2-5. Using the For-Each loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

For Each i As Integer In num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Each i As Integer In num
 Console.Write(i)

Next

Example 2-6. Using the While loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim j As Integer = 0

While j <= 5
 Console.Write(num(j))

 j += 1

End While

VB 6 Tip: In VB 6, you use the While-Wend statement to implement a While loop.

Example 2-7. Using the Do-While loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim k As Integer = 0

Do While k <= 5

 Console.Write(num(k))

 k += 1

Loop

Example 2-8. Using the Do-Until loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim m As Integer = 0

Do

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do
 Console.Write(num(m))

 m += 1

Loop Until m > 5

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.9. Functions and Subroutines

VB 2005 supports both functions and subroutines. Basically, support for functions and subroutines is the same in
VB 2005 as it is in VB 6. However, VB 2005 provides you with an additional way to return values in a function by
means of the new Return statement. VB 2005 programmers have three choices: they can write their own
functions, continue using most of the VB 6 functions they have come to know and love, or tap into the rich
functionality of the .NET Framework Class Library through the new My namespace (see "My Namespace," later in
this chapter).

Exiting or Skipping a Loop
You can exit a loop at any time by using one of the following statements:

 Exit For

 Exit Do

 Exit While

In VB 2005, you can transfer control immediately to the next iteration of a loop by using the
Continue keyword. Consider the following:

 For i As Integer = 0 To 10

 ' prints out all odd

 ' numbers from 0 to 10

 If i Mod 2 = 0 Then Continue For
 MsgBox(i)

 Next

The preceding code snippet prints out all the odd numbers from 0 to 10. Note that the Continue
keyword can also be used with a While loop and a Do-While loop.

2.9.1. Function

A function is a block of code that performs some operations and then returns a value. For example, the following
function Area takes in two input parameters, computes the area, and then returns the result:

 Public Function Area(ByVal length As Single, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function Area(ByVal length As Single, _
 ByVal breadth As Single) As Single

 Dim result As Single

 result = length * breadth

 Return result
 End Function

To invoke a function, you simply call the function name with the required argument(s):

 Dim areaOfRect As Single = Area(4, 5)

VB 6 Tip: In VB 6, only functions require the mandatory use of parentheses around the
parameter list. But in VB 2005, all functions or subroutine calls require parentheses
around the parameter list (even if the parameter list is empty).

The value returned by the Area function is then assigned to the areaOfRect variable.

In VB 6, you use the function name to return the value of a function, like this:

 Public Function Area(ByVal length As Single, _
 ByVal breadth As Single) As Single

 Dim result As Single

 result = length * breadth

 Area = result
 End Function

In VB 2005, you can either use the Return keyword or the function name to return the value of a function. Note
that when a Return statement is encountered in a function, the execution is immediately transferred back to the
statement that called it.

2.9.2. Subroutine

A subroutine is similar to a function, except that it does not return a value. For example, the following subroutine
PrintMessage accepts a single input parameter and prints a message box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintMessage accepts a single input parameter and prints a message box.

 Public Sub PrintMessage(ByVal str As String)

 MsgBox(str)

 End Sub

To invoke a subroutine, you simply call the subroutine name and pass it the required argument(s):

 PrintMessage("File deletion completed.")

VB 6 Tip: In VB 6, you can call the PrintMessage subroutine without using
parentheses to enclose the parameter list:

 PrintMessage "File deletion completed."

2.9.3. Passing Arguments

There are two ways to pass values to a subroutine or function:

By value

By reference

Let's take a closer look at these two methods in the following sections.

2.9.3.1. Passing by value

Consider the following subroutine:

 Public Sub ProcessValue(ByVal num As Integer)
 num += 1

 MsgBox("In ProcessValue(), num is " & num)

 End Sub

The ProcessValue subroutine takes a single input parameter: num. The parameter declaration is preceded by the
ByVal keyword.

By default, Visual Basic 2005 passes an argument via ByVal. In VB 6, the default is ByRef (see "Passing by
reference," next).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following statements call the ProcessValue subroutine and display a value at each stage:

 Dim num As Integer = 5

 MsgBox("Before ProcessValue(), num is " & num)

 ProcessValue(num) ' pass by value

 MsgBox("After ProcessValue(), num is " & num)

You will realize that the value of num remains at 5 before and after calling the ProcessValue subroutine.

As you can deduce, even though the variable num is modified within the subroutine, the change is not reflected
outside the subroutine. When you pass an argument by value, a copy of the variable is created to be used within the
subroutine. When the subroutine exits, the variable is destroyed.

2.9.3.2. Passing by reference

Consider the following subroutine:

 Public Sub ProcessValue(ByRef num As Integer)
 num += 1

 MsgBox("In ProcessValue(), num is " & num)

 End Sub

The ProcessValue subroutine takes in a single input parameter: num. The parameter declaration is preceded
with the ByRef keyword.

The following statements call the ProcessValue subroutine and display the value at every stage:

 Dim num As Integer = 5

 MsgBox("Before ProcessValue(), num is " & num)

 ProcessValue(num) ' pass by value

 MsgBox("After ProcessValue(), num is " & num)

In contrast to passing by value, when you pass an argument by reference, the subroutine receives a reference that
points to the location where the argument is stored in memory. When the variable is modified within the subroutine,
the change will affect the original variable. Hence, the change remains even after the subroutine exits.

2.9.3.3. Optional parameters

Consider the following definition of a modified PrintMessage subroutine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider the following definition of a modified PrintMessage subroutine:

 Public Sub PrintMessage(ByVal str1 As String, _

 ByVal str2 As String, _

 Optional ByVal str3 As String = "rocks!")
 MsgBox(str1 & str2 & str3)

 End Sub

This version of the PrintMessage subroutine takes three input parameters: str1, str2, and str3. The first
two are required; str3 is an optional parameter, as called out by the Optional keyword. For an optional
parameter, a default value is required.

Optional arguments must always be declared last in a subroutine definition. You can specify one or more optional
parameters.

VB 6 Tip: In VB 6, optional parameters are not required to have default values, but in
VB 2005, optional parameters must have default values.

When you call the subroutine, you pass the arguments in the order specified by the parameter list. The following
subroutine calls PrintMessage, passes the strings "Visual" and "Basic" as arguments, using the optional
arguments in one case but not in the others:

 '--- with and without optional arguments

 ' prints out Visual Basic rocks!

 PrintMessage("Visual ", "Basic ")

 ' prints out Visual Basic rocks!

 PrintMessage("Visual ", "Basic ",)

 ' prints out Visual Basic really rocks!

 PrintMessage("Visual ", "Basic ", "really rocks!")

You can also leave out the optional argument by using a comma (,).
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.10. Error Handling

There are two main types of coding errors that programmers generally have to deal with:

Compile-time errors

Runtime errors

In VB 2005, the background compiler kicks into action every time you type in a line of
code. It dynamically compiles your code and warns you of errors before you actually
compile it.

In the former case, the compiler detects a syntax error and the IDE handles the error and calls it to the attention of
the programmer so that immediate action can be taken to fix the problem. Runtime errors occur while an application
is running. It is this type of error that must (and can) be prevented.

To ensure that an application is as robust and bug free as possible, it is important to anticipate as best you can all of
the errors that might occur while your program is running. In VB 2005, error handling has been much improved
over VB 6. VB 2005 now supports both structured and unstructured error handling.

VB 6 Tip: In VB 6, error handling was unstructured, performed using the primitive On
Error and On Error Resume Next statements. The specific information about
an error that occurred can be retrieved from the Err object.

2.10.1. Try-Catch-Finally

In VB 2005, you can implement structured error handling using the TRy… Catch…Finally construct. Basically,
you place any code that could possibly trigger a runtime error, such as a disk access, into a TRy block. Any errors
that happen within the try block will be caught and serviced by the Catch block(s) that follow. This is where you
can take actions to correct the error or clean up any resources that you've allocated. The Finally block is
executed whether an error occur in the try block or not. The Finally block is a good place to perform
housekeeping chores such as closing a database or file connection.

Example 2-9 shows how you can use try…Catch…Finally statements to catch errors at multiple levels within a
procedure that performs an integer division of two numbers. Note the use of multiple Catch blocks to handle
exceptions that range from the specific (InvalidCastException and DivideByZeroException) to the
most general (Exception).

Example 2-9. Using Try…Catch…Finally statements to handle runtime errors

'===Error Handling===

Dim num1, num2, result As Integer

Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try
 num1 = InputBox("Please enter num1")

 num2 = InputBox("Please enter num2")

 result = num1 \ num2

 MsgBox(result)

Catch invalidCast As InvalidCastException
 MsgBox("Please enter numbers only")

Catch divisionByZero As DivideByZeroException
 MsgBox("Division by zero error")

Catch ex As Exception
 MsgBox(ex.ToString)

Finally
 MsgBox("This line is always printed.")

End Try

When the user enters a non-numeric input for one of the numbers, the InvalidCastException exception will
be raised and the message "Please enter numbers only" will be printed. If the user enters a 0 for num2, it results in a
division by zero error and raises the DivideByZeroException exception. The Exception exception is the
root of all exceptions and will catch any exceptions not caught by the earlier Catch statements. The statement
within the Finally block is always executed, regardless of whether any exception has been raised.

2.10.2. Throwing Exceptions

Besides catching errors using the try…Catch…Finally construct and the predefined exceptions available in the
.NET Class Library, you can also throw your own custom exceptions by using the Throw keyword. The Throw
keyword allows you to throw an exception so that you can handle the exception with the structured exception-
handling code.

Consider the following example:

 Public Function divide(ByVal num1 As Single, _

 ByVal num2 As Single) _

 As Single

 If num2 = 0 Then Throw New _
 Exception("num2 cannot be zero!")

 Return num1 / num2

 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this divide function, if num2 is zero, you will throw your own exception (using the Exception class) with
your own custom error message.

A user of this function can then catch the error like this:

 Try

 MsgBox(divide(4, 0))

 Catch ex As Exception

 MsgBox(ex.ToString)

 End Try

The variable ex will contain detailed information of the exception when it occurs. To display the error message,
simply use the ToString method.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.11. My Namespace

One of the problems faced by VB 6 programmers moving to VB 2005 is figuring out which class in the .NET
Framework is the appropriate class to use to solve a particular problem. To simplify the transition, VB 2005
provides the new My namespace, which encapsulates some of the most common functionalities that developers need
in their daily work.

VB 6 Tip: Most VB 6 predefined functions are still supported in VB 2005. They are
located within the Microsoft. VisualBasic namespace (which is automatically
referenced by default in all VB 2005 projects) and so you can continue to use your
favorite VB 6 functions without doing anything extra.

The My namespace exposes several areas of functionality, as shown in the IntelliSense pop-up in Figure 2-4.

Figure 2-4. The objects exposed by the My namespace

The aim of the My namespace is to provide direct access to commonly used libraries (in the .NET Framework) like
Resources that were previously difficult to access. The intuitive hierarchy of the My namespace provides a
mechanism that VB 2005 developers can use to easily navigate the .NET Framework class libraries and locate the
classes required to perform a particular task. For example, suppose you want to play an audio file in your
application. Which class should you use? Using the My namespace, it is easy to locate the right class to use. As it
turns out, the class to use can be found in My.Computer.Audio.Play!

The objects exposed by the My namespace are:

My.Application

Provides properties, methods, and events related to the current application.

My.Computer

Provides properties for manipulating computer components, such as audio, the clock, the keyboard, the
filesystem, and so on.

My.User

Provides access to the current user's security context. For Windows applications, the access is read-write,
while access for web applications is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

My.Forms

Provides properties for accessing an instance of each Windows Form declared in the current project.

My.Settings

Provides properties and methods for accessing the application's settings.

My.Webservices

Provides properties for creating and accessing a single instance of each XML web service referenced by the
current project.

The My namespace is not just a static shortcut to the class libraries in the .NET
Framework. Depending on your project type, the My.Forms, My.Resources,
My.Settings, and My. Webservices objects will dynamically display the
relevant objects and classes.

Here are some examples of how to use the My namespace. You can use the My.Application object to discover
the installation path of the current application:

 Dim appPath As String = _

 My.Application.Info.DirectoryPath

You can use the My.Computer object determine whether a file exists. At the same time, you can also play a
system audio sound:

 Dim exists As Boolean

 exists = _

 My.Computer.FileSystem.FileExists(_
 "c:\file.txt")
 If Not exists Then

 My.Computer.Audio.PlaySystemSound(_
 System.Media.SystemSounds.Exclamation)
 MsgBox("File does not exist")

 End If

You can also play a specific audio file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.Computer.Audio.Play(_

 "C:\WINDOWS\Media\chimes.wav")

File management is one of the most common tasks that developers need to perform. Using the
My.Computer.FileSystem object, you can access all the various file handling routines in one place (see
Figure 2-5).

Figure 2-5. The routines in the My.Computer.FileSystem object

Another useful object that resides in My.Computer is the Network object. With it, you can perform a task such
as downloading a file from the network and saving it locally. The following example downloads a .gif file from a
web site and saves to your local C: drive.

 My.Computer.Network.DownloadFile(_

 "http://www.oreilly.com/catalog/" & _

 "covers/aspnetadn.s.gif", _

 "c:\images\0596008120.jpg")

In a Windows application, you can access the collections of forms in your application and their properties with the
My.Forms object. For example, the following statements set the Opacity property of a form to 50%:

 My.Forms.Form1.Opacity = 0.5

 ' ---equivalent to---

 Form1.Opacity = 0.5

If you have multiple web services references in a project, you can find them all in the My.WebServices object.
For example, suppose you have added a web reference to the Translate web service in your application (see Figure
2-6) at http://www.webservicex.net/TranslateService.asmx?WSDL. The following example shows how to invoke
the translateService web service through the My.WebServices object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the translateService web service through the My.WebServices object:

 MsgBox(My.WebServices.TranslateService.Translate(_

 net.webservicex.www.Language.EnglishTOFrench, "Hello"))

In a web application, you can use My.User to determine whether a user is authenticated:

 Response.Write(My.User.IsAuthenticated)

Figure 2-6. Adding a web reference

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.12. Summary

In this chapter, you have been taken on a whirlwind tour of VB 2005 syntax and seen how it compares with that of
VB 6. If you are a VB 6 programmer, you'll be happy to have discovered that much of what you already know is
still supported (or enhanced) in VB 2005. The new My namespace is another productive feature that Microsoft has
built into the language.

In the next chapter, you will learn how you can use the object-oriented programming support found in VB 2005 to
become even more productive than you already are, and you'll learn why object orientation is one of the most
important additions to the Visual Basic language.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Putting Object-Oriented Programming to
Work
Not all object-oriented programming (OOP) concepts are new to Visual Basic. The language has had support for
classes and interface-based programming since Version 4, and, arguably, the drag-and-drop controls that have been
central to the Visual Basic programming paradigm since Version 1 are a sterling example of what reusable objects
can achieve. When you drop a Button control onto a VB 6 form, for example, you create a new instance of the
control in a way that is analogous to the way a class is instantiated in a traditional object-oriented language.
Likewise, when you set the Caption property of a Button or call the Show method of a form, you perform tasks
that are analogous to setting a property or calling a method on an object.

Still, it's hard to argue that VB 6 is a truly object-oriented language. It lacks support for such crucial features such
as inheritance, which allows one class to derive its properties and functionality from another. Were that
functionality present, for example, you would be able to create your own custom Buttons by deriving from the
Button control that ships with VB 6. Interface-based programming is so difficult in VB 6 that few programmers
have bothered to master it. VB 6 has no support for defining or working with interfaces, for example, and VB 6
programmers schooled in OOP principles must resort to virtual base classes to achieve the same result.

In the end, many—perhaps most—Visual Basic programmers have concluded that OOP is arcane and impossibly
difficult, and irrelevant to the development of the applications that VB 6 programmers implement every day.

Visual Basic 2005 changes everything, and in this chapter, I'll not only make the case that OOP is a tool that can
turbo charge your productivity as a developer, but I'll also show you how VB 2005 now makes it easy to
incorporate the best practices of OOP into your applications.

So, let the journey begin!
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1. Working with Classes and Objects

The advantage of OOP is that it facilitates code reuse. When you drag-and-drop a Button control onto a form, you
don't worry about how it works; that's been taken care of by the control's designer. In addition, you're free to use as
many Button controls on your form as you need and to modify each as required by changing its caption, color,
shape, and—through event handling—even behavior. You can think of OOP as a set of tools that brings the same
reusability you've grown accustomed to with VB 6 controls to the code you write to power your applications.

To understand OOP, you need to know about classes and objects. A class is like a template; it defines the essential
features of some thing. A good analogy to a class is your concept of a car. When you hear the word "car," you no
doubt quickly think of a vehicle with wheels, gas and brake pedals, a steering wheel, and so on before you think of
a specific make. An object, on the other hand, is an instance of a class. A BMW sitting on a lot is a specific make of
a car and, although it shares certain key features with every other car in the world, it is, like an object, a unique
version, or instance, of the more general car class. A BMW is related to the general notion of a car as an object is to
its defining class.

A car, regardless of its make, can be counted on to have a variety of properties, such as a color, some number of
doors, and seats that are made of leather or vinyl. A class also has properties, as you'll see shortly, and you can
assign them values and also find out what values have been assigned (though restrictions do apply).

A car also has certain behaviors and "knows" (in the hands of an experienced driver) how to accelerate, turn left,
turn right, decelerate, or come to a stop. Every car includes the controls you need to make it do your bidding, and
you expect to find them in more or less the same place regardless of make. A class has behaviors as well. These are
defined by its methods.

When you step on the brake pedal of your car, the braking system gets to work to slow the vehicle. As a driver, you
don't need to understand the inner workings of the braking system; you just need to know where to find the brake
pedal and when to step on it. Likewise, when you use a method in a class, you need not understand its inner
workings. All you need to know is how to invoke it, and what you can expect it to do.

3.1.1. Using the .NET Classes

Unlike VB 6, VB 2005 gets much of its work done by calling on the hundreds of classes provided by the .NET
Framework 2.0, rather than the predefined functions of the traditional Visual Basic runtime or older COM-based
libraries such as ADO (both of which are still supported in VB 2005). Collectively, these classes are known as the
.NET Framework Class Library, or FCL.

VB 6 Functions and the .NET Base Class
Library

Because VB 2005 is a language designed to work with the .NET Framework, some changes to the
language are necessary to maintain interoperability with the Common Language Runtime. You've
already seen many of these in Chapter 2.

The Common Language Runtime (CLR) is the heart of the .NET Framework. The CLR manages
code execution and provides application services such as security, memory management, and cross-
language integration.

In VB 2005, the .NET Framework includes new libraries that provide equivalent functionality to
many VB 6 keywords and functions (although these VB 6 functions are still available in VB 2005).

To see the list of changes to the VB 6 language and their equivalents in Visual Basic 2005, refer to
the MSDN Help Topic "Programming Element Support Changes Summary."

To see how application development (such as Windows and web development) have changed in
Visual Basic 2005, refer to MSDN Help Topic "Help for Visual Basic 6.0 Users."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Class Libraries are contained in multiple DLLs, known as assemblies, and loaded only when they're
needed. This has the advantage of reducing the time it takes to load a managed application. Due to the large number
of classes that ship with the .NET Framework, Microsoft has logically grouped them into namespaces. Namespaces
are used to arrange classes in groups based on the functionality they provide. For example, the System namespace
contains fundamental classes that define commonly used value and reference data types, events and event handlers,
interfaces, attributes, and processing exceptions.

Here are some other useful namespaces in the .NET Framework:

System

The System namespace contains fundamental classes and base classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes, and processing exceptions.

System.Collections

The System.Collections namespace contains interfaces and classes that define various collections of
objects, such as lists, queues, bit arrays, hash tables, and dictionaries.

System.Windows.Forms

The System.Windows.Forms namespace contains classes for creating Win-dows-based applications
that take full advantage of the rich user interface features available in the Microsoft Windows operating
system.

System.Web.UI

The System.Web.UI namespace provides classes and interfaces that allow you to create ASP.NET server
controls and pages that will appear in your web applications as user interface elements.

System.Data

The System.Data namespace consists mostly of the classes that constitute the ADO.NET architecture for
data access. The ADO.NET architecture enables you to build components that efficiently manage data from
multiple data sources.

When you create a Visual Basic project in Visual Studio 2005, the IDE ensures that references to the most
commonly used base class library assemblies are added before you begin to write code. However, if you need to use
a type that is in an assembly you've not already referenced, you will need to add the missing reference to your code.
The Add Reference dialog box in Visual Studio allows you to add an assembly without having to write code.

A .NET Framework Class Library assembly may contain several namespaces. For example, the System.Data.dll
assembly contains several namespaces for classes that perform data access. To use the relevant libraries in the
assembly, you need to use the Imports keyword to import them for use in your application, such as:

 Imports System.Data

 Imports System.Data.SqlClient

 Imports System.Data.OleDb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, if you want to create a SqlDataReader object that reads data from a Microsoft SQL server, you
would need to import the System.Data. SqlClient namespace with an Imports statement at the top of your
code.

Once you have correctly referenced the namespace, you can then reference a SqlDataReader object in your
code like this:

 Dim reader As SqlDataReader

Alternatively, you can use the SqlDataReader object by its fully qualified name, like this:

 Dim reader As _

 System.Data.SqlClient.SqlDataReader

The first approach is the recommended one, as it makes your code much more readable.

Commonly Referenced DLLs
Depending on the type of project you create, Visual Studio automatically adds references to the DLLs
you are most likely to need. For Windows applications, these include:

System.dll

System.Deployment.dll

System.Drawing.dll

System.Windows.Forms.dll

System.Data.dll

System.Xml.dll

For web applications, the following DLLs are referenced by default:

System.dll

System.Web.dll

System.Data.dll

System.Xml.dll

System.Drawing.dll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.2. Creating Objects

In the .NET world, applications are built with classes and objects, either your own or those provided by the .NET
Framework. To fully use the power of VB 2005, you need to understand how to work with them.

Since it's available, let's use the Stack class provided in the System.Collections namespace of the .NET
Framework to illustrate how you can get productive with OOP. You'll see how to define your own version later in
this chapter (see "Defining a Class," later in this chapter).

What Is a Stack?
A stack is a data structure that works based on the last in, first out (LIFO) principle. This means that
the last item put on the stack is the first item that can be taken off, like a physical stack of plates.

Stacks are used quite often in programming. They are used to store subroutine arguments and return
addresses. Stacks are also commonly used to evaluate mathematical expressions.

Adding an item to a stack is known as a push operation and removing an item from a stack is known
as a pop operation.

The .NET Framework includes a Stack class, which is located in the System.Collections
namespace.

VB 6 Tip: VB 6 does not provide a ready-to-use Stack class.

To drive a car, you need a real one, whether it's your own or a BMW you take for a spin at your local dealership.
Likewise, to use a Stack class, whether it's your own or the .NET version, you must instantiate—that is, create—
an instance of the class. Instantiating a class is, you might say, a classic example of reuse. From a single design, you
can create as many instances of a Stack as you need for your application, just as the designs embedded in an
automobile manufacturing plant are used to build multiple versions of the same car. You'll learn about customizing
classes later in this chapter.

There are several ways to instantiate a Stack object, so let's take a look at them.

You use the Dim keyword to declare that a variable—s1, in this case—is of type Stack, just as you did for
normal VB variables and constants in Chapter 2.

 Dim s1 As Stack

You use the New keyword to instantiate a Stack object (i.e., create an instance of the class):

s1 = New Stack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also declare and instantiate an object in a single statement. The following two statements, for example, are
equivalent:

 Dim s2 As New System.Collections.Stack

 ' or

 Dim s2 As System.Collections.Stack = New System.Collections.Stack

The parentheses following the name of a class are optional. (I will not be using parentheses for the class names in
the examples throughout this book.) The following two statements are the same:

Dim s1 As New System.Collections.Stack

Dim s1 As New System.Collections.Stack()

VB 6 Tip: In VB 6, assigning an object to a variable requires the use of the Set
keyword:

'---VB6---

Set obj = New Class1

This has confused VB 6 developers who are sometimes unsure of when to use the Set
keyword.

With VB 2005, Microsoft has eliminated this confusion, since the Set keyword is no
longer used for object assignment:

'---VB2005---

obj = New Class1

Note that if you precede the previous statement with the Set keyword, Visual Studio
2005 will automatically remove it.

To use the Stack object, you could push in some values via the Push method:

'---Push items into the stack---

s1.Push("Hello ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s1.Push("Hello ")
s1.Push("Visual ")
s1.Push("Basic ")
s1.Push("2005")

Get a count of the number of items in the Stack object by using the Count property:

'---Get the item count in the stack---

Dim itemCount As Integer = s1.Count

You could also pop the items out of the Stack object by using the Pop method:

'---Pop the items out from the stack---

For i As Integer = 0 To s1.Count - 1

 MsgBox(s1.Pop()) ' strings are printed in the
 ' reverse order they were pushed

Next

Example 3-1 shows the complete code needed to use the Stack class.

Example 3-1. Using a Stack object

Dim s1 As New System.Collections.Stack

'---Push items into the stack---

s1.Push("Hello ")

s1.Push("Visual ")

s1.Push("Basic ")

s1.Push("2005")

'---Get the item count in the stack---

Dim itemCount As Integer = s1.Count

'---Pop the items out from the stack---

For i As Integer = 0 To s1.Count - 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For i As Integer = 0 To s1.Count - 1

 MsgBox(s1.Pop()) ' strings are printed in the

 ' reverse order they were pushed

Next

3.1.3. Comparing Objects

If you want to check to see whether two variables are referencing the same object, you need to use the Is operator
(the = operator cannot be used), as demonstrated in Example 3-2.

Example 3-2. Comparing two objects

 Dim s1, s2 As System.Collections.Stack

 s1 = New System.Collections.Stack

 s2 = New System.Collections.Stack

 If s1 Is s2 Then
 MsgBox("objs are the same")

 Else

 '---this will be printed---

 MsgBox("ojs are not the same")

 End If

 '---Assigning s2 to s1; essentially s1 and s2 will

 '---now point to the same object

 s1 = s2

 If s1 Is s2 Then
 '---this will be printed---

 MsgBox("objs are the same")

 Else

 MsgBox("objs are not the same")

 End If

Note that the Is operator is used only for comparing object references (if they are all referencing the same object);
it cannot be used to compare the values of objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides the Is operator, you can also use the Equals method (available on all .NET objects) to compare the
equality of two objects (that is, if the two objects are pointing to the same reference), like this:

 If s1.Equals(s2) Then
 MsgBox("objs are the same")

 Else

 MsgBox("objs are not the same")

 End If

…

Shared Methods
Typically, you need to create an instance of a class before you can invoke its methods, as you've seen
in the preceding example. However, there are exceptions to this rule. As an example, consider the
File class in the System.IO namespace. The File class contains methods for file manipulation,
such as copying, deleting, writing, reading, etc. To use the File class, you don't need to create an
instance of the class; you simply invoke its method directly:

'---copies a file---

System.IO.File.Copy("C:\File1.txt", "C:\File1.bak")

The methods in the File class are known as static methods, the general term used by most object
oriented languages, or as shared methods, the term and keyword used by VB 2005. A shared method
can be invoked without creating an instance of its class.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2. Reusing and Customizing Classes

The use of classes in OOP allows you to build an application from discrete components, each of which encapsulates
the variables and methods needed to carry out specific tasks. But as powerful as classes are for designing and
implementing applications, the ability to reuse and customize them is what makes support for OOP such a powerful
tool in Visual Basic 2005.

In this section, you'll see how you can create your own classes by modifying those provided by the .NET
Framework. The same principles can also be applied to class libraries that you or your teams develop. In addition,
you'll learn about the new generic classes in Visual Basic 2005 that are designed from scratch to be flexible in the
range of types they accept.

3.2.1. Using Inheritance

One of the fundamental concepts of OOP is inheritance. Inheritance facilitates code reuse and allows you to extend
and use the code that you have already written. Simply put, inheritance is the ability to extend the functionality of
classes, and is the basis of the several techniques we discuss in this section.

The beauty of inheritance is that you can define all the common logic you need in a single master class—typically
called the base or parent class—and then use inheritance to extend its logic in a derived class or child class and
customize it to suit your own needs. In this section, you will learn how you can inherit from the .NET Stack class,
and in the next section you'll learn how you can customize it.

First, let's create a new Windows application using Visual Studio 2005. Name the project MyStackApp. Add a
new class item to MyStackApp by right-clicking on the project name in Solution Explorer and then selecting Add

 New Item…. Select Class and name the class MyStack.vb.

Double-click the MyStack.vb file in Solution Explorer to open it for editing. In the MyStack class, use the
Inherits keyword to inherit from the Stack class, as shown in the following snippet:

Public Class MyStack

 Inherits System.Collections.Stack
End Class

By using the Inherits keyword, you specify that your MyStack class is to inherit all the methods and
properties of the Stack class of the .NET Class Library. You can use MyStack in place of the Stack class. To
do so, double-click on the default Form1 in Solution Explorer and then double-click on the design pane to generate
the Form_Load event of Form1, as shown in Example 3-3. Enter the code as shown in bold.

Example 3-3. Replacing the Stack class with the MyStack class

 Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 Dim ms1 As New MyStack
 ms1.Push("Hello ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ms1.Push("Hello ")
 ms1.Pop()
 End Sub

3.2.2. Customizing a Method

In the last section, you saw how to create a customized class by deriving MyStack from the .NET Stack class
and how to use it just like the Stack class. However, you may wish to tweak some of the methods available in the
MyStack class to suit your own purposes. Like the car designer, you might not be pleased with the performance of
the braking system of the previous model. Hence, you would want to redesign and fine-tune the braking system for
the new model.

Suppose you want to use a Stack to add two numbers. It turns out that the Push and Pop methods of the .NET
class are not optimal for this task. Consider the following code snippet:

 s1.Push(5)

 s1.Push("S")

 MsgBox(s1.Pop + s1.Pop)

The second Push method has pushed a String instead of an Integer onto the Stack. When you try to pop the
two values (5 and S) from the stack and perform a mathematical operation on them, you will get a runtime error.
This vulnerability arises from the fact that the Push method of Stack accepts an Object parameter. But of
course, every .NET type is an object, so Push will accept any data type. If you know ahead of time that your stack
will be used for arithmetic operations, it would be useful to restrict the parameters Push will accept to numbers
only.

Changing the behavior of the inherited Push method can be done by overriding it. You override a method in VB
2005 by defining a new version that suits your purposes and by indicating that you want to use this version instead
of the inherited version with the Overrides keyword, as shown in Example 3-4.

The first thing you will do is override the Push method in the Stack class. Recall that the Push method does not
check for the type of the data pushed onto the stack. Assuming that you want the MyStack class to deal only with
numeric values, you need to override the implementation of the original Push method with the Overrides
keyword. Now the base method Push is no longer accessible.

Example 3-4. Overriding the Push method of Stack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Overrides Sub Push(ByVal obj As Object)
 If Not IsNumeric(obj) Then
 Throw New Exception("Non-numeric value in Stack")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 MyBase.Push(obj)
 End Sub
 End Class

The new Push method now checks to ensure that the value pushed into the stack is a numeric value; if it is not, the
method throws an exception at runtime:

ms1.Push(5)

ms1.Push("S") ' runtime error

If the value passed to the Push method is a number, the method calls the Push method of the base class, Stack.
The MyBase keyword refers to the base class from which the current class is derived, and its inherited members.

3.2.3. Adding Alternate Versions of a Method to a Class

Your class can offer alternate version of the same method to its users. Adding alternate versions of the same method
to a class is known as overloading and is yet another useful object-oriented technique available to VB 2005
programmers.

Let's return to our stack example. In the previous section, you overrode the implementation of the original Push
method so it will accept only numeric values. One drawback of this technique, however, is that IntelliSense will not
explicitly show that numeric values are accepted (see Figure 3-1.).

Figure 3-1. IntelliSense displaying the method signature

A better way would be to overload the Push method. With overloading, you can provide users with two versions of
Push, each with a different signature. The signature of a method is determined by its parameter list. Two
signatures are different when the data types or number of parameters in the parameter list are different. Example 3-5
shows how to add a new version of Push to MyStack.

Example 3-5. Overloading the Push method of MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Overrides Sub Push(ByVal obj As Object)

 If Not IsNumeric(obj) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Throw New Exception("Non-numeric value in Stack")

 End If

 MyBase.Push(obj)

 End Sub

 Public Overloads Sub Push(ByVal obj As Integer)
 MyBase.Push(obj)
 End Sub

 End Class

Overriding Versus Overloading
So what is the difference between Overrides and Overloads? Overriding means you are
changing the implementation of a method, while overloading means adding new methods with the
same name but of different signatures.

The Overloads keyword in Example 3-5 specifies that a procedure is a new version of an existing procedure with
the same name. In addition to providing users with a version that accepts only integers, IntelliSense will now show
that the Push method has two overloaded signatures, as shown in Figure 3-2.

Figure 3-2. Push has two overloaded signatures

3.2.4. Adding a New Method

Suppose you want your new car to be available to people with special needs, such as handicapped drivers. These
drivers may not be able to use the conventional brake pedals, and hence, you might need to add a special brake
pedal to the steering wheel.

You can add new methods to a derived class to add functionality that's not there. For example, if you want users to
push strings onto the Stack, you can define special string-friendly methods for the Push and Pop operations, as
shown in Example 3-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB Black Belt: Hiding a Method
Although the Overloads keyword in VB 2005 lets you define two different versions of the Push
method of MyStack, because the older version is still available, it's possible to push in a non-
numeric value into the Stack and cause a runtime error. A better way to prevent users from
assigning a non-numeric value into the Stack would be to totally remove the original Push method
that accepts the Object parameter. You can do this by using the Shadows keyword:

Public Class MyStack

 Inherits System.Collections.Stack

 Public Shadows Sub Push(ByVal obj As Integer)
 MyBase.Push(obj)

 End Sub

End Class

The Shadows keyword will hide all other methods of the same name. In this case, the Push method
now has only one signature, as confirmed by IntelliSense in the figure.

Example 3-6. Adding new Push and Pop methods to MyStack

Public Class MyStack
 Inherits System.Collections.Stack

 Public Sub PushStr(ByVal obj As String)
 MyBase.Push(obj)
 End Sub

 Public Function PopStr() As String
 Return MyBase.Pop
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function
End Class

You can use the new methods as follows:

Dim ms1 As New MyStack

ms1.PushStr("Hello")

MsgBox(ms1.PopStr())

3.2.5. Customizing Initialization

The purpose of a constructor is to initialize the properties of an object when it is instantiated (i.e., created).

Constructors are optional for a class.

A constructor is a subroutine with the reserved name New. You can have as many constructors as you need so long
as each has a different signature. Let's add two constructors to the MyStack class, as shown in Example 3-7.

Example 3-7. Adding a custom constructor to MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Sub New()
 '---uses the base class constructor

 MyBase.New()

 End Sub

 Public Sub New(ByVal items() As Object)
 For i As Integer = 0 To items.Length - 1

 MyBase.Push(items(i))

 Next

 ' the following will also work:

 ' MyBase.New(items)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 …

The first constructor does not accept an input parameter, and is hence known as the default constructor (or empty
constructor) of the class. The second constructor takes one parameter, items, which is then used to populate the
Stack.

You can now use either of the two constructors to create an instance of the MyStack class, and the second
constructor also initializes its content in a single statement, as shown in the following snippet:

Dim itemsArray() As Object = {"Hello", "World"}

Dim ms1 As New MyStack

Dim ms2 As New MyStack(itemsArray)

MsgBox(ms2.PopStr()) '---shows "World"

MsgBox(ms2.PopStr()) '---shows "Hello"

VB 6 Tip: The Sub New procedure in VB 2005 initializes objects when they are
instantiated; it replaces the Class_ Initialize method used in VB 6 and earlier
versions. Also, the Sub New procedure is called only when an object is instantiated; it
cannot be called directly. The Class_Initialize event does not accept any
arguments.

3.2.6. Adding Properties

The .NET Stack class exposes a number of properties, such as Count, IsSynchronized, and SyncRoot.
For example, the Count property returns the number of items in the Stack. You can add additional properties to
the MyStack class by using the Property keyword. For example, you might want to expose a new
CountNumeric property to return the number of items in the stack that are of numeric type. You may also want
to add a Description property to add a description to the class. To do so, add the code shown in bold in
Example 3-8.

Example 3-8. Adding properties to MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Private _Description as String

 ReadOnly Property CountNumeric() As Integer
 Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get
 Dim counter As Integer = 0
 For Each o As Object In Me
 If (IsNumeric(o)) Then
 counter += 1
 End If
 Next
 Return counter
 End Get
 End Property

 Property Description() As String
 Get
 Return _Description
 End Get
 Set(ByVal value As String)
 _Description = value
 End Set
 End Property

 …

ReadOnly and WriteOnly Properties
There are times when you want to allow users to read the values of a property only (and not set it). To
do this, you use the ReadOnly keyword as a prefix to the property definition. Note that if you use
this keyword, you cannot use a Set accessor block:

ReadOnly Property CountNumeric() As Integer

 Get

 …

 …

 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Likewise, you can make a property write-only (so that people can set its value but not read it). You
can do so using the WriteOnly keyword. Likewise, you cannot have the Get accessor block if you
use this keyword:

WriteOnly Property CountNumeric() As Integer

 Set

 …

 …

 End Get

End Property

For a read/write property, you need both the Set and Get accessors. If you forget either one, Visual
Studio 2005's new AutoCorrect feature will gladly help you to fix the missing accessor (see figure).

The Set and Get accessors that you define allow you to assign and retrieve values from the properties of a class.
Notice that the values set for the Description property are stored internally in the private variable
_Description.

The Private access modifier that precedes the declaration for _Description restricts the use of the variable to
within the class. That is, they are not visible to code outside the class.

Using the Dim keyword within a class has the same effect as using the Private
keyword. The following statements are equivalent:

Private _Description as String

 ' same as

Dim _Description as String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's a code snippet that uses the Set property procedure to assign values to the CountNumeric and
Description properties and the Get property procedure to display them:

Dim itemsArray() As Object = {"Visual", "Basic", 2005}

Dim ms1 As New MyStack(itemsArray)

ms1.Description = "This is my own Stack class!"

MsgBox(ms1.CountNumeric) ' displays 1

MsgBox(ms1.Description) ' displays "This is my own Stack class!"

With…End With
You can use the new VB 2005 With…End With construct to perform a series of operations on a
specified object without repeatedly typing the name of the object. For example, the above could be
rewritten as:

With ms1

 MsgBox(.CountNumeric)

 MsgBox(.Description)

End With

VB 6 Tip: In VB 6, you can use default properties for objects. For example, you can
simply assign a string to the TextBox control, like this:

TextBox1="Hello World"

' equivalent to…

TextBox1.Text="Hello World"

This is because the Text property is the default property. The downside to using this
approach is that the code is now less readable; it is much better to explicitly specify the
property.

In VB 2005, default properties for controls are no longer supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.7. Weakly Typed Versus Strongly Typed Variables

When you declare a variable to be of a certain data type, it is said to be strongly typed. For example, a variable may
be declared to be of Integer type. When you declare the data type of this variable, the Visual Basic compiler
performs memory allocation for the Integer data type as well as optimizations before the program is executed.

However, there are times when using a strongly typed variable isn't possible. As an example, the Push method of
the Stack class accepts an item of type Object (see Figure 3-3).

Figure 3-3. Pushing an Object into a Stack

You can assign the value that you have popped from the Stack into an Object variable:

Dim obj As Object

obj = s1.Pop

Because you can't determine what data type obj will be assigned to until runtime, in this case, obj is known as
weakly typed.

The downside to using weakly typed variables is that they are less efficient (and thus slower), as doing the type
conversion at runtime chews up resources. Also, a code editor feature like IntelliSense in Visual Studio will not be
able to take advantage of features accorded by early binding. Figure 3-4 shows that IntelliSense does not know the
properties and methods available in obj until runtime.

Figure 3-4. IntelliSense has no clue what data type obj is assigned to

However, you can perform an explicit type conversion for IntelliSense to display the properties and methods
available in obj using the CType function (see Figure 3-5).

Figure 3-5. Performing an explicit type conversion using the CType function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast, in the MyStack class, you have added the PushStr method, which takes in a string data type, and the
PopStr method, which returns a string data type. As the type of the variable is known before the program is run,
the str variable is said to be strongly typed:

Dim ms1 As New MyStack

ms1.PushStr("This is a string")

Dim str As String

str = ms1.PopStr

While using strongly typed variables has its disadvantages over weakly typed variables, using a weakly typed
variable is useful in cases where you are writing generic code (such as the Stack class) and won't know the type of
object you are working with until runtime.

3.2.8. Using a Generic Class

With a class like Stack, which has many uses, it would be great if you could specify the data types to be handled
by a particular instance at the time the Stack object is created.

VB 2005 now supports a new feature known as generics and provides a number of so-called generic classes that
anticipate, by design, that they will be customized before they are instantiated. Using generics, you can define
classes that let you specify the data types a class accepts when the class is instantiated.

To see the benefits of generics, let's revisit the Stack class that we have been discussing in the last few sections.
Without generics, you are likely to find that you need to write multiple versions of the Stack class if you want the
class to work with more than one data type—say, integers, strings, or a complex Employee object. Using generics,
you can now defer specifying the type of data that you want to use for your Stack until you actually instantiate a
Stack object in your program. You'll find a new generic Stack class in the
System.Collections.Generic namespace of the .NET Framework Class Library that allows you to specify
during design time the data type you want to use. Here's how to declare that you want to push and pop integers on a
stack:

Dim s2 As New _

 System.Collections.Generic.Stack(Of Integer)
s2.Push(5)

s2.Push(6)

s2.Push("Some string…") ' error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The System.Collections.Generic namespace contains generic versions of
other data structures as well, such as List, Queue, Dictionary, and more.

By using the new Of keyword, you indicate the type of data you want to use with that class.

If you turn Option Strict On, the code editor will underline the third Push
method call, indicating that it is an error to push in a string data type.

If you want to use the Stack class for String data types, you simply do this:

Dim s2 As New _

 System.Collections.Generic.Stack(Of String)
s2.Push("VB2005 ")

s2.Push("supports ")

s2.Push("Generics")

Besides using the generic classes in the .NET Framework, you can also write your own generic classes, a topic that
is beyond the scope of this book. (For additional information, see Programming Visual Basic 2005, O'Reilly.)

3.2.9. Splitting Up the Physical Implementation of a Class

VB 2005 supports a new .NET 2.0 enhancement: partial classes. In a nutshell, with partial classes, you can now
split your class definition into multiple physical files. Logically, partial classes do not make any difference to the
compiler. During compile time, the Visual Basic compiler simply groups all the various partial classes together and
treats them as a single entity.

Advantages of Generics
Based on what has been discussed, it's not difficult to see the following advantages of using generics:

Type safety

Generic types enforce type compliance at compile time and not runtime (as in the case of
using Object). This reduces the chances of data type conflict at runtime.

Performance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data types to be used in a generic class are determined at compile time, hence, there is no
need to perform type casting at runtime, which is a computationally costly process.

Code reuse

Since you only need to write the class once and customize it to use with the various data
types, there is a substantial amount of code reuse.

One of the greatest benefits of partial classes is that they allow a clean separation of business logic and the user
interface (in particular, the code that is generated by the visual designer in Visual Studio 2005).

Using partial classes, the UI code can be hidden from the developer, who usually has no need to access it anyway.
Partial classes also make debugging easier, as the code is partitioned into separate files.

Reasons to Use Partial Classes
Partial classes allow programmers on your team to work on different parts of a class without needing
to share the same physical file. While this is useful for projects that involve big class files, be wary: if
you find your class files getting too large, it may well signal a design fault, and refactoring may be
required.

The most compelling reason for using partial classes is to separate your application business logic
from the designer-generated code. For example, the code generated by Visual Studio 2005 for a
Windows Form is kept separate from your business logic. This will prevent developers from messing
with the code that is used for the UI. At the same time, it will prevent you from losing your changes
to the designer-generated code when you change the UI.

Figure 3-6 shows the code behind of a Windows Form: Form1. Notice that no hidden Windows designer-generated
code appears on the page (as would be visible in Visual Studio .NET 2003). The absence of that section allows you
to concentrate on writing the business logic of your application and reduces the chances that you may inadvertently
modify the code generated by the designer.

Figure 3-6. The code behind of Form1

If for some reason you need to access the Windows designer-generated code, you can go to Solution Explorer and
click on the Show All Files button. There you will find a file named Form1.Designer.vb (see Figure 3-7) under the
Form1.vb file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-7. Revealing the Windows designer-generated code in Solution Explorer

Figure 3-8 shows the content of the Form1.Designer.vb file.

In VB 2005, all of the partial classes except one must use the Partial keyword prefix; only one class may omit
it. However, it is recommended that you always prefix all your partial classes with the Partial keyword. At least
this will give you a visual clue that part of the implementation of the class lies somewhere else, and this is definitely
useful when it comes to debugging.

Figure 3-8. The content of the Windows designer-generated code

While partial classes allow you to split the definition of a class into multiple files, you
cannot mix languages. That is, all partial classes must be written in the same language.
Besides using the Partial keyword for classes, you can also use it for structures and
interfaces.

If your class implements many interfaces (see "Creating Contracts with Implementers Using Interfaces" for more
details on interfaces), it is a good idea to use a partial class to contain the implementation for each interface.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3. Designing Your Own Classes

While the My objects and the hundreds of types in the .NET Framework Class Library provide ready-to-use
solutions to many of the tasks you need to perform in a Visual Basic application, at some point you'll need to create
your own classes. In this section, you'll see how to do that. You'll also see how you can control access to the
variables and methods in your classes, and when it might make sense to use a Structure—a "light-weight" class
—instead.

3.3.1. Defining a Class

Before you build a car, you need a design. The design of a car specifies its properties, its behaviors, and how it
works internally. Likewise, to design a class of your own, you need to specify the methods and properties, as well
as the internal workings of the class.

To see how to define a class, let's create a Stack class of our own. In the following steps, you'll use the Visual
Studio 2005 class designer to get the work done.

1. Using Visual Studio 2005, create a new Windows application. Name the project StackClassApp.

2. Add a new class file to the project by right-clicking on the project name in Solution Explorer and then
selecting Add New Item…. Select the Class template and name it StackClass.vb. Click Add (see
Figure 3-9).

Figure 3-9. Adding a new class file to the project

3. The StackClass.vb file will now be opened in Visual Studio 2005, ready to be edited. You can either define
your class by coding directly into the open StackClass.vb file, or use the Class Designer to do the job. Let's
first take a look at the Class Designer.

The Class Designer is not included in the Visual Basic 2005 Express Edition. If
you are using Visual Basic 2005 Express Edition, please skip to Step 6.

4. To use the Class Designer, right-click on StackClass.vb in Solution Explorer and then select View Class
Diagram, as shown in Figure 3-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-10. Invoking the Class Designer

5. The Class Designer will display a rectangular box showing the empty StackClass class. To add methods,
properties, and more to the class, right-click on the class rectangle and select Add, as shown in Figure 3-11,
and select the elements you wish to add.

Figure 3-11. Modifying the class

Figure 3-12 shows what the completed class diagram for StackClass might look like after you've added
the methods, properties, and other elements called for in your design. You can use the Properties window to
customize each element (such as access mode, data type, etc.). However, when defining a relatively simple
class, like the StackClass, it is faster to type the code in directly, as you'll do in the next step. The Class
Designer is useful when you have several classes and you want to view their relationship visually.

Figure 3-12. Adding the various methods, properties, and fields to the StackClass class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Let's abandon the Class Designer, open StackClass.vb, and simply type the code shown in Example 3-9 into
the file.

Example 3-9. The definition for the StackClass class

Public Class StackClass
 '---stores the items in the stack

 Private element() As Object

 '---indicate the current stack pointer

 Private pointer As Integer

 '---instantiates and specify the default size of the stack

 Public Sub New()

 ReDim element(100)

 pointer = 0

 End Sub

 '---instantiates and specify the size of the stack

 Public Sub New(ByVal size As Integer)

 ReDim element(size - 1)

 pointer = 0

 End Sub

 '---push an item into the stack

 Public Sub Push(ByVal item As Object)

 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 '---pop an item from the stack

 Public Function Pop() As Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function Pop() As Object

 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

 '---return the number of items in the stack

 ReadOnly Property count() As Integer

 Get

 Return pointer

 End Get

 End Property

End Class

Observe that StackClass contains the following elements:

Two private variables (element and pointer) that are used internally to store the items in a stack. The
Private keyword indicates that the variables are visible only within the class and cannot be accessed
outside the class.

Two constructors (New) that initialize the object when it is instantiated.

Two methods (a subroutine and a function) for pushing (Push) and popping (Pop) items in and out of the
stack. The Public keyword indicates that the methods are accessible outside the class.

One read-only property that returns the number of items in the stack.

3.3.2. Controlling Access to Class Members

Variables, classes, and members can be declared to be public or private using the Public and Private access
modifiers. Access modifiers restrict the scope of member variables in a class. For example, a variable defined with
the Private keyword is visible only within the class in which it is defined. A Public variable, on the other
hand, is visible outside the class. Declaring a private variable is useful in cases where you do not want users who
are using your class to know about the detailed workings of your class.

There are two more access modifiers that you can use:

Protected

Friend

To see how these two access modifiers affect the scope of variables, classes, and member variables, consider the
following example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose you have the following class definition:

Public Class BMW

 Friend var1 As Integer
 Protected var2 As Integer
 Private var3 As Integer
 Public var4 As Integer
End Class

Within the class, you have four variables each declared with a different access modifier. Create an instance of class
BMW and try to assign values to the member variables:

Dim objA As New BMW

objA.var1 = 1

objA.var2 = 2 ' Error; not allowed

objA.var3 = 3 ' Error; not allowed

objA.var4 = 4

You will notice that var2 and var3 are not accessible because:

var2 is declared with the Protected access modifier. The Protected access modifier works like the
Private access modifier, which means that the variable is not visible outside the class. However, the
difference between Protected and Private is that variables declared Protected are visible within
their own class or subclasses. You will see more of this in the next example.

var3 is a private variable.

Consider the following example, where class MiniCooper inherits from class BMW:

Public Class MiniCooper

 Inherits BMW

 Public Sub doSomething()

 MyBase.var1 = 1

 MyBase.var2 = 2

 MyBase.var3 = 3 'Error; not allowed

 MyBase.var4 = 4

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Within class MiniCooper, you have a method doSomething that tries to access the four variables in the base
class. Notice that var2 is accessible but var3 is not. This is because:

var2 is visible within the subclasses of class BMW. Hence, var2 is accessible.

var3 is a private variable.

In the two examples above, you may notice that var1 is visible all along. Basically, the Friend and the Public
access modifiers are similar with the exception that Friend variables are accessible from within their declaration
context and from anywhere else in the same program (but not outside the program).

You can combine the two access modifiers, Protected and Friend, together to give a variable both protected
and friend access. For example, here var2 is now declared as Protected Friend:

Public Class BMW

 Friend var1 As Integer

 Protected Friend var2 As Integer
 Private var3 As Integer

 Public var4 As Integer

End Class

This means that var2 is visible within the subclass and also visible within the same program. The following code
example shows that now var2 is visible within the same program:

Dim objA As New BMW

objA.var1 = 1

objA.var2 = 2 ' Allowed!
objA.var3 = 3 ' Error; not allowed

objA.var4 = 4

3.3.3. Aggregating Data Types Using a Structure

Sometimes you need to represent a piece of information using multiple data types, but don't necessarily want the
overhead of defining a class and managing an object. For example, suppose you need to maintain information about
the different types of car owned by a company, such as model and year of registration. In this case, you can either
use a class or a structure to aggregate all the required information.

In VB 2005, a structure is implemented using the Structure keyword. In VB 6, you define structure using the
Type…End Type syntax, which is no longer supported in VB 2005.

Example 3-10 shows the definition for a Structure named Car.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-10. Declaring a structure

Structure Car
 Public Model As String

 Public Year As UShort

End Structure

Note that in a Structure, you can define properties and methods just like in a class.

To use a Structure, you simply declare variables to be of the structure type, as shown in Example 3-11.

Example 3-11. Using structures

Dim Car1, Car2 As Car

Car1.Model = "Nissan Maxima"

Car1.Year = 2004

Car2 = Car1

Car2.Model = "Toyota Camry"

Example 3-11 creates two variables of type Car. The first variable is initialized and then copied to the second
variable. Because structure is a value type, changes to the second variable do not affect the first member (see Figure
3-13).

Figure 3-13. Memory storage for a structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So, what is the difference between a class and a structure? A class is a reference type, which means that the actual
storage of an object is on the heap with the object variable on the stack pointing to it. A structure, on the other hand,
is a value type, and its value is stored directly on the stack.

You should use a structure when:

You have a small amount of data.

You perform a large number of operations on each instance; in this case, performance is much faster than
using a class.

You have no need to inherit the structure.

A class is preferred when:

You need to use inheritance for complex data types.

You need to initialize one or more members at creation time.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4. Controlling How Classes Are Implemented

Although you can generally create custom versions of any of classes that you write or find in the .NET Class
Libraries, there will be times when you'll want to control the outcome, especially when others will use your work.
There are also times when you'll want to prove to .NET that your class has fulfilled the terms of a contract that
promises a certain level of functionality and is therefore qualified to handle particular assignments.

3.4.1. Allowing or Preventing Overridable Methods

In the earlier part of this chapter, you saw how to use the Stack class in the System.Collections namespace
and how you can extend its functionality by inheriting from it. You were also able to override and overload some of
its methods to suit your own requirements.

In this section, you will learn how you can create classes from which others can inherit. You will also learn how to
specially allow or prevent subclasses from changing your methods.

Using the StackClass defined in the last section, suppose you want others, including yourself, to be able to reuse
the class and override its methods. In this case, you would do the following:

Public Class MyStackClass

 Inherits StackClass

End Class

To override the Push and Pop methods in the base class, you would use the Overrides keyword, as shown in
Example 3-12.

Example 3-12. Overriding the Push and Pop methods of MyStackClass

Public Class MyStackClass

 Inherits StackClass

 Public Overrides Sub Push(ByVal item As Object)
 …
 MyBase.Push(item)
 End Sub

 Public Overrides Function Pop() As Object
 …
 Return MyBase.Pop()
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function
End Class

However, for the Push and Pop methods to be overridden in the base class, you need to give clients permission to
do so by adding the Overridable keyword, as shown in Example 3-13.

Without the Overridable keyword, you would not be able to override the methods
in the base class.

Example 3-13. Making the Push and Pop methods of StackClass overridable

Public Class StackClass

 …

 Public Overridable Sub Push(ByVal item As Object)
 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 Public Overridable Function Pop() As Object
 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

End Class

In this case, the implementations of the methods are provided, and classes that inherit from them can choose to
override this implementation if they want to.

3.4.2. Specifying Implementation Details with Abstract Classes and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose one day your designer receives a call from a customer who wants the designer to create a custom car for
him. He may tell the designer what his requirements are and what features that he wants for that car, but he does not
tell the designer what to do, since it is the designer's job to figure out implementation. In this case, what the
customer provides is essentially an abstract class (the request to design a car) along with a list of various abstract
methods (the features of the car).

There are times when you will want to define the structure of a class and leave it to a subclass to provide its
implementation. For example, you might want to define the methods available in a Stack class but leave the
implementation to the subclass (so that implementers can use whatever data structures they prefer to implement the
Stack, such as an array). Here's an example of how to do it:

Public MustInherit Class AbstractStackClass
 Public MustOverride Sub Push(ByVal item As Object)
 Public MustOverride Function Pop() As Object
End Class

The MustInherit keyword specifies that the AbstractStackClass class cannot be directly instantiated.
The class can be used only if inherited by a subclass. Thus, the following is not valid:

Dim s1 As New AbstractStackClass '<--not allowed

The purpose of this class is to provide the base properties and methods for subclasses.

The Push and Pop methods are known as abstract methods. You do not implement an abstract method when you
declare it; its implementation is left to the classes that inherit from it. It is logical for this method to be abstract,
because the way you push or pop an item into a Stack is dependent on how you implement a Stack internally.
You declare an abstract method in VB 2005 with the MustOverride keyword.

To implement the class and its methods, you then inherit from the AbstractStackClass, and then provide the
implementation of the methods using the Overrides keyword, as shown in Example 3-14. You can also add
additional methods and constructors to the class.

Example 3-14. Implementing the AbstractStackClass abstract class

Public Class MyStackClass

 Inherits AbstractStackClass

 Private element() As Object

 Private pointer As Integer

 Public Sub New()

 ReDim element(100)

 pointer = 0

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Public Sub New(ByVal size As Integer)

 ReDim element(size - 1)

 pointer = 0

 End Sub

 Public Overrides Sub Push(ByVal item As Object)
 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 Public Overrides Function Pop() As Object
 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

End Class

Note that in an abstract class, you can still provide implementations for some methods so that subclasses can use
them; not all methods must be abstract.

3.4.3. Creating Contracts with Implementers Using Interfaces

An interface is similar to the abstract class, with one notable difference: an interface contains no implementation at
all, while an abstract class may specify one or more method implementations.

Consider the interface example in Example 3-15.

Example 3-15. Defining an interface for StackClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interface IStack

 Sub Push(ByVal item As Object)

 Function Pop() As Object

End Interface

To implement the interface and the methods contained within it, use the Implements keyword, as shown in
Example 3-16.

Abstract Classes Versus Interfaces
The advantage of using an interface is that a class can implement multiple interfaces, but can never
inherit from more than a single class at the same time. However, when you implement an interface
(or interfaces), you need to implement all of the methods specified by the interface, since the
interface itself cannot have any implementation. An abstract class, on the other hand, can define the
implementation for some of its methods, but you can only inherit from one abstract class.

Example 3-16. Implementing the IStack interface

Public Class MyStackClass

 Implements IStack
 Public Function Pop() As Object Implements IStack.Pop
 …

 End Function

 Public Sub Push(ByVal item As Object) Implements IStack.Push
 …

 End Sub

End Class

VB 2005 allows you to implement multiple interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.4. Controlling the Destruction of Objects

To dereference an object—i.e., remove the reference to an object that you have created—you can simply set the
object variable to Nothing, like this:

Dim ms1 As New MyStack()

ms1 = Nothing

To dereference an object, you need not necessarily set it to Nothing. When an object
variable goes out of scope (such as when reaching the end of a function), the variable
will be dereferenced automatically.

Once an object is dereferenced, the runtime will perform a garbage collection when the memory pressure gets high
enough (i.e., the system begins to run out of memory) to reclaim the memory used by the object. The garbage
collector will call the Finalize method. You cannot call it directly.

It is not guaranteed that the Finalize method will be called immediately when an
object is dereferenced. This timing of this is entirely up to the garbage collector in the
CLR.

The Finalize method is a good place for you to place code that frees up resources, especially if your object uses
unmanaged objects (such as database handles or COM objects, and so on; the resources used by these objects would
not be freed up automatically):

Protected Overrides Sub Finalize()

 ' code to release objects explicitly

End Sub

VB 6 Tip: The Sub Finalize procedure in VB 2005 replaces the
Class_Terminate method used in VB 6 and earlier versions. However, unlike the
Class_Terminate method, the Finalize procedure is not guaranteed to execute
immediately after setting an object to Nothing.

Because calling the Finalize method will add overhead to the execution of your application, you should
implement Finalize only when necessary. Also, the Finalize method is not guaranteed to ever be called; it
depends on the shutdown conditions of the runtime.

Since you can't really determine when an object's resource will be freed up, you can use the second type of method
supported in VB 2005, the Dispose method, and place your code for freeing up the resources there. To use the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

supported in VB 2005, the Dispose method, and place your code for freeing up the resources there. To use the
Dispose method, you need to implement the IDisposable interface and implement the
IDisposable.Dispose method, as shown in Example 3-17.

Example 3-17. Using the Dispose method

Public Class MyStack

 Inherits Stack

 Implements IDisposable
 …
 Protected Overrides Sub Finalize()
 ' code to release objects explicitly

 End Sub

 Public Sub Dispose() Implements _
 IDisposable.Dispose
 ' code to release objects explicitly

 End Sub
 …

The advantage of using the Dispose method is that you can explicitly call it to free up all your resources:

ms1.Dispose()

When you do not call the Dispose method explicitly, you should also call it in Finalize. (Note that in Example
3-17, you make a call to the Dispose method in the Finalize method.) Hence, you need to make sure that the
code in the Dispose method is safe to be called multiple times.

Disposing of Resources
Often you need to create and use some resources and then immediately release the resources so that
memory can be reclaimed. VB 2005 comes with a new construct known as Using…End Using.
The Using…End Using construct guarantees that the resources acquired within the Using block
will be disposed of after the execution of the block. Consider the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Data_Access(_

 ByVal str As String)

 Using conn As New SqlConnection(str)
 Dim ds As DataSet

 '---some code to perform data

 ' access

 End Using

 …

 …

End Sub

The conn and ds objects are valid only within the Using block. The conn object will be disposed
after the execution of the Using block (its Dispose method will get called). The Using block is a
good way for you to ensure that resources (especially COM objects and unmanaged code, which
would not be unloaded automatically by the garbage collector in the CLR) are properly disposed of
after they are no longer needed.

3.4.5. Tagging Objects with Attributes

Attributes are descriptive tags that can be used in VB 2005 applications to provide additional information about
types (classes), fields, methods, and properties. Attributes can be used by .NET to decide how to handle objects
while an application is running.

Using our car example, the cars of ambassadors often display a flag indicating their status as VIPs so that motorists
will give way when they approach. The flag in this case can be likened to an attribute.

Using attributes—either those provided by the .NET Framework or those you define yourself—gives you additional
control over the objects in your applications. Attributes in Visual Basic are used in web services. For example,
suppose you wish to expose a TRanslate method in an ASP.NET Web Service project. Prefixing the method
with the <WebMethod()> attribute will expose the method as a web service using SOAP, as shown in Example 3-
18.

Example 3-18. Using the WebMethod attribute

<WebMethod()> _
Public Function Translate(ByVal str As String) _

 As String

 …

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another occasion on which you're likely to use attributes is when you need to use a legacy unmanaged DLL to
perform some function in a .NET application. To import the relevant function, you'll need to use the
<DllImport()> attribute, as shown in Example 3-19.

Example 3-19. Using the DllImport attribute

<DllImport("KERNEL32.DLL", EntryPoint:="MoveFileW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
Public Shared Function MoveFile(ByVal src As String, _

 ByVal dst As String) _

 As Boolean

 ' Leave function empty - DLLImport attribute forwards

 ' calls to MoveFile to MoveFileW in KERNEL32.DLL.

End Function

To use the <DllImport()> attribute, you need to import the
System.Runtime.InteropServices namespace in your project.

In Visual Studio 2005, you can use attributes to mark a method in a class as obsolete. Marking a method with the
<Obsolete()> intrinsic attribute causes a warning message to be displayed when someone attempts to use it, as
shown in Example 3-20.

Example 3-20. Using the Obsolete intrinsic attribute

Public Class MyStack

…
<Obsolete("This method is obsolete. Use Push(obj as Object)")> _
Public Sub PushStr(ByVal obj As String)

 MyBase.Push(obj)

End Sub

…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose now you tried to use the PushStr method of the MyStack class:

Dim ms2 As New MyStack()

ms2.PushStr("Hello")

Visual Studio 2005 will signal a warning (not an error though) in the Error List window (see Figure 3-14).

Figure 3-14. The Error List window displaying the warning on the obsolete method

A more thorough discussion of attributes is beyond the scope of this book. For
additional information, see Programming Visual Basic 2005 by Jesse Liberty (O'Reilly)
or Programming .NET Components by Juval Lowy (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5. Summary

This chapter has explored several concepts central to the practice of OOP and demonstrated how you can use them
with VB 2005. Here is what you have learned:

The benefits of using the OOP features of VB 2005, especially code reuse

How to create a new class using the Class Designer and the VB 2005 language, and how to instantiate it at
runtime

How to extend an existing class by inheriting from it and overriding or overloading its methods

Enhancements to VB 2005 that provide additional support for code reuse: generics and partial classes

Advanced OO techniques for controlling how classes are implemented and objects are handled at runtime,
such as the use of abstract classes and methods, interfaces, attributes, and access modifiers

In the next chapter, you will learn more about what's new in Windows development in VB 2005 and see how to put
the VB 2005 language and its new support for OOP to work.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Developing a Windows Application
Now that you've become familiar with the latest features of the VB 2005 language and the new productivity tools
added to Visual Studio 2005, it's time to build a complete application.

In this chapter, you will build a Windows application that you can use to create an online catalog of the books you
own. The catalog stores details such as the ISBN (the book industry standard number used to uniquely identify a
book), title, authors, publisher, and price of each volume in your collection. The application lets you search
Amazon.com for information about particular titles by entering keywords in a search window. You can then store
that information, including images of the book covers, in a personal database on your Windows workstation or PC.

Later in the chapter, you'll add a second window to the application that lets users display the complete catalog of
books stored in the local database and to display the details of any particular title.

Figure 4-1 shows the main window of the finished application. The window includes two panels: a panel on the left
for showing the results of Amazon.com keyword searches that you enter and a panel on the right for displaying the
details of a particular book returned by the search. The main window contains the usual features you expect to find
in a Windows application such as a menu, a toolbar, and a status bar. Figure 4-30 shows the finished application
with both windows open.

You will build the application using several of the latest Visual Studio 2005 controls, including the
SplitContainer, MenuStrip, ToolStrip, and StatusStrip controls. You will also work with data
access controls and wizards that simplify the use of the ADO.NET classes for data access. You will use the
Amazon.com web service to retrieve detailed information about your books and then save it for offline viewing, and
you'll see how easy it is to incorporate a web service in an application with Visual Studio 2005. Though
multithreading has traditionally been seen as a black art, the new BackgroundWorker control reduces its use to
a drag-and-drop operation. You'll use multithreading to keep the UI of your Windows application responsive while
it's accessing the Amazon.com web service.

Once the library application is complete, you will use ClickOnce, a new smart client deployment technique in the
.NET Framework 2.0, to post it to an IIS host. ClickOnce is not only an easier way to deploy Windows applications
that make use of the Internet, but ClickOnce also ensures that the user will be notified whenever an updated version
of the application is posted to the server. You'll use this feature to deploy an updated version of the library
application at the end of this chapter.

Figure 4-1. The completed personal library application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1. Creating the Windows Application and Building the Main Window

The first step toward building the library application is to use Visual Studio 2005 to create a new Windows
application project and then build the main window. You'll use a variety of new controls that ship with Visual Basic
2005 to get the job done.

1. Launch Visual Studio 2005 and create a new Windows application by selecting File New Project.
Choose the Visual Basic/Windows project type in the Project types dialog panel and select the Windows
Application template in the Templates panel, as shown in Figure 4-2. Name the project LibraryApp. Click
OK. Visual Studio will create the project and display a blank form with the default name Form1.vb
[Design]. Project files are displayed in the Solution Explorer window to the right of the form design page.
You can access the properties of Form1 in the Properties window, also to the right of the form design page.
To give the application a public name, set the name of Form1 to "Library Application" by entering the
string as its Text property in the Properties window. When the main application window displays, this
name will appear in its titlebar.

Figure 4-2. Creating a new Windows application project

2. Now you're ready to construct the application main window. You'll begin by adding an Office style menu to
Form1. Click on the Toolbox tab to the left of the Form1 designer page and drag-and-drop a MenuStrip
control from the Menus & Toolbars tab onto Form1. The empty menu bar is automatically placed at the top
of the page, and an icon for the control appears in a strip at the bottom of the designer page. You can display
the Properties window for the control by clicking either the empty bar or the control icon.

Click on the Insert Standard Items link in the MenuStrip Tasks menu to insert the commonly used File,
Edit, Tools, and Help menus, as shown in Figure 4-3.

3. Next, add a toolbar to the window by dragging-and-dropping the ToolStrip control from the Menus &
Toolbars tab in the Toolbox onto Form1. Click on the Insert Standard Items link to add the list of commonly
used toolbar icons as shown in Figure 4-4.

Figure 4-3. Adding a MenuStrip control to the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. Adding a ToolStrip control to the form

The new MenuStrip and ToolStrip controls in VB 2005 make it much
easier for developers to create professional looking Windows applications.

4. The design for the main window shown in Figure 4-1 calls for a status bar that we'll use to show progress in
gathering information from Amazon.com when a user initiates a search. You'll build the bar by dragging-
and-dropping a StatusStrip control onto Form1, and then add a StatusLabel control by selecting
the StatusLabel item from the StatusStrip drop-down listbox, as shown in Figure 4-5. The
StatusLabel control works like any Label control.

Figure 4-5. Inserting StatusLabel and ProgressBar controls into the StatusStrip control

5. To create the separate search and book details panels shown in Figure 4-1, drag-and-drop a
SplitContainer control from the Containers tab of the Toolbox onto Form1. The SplitContainer
control represents a control consisting of a movable bar that divides a container's display area into two
resizable panels. Set the BorderStyle property of the SplitContainer control to "Fixed3D" so that it
shows a three-dimensional border.

The SplitContainer control is new in VB 2005 and is a much improved
version of its predecessor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, your application window should look like the one shown in Figure 4-6.

Figure 4-6. Adding a SplitContainer control to the form

6. Populate the left panel of the SplitContainer control with the controls as shown in Figure 4-7 by
dragging-and-dropping each control from the Toolbox onto the form. Name the controls as shown by
clicking on each control and setting its Name property in the Properties window.

4.1.1. Creating a Database to Store Books Information

The information about each book that a user acquires from Amazon.com needs to be saved to a local database on the
PC or workstation. To provide this functionality, you need to add a database to your project. For this project, you'll
use a SQL database file to store your book data. Once you've created the database file, you'll add a table to store the
individual records for each book in your collection.

Figure 4-7. Populating the left panel of the SplitContainer control

1. To add a database file to your project, first right-click on the project name, LibraryApp, in Solution
Explorer and then select Add New Item…. Now, in the Add New Item dialog box, select SQL
Database and set the Name of the database file to Library.mdf, as shown in Figure 4-8. Click Add.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-8. Adding a SQL database to the project

The Library.mdf database file icon will now appear in the Solution Explorer window, and the Data Source
Configuration Wizard will appear. As you won't be using this wizard, click Cancel.

2. Now you're ready to create the table to hold the records for the books in your library. Double-click the
Library.mdf file icon to view it in more detail in the Database Explorer as shown in Figure 4-9.

Expand the Library.mdf file, right-click on the Tables subfolder icon, and select Add New Table. Visual
Studio 2005 creates the table and displays a blank page (dbo: Table 1) that you'll use to define its records.

Figure 4-9. Adding a new table to the database

With a blank table in hand, you'll now define its columns and fields. Enter the name of each field as shown
in Figure 4-10. After entering a name, tab to the right to enter a data type. You can type in the data type
shown in Figure 4-10, or select it from the drop-down menu provided by Visual Studio 2005. You'll need to
enter the Data Type for Title and Publisher manually to specify a 100 character length. Tab to the last
column to specify whether null values are allowed. By default, they are. The ISBN field contains the primary
key for each record. Select and right-click on the field and select Set Primary Key from the drop-down
menu. Uncheck the Allow Nulls box for the field since it would be unacceptable to have a record in the
database without a primary key. Figure 4-10 shows the completed page.

Save the table by selecting "Save Table 1" from the File menu. When prompted, name the table Titles.

Close the table window by right-clicking on its title tab and selecting Close.

Figure 4-10. Defining a table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.2. Binding Library Data to the Form

You will now use the data-binding features of VB 2005 to bind the database that you have just created to the form.
To do so, you need to add a data source to the Data Sources window.

1. Go to Data Show Data Sources to display the Data Sources window.

2. Click on the Add New Data Source button at the top of the Data Sources window to add a new data source,
as shown in Figure 4-11.

Figure 4-11. Adding a new data source

The Data Source Configuration Wizard will appear. Select Database as the Data Source type and click Next.

3. When the "Choose your data connection" dialog appears, you will notice that the Library.mdf file has
already been selected, as shown in Figure 4-12). Click Next.

4. Now you have the option to save the connection string that the page will use to connect to the Library.mdf
database in the application configuration file. This option allows you to change the database details easily
without recompiling the application even after it has been deployed. This is the default, so leave the
checkbox checked and click Next to go to the next step.

5. In the next window, the "Choose your database objects dialog," you can select the table(s) you want to work
with. For this project, check the Titles table, which contains the records for your stored books. This step is as
shown in Figure 4-13.

Figure 4-12. Selecting the data connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-13. Selecting the table to work with

That's it! You've configured the Library.mdf database file as a data source without writing a line of code.
Now click Finish.

You should now see the Titles table displayed as a tree in the Data Sources window, as shown in Figure 4-
14.

Remember to close the table window as described in step 2 of the section
"Creating a Database to Store Books Information." Otherwise, the Data Sources
window will not display the icons next to the table and fields.

Figure 4-14. The Titles table in the Data Sources window

6. You will now change the binding of some of the fields in the table in the Data Sources window. Change the
binding of the ISBN field from TextBox to Label so that the ISBN of a book is displayed in a non-
editable Label control (see Figure 4-15). Also, change the binding of the Cover field from None to
PictureBox. Doing so will display the data contained in the Cover field in a PictureBox control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-15. Changing the default binding of the Titles table

7. Drag-and-drop the ISBN, Title, Authors, Publisher, Price, and Cover fields (individually) from the Titles
table in the Data Sources window onto the right panel of the SplitContainer control. Also, add in a
Button control named Add Title. The form should now look like the one shown in Figure 4-16. Name the
controls as shown in the figure callouts (the names appear in parentheses).

Figure 4-16. Populating the form with the various controls

8. You will notice that a couple of controls appeared at the bottom of the Form1.vb design page (see Figure 4-
17). These controls perform all the magic of binding the data in your database to the controls on your form.
Going into the details of what they do specifically is beyond the scope of this book.

Figure 4-17. The controls added at the bottom of Form1.vb

9. You will also notice that a control known as the BindingNavigator control is added to the form when
you drag-and-drop the fields from the Data Sources window onto the form (see Figure 4-18). This control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you drag-and-drop the fields from the Data Sources window onto the form (see Figure 4-18). This control
allows users to navigate through the records in the database. As we are not going to let the user view the list
of books in this window, the control is not relevant in this case. So, set its Visible property to False so
that it will not display on the form. Alternatively, you can just delete it.

Figure 4-18. The BindingNavigator control added to the form

10. Once you've completed the Library Application form, you need to set a few of the properties of the newly
added controls. First, you'll want to set the Anchor property of each control to ensure that each is correctly
resized and positioned when a user resizes the form. The Anchor property of a control determines where it
should be positioned when the form is resized. For example, if a control's Anchor property is set to Top,
Left, the control's position will be fixed. However, if its Anchor property is set to Bottom, Right, its
position will be anchored to the bottom-right corner of the form (see Figure 4-19).

Figure 4-19. Setting the Anchor property of a control to "Bottom, Right"

If the Anchor property is set to Top, Left, Right, the control will be resized horizontally when the form is
resized (see Figure 4-20).

Figure 4-20. Setting the Anchor property of a control to "Top, Left, Right"

If the Anchor property is set to Top, Bottom, Left, Right, the control will be resized both vertically and
horizontally when the form is resized (see Figure 4-21).

Set the Anchor property of each control on the main application window to the value shown in Table 4-1.

Figure 4-21. Setting the Anchor property of a control to "Top, Bottom, Left, Right"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-1. Setting the Anchor property of the various controls
Control name Value

txtKeywords Top, Left, Right
btnGetInfo Top, Right
lstBooks Top, Bottom, Left, Right
chkAutoAdd Bottom, Left, Right
chkShowCover Bottom, Left, Right
btnViewCatalog Bottom, Left, Right
lblISBN Top, Left
txtTitle Top, Left, Right
txtAuthors Top, Left, Right
txtPublisher Top, Left, Right
txtPrice Top, Left, Right
picCover Top, Right
btnAddTitle Bottom, Left

While you're at it, also set the properties of three other controls on the window to the values shown in Table 4-2.

Table 4-2. Setting the properties of the various controls
Control name Property Value Description

lblISBN BorderStyle FixedSingle This draws a rectangle around the control.

chkShowCover Checked TRue The control is checked by default.

picCover SizeMode AutoSize The image will be displayed in its original size.

The resizing and reallocating of controls is much improved in VB 2005 compared to VB 6. By setting the Anchor
property of each control, you can ensure that the controls are automatically resized or repositioned when the user
resizes the form, as shown in Figure 4-22.

Figure 4-22. Resizing the controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.3. Adding a Web Reference to Amazon.com

The Library Application uses Amazon.com's E-Commerce web service (ECS for short) to obtain detailed
information about a book, such as its description, selling price, customers' reviews, and cover image. To use the
Amazon. com web service, you need to register as a user and use the subscription ID assigned to you by Amazon to
access the service programmatically. You can register for the service at: www.amazon.com/gp/aws/landing.html.
There is no charge for using the service. To continue with this example, you should register now.

Once you have registered with Amazon.com, you need to add a web reference to your project to use the service.
Once you have added the web reference, Visual Studio 2005 can automatically generate a proxy class for you so that
you can invoke the web service as if you were making calls to a normal object, as you will see in the next section,
"Accessing the Amazon.com Web Services."

1. To add a web reference to your project, right-click on the project name in Solution Explorer and then select
Add Web Reference.

2. In the Add Web Reference window, enter the following URL and click Go:
http://webservices.amazon.com/AWSECommerceService/AWSECom-merceService.wsdl.

This URL contains the location of the WSDL document needed by Visual Studio
2005 to generate the web proxy class.

3. If the WSDL document is retrieved successfully, you can add it to your project by clicking the Add
Reference button (see Figure 4-23). Name the web reference AmazonWS.

Figure 4-23. Adding a web reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.4. Accessing the Amazon.com Web Services

When a Library Application user enters search keywords for a book, the application needs to connect to
Amazon.com's web service to request a search and download the list of titles returned. While the user waits for the
result, it's always a good idea to report the status of the search in the StatusStrip control with some text as well
as an hourglass cursor, as shown in Figure 4-24.

In this section, you'll first program the controls that show status. You'll use the StatusLabel control on Form1
to display some status text while the search proceeds and change the cursor to an hourglass to provide a visual
representation of work in progress. Once the status controls are coded, you'll write the code that calls the
Amazon.com web service and loads information retrieved by the keyword search into the ListBox control
(lstBooks) that displays the result.

Web Services
A web service is a business object residing on a server that you can programmatically access through
the network. For example, companies like Amazon.com and Google have both found values in
making parts of their data available to their customers through web services. Using web services,
customers can now integrate data from Amazon.com or Google into their own application. To ensure
interoperability between web services and their users (known as web service consumers), most web
services use open standards such as SOAP, XML, HTTP, and WSDL:

XML

Used as the language for exchanging messages between a web service and its consumer.

SOAP (Simple Object Access Protocol)

Used as the XML messaging format.

HTTP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Used as the transport protocol to carry web services messages.

WSDL (Web Services Description Language)

Used to write the contract that defines the functions that the web service has to offer.

Figure 4-24. Displaying the status in the StatusStrip control

1. You will first define two global variables within the form to use the Amazon.com web service:

 Public Class Form1

 '---objects to store the response of the Web service

 Dim amazonResponse As AmazonWS.ItemSearchResponse = Nothing

 Dim amazonItems As AmazonWS.Item() = Nothing

Note the parentheses () after Item, which are required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. To code the status control and change the default cursor to the hourglass, double-click on the Get Info button
(btnGetInfo) to switch to the code behind for its Click event handler. Enter the code shown in Example
4-1.

Example 4-1. btnGetInfo Click event handler

Private Sub btnGetInfo_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnGetInfo.Click

 '---changes the cursor to an hourglass
 Me.Cursor = Cursors.WaitCursor
 ToolStripStatusLabel1.Text = "Retrieving book information…"
 GetBookInformation(Trim(txtKeywords.Text))
End Sub

The code in Example 4-1 displays status text (by setting the Text property of
ToolStripStatusLabel1) and changes the default cursor to use an hourglass (using the Me.Cursor
property). Next, the event handler calls GetBookInformation, which calls the Amazon.com event
handler and passes it the search keywords that the user has entered into the txtKeyword text box control.

3. Now you need to code the GetBookInformation subroutine. The GetBookInformation subroutine
takes a single parameter (keyword) and calls the Amazon.com web service. When the result is returned,
display it in the Search Results window of the Library Application. Figure 4-25 shows the results you'll get
when you enter my name as the search string.

Figure 4-25. Displaying the results from Amazon.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the GetBookInformation subroutine to the Form1 class on its codebehind page by entering the code
shown in Example 4-2. Remember to assign the value of the subscription ID assigned you by Amazon.com to
SubscriptionId.

Example 4-2. GetBookInformation subroutine

Public Sub GetBookInformation(ByVal keyword As String)

 Dim itemSearchRequest As New AmazonWS.ItemSearchRequest

 Dim itemSearch As New AmazonWS.ItemSearch

 '---initialize objects

 With itemSearchRequest

 '---set the search keyword(s)

 .Keywords = keyword

 '---set the size of the response

 .ResponseGroup = New String() {"Medium"}

 '---set the SearchIndex or search mode

 .SearchIndex = "Books"

 End With

 With itemSearch

 '---set the Amazon.com SubscriptionId

 .SubscriptionId = "your_subscription_Id_here"

 .Request = New AmazonWS.ItemSearchRequest() _

 {itemSearchRequest}

 End With

 Try

 '---invoke the Amazon.com web service

 amazonResponse = _

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

 If amazonResponse IsNot Nothing Then

 amazonItems = amazonResponse.Items(0).Item

 End If

 Catch ex as Exception

 MsgBox(ex.ToString)

 Finally

 '---change the cursor to default

 Me.Cursor = Cursors.Default

 ToolStripStatusLabel1.Text = ""

 End Try

 If amazonItems Is Nothing then Exit Sub

 lstBooks.Items.Clear()

 '---add the books to the listbox

 For i As Integer = 0 To amazonItems.Length - 1

 With amazonItems(i)

 lstBooks.Items.Add(.ItemAttributes.Title)

 End With

 Next

End Sub

For simplicity, the Library Application will retrieve only the first 10 results from
Amazon.com.

4.1.5. Displaying Book Information and Covers

With the results of a search now available in the Search Results window, you want to enable users to view the
details of any title in the list by selecting its name.

When a title is selected, a number of actions need to occur. First, the application needs to display the book details in
the righthand pane of the Library Application window. Book covers require special handling. Since most users will
want to see the cover of a book they've chosen, the Show Cover checkbox in Figure 4-24 is set to true (checked)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

want to see the cover of a book they've chosen, the Show Cover checkbox in Figure 4-24 is set to true (checked)
by default. Unless the user unchecks the box, the cover of a title is always retrieved along with its other information.
However, the Amazon.com web service supplies a URL that points to the location of the image, not the image itself.
So, you'll need to write code to download the image onto the local computer before you can display it.

Finally, if the user has checked the Auto-add Title checkbox, the application needs to automatically add the selected
title to the database.

Abiding by the Amazon Web Services
Licenses Agreement

The Amazon Web Services Licenses Agreement describes the set of rules and time limits that you
must respect to remain compliant with the license. In particular, applications that store data in a
database must store a timestamp along with the data, show this timestamp adjacent to the data, and
offer a Refresh function.

The actions can all be carried out by the event handler for the SelectedIndexChanged event of the lstBook
listbox control, which fires when a user clicks on any item in its list.

1. To generate a code stub for the SelectedIndexChanged event of the lstBook control, double-click
on the control on Form1. To code the event, enter the code shown in bold in Example 4-3.

Example 4-3. 1stBooks SelectedIndexChanged event handler

Private Sub lstBooks_SelectedIndexChanged(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles lstBooks.SelectedIndexChanged

 If lstBooks.SelectedIndex < 0 Then Exit Sub

 Try
 '---display detailed book information
 With amazonItems(lstBooks.SelectedIndex)
 lblISBN.Text = .ASIN
 txtTitle.Text = .ItemAttributes.Title
 txtAuthors.Text = Join(.ItemAttributes.Author, ",")
 txtPublisher.Text = .ItemAttributes.Publisher
 txtPrice.Text = _
 .ItemAttributes.ListPrice.FormattedPrice.ToString
 ToolStripStatusLabel1.Text = .ItemAttributes.Title

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '---downloads the cover of the book
 If chkShowCover.Checked Then
 '---download the cover image
 Dim webReq As Net.HttpWebRequest = _
 Net.HttpWebRequest.Create(_
 .MediumImage.URL.ToString)
 Dim webResp As Net.HttpWebResponse = _
 webReq.GetResponse()

 '---displays the image
 picCover.Image = _
 Image.FromStream(webResp.GetResponseStream())

 End If

 '---auto-add a title
 If chkAutoAdd.Checked Then
 AddTitle()
 End If
 End With
 Catch ex As Exception
 DisplayError(ex.ToString)
 End Try End Sub

2. The DisplayError method that you call in Example 4-4 simply sounds a beep and displays the error
message in the StatusLabel control in the StatusStrip control.

Example 4-4. DisplayError subroutine

Private Sub DisplayError(ByVal message As String)

 My.Computer.Audio.PlaySystemSound(_
 System.Media.SystemSounds.Exclamation)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.Media.SystemSounds.Exclamation)
 ToolStripStatusLabel1.Text = "Error : " & message

End Sub

You can play different types of sounds by supplying the PlaySystemSound method with one of the
following values from the System.Media. SystemSounds enumeration:

Asterisk

Beep

Exclamation

Hand

Question

Figure 4-25, earlier in this chapter, shows the result of a search for the author Wei-Meng Lee. When you click on the
title of one of the books in the results list (for example, ASP.NET 2.0: A Developer's Notebook), the detailed
information available for the selected book is displayed.

4.1.6. Saving Book Information

Now you need to write the routines that add book information to the user's database either because "Auto-add Title
box" is checked or because the user has clicked the Add Title button. While the detailed book information about a
title is displayed on the form, you'll also want to give the user the option to modify the data before saving it to the
local database file.

1. First, you'll code the Add Title button event handler. Double-click the Add Title button on Form1 and enter
the code in Example 4-5.

Example 4-5. btnAddTitle Click event handler

Private Sub btnAddTitle_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnAddTitle.Click

 AddTitle()

End Sub

The event handler calls the AddTitle subroutine, where the heavy lifting is done.

2. The AddTitle subroutine called by Example 4-6 is responsible for recording the details of a title you want
stored in the local database file, Library.mdf. The subroutine first converts the image displayed in the
PictureBox control into a byte array. The new record is then saved into the database using the
TitlesTableAdapter control that you added to the form earlier (see also Figure 4-17, earlier in this
chapter).

Example 4-6. AddTitle subroutine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub AddTitle()

 Try

 '---get the book cover image as a byte array---

 Dim ms As New System.IO.MemoryStream()

 picCover.Image.Save(ms, picCover.Image.RawFormat)

 Dim coverimage() As Byte = ms.GetBuffer

 ms.Close()

 '---add the new title to the database---

 TitlesTableAdapter.Insert(lblISBN.Text, _

 txtTitle.Text, txtAuthors.Text, _

 txtPublisher.Text, txtPrice.Text, coverimage)

 ToolStripStatusLabel1.Text += " - Added"

 Catch ex As Exception

 DisplayError("Error adding title.")

 End Try

End Sub

All the hard work needed to save the new record into the database is performed by the
TitlesTableAdapter control. The TitlesTableAdapter control uses
ADO.NET (the data access technology used in the .NET Framework) behind the scenes
to accomplish this mean feat.

4.1.7. Testing the Application

Now you are ready to take the application for a test drive. Start it up by pressing F5. Enter some keywords for a
book, say, the author name, title, or ISBN. Click on the Get Info button to retrieve a list of titles matching your
search criteria and list them on the Listbox control. You'll notice that the application hangs for a while when you
submit the search request, and the form does not appear to repaint itself when overlapped by another window. We'll
deal with this problem in a future section, "Accessing the Web Services Asynchronously." You can display the
details of a book in the righthand pane of the application window by selecting an item in the ListBox control of
the Search Results window, as shown in Figure 4-26.

Figure 4-26. Testing the application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Add Title button to save the book information into the local database. If you check the "Auto-add Title"
checkbox, book information is saved automatically just by selecting a title from the Search Results list.

If you were to include similar functionality in a production application, you would need
to store the "freshness date" along with each book, display that date along with the other
information, and offer the user the ability to refresh the data to make sure the price and
other information is accurate. See the Amazon license agreement for details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2. Viewing Book Information Offline

With the book information saved in the database, you will now add a second window to the project so that users can
view their book catalogs offline. The Books Catalog window will be invoked by clicking on the View Catalog
button that you've already added to the Library Application main window. By clicking on any title listed in the
catalog, the user will be able to display its details, including an image of its cover.

You'll build the Books Catalog window using the new Data Source Configuration Wizard and two new controls:
DataGridView and BindingNavigator. With the exception of the event handler for the View Catalog
button, you'll accomplish this task without writing any code.

4.2.1. Create the Books Catalog Window

First you need to create the window that will display the book catalog and make it accessible from the Library
Application main window.

1. To create the Books Catalog page, add another form to the project by right-clicking on the project name,
LibraryApp, in Solution Explorer and then selecting Add New Item… Select the Windows Form
template and use the default name Form2.vb. Click Add and note the addition of the form to the LibraryApp
project in the Solution Explorer.

2. Set the Text property of Form2.vb to "Books Catalog," which changes the title of the form to "Books
Catalog." Now the title reflects the purpose of the form in the application.

3. Finally, you need to link the Books Catalog page to the main application window. On the Form1.vb design
page, double-click on the View Catalog button and enter the single bold line of code in Example 4-7.

Example 4-7. btnViewCatalog Click event handler

Private Sub btnViewCatalog_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnViewCatalog.Click

 Form2.ShowDialog()

End Sub

When a user clicks the View Catalog button, the Books Catalog page (Form2.vb) will be displayed.

4.2.2. Binding Library Data to the Books Catalog Form

You will once again use the data-binding features of VB 2005 to display all the records in the database on the newly
added form.

1. Go to Data Show Data Sources to display the Data Sources window.

Figure 4-27. Binding the Titles table to a DataGridView control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Change the binding of the Titles table to the DataGridView control (see Figure 4-27).

3. Drag-and-drop the Titles table from the Data Sources window onto Form2.vb. A DataGridView and a
BindingNavigator control will be created automatically. In the DataGridView Tasks menu, check
the Enable Column Reordering checkbox so that users can sort the rows of their catalog entries by field. The
DataGridView Tasks menu is shown in Figure 4-28.

Figure 4-28. Configuring the DataGridView control

4. Since the list of titles shown in the Books Catalog window doesn't have to include everything there is to
know about each book, it makes sense to display the Title, Authors, and Publisher fields only. To remove
the unwanted fields, go to the DataGridView Tasks menu again, click on the Edit Columns link, and
remove the following fields:

ISBN

Price

Cover

The result is a list of books that displays only the title, authors, and the publisher.

5. You will now change the binding of the Titles table in the Data Sources window from DataGridView to
Details. This will allow you to display individual records instead of multiple records on the form.

Now drag-and-drop the Titles table from the Data Sources window onto Form2.vb.

6. Finally, you'll want to add a Close button to the Books Catalog window so users can close the form when
they've finished using it. To do that, add a Button control to Form2.vb and set its Text property to
"Close." Name the Button control btnClose. Form2.vb will now look like the version shown in Figure
4-29.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-29. Form2 with the various controls

7. To wire up the Click event handler for the Close button, double-click on the Close button and enter the
code shown in Example 4-8. It's worth noting that this is the only code you've had to write to create this
form.

Example 4-8. Close button Click event handler

Private Sub btnClose_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnClose.Click

 ' Me refers to the current object (Form2)

 Me.Close()

End Sub

8. One last step remains. On Form2, set the PictureBox control's SizeMode property to AutoSize so
that the cover of a book can be displayed in its original downloaded size.

4.2.3. Testing the Application

You can now test the application by pressing F5. On Form1.vb, click on the View Catalog button to display
Form2.vb, as shown in Figure 4-30.

Figure 4-30. Displaying the catalog of books

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try editing existing records by modifying the data in the DataGridView control or the text boxes on the right of
the window. To save changes to the database, you need to click the Save Data button, as shown in Figure 4-31. You
can also delete records by clicking on the Delete button and then the Save Data button to effect the change.

Note that for simplicity, you will not be able to add new records in this window as the
ISBN field is non-editable.

Figure 4-31. Adding and deleting records

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3. Deploying the Application

Visual Studio 2005 makes the deployment of Windows applications to your users extremely easy and painless, all
through a new feature known as Click-Once.

Smart Clients
ClickOnce was designed specifically to ease the deployment of smart clients.

A smart client is basically a Windows application that leverages the system's local resources and is
able to intelligently connect to distributed data sources (such as web services) as and when needed.

The Library Application that you've been building in this chapter is an example of a smart client.
While today a lot of companies are deploying web applications (due to their ubiquitous access),
network latencies and server delays are some of the problems that are preventing developers from
reaping the full benefits of the Web. Common frustrations over web applications include slow
response time from web sites and limited functionality (due to the stateless nature of the HTTP
protocol). As such, a smart client aims to reap the benefit of the rich functionality of the client
(Windows) while at the same time using the power of web services in the backend.

To illustrate how ClickOnce works, you will publish the Library Application (LibraryApp) that you have written
and see how easy it is to deploy it using a web server. Furthermore, ClickOnce has the added benefit of ensuring
that applications that you deploy will automatically check for the latest update (you can configure the application to
check every time before it runs, or check at regular time intervals) on the server, if one is available, as you'll see in
"Automatic Updating," later in this capter.

4.3.1. Publishing the Application

You can now publish (deploy) a Windows application through a disk, shared folder, FTP server, or web server, and
automatically ensure that users are always using the latest version of the application.

1. To run the ClickOnce Publish Wizard, go to Build Publish LibraryApp on the Visual Studio menu, as
shown in Figure 4-32. The "Where do you want to publish" dialog box will appear.

Figure 4-32. Publishing the LibraryApp Windows application

2. The "Where do you want to publish" dialog box gives you four options for where to publish the application:
disk, shared folder, FTP server, or web server. For this project, you will publish the application through the
IISweb server (see the sidebar "Installing IIS on Your Computer" on how to install IIS on your Windows XP
computer).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing IIS on Your Computer
If you wish to use IIS to deploy your Windows applications, you must install IIS. By default,
Windows XP does not install IIS, so you need to retrieve your Windows XP Installation CD
and then use Control Panel Add or Remove Programs Add/Remove Windows
Components Components: Internet Information Services (IIS) to add IIS yourself.

In the "Specify the location to publish the application" text box, create a directory for the application by
entering the following link: http://localhost/LibraryApp (see Figure 4-33). Click Next. The "Will the
application be available offline?" dialog will appear.

Localhost is the name of the web server installed in your local computer.

Figure 4-33. Specifying the path to publish the folder

3. ClickOnce allows the user to install an application locally on the client, or to download every time it is
needed. In the "Will the application be available offline?" dialog, select "Yes," as shown in Figure 4-34, and
then click Next. The "Ready to Publish!" dialog will appear.

Figure 4-34. Choosing the mode in which the application should be run

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. That's it! You are now ready to publish the application from your web server. In the "Ready to Publish!"
dialog shown in Figure 4-35, click Finish to create the web page that users will link to in order to install the
application.

Figure 4-35. The wizard is ready to publish the application

5. You should see the web page shown in Figure 4-36. Your users can now use the URL for that page to install
the application on their own machines.

Figure 4-36. Installing the application through the web server

6. To install the application on your own machine, click the launch link in the page.

Click the Install button to install the prerequisites, if your machine does not have
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. You will be prompted with a security warning such as the one shown in Figure 4-37. Click Install to install
the application onto your machine.

You can eliminate this security warning by setting the relevant security policy.
Refer to the MSDN Help Topic "Code Access Security for ClickOnce
Applications" for more information. Also, check out the help topic "How to:
Sign ClickOnce Application and Deployment Manifests"
(http://msdn2.microsoft.com/library/che5h906(en-us,vs.80).aspx) for more
information.

Figure 4-37. Installing the application

8. You will now see that the LibraryApp application is launched automatically. Alternatively, you can launch
the LibraryApp application from Start Programs LibraryApp LibraryApp.

The ClickOnce installation does not require you to have administrator rights to install
the application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4. Automatic Updating

The power of ClickOnce lies in its ability to automatically update applications after they have been deployed.
Imagine that 1000 of your customers have downloaded your application and that you've decided you need to add
some new features or fix a fatal bug. With VB 6, it would be a logistical nightmare to inform all these customers of
the changes and then to update their machines. ClickOnce automatically ensures that all your users use the latest
version of your application.

To demonstrate the power of ClickOnce, you'll make a useful change to the Library Application—and learn
something about the new BackgroundWorker control in the process—and then use the automatic update feature
of ClickOnce to get the new version into the hands of your users.

The BackgroundWorker control is a control that executes an operation on a separate
thread.

4.4.1. Accessing the Web Services Asynchronously

In testing the Library Application in an earlier section (see "Testing the Application), you saw that the application
freezes when you request and download keyword search results from Amazon.com. Moreover, the window does not
repaint itself when it is covered by some other windows. So, what is the problem? It turns out that accessing a web
service is a blocking call, which means that the application will not continue its execution until the web service
returns a value. In the real world, web services requests take a finite amount of time to complete and hence it is not
acceptable that our application freezes while waiting for the results from Amazon.com.

To make the UI of your application responsive, you need to invoke the web service call in a separate thread of
execution.

While this may sound intimidating (see the sidebar "VB Black Belt: Multithreading" for more information on
threading), VB 2005 has made it easy to add this functionality to an application by providing a new
BackgroundWorker control. To see how the BackgroundWorker control helps make your application more
responsive, you will use it to access the Amazon.com web service in the background, and while so doing, the
application can remain active. Here is a summary of the steps involved:

VB Black Belt: Multithreading
Multithreading is one of the most powerful concepts in programming. Using multithreading, you can
break a complex task into multiple threads that execute independently of one another. One
particularly good application of multithreading is in tasks that are synchronous in nature, such as web
services calls. By default, web services calls are blocking calls; that is, the caller code will not
continue until the web service returns a result. But because web services calls are often slow, this can
result in sluggish client-side performance unless you take special steps to make the call
asynchronous.

By default, your Windows application uses a single thread of execution. In our project, we have
created an additional thread of execution to access the web service.

One particular point you need to bear in mind is that Windows controls are not thread-safe. Put
simply, it means that you cannot update the properties of a Windows control in a separate thread;
only the main thread can update the controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The user clicks the Get Info button, and the BackgroundWorker control kicks into action.

2. The BackgroundWorker control runs the GetBookInformation subroutine (which is defined by
you) in a separate thread, with the main window remaining responsive.

3. When the result is returned from Amazon.com, the BackgroundWorker control updates the controls on
the window with the detailed book information.

Here are the steps:

1. First, you need to add the BackgroundWorker control to your application. Drag-and-drop the control
from the Components tab in the Toolbox onto Form1.vb of the LibraryApp project. Because the
BackgroundWorker control is not a visual control, you will see its icon at the bottom of the form, as
shown in Figure 4-38.

Figure 4-38. Using the BackgroundWorker control

2. Switch to the code-behind page of Form1 and import the System. ComponentModel namespace—
which is needed in order to use the classes that the BackgroundWorker control needs to do its work—by
adding the following line of code (in bold) to the top of the code behind of Form1.vb.

Imports System.ComponentModel

Public Class Form1

 …

3. When the Get Info button is clicked, you will use the BackgroundWorker control to call the web service
in a separate thread using its RunWorkerAsync method, which starts the execution of a background
operation. The method takes a single parameter, which in this case is the keyword(s) that the user has
entered. To replace the current Click event handler for the Get Info button, double-click on the control on
Form1 and replace the existing code with that in Example 4-9.

Example 4-9. Revised code for btn Click event handler

Private Sub btnGetInfo_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnGetInfo.Click

 '---retrieve the book info in the background

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '---retrieve the book info in the background

 BackgroundWorker1.RunWorkerAsync(_

 Trim(txtKeywords.Text))

 '---changes the cursor to an hourglass

 Me.Cursor = Cursors.WaitCursor

 ToolStripStatusLabel1.Text = _

 "Retrieving book information…"

End Sub

4. The DoWork event of the BackgroundWorker control will invoke GetBookInformation
subroutine in a separate thread. The DoWork event is fired when you call the RunWorkerAsync method,
as you did in the previous step. The argument passed to the RunWorkerAsync method can be retrieved in
the DoWork event via the System.ComponentModel. DoWorkEventArgs parameter. Add the
event shown in Example 4-10 to the Form1 class.

Example 4-10. BackgroundWorker DoWork event handler

Private Sub BackgroundWorker1_DoWork(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 'This method will run on a thread other than the UI thread.

 'Be sure not to manipulate any Windows Forms controls created

 'on the UI thread from this method.

 Dim worker As BackgroundWorker = _

 CType(sender, BackgroundWorker)

 GetBookInformation(e.Argument, worker, e)

End Sub

5. The GetBookInformation subroutine accesses the Amazon.com web service. Replace the
GetBookInformation subroutine you have defined earlier with that shown in Example 4-11.

6. Example 4-11. Revised GetBookInformation subroutine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub GetBookInformation(_

 ByVal keyword As String, _

 ByVal worker As BackgroundWorker, _

 ByVal e As DoWorkEventArgs)

 Dim itemSearchRequest As New AmazonWS.ItemSearchRequest

 Dim itemSearch As New AmazonWS.ItemSearch

 '---initialize objects

 With itemSearchRequest

 '---set the search keyword(s)

 .Keywords = keyword

 '---set the size of the response

 .ResponseGroup = New String() {"Medium"}

 '---set the SearchIndex or search mode

 .SearchIndex = "Books"

 End With

 With itemSearch

 '---set the Amazon.com SubscriptionId

 .SubscriptionId = "your_subscription_Id_here"

 .Request = New AmazonWS.ItemSearchRequest() {itemSearchRequest}

 End With

 Try

 '---invoke the Amazon.com web service

 amazonResponse = _

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

 If amazonResponse IsNot Nothing Then

 amazonItems = amazonResponse.Items(0).Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 amazonItems = amazonResponse.Items(0).Item

 End If

 Catch ex as Exception

 '---an error has occured

 End Try

End Sub

Notice that in this subroutine, you need not worry about displaying the returned result in the Listbox
control; you will do that in the next step.

7. The RunWorkerCompleted event is fired when the thread (in this case, GetBookInformation) is
completed. In Example 4-12, you will get the result returned from the web service and then add the items
into the Listbox control.

Example 4-12. BackgroundWorker1_RunWorkerCompleted event handler

Private Sub BackgroundWorker1_RunWorkerCompleted(_

 ByVal sender As Object, _

 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _

 Handles BackgroundWorker1.RunWorkerCompleted

 '--change to cursor to default

 Me.Cursor = Cursors.Default

 ToolStripStatusLabel1.Text = ""

 If Not (e.Error Is Nothing) Then

 MessageBox.Show(e.Error.Message)

 Else

 If amazonItems Is Nothing then Exit Sub

 lstBooks.Items.Clear()

 '---add the books to the listbox

 For i As Integer = 0 To amazonItems.Length - 1

 With amazonItems(i)

 lstBooks.Items.Add(.ItemAttributes.Title)

 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End With

 Next

 End If

End Sub

That's it! You can now debug the application by pressing F5. You should find the UI of the application is still
responsive while waiting for the result from the Amazon.com web service.

4.4.2. Republishing the Application

Now that you have modified your LibraryApp application, you should rebuild it and republish it so that users can be
automatically updated through ClickOnce.

1. Rebuild the project by right-clicking on the project name (LibraryApp) in Solution Explorer and selecting
Rebuild.

2. To ensure that your users can use the updated application, build and publish the application again, following
the steps outlined earlier. That's all you need to do.

3. The next time your users launch the application from the Start menu, the application will automatically
check the deployment server to see if there is a newer version available. If there is one, the Update
Available window will be displayed (see Figure 4-39). Click OK to download, install, and use the newer
version of the application.

A network connection is needed for auto-updating to work. The auto-updating is
configurable. You could set it to check at some regular interval as well, specified
in minutes, hours, or days.

Figure 4-39. Downloading a newer version of the StockQuote application

4. What happens if, after installing the newer version, you decide that you want to use the older version? No
worries; just go to Control Panel and click Add or Remove Programs, select the application, and click
Change/Remove. You have the option to either restore the application to its previous state or remove the
application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5. Summary

In this chapter, you have seen how easily Visual Studio 2005 and the VB 2005 language can be used to create
professional applications. In particular, you have seen how to create a database and bind its records to a data access
form; how web services can be consumed in a Visual Studio 2005 project; and how data can be persisted in a SQL
database for offline perusal. You have also learned how ClickOnce makes deployment and updating of smart clients
easy and effortless and how you can painlessly add asynchronous calls to an application.

In the next chapter, you will learn how to use VB 2005 to develop web applications.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Building Web Applications
Within a short few years, ASP.NET has become a favorite tool of web applications developers and now, with the
release of ASP.NET 2.0, it has undergone its second major upgrade. With ASP.NET 2.0, Microsoft has made major
improvements based on feedback from its millions of customers as well as the company's own experience in
developing and deploying web sites and portals. The rise of competing tools such as Macromedia Flash and open
source PHP have also encouraged Microsoft to focus with particular intensity on improving the ease of use of
ASP.NET while reducing the amount of code developers must write to create web applications.

For the Visual Basic 2005 programmer, the new release of ASP.NET is yet another bonanza, making web
application development more accessible then ever to those with Visual Basic skills. Among its many
improvements, ASP.NET 2.0 ships with dozens of new ready-to-use controls, considerably reducing the amount of
code you need to write to achieve professional results. In fact, a stated aim of the Microsoft web development tools
team is to reduce the amount of code you write to perform common web site tasks by up to 70%. In addition,
ASP.NET 2.0 comes with some neat improvements, such as cross-page posting and the ability to insert client script
into a page. You will learn about some of these features in this chapter.

The new features in ASP.NET 2.0 can be grouped into three broad categories: new controls and control
functionality, improvements to the Page Framework, and new services and APIs.

Controls

ASP.NET 2.0 ships with more than 50 new controls that make the life of a web application developer easier
by eliminating the need to write code. Specifically, there are new controls that help you to perform data
access, site navigation, login, and personalization with Web Parts.

Page Framework

ASP.NET 2.0 supports some useful additions to its Page Framework, most importantly establishing a
common look and feel on a site through a feature known as Master Pages. In addition to Master Pages,
ASP.NET 2.0 supports "theming" through Themes and Skins, allowing you to maintain a consistent look
and feel for your web sites and their controls. Another noteworthy feature in ASP.NET is its improved
support for localization, which reduces the amount of work you need to do to internationalize your web
applications.

Services and APIs

Behind the various new ASP.NET 2.0 controls for web site development lie the foundation services and
APIs that do the heavy lifting the controls need to do their work. For example, behind the new Login
controls you'll find the new Membership APIs, which perform such tasks as user authentication, registration
of new users, etc. If the controls don't do what you need, you can make use of these APIs directly in code.

In this chapter, you will build a simple e-commerce web application using several of the most powerful and
interesting features of Visual Studio 2005 and ASP.NET 2.0. The site will enable users—whether or not they are
authenticated—to browse a list of books and add one or more to a shopping cart. Once a user is ready to checkout,
the site will display a page asking the user either to log in or register as a new member and then proceed to log in as
a new member.

As you build the site, you'll get a feel for the following Visual Studio 2005 and ASP.NET 2.0 features:

How to create a consistent look and feel for your web site using Master Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to use the new Profiling services to save items into a shopping cart and keep track of them when a user
registers and logs into the site

How to use the new security controls to create user accounts and to authenticate users

How to use new Member services to create a members-only directory of pages

How to display data using the GridView control

Of course, since this is a Visual Basic 2005 book, you'll also get to write some code. Figure 5-1 shows how the
main page of application will look when it is completed. Users will click on the Add to Cart buttons to add items to
their shopping cart and click on the Checkout button to go to the login page to sign in and make a purchase.

Figure 5-1. The completed shopping cart application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1. Building the Storefront

The first step toward building the example in this chapter is to create the Storefront page shown in Figure 5-1.
You'll first create a Master Page to set the look and feel of the site and then derive the Storefront page from it. Once
the page is created, you'll add the controls needed to define its buttons and to display the books. To get started,
you'll use Visual Studio 2005 to create a new Visual Basic web application.

1. On the Visual Studio menu bar, click File New Web Site…, as shown in Figure 5-2. The New Web
Site dialog box will display.

2. In the New Web Site dialog, select the ASP.NET Web Site template. Select File System as its Location, and
Visual Basic as the Language you will use. Name the project C:\ShoppingApp. Figure 5-3 shows the result.
Click OK to continue. Visual Studio 2005 will create the site and display its files in the Solution Explorer.
Take a look at the toolbar, which lists an entirely different set of controls specifically provided for building
web applications. You'll be using a number of these later in the chapter.

Figure 5-2. Using Visual Studio 2005 for this project

Figure 5-3. Creating a new ASP.NET Web Site project

File-Based Web Development
Visual Studio 2005 provides you with four ways to develop a web site. For this project, you'll use the
File System option. This new ASP.NET 2.0 option frees you from having to use IIS (Microsoft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File System option. This new ASP.NET 2.0 option frees you from having to use IIS (Microsoft
Internet Information Server) for development. Instead, Visual Studio 2005 provides its own built-in
web server, which it launches when you run/debug the web application.

Now you can even develop ASP.NET 2.0 web applications on your Windows XP Home Edition PC,
which does not include IIS.

5.1.1. Building a Site Template Using a Master Page

Visual Studio 2005 and ASP.NET 2.0 now support the creation of special pages known as Master Pages that you
can use to give a common look and feel to every page on your site. The implementation resembles the visual page
inheritance found in Windows Forms, for those who have used that popular framework, though strictly speaking, it
is not the same. You can create a single Master Page to specify the common elements shared by all the pages of
your site. You then create web pages that draw on content from the Master Page.

For the e-commerce site, you will first create a Master Page to define the header that will appear on every page. The
header consists of two images, one showing the O'Reilly company logo and the other displaying the O'Reilly
company name.

1. To create the Master Page, right-click on the project name in Solution Explorer and then select Add New
Item… (see Figure 5-4).

Figure 5-4. Adding a new item to the project

2. In the Add New Item dialog, select the Master Page template and use the default name, MasterPage.master,
as shown in Figure 5-5. Click Add to create the page.

3. Since you'll be using controls to add elements to the Master Page, go to the MasterPage.master page and
switch to the Design view by clicking on the Design button at the bottom left of the page, as shown in
Figure 5-6.

4. Your project will make use of a number of images, so you need to create a folder to store them. Add a folder
to the project and name it Images by right-clicking on the project name in Solution Explorer and selecting
Add Folder Regular Folder, as shown in Figure 5-7

Figure 5-5. Adding a Master Page to the project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-6. Switching between Design view and Source view

Figure 5-7. Switching between the different views

5. Copy the images shown in Figure 5-8 into the C:\ShoppingApp\Images folder. You'll use these images to
build your application. When you've finished, the Images folder should look like the one shown in Figure 5-
9.

The images can be downloaded from this book's support site
athttp://www.oreilly.com/catalog/vbjumpstartpg/.

Figure 5-8. Images used for this project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-9. The Images folder with the various images

You'll need to refresh the Images folder to see the images (right-click on the
Images folder in Solution Explorer and select Refresh Folder).

6. Now you're finally ready to lay out the elements of the Master Page. Drag and drop two Image controls and
an HTML Horizontal Rule control from the Toolbox onto the page, as shown in Figure 5-10 Set the names
of the controls to those shown in the figure. Make sure the controls are positioned above the
ContentPlaceHolder control (simply position your cursor to the left of the ContentPlaceHolder
control and press the Enter key a few times to move the control downward).

Switching Between Design View, Source
View, and Code-Behind View

In Visual Studio 2005, a Web Form is displayed in Source view by default. Source displays
the HTML and other markup a web browser uses to construct a web page you've designed. In
Source view, you can directly modify HTML elements and their attributes as well as the
controls contained within it. To switch to Design view, click on the Design button at the
bottom of the screen. In Design view, you can visually inspect the page and drag and drop
controls from the Toolbox onto the form. To view the code behind of the form, you can simply
double-click on the form and the code behind will appear. In Code view, you use Visual Basic
to write the business logic for your application and service the events raised by the various
controls on the page. The figure shows each of the three views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ContentPlaceHolder control (populated by default in a Master Page)
is a place holder for Content pages (pages that inherit from the Master Page) to
populate with controls.

Set the ImageUrl property of the imgLogo control to ~/Images/oreilly_ logo.gif and
that of the imgHeader control to ~/Images/oreilly_header.gif. The two GIF files contain the
O'Reilly company logo and company header, respectively.

7. Save the project (click File Save All).

Figure 5-10. Populating the Master Page with the various controls

5.1.2. Building the Storefront Using a Content Page

Now that the Master Page is completed, you're ready to create the Storefront page. You'll do this by deriving (or
inheriting) a Content page from the Master Page and then populating it with controls. The Storefront page will
display a list of titles that users can add to a shopping cart.

1. To create a blank Content page, right-click on the project name (ShoppingApp) in the Solution Explorer and
select "Add New Item…." In the Template window of the Add New Item dialog box, select Web Form and
set its name to Main.aspx. To let Visual Studio 2005 know that you want to use a Master Page, check the
"Select master page" checkbox at the bottom of the dialog, as shown in Figure 5-11 Click Add to move to
the next step.

2. Now it's time to choose the Master Page. When Visual Studio 2005 displays the Select a Master Page dialog
box, select MasterPage.master in the Contents of folder pane, as shown in Figure 5-12. Click OK to
proceed to the next step.

Like Visual Basic classes, which can only inherit from one base class, an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET 2.0 Content page can have only one Master Page.

Figure 5-11. Creating a Content page by selecting a Master page

Figure 5-12. Selecting a Master Page

3. Visual Studio 2005 will display the new page, Main.aspx, with the contents of the Master Page grayed out,
as shown in Figure 5-13. The grayed out sections of the page are meant to indicate that content derived from
the Master Page cannot be edited in the Main.aspx form. Notice that the new page contains a Content
control.

The Content control is the location where you populate the content of the page.

You'll customize the new page,Main.aspx, by adding controls to the Content control in the next step.

Figure 5-13. Creating a new Content page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While you can't directly edit Master Page content in Main.aspx, you can make
changes by either right-clicking on the grayed-out content and selecting Edit
Master, or by simply going to the Solution Explorer and double-clicking the
Master Page. Either action will load the Master Page for editing.

4. Now we'll add the content, specifically the Storefront items available for users to select. Selection in your
store will be limited to three items (my O'Reilly books). We'll use a 3 x 2 table to lay out their images and
their purchase information.

To add content to a Content control, you'll typically drag-and-drop controls from the Toolbox onto it. You
can also type text directly into a Content control if you wish. In the Content control, insert a 3 x 2 table (go
to Table Layout) and then populate the table cells with the controls shown in Figure 5-14. Also, type in
the text as shown in the figure. You can drag and drop the detailed information of each book from the
following URLs:

http://www.oreilly.com/catalog/aspnetadn/

http://www.oreilly.com/catalog/compactframework/

http://www.oreilly.com/catalog/vbjumpstart/

Set the properties for the controls as follows:

img1

Set the ImageUrl property to ~/Images/aspnetadn.gif.

img2

Set the ImageUrl property to ~/Images/compactframeworkpg.gif.

img3

Set the ImageUrl property to ~/Images/vbjumpstartpg.gif.

imgBtn1, imgBtn2, imgBtn3

Set the ImageUrl property to ~/Images/button_addtocart.gif.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set the ImageUrl property to ~/Images/button_addtocart.gif.

Figure 5-14. Populating the Content page

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2. Creating a Shopping Cart

When a user clicks on the Add to Cart button on the Main.aspx page, you'll want the item to be saved in a shopping cart, a
key feature of the application that you'll now implement. To save items, you'll use the new Profile service (exposed via the
Profile object) in ASP.NET 2.0. Think of the Profile service as an ASP.NET mechanism to persistently store a user's
information, similar to the Session object. Unlike a Profile object, however, a Session object is valid only for the
duration of a session; after the session has expired, the Session object is deleted. The Profile service, however, retains
its information until you explicitly remove it from the data store.

Moreover, the Profile object has several advantages over the Session object, such as:

Non-volatility

Profile object data is persisted in data stores, whereas Session variables are saved in memory.

Strong typing

Profile object properties are strongly typed, unlike Session variables, which are stored as objects and typecast
during runtime.

Efficient implementation

Profile properties are loaded only when they're needed, unlike Session variables, all of which are loaded whenever
any one of them is accessed.

In this section, you use the Profile service to implement a shopping cart.

In addition to creating the shopping cart itself, you add forms so that when it comes time to check out, users can either log
in to access the members' only area of the site, or register and then log in. You'll use Forms authentication rather than
Windows authentication to identify a user.

1. First, you need to create the business object that implements the functionality of a shopping cart. Add a new class
to the project and name it ShoppingCart.vb. (Right-click on project name in Solution Explorer and select Add New
Item…. Then select the Class template and rename it ShoppingCart.vb.) You will be asked if you wish to save the
file in the App_Code folder (see Figure 5-15), which is recommended. Click Yes.

Figure 5-15. Saving the class in the App_Code folder for code reuse

2. Code the ShoppingCart.vb class file as shown in Example 5-1.

Example 5-1. ShoppingCart.vb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports Microsoft.VisualBasic

Imports System.Xml.Serialization

Namespace OReilly

 Public Structure itemType

 Dim isbn As String

 Dim qty As Integer

 End Structure

<XmlInclude(GetType(itemType))>_
 Public Class Cart

 '---use public for Xml serialization---

 Public items As New _

 System.Collections.Generic.List(Of itemType)

 Public Sub AddItem(ByVal isbn As String, _

 ByVal qty As Integer)

 Dim cartItem As New itemType

 cartItem.isbn = isbn

 cartItem.qty = qty

 items.Add(cartItem)

 End Sub

 End Class

End Namespace

You need to specify the XmlInclude attribute to allow XmlSerializer to
recognize a type when it serializes or deserializes the itemType data type.

An item is represented using the itemType structure containing its ISBN number as well as the quantity. The
Cart class contains an AddItem method that adds items to a generic List object (located in the
System.Collections.Generic namespace). Notice that you use the OReilly namespace to uniquely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Collections.Generic namespace). Notice that you use the OReilly namespace to uniquely
identify the itemType structure and Cart class that you have defined in this file.

3. Before building the actual registration and login forms, you'll first specify how users are to be authenticated. With
web applications for Internet users, you should use Forms authentication, instead of the Windows authentication
that ASP.NET uses by default (see "Forms Versus Windows Authentication"). Changing the authentication mode
of a web application from Windows to Forms requires changing the mode attribute of the authentication element in
its Web.config file. You'll first need to add a Web.config file to your project.

To add a Web.config file to your project, right-click on the project in Solution Explorer and select Add New Item
 Web Configuration File). Visual Studio will create and display the contents of the file.

Locate the <authentication> element in the file and change its mode attribute from Windows to Forms
the editor, as shown in Example 5-2.

Example 5-2. Setting Forms authentication

 …

 <authentication mode="Forms"/>
 </system.web>

 </configuration>

Forms Versus Windows Authentication
In Forms authentication, unauthenticated requests are redirected to a Web Form using HTTP client-
side redirection. The user provides a username and password and then submits the form. If the
application authenticates the request, the system issues a cookie containing the credentials or a key
for reacquiring the identity. Subsequent requests are issued with the cookie in the request headers.
They are then authenticated and authorized by an ASP. NET event handler using whatever
validation method the application developer specifies.

In Windows authentication, ASP.NET works in conjunction with Microsoft Internet Information
Services (IIS) authentication. Authentication is performed by IIS in one of three ways: basic, digest,
or Integrated Windows Authentication. When IIS authentication is complete, ASP.NET uses the
authenticated identity to authorize access.

It is not feasible for you to create separate Windows accounts for users using your application
through the Internet. So Forms authentication is the preferred method for Internet applications.

4. To use the Profile service to store a user shopping cart, you need to define a profile property for the cart and
specify its characteristics. To do that, add the markup shown in bold in Example 5-3 to Web.config.

Example 5-3. Defining the shoppingcart profile proper

<system.web>

 <anonymousIdentification enabled="true"/>
 <profile>
 <properties>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <properties>
 <add name="shoppingcart" allowAnonymous="true"
 type="OReilly.Cart" serializeAs="Xml"/>
 </properties>
</profile>
 …

You define the type for the shoppingcart profile property as OReilly.Cart. This type refers to the Cart
class that you have defined in ShoppingCart.vb. The shoppingcart profile property will be serialized as an
XML string so that it can be stored in a database.

To save the value of an object to disk, you need to serialize it into XML or binary
format. In this case, you've chosen the XML method.

The <anonymousIdentification> element must be added in addition to the shoppingcart property
because an Internet user viewing your cart may not yet be an authenticated user of the application. To keep track
of an unknown user, ASP.NET needs to assign a unique identifier to the anonymous user.

Attributes in the Profile Property
Besides defining the name and the type attributes for a profile property, which are both
required (any .NET data type; default is string), you can also specify the following attributes:

readOnly

Indicates whether the property is read-only.

serializeAs

Represents how the property value should be stored in the database. Possible values are String (default),
Xml, Binary, and ProviderSpecific.

provider

Is the name of the profile provider to use.

defaultValue

Is the default value of the property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allowAnonymous

Indicates whether the property can store values by anonymous users.

5. Switch to the code behind of Main.aspx and add the code for the imgBtn_Click method shown in Example 5-4
This method retrieves the shopping cart of the current user—whether authenticated or anonymous—and then adds
the selected item to it. The updated shopping cart is then saved to the Profile object.

Example 5-4. Add to Cart button (imgBtn) Click event handler

Protected Sub imgBtn_Click(_

 ByVal sender As Object, _

 ByVal e As System.Web.UI.ImageClickEventArgs) _

 Handles imgBtn1.Click, imgBtn2.Click, imgBtn3.Click

 Dim myCart As OReilly.Cart
 '---retrieve the existing cart
 myCart = Profile.shoppingcart
 If myCart Is Nothing Then
 myCart = New OReilly.Cart
 End If

 Dim isbn As String
 Select Case CType(sender, ImageButton).ID
 Case "imgBtn1" : isbn = "0-596-00812-0"
 Case "imgBtn2" : isbn = "0-596-00757-4"
 Case "imgBtn3" : isbn = "0-596-10071-X"
 End Select
 lblMessage.Text = "You have added " & isbn

 myCart.AddItem(isbn, 1)
 '---save the cart back into the profile
 Profile.shoppingcart = myCart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

For simplicity, you will add an item selected by the user into the shopping cart, even though the item might
already be present in the cart.

Note that this subroutine handles the click event of three ImageButton controls. This is accomplished by the
Handles statement:

Handles imgBtn1.Click, imgBtn2.Click, imgBtn3.Click

When any of the ImageButton controls is clicked, this subroutine will check which control fired the event by
first converting the sender object into an ImageButton control and then examining the ID (control name) of
the control:

Select Case CType(sender, ImageButton).ID

 Case "imgBtn1" : isbn = "0-596-00812-0"

 Case "imgBtn2" : isbn = "0-596-00757-4"

 Case "imgBtn3" : isbn = "0-596-10071-X"

End Select

Of course, if you have a lot of titles on a page you can check the ISBN using a database, but for this simple
example you will hardcode the information.

6. Code the Page_Load event so that when the page (Main.aspx) is loaded, it can check the Membership class to
check to see if the user is authenticated and print out the related information about the user (see Example 5-5).

Example 5-5. ShoppingCart Page_Load event handler

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Dim user As MembershipUser = Membership.GetUser
 If user Is Nothing Then
 lblMessage.Text = "You have not logged in yet."
 Else
 lblMessage.Text = "Hello " & user.UserName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lblMessage.Text = "Hello " & user.UserName
 End If

End Sub

If the user is authenticated, the GetUser method from the Membership class will return information about the
authenticated user, or else it will return Nothing.

The Membership class in ASP.NET 2.0 takes on the role of validating user
credentials and managing user settings.

7. To test the application, select Main.aspx in Solution Explorer and then press F5. Since you haven't logged in yet,
you should see the message "You have not logged in yet," as shown in Figure 5-16.

If you wish to debug your web application (by using F5), you need to add a
Web.config file to your project. By default, if there is no Web.config file when you try
to debug your application, Visual Studio will prompt you to add one.

8. Add a few items into the shopping cart by clicking on the Add to Cart buttons, and the items will then be added to
the Profile object. Refresh the App_Data folder in Solution Explorer and you will see the ASPNETDB.MDF
database file (see Figure 5-17).

Bear in mind that at this moment, you have not yet been authenticated and are
therefore an anonymous user.

Figure 5-16. Loading Main.aspx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-17. The ASPNETDB.MDF database file

9. Let's take a quick look at the information saved by the Profile object. Double-click on the ASPNETDB.MDF
file. The Database Explorer window will appear, as shown in Figure 5-18. Expand the Tables item and locate the
aspnet_Profile table. This table will contain the items saved in your shopping cart. Right-click on aspnet_Profile
and select "Show Table Data."

Improved Debugging Support in ASP.NET 2.0
ASP.NET 1.x required you to explicitly set a start page for your project so that a specific page is
loaded when you press F5 to debug the application. In ASP.NET 2.0, you can still set a specific
page as the start page if you want. However, in ASP.NET 2.0 the start page by default is the
currently selected page (currently selected either because you're editing it or because you selected
the page in Solution Explorer). This feature saves you the trouble of setting a start page when you
just want to debug a page you're working on at the moment.

This option is configurable via the project Property Pages dialog. To invoke it, right-click on the
project name, ShoppingApp, in Solution Explorer and then select Property Pages. Select the Start
Options item shown in the figure.

10. Notice that the shoppingcart profile property is saved as an XML string in the PropertyValuesString
field (see Figure 5-19).

The string itself is shown in Example 5-6.

Figure 5-18. Viewing the content of the aspnet_Profile table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-19. The content of the aspnet_Profile table

Example 5-6. Content of PropertyValuesString

<?xml version="1.0" encoding="utf-16"?>

<Cart xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http:

//www.w3.org/2001/XMLSchema">

 <items>

 <anyType xsi:type="itemType">

 <isbn>0-596-00812-0</isbn>

 <qty>1</qty>

 </anyType>

<anyType xsi:type="itemType">

<isbn>0-596-00757-4</isbn>

<qty>1</qty>

 </anyType>

 <anyType xsi:type="itemType">

<isbn>0-596-10071-X</isbn>

<qty>1</qty>

</anyType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</anyType>

</items>

</Cart>

11. The UserID of the user is a long string of characters (a GUID). You can verify this by looking into the
aspnet_Users table (see Figure 5-20).

Figure 5-20. Content of the aspnet_Users table

Anonymous ID and GUID
If anonymous identification is enabled, when an un-authenticated user tries to save information into
the Profile object, an anonymous user ID is generated for the user. This ID is a GUID (Globally
Unique Identifier) that is guaranteed to be unique for each user.

You can programmatically retrieve the anonymous ID for the user via Request.AnonymousId.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3. Members Area

Now that anonymous users can visit your site and add items to the shopping cart, they need the ability to log in
when they're ready to check out and purchase their selections. In this section you will create a checkout page that
only authenticated users can access.

5.3.1. Creating New User Accounts

When a user has finished shopping (i.e., selecting items in the storefront), you need to some way to authenticate her
so that you can retrieve particulars such as shipping address, credit card number, and so on. In this section, you will
build a page through which the user can register as a member of your site.

1. First, as always, you need to create the registration page. Add a new Web Form to the project and name it
Register.aspx. Select MasterPage.master as the Master Page once again to assure Register.aspx has the
same look and feel as other pages on your site.

2. Drag and drop the CreateUserWizard control from the Login tab in the Toolbox onto the Content
control in Register.aspx. The CreateUserWizard control is a visual control that prompts the user to
supply the necessary information to create a new user account.

The CreateUserWizard control
Because creating user accounts is such as common task, one performed by most web sites,
Microsoft has provided a new CreateUserWizard control in ASP.NET 2.0. The
CreateUserWizard control takes the drudgery out of creating user accounts by providing
a highly customizable control that accepts users' information. It performs such tasks as
verifying users' passwords and authenticating email addresses. It then automatically adds user
accounts to the site using the specified Membership Provider.

3. Now set the look and feel of the registration form. On the CreateUserWizard Tasks menu, click on the
Auto Format… link to apply the Professional scheme to the control.

ASP.NET 2.0 comes with several standard schemes to make your controls look
professional.

4. You'll want the Main.aspx page to be loaded when the user has finished registering a new account. Set the
ContinueDestinationPageUrl property (through the Properties window) of the
CreateUserWizard control to Main.aspx.

5. Now position the control on the page. Highlight the CreateUserWizard control and select Format
Justify Center on the Visual Studio menu bar to centralize the position of the control on the page. The
Register.aspx page should now look like Figure 5-21.

5.3.2. Creating a Login Page

Once you have created a registration page, you'll want to create a login page so returning customers can log into the
web site.

1. First, create the login page. Add a new Web Form to the project and name it Login.aspx. Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. First, create the login page. Add a new Web Form to the project and name it Login.aspx. Select
MasterPage.master as the Master Page once again to assure Login.aspx has the same look and feel as other
pages on your site.

2. Now create a login form for users to complete. Drag and drop the Login control from the Login tab in the
Toolbox onto the Login.aspx page. The Login control allows a user to log into your web site using the
Membership class that you have seen earlier.

Figure 5-21. The Register.aspx page

New Login Controls in ASP.NET 2.0
ASP.NET 2.0 ships with several new Login controls (such as Login, LoginView,
LoginStatus, LoginName, CreateUserWizard, and ChangePassword) to help
you accomplish tasks such as user authentication, display of login status and login name, and
more. The figure shows the various new Login controls in the Toolbox.

3. Set the look and feel of the control. Using the Login Tasks menu, click on the Auto Format… link to apply
the Elegant scheme to the control.

4. Under the Login control, type the text "New Member? Register here." At the end of the text, add a
LinkButton control from the Toolbox (see Figure 5-22).

Figure 5-22. Populating the Login.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Finally, set the PostBackUrl property of the LinkButton control to ~/Register.aspx so that the
Register.aspx page will be loaded to help an unregistered user create a new account. Also, set the
ContinueDestinationPageUrl property of the Login control to Main.aspx so that upon successful
login, the user would be redirected to Main.aspx.

5.3.3. Restrict Unauthorized Access to Pages

So far, you have seen how to easily add a login page to your web site and how you can allow users to register for a
new account in your application. In this section, you will add a new members-only folder to your web site and
restrict access to authenticated users only.

1. First, create the folder in your project that will contain the restricted pages. To add a new folder to your
project right-click on the project name, ShoppingApp in the Solution Explorer and then select Add Folder

 Regular Folder. Name the folder Members.

Next, set the authorization required to access the folder. In Web.config, add the markup shown in bold in
Example 5-7 to restrict anonymous users from accessing the files contained within the Members folder.

Example 5-7. Denying anonymous users access to the Members page

…

 </system.web>

 <location path="Members">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <location> element together with the <authorization> element allows you to restrict access to
a particular folder on your web site. In this case, you have used the <deny> element to prevent all
anonymous (represented by "?") users from accessing the Members folder.

5.3.4. Checking Out from the Store

While an unauthenticated user is selecting items on the Storefront page (Main.aspx) of ShoppingApp and adding
them to the shopping cart, the Profile service treats the user as anonymous. Once the user has finished choosing
items, clicks on the Checkout button to check out, and is authenticated, you need to take special steps to preserve
the items he has added to the shopping cart. This is because the profile data that was saved while the user was
anonymous is lost when he switches from using a GUID to using a user ID for identification. To migrate the profile
of the user, you need to transfer whatever information was saved in the anonymous profile to the user profile.

In this section, you will learn how to migrate an anonymous profile to an authenticated profile once a user has been
authenticated. Using the authenticated profile, you'll display a Checkout page that shows the user what's in the
shopping cart and offers the option to continue shopping. The completed page is shown in Figure 5-25.

1. First, add a Global.asax file to the project (Figure 5-23). (Right-click on project name in Solution Explorer
and then select Add New Item…. Select Global Application Class.) You will need the Global.asax file to
service an event (see the next step) when the user changes from an anonymous state to an authenticated one.
Visual Studio opens the file for you after adding it to your project.

Global.asax
The Global.asax file, also known as the ASP.NET application file, is an optional file that
contains code for responding to application-level events raised by ASP.NET or by
HttpModules. In this example, the Profile_MigrateAnonymous event will be fired
when a user changes from an anonymous state to an authenticated one. This event is serviced
in the Global.asax file.

Figure 5-23. Adding a Global.asax file to the project

2. Type the Profile_MigrateAnonymous event handler shown in Example 5-8 into Global.asax. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type the Profile_MigrateAnonymous event handler shown in Example 5-8 into Global.asax. The
Profile_MigrateAnonymous event is raised whenever a user changes her status from anonymous to
authenticated (when she logs into the application via the Login.aspx page).

You can get the anonymous ID from the AnonymousId property (in the ProfileMigrateEventArgs
class) and then use the GetProfile method to retrieve the anonymous profile. The retrieved profile can
then be assigned to the authenticated user profile. You will also delete the old profile associated with the
anonymous user.

Example 5-8. Profile_MigrateAnonymous event handler

Sub Profile_MigrateAnonymous(ByVal sender As Object, _

 ByVal e As ProfileMigrateEventArgs)

 Dim anonymousProfile As ProfileCommon = _

 Profile.GetProfile(e.AnonymousID)

 If anonymousProfile.shoppingcart IsNot Nothing Then

 Profile.shoppingcart = anonymousProfile.shoppingcart

End If

 '---delete the items associated with the anonymous user

 ProfileManager.DeleteProfile(e.AnonymousID)

 '---clear the anonymous identifier from the request

 ' so that this event will not fire for an authenticated

 ' user

 AnonymousIdentificationModule.ClearAnonymousIdentifier

End Sub

3. Now you'll create the Checkout page that will be used to display the items currently stored in the user's
shopping cart. Add a new Web Form to the Members folder and select the MasterPage.master Master Page.
Name the new Web Form Checkout.aspx.

Populate the form with a GridView control and apply the Sand & Sky scheme to it. (Select Auto Format…
in the GridView Tasks menu; see Figure 5-24.)

Figure 5-24. Applying Auto Format to a GridView control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, add a LinkButton control under the GridView control and set its Text property to "Continue
Shopping" and its PostBackUrl property to ~/Main.aspx. The results are shown in Figure 5-25.

The GridView control in ASP.NET 2.0 is similar to the DataGridView
control you have seen in Chapter 4, except that GridView is web based and
DataGridView is Windows based.

4. In the code behind of Checkout.aspx, code the Form_Load event as shown in Example 5-9. The
Checkout.aspx page will first create a dataset containing all the items in the shopping cart and then use it to
bind to the GridView control. It also changes the image in the imgHeader control in the Master Page
using the FindControl method in the Master property.

Figure 5-25. Members/Checkout. aspx page

Example 5-9. Checkout. aspx Form_Load event

Imports System.Data

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 Dim myCart As OReilly.Cart

 myCart = Profile.shoppingcart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 myCart = Profile.shoppingcart

 Dim item As OReilly.itemType

 '---change the image

 Dim masterImage As Image

 masterImage = CType(Master.FindControl("imgHeader"), _<

 Image)

 If masterImage IsNot Nothing Then

 masterImage.ImageUrl = "~/Images/header_shopping.gif"

 End If

 '---create a dataset---

 Dim ds As New DataSet

 ds.Tables.Add("Items")

 ds.Tables("Items").Columns.Add("ISBN")

 ds.Tables("Items").Columns.Add("Qty")

 Dim row As DataRow

 '---return all the items as a dataset---

 For Each item In myCart.items

 row = ds.Tables("Items").NewRow

 row("ISBN") = item.isbn

 row("Qty") = item.qty

 ds.Tables("Items").Rows.Add(row)

 Next

 '---Bind the GridView control to the dataset

 GridView1.DataSource = ds

 GridView1.DataBind()

End Sub

Think of a dataset as a database containing tables stored in memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifying a Master Page at Runtime
When a Web Form that uses a Master Page is loaded at runtime, it displays the content of the
Master Page together with its own content. However there are times when you will want to
modify parts of the Master Page when a particular Content page is loaded.

You locate the controls you want to modify on the Master Page by using the FindControl method of the
Master property, then supplying the name and type of the control you want to modify. Once the control is
located, you can change its properties as if it were a local object.

Master is a special property exposed by the Web Form as a handle with which to access the Master Page.
However, the Master property is valid only on pages that reference a Master Page.

You can programmatically check if a page is using a Master Page by doing this:

 If Master Is Nothing Then

 '---Page does not use master page---

 …

 End If

5. You'll want Checkout.aspx to be displayed when a user clicks on the Checkout button in Main.aspx. So, as a
last step, go to Main.aspx and set the PostPackUrl property of the Checkout button in Main.aspx to ~/
Members/Checkout.aspx so that the user can be brought to the Checkout.aspx page to check out. If an
unauthenticated user clicks on the Checkout button, he will be redirected to Login.aspx.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4. Testing the Application

With the entire application built, it is now time to test it out.

1. To get started, select Main.aspx in Solution Explorer and then press F5 to debug the application.

2. In Main.aspx, add a few items into the shopping cart, as shown in Figure 5-26.

Figure 5-26. Adding items to a shopping cart and then checking out

3. When you are done adding the items, click the Checkout button and you will be redirected to the Login.aspx
page (see Figure 5-27).

4. Since you have not registered for an account yet, click on the "here" link to load the Register.aspx page (see
Figure 5-28). Enter the required information and click Create User.

You should use a strong password consisting of a mixture of alphanumeric
values and special characters. For example, you can use password such as
pass@word1. ASP.NET 2.0 requires passwords to have a mixture of numerals
(0–9), letters (a–z, A–Z), and special characters (such as # and !). It will also
reject passwords that are less than seven characters.

Default Login Page
Wait a minute, how does ASP.NET know that it should load the Login.aspx page to
authenticate the user when the Checkout button is clicked, rather than the other pages?

Well, in ASP.NET 2.0, a page with the filename Login.aspx is deemed to be the login page
when users try to access restricted folders (Members, in this case). This special name
Login.aspx (plus many others) is "burned" into ASP.NET as a default.

The machine.config.default file (located in C:\WINDOWS\Microsoft.NET\Framework\
<version>\CONFIG) contains all the default system-wide configuration settings. To see the
default settings defined in machine.config.default, check the machine.config.comments file
(also in the same directory) for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the default settings for Forms authentication found in machine.config.comments
are:

<forms

 name=".ASPXAUTH"

 loginUrl="login.aspx"

 protection="All"

 timeout="30"

 path="/"

 requireSSL="false"

 slidingExpiration="true"

 defaultUrl="default.aspx"

 cookieless="UseCookies"

 enableCrossAppRedirects="false" >

If you want to override the default settings, you should modify machine.config (for machine-
wide configuration) or Web.config (for application-wide configuration). The rationale for
splitting the original machine.config file into three different files is to reduce the size of
machine.config and hence improve performance.

5. If the registration is successful, you will see the page shown in Figure 5-29. Click Continue to return to the
Main.aspx page.

6. In Main.aspx, if you now click on the Checkout button, you will be redirected to the Checkout.aspx page
(see Figure 5-30). All the items that you have added before you log in are now displayed in the GridView
control. You can click on the Continue Shopping link to return to Main.aspx to continue adding items into
your shopping cart.

Figure 5-27. The Login.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-28. The Register.aspx page

Figure 5-29. Registration successful

Figure 5-30. The Checkout.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5. Summary

In this chapter, you built a simple e-commerce application that uses some of the new features in ASP.NET 2.0. You
have seen how to use a Master Page to maintain a consistent look and feel for the pages in your site. You have also
seen how information about users can be persisted using the Profile service. Last but not least, you have learned
how easy it is to implement security in your web applications using the new set of security controls built to work
with the underlying Membership class.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Moving from VB 6 to VB 2005
To take the plunge and move your current VB 6 application to VB 2005 requires more than just a cursory overview
of the capabilities of the language. Each type of application currently deployed in your environment warrants
different considerations. In this chapter, I will discuss some of the factors you need to consider before upgrading
your current application to VB 2005. I will also discuss various upgrade strategies that you can take should you
decide to use VB 2005. This chapter will end with a look at using the Code Advisor for Visual Basic 6.0 and the
Visual Basic Upgrade Wizard to upgrade your VB 6 application to VB 2005.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1. Migrate, Replace, Rewrite, or Reuse?

Once an organization has decided that a certain application no longer meets its business needs and that doing
nothing is no longer an option, modernization comes into play.[1] There are at least four ways to approach the
modernization of a VB application that should be considered. The deciding factors are:

[1] The following section is an excerpt from the "Designing an Application Migration Strategy for Visual Basic 6.0 to Visual Basic
.NET" whitepaper authored by ArtinSoft, published on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/appmigrationstrat.asp.

The quality of the application code

The business value of the application

Quality in this case is about the suitability of the application in business and technical terms and should be assessed
in accordance with the following parameters:

Current effectiveness of application

Generated errors, number of workarounds, and level of support needed.

Stability and completeness of core business rules

Will the application logic remain the same in the foreseeable future? An underlying assumption in this paper
is that the current software asset is a valuable one. If the business model is going to change substantially,
then this assumption has to be called into question. In practice, the code is often the only repository of
business rules and these are scattered throughout the code. Thus any attempt to "start from scratch" needs to
reconstruct and document the requirements captured in the current code and take these requirements as the
starting point for the negotiation of new requirements.

Stage of the lifecycle

In the earlier stages of its lifecycle, an application will likely map closely to its functionality requirements,
although the platform could be obsolete.

Development environment

The development team and the environmental capabilities required to successfully deliver a modernization
project need to be assessed. Here, the developer's knowledge regarding the application source code, the
target technologies, and the resolution of modernization issues identified during the code assessment are
crucial. In general, it is recommended that developers executing the project be fully trained in VB 2005.
Additionally, other factors such as the existence of test cases must be considered.

The business value of the application is another important consideration and this will depend to a considerable
degree on its uniqueness. If the quality of the application is poor and there is comparable functionality available in a
third-party software package, it makes sense to replace it.

There are four broad modernization options—migrate, re-use, rewrite, or replace—any one of which can be the
right choice either for a complete application or for parts of an application. Figure 6-1 shows how the decision
factors correlate with the modernization path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Migrate

If the VB application meets current business needs and its quality is good, chances are the application can
be effectively modernized to continue to meet the needs of the business in the future. In such cases, a
migration process can be applied and then functionality and business reach can be added as needed. In this
chapter, when we refer to a migration or an upgrade, we are referring to an automatically assisted migration
using the Microsoft Visual Basic Upgrade Wizard that is integrated in Visual Studio .NET (see "Upgrading
VB 6 Applications," later in this chapter).

Figure 6-1. Modernization options chart

Reuse

There are two possibilities here, one in which the application is centered on a third-party package/DBMS
already, and the other in which the business has developed its own application from scratch. If the VB 6
application portfolio is largely centered on a third-party package, then the best way to move forward may be
to upgrade to the latest version and use wrapping techniques to provide the required reach and other
functionality improvements. For in-house applications, consider wrapping the application pieces and
integrating them with new development.

Rewrite

The key asset here is the business rules and data structures; the application is the problem. Application
mining and analysis of code logic and data structures is required to provide the starting point for the rewrite.

Replace

Look for a suitable package or outsource. Be prepared to make changes to the business model to meet the
package half way.

6.1.1. Making the Right Decision

Upon the initiation of the project you should prepare a feasibility analysis that provides an assessment of the
business and technical quality of the application. The following series of checklists presents some of the questions
that you should consider when choosing one of the alternatives.

6.1.1.1. Migrate

Below is the checklist for choosing to migrate:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Existing application fulfills current business needs
 Moderate functionality changes needed in existing application
 High operational costs of existing application
 Need to migrate to the .NET Framework for strategic reasons
 Future vision includes the use of web services or web access
 Stable code base and a test suite that certifies it
 Resources needed to maintain or amend applications on existing platform are difficult to find

6.1.1.2. Reuse

Below is the checklist for choosing to reuse:

 Business rules satisfactory
 Low operational costs of existing application
 Simple web access required, allowing a wrapping solution
 Have resources to keep core Visual Basic 6.0 application maintained
 Off-the-shelf software central to existing, rely on a third party to support and maintain

6.1.1.3. Rewrite

Below is the checklist for choosing to rewrite:

 Functionality does not meet business needs
 No off-the-shelf solution comes close to meeting needs
 Poor quality code in existing platform and high maintenance costs
 Can afford time, cost, and disruption involved
 Need to use the Microsoft .NET Framework for strategic reasons
 Future vision includes the use of web services

6.1.1.4. Replace

Below is the checklist for choosing to replace:

 Application significantly out of line with business needs
 Willing to make changes to business model to fit off-the-shelf solution or availability of off-the-shelf

solution that closely fit your business requirements
 Can afford time, cost, and disruption involved

The preceding questions can apply to complete applications or to discrete parts of applications. Typically a large
application will require use of more than one modernization alternative. When deciding the best path for a particular
part of an application, bear in mind that many developers will invariably say that rewriting your application is the
best solution if you need to upgrade it, because they usually feel they can write it better the second time, armed with
the benefit of hindsight. Certainly if the application is poorly designed, rewriting it can be a good option because it
provides an opportunity to do it right. However, examining the business case for upgrading, rewriting, replacing, or
leaving the application in Visual Basic 6.0 always provides some interesting insights.

If the application already supports your business needs, doesn't require enhancements to its functionality, and if you
already have support staff trained in VB 6, then leaving the application in VB 6 is a good option. Nevertheless, your
organization needs to assess the risks of this approach in light of current lifecycle guidelines from Microsoft and the
opportunities that the VB 2005 and .NET framework offer to your organization.

If there is a business need to move the application to VB 2005, then there is a need to look more closely at rewriting
versus upgrading. Upgrading the application using the VB 6 to VB 2005 migration tool is a cost-effective way to
migrate your applications. One popular reason for moving an application to VB 2005 is to either web-enable the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

migrate your applications. One popular reason for moving an application to VB 2005 is to either web-enable the
application, or to enhance an existing web-enabled application with ASP.NET features such as tracing, flexible state
management, scaleable data access, and improved performance. As mentioned previously, rewriting sometimes
yields an improved application. The downside is that the development cost will be much greater than upgrading.

There are some benefits to rewriting. Rewriting allows you to correct a poor design, and COM objects can be
replaced with .NET objects that are more scaleable and don't require registration during deployment. The flipside of
this is that upgrading is much quicker and COM objects can be replaced with .NET objects after the upgrade has
taken place.

In brief, you have to decide on how to move forward with your modernization project. If you decide that the best
solution is to leave the application in VB 6, then you are done! On the other hand, if you have assessed that the best
solution is to rewrite your application, then the best piece of advice is to make sure that you follow an accepted
development methodology and that you really look back at the issue your current application has to make sure you
can leverage that knowledge when moving forward. If you think your current application and its source code have
value, and that by moving it to .NET you can extend its lifecycle, then you have decided that automatically assisted
migration is the best solution for your code. Finally, you may decide to go for a combination of the above solutions,
as is the case for most modernization projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2. Using COM Objects in VB 2005

One of the primary reasons VB 6 programmers and their companies are reluctant to migrate to VB 2005 is the huge
investments they have made in developing COM components. However, COM components continue to be
supported in .NET. In the following sections, you will see how you can use legacy COM components in your VB
2005 applications.

The most direct way to use COM objects in VB 2005 is to use COM Interop. Although applications that run under
the .NET Framework can only work with .NET components, .NET allows you to use your existing COM
components by means of a Runtime Callable Wrapper (RCW). When you use RCW to interact with a COM object,
an assembly is used as a wrapper for the COM object. The RCW acts as a bridge between the unmanaged code (the
COM object) and managed code (your .NET application), and all communications with the COM object are routed
through this class (see Figure 6-2).

Figure 6-2. Runtime Callable Wrapper

COM objects are unmanaged code, therefore you need to remember to free up their
resources when they are no longer in use.

To illustrate the support of COM in .NET, let's consider a simple example.

Suppose you want to display a PDF file in a VB 2005 Windows application. To do so, you can make use of the
Adobe Acrobat Browser Document control (which is a COM object) installed on your system (the component is
installed on your computer when you install the Adobe Acrobat Reader).

First, create a new Windows application. To use the Adobe COM component, look for it and select it from the list
of COM components on your system. To see the list, click the COM tag of the Add Reference dialog in Solution
Explorer in Visual Studio 2005, as shown in Figure 6-3. Click OK.

Drag and drop the Adobe Acrobat 7.0 Browser Document, which is now located in the Toolbox under the All
Windows Forms tab, onto your Windows Form (Form1, unless you have renamed it). The result is shown in Figure
6-4.

Figure 6-3. Add a COM component to your project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. Filling the form with the Adobe COM component

To display a PDF document using the control, double-click on the Windows Form and code the Load event as
shown in Example 6-1.

Example 6-1. Form1 Load event handler

Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load, _

 MyBase.Load
 AxAcroPDF1.LoadFile("C:\MiniReader.pdf")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AxAcroPDF1.LoadFile("C:\MiniReader.pdf")
End Sub

There isn't much difference in coding; your COM component is used much like a .NET component.

Besides exposing using COM components in a .NET application, you can also use
.NET Components in a COM application via the COM Callable Wrapper (CCW). The
CCW is used to marshal calls between managed and unmanaged code (see Figure 6-5),
thereby allowing COM applications to make use of .NET components.

Figure 6-5. COM Callable Wrapper

Figure 6-6 shows what happens when the application is run.

Figure 6-6. Using the COM component

Not only does COM interop make it easy to use COM components in your VB 2005 application, it also does away
with the error-prone task of installing and registering COM components on target computers through a new feature
known as RegFree COM (Registration-Free COM).

RegFree COM runs only on Windows XP and later releases of the Windows operating
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using RegFree COM, you can deploy an application that uses a COM component without registering it on the user's
machine, thus avoiding the notorius collection of problems commonly referred to as "DLL Hell." RegFree COM
even allows you to run multiple versions of a COM component on the same machine.

RegFree COM works by automatically generating a manifest from the COM
component's type library and component registration on the developer's machine.
Therefore, while it is not required to install the component on the end users' machines, a
copy must be registered on the developer's machine.

To enable use of RegFree COM, all COM components referenced in Visual Studio 2005 now have a new
Isolated property (see Figure 6-7). If you set Isolated to true, the component can be deployed through
ClickOnce, and Visual Studio 2005 will automatically do all the work to deploy the COM component onto the
target machine (without needing to register it on the target machine).

Figure 6-7. Setting the Isolated property for RegFree COM

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3. Upgrading VB 6 Applications

To make it easier for you to upgrade your VB 6 applications, Microsoft provides made two free tools:

Code Advisor for Visual Basic 6.0

An add-on for Visual Studio 6.0 that reviews your existing VB 6 code to ensure it meets predetermined
coding standards.

Upgrade Wizard

A built-in Visual Studio 2005 tool that automatically upgrades your VB 6 applications when you open them
in Visual Studio 2005. The Upgrade Wizard will upgrade your VB 6 code to VB 2005 and flag those code
blocks that need further attention.

Before you upgrade your VB 6 application, you should first run your application through the Code Advisor for VB
6 and fix any ambiguous code it identifies that will possibly make the upgrade process difficult. Then, open your
VB 6 application in Visual Studio 2005 so that the Upgrade Wizard can upgrade your code to VB 2005.

6.3.1. Using Code Advisor for VB 6

The first step toward upgrading your VB 6 applications to VB 2005 is to run the Code Advisor for Visual Basic 6.0.
The Code Advisor for Visual Basic 6 is an add-on for Visual Studio 6.0 that is used to review your code to ensure
that it meets predetermined coding standards. The coding standards are based on best practices developed by
Microsoft to produce robust and easy-to-maintain code. You can download this free tool from:
http://www.microsoft.com/downloads/details.aspx?FamilyID=a656371a-b5c0-4d40-b015-
0caa02634fae&DisplayLang=en.

Once the Code Advisor for VB 6 is downloaded and installed, you will find a new set of buttons in the toolbar area
of Visual Studio 6.0, as shown in Figure 6-8.

The Scope Definition button allows you to use Code Advisor to check the entire project, or to check only the
currently active file.

To see how the Code Advisor for VB 6 works, consider the following simple VB 6 application consisting of a
single form (Hello Application) as shown in Figure 6-9. The form contains four controls, including a Label
control (lblMessage), a Text control (txtName), a Hello button (cmdHello), and an Exit button (cmdExit).

Figure 6-8. The Code Advisor toolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-9. An application in VB 6

When the Exit button is clicked, the form displays a message box that asks users if they want to exit, as shown in
Example 6-2.

Example 6-2. Exit button Click event handler

Private Sub cmdExit_Click()

 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

This VB 6 application also uses a subroutine to display a message via the MsgBox function, as shown in Example
6-3. Note that this function uses the default ByRef to pass in parameters by reference.

Example 6-3. DisplayMsg subroutine

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

When the Hello button is clicked, the TextBox control is assigned to an Object of type object. A comparison is
then performed to check if the Text property (not explicitly specified as it is the default property) in the TextBox
control is empty. The relevant message is then printed. The code is shown in Example 6-4.

Example 6-4. Hello button Click event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdHello_Click()

 Dim obj As Object

 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

To use the Code Advisor to examine the application, click the Add FixIts button. The toolbar will display the
number of issues (known as FixIts) that Code Advisor has raised (in this example, two FixIts were raised—
Count:2), as shown in Figure 6-8.

To examine the FixIts raised, switch to the Code view where you will see comments prefixed with the word
"FIXIT" as shown in Example 6-5.

Example 6-5. Hello and Exit button Click event handler FIXITs

'FIXIT: Use Option Explicit to avoid implicitly
' creating variables of type Variant
' FixIT90210ae-R383-H1984

Private Sub cmdExit_Click()

 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

Private Sub cmdHello_Click()

'FIXIT: Declare 'obj' with an early-bound data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'FixIT90210ae-R1672-R1B8ZE
 Dim obj As Object

 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

Using the Code Advisor toolbar, you can remove all FixIts by clicking the Remove FixIts button, or find the next
FixIts by clicking the Find Next FixIts button.

In this example, the two specific FixIts are:

You should use Option Explicit to prevent your code from using undeclared variables. Once this is done, the
response variable should be explicitly declared.

The obj variable should be declared as a TextBox for early binding.

To view a summary of the FixIts raised, you can click on the View FixIt Report button. The report is shown as a
web page (see Figure 6-10).

Figure 6-10. Viewing the FixIts report

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can customize the Code Advisor (click on Filter FixIts Rules) to examine your code using a specific version of
Visual Basic (Visual Basic .NET 2002 or Visual Basic.NET 2003), or based on best practices (see Figure 6-11).

Figure 6-11. Customizing Code Advisor

Let's now modify the application by entering to code shown in bold in Example 6-6 and then run Code Advisor
again (by clicking on the Add FixIts button).

Example 6-6. Modified Hello and Exit button Click event handlers

Option Explicit
Private Sub cmdExit_Click()

 Dim response As VbMsgBoxResult
 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

Private Sub cmdHello_Click()

 Dim obj As TextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim obj As TextBox
 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

This time, the application passes the Code Advisor's check. You can now proceed to the next step of the upgrading
process: using the Upgrade Wizard to upgrade the code to VB 2005.

6.3.2. Using the Upgrade Wizard

When you try to open a Visual Basic project (Windows, web, or other) created with a previous version of Visual
Studio (Visual Studio 6 or Visual Studio .NET), Visual Studio 2005 will launch the Upgrade Wizard and attempt to
upgrade the project to VB 2005. The Upgrade Wizard will automatically upgrade your code to VB 2005, and
anything else that is ambiguous will be marked with comments and displayed in the Upgrade Report.

To see how the Upgrade Wizard works, let's upgrade the application discussed in "Using Code Advisor for VB 6."
You'll use Visual Studio 2005 to open this VB project. When it's opened in Visual Studio 2005, the Upgrade
Wizard will kick into action, as shown in Figure 6-12.

Figure 6-12. The Visual Basic Upgrade Wizard

The Upgrade Wizard will lead you through a series of steps to upgrade the VB 6 project. When you have finished,
your VB 6 project will be displayed in Visual Studio 2005.

Figure 6-13 shows the project after it has been upgraded to VB 2005.

Figure 6-13. The upgraded VB project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Solution Explorer, note that a new item has been added to the project: _UpgradeReport.htm. The
_UpgradeReport.htm document lists the changes made to the original project and highlights the various issues
encountered during the upgrade process, as shown in Figure 6-14.

Figure 6-14. The content of the _UpgradeReport.htm file

Let's look at the upgraded code and observe some of the salient changes, as shown in Example 6-7. The comments
and code added by the Upgrade Wizard are highlighted in bold.

Example 6-7. The upgraded project

Option Strict Off
Option Explicit On

Friend Class Form1

 Inherits System.Windows.Forms.Form

 Private Sub cmdExit_Click(_

 ByVal eventSender As System.Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal eventSender As System.Object, _

 ByVal eventArgs As System.EventArgs) _

 Handles cmdExit.Click

 Dim response As MsgBoxResult

 response = MsgBox("Exit program?", MsgBoxStyle.YesNo)
 If response = MsgBoxResult.Yes Then
 End

 End If

 End Sub

 'UPGRADE_NOTE: str was upgraded to str_Renamed.
 'Click for more: 'ms-help://MS.VSCC.v80/dv_commoner/local/
 'redirect.htm?keyword="A9E4979A-37FA-4718-9994-97DD76ED70A7"'
 Public Sub DisplayMsg(ByRef str_Renamed As String)
 MsgBox(str_Renamed)
 End Sub

 Private Sub cmdHello_Click(_

 ByVal eventSender As System.Object, _

 ByVal eventArgs As System.EventArgs) _

 Handles cmdHello.Click

 Dim obj As System.Windows.Forms.TextBox

 obj = txtName

 If obj.Text = "" Then
 DisplayMsg(("Please enter your name"))

 Else

 DisplayMsg(("Hello " & txtName.Text))
 End If

 End Sub

End Class

Note that while there is only one upgrade note in this project, several changes have been made to the code:

The variable str in the DisplayMsg subroutine has been renamed and the ByRef keyword has been

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The variable str in the DisplayMsg subroutine has been renamed and the ByRef keyword has been
inserted. You should always explicitly specify the ByRef or ByVal keyword before you upgrade so that
you don't get unexpected results.

The Option Strict Off statement is inserted into the code. As the Option Strict statement is not
supported in VB 6, it is turned off by default in VB 2005. Ideally, you should turn it on so that all narrowing
conversions are flagged (see Chapter 2 for details).

The constants vbYesNo and vbYes have been changed to MsgBoxStyle. YesNo and
MsgBoxResult.Yes, respectively.

The Text property has been explicitly added to the obj and txtName variables.

What you have seen here is a superficial view of the support the Visual Basic Upgrade Wizard can provide. For
more details, check out this article at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/vstchexpvsnetlab5.asp.

Note that the Visual Basic Upgrade Wizard can only upgrade applications written in
VB 6 and later. As such, if you want to upgrade applications written in a version of
Visual Basic released prior to VB 6, you need to first upgrade them to VB 6 before
using the Upgrade Wizard.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4. Summary

In this chapter, you have been introduced to several factors you need to consider before deciding whether or how to
enhance your VB applications to meet future business needs. The various checklists provided here and others
available from Microsoft will help you decide whether to migrate, replace, rewrite, or reuse an existing VB 6
application. You have also learned how you can continue to use COM objects—legacy or otherwise—in a VB 2005
application. Finally, you have seen how two tools provided by Microsoft (Code Advisor for VB 6 and Upgrade
Wizard) can help you upgrade your applications from VB 6 to VB 2005, once you've decided to do so.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animals on the cover of Visual Basic 2005 Jumpstart are moor frogs (Rana arvalis). The moor frog is one of
only six frog species found in Europe and one of only three found north of the Arctic Circle. Despite their broad
distribution, which extends from central Europe to northern Balkan and even up to the Ural Mountains in Russia,
they are one of the rarest frogs in Europe.

Moor frogs thrive in bogs, alder marshlands, and inshore waters. They hibernate at the bottom of pools or on dry
land in rotten woodpiles or in piles of rotting leaves. In early spring, once the ice and frost have melted, they
reappear for the mating season. Mating takes places in the water, with eager males assembling in anticipation before
the females arrive. During the height of the breeding period, males turn bright blue because of the high
concentration of lymph underneath their skin. The incessant mating call—which has been compared to the sound of
air escaping from an empty, submerged bottle—reveals the male's excitement.

The bright blue skin, characteristic of the mating season, is a marked difference from their usual appearance; color
and patterns vary greatly from uniform brown to black blotches. Although moor frogs bear a strong resemblance to
common frogs, they often have a pale vertebral stripe running from the snout to the cloaca that helps to distinguish
them. Also, male and female moor frogs average in size between 4–8 cm, while common frogs average 10 cm.

Earthworms, flies, beetles, butterflies, and ants are among some of the species that comprise the moor frog's diet.
They also have been known to dine on snails—swallowing them whole or cracking the shell in their mouths. Some
of the predators they have to worry about include cyprinid fish, grass snakes, storks, fox, and hedges. If a moor frog
feels threatened while on dry land, he will first make a long, high jump, and then burrow in soil or beneath a clump
of grass.

Adam Witwer was the production editor and Linley Dolby was the copyeditor for Visual Basic 2005 Jumpstart.
Jeffrey Liggett proofread the text. Abby Fox, Genevieve d'Entremont, and Claire Cloutier provided quality control.
Judy Hoer wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is
from the Library of Natural History. Karen Montgomery produced the cover layout with Adobe InDesign CS using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano,
Jessamyn Read, and Lesley Borash using Macromedia Free-Hand MX and Adobe Photoshop CS. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Loranah Dimant.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

" (quotation character)
* (asterisk) multiplication operator
.NET Framework Class Library 2nd 3rd
: (colon)
<anonymousIdentification> element
<authentication> element
@ (at sign) type character 2nd
_ (underscore) character
_Description private variable
_UpgradeReport.htm document

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

About boxes 2nd 3rd 4th
abstract classes
 specifying implementation details with 2nd 3rd
abstract methods
AcceptButton property
access modifiers 2nd 3rd
Add Web Reference window
AddressOf operator
AddTitle method
aggregating data types using structures 2nd
All tab (IntelliSense)
allowAnonymous attribute (profile property)
Amazon Web Services Licenses Agreement
Amazon.com
 accessing asynchronously
 accessing web services of 2nd 3rd 4th 5th
 adding web references to
Anchor property 2nd
And operator
AndAlso operator 2nd
anonymous profiles 2nd 3rd
anonymous user IDs and GUID
AnonymousId property (ProfileMigrateEventArgs class)
app.config file 2nd
Application Settings feature
applications
 adding About boxes to
arguments
 optional
 passing by reference
 passing by value
arrays in VB 2005
As keyword
ASP.NET 2.0 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
aspnet_Users table
assemblies
attributes 2nd
audio files
authenticated users
authentication
AutoCorrect feature
automatic data binding 2nd 3rd 4th 5th
automatically updating applications 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

BackgroundWorker control 2nd 3rd 4th 5th 6th
base classes
binding data to forms 2nd 3rd 4th 5th 6th 7th 8th
BindingNavigator control 2nd 3rd
blocking calls
Boolean type
BorderStyle property lblISBN control
branching statements 2nd 3rd 4th
breakpoints
browsing records 2nd 3rd
btnAddTitle control
btnGetInfo control 2nd
btnViewCatalog control
Button control
ByRef keyword 2nd
Byte type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Cancel_Button control
CancelButton property
casting (type conversion)
catching errors with Try-Catch-Finally statements
ChangePassword control
Char type
Checked property (chkShowCover control)
checklist for choosing
child classes
chkAutoAdd control
Class Designer
Class_Initialize method
Class_Terminate method
classes
 access modifiers and
 adding properties to 2nd 3rd
 Partial classes 2nd
 splitting up physical implementation of
ClickOnce feature 2nd 3rd 4th
Close buttons
 linking events with
Close window buttons 2nd 3rd
CLR (Common Language Runtime)
Code Advisor for Visual Basic 6.0 2nd 3rd 4th 5th 6th
code reuse
 generic classes and
 inheritance
code-behind pages
COM Callable Wrappers (CCWs)
COM Interop
COM objects 2nd 3rd 4th
Common Language Runtime (CLR)
Common tab (IntelliSense)
compile-time errors
confirmation when quitting applications 2nd 3rd
connecting to data sources 2nd 3rd 4th 5th 6th 7th
constants in VB 2005 2nd
constructors
Content control
Content pages 2nd 3rd 4th
ContentPlaceHolder control
Continue keyword
ContinueDestinationPageUrl property (Login control)
controlling implementation of classes 2nd 3rd 4th 5th
Count property
CreateUserWizard control 2nd 3rd
CType function
customizing classes 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customizing classes 2nd 3rd 4th 5th 6th 7th 8th 9th

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

data binding
Data Source Configuration Wizard
Data Sources window 2nd 3rd 4th 5th 6th
data types 2nd 3rd
 converting from one to another
databases
 adding to Windows applications 2nd 3rd
DataGridView control 2nd 3rd
DataTips feature
Date type
debug time
Decimal type
decision-making statements 2nd 3rd
declaring
 multiple variables in single statement
default constructors
default values for optional parameters
defaultValue attribute (profile property)
defining classes 2nd 3rd
deploying Windows applications 2nd
dereferencing objects
derived classes
Description property
designing classes 2nd 3rd 4th
Dialog windows
Dialog1 control
DialogResult property
Dim (dimension) keyword
 using within a class
DisplayError method
Dispose method
DivideByZeroException exception
DllImport attribute
DLLs (dynamically linked libraries)
Do-Until loops
Do-While loops
 exiting from
Double type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

E-Commerce web service (ECS)
early binding of variables
edit-and-continue feature
ElseIf keyword
empty constructors
End If statements
enumerations in VB 2005
Equals method
error handling in VB 2005 2nd 3rd 4th
event handlers for exiting/closing applications
exceptions
Exit dialog box
 linking events with
Exit For/Exit Do/Exit While statements
explicit conversions
Explorer Form templates

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

FCL (.NET Framework Class Library)
File System option for web development
files
Filesystem object (My.Computer)
Finalize method
FindControl method
FixIts (issues raised in Code Advisor)
For loops
For-Each loops
FormClosing event
Forms authentication
 default settings for
Friend access modifier 2nd 3rd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

generic classes
 advantages of
Get accessors
Get Info button
GetBookInformation method 2nd
GetProfile method
GetType operator
GetUser method (Membership class)
Global.asax file
GridView control 2nd
GripStyle property (MenuStrip control)
grouping statements into single line
GUID (Globally Unique Identifier) and anonymous user IDs

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Help Topics (MSDN)
highlighting code edits
HTTP and web services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

IDisposable interface
If-Then-Else construct 2nd 3rd
IIS
ImageButton control
ImageUrl property
imgBtn_Click method
imgHeader control 2nd
imgLogo control
implementation of classes 2nd 3rd
Implements keyword
implicit conversions
Imports keyword
inheritance 2nd
Inherits keyword
initializing
 using constructors
inspecting objects at runtime
instantiating classes
Integer type
IntelliSense feature
interfaces vs. abstract classes
internationalizing web applications
intrinsic data types
InvalidCastException exception
Is operator
IsSynchronized property
itemType structure
iteration statements

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Label control
LinkButton control
ListBox control 2nd
literals in VB 2005
localization
logical/bitwise operators
Login control
Login Form templates
login pages
 creating
Login.aspx file
LoginName control
LoginStatus control
LoginView control
LogoPictureBox control
Long type
looping statements
lstBooks control

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

machine.config.default file
Main.aspx file
Master Pages
 building site templates with
 checkout pages
 editing content of
 modifying at runtime
Master property
members-only folders
Membership class
 login forms and
memory
 representations of value types/reference types in
menus 2nd 3rd
MenuStrip control
 adding to forms
 saving location of
methods
 adding new 2nd
 hiding
 overloading
Microsoft.VisualBasic namespace
migrating (modernization option)
 checklist for choosing
modernization options for VB applications 2nd 3rd
MSDN Help Topics
multithreading
MustInherit keyword
MustOverride keyword
My namespace
 examples of using
 objects exposed by
My.Application object
My.Computer object
My.Forms object
My.Settings object
My.User object
My.WebServices object

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

namespaces
narrowing conversions
nesting If-Then-Else statements
Network object (My.Computer)
Not operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Object type
object-oriented programming (OOP) in VB 2005 2nd 3rd 4th 5th
objects
 comparing
 creating
 tagging with attributes 2nd
Of keyword
OK_Button control
Option Explicit Off statement
Option Strict On statement 2nd 3rd
optional arguments
Or operator
OrElse operator 2nd
overloading methods
Overloads keyword
Overridable keyword 2nd
Overrides keyword 2nd
overriding methods
 vs. overloading

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Page Framework
parent classes
Partial classes 2nd 3rd 4th
Partial keyword prefix
passing values to subroutines/functions 2nd 3rd
picCover control
PictureBox control
PlaySystemSound method
Pop method
 overriding
PostBackUrl property
 Checkout button
PrintMessage subroutine
Private access modifier 2nd 3rd 4th
Profile objects vs. Session objects
profile property
 attributes in
Profile_MigrateAnonymous event handler
profiles of users 2nd
projects
 adding Dialog windows to
properties
 adding to classes
 read-only and write-only
 setting for controls 2nd
Property keyword
PropertyBinding property (ToolStrip control)
Protected access modifier 2nd 3rd
provider attribute (profile property)
Public access modifier 2nd 3rd
publishing Windows applications 2nd
Push method
 overloading
 overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

readOnly attribute (profile property)
ReadOnly keyword
reallocating controls
records 2nd
redundant conditions
reference types
 assigning value of one to another
RegFree COM (Registration-Free COM)
Register.aspx page
registration pages
republishing Windows applications
resizing controls
resources
restricting unauthorized access to pages
Return keyword
reusing (modernization option)
 checklist for choosing
rewriting (modernization option)
 checklist for choosing
Runtime Callable Wrappers (RCWs)
runtime errors
 handling
RunWorkerAsync method
RunWorkerCompleted event

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

saving state of applications 2nd
SByte type
scope of variables
search results 2nd
Search Results window 2nd
Select-Case construct
SelectedIndexChanged event
serializeAs attribute (profile property)
Set accessors
Shadows keyword
shared methods
shopping carts 2nd 3rd 4th 5th 6th 7th 8th 9th
Short type
short-circuiting technique
ShowDialog method
sideline coloring
signatures of methods
Single type
site templates 2nd
SizeMode property
 LogoPictureBox control
skipping loops
smart clients
Smart Tasks menu
snaplines
SOAP (Simple Object Access Protocol) and web services
Solution Explorer
 creating About box forms
 Master Pages
 start pages and
sounds
Splash Screen templates
SplitContainer control
SQL Server 2005 Express downloading
Stack class (System.Collections)
stacks
 storing variables in
statements 2nd
 grouping into single lines using : (colon)
static methods
StatusLabel control 2nd
StatusStrip control
 adding to forms
stepping through code
String type
StringBuilder class
strings in VB 2005
strong passwords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strongly typed variables
Structure keyword 2nd
structured error handling
structures vs. classes
Sub Finalize procedure
Sub New procedure
symbolic constants
SyncRoot property
syntax of VB 2005 language 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th 21st 22nd 23rd 24th 25th 26th
System namespace
System.Collections namespace
System.Collections.Generic namespace
System.ComponentModel namespace
System.Data namespace
System.Web.UI namespace
System.Windows.Forms namespace

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

tables
 choosing which ones to work with
 making accessible to users
 navigating through
templates
Text property
Themes and Skins
threading
Throw keyword
TitlesTableAdapter control
toolbars 2nd
ToolStrip control
 coding exit event of
ToolStripContainer control
 BindingNavigator control and
ToolStripLocation setting
Track Changes option and sideline coloring
Try…Catch…Finally statements
txtAuthors control
txtKeywords control
txtPrice control
txtPublisher control
txtTitle control
type conversion

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

UInteger type 2nd
ULong type 2nd
unmanaged objects
unsigned data type support in VB 2005
unstructured error handling
Upgrade Wizard 2nd 3rd
upgrading VB 6 applications
 making the right decision 2nd 3rd
 using Code Advisor for Visual Basic 6.0 2nd 3rd
 using Upgrade Wizard
user accounts
user-defined types (UDT)
users
 authenticating with My.User
 transferring anonymous profile info to user profiles 2nd
 validating credentials for
UShort type 2nd
using legacy COM objects in 2nd 3rd 4th
Using…End Using construct

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

value types
 assigning value of one to another
variables 2nd 3rd
Variant type
VB 2005
 moving to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
VB 6
 changes made to the language
 moving from

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

weakly typed vs. strongly typed variables
web applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 commonly referenced DLLs
 creating 2nd 3rd 4th
 login pages 2nd
 testing
web references
web services
 My.WebServices object and
web services calls and multithreading
Web.config file
Web.config files
whitespace in VB 2005 language
widening conversions
Windows applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 building the main window 2nd 3rd
 creating
 deploying
 saving information to databases
 testing 2nd
 viewing information offline
Windows vs. Forms authentication
With…End With construct
WriteOnly keyword
WSDL (Web Services Description Language) and web services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

XML and web services
XmlInclude attribute
Xor operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animals on the cover of Visual Basic 2005 Jumpstart are moor frogs (Rana arvalis). The moor frog is one of
only six frog species found in Europe and one of only three found north of the Arctic Circle. Despite their broad
distribution, which extends from central Europe to northern Balkan and even up to the Ural Mountains in Russia,
they are one of the rarest frogs in Europe.

Moor frogs thrive in bogs, alder marshlands, and inshore waters. They hibernate at the bottom of pools or on dry
land in rotten woodpiles or in piles of rotting leaves. In early spring, once the ice and frost have melted, they
reappear for the mating season. Mating takes places in the water, with eager males assembling in anticipation before
the females arrive. During the height of the breeding period, males turn bright blue because of the high
concentration of lymph underneath their skin. The incessant mating call—which has been compared to the sound of
air escaping from an empty, submerged bottle—reveals the male's excitement.

The bright blue skin, characteristic of the mating season, is a marked difference from their usual appearance; color
and patterns vary greatly from uniform brown to black blotches. Although moor frogs bear a strong resemblance to
common frogs, they often have a pale vertebral stripe running from the snout to the cloaca that helps to distinguish
them. Also, male and female moor frogs average in size between 4–8 cm, while common frogs average 10 cm.

Earthworms, flies, beetles, butterflies, and ants are among some of the species that comprise the moor frog's diet.
They also have been known to dine on snails—swallowing them whole or cracking the shell in their mouths. Some
of the predators they have to worry about include cyprinid fish, grass snakes, storks, fox, and hedges. If a moor frog
feels threatened while on dry land, he will first make a long, high jump, and then burrow in soil or beneath a clump
of grass.

Adam Witwer was the production editor and Linley Dolby was the copyeditor for Visual Basic 2005 Jumpstart.
Jeffrey Liggett proofread the text. Abby Fox, Genevieve d'Entremont, and Claire Cloutier provided quality control.
Judy Hoer wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The cover image is
from the Library of Natural History. Karen Montgomery produced the cover layout with Adobe InDesign CS using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker 5.5.6 with a
format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML
technologies. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is
LucasFont's TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert Romano,
Jessamyn Read, and Lesley Borash using Macromedia Free-Hand MX and Adobe Photoshop CS. The tip and
warning icons were drawn by Christopher Bing. This colophon was written by Loranah Dimant.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

About boxes 2nd 3rd 4th
abstract classes
 specifying implementation details with 2nd 3rd
abstract methods
AcceptButton property
access modifiers 2nd 3rd
Add Web Reference window
AddressOf operator
AddTitle method
aggregating data types using structures 2nd
All tab (IntelliSense)
allowAnonymous attribute (profile property)
Amazon Web Services Licenses Agreement
Amazon.com
 accessing asynchronously
 accessing web services of 2nd 3rd 4th 5th
 adding web references to
Anchor property 2nd
And operator
AndAlso operator 2nd
anonymous profiles 2nd 3rd
anonymous user IDs and GUID
AnonymousId property (ProfileMigrateEventArgs class)
app.config file 2nd
Application Settings feature
applications
 adding About boxes to
arguments
 optional
 passing by reference
 passing by value
arrays in VB 2005
As keyword
ASP.NET 2.0 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
aspnet_Users table
assemblies
attributes 2nd
audio files
authenticated users
authentication
AutoCorrect feature
automatic data binding 2nd 3rd 4th 5th
automatically updating applications 2nd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

BackgroundWorker control 2nd 3rd 4th 5th 6th
base classes
binding data to forms 2nd 3rd 4th 5th 6th 7th 8th
BindingNavigator control 2nd 3rd
blocking calls
Boolean type
BorderStyle property lblISBN control
branching statements 2nd 3rd 4th
breakpoints
browsing records 2nd 3rd
btnAddTitle control
btnGetInfo control 2nd
btnViewCatalog control
Button control
ByRef keyword 2nd
Byte type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Cancel_Button control
CancelButton property
casting (type conversion)
catching errors with Try-Catch-Finally statements
ChangePassword control
Char type
Checked property (chkShowCover control)
checklist for choosing
child classes
chkAutoAdd control
Class Designer
Class_Initialize method
Class_Terminate method
classes
 access modifiers and
 adding properties to 2nd 3rd
 Partial classes 2nd
 splitting up physical implementation of
ClickOnce feature 2nd 3rd 4th
Close buttons
 linking events with
Close window buttons 2nd 3rd
CLR (Common Language Runtime)
Code Advisor for Visual Basic 6.0 2nd 3rd 4th 5th 6th
code reuse
 generic classes and
 inheritance
code-behind pages
COM Callable Wrappers (CCWs)
COM Interop
COM objects 2nd 3rd 4th
Common Language Runtime (CLR)
Common tab (IntelliSense)
compile-time errors
confirmation when quitting applications 2nd 3rd
connecting to data sources 2nd 3rd 4th 5th 6th 7th
constants in VB 2005 2nd
constructors
Content control
Content pages 2nd 3rd 4th
ContentPlaceHolder control
Continue keyword
ContinueDestinationPageUrl property (Login control)
controlling implementation of classes 2nd 3rd 4th 5th
Count property
CreateUserWizard control 2nd 3rd
CType function
customizing classes 2nd 3rd 4th 5th 6th 7th 8th 9th

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

customizing classes 2nd 3rd 4th 5th 6th 7th 8th 9th

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

data binding
Data Source Configuration Wizard
Data Sources window 2nd 3rd 4th 5th 6th
data types 2nd 3rd
 converting from one to another
databases
 adding to Windows applications 2nd 3rd
DataGridView control 2nd 3rd
DataTips feature
Date type
debug time
Decimal type
decision-making statements 2nd 3rd
declaring
 multiple variables in single statement
default constructors
default values for optional parameters
defaultValue attribute (profile property)
defining classes 2nd 3rd
deploying Windows applications 2nd
dereferencing objects
derived classes
Description property
designing classes 2nd 3rd 4th
Dialog windows
Dialog1 control
DialogResult property
Dim (dimension) keyword
 using within a class
DisplayError method
Dispose method
DivideByZeroException exception
DllImport attribute
DLLs (dynamically linked libraries)
Do-Until loops
Do-While loops
 exiting from
Double type

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

E-Commerce web service (ECS)
early binding of variables
edit-and-continue feature
ElseIf keyword
empty constructors
End If statements
enumerations in VB 2005
Equals method
error handling in VB 2005 2nd 3rd 4th
event handlers for exiting/closing applications
exceptions
Exit dialog box
 linking events with
Exit For/Exit Do/Exit While statements
explicit conversions
Explorer Form templates

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

FCL (.NET Framework Class Library)
File System option for web development
files
Filesystem object (My.Computer)
Finalize method
FindControl method
FixIts (issues raised in Code Advisor)
For loops
For-Each loops
FormClosing event
Forms authentication
 default settings for
Friend access modifier 2nd 3rd

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

generic classes
 advantages of
Get accessors
Get Info button
GetBookInformation method 2nd
GetProfile method
GetType operator
GetUser method (Membership class)
Global.asax file
GridView control 2nd
GripStyle property (MenuStrip control)
grouping statements into single line
GUID (Globally Unique Identifier) and anonymous user IDs

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Help Topics (MSDN)
highlighting code edits
HTTP and web services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

IDisposable interface
If-Then-Else construct 2nd 3rd
IIS
ImageButton control
ImageUrl property
imgBtn_Click method
imgHeader control 2nd
imgLogo control
implementation of classes 2nd 3rd
Implements keyword
implicit conversions
Imports keyword
inheritance 2nd
Inherits keyword
initializing
 using constructors
inspecting objects at runtime
instantiating classes
Integer type
IntelliSense feature
interfaces vs. abstract classes
internationalizing web applications
intrinsic data types
InvalidCastException exception
Is operator
IsSynchronized property
itemType structure
iteration statements

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Label control
LinkButton control
ListBox control 2nd
literals in VB 2005
localization
logical/bitwise operators
Login control
Login Form templates
login pages
 creating
Login.aspx file
LoginName control
LoginStatus control
LoginView control
LogoPictureBox control
Long type
looping statements
lstBooks control

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

machine.config.default file
Main.aspx file
Master Pages
 building site templates with
 checkout pages
 editing content of
 modifying at runtime
Master property
members-only folders
Membership class
 login forms and
memory
 representations of value types/reference types in
menus 2nd 3rd
MenuStrip control
 adding to forms
 saving location of
methods
 adding new 2nd
 hiding
 overloading
Microsoft.VisualBasic namespace
migrating (modernization option)
 checklist for choosing
modernization options for VB applications 2nd 3rd
MSDN Help Topics
multithreading
MustInherit keyword
MustOverride keyword
My namespace
 examples of using
 objects exposed by
My.Application object
My.Computer object
My.Forms object
My.Settings object
My.User object
My.WebServices object

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

namespaces
narrowing conversions
nesting If-Then-Else statements
Network object (My.Computer)
Not operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Object type
object-oriented programming (OOP) in VB 2005 2nd 3rd 4th 5th
objects
 comparing
 creating
 tagging with attributes 2nd
Of keyword
OK_Button control
Option Explicit Off statement
Option Strict On statement 2nd 3rd
optional arguments
Or operator
OrElse operator 2nd
overloading methods
Overloads keyword
Overridable keyword 2nd
Overrides keyword 2nd
overriding methods
 vs. overloading

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Page Framework
parent classes
Partial classes 2nd 3rd 4th
Partial keyword prefix
passing values to subroutines/functions 2nd 3rd
picCover control
PictureBox control
PlaySystemSound method
Pop method
 overriding
PostBackUrl property
 Checkout button
PrintMessage subroutine
Private access modifier 2nd 3rd 4th
Profile objects vs. Session objects
profile property
 attributes in
Profile_MigrateAnonymous event handler
profiles of users 2nd
projects
 adding Dialog windows to
properties
 adding to classes
 read-only and write-only
 setting for controls 2nd
Property keyword
PropertyBinding property (ToolStrip control)
Protected access modifier 2nd 3rd
provider attribute (profile property)
Public access modifier 2nd 3rd
publishing Windows applications 2nd
Push method
 overloading
 overriding

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

readOnly attribute (profile property)
ReadOnly keyword
reallocating controls
records 2nd
redundant conditions
reference types
 assigning value of one to another
RegFree COM (Registration-Free COM)
Register.aspx page
registration pages
republishing Windows applications
resizing controls
resources
restricting unauthorized access to pages
Return keyword
reusing (modernization option)
 checklist for choosing
rewriting (modernization option)
 checklist for choosing
Runtime Callable Wrappers (RCWs)
runtime errors
 handling
RunWorkerAsync method
RunWorkerCompleted event

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

saving state of applications 2nd
SByte type
scope of variables
search results 2nd
Search Results window 2nd
Select-Case construct
SelectedIndexChanged event
serializeAs attribute (profile property)
Set accessors
Shadows keyword
shared methods
shopping carts 2nd 3rd 4th 5th 6th 7th 8th 9th
Short type
short-circuiting technique
ShowDialog method
sideline coloring
signatures of methods
Single type
site templates 2nd
SizeMode property
 LogoPictureBox control
skipping loops
smart clients
Smart Tasks menu
snaplines
SOAP (Simple Object Access Protocol) and web services
Solution Explorer
 creating About box forms
 Master Pages
 start pages and
sounds
Splash Screen templates
SplitContainer control
SQL Server 2005 Express downloading
Stack class (System.Collections)
stacks
 storing variables in
statements 2nd
 grouping into single lines using : (colon)
static methods
StatusLabel control 2nd
StatusStrip control
 adding to forms
stepping through code
String type
StringBuilder class
strings in VB 2005
strong passwords

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

strongly typed variables
Structure keyword 2nd
structured error handling
structures vs. classes
Sub Finalize procedure
Sub New procedure
symbolic constants
SyncRoot property
syntax of VB 2005 language 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th
19th 20th 21st 22nd 23rd 24th 25th 26th
System namespace
System.Collections namespace
System.Collections.Generic namespace
System.ComponentModel namespace
System.Data namespace
System.Web.UI namespace
System.Windows.Forms namespace

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

" (quotation character)
* (asterisk) multiplication operator
.NET Framework Class Library 2nd 3rd
: (colon)
<anonymousIdentification> element
<authentication> element
@ (at sign) type character 2nd
_ (underscore) character
_Description private variable
_UpgradeReport.htm document

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

tables
 choosing which ones to work with
 making accessible to users
 navigating through
templates
Text property
Themes and Skins
threading
Throw keyword
TitlesTableAdapter control
toolbars 2nd
ToolStrip control
 coding exit event of
ToolStripContainer control
 BindingNavigator control and
ToolStripLocation setting
Track Changes option and sideline coloring
Try…Catch…Finally statements
txtAuthors control
txtKeywords control
txtPrice control
txtPublisher control
txtTitle control
type conversion

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

UInteger type 2nd
ULong type 2nd
unmanaged objects
unsigned data type support in VB 2005
unstructured error handling
Upgrade Wizard 2nd 3rd
upgrading VB 6 applications
 making the right decision 2nd 3rd
 using Code Advisor for Visual Basic 6.0 2nd 3rd
 using Upgrade Wizard
user accounts
user-defined types (UDT)
users
 authenticating with My.User
 transferring anonymous profile info to user profiles 2nd
 validating credentials for
UShort type 2nd
using legacy COM objects in 2nd 3rd 4th
Using…End Using construct

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

value types
 assigning value of one to another
variables 2nd 3rd
Variant type
VB 2005
 moving to 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
VB 6
 changes made to the language
 moving from

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

weakly typed vs. strongly typed variables
web applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th
 commonly referenced DLLs
 creating 2nd 3rd 4th
 login pages 2nd
 testing
web references
web services
 My.WebServices object and
web services calls and multithreading
Web.config file
Web.config files
whitespace in VB 2005 language
widening conversions
Windows applications 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
 building the main window 2nd 3rd
 creating
 deploying
 saving information to databases
 testing 2nd
 viewing information offline
Windows vs. Forms authentication
With…End With construct
WriteOnly keyword
WSDL (Web Services Description Language) and web services

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

XML and web services
XmlInclude attribute
Xor operator

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Visual Basic 2005 Jumpstart

By Wei-Meng Lee
...
Publisher: O'Reilly
Pub Date: September 2005
ISBN: 0-596-10071-X
Pages: 214

Table of Contents | Index | Errata

Okay, all you VB6 developers--time's up. As of March 2005, Microsoft no longer supports this version of Visual
Basic. And you can't blame them. Three years ago, they introduced the .NET Framework--an elegant, powerful
platform--along with the new component-based VB.NET language. But roughly five million of you decided to stick
with VB6, mostly to maintain legacy Windows and COM projects.

Now, with the upcoming release of VB 2005, Microsoft has several attractive reasons to upgrade that you'll find hard
to resist, including the return of some VB6 features. And we have the perfect book to help you make the conversion:
Visual Basic 2005 Jumpstart. Now, you can test-drive the beta version of VB 2005 with three hands-on projects that
enable you to learn the syntax of this new language quickly.

VB 2005 not only lets you convert the bulk of your existing VB6 code, but offers several familiar features, such as
compile-and-run debugging, new MyClasses that simplify use of .NET libraries and frameworks, lots of IDE support
for Windows, web and mobile GUI development, and data access controls that closely resemble what you use now.
The real plus is that you'll be using these features with the .NET platform, which is more secure, less complex than
COM, and offers OneClick deployment.

Visual Basic 2005 Jumpstart lets you get the feel of this platform for building smart/rich Windows Forms clients,
ASP.NET web applications, and web services. Author Wei-Meng Lee, a Microsoft .NET MVP, veteran O'Reilly
author and frequent contributor to the O'Reilly Network, has put together three useful test-drive projects, complete
with code samples, that let you develop:

A personal library Windows application

A Web-based shopping cart application

A stock enquiry Web Service

Our jumpstart guide is the quick, painless way to migrate from VB6 to VB 2005, and the perfect training manual for
moving your organization to the more robust, dynamic and secure world of .NET.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Visual Basic 2005 Jumpstart

By Wei-Meng Lee
...
Publisher: O'Reilly
Pub Date: September 2005
ISBN: 0-596-10071-X
Pages: 214

Table of Contents | Index | Errata

 Copyright

 About the Author

 Foreword

 Preface

 Who This Book Is For

 What You Need to Use This Book

 Conventions Used in This Book

 Using Code Examples

 Safari Enabled

 I'd Like to Hear from You

 Comments and Questions

 Acknowledgments

 Chapter 1. Introducing Visual Basic 2005

 Section 1.1. Create the Application and Its Main Window

 Section 1.2. Add a Menu and Toolbar

 Section 1.3. Connect to a Database and Browse Records

 Section 1.4. Create an Exit Dialog Box

 Section 1.5. Handle Exit and Close Events

 Section 1.6. Run and Debug the Application

 Section 1.7. Inspect an Object at Runtime

 Section 1.8. Add an About Box

 Section 1.9. Configure the Application

 Section 1.10. Summary

 Chapter 2. Programming with Visual Basic

 Section 2.1. Data Types

 Section 2.2. Variables

 Section 2.3. Constants

 Section 2.4. Strings

 Section 2.5. Arrays

 Section 2.6. Type Conversion

 Section 2.7. Operators

 Section 2.8. Statements

 Section 2.9. Functions and Subroutines

 Section 2.10. Error Handling

 Section 2.11. My Namespace

 Section 2.12. Summary

 Chapter 3. Putting Object-Oriented Programming to Work

 Section 3.1. Working with Classes and Objects

 Section 3.2. Reusing and Customizing Classes

 Section 3.3. Designing Your Own Classes

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Section 3.4. Controlling How Classes Are Implemented

 Section 3.5. Summary

 Chapter 4. Developing a Windows Application

 Section 4.1. Creating the Windows Application and Building the Main Window

 Section 4.2. Viewing Book Information Offline

 Section 4.3. Deploying the Application

 Section 4.4. Automatic Updating

 Section 4.5. Summary

 Chapter 5. Building Web Applications

 Section 5.1. Building the Storefront

 Section 5.2. Creating a Shopping Cart

 Section 5.3. Members Area

 Section 5.4. Testing the Application

 Section 5.5. Summary

 Chapter 6. Moving from VB 6 to VB 2005

 Section 6.1. Migrate, Replace, Rewrite, or Reuse?

 Section 6.2. Using COM Objects in VB 2005

 Section 6.3. Upgrading VB 6 Applications

 Section 6.4. Summary

 Colophon

 Index

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.1. Create the Application and Its Main Window

Let's start by using Visual Studio 2005 to create a Windows application, one that you can program with VB 2005.

1. First, you need to fire up Visual Studio 2005 and open a new project by selecting File New Project…
on the Visual Studio 2005 menu. Visual Studio displays the New Project dialog shown in Figure 1-2.

2. In the Project types window of the New Project dialog, select Visual Basic and then select the Windows
Application template in the Visual Studio installed templates dialog window. Keep the default project
Name, WindowsApplication1, provided by Visual Studio. Click OK.

Visual Studio 2005 will present you with its familiar Windows development environment, shown in Figure
1-3, including a designer surface for Form1, which will become the startup window of your application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.10. Summary

In this chapter, you built a Windows application using VB 2005 and Visual Studio 2005. Though the application is
simple, its assembly illustrates several key enhancements to the VB 2005 language and the Visual Studio 2005
development tool. To recap, here are the major features you explored:

New controls with Smart Tasks menus

New Windows application templates

Debugging and restored support for edit-and-continue

Improved IntelliSense and improved Code Editor

Data Source Configuration Wizard

Application Settings

In next chapter, you will learn more about the language syntax of the new VB 2005.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.2. Add a Menu and Toolbar

Let's now add a menu and toolbar to the form. In VB 2005, you can create professional looking Windows
applications, complete with menus and toolbars that look like those used with Microsoft Office applications.

Figure 1-2. Creating a new Windows application

Figure 1-3. The development environment of Visual Studio 2005

1. In the Menus & Toolbars tab in Toolbox, shown in Figure 1-4, locate and then drag and drop the
ToolStripContainer control onto the form. The ToolStripContainer control allows other
controls (such as the ToolStrip control) to anchor in the four positions available (left, right, top, and
bottom).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-4. The various controls under the Menus & Toolbars tab in Toolbox

In the ToolStripContainer Tasks menu, click on the "Dock Fill in Form" link (see Figure 1-5) to
dock the ToolStripContainer control onto the form. This will cause the ToolStripContainer
control to fill up the entire form and automatically resize itself when the form is resized.

Figure 1-5. Filling the entire form with the ToolStripContainer control

2. Now you'll add the application menu. Double-click on the MenuStrip control in the Toolbox to add it to
the form. The MenuStrip control displays a standard list of drop-down menus at the top of a window. In
the MenuStrip Tasks menu, click on the Insert Standard Items link to add a list of commonly used menu
items to the control (see Figure 1-6).

Your form should now look like the one shown in Figure 1-7.

Now you'll add a toolbar to Form1. Select the MenuStrip control that you have just added by single-
clicking on it. In the Toolbox, double click on the ToolStrip control (or drag and drop it) to add it to the
form. This will add the ToolStrip control to the top of the ToolStripContainer control, thereby
making it moveable. You use the ToolStrip control to display buttons for tasks users will commonly
want to perform. Initially, the toolbar is blank. To add common toolbar items, click on the Insert Standard
Items link in the ToolStrip Tasks menus. Your form should now look like Figure 1-8.

Smart Tasks Menu
When you need to configure a control in VB6, you normally use its Properties window to do
so. However, a properties list can be quite long, making it difficult for a beginner to find a
particular property. In Visual Studio 2005, the Smart Tasks menu simplifies the task of
configuring controls by listing several commonly used properties and wizards in the new
Smart Tasks menu. You can display the Smart Tasks menu for any control by clicking the
arrow at the top-right corner of the control.

Figure 1-5 shows the ToolStripContainer Tasks menu. Using this Smart Tasks menu,
you can set the visibility of the Panel (Top, Bottom, Left, and Right) as well as cause the
control to fill up the form.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-6. Inserting standard menu items into the MenuStrip control

Figure 1-7. The MenuStrip control

Figure 1-8. The MenuStrip and ToolStrip controls

3. To test the application, press F5. You will now be able to drag the ToolStrip control and anchor it in one
of the four positions (see Figure 1-9).

Figure 1-9. Anchoring the ToolStrip control in various positions

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.3. Connect to a Database and Browse Records

One great time-saving feature in VB 2005 is its new support for automatic data binding. The automatic–data
binding feature allows you to connect to a data source and then drag and drop the connection onto a Windows
Forms application. A set of controls bound to the data source will then be automatically added to the form, and you
can perform a variety of operations on the data source, such as navigating through records, searching for a specific
record, and more, without having to write any code.

To see how automatic data binding works, you will now connect to a database and then drag and drop one of its
tables onto your form so that you can view and work with its records. You will use SQL Server 2005 Express and
the pubs database and then view and edit the records in the authors table.

1. Select Data Show Data Sources to display the Data Sources window, as shown in Figure 1-10. The
Data Sources window allows you to connect to your data sources (such as databases, web services, and
business objects) and view their content. Click on the Add New Data Source… link to add a new data
source to your project (see Figure 1-10).

When the Data Source Configuration Wizard appears, click Next.

2. The Choose a Data Source dialog, which appears next, lets you choose between a database, a web service,
or some other object as the source of your data. You'll be using a database, so click the Database icon and
then click Next.

3. Now you need to select a data connection to use to connect to your database. In the "Choose your data
connection" dialog, click New Connection….

Figure 1-10. The Data Sources window

4. The Add Connection dialog will be shown (see Figure 1-11).

For this step, I am assuming you have SQL Server 2005 Express installed on
your computer. You can download SQL Server 2005 Express from:
http://www.microsoft.com/sql/express/default.mspx.

As SQL Server 2005 Express does not come with any sample databases, you
need to install the sample database yourself. See the sidebar "SQL Server 2005
Express and the pubs and Northwind Databases" for more information.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Enter the details of your database (see Figure 1-11). Type .\SQLEXPRESS for Server name if your
database is installed locally on your machine. Select the database to use (in this example, select the sample
pubs database in SQL Server 2005 Express). Click OK and Next in the next window.

5. Visual Studio 2005 now has the information it needs to create the connection string that will let your
application access the pubs database. The "Save the connection string to the application configuration file"
step gives you the useful option of naming and saving the connection string in the application configuration
file, as shown in Figure 1-12. Having the information in a configuration file lets you change database details
without recompiling the application, even after it has been deployed. Leave the checkbox checked, give the
connection string the name pubsConnectionString, and click Next to display the next part of the Data
Source Configuration Wizard dialog.

6. With a connection string in place, you're now in a position to select the table(s) you want to work with. The
"Choose your database objects" step shown in Figure 1-13 displays the tables (and fields) of the pubs
database. Your application will give users access to author information stored in the pubs database, so check
the authors table to select all fields and then click Finish to move to the next step, which displays a
completed Data Sources window for your application. You can return to the Data Sources window
whenever you need to make changes by clicking on the Data Sources tab next to the Solution Explorer or by
going to the Visual Studio menu and selecting Data Show Data Sources.

Figure 1-11. Adding a new database connection

SQL Server 2005 Express and the pubs and
Northwind Databases

SQL Server 2005 Express does not ship with the pubs and Northwind sample databases. But
you can install them by downloading the pubs and Northwind database installation scripts at
http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en.

Once the scripts are installed on your system, go to the Visual Studio 2005 command prompt
(Start Programs Microsoft Visual Studio 2005 Visual Studio Tools

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

(Start Programs Microsoft Visual Studio 2005 Visual Studio Tools
Visual Studio 2005 Command Prompt) and change to the directory containing your installation
scripts (assuming your installation scripts are stored in C:\). Type in the following to install the
pubs and Northwind databases:

 C:\>sqlcmd -S .\SQLEXPRESS -i instpubs.sql
 C:\>sqlcmd -S .\SQLEXPRESS -i instnwnd.sql

Figure 1-12. Saving the connection string in the application configuration file

Figure 1-13. Selecting the table to work with

7. One last step is required to make the authors table accessible to your users: you need to bind each field to a
control that can be displayed in the application window. In the Data Sources window, you'll see that the
authors table is displayed as a tree, as shown in Figure 1-14, and that each field has been bound to a specific
type of control. For example, the au_lname field is bound to a text box (represented by the icon containing
the letters "abl"). You can change the binding by clicking on the field name and then choosing another
binding. For now, we'll make only one change. Click on the drop-down menu for the au_id field and then
choose the Label control (as represented by the icon containing the letter A, as shown in Figure 1-14).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-14. Changing the bindings of the fields

Also, you should change the authors table binding to Details (using the drop-down menu for the authors
field shown in Figure 1-15) so that you can view the authors table one record at a time. The reason for doing
this will become evident to you in the next step when we add the ability for users to navigate through the
table.

Now you're ready the drag and drop the authors item in the Data Sources window onto the default Windows
Form and watch Visual Studio 2005 perform some real magic. For starters, Visual Studio automatically
populates Form1 with the controls shown in Figure 1-16. Visual Studio 2005 also adds a new
BindingNavigator control to the top of the form. The new BindingNavigator control lets users
navigate through all the records in the table as displayed in the form.

8. By default, the BindingNavigator control is docked (fixed) to the top of the form and is not moveable.
Set the Dock property to None and rearrange the controls as shown in Figure 1-17.

Figure 1-15. Changing the binding of the table

Figure 1-16. The populated Windows Form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can rearrange the BindingNavigator control by increasing the size of
the ToolStripContainer control. Simply click the arrow shown at the top
of the ToolStripContainer control.

Figure 1-17. Arranging the controls at the top of the Form

9. You can now test the application by pressing F5. Form1, the main window of your application, will display,
complete with menu, toolbar, and navigation control, as shown in Figure 1-18. You should be able to
navigate the records in the authors table as well as move the various toolbars around. Try scrolling through
the table by clicking the arrows on the BindingNavigator control.

Figure 1-18. Navigating the records in the table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You should also be able to edit individual records by modifying the values in the text box bound to each
field. Try it. To save a modified record to the database, you need to click on the Save icon, which is
represented by the diskette icon in the BindingNavigator control.

Visual Studio 2005 automatically adds the relevant code to the code behind of the form to handle the
retrieving and saving of data. To see the code added by Visual Studio 2005, double-click on the diskette
icon to reveal the code behind. You will see the code shown in Example 1-1.

Example 1-1. Save menu item code behind added by Visual Studio 2005

Private Sub bindingNavigatorSaveItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles bindingNavigatorSaveItem.Click

 If Me.Validate Then

 Me.AuthorsBindingSource.EndEdit()

 Me.AuthorsTableAdapter.Update(Me.PubsDataSet.authors)

 Else

 System.Windows.Forms.MessageBox.Show(_

 Me, "Validation errors occurred.", "Save", _

 System.Windows.Forms.MessageBoxButtons.OK, _

 System.Windows.Forms.MessageBoxIcon.Warning)

 End If

End Sub

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.4. Create an Exit Dialog Box

For most Windows applications, it is customary to ask users if they really want to quit an application when they
either click the Close window button or select Exit on the File menu. In this section, you'll use Visual Studio 2005
and VB 2005 to add a dialog box that asks users to confirm that they really want to quit the application when they
select either action.

1. First, let's create the dialog box by adding a new Dialog to the project. You add a new Dialog to your
project by right-clicking on the project name in Solution Explorer, which is WindowsApplication1,
and then selecting Add New Item…. In the Add New Item dialog, select Dialog and use the default
name of Dialog1.vb as shown in Figure 1-19.

Figure 1-19. Adding a new Windows Form to the project

2. Notice that the Dialog window already comes with two buttons: OK (OK_Button) and Cancel
(Cancel_Button).

3. Populate the dialog with the Label control shown in Figure 1-20 by dragging and dropping it from the
Toolbox. Also, resize the dialog window.

Figure 1-20. Populating the dialog window with the Label control

Snaplines
One of the most visible enhancements in Windows Forms 2.0 is the snaplines that are
automatically shown when you drag and drop a control onto a form. Using snaplines, you can

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

automatically shown when you drag and drop a control onto a form. Using snaplines, you can
position controls on your form so that they are evenly spaced out. The figure shows snaplines
in action when you try to position the Label control.

4. Set the properties of the various controls to the values shown in Table 1-1. To set the properties of a control,
right-click the control and select Properties to display its Property window. Look for each Property you wish
to set by scrolling through the Properties window and entering the appropriate value.

Table 1-1. Properties of the various controls
Control Property Value Comments

Dialog1 Text Exit Changes the title of the Windows
Form

Dialog1 AcceptButton OK_Button

Sets the OK button to the default
button of the form so that it is
clicked when the user presses the
Enter key.

Note that this has already been
set for you by Visual Studio
2005.

Dialog1 CancelButton Cancel_Button

Sets the Cancel button to be
activated when the user presses
the Esc key.

Note that this has already been
set for you by Visual Studio
2005.

OK_Button DialogResult OK Sets the OK button to the value
of OK for the dialog result.

Cancel_Button DialogResult Cancel
Sets the Cancel button to the
value of Cancel for the dialog
result.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.5. Handle Exit and Close Events

Now it's time to write some code to link the Exit dialog with the events triggered by users when they attempt to exit
or close the application.

1. First, you'll add code to deal with the Exit menu item when a user selects it. To get started, expand the File
menu in Form1 and doubleclick on the Exit menu item (see Figure 1-21) to open the code-behind page
shown in Figure 1-22.

Figure 1-21. Coding the File Exit menu item

Figure 1-22. The code behind of Form1

The code-behind page contains all of the code that you write for the application. So far in this chapter, all of
the work has been done by Visual Studio, but the code it has generated to support your work with the
designer and wizards is hidden and out of sight for now. You'll see how to view this code in Chapter 2.

When you double-click on the Exit item of the application menu on Form1, Visual Studio deduces that you
wish to write code to specify how the exit event will be handled, just as it does in VB 6. Note that the code
behind page in this example is named Form1.vb. As you can see in Figure 1-22, Visual Studio has already
generated the code to create the event handler. All you need to do is specify what specific actions are to be
taken when the event handler is called by placing your cursor on the line below the handler declaration and
entering your own code.

2. Now, code the exit event of the ToolStrip control by entering the code shown in bold in Example 1-2 on
the code-behind page.

Example 1-2. Exit menu item event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub exitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles exitToolStripMenuItem.Click

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 End
 End If
End Sub

When users select the Exit item on the File menu, an exit event fires and the code in Example 1-2 displays
Dialog1, which forces users to confirm whether or not they really want to exit the application. If a user
selects OK, then the application exits; otherwise, no action is taken and the dialog window closes.

Much of the code in Example 1-2 will seem familiar to VB 6 users. Dim statements are still used to declare
variables, the If…Then statement is unchanged, and the Sub…End Sub block is still used to define
subroutines. What's new is the way in which the code makes use of classes, methods, and properties found
in the .NET Framework, most visibly in the use of dot (.) syntax to reference them. You'll learn more about
VB 2005 data types and language syntax in Chapter 2. Later in Chapter 3, you'll see how to use the new
support for object-oriented programming and the .NET Framework in VB 2005 to greatly increase your
productivity.

3. Now you need to add code to handle the case when the user closes the application window (Form1) by
clicking on the Close button at top the right of the application windowt. This is handled by coding the
FormClosing event of Form1, as shown in Example 1-3. Again, when the user clicks the Close button,
you'll display Dialog1. If the user selects the OK button, end the application. If the user selects the Cancel
button, cancel the close operation by setting the Cancel property of the
System.Windows.Forms.FormClosingEventArgs argument to true. You can get Visual Studio
2005 to generate the code stub for the FormClosing event by selecting the Form1 Events item in the left
drop-down list (see Figure 1-23) and then selecting FormClosing in the second drop-down list. Enter the
code shown in bold in Example 1-3.

Sideline Coloring
The IDE in Visual Studio 2005 uses sideline coloring to highlight the lines that you have
changed. The figure below shows the different colors that are displayed to the left of the code
edit window after you enter the bold code in Example 1-2.

The green color means that the lines have been modified and saved in the current edit session.

The yellow color signifies that the lines have been changed but have not yet been saved. When
you save the project or run the application, the yellow coding will turn green. When the project
is closed and opened again in Visual Studio 2005, the green coding will disappear.

Note that sideline coloring is activated only if the Track Changes option is set. By default, it is
set on in the Visual Studio 2005/Team System Beta, but it is not set by default in VB Express.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-23. Generating the code stub for the FormClosing event

Example 1-3. FormClosing event handler

Private Sub Form1_FormClosing(_

 ByVal sender As Object, _

 ByVal e As System.Windows.Forms.FormClosingEventArgs) _

 Handles Me.FormClosing

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 End
 Else
 e.Cancel = True
 End If
End Sub

Improved IntelliSense
One of the most useful features of VB 2005 is the IntelliSense feature in Visual Studio.
IntelliSense greatly reduces the amount of memorizing you need to do and automatically
completes statements as you type.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

IntelliSense now performs smart filtering to list only the relevant methods, properties, and
events of objects into two tabs—Common and All—so that you can quickly access the
commonly used properties, methods, and events of an object without having to wade through
the entire list (see figure).

This improvement reduces the number of items showing up in an IntelliSense list, thereby
making it easier for developers to search for what they want. If what you need cannot be found
on the Common tab, you can always click on the All tab to see the complete list.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.6. Run and Debug the Application

With the code you have added in the last section, it is now time to test the application. This is a good chance for you
to see some of the new enhancements in the new Visual Studio 2005 debugger. For this example, you will set a
breakpoint so that you can examine the values of variables at a particular point in the code.

1. Now set a breakpoint in the application by clicking on the gray bar on the left of the code edit window (see
Figure 1-24) and then running the application by pressing F5. You will set the breakpoint so that the
program halts when you click on the Close box, allowing you to examine the value of DialogResult
returned by the Exit dialog box (Dialog1).

Figure 1-24. Setting a breakpoint

2. When the form is loaded, close the form to display the dialog box. Click OK, and the application will stop at
the breakpoint you have set. To step through the code one line at a time, press F11 (see Figure 1-25).

Figure 1-25. Stepping through the code

Edit and Continue
Yes! The edit-and-continue feature that VB 6 programmers have always taken for granted is
supported in VB 2005. Using the edit-and-continue feature, programmers can set breakpoints
using the debugger in Visual Studio and then make changes on the fly (you can even roll back
execution steps). After the changes are made, the application can continue executing without
the need to stop entirely and recompile.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.7. Inspect an Object at Runtime

The debugger in Visual Studio 2005 now supports a new feature known as DataTips. Using DataTips, you can
examine the values in a complex data type while you are debugging the application, otherwise known as debug
time. This is a marked improvement over Visual Studio .NET 2003, where only simple data types can be examined
by placing the cursor over a variable name.

Figure 1-26 shows the DataTips display for the FormClosingEventArgs object. To see this result, simply
position your cursor over the name of the variable or object that you are interested in while the program is stopped
at a breakpoint. Not only can you view the values of variables and objects, you can also edit and change their values
during debug time.

Figure 1-26. Using the DataTips in Visual Studio 2005

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.8. Add an About Box

VB 2005 now comes with several new templates that make developing a Windows application easy. Among the
new templates are:

Explorer Form

Allows you to build applications similar to Windows Explorer, with a tree-like display on the left pane and a
detailed view on the right pane.

About Box

Displays an About window listing detailed information (such as version number, copyright, credits, etc.)
about the current application.

Login Form

Creates a standard login window to simplify the task of user authentication.

Splash Screen

Displays a welcome screen when your application is launched.

In this section, you will add an About box to your application using the About Box template. The About box for an
application is displayed when a user selects Help About… and contains useful information about the
application, including its manufacturer and version number. Much of the information in the About box is available
from the application and its configuration files.

1. First, you need to create an About box form. Right-click on the project name (WindowsApplication1)
in Solution Explorer and select Add New Item…. Select the About Box template and accept the default
name of AboutBox1.vb provided by Visual Studio 2005. Click Add (see Figure 1-27).

Figure 1-27. Adding an About box to the project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The AboutBox1.vb form will be added to your project, and Visual Studio 2005 will display a designer for the
feature as shown in Figure 1-28.

2. Let's personalize the form by adding an image of the cover for this book to replace the default pretzel-like
image. Click the LogoPictureBox control and then, in the Property window for the control, click the
"…" button of its Image property. This will display the Select Resource dialog window. Click the Import…
button of the dialog to select your own image for the About box (C:\vbjumpstartpg.gif). Click OK (see
Figure 1-29).

Figure 1-28. The controls on the AboutBox1 window

Figure 1-29. Selecting an image resource

You can download the vbjumpstartpg.gif image from:
http://www.oreilly.com/catalog/vbjumpstart/.

3. Set the SizeMode property of the LogoPictureBox control to CenterImage.

4. To configure the information about your application so that it can be displayed by the About box, right-click
on the project name in Solution Explorer and then select Properties. In the Application tab, click on the
Assembly Information… button (see Figure 1-30).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Set the information as shown in Figure 1-31.

Figure 1-30. Configuring project information

Figure 1-31. Setting project information

6. The AboutBox1 window should now look like the one shown in Figure 1-32.

7. To link Form1 with the AboutBox1 window, expand the Help menu and double-click on the About… menu
item (see Figure 1-33) to open the code-behind page for Form1 and generate a code stub for the About box
selection event handler.

8. Now add the line of code shown in bold to the code stub generated by Visual Studio, as shown in Example
1-4). You use the ShowDialog method of the dialog window to get the object display itself.

Figure 1-32. The AboutBox1 window

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 1-33. Coding the Help About… menu item

Example 1-4. Help About… menu selection event handler

Private Sub aboutToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles aboutToolStripMenuItem.Click

 AboutBox1.ShowDialog()
End Sub

9. Finally, it's time to take your work for a trial run. Press F5 to run the application. Click Help About…
and you will see the About box shown in Figure 1-34.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

1.9. Configure the Application

In the application that you have built, you can move and anchor the ToolStrip control as you wish while you are
using the application. However, you may have noticed that its position is lost each time you exit the application.
This is because you need to manually save its positions each time you exit the application, or else the information
will be lost. Fortunately, this can be done easily with the new Application Settings feature in VB 2005. In this
section, you'll see how.

Figure 1-34. Displaying the About box

Application Settings
In VB 2005, you can now save the state of your application. For example, if a user resizes your
application window, then your application can "remember" the last displayed size, if you take the
appropriate steps. Using the new Application Settings feature in Windows Forms 2.0, you can create
application settings for your application and then bind your controls (including Windows Forms) to
these application settings via the Properties window.

1. You'll begin by adding code to save the location of the ToolStrip control. Select the ToolStrip
control and, in its Properties window, select the PropertyBinding property (under the "
(ApplicationSettings)" property; see Figure 1-35). Click the "…" button.

Figure 1-35. Binding application settings

2. Locate the Location property (this property determines where the control should be placed) and click the
drop-down listbox. Click on the New… link at the bottom and create a new application setting called
ToolStripLocation (see Figure 1-36). Be sure to set the scope to User. Click OK. Be sure to set the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ToolStripLocation (see Figure 1-36). Be sure to set the scope to User. Click OK. Be sure to set the
Location property to the newly created application setting.

Figure 1-36. Creating the new application setting

You have now created an application setting that binds the position of the ToolStrip control to the
ToolStripLocation application setting. When the form is loaded, the ToolStrip control will get its
Location property from the application settings, which is saved in the app.config file.

The app.config file contains configuration settings pertaining to your project,
such as database connection strings, application logfiles, etc. It is beyond the
scope of this book to discuss the app.config file in detail.

3. Now, perform the same steps 1 and 2 for the MenuStrip control, MenuStrip1. Name its application
setting MenuLocation.

4. You will want to save the current locations of all two controls whenever Form1 is closed, so add the bold
code to the FormClosing event and Exit menu item event as shown in Example 1-5.

Example 1-5. Saving control location data when a user exits or closes Form1

Private Sub Form1_FormClosing(ByVal sender As Object, _

 ByVal e As System.Windows.Forms.FormClosingEventArgs) _

 Handles Me.FormClosing

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 My.Settings.MenuLocation = MenuStrip1.Location

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.Settings.MenuLocation = MenuStrip1.Location
 My.Settings.ToolStripLocation = ToolStrip1.Location
 My.Settings.Save()
 End
 Else
 e.Cancel = True
 End If
End Sub

Private Sub exitToolStripMenuItem_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles exitToolStripMenuItem.Click

 Dim result As DialogResult = Dialog1.ShowDialog()
 If result = Windows.Forms.DialogResult.OK Then
 My.Settings.MenuLocation = MenuStrip1.Location
 My.Settings.ToolStripLocation = ToolStrip1.Location
 My.Settings.Save()
 End
 End If
End Sub

Note that in this example, only the ToolStrip control is moveable. You can make
the MenuStrip control moveable by changing its GripStyle property from
Hidden to Visible.

In Example 1-5, when a user closes the application either by closing the window or clicking on the Exit menu item,
the application saves the position of the MenuStrip and ToolStrip controls using the application settings that
you have created. You can access the application settings programmatically by using the My.Settings object
(they automatically appear under the My.Settings object after you have created them). Once the locations of
these two controls are assigned to the application settings, you use the Save method of the My.Setting object to
persist this information to the app.config file.

The My Namespace
The use of My.Settings in Example 1-5 demonstrates one of the most useful and unique additions
to VB 2005, the new My namespace, which encapsulates some of the most common functionalities

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

to VB 2005, the new My namespace, which encapsulates some of the most common functionalities
that developers need for their daily work. The My namespace exposes several different objects, which
you can observe by going to the code-behind page (Form1.vb) and typing My.. IntelliSense shows
the objects of the My namespace as shown in the figure.

The aim of the My namespace is to provide direct access to commonly used libraries in the .NET
Framework that were previously difficult to access. The intuitive hierarchy of the My namespace
provides a mechanism that VB 2005 developers can use to easily navigate the .NET Framework class
libraries and locate the classes required to perform a particular task. For example, suppose you want
to play an audio file in your application. But which class should you use? Using the My namespace, it
is easy to locate the right class to use. As it turns out, the class to use can be found in
My.Computer.Audio.Play!

You will learn more about the My namespace in Chapter 2.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 1. Introducing Visual Basic 2005
When Microsoft released its new version of Visual Basic in 2002, many developers willingly upgraded to take
advantage of the new web functionality, security, and performance provided by the .NET platform on which it was
built. But in doing so, many also felt they were leaving behind the features that had made Visual Basic 6.0 such a
popular tool for the rapid development of Windows applications in the first place.

The release of Visual Basic 2005 (VB 2005) is in many ways a return to Visual Basic's roots as the Rapid
Application Development (RAD) tool of choice. Many of the most popular features of earlier versions are back,
such as Edit and Continue, along with dozens of new controls, better IntelliSense, an improved debugger, and a host
of other tools that speed up programming, debugging, testing, and deployment.

Besides the many tools added to its interactive development environment (IDE), Visual Basic 2005 provides more
support than ever for developing the next generation of network-enabled Windows clients and web applications,
while a new set of functionality unique to VB 2005—the My namespace—gives you the means by which to perform
many common tasks without having to work your way through the complex types of the .NET class libraries.

The best way to learn about Visual Studio 2005 is by using the tool to build an application. In the following
sections, you'll assemble a straightforward Windows client that enables users to connect to a database and browse or
update the information they find there. You'll work with the authors table of the pub's database that ships with SQL
Server 2005. You'll also see how you can extend the application using some of the features new to VB 2005, such
as project templates and application configuration tools. Figure 1-1 shows how the main window of the the
completed application will look when you've finished your work.

Although this book uses Microsoft Visual Studio 2005 as the tool to build the sample
applications, you can also use Microsoft Visual Basic 2005 Express Edition.

Figure 1-1. The completed pubs database Windows client

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.1. Data Types

Table 2-1 lists the data types supported by VB 2005 and their counterparts in VB 6. If the size of a VB 6 type
differs from that of its corresponding VB 2005 type, its size in bytes is shown in parentheses. For example, the
Currency type (which takes up 8 bytes) in VB 6 is replaced in VB 2005 by the Decimal type. The old
Decimal type (which takes up 12 bytes in VB 6), is now 16 bytes. Integer is now 4 bytes, instead of its 2 bytes
in VB 6. Likewise, the Long data type is now 8 bytes, instead of its 4 bytes in VB 6.

VB 6 Tip: The venerable VB 6 Variant data type in VB 6 is no longer supported in
VB 2005; you should use the Object type instead. Object and the types that derive
from it are discussed at greater length in Chapter 3.

Intrinsic and User-Defined Types
VB 6 and VB 2005 support two types of intrinsic data types and user-defined types. Intrinsic data
types are those types that are built into the language. Examples of intrinsic data types are Integer,
Short, and Char. User-defined types (UDT), on the other hand, are data types defined by
programmers. Examples of user-defined data types are classes and structures. Most of the data types
discussed in this chapter are intrinsic data types; Chapter 3 will discuss user-defined data types in
more detail.

Table 2-1. Data types in VB 2005
VB 2005 type Size (bytes) VB 6 type (size in bytes)

Boolean Depends on implementing
platform Boolean

Byte 1 Byte
Char 2 N/A
Date 8 Date
Decimal 16 Currency (8), Decimal (12)
Double 8 Double
Integer 4 Integer (2)
Long 8 Long (4)
Object 4 Variant
SByte 1 N/A
Short 2 N/A
Single 4 Single
String (variable
size only) Depends String (supports fixed and

variable size)
UInteger 4 N/A
ULong 8 N/A
UShort 2 N/A

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

User-Defined
(Structure) Depends User-Defined (Type)

In both VB 6 and VB 2005, data types fall into one of two categories based on how they are stored and accessed:

Value types

A value type holds its data within its own memory allocation. You can access a value type directly without
having to create a reference to it. Examples of value types are Integer and Single.

Reference types

A reference type contains a pointer to another memory location that holds the data. Examples of reference
types are String and Object. We will discuss reference types in more detail in Chapter 3.

Variables in an application are stored in one of two different locations in memory: either on the stack or on the
heap. Stacks are used for storing variables created in a function and are destroyed when the function exits. A heap,
on the other hand, is used to store long-lived variables such as global and static variables.

Value types are stored directly on the stack at execution time, as opposed to being stored on the heap, as is done for
reference types. You can access a value type directly without needing to create a reference to it. For a reference
type, you must use a variable that contains a reference to the value of the type.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.10. Error Handling

There are two main types of coding errors that programmers generally have to deal with:

Compile-time errors

Runtime errors

In VB 2005, the background compiler kicks into action every time you type in a line of
code. It dynamically compiles your code and warns you of errors before you actually
compile it.

In the former case, the compiler detects a syntax error and the IDE handles the error and calls it to the attention of
the programmer so that immediate action can be taken to fix the problem. Runtime errors occur while an application
is running. It is this type of error that must (and can) be prevented.

To ensure that an application is as robust and bug free as possible, it is important to anticipate as best you can all of
the errors that might occur while your program is running. In VB 2005, error handling has been much improved
over VB 6. VB 2005 now supports both structured and unstructured error handling.

VB 6 Tip: In VB 6, error handling was unstructured, performed using the primitive On
Error and On Error Resume Next statements. The specific information about
an error that occurred can be retrieved from the Err object.

2.10.1. Try-Catch-Finally

In VB 2005, you can implement structured error handling using the TRy… Catch…Finally construct. Basically,
you place any code that could possibly trigger a runtime error, such as a disk access, into a TRy block. Any errors
that happen within the try block will be caught and serviced by the Catch block(s) that follow. This is where you
can take actions to correct the error or clean up any resources that you've allocated. The Finally block is
executed whether an error occur in the try block or not. The Finally block is a good place to perform
housekeeping chores such as closing a database or file connection.

Example 2-9 shows how you can use try…Catch…Finally statements to catch errors at multiple levels within a
procedure that performs an integer division of two numbers. Note the use of multiple Catch blocks to handle
exceptions that range from the specific (InvalidCastException and DivideByZeroException) to the
most general (Exception).

Example 2-9. Using Try…Catch…Finally statements to handle runtime errors

'===Error Handling===

Dim num1, num2, result As Integer

Try

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try
 num1 = InputBox("Please enter num1")

 num2 = InputBox("Please enter num2")

 result = num1 \ num2

 MsgBox(result)

Catch invalidCast As InvalidCastException
 MsgBox("Please enter numbers only")

Catch divisionByZero As DivideByZeroException
 MsgBox("Division by zero error")

Catch ex As Exception
 MsgBox(ex.ToString)

Finally
 MsgBox("This line is always printed.")

End Try

When the user enters a non-numeric input for one of the numbers, the InvalidCastException exception will
be raised and the message "Please enter numbers only" will be printed. If the user enters a 0 for num2, it results in a
division by zero error and raises the DivideByZeroException exception. The Exception exception is the
root of all exceptions and will catch any exceptions not caught by the earlier Catch statements. The statement
within the Finally block is always executed, regardless of whether any exception has been raised.

2.10.2. Throwing Exceptions

Besides catching errors using the try…Catch…Finally construct and the predefined exceptions available in the
.NET Class Library, you can also throw your own custom exceptions by using the Throw keyword. The Throw
keyword allows you to throw an exception so that you can handle the exception with the structured exception-
handling code.

Consider the following example:

 Public Function divide(ByVal num1 As Single, _

 ByVal num2 As Single) _

 As Single

 If num2 = 0 Then Throw New _
 Exception("num2 cannot be zero!")

 Return num1 / num2

 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In this divide function, if num2 is zero, you will throw your own exception (using the Exception class) with
your own custom error message.

A user of this function can then catch the error like this:

 Try

 MsgBox(divide(4, 0))

 Catch ex As Exception

 MsgBox(ex.ToString)

 End Try

The variable ex will contain detailed information of the exception when it occurs. To display the error message,
simply use the ToString method.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.11. My Namespace

One of the problems faced by VB 6 programmers moving to VB 2005 is figuring out which class in the .NET
Framework is the appropriate class to use to solve a particular problem. To simplify the transition, VB 2005
provides the new My namespace, which encapsulates some of the most common functionalities that developers need
in their daily work.

VB 6 Tip: Most VB 6 predefined functions are still supported in VB 2005. They are
located within the Microsoft. VisualBasic namespace (which is automatically
referenced by default in all VB 2005 projects) and so you can continue to use your
favorite VB 6 functions without doing anything extra.

The My namespace exposes several areas of functionality, as shown in the IntelliSense pop-up in Figure 2-4.

Figure 2-4. The objects exposed by the My namespace

The aim of the My namespace is to provide direct access to commonly used libraries (in the .NET Framework) like
Resources that were previously difficult to access. The intuitive hierarchy of the My namespace provides a
mechanism that VB 2005 developers can use to easily navigate the .NET Framework class libraries and locate the
classes required to perform a particular task. For example, suppose you want to play an audio file in your
application. Which class should you use? Using the My namespace, it is easy to locate the right class to use. As it
turns out, the class to use can be found in My.Computer.Audio.Play!

The objects exposed by the My namespace are:

My.Application

Provides properties, methods, and events related to the current application.

My.Computer

Provides properties for manipulating computer components, such as audio, the clock, the keyboard, the
filesystem, and so on.

My.User

Provides access to the current user's security context. For Windows applications, the access is read-write,
while access for web applications is read-only.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

My.Forms

Provides properties for accessing an instance of each Windows Form declared in the current project.

My.Settings

Provides properties and methods for accessing the application's settings.

My.Webservices

Provides properties for creating and accessing a single instance of each XML web service referenced by the
current project.

The My namespace is not just a static shortcut to the class libraries in the .NET
Framework. Depending on your project type, the My.Forms, My.Resources,
My.Settings, and My. Webservices objects will dynamically display the
relevant objects and classes.

Here are some examples of how to use the My namespace. You can use the My.Application object to discover
the installation path of the current application:

 Dim appPath As String = _

 My.Application.Info.DirectoryPath

You can use the My.Computer object determine whether a file exists. At the same time, you can also play a
system audio sound:

 Dim exists As Boolean

 exists = _

 My.Computer.FileSystem.FileExists(_
 "c:\file.txt")
 If Not exists Then

 My.Computer.Audio.PlaySystemSound(_
 System.Media.SystemSounds.Exclamation)
 MsgBox("File does not exist")

 End If

You can also play a specific audio file:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.Computer.Audio.Play(_

 "C:\WINDOWS\Media\chimes.wav")

File management is one of the most common tasks that developers need to perform. Using the
My.Computer.FileSystem object, you can access all the various file handling routines in one place (see
Figure 2-5).

Figure 2-5. The routines in the My.Computer.FileSystem object

Another useful object that resides in My.Computer is the Network object. With it, you can perform a task such
as downloading a file from the network and saving it locally. The following example downloads a .gif file from a
web site and saves to your local C: drive.

 My.Computer.Network.DownloadFile(_

 "http://www.oreilly.com/catalog/" & _

 "covers/aspnetadn.s.gif", _

 "c:\images\0596008120.jpg")

In a Windows application, you can access the collections of forms in your application and their properties with the
My.Forms object. For example, the following statements set the Opacity property of a form to 50%:

 My.Forms.Form1.Opacity = 0.5

 ' ---equivalent to---

 Form1.Opacity = 0.5

If you have multiple web services references in a project, you can find them all in the My.WebServices object.
For example, suppose you have added a web reference to the Translate web service in your application (see Figure
2-6) at http://www.webservicex.net/TranslateService.asmx?WSDL. The following example shows how to invoke
the translateService web service through the My.WebServices object:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

the translateService web service through the My.WebServices object:

 MsgBox(My.WebServices.TranslateService.Translate(_

 net.webservicex.www.Language.EnglishTOFrench, "Hello"))

In a web application, you can use My.User to determine whether a user is authenticated:

 Response.Write(My.User.IsAuthenticated)

Figure 2-6. Adding a web reference

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.12. Summary

In this chapter, you have been taken on a whirlwind tour of VB 2005 syntax and seen how it compares with that of
VB 6. If you are a VB 6 programmer, you'll be happy to have discovered that much of what you already know is
still supported (or enhanced) in VB 2005. The new My namespace is another productive feature that Microsoft has
built into the language.

In the next chapter, you will learn how you can use the object-oriented programming support found in VB 2005 to
become even more productive than you already are, and you'll learn why object orientation is one of the most
important additions to the Visual Basic language.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.2. Variables

In VB 2005, you declare a variable with the Dim (dimension) keyword and you specify its type using the As
keyword:

 Dim num1
 Dim num2 As Integer

The first statement declares num1, by default, to be an Object type. The Object type is the base class of all the
classes in the .NET Framework. You can think of the Object type as equivalent to the Variant type in VB 6.

The second statement explicitly declares num2 to be an Integer variable.

The following statements declare num1 as a Short type and then assign a value to it:

 '---range: -32768 <--> 32767

 Dim num1 As Short
 num1 = 32767

You should always specify the data type of a variable, because this assures the variable is strongly typed. Strong
typing reduces the likelihood of runtime errors and makes your application much more efficient.

In VB 2005, to ensure that variables are declared with a data type (strongly typed), you
should add the Option Strict On statement at the top of your code file. All
variables must now be declared with a type.

You'll learn more about the importance of strong typing, also known as early binding,
in Chapter 3.

In VB 2005, you must declare all of the variables that you use, although you can work around this restriction and
use variables without first declaring them with the Option Explicit Off statement. VB 2005 turns on
Option Explicit On by default.

VB 6 Tip: VB 6 turns on Option Explicit Off by default. In both VB 6 and VB
2005, it is advisable for you to turn Option Explicit on, because using variables
without first declaring them can easily inject potential bugs into your program.

Scope of Variables

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The scope of a variable determines which parts of a program can access it. Consider the following
VB 6 code:

 For i = 0 To 10

 Dim j As Integer

 …

 Next i

 j = 0 '<-- j is still accessible

Notice that the variable j was declared within the For loop. Outside the loop, j is still accessible.

In VB 2005, accessing a variable outside the scope in which it was declared is not allowed. Hence
trying to access j outside the For loop will result in a compile-time error.

As shown in Figure 2-1, when you assign the value of one value type to another (num2 = num1), VB 2005—or
more correctly, .NET—makes a copy of the value type:

 Dim num1 as Short

 Dim num2 as Short

 num1 = -32768

 num2 = num1

Figure 2-1. Representation of a value type in memory

Contrast this to the reference type. When you assign the value of a reference type to another, it causes the second
variable to make a reference to the first without creating another copy of the value. The following example assigns
one string variable to another:

 Dim str1, str2 As String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim str1, str2 As String
 str1 = "VB"

 str2 = str1

The memory allocation of str1 and str2 is as shown in the Figure 2-2.

Figure 2-2. Representation of a reference type in memory

Unlike VB 6, with VB 2005, you can declare two variables to be of the same type in a single statement, as follows:

 Dim num1, num2 As Short

VB 6 Tip: In VB 6, if you declare two variables in the same statement, as in the
following Dim statement, the results are not the same:

 Dim num1, num2 As Short

Here, num1 is of the Variant type and num2 is of the Short type.

In VB 2005, you can also declare two variables of different data types in the same statement:

 Dim num1 As Short, num2, num3 As Integer

In this case, num1 is declared as Short, and num2 and num3 are both of type Integer.

Unlike VB 6, in VB 2005, you can declare and initialize a variable in the same statement:

 Dim num1 As Short = 56

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB 2005 now supports three new unsigned data types: UShort, UInteger, and ULong.

In VB.NET 2002 and 2003, you can use the .NET Frame-work's unsigned types, but
you cannot perform mathematical operations on them. With the new unsigned data type
support in the new VB 2005, you can now do so.

The following statements declare unum as an unsigned 16-bit integer:

 Dim unum As UShort

 unum = 65535

Type Characters
Instead of using the As keyword to specify the data type of a variable, you can append one the
following type characters to the end of the variable name instead:

Integer: %

Long: &

Decimal: @

Single: !

Double: #

String: $

For example, the following statement declares num to be an Integer type:

 Dim num%

 num = 5

While type characters in VB 2005 preserve a popular feature found in VB 6, many .NET developers
feel they should be avoided and that spelling out the type name makes for code that is easier to
maintain and read.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.3. Constants

While variables are a powerful tool, there are times when you want their values to remain constant. Perhaps your
program makes repeated use of the value of pi or the natural logarithm e. A constant is like a variable in that it can
store a value; unlike a variable, the value of a constant cannot be changed while the program runs. You declare
constants using the Const keyword. The following definition assigns the value 3.14 to a constant whose name is
pi and then uses it in calculating the area of a circle:

 Const pi As Double = 3.14
 Dim radius as Double = 5
 Dim area as Double = pi * radius ^ 2

A constant of this type is sometimes called a symbolic constant, because it uses a word to represent a value. VB
2005 supports two additional kinds of constants: literals (see "Literals") and enumerations, or enums (See
"Enumerations").

2.3.1. Literals

As in VB 6, a literal, or literal constant, as it is sometimes called, represents a particular value in text. For example,
the number 32, as it appears in this sentence, is a literal constant. The value of 32 is always 32. Likewise, a quoted
string like "Hello World" is also a literal constant. Literal types include Booleans, integers, floating-point numbers,
strings, characters, and dates. Any number that is within the range of Integer types, such as 32, is an Integer
type by default.

For example, the following statements assign the literal A to ch1 and ch2, both of which are Char types:

 '---assign the character "A" to ch1 and ch2

 Dim ch1 As Char = "A"c

 Dim ch2 As Char = Chr(65)

 Dim longValue as Long = 100L

To represent the quotation character (") in a string variable, use the quotation character twice in succession, as in the
following snippet:

 Dim str As String

 ' assigns str to "He said: "VB is so cool!""

 str = "He said: ""VB is so cool!"""

To assign a date and time to a DateTime variable, use the # character:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To assign a date and time to a DateTime variable, use the # character:

 Dim timeNow As DateTime

 timeNow = #3/22/2005 10:01:19 AM#

To represent a large number, you can use the exponent symbol (E) to separate its mantissa (the significant digits;
3.8896, in the example below) and its exponent (a power of 10; 23, in this case):

 Dim f As Double

 f = 3.8896E+23

2.3.2. Enumerations

Sometimes it is easier to work with named constants than with numeric constants. Enumerations provide a powerful
tool for creating logically related collections of named constants, such as the names of the primary colors, or the
days of the week. For example, you might wish to represent the days of the week with numbers, such as 1 for
Monday, 2 for Tuesday, and so on.

But when it comes to writing a program, it will likely be more intuitive to use the names of the days instead. You
can do so by declaring an enumeration that associates each day of the week with a number.

VB 6 Tip: Enumerations are not new in VB 2005; VB 6 programmers should already
be familiar with enumerations.

The following shows the Week enumeration:

 Enum Week
 Sunday = 0

 Monday = 1

 Tuesday = 2

 Wednesday = 3

 Thursday = 4

 Friday = 5

 Saturday = 6

 End Enum

To use the enumeration, declare a variable of type Week:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

To use the enumeration, declare a variable of type Week:

 Dim theWeek As Week

You can now assign the day of a week using a named constant:

 theWeek = Week.Monday ' or

 theWeek = 1 ' both are equivalent

Note that if you turn Option Strict On, the second statement above should be:

 theWeek = CType(1, Week)

You need to explicitly convert the Integer value to the enumeration. In "Type
Conversion," later in this chapter, you will learn about the Option Strict
statement in more detail.

If you do not explicitly perform the conversion, Visual Studio 2005 will underline the
number 1. You can position your cursor under the number and click on the down arrow
(see Figure 2-3). Visual Studio 2005 will suggest to you the remedy. This feature is
known as AutoCorrect.

To print out the month, you can use either of the following:

 MsgBox(theWeek) ' prints out 1

 MsgBox(theWeek.ToString) ' prints out Monday

Besides defining your own enumerations, there are also predefined enumerations with which you might already be
familiar. For example, the result from the MsgBox function is an enumeration called MsgBoxResult:

Figure 2-3. AutoCorrect in Visual Studio 2005

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim response As MsgBoxResult

 response = MsgBox("Are you sure?", MsgBoxStyle.YesNo)

 If response = MsgBoxResult.Yes Then

 ' do something

 Else

 ' do something

 End If

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.4. Strings

As in VB 6, VB 2005 String types are used to represent text and are a good example of a reference type, as you
saw in "Variables," earlier in this chapter. Strings in .NET are immutable, which means that once you've assigned a
value to a string variable, it cannot be changed. If the value of a string variable is changed, another string object is
created during runtime. Consider this example:

 Dim st As String

 st = "Hello"

 st &= " World!"

 MsgBox(st) ' prints "Hello World!"

In the above example, two string objects are involved: one for the initialization and one for the concatenation. This
problem gets worse if you are doing concatenation in a loop, like the following:

 Dim i As Integer, str As String = ""

 For i = 0 To 10000

 str &= i.ToString

 Next

A much more efficient way to manipulate strings is to use the StringBuilder class, located in the
System.Text namespace:

 Dim i As Integer, str As New _

 System.Text.StringBuilder()
 For i = 0 To 10000

 str.Append(i.ToString)

 Next

The "_" (underscore) character is the continuation character in Visual Basic (all
versions). It is used to break a long statement into multiple lines.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.5. Arrays

As in VB 6, a VB 2005 array is a collection of variables in which each variable is identified by an index, like
mailboxes on a street or players on a team.

For example, the following declaration defines num1 as an array by adding open and closed parentheses to its
name:

 Dim num1() As Integer

Note that this declaration simply declares num1 to be an array; the actual size of the array is not known yet. To get
num1 to point to an actual array, use the New keyword:

 num1 = New Integer() {1, 2, 3}

num1 is now an array containing three members of Integer data type with values 1, 2, and 3.

Here are some other possible ways to declare and initialize an array:

 Dim num2(2) As Integer

 num2(0) = 1

 num2(1) = 2

 num2(2) = 3

The size of the array is one plus the number declared, as is the case in VB 6. In the above case, the valid index is
from 0 to 2, giving a total of 3 members. Note that the following is not allowed:

 Dim num2(2) As Integer = New Integer

 '---Not allowed since size is

 ' already indicated

You can also combine the declaration together with the initialization:

 Dim num3() As Integer = _

 New Integer() {1, 2, 3}

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following are not allowed:

 Dim num3() As Integer = New Integer()

 '---Not allowed; missing {}

 Dim num3() As Integer = New Integer(3)

 '---Not allowed; missing {}

 Dim num3() As New Integer

 '---Not allowed, arrays cannot use New

 Dim num3() as New Integer() {1,2,3}

 '---Syntax error

Once an array is declared, you can change its size by using the ReDim keyword:

 Dim num4() As Integer() = New Integer() {1, 2, 3}

 ReDim num4(5)

VB 6 Tip: In VB 6, you can only ReDim an array if the array is initially declared as a
variable length array, as the following shows:

 ' array is fixed length

 Dim num1(3) As Integer

 ReDim num1(5) '---error

 ' array is variable length

 Dim num2() As Integer

 ReDim num2(5) '---OK

When an array is redimensioned, all its previous values will be lost. To retain the previous values, use the
Preserve keyword:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Preserve keyword:

 ReDim Preserve num4(5)

VB 2005 adds the new To keyword. You can explicitly specify the range of an array using the To keyword:

 Dim num1(0 To 19) As Integer

Note that the To keyword is used only to make your code more readable; you cannot
alter the lower bounds of the array to, say, 1. The only bound must be 0.

Note that in VB 6, you can change the base of an array using the Option Base statement. However, VB 2005
does not allow you to change the base of an array.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.6. Type Conversion

You perform a type conversion when you need to convert or assign values from one type to another. This is also
known in some circles as casting. Consider the following code:

 Dim num1 as Short = 25

 Dim num2 as Long

 num2 = num1

In this case, the VB 2005 compiler will automatically perform an implicit conversion from the Short type to the
Long type. Since all the values that could be stored by the Short type can fit into a Long type, this conversion is
known as a widening conversion and is a safe operation. The reverse of widening is a narrowing conversion, which
is a conversion from a data type that has a larger range to one with a lower range. Consider the following:

 Dim num1 As Long = 25

 Dim num2 As Short

 num2 = num1

In this example, num1 may potentially contain a value that will cause an overflow in num2 if the assignment takes
place. In VB 2005, you can restrict automatic data type conversion by using the Option Strict statement. By
default, in VB 2005, the Option Strict statement is set to Off.

VB 6 Tip: In VB 6, there is no Option Strict statement. Hence, the design
decision of VB 2005 was to turn Option Strict Off by default so that VB 6 code
can be migrated easily.

If you turn Option Strict On, you will need to perform an explicit conversion (or else the compiler will
complain):

 '---if option strict on

 num2 = CShort(num1)

 '--OR--

 num2 = CType(num1, Short)

You should preferably turn Option Strict On, so that any narrowing operations
you are doing are flagged. This will allow you to take action to catch potential errors
that might result from a narrowing conversion. Note that in VB 6, performing a
narrowing conversion will not set off a warning since the Option Strict statement

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

narrowing conversion will not set off a warning since the Option Strict statement
is not supported.

VB 6 Tip: The familiar type conversion functions like CInt, CStr, and CSng in VB
6 are still supported in VB 2005. In addition, VB 2005 supports the general purpose
CType function, which allows you to specify the data type to convert to.

When performing a narrowing conversion, you should always take care to ensure that the operation will not result in
a runtime error, such as performing the operation within a try-Catch block. See "Error-Handling," later in this
chapter, for more details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.7. Operators

VB 2005 supports the various operators shown in Table 2-2.

Table 2-2. Operators supported in VB 2005

Type Language
element Description

Arithmetic ^ Raises to the power of

 – Subtraction

 * Multiplication

 / Division

 \ Integer Division

 Mod Modulus (remainder)

 + Addition

Assignment = Assigns a value to a variable or property

 ^= Raises the value of a variable to the power of an expression and assigns the result
back to the variable (new in VB 2005)

 *= Multiplies the value of a variable by the value of an expression and assigns the
result to the variable (new in VB 2005)

 /= Divides the value of a variable by the value of an expression and assigns the result
to the variable (new in VB 2005)

 \= Divides the value of a variable by the value of an expression and assigns the integer
result to the variable (new in VB 2005)

 += Adds the value of an expression to the value of a variable and assigns the result to
the variable (works for strings as well) (new in VB 2005)

 -= Subtracts the value of an expression from the value of a variable and assigns the
result to the variable (new in VB 2005)

 &= Concatenates a String expression to a String variable and assigns the result to the
variable (new in VB 2005)

Comparison = Equal

 <> Not equal to

 < Less than

 > Greater than

 <= Less than or equal to

 >= Greater than or equal to

 Like Compares a string against a pattern

 Is Compares two object reference variables

 IsNot Compares two object reference variables

Concatenation & Concatenates two strings

 + Concatenates two strings

Logical/bitwise
operations Not Logical negation on a Boolean expression

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 And Logical conjunction on two Boolean expressions, or bitwise conjunction on two
numeric expressions

 Or Logical disjunction on two Boolean expressions, or bitwise disjunction on two
numeric values

 Xor Logical exclusion operation on two Boolean expressions, or bitwise exclusion on
two numeric expressions

 AndAlso Short-circuiting logical conjunction on two expressions (new in VB 2005)

 OrElse Short-circuiting logical disjunction on two expressions (new in VB 2005)

Miscellaneous
operations AddressOf Creates a procedure delegate instance that references the specific procedure (new in

VB 2005)

 GetType Returns a Type object for the specified type (new in VB 2005)

When testing for the equality of numeric values, use the = operator. Use the Is operator to test the equality of
objects. Chapter 3 will discuss the use of the Is operator in greater detail.

VB 6 Tip: Of particular interest to VB 6 users is the new support for assignment
operators in Visual Basic 2005. In VB 6, to increment a variable, you must write code
that looks something like this:

 var = var + 1

In Visual Basic 2005, you can now rewrite the line as:

 var += 1

The IsNot operator is new in VB 2005. Often you need to negate the comparison of an object, such as:

 Dim obj As Button

 If Not obj Is Nothing Then

 ' obj contains an object reference

 .…

 End If

In this case, your code will be more readable if you use the IsNot operator:

 If obj IsNot Nothing Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If obj IsNot Nothing Then
 ' obj contains an object reference

 .…

 End If

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.8. Statements

As in VB 6, a complete program instruction in VB 2005 is called a statement. Programs consist of sequences of
statements. You end each statement with a carriage return.

In VB 2005, spaces, tabs, and carriage returns (newlines) are considered to be "whitespace." Extra whitespace is
ignored in VB 2005, as in VB 6, a feature that many consider an endearing (and forgiving) quality of the language.

2.8.1. Decision-Making (Branching) Statements

VB 2005 retains the traditional VB 6 statements for decision making but adds a few new wrinkles of its own.
Decision-making statements fall into two categories:

If-Then-Else

Select-Case

2.8.1.1. If-Then-Else

Just as in VB 6, in VB 2005, you make decisions using the If-Then-Else construct.

 If <condition> Then
 <statement(s)>

 Else
 <statement(s)>

 End if

Here is a short example:

 Dim day As Short = 4

 Dim dayofWeek As String

 If day = 1 Then
 dayofWeek = "Monday"

 End If

In the preceding code, if day is equal to 1, the string "Monday" is then assigned to the dayofWeek variable. For a
one-line statement, you can shorten the above code to:

 If day = 1 Then dayofWeek = "Monday"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

However, if you have multiple statements to execute if a condition is met, use of the End If statement is
mandatory. VB 2005 lets you pack a block of conditional code into a single line. For example, the following block
of code:

 If day = 1 Then

 dayofWeek = "Monday"

 currentTime = Now

 End If

is equivalent to this single line of code:

 If day = 1 Then dayofWeek = "Monday" : currentTime = Now

The grouping of several statements into a single line using the : character, as shown in the preceding snippet, is
useful in cases where you want to group multiple statements into a single line to improve the readability of your
code. The grouping feature is also useful for organizing a related group of variables.

You can also nest several If-Then-Else statements, as shown in Example 2-1.

Example 2-1. Nesting If-Then-Else statements

Dim day As Short = 4

Dim dayofWeek As String

If day = 1 Then

 dayofWeek = "Monday"

Else

 If day = 2 Then

 dayofWeek = "Tuesday"

 Else

 If day = 3 Then

 dayofWeek = "Wednesday"

 Else

 If day = 4 Then

 dayofWeek = "Thursday"

 Else

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 If day = 5 Then

 dayofWeek = "Friday"

 Else

 If day = 6 Then

 dayofWeek = "Saturday"

 Else

 If day = 0 Then

 dayofWeek = "Sunday"

 Else

 Msgbox("Number out of range")

 End If

 End If

 End If

 End If

 End If

 End If

End If

Note the matching End If statement for each If statement. If you have multiple nested If-Then-Else
constructs, you can simplify the above code using the ElseIf keyword (also supported in VB 6), as shown in
Example 2-2.

Example 2-2. Using the ElseIf keyword

If day = 1 Then

 dayofWeek = "Monday"

ElseIf day = 2 Then
 dayofWeek = "Tuesday"

ElseIf day = 3 Then
 dayofWeek = "Wednesday"

ElseIf day = 4 Then
 dayofWeek = "Thursday"

ElseIf day = 5 Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ElseIf day = 5 Then
 dayofWeek = "Friday"

ElseIf day = 6 Then
 dayofWeek = "Saturday"

ElseIf day = 0 Then
 dayofWeek = "Sunday"

Else
 MsgBox("Number out of range")

End If

Note that if you use the ElseIf keyword, the number of End If statements is reduced to one (in this example).

Short-Circuiting
Short-circuiting is a compiler optimization technique that reduces the checking of redundant
conditions in a decision-making statement. In both the logical And and Or operations, both
conditions are evaluated regardless of their results. To short-circuit the And operation, you can
replace it with the new AndAlso operator so that if the first condition is false, the second
condition is not evaluated.

Likewise, to short-circuit the Or operations, you can use the OrElse operator. If the first condition
evaluates to true, the second condition is not evaluated.

VB 6 does not support short-circuiting when evaluating an expression. Hence, in order not to break
existing code, Microsoft added the AndAlso and OrElse operators in VB 2005 for short-circuiting.

2.8.1.2. Select…Case

If you have multiple conditions to test, it is often much easier (and more readable) to use the Select…Case
construct. Example 2-3 shows a rewrite of the previous code segment using the Select…Case construct.

Example 2-3. Using the Select…Case statement

Select Case day
 Case 1 : dayofWeek = "Monday"
 Case 2 : dayofWeek = "Tuesday"
 Case 3 : dayofWeek = "Wednesday"
 Case 4 : dayofWeek = "Thursday"
 Case 5 : dayofWeek = "Friday"
 Case 6 : dayofWeek = "Saturday"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Case 6 : dayofWeek = "Saturday"
 Case 0 : dayofWeek = "Sunday"
 Case Else : Msgbox(_
 "Number out of range")

End Select

2.8.2. Looping (Iteration) Statements

VB 2005 provides several looping constructs. They are all supported in VB 6 as well, unless otherwise noted:

 For

 For-Each

 While

 Do-While

 Do-Until

Each of the following examples (Example 2-4 through Example 2-8) prints a series of array members with indexes
ranging from 0 to 5 using one of the looping constructs supported by VB 2005.

Example 2-4. Using the For loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

For n as Integer = 0 To 5
 Console.Write(num(n))

Next

VB 6 Tip: In VB 6, you need to declare the loop variant (n) in a separate statement.
Only VB 2005 allows you to declare it and use it at the same time.

Example 2-5. Using the For-Each loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

For Each i As Integer In num

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For Each i As Integer In num
 Console.Write(i)

Next

Example 2-6. Using the While loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim j As Integer = 0

While j <= 5
 Console.Write(num(j))

 j += 1

End While

VB 6 Tip: In VB 6, you use the While-Wend statement to implement a While loop.

Example 2-7. Using the Do-While loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim k As Integer = 0

Do While k <= 5

 Console.Write(num(k))

 k += 1

Loop

Example 2-8. Using the Do-Until loop

Dim num() As Integer = {1, 2, 3, 4, 5, 6}

Dim m As Integer = 0

Do

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Do
 Console.Write(num(m))

 m += 1

Loop Until m > 5

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

2.9. Functions and Subroutines

VB 2005 supports both functions and subroutines. Basically, support for functions and subroutines is the same in
VB 2005 as it is in VB 6. However, VB 2005 provides you with an additional way to return values in a function by
means of the new Return statement. VB 2005 programmers have three choices: they can write their own
functions, continue using most of the VB 6 functions they have come to know and love, or tap into the rich
functionality of the .NET Framework Class Library through the new My namespace (see "My Namespace," later in
this chapter).

Exiting or Skipping a Loop
You can exit a loop at any time by using one of the following statements:

 Exit For

 Exit Do

 Exit While

In VB 2005, you can transfer control immediately to the next iteration of a loop by using the
Continue keyword. Consider the following:

 For i As Integer = 0 To 10

 ' prints out all odd

 ' numbers from 0 to 10

 If i Mod 2 = 0 Then Continue For
 MsgBox(i)

 Next

The preceding code snippet prints out all the odd numbers from 0 to 10. Note that the Continue
keyword can also be used with a While loop and a Do-While loop.

2.9.1. Function

A function is a block of code that performs some operations and then returns a value. For example, the following
function Area takes in two input parameters, computes the area, and then returns the result:

 Public Function Area(ByVal length As Single, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function Area(ByVal length As Single, _
 ByVal breadth As Single) As Single

 Dim result As Single

 result = length * breadth

 Return result
 End Function

To invoke a function, you simply call the function name with the required argument(s):

 Dim areaOfRect As Single = Area(4, 5)

VB 6 Tip: In VB 6, only functions require the mandatory use of parentheses around the
parameter list. But in VB 2005, all functions or subroutine calls require parentheses
around the parameter list (even if the parameter list is empty).

The value returned by the Area function is then assigned to the areaOfRect variable.

In VB 6, you use the function name to return the value of a function, like this:

 Public Function Area(ByVal length As Single, _
 ByVal breadth As Single) As Single

 Dim result As Single

 result = length * breadth

 Area = result
 End Function

In VB 2005, you can either use the Return keyword or the function name to return the value of a function. Note
that when a Return statement is encountered in a function, the execution is immediately transferred back to the
statement that called it.

2.9.2. Subroutine

A subroutine is similar to a function, except that it does not return a value. For example, the following subroutine
PrintMessage accepts a single input parameter and prints a message box.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

PrintMessage accepts a single input parameter and prints a message box.

 Public Sub PrintMessage(ByVal str As String)

 MsgBox(str)

 End Sub

To invoke a subroutine, you simply call the subroutine name and pass it the required argument(s):

 PrintMessage("File deletion completed.")

VB 6 Tip: In VB 6, you can call the PrintMessage subroutine without using
parentheses to enclose the parameter list:

 PrintMessage "File deletion completed."

2.9.3. Passing Arguments

There are two ways to pass values to a subroutine or function:

By value

By reference

Let's take a closer look at these two methods in the following sections.

2.9.3.1. Passing by value

Consider the following subroutine:

 Public Sub ProcessValue(ByVal num As Integer)
 num += 1

 MsgBox("In ProcessValue(), num is " & num)

 End Sub

The ProcessValue subroutine takes a single input parameter: num. The parameter declaration is preceded by the
ByVal keyword.

By default, Visual Basic 2005 passes an argument via ByVal. In VB 6, the default is ByRef (see "Passing by
reference," next).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The following statements call the ProcessValue subroutine and display a value at each stage:

 Dim num As Integer = 5

 MsgBox("Before ProcessValue(), num is " & num)

 ProcessValue(num) ' pass by value

 MsgBox("After ProcessValue(), num is " & num)

You will realize that the value of num remains at 5 before and after calling the ProcessValue subroutine.

As you can deduce, even though the variable num is modified within the subroutine, the change is not reflected
outside the subroutine. When you pass an argument by value, a copy of the variable is created to be used within the
subroutine. When the subroutine exits, the variable is destroyed.

2.9.3.2. Passing by reference

Consider the following subroutine:

 Public Sub ProcessValue(ByRef num As Integer)
 num += 1

 MsgBox("In ProcessValue(), num is " & num)

 End Sub

The ProcessValue subroutine takes in a single input parameter: num. The parameter declaration is preceded
with the ByRef keyword.

The following statements call the ProcessValue subroutine and display the value at every stage:

 Dim num As Integer = 5

 MsgBox("Before ProcessValue(), num is " & num)

 ProcessValue(num) ' pass by value

 MsgBox("After ProcessValue(), num is " & num)

In contrast to passing by value, when you pass an argument by reference, the subroutine receives a reference that
points to the location where the argument is stored in memory. When the variable is modified within the subroutine,
the change will affect the original variable. Hence, the change remains even after the subroutine exits.

2.9.3.3. Optional parameters

Consider the following definition of a modified PrintMessage subroutine:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Consider the following definition of a modified PrintMessage subroutine:

 Public Sub PrintMessage(ByVal str1 As String, _

 ByVal str2 As String, _

 Optional ByVal str3 As String = "rocks!")
 MsgBox(str1 & str2 & str3)

 End Sub

This version of the PrintMessage subroutine takes three input parameters: str1, str2, and str3. The first
two are required; str3 is an optional parameter, as called out by the Optional keyword. For an optional
parameter, a default value is required.

Optional arguments must always be declared last in a subroutine definition. You can specify one or more optional
parameters.

VB 6 Tip: In VB 6, optional parameters are not required to have default values, but in
VB 2005, optional parameters must have default values.

When you call the subroutine, you pass the arguments in the order specified by the parameter list. The following
subroutine calls PrintMessage, passes the strings "Visual" and "Basic" as arguments, using the optional
arguments in one case but not in the others:

 '--- with and without optional arguments

 ' prints out Visual Basic rocks!

 PrintMessage("Visual ", "Basic ")

 ' prints out Visual Basic rocks!

 PrintMessage("Visual ", "Basic ",)

 ' prints out Visual Basic really rocks!

 PrintMessage("Visual ", "Basic ", "really rocks!")

You can also leave out the optional argument by using a comma (,).
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 2. Programming with Visual Basic
The Visual Basic 2005 IDE is a powerful RAD tool, but as you saw in Chapter 1, sooner or later you have to roll up
your sleeves and write some code, whether it's to handle a simple button event or perform a complex series of
calculations on stored data. In this chapter, you'll take a look at the syntax of the VB 2005 language itself. While
VB 2005 is a member in good standing of the .NET family of languages, it retains much of the flavor of its VB 6
lineage. This chapter will get you quickly up to speed with VB 2005 language and along the way will show you
how some of its features have changed from those of VB 6.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.1. Working with Classes and Objects

The advantage of OOP is that it facilitates code reuse. When you drag-and-drop a Button control onto a form, you
don't worry about how it works; that's been taken care of by the control's designer. In addition, you're free to use as
many Button controls on your form as you need and to modify each as required by changing its caption, color,
shape, and—through event handling—even behavior. You can think of OOP as a set of tools that brings the same
reusability you've grown accustomed to with VB 6 controls to the code you write to power your applications.

To understand OOP, you need to know about classes and objects. A class is like a template; it defines the essential
features of some thing. A good analogy to a class is your concept of a car. When you hear the word "car," you no
doubt quickly think of a vehicle with wheels, gas and brake pedals, a steering wheel, and so on before you think of
a specific make. An object, on the other hand, is an instance of a class. A BMW sitting on a lot is a specific make of
a car and, although it shares certain key features with every other car in the world, it is, like an object, a unique
version, or instance, of the more general car class. A BMW is related to the general notion of a car as an object is to
its defining class.

A car, regardless of its make, can be counted on to have a variety of properties, such as a color, some number of
doors, and seats that are made of leather or vinyl. A class also has properties, as you'll see shortly, and you can
assign them values and also find out what values have been assigned (though restrictions do apply).

A car also has certain behaviors and "knows" (in the hands of an experienced driver) how to accelerate, turn left,
turn right, decelerate, or come to a stop. Every car includes the controls you need to make it do your bidding, and
you expect to find them in more or less the same place regardless of make. A class has behaviors as well. These are
defined by its methods.

When you step on the brake pedal of your car, the braking system gets to work to slow the vehicle. As a driver, you
don't need to understand the inner workings of the braking system; you just need to know where to find the brake
pedal and when to step on it. Likewise, when you use a method in a class, you need not understand its inner
workings. All you need to know is how to invoke it, and what you can expect it to do.

3.1.1. Using the .NET Classes

Unlike VB 6, VB 2005 gets much of its work done by calling on the hundreds of classes provided by the .NET
Framework 2.0, rather than the predefined functions of the traditional Visual Basic runtime or older COM-based
libraries such as ADO (both of which are still supported in VB 2005). Collectively, these classes are known as the
.NET Framework Class Library, or FCL.

VB 6 Functions and the .NET Base Class
Library

Because VB 2005 is a language designed to work with the .NET Framework, some changes to the
language are necessary to maintain interoperability with the Common Language Runtime. You've
already seen many of these in Chapter 2.

The Common Language Runtime (CLR) is the heart of the .NET Framework. The CLR manages
code execution and provides application services such as security, memory management, and cross-
language integration.

In VB 2005, the .NET Framework includes new libraries that provide equivalent functionality to
many VB 6 keywords and functions (although these VB 6 functions are still available in VB 2005).

To see the list of changes to the VB 6 language and their equivalents in Visual Basic 2005, refer to
the MSDN Help Topic "Programming Element Support Changes Summary."

To see how application development (such as Windows and web development) have changed in
Visual Basic 2005, refer to MSDN Help Topic "Help for Visual Basic 6.0 Users."

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The .NET Class Libraries are contained in multiple DLLs, known as assemblies, and loaded only when they're
needed. This has the advantage of reducing the time it takes to load a managed application. Due to the large number
of classes that ship with the .NET Framework, Microsoft has logically grouped them into namespaces. Namespaces
are used to arrange classes in groups based on the functionality they provide. For example, the System namespace
contains fundamental classes that define commonly used value and reference data types, events and event handlers,
interfaces, attributes, and processing exceptions.

Here are some other useful namespaces in the .NET Framework:

System

The System namespace contains fundamental classes and base classes that define commonly used value
and reference data types, events and event handlers, interfaces, attributes, and processing exceptions.

System.Collections

The System.Collections namespace contains interfaces and classes that define various collections of
objects, such as lists, queues, bit arrays, hash tables, and dictionaries.

System.Windows.Forms

The System.Windows.Forms namespace contains classes for creating Win-dows-based applications
that take full advantage of the rich user interface features available in the Microsoft Windows operating
system.

System.Web.UI

The System.Web.UI namespace provides classes and interfaces that allow you to create ASP.NET server
controls and pages that will appear in your web applications as user interface elements.

System.Data

The System.Data namespace consists mostly of the classes that constitute the ADO.NET architecture for
data access. The ADO.NET architecture enables you to build components that efficiently manage data from
multiple data sources.

When you create a Visual Basic project in Visual Studio 2005, the IDE ensures that references to the most
commonly used base class library assemblies are added before you begin to write code. However, if you need to use
a type that is in an assembly you've not already referenced, you will need to add the missing reference to your code.
The Add Reference dialog box in Visual Studio allows you to add an assembly without having to write code.

A .NET Framework Class Library assembly may contain several namespaces. For example, the System.Data.dll
assembly contains several namespaces for classes that perform data access. To use the relevant libraries in the
assembly, you need to use the Imports keyword to import them for use in your application, such as:

 Imports System.Data

 Imports System.Data.SqlClient

 Imports System.Data.OleDb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, if you want to create a SqlDataReader object that reads data from a Microsoft SQL server, you
would need to import the System.Data. SqlClient namespace with an Imports statement at the top of your
code.

Once you have correctly referenced the namespace, you can then reference a SqlDataReader object in your
code like this:

 Dim reader As SqlDataReader

Alternatively, you can use the SqlDataReader object by its fully qualified name, like this:

 Dim reader As _

 System.Data.SqlClient.SqlDataReader

The first approach is the recommended one, as it makes your code much more readable.

Commonly Referenced DLLs
Depending on the type of project you create, Visual Studio automatically adds references to the DLLs
you are most likely to need. For Windows applications, these include:

System.dll

System.Deployment.dll

System.Drawing.dll

System.Windows.Forms.dll

System.Data.dll

System.Xml.dll

For web applications, the following DLLs are referenced by default:

System.dll

System.Web.dll

System.Data.dll

System.Xml.dll

System.Drawing.dll

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.1.2. Creating Objects

In the .NET world, applications are built with classes and objects, either your own or those provided by the .NET
Framework. To fully use the power of VB 2005, you need to understand how to work with them.

Since it's available, let's use the Stack class provided in the System.Collections namespace of the .NET
Framework to illustrate how you can get productive with OOP. You'll see how to define your own version later in
this chapter (see "Defining a Class," later in this chapter).

What Is a Stack?
A stack is a data structure that works based on the last in, first out (LIFO) principle. This means that
the last item put on the stack is the first item that can be taken off, like a physical stack of plates.

Stacks are used quite often in programming. They are used to store subroutine arguments and return
addresses. Stacks are also commonly used to evaluate mathematical expressions.

Adding an item to a stack is known as a push operation and removing an item from a stack is known
as a pop operation.

The .NET Framework includes a Stack class, which is located in the System.Collections
namespace.

VB 6 Tip: VB 6 does not provide a ready-to-use Stack class.

To drive a car, you need a real one, whether it's your own or a BMW you take for a spin at your local dealership.
Likewise, to use a Stack class, whether it's your own or the .NET version, you must instantiate—that is, create—
an instance of the class. Instantiating a class is, you might say, a classic example of reuse. From a single design, you
can create as many instances of a Stack as you need for your application, just as the designs embedded in an
automobile manufacturing plant are used to build multiple versions of the same car. You'll learn about customizing
classes later in this chapter.

There are several ways to instantiate a Stack object, so let's take a look at them.

You use the Dim keyword to declare that a variable—s1, in this case—is of type Stack, just as you did for
normal VB variables and constants in Chapter 2.

 Dim s1 As Stack

You use the New keyword to instantiate a Stack object (i.e., create an instance of the class):

s1 = New Stack

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can also declare and instantiate an object in a single statement. The following two statements, for example, are
equivalent:

 Dim s2 As New System.Collections.Stack

 ' or

 Dim s2 As System.Collections.Stack = New System.Collections.Stack

The parentheses following the name of a class are optional. (I will not be using parentheses for the class names in
the examples throughout this book.) The following two statements are the same:

Dim s1 As New System.Collections.Stack

Dim s1 As New System.Collections.Stack()

VB 6 Tip: In VB 6, assigning an object to a variable requires the use of the Set
keyword:

'---VB6---

Set obj = New Class1

This has confused VB 6 developers who are sometimes unsure of when to use the Set
keyword.

With VB 2005, Microsoft has eliminated this confusion, since the Set keyword is no
longer used for object assignment:

'---VB2005---

obj = New Class1

Note that if you precede the previous statement with the Set keyword, Visual Studio
2005 will automatically remove it.

To use the Stack object, you could push in some values via the Push method:

'---Push items into the stack---

s1.Push("Hello ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

s1.Push("Hello ")
s1.Push("Visual ")
s1.Push("Basic ")
s1.Push("2005")

Get a count of the number of items in the Stack object by using the Count property:

'---Get the item count in the stack---

Dim itemCount As Integer = s1.Count

You could also pop the items out of the Stack object by using the Pop method:

'---Pop the items out from the stack---

For i As Integer = 0 To s1.Count - 1

 MsgBox(s1.Pop()) ' strings are printed in the
 ' reverse order they were pushed

Next

Example 3-1 shows the complete code needed to use the Stack class.

Example 3-1. Using a Stack object

Dim s1 As New System.Collections.Stack

'---Push items into the stack---

s1.Push("Hello ")

s1.Push("Visual ")

s1.Push("Basic ")

s1.Push("2005")

'---Get the item count in the stack---

Dim itemCount As Integer = s1.Count

'---Pop the items out from the stack---

For i As Integer = 0 To s1.Count - 1

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For i As Integer = 0 To s1.Count - 1

 MsgBox(s1.Pop()) ' strings are printed in the

 ' reverse order they were pushed

Next

3.1.3. Comparing Objects

If you want to check to see whether two variables are referencing the same object, you need to use the Is operator
(the = operator cannot be used), as demonstrated in Example 3-2.

Example 3-2. Comparing two objects

 Dim s1, s2 As System.Collections.Stack

 s1 = New System.Collections.Stack

 s2 = New System.Collections.Stack

 If s1 Is s2 Then
 MsgBox("objs are the same")

 Else

 '---this will be printed---

 MsgBox("ojs are not the same")

 End If

 '---Assigning s2 to s1; essentially s1 and s2 will

 '---now point to the same object

 s1 = s2

 If s1 Is s2 Then
 '---this will be printed---

 MsgBox("objs are the same")

 Else

 MsgBox("objs are not the same")

 End If

Note that the Is operator is used only for comparing object references (if they are all referencing the same object);
it cannot be used to compare the values of objects.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Besides the Is operator, you can also use the Equals method (available on all .NET objects) to compare the
equality of two objects (that is, if the two objects are pointing to the same reference), like this:

 If s1.Equals(s2) Then
 MsgBox("objs are the same")

 Else

 MsgBox("objs are not the same")

 End If

…

Shared Methods
Typically, you need to create an instance of a class before you can invoke its methods, as you've seen
in the preceding example. However, there are exceptions to this rule. As an example, consider the
File class in the System.IO namespace. The File class contains methods for file manipulation,
such as copying, deleting, writing, reading, etc. To use the File class, you don't need to create an
instance of the class; you simply invoke its method directly:

'---copies a file---

System.IO.File.Copy("C:\File1.txt", "C:\File1.bak")

The methods in the File class are known as static methods, the general term used by most object
oriented languages, or as shared methods, the term and keyword used by VB 2005. A shared method
can be invoked without creating an instance of its class.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.2. Reusing and Customizing Classes

The use of classes in OOP allows you to build an application from discrete components, each of which encapsulates
the variables and methods needed to carry out specific tasks. But as powerful as classes are for designing and
implementing applications, the ability to reuse and customize them is what makes support for OOP such a powerful
tool in Visual Basic 2005.

In this section, you'll see how you can create your own classes by modifying those provided by the .NET
Framework. The same principles can also be applied to class libraries that you or your teams develop. In addition,
you'll learn about the new generic classes in Visual Basic 2005 that are designed from scratch to be flexible in the
range of types they accept.

3.2.1. Using Inheritance

One of the fundamental concepts of OOP is inheritance. Inheritance facilitates code reuse and allows you to extend
and use the code that you have already written. Simply put, inheritance is the ability to extend the functionality of
classes, and is the basis of the several techniques we discuss in this section.

The beauty of inheritance is that you can define all the common logic you need in a single master class—typically
called the base or parent class—and then use inheritance to extend its logic in a derived class or child class and
customize it to suit your own needs. In this section, you will learn how you can inherit from the .NET Stack class,
and in the next section you'll learn how you can customize it.

First, let's create a new Windows application using Visual Studio 2005. Name the project MyStackApp. Add a
new class item to MyStackApp by right-clicking on the project name in Solution Explorer and then selecting Add

 New Item…. Select Class and name the class MyStack.vb.

Double-click the MyStack.vb file in Solution Explorer to open it for editing. In the MyStack class, use the
Inherits keyword to inherit from the Stack class, as shown in the following snippet:

Public Class MyStack

 Inherits System.Collections.Stack
End Class

By using the Inherits keyword, you specify that your MyStack class is to inherit all the methods and
properties of the Stack class of the .NET Class Library. You can use MyStack in place of the Stack class. To
do so, double-click on the default Form1 in Solution Explorer and then double-click on the design pane to generate
the Form_Load event of Form1, as shown in Example 3-3. Enter the code as shown in bold.

Example 3-3. Replacing the Stack class with the MyStack class

 Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load

 Dim ms1 As New MyStack
 ms1.Push("Hello ")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ms1.Push("Hello ")
 ms1.Pop()
 End Sub

3.2.2. Customizing a Method

In the last section, you saw how to create a customized class by deriving MyStack from the .NET Stack class
and how to use it just like the Stack class. However, you may wish to tweak some of the methods available in the
MyStack class to suit your own purposes. Like the car designer, you might not be pleased with the performance of
the braking system of the previous model. Hence, you would want to redesign and fine-tune the braking system for
the new model.

Suppose you want to use a Stack to add two numbers. It turns out that the Push and Pop methods of the .NET
class are not optimal for this task. Consider the following code snippet:

 s1.Push(5)

 s1.Push("S")

 MsgBox(s1.Pop + s1.Pop)

The second Push method has pushed a String instead of an Integer onto the Stack. When you try to pop the
two values (5 and S) from the stack and perform a mathematical operation on them, you will get a runtime error.
This vulnerability arises from the fact that the Push method of Stack accepts an Object parameter. But of
course, every .NET type is an object, so Push will accept any data type. If you know ahead of time that your stack
will be used for arithmetic operations, it would be useful to restrict the parameters Push will accept to numbers
only.

Changing the behavior of the inherited Push method can be done by overriding it. You override a method in VB
2005 by defining a new version that suits your purposes and by indicating that you want to use this version instead
of the inherited version with the Overrides keyword, as shown in Example 3-4.

The first thing you will do is override the Push method in the Stack class. Recall that the Push method does not
check for the type of the data pushed onto the stack. Assuming that you want the MyStack class to deal only with
numeric values, you need to override the implementation of the original Push method with the Overrides
keyword. Now the base method Push is no longer accessible.

Example 3-4. Overriding the Push method of Stack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Overrides Sub Push(ByVal obj As Object)
 If Not IsNumeric(obj) Then
 Throw New Exception("Non-numeric value in Stack")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End If
 MyBase.Push(obj)
 End Sub
 End Class

The new Push method now checks to ensure that the value pushed into the stack is a numeric value; if it is not, the
method throws an exception at runtime:

ms1.Push(5)

ms1.Push("S") ' runtime error

If the value passed to the Push method is a number, the method calls the Push method of the base class, Stack.
The MyBase keyword refers to the base class from which the current class is derived, and its inherited members.

3.2.3. Adding Alternate Versions of a Method to a Class

Your class can offer alternate version of the same method to its users. Adding alternate versions of the same method
to a class is known as overloading and is yet another useful object-oriented technique available to VB 2005
programmers.

Let's return to our stack example. In the previous section, you overrode the implementation of the original Push
method so it will accept only numeric values. One drawback of this technique, however, is that IntelliSense will not
explicitly show that numeric values are accepted (see Figure 3-1.).

Figure 3-1. IntelliSense displaying the method signature

A better way would be to overload the Push method. With overloading, you can provide users with two versions of
Push, each with a different signature. The signature of a method is determined by its parameter list. Two
signatures are different when the data types or number of parameters in the parameter list are different. Example 3-5
shows how to add a new version of Push to MyStack.

Example 3-5. Overloading the Push method of MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Overrides Sub Push(ByVal obj As Object)

 If Not IsNumeric(obj) Then

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Throw New Exception("Non-numeric value in Stack")

 End If

 MyBase.Push(obj)

 End Sub

 Public Overloads Sub Push(ByVal obj As Integer)
 MyBase.Push(obj)
 End Sub

 End Class

Overriding Versus Overloading
So what is the difference between Overrides and Overloads? Overriding means you are
changing the implementation of a method, while overloading means adding new methods with the
same name but of different signatures.

The Overloads keyword in Example 3-5 specifies that a procedure is a new version of an existing procedure with
the same name. In addition to providing users with a version that accepts only integers, IntelliSense will now show
that the Push method has two overloaded signatures, as shown in Figure 3-2.

Figure 3-2. Push has two overloaded signatures

3.2.4. Adding a New Method

Suppose you want your new car to be available to people with special needs, such as handicapped drivers. These
drivers may not be able to use the conventional brake pedals, and hence, you might need to add a special brake
pedal to the steering wheel.

You can add new methods to a derived class to add functionality that's not there. For example, if you want users to
push strings onto the Stack, you can define special string-friendly methods for the Push and Pop operations, as
shown in Example 3-6.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

VB Black Belt: Hiding a Method
Although the Overloads keyword in VB 2005 lets you define two different versions of the Push
method of MyStack, because the older version is still available, it's possible to push in a non-
numeric value into the Stack and cause a runtime error. A better way to prevent users from
assigning a non-numeric value into the Stack would be to totally remove the original Push method
that accepts the Object parameter. You can do this by using the Shadows keyword:

Public Class MyStack

 Inherits System.Collections.Stack

 Public Shadows Sub Push(ByVal obj As Integer)
 MyBase.Push(obj)

 End Sub

End Class

The Shadows keyword will hide all other methods of the same name. In this case, the Push method
now has only one signature, as confirmed by IntelliSense in the figure.

Example 3-6. Adding new Push and Pop methods to MyStack

Public Class MyStack
 Inherits System.Collections.Stack

 Public Sub PushStr(ByVal obj As String)
 MyBase.Push(obj)
 End Sub

 Public Function PopStr() As String
 Return MyBase.Pop
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function
End Class

You can use the new methods as follows:

Dim ms1 As New MyStack

ms1.PushStr("Hello")

MsgBox(ms1.PopStr())

3.2.5. Customizing Initialization

The purpose of a constructor is to initialize the properties of an object when it is instantiated (i.e., created).

Constructors are optional for a class.

A constructor is a subroutine with the reserved name New. You can have as many constructors as you need so long
as each has a different signature. Let's add two constructors to the MyStack class, as shown in Example 3-7.

Example 3-7. Adding a custom constructor to MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Public Sub New()
 '---uses the base class constructor

 MyBase.New()

 End Sub

 Public Sub New(ByVal items() As Object)
 For i As Integer = 0 To items.Length - 1

 MyBase.Push(items(i))

 Next

 ' the following will also work:

 ' MyBase.New(items)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 …

The first constructor does not accept an input parameter, and is hence known as the default constructor (or empty
constructor) of the class. The second constructor takes one parameter, items, which is then used to populate the
Stack.

You can now use either of the two constructors to create an instance of the MyStack class, and the second
constructor also initializes its content in a single statement, as shown in the following snippet:

Dim itemsArray() As Object = {"Hello", "World"}

Dim ms1 As New MyStack

Dim ms2 As New MyStack(itemsArray)

MsgBox(ms2.PopStr()) '---shows "World"

MsgBox(ms2.PopStr()) '---shows "Hello"

VB 6 Tip: The Sub New procedure in VB 2005 initializes objects when they are
instantiated; it replaces the Class_ Initialize method used in VB 6 and earlier
versions. Also, the Sub New procedure is called only when an object is instantiated; it
cannot be called directly. The Class_Initialize event does not accept any
arguments.

3.2.6. Adding Properties

The .NET Stack class exposes a number of properties, such as Count, IsSynchronized, and SyncRoot.
For example, the Count property returns the number of items in the Stack. You can add additional properties to
the MyStack class by using the Property keyword. For example, you might want to expose a new
CountNumeric property to return the number of items in the stack that are of numeric type. You may also want
to add a Description property to add a description to the class. To do so, add the code shown in bold in
Example 3-8.

Example 3-8. Adding properties to MyStack

Public Class MyStack

 Inherits System.Collections.Stack

 Private _Description as String

 ReadOnly Property CountNumeric() As Integer
 Get

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Get
 Dim counter As Integer = 0
 For Each o As Object In Me
 If (IsNumeric(o)) Then
 counter += 1
 End If
 Next
 Return counter
 End Get
 End Property

 Property Description() As String
 Get
 Return _Description
 End Get
 Set(ByVal value As String)
 _Description = value
 End Set
 End Property

 …

ReadOnly and WriteOnly Properties
There are times when you want to allow users to read the values of a property only (and not set it). To
do this, you use the ReadOnly keyword as a prefix to the property definition. Note that if you use
this keyword, you cannot use a Set accessor block:

ReadOnly Property CountNumeric() As Integer

 Get

 …

 …

 End Get

End Property

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Likewise, you can make a property write-only (so that people can set its value but not read it). You
can do so using the WriteOnly keyword. Likewise, you cannot have the Get accessor block if you
use this keyword:

WriteOnly Property CountNumeric() As Integer

 Set

 …

 …

 End Get

End Property

For a read/write property, you need both the Set and Get accessors. If you forget either one, Visual
Studio 2005's new AutoCorrect feature will gladly help you to fix the missing accessor (see figure).

The Set and Get accessors that you define allow you to assign and retrieve values from the properties of a class.
Notice that the values set for the Description property are stored internally in the private variable
_Description.

The Private access modifier that precedes the declaration for _Description restricts the use of the variable to
within the class. That is, they are not visible to code outside the class.

Using the Dim keyword within a class has the same effect as using the Private
keyword. The following statements are equivalent:

Private _Description as String

 ' same as

Dim _Description as String

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Here's a code snippet that uses the Set property procedure to assign values to the CountNumeric and
Description properties and the Get property procedure to display them:

Dim itemsArray() As Object = {"Visual", "Basic", 2005}

Dim ms1 As New MyStack(itemsArray)

ms1.Description = "This is my own Stack class!"

MsgBox(ms1.CountNumeric) ' displays 1

MsgBox(ms1.Description) ' displays "This is my own Stack class!"

With…End With
You can use the new VB 2005 With…End With construct to perform a series of operations on a
specified object without repeatedly typing the name of the object. For example, the above could be
rewritten as:

With ms1

 MsgBox(.CountNumeric)

 MsgBox(.Description)

End With

VB 6 Tip: In VB 6, you can use default properties for objects. For example, you can
simply assign a string to the TextBox control, like this:

TextBox1="Hello World"

' equivalent to…

TextBox1.Text="Hello World"

This is because the Text property is the default property. The downside to using this
approach is that the code is now less readable; it is much better to explicitly specify the
property.

In VB 2005, default properties for controls are no longer supported.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.2.7. Weakly Typed Versus Strongly Typed Variables

When you declare a variable to be of a certain data type, it is said to be strongly typed. For example, a variable may
be declared to be of Integer type. When you declare the data type of this variable, the Visual Basic compiler
performs memory allocation for the Integer data type as well as optimizations before the program is executed.

However, there are times when using a strongly typed variable isn't possible. As an example, the Push method of
the Stack class accepts an item of type Object (see Figure 3-3).

Figure 3-3. Pushing an Object into a Stack

You can assign the value that you have popped from the Stack into an Object variable:

Dim obj As Object

obj = s1.Pop

Because you can't determine what data type obj will be assigned to until runtime, in this case, obj is known as
weakly typed.

The downside to using weakly typed variables is that they are less efficient (and thus slower), as doing the type
conversion at runtime chews up resources. Also, a code editor feature like IntelliSense in Visual Studio will not be
able to take advantage of features accorded by early binding. Figure 3-4 shows that IntelliSense does not know the
properties and methods available in obj until runtime.

Figure 3-4. IntelliSense has no clue what data type obj is assigned to

However, you can perform an explicit type conversion for IntelliSense to display the properties and methods
available in obj using the CType function (see Figure 3-5).

Figure 3-5. Performing an explicit type conversion using the CType function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In contrast, in the MyStack class, you have added the PushStr method, which takes in a string data type, and the
PopStr method, which returns a string data type. As the type of the variable is known before the program is run,
the str variable is said to be strongly typed:

Dim ms1 As New MyStack

ms1.PushStr("This is a string")

Dim str As String

str = ms1.PopStr

While using strongly typed variables has its disadvantages over weakly typed variables, using a weakly typed
variable is useful in cases where you are writing generic code (such as the Stack class) and won't know the type of
object you are working with until runtime.

3.2.8. Using a Generic Class

With a class like Stack, which has many uses, it would be great if you could specify the data types to be handled
by a particular instance at the time the Stack object is created.

VB 2005 now supports a new feature known as generics and provides a number of so-called generic classes that
anticipate, by design, that they will be customized before they are instantiated. Using generics, you can define
classes that let you specify the data types a class accepts when the class is instantiated.

To see the benefits of generics, let's revisit the Stack class that we have been discussing in the last few sections.
Without generics, you are likely to find that you need to write multiple versions of the Stack class if you want the
class to work with more than one data type—say, integers, strings, or a complex Employee object. Using generics,
you can now defer specifying the type of data that you want to use for your Stack until you actually instantiate a
Stack object in your program. You'll find a new generic Stack class in the
System.Collections.Generic namespace of the .NET Framework Class Library that allows you to specify
during design time the data type you want to use. Here's how to declare that you want to push and pop integers on a
stack:

Dim s2 As New _

 System.Collections.Generic.Stack(Of Integer)
s2.Push(5)

s2.Push(6)

s2.Push("Some string…") ' error

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The System.Collections.Generic namespace contains generic versions of
other data structures as well, such as List, Queue, Dictionary, and more.

By using the new Of keyword, you indicate the type of data you want to use with that class.

If you turn Option Strict On, the code editor will underline the third Push
method call, indicating that it is an error to push in a string data type.

If you want to use the Stack class for String data types, you simply do this:

Dim s2 As New _

 System.Collections.Generic.Stack(Of String)
s2.Push("VB2005 ")

s2.Push("supports ")

s2.Push("Generics")

Besides using the generic classes in the .NET Framework, you can also write your own generic classes, a topic that
is beyond the scope of this book. (For additional information, see Programming Visual Basic 2005, O'Reilly.)

3.2.9. Splitting Up the Physical Implementation of a Class

VB 2005 supports a new .NET 2.0 enhancement: partial classes. In a nutshell, with partial classes, you can now
split your class definition into multiple physical files. Logically, partial classes do not make any difference to the
compiler. During compile time, the Visual Basic compiler simply groups all the various partial classes together and
treats them as a single entity.

Advantages of Generics
Based on what has been discussed, it's not difficult to see the following advantages of using generics:

Type safety

Generic types enforce type compliance at compile time and not runtime (as in the case of
using Object). This reduces the chances of data type conflict at runtime.

Performance

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The data types to be used in a generic class are determined at compile time, hence, there is no
need to perform type casting at runtime, which is a computationally costly process.

Code reuse

Since you only need to write the class once and customize it to use with the various data
types, there is a substantial amount of code reuse.

One of the greatest benefits of partial classes is that they allow a clean separation of business logic and the user
interface (in particular, the code that is generated by the visual designer in Visual Studio 2005).

Using partial classes, the UI code can be hidden from the developer, who usually has no need to access it anyway.
Partial classes also make debugging easier, as the code is partitioned into separate files.

Reasons to Use Partial Classes
Partial classes allow programmers on your team to work on different parts of a class without needing
to share the same physical file. While this is useful for projects that involve big class files, be wary: if
you find your class files getting too large, it may well signal a design fault, and refactoring may be
required.

The most compelling reason for using partial classes is to separate your application business logic
from the designer-generated code. For example, the code generated by Visual Studio 2005 for a
Windows Form is kept separate from your business logic. This will prevent developers from messing
with the code that is used for the UI. At the same time, it will prevent you from losing your changes
to the designer-generated code when you change the UI.

Figure 3-6 shows the code behind of a Windows Form: Form1. Notice that no hidden Windows designer-generated
code appears on the page (as would be visible in Visual Studio .NET 2003). The absence of that section allows you
to concentrate on writing the business logic of your application and reduces the chances that you may inadvertently
modify the code generated by the designer.

Figure 3-6. The code behind of Form1

If for some reason you need to access the Windows designer-generated code, you can go to Solution Explorer and
click on the Show All Files button. There you will find a file named Form1.Designer.vb (see Figure 3-7) under the
Form1.vb file.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-7. Revealing the Windows designer-generated code in Solution Explorer

Figure 3-8 shows the content of the Form1.Designer.vb file.

In VB 2005, all of the partial classes except one must use the Partial keyword prefix; only one class may omit
it. However, it is recommended that you always prefix all your partial classes with the Partial keyword. At least
this will give you a visual clue that part of the implementation of the class lies somewhere else, and this is definitely
useful when it comes to debugging.

Figure 3-8. The content of the Windows designer-generated code

While partial classes allow you to split the definition of a class into multiple files, you
cannot mix languages. That is, all partial classes must be written in the same language.
Besides using the Partial keyword for classes, you can also use it for structures and
interfaces.

If your class implements many interfaces (see "Creating Contracts with Implementers Using Interfaces" for more
details on interfaces), it is a good idea to use a partial class to contain the implementation for each interface.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.3. Designing Your Own Classes

While the My objects and the hundreds of types in the .NET Framework Class Library provide ready-to-use
solutions to many of the tasks you need to perform in a Visual Basic application, at some point you'll need to create
your own classes. In this section, you'll see how to do that. You'll also see how you can control access to the
variables and methods in your classes, and when it might make sense to use a Structure—a "light-weight" class
—instead.

3.3.1. Defining a Class

Before you build a car, you need a design. The design of a car specifies its properties, its behaviors, and how it
works internally. Likewise, to design a class of your own, you need to specify the methods and properties, as well
as the internal workings of the class.

To see how to define a class, let's create a Stack class of our own. In the following steps, you'll use the Visual
Studio 2005 class designer to get the work done.

1. Using Visual Studio 2005, create a new Windows application. Name the project StackClassApp.

2. Add a new class file to the project by right-clicking on the project name in Solution Explorer and then
selecting Add New Item…. Select the Class template and name it StackClass.vb. Click Add (see
Figure 3-9).

Figure 3-9. Adding a new class file to the project

3. The StackClass.vb file will now be opened in Visual Studio 2005, ready to be edited. You can either define
your class by coding directly into the open StackClass.vb file, or use the Class Designer to do the job. Let's
first take a look at the Class Designer.

The Class Designer is not included in the Visual Basic 2005 Express Edition. If
you are using Visual Basic 2005 Express Edition, please skip to Step 6.

4. To use the Class Designer, right-click on StackClass.vb in Solution Explorer and then select View Class
Diagram, as shown in Figure 3-10.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 3-10. Invoking the Class Designer

5. The Class Designer will display a rectangular box showing the empty StackClass class. To add methods,
properties, and more to the class, right-click on the class rectangle and select Add, as shown in Figure 3-11,
and select the elements you wish to add.

Figure 3-11. Modifying the class

Figure 3-12 shows what the completed class diagram for StackClass might look like after you've added
the methods, properties, and other elements called for in your design. You can use the Properties window to
customize each element (such as access mode, data type, etc.). However, when defining a relatively simple
class, like the StackClass, it is faster to type the code in directly, as you'll do in the next step. The Class
Designer is useful when you have several classes and you want to view their relationship visually.

Figure 3-12. Adding the various methods, properties, and fields to the StackClass class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

6. Let's abandon the Class Designer, open StackClass.vb, and simply type the code shown in Example 3-9 into
the file.

Example 3-9. The definition for the StackClass class

Public Class StackClass
 '---stores the items in the stack

 Private element() As Object

 '---indicate the current stack pointer

 Private pointer As Integer

 '---instantiates and specify the default size of the stack

 Public Sub New()

 ReDim element(100)

 pointer = 0

 End Sub

 '---instantiates and specify the size of the stack

 Public Sub New(ByVal size As Integer)

 ReDim element(size - 1)

 pointer = 0

 End Sub

 '---push an item into the stack

 Public Sub Push(ByVal item As Object)

 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 '---pop an item from the stack

 Public Function Pop() As Object

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Public Function Pop() As Object

 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

 '---return the number of items in the stack

 ReadOnly Property count() As Integer

 Get

 Return pointer

 End Get

 End Property

End Class

Observe that StackClass contains the following elements:

Two private variables (element and pointer) that are used internally to store the items in a stack. The
Private keyword indicates that the variables are visible only within the class and cannot be accessed
outside the class.

Two constructors (New) that initialize the object when it is instantiated.

Two methods (a subroutine and a function) for pushing (Push) and popping (Pop) items in and out of the
stack. The Public keyword indicates that the methods are accessible outside the class.

One read-only property that returns the number of items in the stack.

3.3.2. Controlling Access to Class Members

Variables, classes, and members can be declared to be public or private using the Public and Private access
modifiers. Access modifiers restrict the scope of member variables in a class. For example, a variable defined with
the Private keyword is visible only within the class in which it is defined. A Public variable, on the other
hand, is visible outside the class. Declaring a private variable is useful in cases where you do not want users who
are using your class to know about the detailed workings of your class.

There are two more access modifiers that you can use:

Protected

Friend

To see how these two access modifiers affect the scope of variables, classes, and member variables, consider the
following example.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose you have the following class definition:

Public Class BMW

 Friend var1 As Integer
 Protected var2 As Integer
 Private var3 As Integer
 Public var4 As Integer
End Class

Within the class, you have four variables each declared with a different access modifier. Create an instance of class
BMW and try to assign values to the member variables:

Dim objA As New BMW

objA.var1 = 1

objA.var2 = 2 ' Error; not allowed

objA.var3 = 3 ' Error; not allowed

objA.var4 = 4

You will notice that var2 and var3 are not accessible because:

var2 is declared with the Protected access modifier. The Protected access modifier works like the
Private access modifier, which means that the variable is not visible outside the class. However, the
difference between Protected and Private is that variables declared Protected are visible within
their own class or subclasses. You will see more of this in the next example.

var3 is a private variable.

Consider the following example, where class MiniCooper inherits from class BMW:

Public Class MiniCooper

 Inherits BMW

 Public Sub doSomething()

 MyBase.var1 = 1

 MyBase.var2 = 2

 MyBase.var3 = 3 'Error; not allowed

 MyBase.var4 = 4

 End Sub

End Class

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Within class MiniCooper, you have a method doSomething that tries to access the four variables in the base
class. Notice that var2 is accessible but var3 is not. This is because:

var2 is visible within the subclasses of class BMW. Hence, var2 is accessible.

var3 is a private variable.

In the two examples above, you may notice that var1 is visible all along. Basically, the Friend and the Public
access modifiers are similar with the exception that Friend variables are accessible from within their declaration
context and from anywhere else in the same program (but not outside the program).

You can combine the two access modifiers, Protected and Friend, together to give a variable both protected
and friend access. For example, here var2 is now declared as Protected Friend:

Public Class BMW

 Friend var1 As Integer

 Protected Friend var2 As Integer
 Private var3 As Integer

 Public var4 As Integer

End Class

This means that var2 is visible within the subclass and also visible within the same program. The following code
example shows that now var2 is visible within the same program:

Dim objA As New BMW

objA.var1 = 1

objA.var2 = 2 ' Allowed!
objA.var3 = 3 ' Error; not allowed

objA.var4 = 4

3.3.3. Aggregating Data Types Using a Structure

Sometimes you need to represent a piece of information using multiple data types, but don't necessarily want the
overhead of defining a class and managing an object. For example, suppose you need to maintain information about
the different types of car owned by a company, such as model and year of registration. In this case, you can either
use a class or a structure to aggregate all the required information.

In VB 2005, a structure is implemented using the Structure keyword. In VB 6, you define structure using the
Type…End Type syntax, which is no longer supported in VB 2005.

Example 3-10 shows the definition for a Structure named Car.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Example 3-10. Declaring a structure

Structure Car
 Public Model As String

 Public Year As UShort

End Structure

Note that in a Structure, you can define properties and methods just like in a class.

To use a Structure, you simply declare variables to be of the structure type, as shown in Example 3-11.

Example 3-11. Using structures

Dim Car1, Car2 As Car

Car1.Model = "Nissan Maxima"

Car1.Year = 2004

Car2 = Car1

Car2.Model = "Toyota Camry"

Example 3-11 creates two variables of type Car. The first variable is initialized and then copied to the second
variable. Because structure is a value type, changes to the second variable do not affect the first member (see Figure
3-13).

Figure 3-13. Memory storage for a structure

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

So, what is the difference between a class and a structure? A class is a reference type, which means that the actual
storage of an object is on the heap with the object variable on the stack pointing to it. A structure, on the other hand,
is a value type, and its value is stored directly on the stack.

You should use a structure when:

You have a small amount of data.

You perform a large number of operations on each instance; in this case, performance is much faster than
using a class.

You have no need to inherit the structure.

A class is preferred when:

You need to use inheritance for complex data types.

You need to initialize one or more members at creation time.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.4. Controlling How Classes Are Implemented

Although you can generally create custom versions of any of classes that you write or find in the .NET Class
Libraries, there will be times when you'll want to control the outcome, especially when others will use your work.
There are also times when you'll want to prove to .NET that your class has fulfilled the terms of a contract that
promises a certain level of functionality and is therefore qualified to handle particular assignments.

3.4.1. Allowing or Preventing Overridable Methods

In the earlier part of this chapter, you saw how to use the Stack class in the System.Collections namespace
and how you can extend its functionality by inheriting from it. You were also able to override and overload some of
its methods to suit your own requirements.

In this section, you will learn how you can create classes from which others can inherit. You will also learn how to
specially allow or prevent subclasses from changing your methods.

Using the StackClass defined in the last section, suppose you want others, including yourself, to be able to reuse
the class and override its methods. In this case, you would do the following:

Public Class MyStackClass

 Inherits StackClass

End Class

To override the Push and Pop methods in the base class, you would use the Overrides keyword, as shown in
Example 3-12.

Example 3-12. Overriding the Push and Pop methods of MyStackClass

Public Class MyStackClass

 Inherits StackClass

 Public Overrides Sub Push(ByVal item As Object)
 …
 MyBase.Push(item)
 End Sub

 Public Overrides Function Pop() As Object
 …
 Return MyBase.Pop()
 End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Function
End Class

However, for the Push and Pop methods to be overridden in the base class, you need to give clients permission to
do so by adding the Overridable keyword, as shown in Example 3-13.

Without the Overridable keyword, you would not be able to override the methods
in the base class.

Example 3-13. Making the Push and Pop methods of StackClass overridable

Public Class StackClass

 …

 Public Overridable Sub Push(ByVal item As Object)
 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 Public Overridable Function Pop() As Object
 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

End Class

In this case, the implementations of the methods are provided, and classes that inherit from them can choose to
override this implementation if they want to.

3.4.2. Specifying Implementation Details with Abstract Classes and Methods

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose one day your designer receives a call from a customer who wants the designer to create a custom car for
him. He may tell the designer what his requirements are and what features that he wants for that car, but he does not
tell the designer what to do, since it is the designer's job to figure out implementation. In this case, what the
customer provides is essentially an abstract class (the request to design a car) along with a list of various abstract
methods (the features of the car).

There are times when you will want to define the structure of a class and leave it to a subclass to provide its
implementation. For example, you might want to define the methods available in a Stack class but leave the
implementation to the subclass (so that implementers can use whatever data structures they prefer to implement the
Stack, such as an array). Here's an example of how to do it:

Public MustInherit Class AbstractStackClass
 Public MustOverride Sub Push(ByVal item As Object)
 Public MustOverride Function Pop() As Object
End Class

The MustInherit keyword specifies that the AbstractStackClass class cannot be directly instantiated.
The class can be used only if inherited by a subclass. Thus, the following is not valid:

Dim s1 As New AbstractStackClass '<--not allowed

The purpose of this class is to provide the base properties and methods for subclasses.

The Push and Pop methods are known as abstract methods. You do not implement an abstract method when you
declare it; its implementation is left to the classes that inherit from it. It is logical for this method to be abstract,
because the way you push or pop an item into a Stack is dependent on how you implement a Stack internally.
You declare an abstract method in VB 2005 with the MustOverride keyword.

To implement the class and its methods, you then inherit from the AbstractStackClass, and then provide the
implementation of the methods using the Overrides keyword, as shown in Example 3-14. You can also add
additional methods and constructors to the class.

Example 3-14. Implementing the AbstractStackClass abstract class

Public Class MyStackClass

 Inherits AbstractStackClass

 Private element() As Object

 Private pointer As Integer

 Public Sub New()

 ReDim element(100)

 pointer = 0

 End Sub

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End Sub

 Public Sub New(ByVal size As Integer)

 ReDim element(size - 1)

 pointer = 0

 End Sub

 Public Overrides Sub Push(ByVal item As Object)
 If pointer > UBound(element) Then

 Throw New Exception("Stack is full.")

 End If

 element(pointer) = item

 pointer += 1

 End Sub

 Public Overrides Function Pop() As Object
 pointer -= 1

 If pointer < 0 Then

 Throw New Exception("Stack is empty.")

 End If

 Return element(pointer)

 End Function

End Class

Note that in an abstract class, you can still provide implementations for some methods so that subclasses can use
them; not all methods must be abstract.

3.4.3. Creating Contracts with Implementers Using Interfaces

An interface is similar to the abstract class, with one notable difference: an interface contains no implementation at
all, while an abstract class may specify one or more method implementations.

Consider the interface example in Example 3-15.

Example 3-15. Defining an interface for StackClass

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Interface IStack

 Sub Push(ByVal item As Object)

 Function Pop() As Object

End Interface

To implement the interface and the methods contained within it, use the Implements keyword, as shown in
Example 3-16.

Abstract Classes Versus Interfaces
The advantage of using an interface is that a class can implement multiple interfaces, but can never
inherit from more than a single class at the same time. However, when you implement an interface
(or interfaces), you need to implement all of the methods specified by the interface, since the
interface itself cannot have any implementation. An abstract class, on the other hand, can define the
implementation for some of its methods, but you can only inherit from one abstract class.

Example 3-16. Implementing the IStack interface

Public Class MyStackClass

 Implements IStack
 Public Function Pop() As Object Implements IStack.Pop
 …

 End Function

 Public Sub Push(ByVal item As Object) Implements IStack.Push
 …

 End Sub

End Class

VB 2005 allows you to implement multiple interfaces.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

3.4.4. Controlling the Destruction of Objects

To dereference an object—i.e., remove the reference to an object that you have created—you can simply set the
object variable to Nothing, like this:

Dim ms1 As New MyStack()

ms1 = Nothing

To dereference an object, you need not necessarily set it to Nothing. When an object
variable goes out of scope (such as when reaching the end of a function), the variable
will be dereferenced automatically.

Once an object is dereferenced, the runtime will perform a garbage collection when the memory pressure gets high
enough (i.e., the system begins to run out of memory) to reclaim the memory used by the object. The garbage
collector will call the Finalize method. You cannot call it directly.

It is not guaranteed that the Finalize method will be called immediately when an
object is dereferenced. This timing of this is entirely up to the garbage collector in the
CLR.

The Finalize method is a good place for you to place code that frees up resources, especially if your object uses
unmanaged objects (such as database handles or COM objects, and so on; the resources used by these objects would
not be freed up automatically):

Protected Overrides Sub Finalize()

 ' code to release objects explicitly

End Sub

VB 6 Tip: The Sub Finalize procedure in VB 2005 replaces the
Class_Terminate method used in VB 6 and earlier versions. However, unlike the
Class_Terminate method, the Finalize procedure is not guaranteed to execute
immediately after setting an object to Nothing.

Because calling the Finalize method will add overhead to the execution of your application, you should
implement Finalize only when necessary. Also, the Finalize method is not guaranteed to ever be called; it
depends on the shutdown conditions of the runtime.

Since you can't really determine when an object's resource will be freed up, you can use the second type of method
supported in VB 2005, the Dispose method, and place your code for freeing up the resources there. To use the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

supported in VB 2005, the Dispose method, and place your code for freeing up the resources there. To use the
Dispose method, you need to implement the IDisposable interface and implement the
IDisposable.Dispose method, as shown in Example 3-17.

Example 3-17. Using the Dispose method

Public Class MyStack

 Inherits Stack

 Implements IDisposable
 …
 Protected Overrides Sub Finalize()
 ' code to release objects explicitly

 End Sub

 Public Sub Dispose() Implements _
 IDisposable.Dispose
 ' code to release objects explicitly

 End Sub
 …

The advantage of using the Dispose method is that you can explicitly call it to free up all your resources:

ms1.Dispose()

When you do not call the Dispose method explicitly, you should also call it in Finalize. (Note that in Example
3-17, you make a call to the Dispose method in the Finalize method.) Hence, you need to make sure that the
code in the Dispose method is safe to be called multiple times.

Disposing of Resources
Often you need to create and use some resources and then immediately release the resources so that
memory can be reclaimed. VB 2005 comes with a new construct known as Using…End Using.
The Using…End Using construct guarantees that the resources acquired within the Using block
will be disposed of after the execution of the block. Consider the following:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub Data_Access(_

 ByVal str As String)

 Using conn As New SqlConnection(str)
 Dim ds As DataSet

 '---some code to perform data

 ' access

 End Using

 …

 …

End Sub

The conn and ds objects are valid only within the Using block. The conn object will be disposed
after the execution of the Using block (its Dispose method will get called). The Using block is a
good way for you to ensure that resources (especially COM objects and unmanaged code, which
would not be unloaded automatically by the garbage collector in the CLR) are properly disposed of
after they are no longer needed.

3.4.5. Tagging Objects with Attributes

Attributes are descriptive tags that can be used in VB 2005 applications to provide additional information about
types (classes), fields, methods, and properties. Attributes can be used by .NET to decide how to handle objects
while an application is running.

Using our car example, the cars of ambassadors often display a flag indicating their status as VIPs so that motorists
will give way when they approach. The flag in this case can be likened to an attribute.

Using attributes—either those provided by the .NET Framework or those you define yourself—gives you additional
control over the objects in your applications. Attributes in Visual Basic are used in web services. For example,
suppose you wish to expose a TRanslate method in an ASP.NET Web Service project. Prefixing the method
with the <WebMethod()> attribute will expose the method as a web service using SOAP, as shown in Example 3-
18.

Example 3-18. Using the WebMethod attribute

<WebMethod()> _
Public Function Translate(ByVal str As String) _

 As String

 …

End Function

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Another occasion on which you're likely to use attributes is when you need to use a legacy unmanaged DLL to
perform some function in a .NET application. To import the relevant function, you'll need to use the
<DllImport()> attribute, as shown in Example 3-19.

Example 3-19. Using the DllImport attribute

<DllImport("KERNEL32.DLL", EntryPoint:="MoveFileW", _
 SetLastError:=True, CharSet:=CharSet.Unicode, _
 ExactSpelling:=True, _
 CallingConvention:=CallingConvention.StdCall)> _
Public Shared Function MoveFile(ByVal src As String, _

 ByVal dst As String) _

 As Boolean

 ' Leave function empty - DLLImport attribute forwards

 ' calls to MoveFile to MoveFileW in KERNEL32.DLL.

End Function

To use the <DllImport()> attribute, you need to import the
System.Runtime.InteropServices namespace in your project.

In Visual Studio 2005, you can use attributes to mark a method in a class as obsolete. Marking a method with the
<Obsolete()> intrinsic attribute causes a warning message to be displayed when someone attempts to use it, as
shown in Example 3-20.

Example 3-20. Using the Obsolete intrinsic attribute

Public Class MyStack

…
<Obsolete("This method is obsolete. Use Push(obj as Object)")> _
Public Sub PushStr(ByVal obj As String)

 MyBase.Push(obj)

End Sub

…

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Suppose now you tried to use the PushStr method of the MyStack class:

Dim ms2 As New MyStack()

ms2.PushStr("Hello")

Visual Studio 2005 will signal a warning (not an error though) in the Error List window (see Figure 3-14).

Figure 3-14. The Error List window displaying the warning on the obsolete method

A more thorough discussion of attributes is beyond the scope of this book. For
additional information, see Programming Visual Basic 2005 by Jesse Liberty (O'Reilly)
or Programming .NET Components by Juval Lowy (O'Reilly).

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

3.5. Summary

This chapter has explored several concepts central to the practice of OOP and demonstrated how you can use them
with VB 2005. Here is what you have learned:

The benefits of using the OOP features of VB 2005, especially code reuse

How to create a new class using the Class Designer and the VB 2005 language, and how to instantiate it at
runtime

How to extend an existing class by inheriting from it and overriding or overloading its methods

Enhancements to VB 2005 that provide additional support for code reuse: generics and partial classes

Advanced OO techniques for controlling how classes are implemented and objects are handled at runtime,
such as the use of abstract classes and methods, interfaces, attributes, and access modifiers

In the next chapter, you will learn more about what's new in Windows development in VB 2005 and see how to put
the VB 2005 language and its new support for OOP to work.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 3. Putting Object-Oriented Programming to
Work
Not all object-oriented programming (OOP) concepts are new to Visual Basic. The language has had support for
classes and interface-based programming since Version 4, and, arguably, the drag-and-drop controls that have been
central to the Visual Basic programming paradigm since Version 1 are a sterling example of what reusable objects
can achieve. When you drop a Button control onto a VB 6 form, for example, you create a new instance of the
control in a way that is analogous to the way a class is instantiated in a traditional object-oriented language.
Likewise, when you set the Caption property of a Button or call the Show method of a form, you perform tasks
that are analogous to setting a property or calling a method on an object.

Still, it's hard to argue that VB 6 is a truly object-oriented language. It lacks support for such crucial features such
as inheritance, which allows one class to derive its properties and functionality from another. Were that
functionality present, for example, you would be able to create your own custom Buttons by deriving from the
Button control that ships with VB 6. Interface-based programming is so difficult in VB 6 that few programmers
have bothered to master it. VB 6 has no support for defining or working with interfaces, for example, and VB 6
programmers schooled in OOP principles must resort to virtual base classes to achieve the same result.

In the end, many—perhaps most—Visual Basic programmers have concluded that OOP is arcane and impossibly
difficult, and irrelevant to the development of the applications that VB 6 programmers implement every day.

Visual Basic 2005 changes everything, and in this chapter, I'll not only make the case that OOP is a tool that can
turbo charge your productivity as a developer, but I'll also show you how VB 2005 now makes it easy to
incorporate the best practices of OOP into your applications.

So, let the journey begin!
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.1. Creating the Windows Application and Building the Main Window

The first step toward building the library application is to use Visual Studio 2005 to create a new Windows
application project and then build the main window. You'll use a variety of new controls that ship with Visual Basic
2005 to get the job done.

1. Launch Visual Studio 2005 and create a new Windows application by selecting File New Project.
Choose the Visual Basic/Windows project type in the Project types dialog panel and select the Windows
Application template in the Templates panel, as shown in Figure 4-2. Name the project LibraryApp. Click
OK. Visual Studio will create the project and display a blank form with the default name Form1.vb
[Design]. Project files are displayed in the Solution Explorer window to the right of the form design page.
You can access the properties of Form1 in the Properties window, also to the right of the form design page.
To give the application a public name, set the name of Form1 to "Library Application" by entering the
string as its Text property in the Properties window. When the main application window displays, this
name will appear in its titlebar.

Figure 4-2. Creating a new Windows application project

2. Now you're ready to construct the application main window. You'll begin by adding an Office style menu to
Form1. Click on the Toolbox tab to the left of the Form1 designer page and drag-and-drop a MenuStrip
control from the Menus & Toolbars tab onto Form1. The empty menu bar is automatically placed at the top
of the page, and an icon for the control appears in a strip at the bottom of the designer page. You can display
the Properties window for the control by clicking either the empty bar or the control icon.

Click on the Insert Standard Items link in the MenuStrip Tasks menu to insert the commonly used File,
Edit, Tools, and Help menus, as shown in Figure 4-3.

3. Next, add a toolbar to the window by dragging-and-dropping the ToolStrip control from the Menus &
Toolbars tab in the Toolbox onto Form1. Click on the Insert Standard Items link to add the list of commonly
used toolbar icons as shown in Figure 4-4.

Figure 4-3. Adding a MenuStrip control to the form

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-4. Adding a ToolStrip control to the form

The new MenuStrip and ToolStrip controls in VB 2005 make it much
easier for developers to create professional looking Windows applications.

4. The design for the main window shown in Figure 4-1 calls for a status bar that we'll use to show progress in
gathering information from Amazon.com when a user initiates a search. You'll build the bar by dragging-
and-dropping a StatusStrip control onto Form1, and then add a StatusLabel control by selecting
the StatusLabel item from the StatusStrip drop-down listbox, as shown in Figure 4-5. The
StatusLabel control works like any Label control.

Figure 4-5. Inserting StatusLabel and ProgressBar controls into the StatusStrip control

5. To create the separate search and book details panels shown in Figure 4-1, drag-and-drop a
SplitContainer control from the Containers tab of the Toolbox onto Form1. The SplitContainer
control represents a control consisting of a movable bar that divides a container's display area into two
resizable panels. Set the BorderStyle property of the SplitContainer control to "Fixed3D" so that it
shows a three-dimensional border.

The SplitContainer control is new in VB 2005 and is a much improved
version of its predecessor.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

At this point, your application window should look like the one shown in Figure 4-6.

Figure 4-6. Adding a SplitContainer control to the form

6. Populate the left panel of the SplitContainer control with the controls as shown in Figure 4-7 by
dragging-and-dropping each control from the Toolbox onto the form. Name the controls as shown by
clicking on each control and setting its Name property in the Properties window.

4.1.1. Creating a Database to Store Books Information

The information about each book that a user acquires from Amazon.com needs to be saved to a local database on the
PC or workstation. To provide this functionality, you need to add a database to your project. For this project, you'll
use a SQL database file to store your book data. Once you've created the database file, you'll add a table to store the
individual records for each book in your collection.

Figure 4-7. Populating the left panel of the SplitContainer control

1. To add a database file to your project, first right-click on the project name, LibraryApp, in Solution
Explorer and then select Add New Item…. Now, in the Add New Item dialog box, select SQL
Database and set the Name of the database file to Library.mdf, as shown in Figure 4-8. Click Add.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-8. Adding a SQL database to the project

The Library.mdf database file icon will now appear in the Solution Explorer window, and the Data Source
Configuration Wizard will appear. As you won't be using this wizard, click Cancel.

2. Now you're ready to create the table to hold the records for the books in your library. Double-click the
Library.mdf file icon to view it in more detail in the Database Explorer as shown in Figure 4-9.

Expand the Library.mdf file, right-click on the Tables subfolder icon, and select Add New Table. Visual
Studio 2005 creates the table and displays a blank page (dbo: Table 1) that you'll use to define its records.

Figure 4-9. Adding a new table to the database

With a blank table in hand, you'll now define its columns and fields. Enter the name of each field as shown
in Figure 4-10. After entering a name, tab to the right to enter a data type. You can type in the data type
shown in Figure 4-10, or select it from the drop-down menu provided by Visual Studio 2005. You'll need to
enter the Data Type for Title and Publisher manually to specify a 100 character length. Tab to the last
column to specify whether null values are allowed. By default, they are. The ISBN field contains the primary
key for each record. Select and right-click on the field and select Set Primary Key from the drop-down
menu. Uncheck the Allow Nulls box for the field since it would be unacceptable to have a record in the
database without a primary key. Figure 4-10 shows the completed page.

Save the table by selecting "Save Table 1" from the File menu. When prompted, name the table Titles.

Close the table window by right-clicking on its title tab and selecting Close.

Figure 4-10. Defining a table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.2. Binding Library Data to the Form

You will now use the data-binding features of VB 2005 to bind the database that you have just created to the form.
To do so, you need to add a data source to the Data Sources window.

1. Go to Data Show Data Sources to display the Data Sources window.

2. Click on the Add New Data Source button at the top of the Data Sources window to add a new data source,
as shown in Figure 4-11.

Figure 4-11. Adding a new data source

The Data Source Configuration Wizard will appear. Select Database as the Data Source type and click Next.

3. When the "Choose your data connection" dialog appears, you will notice that the Library.mdf file has
already been selected, as shown in Figure 4-12). Click Next.

4. Now you have the option to save the connection string that the page will use to connect to the Library.mdf
database in the application configuration file. This option allows you to change the database details easily
without recompiling the application even after it has been deployed. This is the default, so leave the
checkbox checked and click Next to go to the next step.

5. In the next window, the "Choose your database objects dialog," you can select the table(s) you want to work
with. For this project, check the Titles table, which contains the records for your stored books. This step is as
shown in Figure 4-13.

Figure 4-12. Selecting the data connection

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-13. Selecting the table to work with

That's it! You've configured the Library.mdf database file as a data source without writing a line of code.
Now click Finish.

You should now see the Titles table displayed as a tree in the Data Sources window, as shown in Figure 4-
14.

Remember to close the table window as described in step 2 of the section
"Creating a Database to Store Books Information." Otherwise, the Data Sources
window will not display the icons next to the table and fields.

Figure 4-14. The Titles table in the Data Sources window

6. You will now change the binding of some of the fields in the table in the Data Sources window. Change the
binding of the ISBN field from TextBox to Label so that the ISBN of a book is displayed in a non-
editable Label control (see Figure 4-15). Also, change the binding of the Cover field from None to
PictureBox. Doing so will display the data contained in the Cover field in a PictureBox control.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-15. Changing the default binding of the Titles table

7. Drag-and-drop the ISBN, Title, Authors, Publisher, Price, and Cover fields (individually) from the Titles
table in the Data Sources window onto the right panel of the SplitContainer control. Also, add in a
Button control named Add Title. The form should now look like the one shown in Figure 4-16. Name the
controls as shown in the figure callouts (the names appear in parentheses).

Figure 4-16. Populating the form with the various controls

8. You will notice that a couple of controls appeared at the bottom of the Form1.vb design page (see Figure 4-
17). These controls perform all the magic of binding the data in your database to the controls on your form.
Going into the details of what they do specifically is beyond the scope of this book.

Figure 4-17. The controls added at the bottom of Form1.vb

9. You will also notice that a control known as the BindingNavigator control is added to the form when
you drag-and-drop the fields from the Data Sources window onto the form (see Figure 4-18). This control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

you drag-and-drop the fields from the Data Sources window onto the form (see Figure 4-18). This control
allows users to navigate through the records in the database. As we are not going to let the user view the list
of books in this window, the control is not relevant in this case. So, set its Visible property to False so
that it will not display on the form. Alternatively, you can just delete it.

Figure 4-18. The BindingNavigator control added to the form

10. Once you've completed the Library Application form, you need to set a few of the properties of the newly
added controls. First, you'll want to set the Anchor property of each control to ensure that each is correctly
resized and positioned when a user resizes the form. The Anchor property of a control determines where it
should be positioned when the form is resized. For example, if a control's Anchor property is set to Top,
Left, the control's position will be fixed. However, if its Anchor property is set to Bottom, Right, its
position will be anchored to the bottom-right corner of the form (see Figure 4-19).

Figure 4-19. Setting the Anchor property of a control to "Bottom, Right"

If the Anchor property is set to Top, Left, Right, the control will be resized horizontally when the form is
resized (see Figure 4-20).

Figure 4-20. Setting the Anchor property of a control to "Top, Left, Right"

If the Anchor property is set to Top, Bottom, Left, Right, the control will be resized both vertically and
horizontally when the form is resized (see Figure 4-21).

Set the Anchor property of each control on the main application window to the value shown in Table 4-1.

Figure 4-21. Setting the Anchor property of a control to "Top, Bottom, Left, Right"

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Table 4-1. Setting the Anchor property of the various controls
Control name Value

txtKeywords Top, Left, Right
btnGetInfo Top, Right
lstBooks Top, Bottom, Left, Right
chkAutoAdd Bottom, Left, Right
chkShowCover Bottom, Left, Right
btnViewCatalog Bottom, Left, Right
lblISBN Top, Left
txtTitle Top, Left, Right
txtAuthors Top, Left, Right
txtPublisher Top, Left, Right
txtPrice Top, Left, Right
picCover Top, Right
btnAddTitle Bottom, Left

While you're at it, also set the properties of three other controls on the window to the values shown in Table 4-2.

Table 4-2. Setting the properties of the various controls
Control name Property Value Description

lblISBN BorderStyle FixedSingle This draws a rectangle around the control.

chkShowCover Checked TRue The control is checked by default.

picCover SizeMode AutoSize The image will be displayed in its original size.

The resizing and reallocating of controls is much improved in VB 2005 compared to VB 6. By setting the Anchor
property of each control, you can ensure that the controls are automatically resized or repositioned when the user
resizes the form, as shown in Figure 4-22.

Figure 4-22. Resizing the controls

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.3. Adding a Web Reference to Amazon.com

The Library Application uses Amazon.com's E-Commerce web service (ECS for short) to obtain detailed
information about a book, such as its description, selling price, customers' reviews, and cover image. To use the
Amazon. com web service, you need to register as a user and use the subscription ID assigned to you by Amazon to
access the service programmatically. You can register for the service at: www.amazon.com/gp/aws/landing.html.
There is no charge for using the service. To continue with this example, you should register now.

Once you have registered with Amazon.com, you need to add a web reference to your project to use the service.
Once you have added the web reference, Visual Studio 2005 can automatically generate a proxy class for you so that
you can invoke the web service as if you were making calls to a normal object, as you will see in the next section,
"Accessing the Amazon.com Web Services."

1. To add a web reference to your project, right-click on the project name in Solution Explorer and then select
Add Web Reference.

2. In the Add Web Reference window, enter the following URL and click Go:
http://webservices.amazon.com/AWSECommerceService/AWSECom-merceService.wsdl.

This URL contains the location of the WSDL document needed by Visual Studio
2005 to generate the web proxy class.

3. If the WSDL document is retrieved successfully, you can add it to your project by clicking the Add
Reference button (see Figure 4-23). Name the web reference AmazonWS.

Figure 4-23. Adding a web reference

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4.1.4. Accessing the Amazon.com Web Services

When a Library Application user enters search keywords for a book, the application needs to connect to
Amazon.com's web service to request a search and download the list of titles returned. While the user waits for the
result, it's always a good idea to report the status of the search in the StatusStrip control with some text as well
as an hourglass cursor, as shown in Figure 4-24.

In this section, you'll first program the controls that show status. You'll use the StatusLabel control on Form1
to display some status text while the search proceeds and change the cursor to an hourglass to provide a visual
representation of work in progress. Once the status controls are coded, you'll write the code that calls the
Amazon.com web service and loads information retrieved by the keyword search into the ListBox control
(lstBooks) that displays the result.

Web Services
A web service is a business object residing on a server that you can programmatically access through
the network. For example, companies like Amazon.com and Google have both found values in
making parts of their data available to their customers through web services. Using web services,
customers can now integrate data from Amazon.com or Google into their own application. To ensure
interoperability between web services and their users (known as web service consumers), most web
services use open standards such as SOAP, XML, HTTP, and WSDL:

XML

Used as the language for exchanging messages between a web service and its consumer.

SOAP (Simple Object Access Protocol)

Used as the XML messaging format.

HTTP

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Used as the transport protocol to carry web services messages.

WSDL (Web Services Description Language)

Used to write the contract that defines the functions that the web service has to offer.

Figure 4-24. Displaying the status in the StatusStrip control

1. You will first define two global variables within the form to use the Amazon.com web service:

 Public Class Form1

 '---objects to store the response of the Web service

 Dim amazonResponse As AmazonWS.ItemSearchResponse = Nothing

 Dim amazonItems As AmazonWS.Item() = Nothing

Note the parentheses () after Item, which are required.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. To code the status control and change the default cursor to the hourglass, double-click on the Get Info button
(btnGetInfo) to switch to the code behind for its Click event handler. Enter the code shown in Example
4-1.

Example 4-1. btnGetInfo Click event handler

Private Sub btnGetInfo_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnGetInfo.Click

 '---changes the cursor to an hourglass
 Me.Cursor = Cursors.WaitCursor
 ToolStripStatusLabel1.Text = "Retrieving book information…"
 GetBookInformation(Trim(txtKeywords.Text))
End Sub

The code in Example 4-1 displays status text (by setting the Text property of
ToolStripStatusLabel1) and changes the default cursor to use an hourglass (using the Me.Cursor
property). Next, the event handler calls GetBookInformation, which calls the Amazon.com event
handler and passes it the search keywords that the user has entered into the txtKeyword text box control.

3. Now you need to code the GetBookInformation subroutine. The GetBookInformation subroutine
takes a single parameter (keyword) and calls the Amazon.com web service. When the result is returned,
display it in the Search Results window of the Library Application. Figure 4-25 shows the results you'll get
when you enter my name as the search string.

Figure 4-25. Displaying the results from Amazon.com

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Add the GetBookInformation subroutine to the Form1 class on its codebehind page by entering the code
shown in Example 4-2. Remember to assign the value of the subscription ID assigned you by Amazon.com to
SubscriptionId.

Example 4-2. GetBookInformation subroutine

Public Sub GetBookInformation(ByVal keyword As String)

 Dim itemSearchRequest As New AmazonWS.ItemSearchRequest

 Dim itemSearch As New AmazonWS.ItemSearch

 '---initialize objects

 With itemSearchRequest

 '---set the search keyword(s)

 .Keywords = keyword

 '---set the size of the response

 .ResponseGroup = New String() {"Medium"}

 '---set the SearchIndex or search mode

 .SearchIndex = "Books"

 End With

 With itemSearch

 '---set the Amazon.com SubscriptionId

 .SubscriptionId = "your_subscription_Id_here"

 .Request = New AmazonWS.ItemSearchRequest() _

 {itemSearchRequest}

 End With

 Try

 '---invoke the Amazon.com web service

 amazonResponse = _

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

 If amazonResponse IsNot Nothing Then

 amazonItems = amazonResponse.Items(0).Item

 End If

 Catch ex as Exception

 MsgBox(ex.ToString)

 Finally

 '---change the cursor to default

 Me.Cursor = Cursors.Default

 ToolStripStatusLabel1.Text = ""

 End Try

 If amazonItems Is Nothing then Exit Sub

 lstBooks.Items.Clear()

 '---add the books to the listbox

 For i As Integer = 0 To amazonItems.Length - 1

 With amazonItems(i)

 lstBooks.Items.Add(.ItemAttributes.Title)

 End With

 Next

End Sub

For simplicity, the Library Application will retrieve only the first 10 results from
Amazon.com.

4.1.5. Displaying Book Information and Covers

With the results of a search now available in the Search Results window, you want to enable users to view the
details of any title in the list by selecting its name.

When a title is selected, a number of actions need to occur. First, the application needs to display the book details in
the righthand pane of the Library Application window. Book covers require special handling. Since most users will
want to see the cover of a book they've chosen, the Show Cover checkbox in Figure 4-24 is set to true (checked)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

want to see the cover of a book they've chosen, the Show Cover checkbox in Figure 4-24 is set to true (checked)
by default. Unless the user unchecks the box, the cover of a title is always retrieved along with its other information.
However, the Amazon.com web service supplies a URL that points to the location of the image, not the image itself.
So, you'll need to write code to download the image onto the local computer before you can display it.

Finally, if the user has checked the Auto-add Title checkbox, the application needs to automatically add the selected
title to the database.

Abiding by the Amazon Web Services
Licenses Agreement

The Amazon Web Services Licenses Agreement describes the set of rules and time limits that you
must respect to remain compliant with the license. In particular, applications that store data in a
database must store a timestamp along with the data, show this timestamp adjacent to the data, and
offer a Refresh function.

The actions can all be carried out by the event handler for the SelectedIndexChanged event of the lstBook
listbox control, which fires when a user clicks on any item in its list.

1. To generate a code stub for the SelectedIndexChanged event of the lstBook control, double-click
on the control on Form1. To code the event, enter the code shown in bold in Example 4-3.

Example 4-3. 1stBooks SelectedIndexChanged event handler

Private Sub lstBooks_SelectedIndexChanged(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles lstBooks.SelectedIndexChanged

 If lstBooks.SelectedIndex < 0 Then Exit Sub

 Try
 '---display detailed book information
 With amazonItems(lstBooks.SelectedIndex)
 lblISBN.Text = .ASIN
 txtTitle.Text = .ItemAttributes.Title
 txtAuthors.Text = Join(.ItemAttributes.Author, ",")
 txtPublisher.Text = .ItemAttributes.Publisher
 txtPrice.Text = _
 .ItemAttributes.ListPrice.FormattedPrice.ToString
 ToolStripStatusLabel1.Text = .ItemAttributes.Title

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '---downloads the cover of the book
 If chkShowCover.Checked Then
 '---download the cover image
 Dim webReq As Net.HttpWebRequest = _
 Net.HttpWebRequest.Create(_
 .MediumImage.URL.ToString)
 Dim webResp As Net.HttpWebResponse = _
 webReq.GetResponse()

 '---displays the image
 picCover.Image = _
 Image.FromStream(webResp.GetResponseStream())

 End If

 '---auto-add a title
 If chkAutoAdd.Checked Then
 AddTitle()
 End If
 End With
 Catch ex As Exception
 DisplayError(ex.ToString)
 End Try End Sub

2. The DisplayError method that you call in Example 4-4 simply sounds a beep and displays the error
message in the StatusLabel control in the StatusStrip control.

Example 4-4. DisplayError subroutine

Private Sub DisplayError(ByVal message As String)

 My.Computer.Audio.PlaySystemSound(_
 System.Media.SystemSounds.Exclamation)

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 System.Media.SystemSounds.Exclamation)
 ToolStripStatusLabel1.Text = "Error : " & message

End Sub

You can play different types of sounds by supplying the PlaySystemSound method with one of the
following values from the System.Media. SystemSounds enumeration:

Asterisk

Beep

Exclamation

Hand

Question

Figure 4-25, earlier in this chapter, shows the result of a search for the author Wei-Meng Lee. When you click on the
title of one of the books in the results list (for example, ASP.NET 2.0: A Developer's Notebook), the detailed
information available for the selected book is displayed.

4.1.6. Saving Book Information

Now you need to write the routines that add book information to the user's database either because "Auto-add Title
box" is checked or because the user has clicked the Add Title button. While the detailed book information about a
title is displayed on the form, you'll also want to give the user the option to modify the data before saving it to the
local database file.

1. First, you'll code the Add Title button event handler. Double-click the Add Title button on Form1 and enter
the code in Example 4-5.

Example 4-5. btnAddTitle Click event handler

Private Sub btnAddTitle_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnAddTitle.Click

 AddTitle()

End Sub

The event handler calls the AddTitle subroutine, where the heavy lifting is done.

2. The AddTitle subroutine called by Example 4-6 is responsible for recording the details of a title you want
stored in the local database file, Library.mdf. The subroutine first converts the image displayed in the
PictureBox control into a byte array. The new record is then saved into the database using the
TitlesTableAdapter control that you added to the form earlier (see also Figure 4-17, earlier in this
chapter).

Example 4-6. AddTitle subroutine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub AddTitle()

 Try

 '---get the book cover image as a byte array---

 Dim ms As New System.IO.MemoryStream()

 picCover.Image.Save(ms, picCover.Image.RawFormat)

 Dim coverimage() As Byte = ms.GetBuffer

 ms.Close()

 '---add the new title to the database---

 TitlesTableAdapter.Insert(lblISBN.Text, _

 txtTitle.Text, txtAuthors.Text, _

 txtPublisher.Text, txtPrice.Text, coverimage)

 ToolStripStatusLabel1.Text += " - Added"

 Catch ex As Exception

 DisplayError("Error adding title.")

 End Try

End Sub

All the hard work needed to save the new record into the database is performed by the
TitlesTableAdapter control. The TitlesTableAdapter control uses
ADO.NET (the data access technology used in the .NET Framework) behind the scenes
to accomplish this mean feat.

4.1.7. Testing the Application

Now you are ready to take the application for a test drive. Start it up by pressing F5. Enter some keywords for a
book, say, the author name, title, or ISBN. Click on the Get Info button to retrieve a list of titles matching your
search criteria and list them on the Listbox control. You'll notice that the application hangs for a while when you
submit the search request, and the form does not appear to repaint itself when overlapped by another window. We'll
deal with this problem in a future section, "Accessing the Web Services Asynchronously." You can display the
details of a book in the righthand pane of the application window by selecting an item in the ListBox control of
the Search Results window, as shown in Figure 4-26.

Figure 4-26. Testing the application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Click the Add Title button to save the book information into the local database. If you check the "Auto-add Title"
checkbox, book information is saved automatically just by selecting a title from the Search Results list.

If you were to include similar functionality in a production application, you would need
to store the "freshness date" along with each book, display that date along with the other
information, and offer the user the ability to refresh the data to make sure the price and
other information is accurate. See the Amazon license agreement for details.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.2. Viewing Book Information Offline

With the book information saved in the database, you will now add a second window to the project so that users can
view their book catalogs offline. The Books Catalog window will be invoked by clicking on the View Catalog
button that you've already added to the Library Application main window. By clicking on any title listed in the
catalog, the user will be able to display its details, including an image of its cover.

You'll build the Books Catalog window using the new Data Source Configuration Wizard and two new controls:
DataGridView and BindingNavigator. With the exception of the event handler for the View Catalog
button, you'll accomplish this task without writing any code.

4.2.1. Create the Books Catalog Window

First you need to create the window that will display the book catalog and make it accessible from the Library
Application main window.

1. To create the Books Catalog page, add another form to the project by right-clicking on the project name,
LibraryApp, in Solution Explorer and then selecting Add New Item… Select the Windows Form
template and use the default name Form2.vb. Click Add and note the addition of the form to the LibraryApp
project in the Solution Explorer.

2. Set the Text property of Form2.vb to "Books Catalog," which changes the title of the form to "Books
Catalog." Now the title reflects the purpose of the form in the application.

3. Finally, you need to link the Books Catalog page to the main application window. On the Form1.vb design
page, double-click on the View Catalog button and enter the single bold line of code in Example 4-7.

Example 4-7. btnViewCatalog Click event handler

Private Sub btnViewCatalog_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnViewCatalog.Click

 Form2.ShowDialog()

End Sub

When a user clicks the View Catalog button, the Books Catalog page (Form2.vb) will be displayed.

4.2.2. Binding Library Data to the Books Catalog Form

You will once again use the data-binding features of VB 2005 to display all the records in the database on the newly
added form.

1. Go to Data Show Data Sources to display the Data Sources window.

Figure 4-27. Binding the Titles table to a DataGridView control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

2. Change the binding of the Titles table to the DataGridView control (see Figure 4-27).

3. Drag-and-drop the Titles table from the Data Sources window onto Form2.vb. A DataGridView and a
BindingNavigator control will be created automatically. In the DataGridView Tasks menu, check
the Enable Column Reordering checkbox so that users can sort the rows of their catalog entries by field. The
DataGridView Tasks menu is shown in Figure 4-28.

Figure 4-28. Configuring the DataGridView control

4. Since the list of titles shown in the Books Catalog window doesn't have to include everything there is to
know about each book, it makes sense to display the Title, Authors, and Publisher fields only. To remove
the unwanted fields, go to the DataGridView Tasks menu again, click on the Edit Columns link, and
remove the following fields:

ISBN

Price

Cover

The result is a list of books that displays only the title, authors, and the publisher.

5. You will now change the binding of the Titles table in the Data Sources window from DataGridView to
Details. This will allow you to display individual records instead of multiple records on the form.

Now drag-and-drop the Titles table from the Data Sources window onto Form2.vb.

6. Finally, you'll want to add a Close button to the Books Catalog window so users can close the form when
they've finished using it. To do that, add a Button control to Form2.vb and set its Text property to
"Close." Name the Button control btnClose. Form2.vb will now look like the version shown in Figure
4-29.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 4-29. Form2 with the various controls

7. To wire up the Click event handler for the Close button, double-click on the Close button and enter the
code shown in Example 4-8. It's worth noting that this is the only code you've had to write to create this
form.

Example 4-8. Close button Click event handler

Private Sub btnClose_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnClose.Click

 ' Me refers to the current object (Form2)

 Me.Close()

End Sub

8. One last step remains. On Form2, set the PictureBox control's SizeMode property to AutoSize so
that the cover of a book can be displayed in its original downloaded size.

4.2.3. Testing the Application

You can now test the application by pressing F5. On Form1.vb, click on the View Catalog button to display
Form2.vb, as shown in Figure 4-30.

Figure 4-30. Displaying the catalog of books

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Try editing existing records by modifying the data in the DataGridView control or the text boxes on the right of
the window. To save changes to the database, you need to click the Save Data button, as shown in Figure 4-31. You
can also delete records by clicking on the Delete button and then the Save Data button to effect the change.

Note that for simplicity, you will not be able to add new records in this window as the
ISBN field is non-editable.

Figure 4-31. Adding and deleting records

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.3. Deploying the Application

Visual Studio 2005 makes the deployment of Windows applications to your users extremely easy and painless, all
through a new feature known as Click-Once.

Smart Clients
ClickOnce was designed specifically to ease the deployment of smart clients.

A smart client is basically a Windows application that leverages the system's local resources and is
able to intelligently connect to distributed data sources (such as web services) as and when needed.

The Library Application that you've been building in this chapter is an example of a smart client.
While today a lot of companies are deploying web applications (due to their ubiquitous access),
network latencies and server delays are some of the problems that are preventing developers from
reaping the full benefits of the Web. Common frustrations over web applications include slow
response time from web sites and limited functionality (due to the stateless nature of the HTTP
protocol). As such, a smart client aims to reap the benefit of the rich functionality of the client
(Windows) while at the same time using the power of web services in the backend.

To illustrate how ClickOnce works, you will publish the Library Application (LibraryApp) that you have written
and see how easy it is to deploy it using a web server. Furthermore, ClickOnce has the added benefit of ensuring
that applications that you deploy will automatically check for the latest update (you can configure the application to
check every time before it runs, or check at regular time intervals) on the server, if one is available, as you'll see in
"Automatic Updating," later in this capter.

4.3.1. Publishing the Application

You can now publish (deploy) a Windows application through a disk, shared folder, FTP server, or web server, and
automatically ensure that users are always using the latest version of the application.

1. To run the ClickOnce Publish Wizard, go to Build Publish LibraryApp on the Visual Studio menu, as
shown in Figure 4-32. The "Where do you want to publish" dialog box will appear.

Figure 4-32. Publishing the LibraryApp Windows application

2. The "Where do you want to publish" dialog box gives you four options for where to publish the application:
disk, shared folder, FTP server, or web server. For this project, you will publish the application through the
IISweb server (see the sidebar "Installing IIS on Your Computer" on how to install IIS on your Windows XP
computer).

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Installing IIS on Your Computer
If you wish to use IIS to deploy your Windows applications, you must install IIS. By default,
Windows XP does not install IIS, so you need to retrieve your Windows XP Installation CD
and then use Control Panel Add or Remove Programs Add/Remove Windows
Components Components: Internet Information Services (IIS) to add IIS yourself.

In the "Specify the location to publish the application" text box, create a directory for the application by
entering the following link: http://localhost/LibraryApp (see Figure 4-33). Click Next. The "Will the
application be available offline?" dialog will appear.

Localhost is the name of the web server installed in your local computer.

Figure 4-33. Specifying the path to publish the folder

3. ClickOnce allows the user to install an application locally on the client, or to download every time it is
needed. In the "Will the application be available offline?" dialog, select "Yes," as shown in Figure 4-34, and
then click Next. The "Ready to Publish!" dialog will appear.

Figure 4-34. Choosing the mode in which the application should be run

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

4. That's it! You are now ready to publish the application from your web server. In the "Ready to Publish!"
dialog shown in Figure 4-35, click Finish to create the web page that users will link to in order to install the
application.

Figure 4-35. The wizard is ready to publish the application

5. You should see the web page shown in Figure 4-36. Your users can now use the URL for that page to install
the application on their own machines.

Figure 4-36. Installing the application through the web server

6. To install the application on your own machine, click the launch link in the page.

Click the Install button to install the prerequisites, if your machine does not have
them.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

7. You will be prompted with a security warning such as the one shown in Figure 4-37. Click Install to install
the application onto your machine.

You can eliminate this security warning by setting the relevant security policy.
Refer to the MSDN Help Topic "Code Access Security for ClickOnce
Applications" for more information. Also, check out the help topic "How to:
Sign ClickOnce Application and Deployment Manifests"
(http://msdn2.microsoft.com/library/che5h906(en-us,vs.80).aspx) for more
information.

Figure 4-37. Installing the application

8. You will now see that the LibraryApp application is launched automatically. Alternatively, you can launch
the LibraryApp application from Start Programs LibraryApp LibraryApp.

The ClickOnce installation does not require you to have administrator rights to install
the application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.4. Automatic Updating

The power of ClickOnce lies in its ability to automatically update applications after they have been deployed.
Imagine that 1000 of your customers have downloaded your application and that you've decided you need to add
some new features or fix a fatal bug. With VB 6, it would be a logistical nightmare to inform all these customers of
the changes and then to update their machines. ClickOnce automatically ensures that all your users use the latest
version of your application.

To demonstrate the power of ClickOnce, you'll make a useful change to the Library Application—and learn
something about the new BackgroundWorker control in the process—and then use the automatic update feature
of ClickOnce to get the new version into the hands of your users.

The BackgroundWorker control is a control that executes an operation on a separate
thread.

4.4.1. Accessing the Web Services Asynchronously

In testing the Library Application in an earlier section (see "Testing the Application), you saw that the application
freezes when you request and download keyword search results from Amazon.com. Moreover, the window does not
repaint itself when it is covered by some other windows. So, what is the problem? It turns out that accessing a web
service is a blocking call, which means that the application will not continue its execution until the web service
returns a value. In the real world, web services requests take a finite amount of time to complete and hence it is not
acceptable that our application freezes while waiting for the results from Amazon.com.

To make the UI of your application responsive, you need to invoke the web service call in a separate thread of
execution.

While this may sound intimidating (see the sidebar "VB Black Belt: Multithreading" for more information on
threading), VB 2005 has made it easy to add this functionality to an application by providing a new
BackgroundWorker control. To see how the BackgroundWorker control helps make your application more
responsive, you will use it to access the Amazon.com web service in the background, and while so doing, the
application can remain active. Here is a summary of the steps involved:

VB Black Belt: Multithreading
Multithreading is one of the most powerful concepts in programming. Using multithreading, you can
break a complex task into multiple threads that execute independently of one another. One
particularly good application of multithreading is in tasks that are synchronous in nature, such as web
services calls. By default, web services calls are blocking calls; that is, the caller code will not
continue until the web service returns a result. But because web services calls are often slow, this can
result in sluggish client-side performance unless you take special steps to make the call
asynchronous.

By default, your Windows application uses a single thread of execution. In our project, we have
created an additional thread of execution to access the web service.

One particular point you need to bear in mind is that Windows controls are not thread-safe. Put
simply, it means that you cannot update the properties of a Windows control in a separate thread;
only the main thread can update the controls.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. The user clicks the Get Info button, and the BackgroundWorker control kicks into action.

2. The BackgroundWorker control runs the GetBookInformation subroutine (which is defined by
you) in a separate thread, with the main window remaining responsive.

3. When the result is returned from Amazon.com, the BackgroundWorker control updates the controls on
the window with the detailed book information.

Here are the steps:

1. First, you need to add the BackgroundWorker control to your application. Drag-and-drop the control
from the Components tab in the Toolbox onto Form1.vb of the LibraryApp project. Because the
BackgroundWorker control is not a visual control, you will see its icon at the bottom of the form, as
shown in Figure 4-38.

Figure 4-38. Using the BackgroundWorker control

2. Switch to the code-behind page of Form1 and import the System. ComponentModel namespace—
which is needed in order to use the classes that the BackgroundWorker control needs to do its work—by
adding the following line of code (in bold) to the top of the code behind of Form1.vb.

Imports System.ComponentModel

Public Class Form1

 …

3. When the Get Info button is clicked, you will use the BackgroundWorker control to call the web service
in a separate thread using its RunWorkerAsync method, which starts the execution of a background
operation. The method takes a single parameter, which in this case is the keyword(s) that the user has
entered. To replace the current Click event handler for the Get Info button, double-click on the control on
Form1 and replace the existing code with that in Example 4-9.

Example 4-9. Revised code for btn Click event handler

Private Sub btnGetInfo_Click(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles btnGetInfo.Click

 '---retrieve the book info in the background

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 '---retrieve the book info in the background

 BackgroundWorker1.RunWorkerAsync(_

 Trim(txtKeywords.Text))

 '---changes the cursor to an hourglass

 Me.Cursor = Cursors.WaitCursor

 ToolStripStatusLabel1.Text = _

 "Retrieving book information…"

End Sub

4. The DoWork event of the BackgroundWorker control will invoke GetBookInformation
subroutine in a separate thread. The DoWork event is fired when you call the RunWorkerAsync method,
as you did in the previous step. The argument passed to the RunWorkerAsync method can be retrieved in
the DoWork event via the System.ComponentModel. DoWorkEventArgs parameter. Add the
event shown in Example 4-10 to the Form1 class.

Example 4-10. BackgroundWorker DoWork event handler

Private Sub BackgroundWorker1_DoWork(_

 ByVal sender As System.Object, _

 ByVal e As System.ComponentModel.DoWorkEventArgs) _

 Handles BackgroundWorker1.DoWork

 'This method will run on a thread other than the UI thread.

 'Be sure not to manipulate any Windows Forms controls created

 'on the UI thread from this method.

 Dim worker As BackgroundWorker = _

 CType(sender, BackgroundWorker)

 GetBookInformation(e.Argument, worker, e)

End Sub

5. The GetBookInformation subroutine accesses the Amazon.com web service. Replace the
GetBookInformation subroutine you have defined earlier with that shown in Example 4-11.

6. Example 4-11. Revised GetBookInformation subroutine

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Public Sub GetBookInformation(_

 ByVal keyword As String, _

 ByVal worker As BackgroundWorker, _

 ByVal e As DoWorkEventArgs)

 Dim itemSearchRequest As New AmazonWS.ItemSearchRequest

 Dim itemSearch As New AmazonWS.ItemSearch

 '---initialize objects

 With itemSearchRequest

 '---set the search keyword(s)

 .Keywords = keyword

 '---set the size of the response

 .ResponseGroup = New String() {"Medium"}

 '---set the SearchIndex or search mode

 .SearchIndex = "Books"

 End With

 With itemSearch

 '---set the Amazon.com SubscriptionId

 .SubscriptionId = "your_subscription_Id_here"

 .Request = New AmazonWS.ItemSearchRequest() {itemSearchRequest}

 End With

 Try

 '---invoke the Amazon.com web service

 amazonResponse = _

 My.WebServices.AWSECommerceService.ItemSearch(itemSearch)

 If amazonResponse IsNot Nothing Then

 amazonItems = amazonResponse.Items(0).Item

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 amazonItems = amazonResponse.Items(0).Item

 End If

 Catch ex as Exception

 '---an error has occured

 End Try

End Sub

Notice that in this subroutine, you need not worry about displaying the returned result in the Listbox
control; you will do that in the next step.

7. The RunWorkerCompleted event is fired when the thread (in this case, GetBookInformation) is
completed. In Example 4-12, you will get the result returned from the web service and then add the items
into the Listbox control.

Example 4-12. BackgroundWorker1_RunWorkerCompleted event handler

Private Sub BackgroundWorker1_RunWorkerCompleted(_

 ByVal sender As Object, _

 ByVal e As System.ComponentModel.RunWorkerCompletedEventArgs) _

 Handles BackgroundWorker1.RunWorkerCompleted

 '--change to cursor to default

 Me.Cursor = Cursors.Default

 ToolStripStatusLabel1.Text = ""

 If Not (e.Error Is Nothing) Then

 MessageBox.Show(e.Error.Message)

 Else

 If amazonItems Is Nothing then Exit Sub

 lstBooks.Items.Clear()

 '---add the books to the listbox

 For i As Integer = 0 To amazonItems.Length - 1

 With amazonItems(i)

 lstBooks.Items.Add(.ItemAttributes.Title)

 End With

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 End With

 Next

 End If

End Sub

That's it! You can now debug the application by pressing F5. You should find the UI of the application is still
responsive while waiting for the result from the Amazon.com web service.

4.4.2. Republishing the Application

Now that you have modified your LibraryApp application, you should rebuild it and republish it so that users can be
automatically updated through ClickOnce.

1. Rebuild the project by right-clicking on the project name (LibraryApp) in Solution Explorer and selecting
Rebuild.

2. To ensure that your users can use the updated application, build and publish the application again, following
the steps outlined earlier. That's all you need to do.

3. The next time your users launch the application from the Start menu, the application will automatically
check the deployment server to see if there is a newer version available. If there is one, the Update
Available window will be displayed (see Figure 4-39). Click OK to download, install, and use the newer
version of the application.

A network connection is needed for auto-updating to work. The auto-updating is
configurable. You could set it to check at some regular interval as well, specified
in minutes, hours, or days.

Figure 4-39. Downloading a newer version of the StockQuote application

4. What happens if, after installing the newer version, you decide that you want to use the older version? No
worries; just go to Control Panel and click Add or Remove Programs, select the application, and click
Change/Remove. You have the option to either restore the application to its previous state or remove the
application.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

4.5. Summary

In this chapter, you have seen how easily Visual Studio 2005 and the VB 2005 language can be used to create
professional applications. In particular, you have seen how to create a database and bind its records to a data access
form; how web services can be consumed in a Visual Studio 2005 project; and how data can be persisted in a SQL
database for offline perusal. You have also learned how ClickOnce makes deployment and updating of smart clients
easy and effortless and how you can painlessly add asynchronous calls to an application.

In the next chapter, you will learn how to use VB 2005 to develop web applications.
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 4. Developing a Windows Application
Now that you've become familiar with the latest features of the VB 2005 language and the new productivity tools
added to Visual Studio 2005, it's time to build a complete application.

In this chapter, you will build a Windows application that you can use to create an online catalog of the books you
own. The catalog stores details such as the ISBN (the book industry standard number used to uniquely identify a
book), title, authors, publisher, and price of each volume in your collection. The application lets you search
Amazon.com for information about particular titles by entering keywords in a search window. You can then store
that information, including images of the book covers, in a personal database on your Windows workstation or PC.

Later in the chapter, you'll add a second window to the application that lets users display the complete catalog of
books stored in the local database and to display the details of any particular title.

Figure 4-1 shows the main window of the finished application. The window includes two panels: a panel on the left
for showing the results of Amazon.com keyword searches that you enter and a panel on the right for displaying the
details of a particular book returned by the search. The main window contains the usual features you expect to find
in a Windows application such as a menu, a toolbar, and a status bar. Figure 4-30 shows the finished application
with both windows open.

You will build the application using several of the latest Visual Studio 2005 controls, including the
SplitContainer, MenuStrip, ToolStrip, and StatusStrip controls. You will also work with data
access controls and wizards that simplify the use of the ADO.NET classes for data access. You will use the
Amazon.com web service to retrieve detailed information about your books and then save it for offline viewing, and
you'll see how easy it is to incorporate a web service in an application with Visual Studio 2005. Though
multithreading has traditionally been seen as a black art, the new BackgroundWorker control reduces its use to
a drag-and-drop operation. You'll use multithreading to keep the UI of your Windows application responsive while
it's accessing the Amazon.com web service.

Once the library application is complete, you will use ClickOnce, a new smart client deployment technique in the
.NET Framework 2.0, to post it to an IIS host. ClickOnce is not only an easier way to deploy Windows applications
that make use of the Internet, but ClickOnce also ensures that the user will be notified whenever an updated version
of the application is posted to the server. You'll use this feature to deploy an updated version of the library
application at the end of this chapter.

Figure 4-1. The completed personal library application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.1. Building the Storefront

The first step toward building the example in this chapter is to create the Storefront page shown in Figure 5-1.
You'll first create a Master Page to set the look and feel of the site and then derive the Storefront page from it. Once
the page is created, you'll add the controls needed to define its buttons and to display the books. To get started,
you'll use Visual Studio 2005 to create a new Visual Basic web application.

1. On the Visual Studio menu bar, click File New Web Site…, as shown in Figure 5-2. The New Web
Site dialog box will display.

2. In the New Web Site dialog, select the ASP.NET Web Site template. Select File System as its Location, and
Visual Basic as the Language you will use. Name the project C:\ShoppingApp. Figure 5-3 shows the result.
Click OK to continue. Visual Studio 2005 will create the site and display its files in the Solution Explorer.
Take a look at the toolbar, which lists an entirely different set of controls specifically provided for building
web applications. You'll be using a number of these later in the chapter.

Figure 5-2. Using Visual Studio 2005 for this project

Figure 5-3. Creating a new ASP.NET Web Site project

File-Based Web Development
Visual Studio 2005 provides you with four ways to develop a web site. For this project, you'll use the
File System option. This new ASP.NET 2.0 option frees you from having to use IIS (Microsoft

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

File System option. This new ASP.NET 2.0 option frees you from having to use IIS (Microsoft
Internet Information Server) for development. Instead, Visual Studio 2005 provides its own built-in
web server, which it launches when you run/debug the web application.

Now you can even develop ASP.NET 2.0 web applications on your Windows XP Home Edition PC,
which does not include IIS.

5.1.1. Building a Site Template Using a Master Page

Visual Studio 2005 and ASP.NET 2.0 now support the creation of special pages known as Master Pages that you
can use to give a common look and feel to every page on your site. The implementation resembles the visual page
inheritance found in Windows Forms, for those who have used that popular framework, though strictly speaking, it
is not the same. You can create a single Master Page to specify the common elements shared by all the pages of
your site. You then create web pages that draw on content from the Master Page.

For the e-commerce site, you will first create a Master Page to define the header that will appear on every page. The
header consists of two images, one showing the O'Reilly company logo and the other displaying the O'Reilly
company name.

1. To create the Master Page, right-click on the project name in Solution Explorer and then select Add New
Item… (see Figure 5-4).

Figure 5-4. Adding a new item to the project

2. In the Add New Item dialog, select the Master Page template and use the default name, MasterPage.master,
as shown in Figure 5-5. Click Add to create the page.

3. Since you'll be using controls to add elements to the Master Page, go to the MasterPage.master page and
switch to the Design view by clicking on the Design button at the bottom left of the page, as shown in
Figure 5-6.

4. Your project will make use of a number of images, so you need to create a folder to store them. Add a folder
to the project and name it Images by right-clicking on the project name in Solution Explorer and selecting
Add Folder Regular Folder, as shown in Figure 5-7

Figure 5-5. Adding a Master Page to the project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-6. Switching between Design view and Source view

Figure 5-7. Switching between the different views

5. Copy the images shown in Figure 5-8 into the C:\ShoppingApp\Images folder. You'll use these images to
build your application. When you've finished, the Images folder should look like the one shown in Figure 5-
9.

The images can be downloaded from this book's support site
athttp://www.oreilly.com/catalog/vbjumpstartpg/.

Figure 5-8. Images used for this project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-9. The Images folder with the various images

You'll need to refresh the Images folder to see the images (right-click on the
Images folder in Solution Explorer and select Refresh Folder).

6. Now you're finally ready to lay out the elements of the Master Page. Drag and drop two Image controls and
an HTML Horizontal Rule control from the Toolbox onto the page, as shown in Figure 5-10 Set the names
of the controls to those shown in the figure. Make sure the controls are positioned above the
ContentPlaceHolder control (simply position your cursor to the left of the ContentPlaceHolder
control and press the Enter key a few times to move the control downward).

Switching Between Design View, Source
View, and Code-Behind View

In Visual Studio 2005, a Web Form is displayed in Source view by default. Source displays
the HTML and other markup a web browser uses to construct a web page you've designed. In
Source view, you can directly modify HTML elements and their attributes as well as the
controls contained within it. To switch to Design view, click on the Design button at the
bottom of the screen. In Design view, you can visually inspect the page and drag and drop
controls from the Toolbox onto the form. To view the code behind of the form, you can simply
double-click on the form and the code behind will appear. In Code view, you use Visual Basic
to write the business logic for your application and service the events raised by the various
controls on the page. The figure shows each of the three views.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The ContentPlaceHolder control (populated by default in a Master Page)
is a place holder for Content pages (pages that inherit from the Master Page) to
populate with controls.

Set the ImageUrl property of the imgLogo control to ~/Images/oreilly_ logo.gif and
that of the imgHeader control to ~/Images/oreilly_header.gif. The two GIF files contain the
O'Reilly company logo and company header, respectively.

7. Save the project (click File Save All).

Figure 5-10. Populating the Master Page with the various controls

5.1.2. Building the Storefront Using a Content Page

Now that the Master Page is completed, you're ready to create the Storefront page. You'll do this by deriving (or
inheriting) a Content page from the Master Page and then populating it with controls. The Storefront page will
display a list of titles that users can add to a shopping cart.

1. To create a blank Content page, right-click on the project name (ShoppingApp) in the Solution Explorer and
select "Add New Item…." In the Template window of the Add New Item dialog box, select Web Form and
set its name to Main.aspx. To let Visual Studio 2005 know that you want to use a Master Page, check the
"Select master page" checkbox at the bottom of the dialog, as shown in Figure 5-11 Click Add to move to
the next step.

2. Now it's time to choose the Master Page. When Visual Studio 2005 displays the Select a Master Page dialog
box, select MasterPage.master in the Contents of folder pane, as shown in Figure 5-12. Click OK to
proceed to the next step.

Like Visual Basic classes, which can only inherit from one base class, an

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

ASP.NET 2.0 Content page can have only one Master Page.

Figure 5-11. Creating a Content page by selecting a Master page

Figure 5-12. Selecting a Master Page

3. Visual Studio 2005 will display the new page, Main.aspx, with the contents of the Master Page grayed out,
as shown in Figure 5-13. The grayed out sections of the page are meant to indicate that content derived from
the Master Page cannot be edited in the Main.aspx form. Notice that the new page contains a Content
control.

The Content control is the location where you populate the content of the page.

You'll customize the new page,Main.aspx, by adding controls to the Content control in the next step.

Figure 5-13. Creating a new Content page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

While you can't directly edit Master Page content in Main.aspx, you can make
changes by either right-clicking on the grayed-out content and selecting Edit
Master, or by simply going to the Solution Explorer and double-clicking the
Master Page. Either action will load the Master Page for editing.

4. Now we'll add the content, specifically the Storefront items available for users to select. Selection in your
store will be limited to three items (my O'Reilly books). We'll use a 3 x 2 table to lay out their images and
their purchase information.

To add content to a Content control, you'll typically drag-and-drop controls from the Toolbox onto it. You
can also type text directly into a Content control if you wish. In the Content control, insert a 3 x 2 table (go
to Table Layout) and then populate the table cells with the controls shown in Figure 5-14. Also, type in
the text as shown in the figure. You can drag and drop the detailed information of each book from the
following URLs:

http://www.oreilly.com/catalog/aspnetadn/

http://www.oreilly.com/catalog/compactframework/

http://www.oreilly.com/catalog/vbjumpstart/

Set the properties for the controls as follows:

img1

Set the ImageUrl property to ~/Images/aspnetadn.gif.

img2

Set the ImageUrl property to ~/Images/compactframeworkpg.gif.

img3

Set the ImageUrl property to ~/Images/vbjumpstartpg.gif.

imgBtn1, imgBtn2, imgBtn3

Set the ImageUrl property to ~/Images/button_addtocart.gif.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Set the ImageUrl property to ~/Images/button_addtocart.gif.

Figure 5-14. Populating the Content page

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.2. Creating a Shopping Cart

When a user clicks on the Add to Cart button on the Main.aspx page, you'll want the item to be saved in a shopping cart, a
key feature of the application that you'll now implement. To save items, you'll use the new Profile service (exposed via the
Profile object) in ASP.NET 2.0. Think of the Profile service as an ASP.NET mechanism to persistently store a user's
information, similar to the Session object. Unlike a Profile object, however, a Session object is valid only for the
duration of a session; after the session has expired, the Session object is deleted. The Profile service, however, retains
its information until you explicitly remove it from the data store.

Moreover, the Profile object has several advantages over the Session object, such as:

Non-volatility

Profile object data is persisted in data stores, whereas Session variables are saved in memory.

Strong typing

Profile object properties are strongly typed, unlike Session variables, which are stored as objects and typecast
during runtime.

Efficient implementation

Profile properties are loaded only when they're needed, unlike Session variables, all of which are loaded whenever
any one of them is accessed.

In this section, you use the Profile service to implement a shopping cart.

In addition to creating the shopping cart itself, you add forms so that when it comes time to check out, users can either log
in to access the members' only area of the site, or register and then log in. You'll use Forms authentication rather than
Windows authentication to identify a user.

1. First, you need to create the business object that implements the functionality of a shopping cart. Add a new class
to the project and name it ShoppingCart.vb. (Right-click on project name in Solution Explorer and select Add New
Item…. Then select the Class template and rename it ShoppingCart.vb.) You will be asked if you wish to save the
file in the App_Code folder (see Figure 5-15), which is recommended. Click Yes.

Figure 5-15. Saving the class in the App_Code folder for code reuse

2. Code the ShoppingCart.vb class file as shown in Example 5-1.

Example 5-1. ShoppingCart.vb

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Imports Microsoft.VisualBasic

Imports System.Xml.Serialization

Namespace OReilly

 Public Structure itemType

 Dim isbn As String

 Dim qty As Integer

 End Structure

<XmlInclude(GetType(itemType))>_
 Public Class Cart

 '---use public for Xml serialization---

 Public items As New _

 System.Collections.Generic.List(Of itemType)

 Public Sub AddItem(ByVal isbn As String, _

 ByVal qty As Integer)

 Dim cartItem As New itemType

 cartItem.isbn = isbn

 cartItem.qty = qty

 items.Add(cartItem)

 End Sub

 End Class

End Namespace

You need to specify the XmlInclude attribute to allow XmlSerializer to
recognize a type when it serializes or deserializes the itemType data type.

An item is represented using the itemType structure containing its ISBN number as well as the quantity. The
Cart class contains an AddItem method that adds items to a generic List object (located in the
System.Collections.Generic namespace). Notice that you use the OReilly namespace to uniquely

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

System.Collections.Generic namespace). Notice that you use the OReilly namespace to uniquely
identify the itemType structure and Cart class that you have defined in this file.

3. Before building the actual registration and login forms, you'll first specify how users are to be authenticated. With
web applications for Internet users, you should use Forms authentication, instead of the Windows authentication
that ASP.NET uses by default (see "Forms Versus Windows Authentication"). Changing the authentication mode
of a web application from Windows to Forms requires changing the mode attribute of the authentication element in
its Web.config file. You'll first need to add a Web.config file to your project.

To add a Web.config file to your project, right-click on the project in Solution Explorer and select Add New Item
 Web Configuration File). Visual Studio will create and display the contents of the file.

Locate the <authentication> element in the file and change its mode attribute from Windows to Forms
the editor, as shown in Example 5-2.

Example 5-2. Setting Forms authentication

 …

 <authentication mode="Forms"/>
 </system.web>

 </configuration>

Forms Versus Windows Authentication
In Forms authentication, unauthenticated requests are redirected to a Web Form using HTTP client-
side redirection. The user provides a username and password and then submits the form. If the
application authenticates the request, the system issues a cookie containing the credentials or a key
for reacquiring the identity. Subsequent requests are issued with the cookie in the request headers.
They are then authenticated and authorized by an ASP. NET event handler using whatever
validation method the application developer specifies.

In Windows authentication, ASP.NET works in conjunction with Microsoft Internet Information
Services (IIS) authentication. Authentication is performed by IIS in one of three ways: basic, digest,
or Integrated Windows Authentication. When IIS authentication is complete, ASP.NET uses the
authenticated identity to authorize access.

It is not feasible for you to create separate Windows accounts for users using your application
through the Internet. So Forms authentication is the preferred method for Internet applications.

4. To use the Profile service to store a user shopping cart, you need to define a profile property for the cart and
specify its characteristics. To do that, add the markup shown in bold in Example 5-3 to Web.config.

Example 5-3. Defining the shoppingcart profile proper

<system.web>

 <anonymousIdentification enabled="true"/>
 <profile>
 <properties>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 <properties>
 <add name="shoppingcart" allowAnonymous="true"
 type="OReilly.Cart" serializeAs="Xml"/>
 </properties>
</profile>
 …

You define the type for the shoppingcart profile property as OReilly.Cart. This type refers to the Cart
class that you have defined in ShoppingCart.vb. The shoppingcart profile property will be serialized as an
XML string so that it can be stored in a database.

To save the value of an object to disk, you need to serialize it into XML or binary
format. In this case, you've chosen the XML method.

The <anonymousIdentification> element must be added in addition to the shoppingcart property
because an Internet user viewing your cart may not yet be an authenticated user of the application. To keep track
of an unknown user, ASP.NET needs to assign a unique identifier to the anonymous user.

Attributes in the Profile Property
Besides defining the name and the type attributes for a profile property, which are both
required (any .NET data type; default is string), you can also specify the following attributes:

readOnly

Indicates whether the property is read-only.

serializeAs

Represents how the property value should be stored in the database. Possible values are String (default),
Xml, Binary, and ProviderSpecific.

provider

Is the name of the profile provider to use.

defaultValue

Is the default value of the property.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

allowAnonymous

Indicates whether the property can store values by anonymous users.

5. Switch to the code behind of Main.aspx and add the code for the imgBtn_Click method shown in Example 5-4
This method retrieves the shopping cart of the current user—whether authenticated or anonymous—and then adds
the selected item to it. The updated shopping cart is then saved to the Profile object.

Example 5-4. Add to Cart button (imgBtn) Click event handler

Protected Sub imgBtn_Click(_

 ByVal sender As Object, _

 ByVal e As System.Web.UI.ImageClickEventArgs) _

 Handles imgBtn1.Click, imgBtn2.Click, imgBtn3.Click

 Dim myCart As OReilly.Cart
 '---retrieve the existing cart
 myCart = Profile.shoppingcart
 If myCart Is Nothing Then
 myCart = New OReilly.Cart
 End If

 Dim isbn As String
 Select Case CType(sender, ImageButton).ID
 Case "imgBtn1" : isbn = "0-596-00812-0"
 Case "imgBtn2" : isbn = "0-596-00757-4"
 Case "imgBtn3" : isbn = "0-596-10071-X"
 End Select
 lblMessage.Text = "You have added " & isbn

 myCart.AddItem(isbn, 1)
 '---save the cart back into the profile
 Profile.shoppingcart = myCart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

End Sub

For simplicity, you will add an item selected by the user into the shopping cart, even though the item might
already be present in the cart.

Note that this subroutine handles the click event of three ImageButton controls. This is accomplished by the
Handles statement:

Handles imgBtn1.Click, imgBtn2.Click, imgBtn3.Click

When any of the ImageButton controls is clicked, this subroutine will check which control fired the event by
first converting the sender object into an ImageButton control and then examining the ID (control name) of
the control:

Select Case CType(sender, ImageButton).ID

 Case "imgBtn1" : isbn = "0-596-00812-0"

 Case "imgBtn2" : isbn = "0-596-00757-4"

 Case "imgBtn3" : isbn = "0-596-10071-X"

End Select

Of course, if you have a lot of titles on a page you can check the ISBN using a database, but for this simple
example you will hardcode the information.

6. Code the Page_Load event so that when the page (Main.aspx) is loaded, it can check the Membership class to
check to see if the user is authenticated and print out the related information about the user (see Example 5-5).

Example 5-5. ShoppingCart Page_Load event handler

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 Dim user As MembershipUser = Membership.GetUser
 If user Is Nothing Then
 lblMessage.Text = "You have not logged in yet."
 Else
 lblMessage.Text = "Hello " & user.UserName

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 lblMessage.Text = "Hello " & user.UserName
 End If

End Sub

If the user is authenticated, the GetUser method from the Membership class will return information about the
authenticated user, or else it will return Nothing.

The Membership class in ASP.NET 2.0 takes on the role of validating user
credentials and managing user settings.

7. To test the application, select Main.aspx in Solution Explorer and then press F5. Since you haven't logged in yet,
you should see the message "You have not logged in yet," as shown in Figure 5-16.

If you wish to debug your web application (by using F5), you need to add a
Web.config file to your project. By default, if there is no Web.config file when you try
to debug your application, Visual Studio will prompt you to add one.

8. Add a few items into the shopping cart by clicking on the Add to Cart buttons, and the items will then be added to
the Profile object. Refresh the App_Data folder in Solution Explorer and you will see the ASPNETDB.MDF
database file (see Figure 5-17).

Bear in mind that at this moment, you have not yet been authenticated and are
therefore an anonymous user.

Figure 5-16. Loading Main.aspx

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-17. The ASPNETDB.MDF database file

9. Let's take a quick look at the information saved by the Profile object. Double-click on the ASPNETDB.MDF
file. The Database Explorer window will appear, as shown in Figure 5-18. Expand the Tables item and locate the
aspnet_Profile table. This table will contain the items saved in your shopping cart. Right-click on aspnet_Profile
and select "Show Table Data."

Improved Debugging Support in ASP.NET 2.0
ASP.NET 1.x required you to explicitly set a start page for your project so that a specific page is
loaded when you press F5 to debug the application. In ASP.NET 2.0, you can still set a specific
page as the start page if you want. However, in ASP.NET 2.0 the start page by default is the
currently selected page (currently selected either because you're editing it or because you selected
the page in Solution Explorer). This feature saves you the trouble of setting a start page when you
just want to debug a page you're working on at the moment.

This option is configurable via the project Property Pages dialog. To invoke it, right-click on the
project name, ShoppingApp, in Solution Explorer and then select Property Pages. Select the Start
Options item shown in the figure.

10. Notice that the shoppingcart profile property is saved as an XML string in the PropertyValuesString
field (see Figure 5-19).

The string itself is shown in Example 5-6.

Figure 5-18. Viewing the content of the aspnet_Profile table

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-19. The content of the aspnet_Profile table

Example 5-6. Content of PropertyValuesString

<?xml version="1.0" encoding="utf-16"?>

<Cart xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http:

//www.w3.org/2001/XMLSchema">

 <items>

 <anyType xsi:type="itemType">

 <isbn>0-596-00812-0</isbn>

 <qty>1</qty>

 </anyType>

<anyType xsi:type="itemType">

<isbn>0-596-00757-4</isbn>

<qty>1</qty>

 </anyType>

 <anyType xsi:type="itemType">

<isbn>0-596-10071-X</isbn>

<qty>1</qty>

</anyType>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

</anyType>

</items>

</Cart>

11. The UserID of the user is a long string of characters (a GUID). You can verify this by looking into the
aspnet_Users table (see Figure 5-20).

Figure 5-20. Content of the aspnet_Users table

Anonymous ID and GUID
If anonymous identification is enabled, when an un-authenticated user tries to save information into
the Profile object, an anonymous user ID is generated for the user. This ID is a GUID (Globally
Unique Identifier) that is guaranteed to be unique for each user.

You can programmatically retrieve the anonymous ID for the user via Request.AnonymousId.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.3. Members Area

Now that anonymous users can visit your site and add items to the shopping cart, they need the ability to log in
when they're ready to check out and purchase their selections. In this section you will create a checkout page that
only authenticated users can access.

5.3.1. Creating New User Accounts

When a user has finished shopping (i.e., selecting items in the storefront), you need to some way to authenticate her
so that you can retrieve particulars such as shipping address, credit card number, and so on. In this section, you will
build a page through which the user can register as a member of your site.

1. First, as always, you need to create the registration page. Add a new Web Form to the project and name it
Register.aspx. Select MasterPage.master as the Master Page once again to assure Register.aspx has the
same look and feel as other pages on your site.

2. Drag and drop the CreateUserWizard control from the Login tab in the Toolbox onto the Content
control in Register.aspx. The CreateUserWizard control is a visual control that prompts the user to
supply the necessary information to create a new user account.

The CreateUserWizard control
Because creating user accounts is such as common task, one performed by most web sites,
Microsoft has provided a new CreateUserWizard control in ASP.NET 2.0. The
CreateUserWizard control takes the drudgery out of creating user accounts by providing
a highly customizable control that accepts users' information. It performs such tasks as
verifying users' passwords and authenticating email addresses. It then automatically adds user
accounts to the site using the specified Membership Provider.

3. Now set the look and feel of the registration form. On the CreateUserWizard Tasks menu, click on the
Auto Format… link to apply the Professional scheme to the control.

ASP.NET 2.0 comes with several standard schemes to make your controls look
professional.

4. You'll want the Main.aspx page to be loaded when the user has finished registering a new account. Set the
ContinueDestinationPageUrl property (through the Properties window) of the
CreateUserWizard control to Main.aspx.

5. Now position the control on the page. Highlight the CreateUserWizard control and select Format
Justify Center on the Visual Studio menu bar to centralize the position of the control on the page. The
Register.aspx page should now look like Figure 5-21.

5.3.2. Creating a Login Page

Once you have created a registration page, you'll want to create a login page so returning customers can log into the
web site.

1. First, create the login page. Add a new Web Form to the project and name it Login.aspx. Select

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

1. First, create the login page. Add a new Web Form to the project and name it Login.aspx. Select
MasterPage.master as the Master Page once again to assure Login.aspx has the same look and feel as other
pages on your site.

2. Now create a login form for users to complete. Drag and drop the Login control from the Login tab in the
Toolbox onto the Login.aspx page. The Login control allows a user to log into your web site using the
Membership class that you have seen earlier.

Figure 5-21. The Register.aspx page

New Login Controls in ASP.NET 2.0
ASP.NET 2.0 ships with several new Login controls (such as Login, LoginView,
LoginStatus, LoginName, CreateUserWizard, and ChangePassword) to help
you accomplish tasks such as user authentication, display of login status and login name, and
more. The figure shows the various new Login controls in the Toolbox.

3. Set the look and feel of the control. Using the Login Tasks menu, click on the Auto Format… link to apply
the Elegant scheme to the control.

4. Under the Login control, type the text "New Member? Register here." At the end of the text, add a
LinkButton control from the Toolbox (see Figure 5-22).

Figure 5-22. Populating the Login.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

5. Finally, set the PostBackUrl property of the LinkButton control to ~/Register.aspx so that the
Register.aspx page will be loaded to help an unregistered user create a new account. Also, set the
ContinueDestinationPageUrl property of the Login control to Main.aspx so that upon successful
login, the user would be redirected to Main.aspx.

5.3.3. Restrict Unauthorized Access to Pages

So far, you have seen how to easily add a login page to your web site and how you can allow users to register for a
new account in your application. In this section, you will add a new members-only folder to your web site and
restrict access to authenticated users only.

1. First, create the folder in your project that will contain the restricted pages. To add a new folder to your
project right-click on the project name, ShoppingApp in the Solution Explorer and then select Add Folder

 Regular Folder. Name the folder Members.

Next, set the authorization required to access the folder. In Web.config, add the markup shown in bold in
Example 5-7 to restrict anonymous users from accessing the files contained within the Members folder.

Example 5-7. Denying anonymous users access to the Members page

…

 </system.web>

 <location path="Members">
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
 </location>
</configuration>

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The <location> element together with the <authorization> element allows you to restrict access to
a particular folder on your web site. In this case, you have used the <deny> element to prevent all
anonymous (represented by "?") users from accessing the Members folder.

5.3.4. Checking Out from the Store

While an unauthenticated user is selecting items on the Storefront page (Main.aspx) of ShoppingApp and adding
them to the shopping cart, the Profile service treats the user as anonymous. Once the user has finished choosing
items, clicks on the Checkout button to check out, and is authenticated, you need to take special steps to preserve
the items he has added to the shopping cart. This is because the profile data that was saved while the user was
anonymous is lost when he switches from using a GUID to using a user ID for identification. To migrate the profile
of the user, you need to transfer whatever information was saved in the anonymous profile to the user profile.

In this section, you will learn how to migrate an anonymous profile to an authenticated profile once a user has been
authenticated. Using the authenticated profile, you'll display a Checkout page that shows the user what's in the
shopping cart and offers the option to continue shopping. The completed page is shown in Figure 5-25.

1. First, add a Global.asax file to the project (Figure 5-23). (Right-click on project name in Solution Explorer
and then select Add New Item…. Select Global Application Class.) You will need the Global.asax file to
service an event (see the next step) when the user changes from an anonymous state to an authenticated one.
Visual Studio opens the file for you after adding it to your project.

Global.asax
The Global.asax file, also known as the ASP.NET application file, is an optional file that
contains code for responding to application-level events raised by ASP.NET or by
HttpModules. In this example, the Profile_MigrateAnonymous event will be fired
when a user changes from an anonymous state to an authenticated one. This event is serviced
in the Global.asax file.

Figure 5-23. Adding a Global.asax file to the project

2. Type the Profile_MigrateAnonymous event handler shown in Example 5-8 into Global.asax. The

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Type the Profile_MigrateAnonymous event handler shown in Example 5-8 into Global.asax. The
Profile_MigrateAnonymous event is raised whenever a user changes her status from anonymous to
authenticated (when she logs into the application via the Login.aspx page).

You can get the anonymous ID from the AnonymousId property (in the ProfileMigrateEventArgs
class) and then use the GetProfile method to retrieve the anonymous profile. The retrieved profile can
then be assigned to the authenticated user profile. You will also delete the old profile associated with the
anonymous user.

Example 5-8. Profile_MigrateAnonymous event handler

Sub Profile_MigrateAnonymous(ByVal sender As Object, _

 ByVal e As ProfileMigrateEventArgs)

 Dim anonymousProfile As ProfileCommon = _

 Profile.GetProfile(e.AnonymousID)

 If anonymousProfile.shoppingcart IsNot Nothing Then

 Profile.shoppingcart = anonymousProfile.shoppingcart

End If

 '---delete the items associated with the anonymous user

 ProfileManager.DeleteProfile(e.AnonymousID)

 '---clear the anonymous identifier from the request

 ' so that this event will not fire for an authenticated

 ' user

 AnonymousIdentificationModule.ClearAnonymousIdentifier

End Sub

3. Now you'll create the Checkout page that will be used to display the items currently stored in the user's
shopping cart. Add a new Web Form to the Members folder and select the MasterPage.master Master Page.
Name the new Web Form Checkout.aspx.

Populate the form with a GridView control and apply the Sand & Sky scheme to it. (Select Auto Format…
in the GridView Tasks menu; see Figure 5-24.)

Figure 5-24. Applying Auto Format to a GridView control

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Also, add a LinkButton control under the GridView control and set its Text property to "Continue
Shopping" and its PostBackUrl property to ~/Main.aspx. The results are shown in Figure 5-25.

The GridView control in ASP.NET 2.0 is similar to the DataGridView
control you have seen in Chapter 4, except that GridView is web based and
DataGridView is Windows based.

4. In the code behind of Checkout.aspx, code the Form_Load event as shown in Example 5-9. The
Checkout.aspx page will first create a dataset containing all the items in the shopping cart and then use it to
bind to the GridView control. It also changes the image in the imgHeader control in the Master Page
using the FindControl method in the Master property.

Figure 5-25. Members/Checkout. aspx page

Example 5-9. Checkout. aspx Form_Load event

Imports System.Data

Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load

 Dim myCart As OReilly.Cart

 myCart = Profile.shoppingcart

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 myCart = Profile.shoppingcart

 Dim item As OReilly.itemType

 '---change the image

 Dim masterImage As Image

 masterImage = CType(Master.FindControl("imgHeader"), _<

 Image)

 If masterImage IsNot Nothing Then

 masterImage.ImageUrl = "~/Images/header_shopping.gif"

 End If

 '---create a dataset---

 Dim ds As New DataSet

 ds.Tables.Add("Items")

 ds.Tables("Items").Columns.Add("ISBN")

 ds.Tables("Items").Columns.Add("Qty")

 Dim row As DataRow

 '---return all the items as a dataset---

 For Each item In myCart.items

 row = ds.Tables("Items").NewRow

 row("ISBN") = item.isbn

 row("Qty") = item.qty

 ds.Tables("Items").Rows.Add(row)

 Next

 '---Bind the GridView control to the dataset

 GridView1.DataSource = ds

 GridView1.DataBind()

End Sub

Think of a dataset as a database containing tables stored in memory.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Modifying a Master Page at Runtime
When a Web Form that uses a Master Page is loaded at runtime, it displays the content of the
Master Page together with its own content. However there are times when you will want to
modify parts of the Master Page when a particular Content page is loaded.

You locate the controls you want to modify on the Master Page by using the FindControl method of the
Master property, then supplying the name and type of the control you want to modify. Once the control is
located, you can change its properties as if it were a local object.

Master is a special property exposed by the Web Form as a handle with which to access the Master Page.
However, the Master property is valid only on pages that reference a Master Page.

You can programmatically check if a page is using a Master Page by doing this:

 If Master Is Nothing Then

 '---Page does not use master page---

 …

 End If

5. You'll want Checkout.aspx to be displayed when a user clicks on the Checkout button in Main.aspx. So, as a
last step, go to Main.aspx and set the PostPackUrl property of the Checkout button in Main.aspx to ~/
Members/Checkout.aspx so that the user can be brought to the Checkout.aspx page to check out. If an
unauthenticated user clicks on the Checkout button, he will be redirected to Login.aspx.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.4. Testing the Application

With the entire application built, it is now time to test it out.

1. To get started, select Main.aspx in Solution Explorer and then press F5 to debug the application.

2. In Main.aspx, add a few items into the shopping cart, as shown in Figure 5-26.

Figure 5-26. Adding items to a shopping cart and then checking out

3. When you are done adding the items, click the Checkout button and you will be redirected to the Login.aspx
page (see Figure 5-27).

4. Since you have not registered for an account yet, click on the "here" link to load the Register.aspx page (see
Figure 5-28). Enter the required information and click Create User.

You should use a strong password consisting of a mixture of alphanumeric
values and special characters. For example, you can use password such as
pass@word1. ASP.NET 2.0 requires passwords to have a mixture of numerals
(0–9), letters (a–z, A–Z), and special characters (such as # and !). It will also
reject passwords that are less than seven characters.

Default Login Page
Wait a minute, how does ASP.NET know that it should load the Login.aspx page to
authenticate the user when the Checkout button is clicked, rather than the other pages?

Well, in ASP.NET 2.0, a page with the filename Login.aspx is deemed to be the login page
when users try to access restricted folders (Members, in this case). This special name
Login.aspx (plus many others) is "burned" into ASP.NET as a default.

The machine.config.default file (located in C:\WINDOWS\Microsoft.NET\Framework\
<version>\CONFIG) contains all the default system-wide configuration settings. To see the
default settings defined in machine.config.default, check the machine.config.comments file
(also in the same directory) for details.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

For example, the default settings for Forms authentication found in machine.config.comments
are:

<forms

 name=".ASPXAUTH"

 loginUrl="login.aspx"

 protection="All"

 timeout="30"

 path="/"

 requireSSL="false"

 slidingExpiration="true"

 defaultUrl="default.aspx"

 cookieless="UseCookies"

 enableCrossAppRedirects="false" >

If you want to override the default settings, you should modify machine.config (for machine-
wide configuration) or Web.config (for application-wide configuration). The rationale for
splitting the original machine.config file into three different files is to reduce the size of
machine.config and hence improve performance.

5. If the registration is successful, you will see the page shown in Figure 5-29. Click Continue to return to the
Main.aspx page.

6. In Main.aspx, if you now click on the Checkout button, you will be redirected to the Checkout.aspx page
(see Figure 5-30). All the items that you have added before you log in are now displayed in the GridView
control. You can click on the Continue Shopping link to return to Main.aspx to continue adding items into
your shopping cart.

Figure 5-27. The Login.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 5-28. The Register.aspx page

Figure 5-29. Registration successful

Figure 5-30. The Checkout.aspx page

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

5.5. Summary

In this chapter, you built a simple e-commerce application that uses some of the new features in ASP.NET 2.0. You
have seen how to use a Master Page to maintain a consistent look and feel for the pages in your site. You have also
seen how information about users can be persisted using the Profile service. Last but not least, you have learned
how easy it is to implement security in your web applications using the new set of security controls built to work
with the underlying Membership class.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 5. Building Web Applications
Within a short few years, ASP.NET has become a favorite tool of web applications developers and now, with the
release of ASP.NET 2.0, it has undergone its second major upgrade. With ASP.NET 2.0, Microsoft has made major
improvements based on feedback from its millions of customers as well as the company's own experience in
developing and deploying web sites and portals. The rise of competing tools such as Macromedia Flash and open
source PHP have also encouraged Microsoft to focus with particular intensity on improving the ease of use of
ASP.NET while reducing the amount of code developers must write to create web applications.

For the Visual Basic 2005 programmer, the new release of ASP.NET is yet another bonanza, making web
application development more accessible then ever to those with Visual Basic skills. Among its many
improvements, ASP.NET 2.0 ships with dozens of new ready-to-use controls, considerably reducing the amount of
code you need to write to achieve professional results. In fact, a stated aim of the Microsoft web development tools
team is to reduce the amount of code you write to perform common web site tasks by up to 70%. In addition,
ASP.NET 2.0 comes with some neat improvements, such as cross-page posting and the ability to insert client script
into a page. You will learn about some of these features in this chapter.

The new features in ASP.NET 2.0 can be grouped into three broad categories: new controls and control
functionality, improvements to the Page Framework, and new services and APIs.

Controls

ASP.NET 2.0 ships with more than 50 new controls that make the life of a web application developer easier
by eliminating the need to write code. Specifically, there are new controls that help you to perform data
access, site navigation, login, and personalization with Web Parts.

Page Framework

ASP.NET 2.0 supports some useful additions to its Page Framework, most importantly establishing a
common look and feel on a site through a feature known as Master Pages. In addition to Master Pages,
ASP.NET 2.0 supports "theming" through Themes and Skins, allowing you to maintain a consistent look
and feel for your web sites and their controls. Another noteworthy feature in ASP.NET is its improved
support for localization, which reduces the amount of work you need to do to internationalize your web
applications.

Services and APIs

Behind the various new ASP.NET 2.0 controls for web site development lie the foundation services and
APIs that do the heavy lifting the controls need to do their work. For example, behind the new Login
controls you'll find the new Membership APIs, which perform such tasks as user authentication, registration
of new users, etc. If the controls don't do what you need, you can make use of these APIs directly in code.

In this chapter, you will build a simple e-commerce web application using several of the most powerful and
interesting features of Visual Studio 2005 and ASP.NET 2.0. The site will enable users—whether or not they are
authenticated—to browse a list of books and add one or more to a shopping cart. Once a user is ready to checkout,
the site will display a page asking the user either to log in or register as a new member and then proceed to log in as
a new member.

As you build the site, you'll get a feel for the following Visual Studio 2005 and ASP.NET 2.0 features:

How to create a consistent look and feel for your web site using Master Pages

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

How to use the new Profiling services to save items into a shopping cart and keep track of them when a user
registers and logs into the site

How to use the new security controls to create user accounts and to authenticate users

How to use new Member services to create a members-only directory of pages

How to display data using the GridView control

Of course, since this is a Visual Basic 2005 book, you'll also get to write some code. Figure 5-1 shows how the
main page of application will look when it is completed. Users will click on the Add to Cart buttons to add items to
their shopping cart and click on the Checkout button to go to the login page to sign in and make a purchase.

Figure 5-1. The completed shopping cart application

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.1. Migrate, Replace, Rewrite, or Reuse?

Once an organization has decided that a certain application no longer meets its business needs and that doing
nothing is no longer an option, modernization comes into play.[1] There are at least four ways to approach the
modernization of a VB application that should be considered. The deciding factors are:

[1] The following section is an excerpt from the "Designing an Application Migration Strategy for Visual Basic 6.0 to Visual Basic
.NET" whitepaper authored by ArtinSoft, published on MSDN at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/appmigrationstrat.asp.

The quality of the application code

The business value of the application

Quality in this case is about the suitability of the application in business and technical terms and should be assessed
in accordance with the following parameters:

Current effectiveness of application

Generated errors, number of workarounds, and level of support needed.

Stability and completeness of core business rules

Will the application logic remain the same in the foreseeable future? An underlying assumption in this paper
is that the current software asset is a valuable one. If the business model is going to change substantially,
then this assumption has to be called into question. In practice, the code is often the only repository of
business rules and these are scattered throughout the code. Thus any attempt to "start from scratch" needs to
reconstruct and document the requirements captured in the current code and take these requirements as the
starting point for the negotiation of new requirements.

Stage of the lifecycle

In the earlier stages of its lifecycle, an application will likely map closely to its functionality requirements,
although the platform could be obsolete.

Development environment

The development team and the environmental capabilities required to successfully deliver a modernization
project need to be assessed. Here, the developer's knowledge regarding the application source code, the
target technologies, and the resolution of modernization issues identified during the code assessment are
crucial. In general, it is recommended that developers executing the project be fully trained in VB 2005.
Additionally, other factors such as the existence of test cases must be considered.

The business value of the application is another important consideration and this will depend to a considerable
degree on its uniqueness. If the quality of the application is poor and there is comparable functionality available in a
third-party software package, it makes sense to replace it.

There are four broad modernization options—migrate, re-use, rewrite, or replace—any one of which can be the
right choice either for a complete application or for parts of an application. Figure 6-1 shows how the decision
factors correlate with the modernization path.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Migrate

If the VB application meets current business needs and its quality is good, chances are the application can
be effectively modernized to continue to meet the needs of the business in the future. In such cases, a
migration process can be applied and then functionality and business reach can be added as needed. In this
chapter, when we refer to a migration or an upgrade, we are referring to an automatically assisted migration
using the Microsoft Visual Basic Upgrade Wizard that is integrated in Visual Studio .NET (see "Upgrading
VB 6 Applications," later in this chapter).

Figure 6-1. Modernization options chart

Reuse

There are two possibilities here, one in which the application is centered on a third-party package/DBMS
already, and the other in which the business has developed its own application from scratch. If the VB 6
application portfolio is largely centered on a third-party package, then the best way to move forward may be
to upgrade to the latest version and use wrapping techniques to provide the required reach and other
functionality improvements. For in-house applications, consider wrapping the application pieces and
integrating them with new development.

Rewrite

The key asset here is the business rules and data structures; the application is the problem. Application
mining and analysis of code logic and data structures is required to provide the starting point for the rewrite.

Replace

Look for a suitable package or outsource. Be prepared to make changes to the business model to meet the
package half way.

6.1.1. Making the Right Decision

Upon the initiation of the project you should prepare a feasibility analysis that provides an assessment of the
business and technical quality of the application. The following series of checklists presents some of the questions
that you should consider when choosing one of the alternatives.

6.1.1.1. Migrate

Below is the checklist for choosing to migrate:

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Existing application fulfills current business needs
 Moderate functionality changes needed in existing application
 High operational costs of existing application
 Need to migrate to the .NET Framework for strategic reasons
 Future vision includes the use of web services or web access
 Stable code base and a test suite that certifies it
 Resources needed to maintain or amend applications on existing platform are difficult to find

6.1.1.2. Reuse

Below is the checklist for choosing to reuse:

 Business rules satisfactory
 Low operational costs of existing application
 Simple web access required, allowing a wrapping solution
 Have resources to keep core Visual Basic 6.0 application maintained
 Off-the-shelf software central to existing, rely on a third party to support and maintain

6.1.1.3. Rewrite

Below is the checklist for choosing to rewrite:

 Functionality does not meet business needs
 No off-the-shelf solution comes close to meeting needs
 Poor quality code in existing platform and high maintenance costs
 Can afford time, cost, and disruption involved
 Need to use the Microsoft .NET Framework for strategic reasons
 Future vision includes the use of web services

6.1.1.4. Replace

Below is the checklist for choosing to replace:

 Application significantly out of line with business needs
 Willing to make changes to business model to fit off-the-shelf solution or availability of off-the-shelf

solution that closely fit your business requirements
 Can afford time, cost, and disruption involved

The preceding questions can apply to complete applications or to discrete parts of applications. Typically a large
application will require use of more than one modernization alternative. When deciding the best path for a particular
part of an application, bear in mind that many developers will invariably say that rewriting your application is the
best solution if you need to upgrade it, because they usually feel they can write it better the second time, armed with
the benefit of hindsight. Certainly if the application is poorly designed, rewriting it can be a good option because it
provides an opportunity to do it right. However, examining the business case for upgrading, rewriting, replacing, or
leaving the application in Visual Basic 6.0 always provides some interesting insights.

If the application already supports your business needs, doesn't require enhancements to its functionality, and if you
already have support staff trained in VB 6, then leaving the application in VB 6 is a good option. Nevertheless, your
organization needs to assess the risks of this approach in light of current lifecycle guidelines from Microsoft and the
opportunities that the VB 2005 and .NET framework offer to your organization.

If there is a business need to move the application to VB 2005, then there is a need to look more closely at rewriting
versus upgrading. Upgrading the application using the VB 6 to VB 2005 migration tool is a cost-effective way to
migrate your applications. One popular reason for moving an application to VB 2005 is to either web-enable the

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

migrate your applications. One popular reason for moving an application to VB 2005 is to either web-enable the
application, or to enhance an existing web-enabled application with ASP.NET features such as tracing, flexible state
management, scaleable data access, and improved performance. As mentioned previously, rewriting sometimes
yields an improved application. The downside is that the development cost will be much greater than upgrading.

There are some benefits to rewriting. Rewriting allows you to correct a poor design, and COM objects can be
replaced with .NET objects that are more scaleable and don't require registration during deployment. The flipside of
this is that upgrading is much quicker and COM objects can be replaced with .NET objects after the upgrade has
taken place.

In brief, you have to decide on how to move forward with your modernization project. If you decide that the best
solution is to leave the application in VB 6, then you are done! On the other hand, if you have assessed that the best
solution is to rewrite your application, then the best piece of advice is to make sure that you follow an accepted
development methodology and that you really look back at the issue your current application has to make sure you
can leverage that knowledge when moving forward. If you think your current application and its source code have
value, and that by moving it to .NET you can extend its lifecycle, then you have decided that automatically assisted
migration is the best solution for your code. Finally, you may decide to go for a combination of the above solutions,
as is the case for most modernization projects.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.2. Using COM Objects in VB 2005

One of the primary reasons VB 6 programmers and their companies are reluctant to migrate to VB 2005 is the huge
investments they have made in developing COM components. However, COM components continue to be
supported in .NET. In the following sections, you will see how you can use legacy COM components in your VB
2005 applications.

The most direct way to use COM objects in VB 2005 is to use COM Interop. Although applications that run under
the .NET Framework can only work with .NET components, .NET allows you to use your existing COM
components by means of a Runtime Callable Wrapper (RCW). When you use RCW to interact with a COM object,
an assembly is used as a wrapper for the COM object. The RCW acts as a bridge between the unmanaged code (the
COM object) and managed code (your .NET application), and all communications with the COM object are routed
through this class (see Figure 6-2).

Figure 6-2. Runtime Callable Wrapper

COM objects are unmanaged code, therefore you need to remember to free up their
resources when they are no longer in use.

To illustrate the support of COM in .NET, let's consider a simple example.

Suppose you want to display a PDF file in a VB 2005 Windows application. To do so, you can make use of the
Adobe Acrobat Browser Document control (which is a COM object) installed on your system (the component is
installed on your computer when you install the Adobe Acrobat Reader).

First, create a new Windows application. To use the Adobe COM component, look for it and select it from the list
of COM components on your system. To see the list, click the COM tag of the Add Reference dialog in Solution
Explorer in Visual Studio 2005, as shown in Figure 6-3. Click OK.

Drag and drop the Adobe Acrobat 7.0 Browser Document, which is now located in the Toolbox under the All
Windows Forms tab, onto your Windows Form (Form1, unless you have renamed it). The result is shown in Figure
6-4.

Figure 6-3. Add a COM component to your project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-4. Filling the form with the Adobe COM component

To display a PDF document using the control, double-click on the Windows Form and code the Load event as
shown in Example 6-1.

Example 6-1. Form1 Load event handler

Private Sub Form1_Load(_

 ByVal sender As System.Object, _

 ByVal e As System.EventArgs) _

 Handles MyBase.Load, _

 MyBase.Load
 AxAcroPDF1.LoadFile("C:\MiniReader.pdf")

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 AxAcroPDF1.LoadFile("C:\MiniReader.pdf")
End Sub

There isn't much difference in coding; your COM component is used much like a .NET component.

Besides exposing using COM components in a .NET application, you can also use
.NET Components in a COM application via the COM Callable Wrapper (CCW). The
CCW is used to marshal calls between managed and unmanaged code (see Figure 6-5),
thereby allowing COM applications to make use of .NET components.

Figure 6-5. COM Callable Wrapper

Figure 6-6 shows what happens when the application is run.

Figure 6-6. Using the COM component

Not only does COM interop make it easy to use COM components in your VB 2005 application, it also does away
with the error-prone task of installing and registering COM components on target computers through a new feature
known as RegFree COM (Registration-Free COM).

RegFree COM runs only on Windows XP and later releases of the Windows operating
system.

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Using RegFree COM, you can deploy an application that uses a COM component without registering it on the user's
machine, thus avoiding the notorius collection of problems commonly referred to as "DLL Hell." RegFree COM
even allows you to run multiple versions of a COM component on the same machine.

RegFree COM works by automatically generating a manifest from the COM
component's type library and component registration on the developer's machine.
Therefore, while it is not required to install the component on the end users' machines, a
copy must be registered on the developer's machine.

To enable use of RegFree COM, all COM components referenced in Visual Studio 2005 now have a new
Isolated property (see Figure 6-7). If you set Isolated to true, the component can be deployed through
ClickOnce, and Visual Studio 2005 will automatically do all the work to deploy the COM component onto the
target machine (without needing to register it on the target machine).

Figure 6-7. Setting the Isolated property for RegFree COM

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.3. Upgrading VB 6 Applications

To make it easier for you to upgrade your VB 6 applications, Microsoft provides made two free tools:

Code Advisor for Visual Basic 6.0

An add-on for Visual Studio 6.0 that reviews your existing VB 6 code to ensure it meets predetermined
coding standards.

Upgrade Wizard

A built-in Visual Studio 2005 tool that automatically upgrades your VB 6 applications when you open them
in Visual Studio 2005. The Upgrade Wizard will upgrade your VB 6 code to VB 2005 and flag those code
blocks that need further attention.

Before you upgrade your VB 6 application, you should first run your application through the Code Advisor for VB
6 and fix any ambiguous code it identifies that will possibly make the upgrade process difficult. Then, open your
VB 6 application in Visual Studio 2005 so that the Upgrade Wizard can upgrade your code to VB 2005.

6.3.1. Using Code Advisor for VB 6

The first step toward upgrading your VB 6 applications to VB 2005 is to run the Code Advisor for Visual Basic 6.0.
The Code Advisor for Visual Basic 6 is an add-on for Visual Studio 6.0 that is used to review your code to ensure
that it meets predetermined coding standards. The coding standards are based on best practices developed by
Microsoft to produce robust and easy-to-maintain code. You can download this free tool from:
http://www.microsoft.com/downloads/details.aspx?FamilyID=a656371a-b5c0-4d40-b015-
0caa02634fae&DisplayLang=en.

Once the Code Advisor for VB 6 is downloaded and installed, you will find a new set of buttons in the toolbar area
of Visual Studio 6.0, as shown in Figure 6-8.

The Scope Definition button allows you to use Code Advisor to check the entire project, or to check only the
currently active file.

To see how the Code Advisor for VB 6 works, consider the following simple VB 6 application consisting of a
single form (Hello Application) as shown in Figure 6-9. The form contains four controls, including a Label
control (lblMessage), a Text control (txtName), a Hello button (cmdHello), and an Exit button (cmdExit).

Figure 6-8. The Code Advisor toolbar

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Figure 6-9. An application in VB 6

When the Exit button is clicked, the form displays a message box that asks users if they want to exit, as shown in
Example 6-2.

Example 6-2. Exit button Click event handler

Private Sub cmdExit_Click()

 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

This VB 6 application also uses a subroutine to display a message via the MsgBox function, as shown in Example
6-3. Note that this function uses the default ByRef to pass in parameters by reference.

Example 6-3. DisplayMsg subroutine

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

When the Hello button is clicked, the TextBox control is assigned to an Object of type object. A comparison is
then performed to check if the Text property (not explicitly specified as it is the default property) in the TextBox
control is empty. The relevant message is then printed. The code is shown in Example 6-4.

Example 6-4. Hello button Click event handler

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

Private Sub cmdHello_Click()

 Dim obj As Object

 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

To use the Code Advisor to examine the application, click the Add FixIts button. The toolbar will display the
number of issues (known as FixIts) that Code Advisor has raised (in this example, two FixIts were raised—
Count:2), as shown in Figure 6-8.

To examine the FixIts raised, switch to the Code view where you will see comments prefixed with the word
"FIXIT" as shown in Example 6-5.

Example 6-5. Hello and Exit button Click event handler FIXITs

'FIXIT: Use Option Explicit to avoid implicitly
' creating variables of type Variant
' FixIT90210ae-R383-H1984

Private Sub cmdExit_Click()

 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

Private Sub cmdHello_Click()

'FIXIT: Declare 'obj' with an early-bound data type

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

'FixIT90210ae-R1672-R1B8ZE
 Dim obj As Object

 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

Using the Code Advisor toolbar, you can remove all FixIts by clicking the Remove FixIts button, or find the next
FixIts by clicking the Find Next FixIts button.

In this example, the two specific FixIts are:

You should use Option Explicit to prevent your code from using undeclared variables. Once this is done, the
response variable should be explicitly declared.

The obj variable should be declared as a TextBox for early binding.

To view a summary of the FixIts raised, you can click on the View FixIt Report button. The report is shown as a
web page (see Figure 6-10).

Figure 6-10. Viewing the FixIts report

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You can customize the Code Advisor (click on Filter FixIts Rules) to examine your code using a specific version of
Visual Basic (Visual Basic .NET 2002 or Visual Basic.NET 2003), or based on best practices (see Figure 6-11).

Figure 6-11. Customizing Code Advisor

Let's now modify the application by entering to code shown in bold in Example 6-6 and then run Code Advisor
again (by clicking on the Add FixIts button).

Example 6-6. Modified Hello and Exit button Click event handlers

Option Explicit
Private Sub cmdExit_Click()

 Dim response As VbMsgBoxResult
 response = MsgBox("Exit program?", vbYesNo)

 If response = vbYes Then

 End

 End If

End Sub

Public Sub DisplayMsg(str As String)

 MsgBox str

End Sub

Private Sub cmdHello_Click()

 Dim obj As TextBox

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 Dim obj As TextBox
 Set obj = txtName

 If obj = "" Then

 DisplayMsg ("Please enter your name")

 Else

 DisplayMsg ("Hello " & txtName)

 End If

End Sub

This time, the application passes the Code Advisor's check. You can now proceed to the next step of the upgrading
process: using the Upgrade Wizard to upgrade the code to VB 2005.

6.3.2. Using the Upgrade Wizard

When you try to open a Visual Basic project (Windows, web, or other) created with a previous version of Visual
Studio (Visual Studio 6 or Visual Studio .NET), Visual Studio 2005 will launch the Upgrade Wizard and attempt to
upgrade the project to VB 2005. The Upgrade Wizard will automatically upgrade your code to VB 2005, and
anything else that is ambiguous will be marked with comments and displayed in the Upgrade Report.

To see how the Upgrade Wizard works, let's upgrade the application discussed in "Using Code Advisor for VB 6."
You'll use Visual Studio 2005 to open this VB project. When it's opened in Visual Studio 2005, the Upgrade
Wizard will kick into action, as shown in Figure 6-12.

Figure 6-12. The Visual Basic Upgrade Wizard

The Upgrade Wizard will lead you through a series of steps to upgrade the VB 6 project. When you have finished,
your VB 6 project will be displayed in Visual Studio 2005.

Figure 6-13 shows the project after it has been upgraded to VB 2005.

Figure 6-13. The upgraded VB project

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

In Solution Explorer, note that a new item has been added to the project: _UpgradeReport.htm. The
_UpgradeReport.htm document lists the changes made to the original project and highlights the various issues
encountered during the upgrade process, as shown in Figure 6-14.

Figure 6-14. The content of the _UpgradeReport.htm file

Let's look at the upgraded code and observe some of the salient changes, as shown in Example 6-7. The comments
and code added by the Upgrade Wizard are highlighted in bold.

Example 6-7. The upgraded project

Option Strict Off
Option Explicit On

Friend Class Form1

 Inherits System.Windows.Forms.Form

 Private Sub cmdExit_Click(_

 ByVal eventSender As System.Object, _

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 ByVal eventSender As System.Object, _

 ByVal eventArgs As System.EventArgs) _

 Handles cmdExit.Click

 Dim response As MsgBoxResult

 response = MsgBox("Exit program?", MsgBoxStyle.YesNo)
 If response = MsgBoxResult.Yes Then
 End

 End If

 End Sub

 'UPGRADE_NOTE: str was upgraded to str_Renamed.
 'Click for more: 'ms-help://MS.VSCC.v80/dv_commoner/local/
 'redirect.htm?keyword="A9E4979A-37FA-4718-9994-97DD76ED70A7"'
 Public Sub DisplayMsg(ByRef str_Renamed As String)
 MsgBox(str_Renamed)
 End Sub

 Private Sub cmdHello_Click(_

 ByVal eventSender As System.Object, _

 ByVal eventArgs As System.EventArgs) _

 Handles cmdHello.Click

 Dim obj As System.Windows.Forms.TextBox

 obj = txtName

 If obj.Text = "" Then
 DisplayMsg(("Please enter your name"))

 Else

 DisplayMsg(("Hello " & txtName.Text))
 End If

 End Sub

End Class

Note that while there is only one upgrade note in this project, several changes have been made to the code:

The variable str in the DisplayMsg subroutine has been renamed and the ByRef keyword has been

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

The variable str in the DisplayMsg subroutine has been renamed and the ByRef keyword has been
inserted. You should always explicitly specify the ByRef or ByVal keyword before you upgrade so that
you don't get unexpected results.

The Option Strict Off statement is inserted into the code. As the Option Strict statement is not
supported in VB 6, it is turned off by default in VB 2005. Ideally, you should turn it on so that all narrowing
conversions are flagged (see Chapter 2 for details).

The constants vbYesNo and vbYes have been changed to MsgBoxStyle. YesNo and
MsgBoxResult.Yes, respectively.

The Text property has been explicitly added to the obj and txtName variables.

What you have seen here is a superficial view of the support the Visual Basic Upgrade Wizard can provide. For
more details, check out this article at: http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/vstchexpvsnetlab5.asp.

Note that the Visual Basic Upgrade Wizard can only upgrade applications written in
VB 6 and later. As such, if you want to upgrade applications written in a version of
Visual Basic released prior to VB 6, you need to first upgrade them to VB 6 before
using the Upgrade Wizard.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

6.4. Summary

In this chapter, you have been introduced to several factors you need to consider before deciding whether or how to
enhance your VB applications to meet future business needs. The various checklists provided here and others
available from Microsoft will help you decide whether to migrate, replace, rewrite, or reuse an existing VB 6
application. You have also learned how you can continue to use COM objects—legacy or otherwise—in a VB 2005
application. Finally, you have seen how two tools provided by Microsoft (Code Advisor for VB 6 and Upgrade
Wizard) can help you upgrade your applications from VB 6 to VB 2005, once you've decided to do so.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Chapter 6. Moving from VB 6 to VB 2005
To take the plunge and move your current VB 6 application to VB 2005 requires more than just a cursory overview
of the capabilities of the language. Each type of application currently deployed in your environment warrants
different considerations. In this chapter, I will discuss some of the factors you need to consider before upgrading
your current application to VB 2005. I will also discuss various upgrade strategies that you can take should you
decide to use VB 2005. This chapter will end with a look at using the Code Advisor for Visual Basic 6.0 and the
Visual Basic Upgrade Wizard to upgrade your VB 6 application to VB 2005.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Copyright
Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also
available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Table
Editor: John Osborn

Production Editor: Adam Witwer

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Printing History:

September 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly
Media, Inc. Visual Basic 2005 Jumpstart, the image of moor frogs, and related trade dress are trademarks of
O'Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 0-596-10071-X

[M]
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

About the Author
Wei-Meng Lee (Microsoft MVP) is a technologist and founder of Developer Learning Solutions
(http://www.developerlearningsolutions.com), a technology company specializing in hands-on training in the latest
Microsoft technologies. Wei-Meng speaks regularly at international conferences and has authored numerous books
on .NET, XML, and wireless technologies, including ASP.NET 2.0: A Developer's Notebook and the .NET Compact
Framework Pocket Guide (both from O'Reilly). He writes extensively for the O'Reilly Network on topics ranging
from .NET to Mac OS X. Wei-Meng is currently a Microsoft Regional Director for Singapore. Visit Wei-Meng's
blog at http://weimenglee.blogspot.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Foreword
Visual Basic revolutionized programming when it was first released in 1991 by making it easier than ever for
developers to build Windows programs. This success continued with Visual Basic 6.0, which became one of the
world's most popular programming languages. The transition from Visual Basic 6.0 to Visual Basic .NET offered
developers a new range of development possibilities. Using the same set of development skills, developers could
now target Windows, Web, Mobile, and Office applications better than ever before. Visual Basic 2005 is the most
powerful and accessible version of Visual Basic. The addition of features like the My namespace and Edit and
Continue help developers to address business problems with the productivity that is the hallmark of Visual Basic
development.

This book is a great way to take your Visual Basic 6.0 development skills forward to become an expert in Visual
Basic 2005 programming. I'm happy to have partnered with Wei-Meng and O'Reilly to create this book which is a
part of an ongoing effort to enable Visual Basic 6.0 developers to leverage their existing skills. Experienced VB
programmers will see how their existing Visual Basic skills can be applied to quickly become productive in Visual
Basic 2005.

I hope that you find this book useful and look forward to hearing from you with any comments. Please feel free to
contact me directly at jroxe@microsoft.com.

—Jay Roxe

Product Manager, Visual Basic

Microsoft Corporation
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Who This Book Is For

Visual Basic 2005 Jumpstart is written for VB 6 programmers who have yet to move to Visual Basic 2005, the
latest release of Microsoft Visual Basic, one of the world's most popular programming languages. With VB 2005,
Microsoft has given VB 6 developers a host of reasons to upgrade now, including the return of VB 6 features
omitted from earlier versions of VB.NET.

My aim is to provide you with a starting point—a jumpstart—that demonstrates how easy it is to become productive
with the new language when it's paired with the Visual Studio 2005 development environment.

To get the most out of this book, you'll need a copy of Visual Studio 2005 that supports Visual Basic (see "What
You Need to Use This Book"). I encourage you to work your way through the sample applications, especially those
in Chapters 1, Chapters 4, and Chapters 5, as they are purposefully small and designed to show off the best of the
new features in VB 2005. You'll be surprised at how easily and quickly you can build a relatively sophisticated
Windows or web application. The complete source code for the book (along with any errata) is available on the
O'Reilly web page for this book, http://www.oreilly.com/catalog/vbjumpstart/.

How This Book Is Organized

Visual Basic 2005 Jumpstart consists of six chapters, each of which focuses on a particular aspect of the VB 2005
language or a type of project that VB 6 programmers are likely to encounter in making the move to the new tool.

Chapter 1, Introducing Visual Basic 2005

You'll use VB 2005 and Visual Studio 2005 to build a simple Windows application that any VB 6
programmer will recognize. Though the application is simple, building it illustrates a number of powerful
features present in the VB 2005 language and the Visual Studio 2005 development tool. Among these are
new Windows controls with Smart Tasks, new Windows application templates, restored support for edit-
and-continue, improved IntelliSense and Code Editor facilities, the Data Source Configuration Wizard, and
Application Settings.

Chapter 2, Programming with Visual Basic

you will be taken on a whirlwind tour of the VB 2005 language and its syntax, and you'll see how it
compares with that of VB 6. If you are a VB 6 programmer, you'll be happy to learn that much of what you
already know is still supported (or enhanced) in VB 2005. You'll also be introduced to the My namespace,
which vastly expands the trove of functions available to Visual Basic programmers and provides easier
access to the rich functionality of the .NET Framework Class Library.

Chapter 3, Putting Object-Oriented Programming to Work

You will be introduced to the support for object-oriented programming (OOP) available in VB 2005 and
will learn why it matters. A principal reason for using OOP features in VB 2005 is the support they provide
for reusing, customizing, and controlling the use others make of your code, and you'll learn about a variety
of techniques for accomplishing these tasks. You'll also learn about the VB 2005 Class Designer, how to
extend an existing class by inheriting from it, generic classes, Partial classes, and advanced OOP concepts
such as abstract classes and methods, interfaces, attributes, and access modifiers.

Chapter 4, Developing a Windows Application

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

You will build a Windows application that demonstrates the ease with which Visual Studio 2005 and VB
2005 can be used to create professional Windows applications. You will also learn how to consume web
services and how data can be persisted in a SQL database, and you will see how ClickOnce makes
deployment and updating of smart clients easy and effortless.

Chapter 5, Building Web Applications

You will build a simple e-commerce web application using new controls in ASP.NET 2.0 that let you build
powerful applications without writing much VB 2005 code at all. You will see how to use a Master Page to
maintain a consistent look and feel for the pages of your site. You will also see how information about users
could be persisted using the new Profile service. Last but not least, you will learn how easy it is to
implement security in your web applications using new ASP.NET 2.0 security controls with the
Membership class that powers them.

Chapter 6, Moving from VB 6 to VB 2005

You will learn about the various factors that you need to consider when deciding whether to upgrade an
exisitng application. Upgrading from VB 6 to VB 2005 requires careful review of the application as well as
analysis of the various benefits that a migration will bring you. You will also learn how you can continue to
use your legacy COM components in VB 2005 and how the new RegFree COM feature in VB 2005 shields
you from the notorious DLL hell problem. Finally, the chapter ends with a demonstration of the Visual
Basic 6.0 Code Advisor and the Upgrade Wizard, which aim to ease the upgrade of your existing VB 6
applications to VB 2005, should you decide to go that route.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

What You Need to Use This Book

To try out the many hands-on projects and code samples in this book, you'll need to install any edition of Visual
Studio 2005 on a computer running Windows. You can also use a combination of the new Visual Studio Express
Editions. To work your way through all of the examples, you'll need to install Visual Basic 2005 Express Edition,
Visual Web Developer 2005 Express Edition, and SQL Server 2005 Express Edition, all of which are available on
the MSDN web site.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories, and Unix
utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, controls, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event handlers, XML tags,
HTML tags, macros, the contents of files, or the output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user. Bold is also used in code samples
to highlight lines of code that are discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in your programs and
documentation. You do not need to contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book does not require permission.
Selling or distributing a CD-ROM of examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN.
For example: "Visual Basic 2005 Jumpstart, by Wei-Meng Lee. Copyright 2005 O'Reilly Media, Inc., 0-596-10071-
X."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top
tech books, cut and paste code samples, download chapters, and find quick answers when you need the most
accurate, current information. Try it for free at http://safari.oreilly.com.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

I'd Like to Hear from You

Please send comments, suggestions, and errata to wei_meng_lee@hotmail.com. You can also visit my web site at:
http://www.developerlearningsolutions.com for a list of articles that I have written on .NET. Check out the Code
Library section to download sample code for topics on .NET, VB 2005, ASP.NET 2.0, and the .NET Compact
Framework.

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information. You can access
this page at:

http://www.oreilly.com/catalog/vbjumpstart/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see our web site
at:

http://www.oreilly.com
 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Acknowledgments

I am very grateful to my editor, John Osborn, for giving me this opportunity to write a book on VB 2005. His
patience and attention to detail have definitely made this book a better read. John has painstakingly read and reread
every single word I have written and has always challenged me to rethink what I have written, and for this I am
much honored to work with John. A big thank you, John!

Special thanks are also due to Jay Roxe, Product Manager of Visual Basic at Microsoft, for his support and review
of this book. Jay has played an instrumental role in shaping the outline of this book and provided many useful
suggestions for improving its content. Thanks for the hard work, Jay!

I also wish to express my gratitude to the reviewers for their comments and numerous suggestions. They include
Robert Green, Jeff Barr, Paul Yuknewicz, and Joseph Binder.

As always, it has been a pleasure working with the O'Reilly team. A big thank you to the unsung heroes behind the
scenes that made this book possible. Thanks!

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

 < Day Day Up >

Preface
Who This Book Is For

What You Need to Use This Book

Conventions Used in This Book

Using Code Examples

Safari Enabled

I'd Like to Hear from You

Comments and Questions

Acknowledgments

 < Day Day Up >

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

